1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/gro.h>
29 #include <net/ipv6.h>
30 #include <net/ip6_checksum.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35 
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40 
41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 	int i;
44 
45 	/* Add NAPI objects */
46 	for_each_rx_queue_cnic(bp, i) {
47 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll);
48 	}
49 }
50 
51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 	int i;
54 
55 	/* Add NAPI objects */
56 	for_each_eth_queue(bp, i) {
57 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll);
58 	}
59 }
60 
61 static int bnx2x_calc_num_queues(struct bnx2x *bp)
62 {
63 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
64 
65 	/* Reduce memory usage in kdump environment by using only one queue */
66 	if (is_kdump_kernel())
67 		nq = 1;
68 
69 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
70 	return nq;
71 }
72 
73 /**
74  * bnx2x_move_fp - move content of the fastpath structure.
75  *
76  * @bp:		driver handle
77  * @from:	source FP index
78  * @to:		destination FP index
79  *
80  * Makes sure the contents of the bp->fp[to].napi is kept
81  * intact. This is done by first copying the napi struct from
82  * the target to the source, and then mem copying the entire
83  * source onto the target. Update txdata pointers and related
84  * content.
85  */
86 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
87 {
88 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
89 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
90 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
91 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
92 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
93 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
94 	int old_max_eth_txqs, new_max_eth_txqs;
95 	int old_txdata_index = 0, new_txdata_index = 0;
96 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
97 
98 	/* Copy the NAPI object as it has been already initialized */
99 	from_fp->napi = to_fp->napi;
100 
101 	/* Move bnx2x_fastpath contents */
102 	memcpy(to_fp, from_fp, sizeof(*to_fp));
103 	to_fp->index = to;
104 
105 	/* Retain the tpa_info of the original `to' version as we don't want
106 	 * 2 FPs to contain the same tpa_info pointer.
107 	 */
108 	to_fp->tpa_info = old_tpa_info;
109 
110 	/* move sp_objs contents as well, as their indices match fp ones */
111 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
112 
113 	/* move fp_stats contents as well, as their indices match fp ones */
114 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
115 
116 	/* Update txdata pointers in fp and move txdata content accordingly:
117 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
118 	 * decremented by max_cos x delta.
119 	 */
120 
121 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
122 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
123 				(bp)->max_cos;
124 	if (from == FCOE_IDX(bp)) {
125 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
126 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 	}
128 
129 	memcpy(&bp->bnx2x_txq[new_txdata_index],
130 	       &bp->bnx2x_txq[old_txdata_index],
131 	       sizeof(struct bnx2x_fp_txdata));
132 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
133 }
134 
135 /**
136  * bnx2x_fill_fw_str - Fill buffer with FW version string.
137  *
138  * @bp:        driver handle
139  * @buf:       character buffer to fill with the fw name
140  * @buf_len:   length of the above buffer
141  *
142  */
143 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
144 {
145 	if (IS_PF(bp)) {
146 		u8 phy_fw_ver[PHY_FW_VER_LEN];
147 
148 		phy_fw_ver[0] = '\0';
149 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
150 					     phy_fw_ver, PHY_FW_VER_LEN);
151 		strscpy(buf, bp->fw_ver, buf_len);
152 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
153 			 "bc %d.%d.%d%s%s",
154 			 (bp->common.bc_ver & 0xff0000) >> 16,
155 			 (bp->common.bc_ver & 0xff00) >> 8,
156 			 (bp->common.bc_ver & 0xff),
157 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
158 	} else {
159 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
160 	}
161 }
162 
163 /**
164  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
165  *
166  * @bp:	driver handle
167  * @delta:	number of eth queues which were not allocated
168  */
169 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
170 {
171 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
172 
173 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
174 	 * backward along the array could cause memory to be overridden
175 	 */
176 	for (cos = 1; cos < bp->max_cos; cos++) {
177 		for (i = 0; i < old_eth_num - delta; i++) {
178 			struct bnx2x_fastpath *fp = &bp->fp[i];
179 			int new_idx = cos * (old_eth_num - delta) + i;
180 
181 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
182 			       sizeof(struct bnx2x_fp_txdata));
183 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
184 		}
185 	}
186 }
187 
188 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
189 
190 /* free skb in the packet ring at pos idx
191  * return idx of last bd freed
192  */
193 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
194 			     u16 idx, unsigned int *pkts_compl,
195 			     unsigned int *bytes_compl)
196 {
197 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
198 	struct eth_tx_start_bd *tx_start_bd;
199 	struct eth_tx_bd *tx_data_bd;
200 	struct sk_buff *skb = tx_buf->skb;
201 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
202 	int nbd;
203 	u16 split_bd_len = 0;
204 
205 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
206 	prefetch(&skb->end);
207 
208 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
209 	   txdata->txq_index, idx, tx_buf, skb);
210 
211 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
212 
213 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
214 #ifdef BNX2X_STOP_ON_ERROR
215 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
216 		BNX2X_ERR("BAD nbd!\n");
217 		bnx2x_panic();
218 	}
219 #endif
220 	new_cons = nbd + tx_buf->first_bd;
221 
222 	/* Get the next bd */
223 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
224 
225 	/* Skip a parse bd... */
226 	--nbd;
227 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
228 
229 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
230 		/* Skip second parse bd... */
231 		--nbd;
232 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
233 	}
234 
235 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
236 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
237 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
238 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
239 		--nbd;
240 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
241 	}
242 
243 	/* unmap first bd */
244 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
245 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
246 			 DMA_TO_DEVICE);
247 
248 	/* now free frags */
249 	while (nbd > 0) {
250 
251 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
252 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
253 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
254 		if (--nbd)
255 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
256 	}
257 
258 	/* release skb */
259 	WARN_ON(!skb);
260 	if (likely(skb)) {
261 		(*pkts_compl)++;
262 		(*bytes_compl) += skb->len;
263 		dev_kfree_skb_any(skb);
264 	}
265 
266 	tx_buf->first_bd = 0;
267 	tx_buf->skb = NULL;
268 
269 	return new_cons;
270 }
271 
272 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
273 {
274 	struct netdev_queue *txq;
275 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
276 	unsigned int pkts_compl = 0, bytes_compl = 0;
277 
278 #ifdef BNX2X_STOP_ON_ERROR
279 	if (unlikely(bp->panic))
280 		return -1;
281 #endif
282 
283 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
284 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
285 	sw_cons = txdata->tx_pkt_cons;
286 
287 	/* Ensure subsequent loads occur after hw_cons */
288 	smp_rmb();
289 
290 	while (sw_cons != hw_cons) {
291 		u16 pkt_cons;
292 
293 		pkt_cons = TX_BD(sw_cons);
294 
295 		DP(NETIF_MSG_TX_DONE,
296 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
297 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
298 
299 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
300 					    &pkts_compl, &bytes_compl);
301 
302 		sw_cons++;
303 	}
304 
305 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
306 
307 	txdata->tx_pkt_cons = sw_cons;
308 	txdata->tx_bd_cons = bd_cons;
309 
310 	/* Need to make the tx_bd_cons update visible to start_xmit()
311 	 * before checking for netif_tx_queue_stopped().  Without the
312 	 * memory barrier, there is a small possibility that
313 	 * start_xmit() will miss it and cause the queue to be stopped
314 	 * forever.
315 	 * On the other hand we need an rmb() here to ensure the proper
316 	 * ordering of bit testing in the following
317 	 * netif_tx_queue_stopped(txq) call.
318 	 */
319 	smp_mb();
320 
321 	if (unlikely(netif_tx_queue_stopped(txq))) {
322 		/* Taking tx_lock() is needed to prevent re-enabling the queue
323 		 * while it's empty. This could have happen if rx_action() gets
324 		 * suspended in bnx2x_tx_int() after the condition before
325 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
326 		 *
327 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
328 		 * sends some packets consuming the whole queue again->
329 		 * stops the queue
330 		 */
331 
332 		__netif_tx_lock(txq, smp_processor_id());
333 
334 		if ((netif_tx_queue_stopped(txq)) &&
335 		    (bp->state == BNX2X_STATE_OPEN) &&
336 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
337 			netif_tx_wake_queue(txq);
338 
339 		__netif_tx_unlock(txq);
340 	}
341 	return 0;
342 }
343 
344 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
345 					     u16 idx)
346 {
347 	u16 last_max = fp->last_max_sge;
348 
349 	if (SUB_S16(idx, last_max) > 0)
350 		fp->last_max_sge = idx;
351 }
352 
353 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
354 					 u16 sge_len,
355 					 struct eth_end_agg_rx_cqe *cqe)
356 {
357 	struct bnx2x *bp = fp->bp;
358 	u16 last_max, last_elem, first_elem;
359 	u16 delta = 0;
360 	u16 i;
361 
362 	if (!sge_len)
363 		return;
364 
365 	/* First mark all used pages */
366 	for (i = 0; i < sge_len; i++)
367 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
368 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
369 
370 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
371 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
372 
373 	/* Here we assume that the last SGE index is the biggest */
374 	prefetch((void *)(fp->sge_mask));
375 	bnx2x_update_last_max_sge(fp,
376 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
377 
378 	last_max = RX_SGE(fp->last_max_sge);
379 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
380 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
381 
382 	/* If ring is not full */
383 	if (last_elem + 1 != first_elem)
384 		last_elem++;
385 
386 	/* Now update the prod */
387 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
388 		if (likely(fp->sge_mask[i]))
389 			break;
390 
391 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
392 		delta += BIT_VEC64_ELEM_SZ;
393 	}
394 
395 	if (delta > 0) {
396 		fp->rx_sge_prod += delta;
397 		/* clear page-end entries */
398 		bnx2x_clear_sge_mask_next_elems(fp);
399 	}
400 
401 	DP(NETIF_MSG_RX_STATUS,
402 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
403 	   fp->last_max_sge, fp->rx_sge_prod);
404 }
405 
406 /* Get Toeplitz hash value in the skb using the value from the
407  * CQE (calculated by HW).
408  */
409 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
410 			    const struct eth_fast_path_rx_cqe *cqe,
411 			    enum pkt_hash_types *rxhash_type)
412 {
413 	/* Get Toeplitz hash from CQE */
414 	if ((bp->dev->features & NETIF_F_RXHASH) &&
415 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
416 		enum eth_rss_hash_type htype;
417 
418 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
419 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
420 				(htype == TCP_IPV6_HASH_TYPE)) ?
421 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
422 
423 		return le32_to_cpu(cqe->rss_hash_result);
424 	}
425 	*rxhash_type = PKT_HASH_TYPE_NONE;
426 	return 0;
427 }
428 
429 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
430 			    u16 cons, u16 prod,
431 			    struct eth_fast_path_rx_cqe *cqe)
432 {
433 	struct bnx2x *bp = fp->bp;
434 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
435 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
436 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
437 	dma_addr_t mapping;
438 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
439 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
440 
441 	/* print error if current state != stop */
442 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
443 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
444 
445 	/* Try to map an empty data buffer from the aggregation info  */
446 	mapping = dma_map_single(&bp->pdev->dev,
447 				 first_buf->data + NET_SKB_PAD,
448 				 fp->rx_buf_size, DMA_FROM_DEVICE);
449 	/*
450 	 *  ...if it fails - move the skb from the consumer to the producer
451 	 *  and set the current aggregation state as ERROR to drop it
452 	 *  when TPA_STOP arrives.
453 	 */
454 
455 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
456 		/* Move the BD from the consumer to the producer */
457 		bnx2x_reuse_rx_data(fp, cons, prod);
458 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
459 		return;
460 	}
461 
462 	/* move empty data from pool to prod */
463 	prod_rx_buf->data = first_buf->data;
464 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
465 	/* point prod_bd to new data */
466 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
467 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
468 
469 	/* move partial skb from cons to pool (don't unmap yet) */
470 	*first_buf = *cons_rx_buf;
471 
472 	/* mark bin state as START */
473 	tpa_info->parsing_flags =
474 		le16_to_cpu(cqe->pars_flags.flags);
475 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
476 	tpa_info->tpa_state = BNX2X_TPA_START;
477 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
478 	tpa_info->placement_offset = cqe->placement_offset;
479 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
480 	if (fp->mode == TPA_MODE_GRO) {
481 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
482 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
483 		tpa_info->gro_size = gro_size;
484 	}
485 
486 #ifdef BNX2X_STOP_ON_ERROR
487 	fp->tpa_queue_used |= (1 << queue);
488 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
489 	   fp->tpa_queue_used);
490 #endif
491 }
492 
493 /* Timestamp option length allowed for TPA aggregation:
494  *
495  *		nop nop kind length echo val
496  */
497 #define TPA_TSTAMP_OPT_LEN	12
498 /**
499  * bnx2x_set_gro_params - compute GRO values
500  *
501  * @skb:		packet skb
502  * @parsing_flags:	parsing flags from the START CQE
503  * @len_on_bd:		total length of the first packet for the
504  *			aggregation.
505  * @pkt_len:		length of all segments
506  * @num_of_coalesced_segs: count of segments
507  *
508  * Approximate value of the MSS for this aggregation calculated using
509  * the first packet of it.
510  * Compute number of aggregated segments, and gso_type.
511  */
512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
513 				 u16 len_on_bd, unsigned int pkt_len,
514 				 u16 num_of_coalesced_segs)
515 {
516 	/* TPA aggregation won't have either IP options or TCP options
517 	 * other than timestamp or IPv6 extension headers.
518 	 */
519 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
520 
521 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
522 	    PRS_FLAG_OVERETH_IPV6) {
523 		hdrs_len += sizeof(struct ipv6hdr);
524 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
525 	} else {
526 		hdrs_len += sizeof(struct iphdr);
527 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
528 	}
529 
530 	/* Check if there was a TCP timestamp, if there is it's will
531 	 * always be 12 bytes length: nop nop kind length echo val.
532 	 *
533 	 * Otherwise FW would close the aggregation.
534 	 */
535 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
536 		hdrs_len += TPA_TSTAMP_OPT_LEN;
537 
538 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
539 
540 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
541 	 * to skb_shinfo(skb)->gso_segs
542 	 */
543 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
544 }
545 
546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
547 			      u16 index, gfp_t gfp_mask)
548 {
549 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
550 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
551 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
552 	dma_addr_t mapping;
553 
554 	if (!pool->page) {
555 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
556 		if (unlikely(!pool->page))
557 			return -ENOMEM;
558 
559 		pool->offset = 0;
560 	}
561 
562 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
563 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
564 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
565 		BNX2X_ERR("Can't map sge\n");
566 		return -ENOMEM;
567 	}
568 
569 	sw_buf->page = pool->page;
570 	sw_buf->offset = pool->offset;
571 
572 	dma_unmap_addr_set(sw_buf, mapping, mapping);
573 
574 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
575 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
576 
577 	pool->offset += SGE_PAGE_SIZE;
578 	if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
579 		get_page(pool->page);
580 	else
581 		pool->page = NULL;
582 	return 0;
583 }
584 
585 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
586 			       struct bnx2x_agg_info *tpa_info,
587 			       u16 pages,
588 			       struct sk_buff *skb,
589 			       struct eth_end_agg_rx_cqe *cqe,
590 			       u16 cqe_idx)
591 {
592 	struct sw_rx_page *rx_pg, old_rx_pg;
593 	u32 i, frag_len, frag_size;
594 	int err, j, frag_id = 0;
595 	u16 len_on_bd = tpa_info->len_on_bd;
596 	u16 full_page = 0, gro_size = 0;
597 
598 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
599 
600 	if (fp->mode == TPA_MODE_GRO) {
601 		gro_size = tpa_info->gro_size;
602 		full_page = tpa_info->full_page;
603 	}
604 
605 	/* This is needed in order to enable forwarding support */
606 	if (frag_size)
607 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
608 				     le16_to_cpu(cqe->pkt_len),
609 				     le16_to_cpu(cqe->num_of_coalesced_segs));
610 
611 #ifdef BNX2X_STOP_ON_ERROR
612 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
613 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
614 			  pages, cqe_idx);
615 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
616 		bnx2x_panic();
617 		return -EINVAL;
618 	}
619 #endif
620 
621 	/* Run through the SGL and compose the fragmented skb */
622 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
623 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
624 
625 		/* FW gives the indices of the SGE as if the ring is an array
626 		   (meaning that "next" element will consume 2 indices) */
627 		if (fp->mode == TPA_MODE_GRO)
628 			frag_len = min_t(u32, frag_size, (u32)full_page);
629 		else /* LRO */
630 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
631 
632 		rx_pg = &fp->rx_page_ring[sge_idx];
633 		old_rx_pg = *rx_pg;
634 
635 		/* If we fail to allocate a substitute page, we simply stop
636 		   where we are and drop the whole packet */
637 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
638 		if (unlikely(err)) {
639 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
640 			return err;
641 		}
642 
643 		dma_unmap_page(&bp->pdev->dev,
644 			       dma_unmap_addr(&old_rx_pg, mapping),
645 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
646 		/* Add one frag and update the appropriate fields in the skb */
647 		if (fp->mode == TPA_MODE_LRO)
648 			skb_fill_page_desc(skb, j, old_rx_pg.page,
649 					   old_rx_pg.offset, frag_len);
650 		else { /* GRO */
651 			int rem;
652 			int offset = 0;
653 			for (rem = frag_len; rem > 0; rem -= gro_size) {
654 				int len = rem > gro_size ? gro_size : rem;
655 				skb_fill_page_desc(skb, frag_id++,
656 						   old_rx_pg.page,
657 						   old_rx_pg.offset + offset,
658 						   len);
659 				if (offset)
660 					get_page(old_rx_pg.page);
661 				offset += len;
662 			}
663 		}
664 
665 		skb->data_len += frag_len;
666 		skb->truesize += SGE_PAGES;
667 		skb->len += frag_len;
668 
669 		frag_size -= frag_len;
670 	}
671 
672 	return 0;
673 }
674 
675 static struct sk_buff *
676 bnx2x_build_skb(const struct bnx2x_fastpath *fp, void *data)
677 {
678 	struct sk_buff *skb;
679 
680 	if (fp->rx_frag_size)
681 		skb = build_skb(data, fp->rx_frag_size);
682 	else
683 		skb = slab_build_skb(data);
684 	return skb;
685 }
686 
687 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
688 {
689 	if (fp->rx_frag_size)
690 		skb_free_frag(data);
691 	else
692 		kfree(data);
693 }
694 
695 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
696 {
697 	if (fp->rx_frag_size) {
698 		/* GFP_KERNEL allocations are used only during initialization */
699 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
700 			return (void *)__get_free_page(gfp_mask);
701 
702 		return napi_alloc_frag(fp->rx_frag_size);
703 	}
704 
705 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
706 }
707 
708 #ifdef CONFIG_INET
709 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
710 {
711 	const struct iphdr *iph = ip_hdr(skb);
712 	struct tcphdr *th;
713 
714 	skb_set_transport_header(skb, sizeof(struct iphdr));
715 	th = tcp_hdr(skb);
716 
717 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
718 				  iph->saddr, iph->daddr, 0);
719 }
720 
721 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
722 {
723 	struct ipv6hdr *iph = ipv6_hdr(skb);
724 	struct tcphdr *th;
725 
726 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
727 	th = tcp_hdr(skb);
728 
729 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
730 				  &iph->saddr, &iph->daddr, 0);
731 }
732 
733 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
734 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
735 {
736 	skb_reset_network_header(skb);
737 	gro_func(bp, skb);
738 	tcp_gro_complete(skb);
739 }
740 #endif
741 
742 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
743 			       struct sk_buff *skb)
744 {
745 #ifdef CONFIG_INET
746 	if (skb_shinfo(skb)->gso_size) {
747 		switch (be16_to_cpu(skb->protocol)) {
748 		case ETH_P_IP:
749 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
750 			break;
751 		case ETH_P_IPV6:
752 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
753 			break;
754 		default:
755 			netdev_WARN_ONCE(bp->dev,
756 					 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
757 					 be16_to_cpu(skb->protocol));
758 		}
759 	}
760 #endif
761 	skb_record_rx_queue(skb, fp->rx_queue);
762 	napi_gro_receive(&fp->napi, skb);
763 }
764 
765 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
766 			   struct bnx2x_agg_info *tpa_info,
767 			   u16 pages,
768 			   struct eth_end_agg_rx_cqe *cqe,
769 			   u16 cqe_idx)
770 {
771 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
772 	u8 pad = tpa_info->placement_offset;
773 	u16 len = tpa_info->len_on_bd;
774 	struct sk_buff *skb = NULL;
775 	u8 *new_data, *data = rx_buf->data;
776 	u8 old_tpa_state = tpa_info->tpa_state;
777 
778 	tpa_info->tpa_state = BNX2X_TPA_STOP;
779 
780 	/* If we there was an error during the handling of the TPA_START -
781 	 * drop this aggregation.
782 	 */
783 	if (old_tpa_state == BNX2X_TPA_ERROR)
784 		goto drop;
785 
786 	/* Try to allocate the new data */
787 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
788 	/* Unmap skb in the pool anyway, as we are going to change
789 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
790 	   fails. */
791 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
792 			 fp->rx_buf_size, DMA_FROM_DEVICE);
793 	if (likely(new_data))
794 		skb = bnx2x_build_skb(fp, data);
795 
796 	if (likely(skb)) {
797 #ifdef BNX2X_STOP_ON_ERROR
798 		if (pad + len > fp->rx_buf_size) {
799 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
800 				  pad, len, fp->rx_buf_size);
801 			bnx2x_panic();
802 			bnx2x_frag_free(fp, new_data);
803 			return;
804 		}
805 #endif
806 
807 		skb_reserve(skb, pad + NET_SKB_PAD);
808 		skb_put(skb, len);
809 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
810 
811 		skb->protocol = eth_type_trans(skb, bp->dev);
812 		skb->ip_summed = CHECKSUM_UNNECESSARY;
813 
814 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
815 					 skb, cqe, cqe_idx)) {
816 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
817 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
818 			bnx2x_gro_receive(bp, fp, skb);
819 		} else {
820 			DP(NETIF_MSG_RX_STATUS,
821 			   "Failed to allocate new pages - dropping packet!\n");
822 			dev_kfree_skb_any(skb);
823 		}
824 
825 		/* put new data in bin */
826 		rx_buf->data = new_data;
827 
828 		return;
829 	}
830 	if (new_data)
831 		bnx2x_frag_free(fp, new_data);
832 drop:
833 	/* drop the packet and keep the buffer in the bin */
834 	DP(NETIF_MSG_RX_STATUS,
835 	   "Failed to allocate or map a new skb - dropping packet!\n");
836 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
837 }
838 
839 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
840 			       u16 index, gfp_t gfp_mask)
841 {
842 	u8 *data;
843 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
844 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
845 	dma_addr_t mapping;
846 
847 	data = bnx2x_frag_alloc(fp, gfp_mask);
848 	if (unlikely(data == NULL))
849 		return -ENOMEM;
850 
851 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
852 				 fp->rx_buf_size,
853 				 DMA_FROM_DEVICE);
854 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
855 		bnx2x_frag_free(fp, data);
856 		BNX2X_ERR("Can't map rx data\n");
857 		return -ENOMEM;
858 	}
859 
860 	rx_buf->data = data;
861 	dma_unmap_addr_set(rx_buf, mapping, mapping);
862 
863 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
864 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
865 
866 	return 0;
867 }
868 
869 static
870 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
871 				 struct bnx2x_fastpath *fp,
872 				 struct bnx2x_eth_q_stats *qstats)
873 {
874 	/* Do nothing if no L4 csum validation was done.
875 	 * We do not check whether IP csum was validated. For IPv4 we assume
876 	 * that if the card got as far as validating the L4 csum, it also
877 	 * validated the IP csum. IPv6 has no IP csum.
878 	 */
879 	if (cqe->fast_path_cqe.status_flags &
880 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
881 		return;
882 
883 	/* If L4 validation was done, check if an error was found. */
884 
885 	if (cqe->fast_path_cqe.type_error_flags &
886 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
887 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
888 		qstats->hw_csum_err++;
889 	else
890 		skb->ip_summed = CHECKSUM_UNNECESSARY;
891 }
892 
893 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
894 {
895 	struct bnx2x *bp = fp->bp;
896 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
897 	u16 sw_comp_cons, sw_comp_prod;
898 	int rx_pkt = 0;
899 	union eth_rx_cqe *cqe;
900 	struct eth_fast_path_rx_cqe *cqe_fp;
901 
902 #ifdef BNX2X_STOP_ON_ERROR
903 	if (unlikely(bp->panic))
904 		return 0;
905 #endif
906 	if (budget <= 0)
907 		return rx_pkt;
908 
909 	bd_cons = fp->rx_bd_cons;
910 	bd_prod = fp->rx_bd_prod;
911 	bd_prod_fw = bd_prod;
912 	sw_comp_cons = fp->rx_comp_cons;
913 	sw_comp_prod = fp->rx_comp_prod;
914 
915 	comp_ring_cons = RCQ_BD(sw_comp_cons);
916 	cqe = &fp->rx_comp_ring[comp_ring_cons];
917 	cqe_fp = &cqe->fast_path_cqe;
918 
919 	DP(NETIF_MSG_RX_STATUS,
920 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
921 
922 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
923 		struct sw_rx_bd *rx_buf = NULL;
924 		struct sk_buff *skb;
925 		u8 cqe_fp_flags;
926 		enum eth_rx_cqe_type cqe_fp_type;
927 		u16 len, pad, queue;
928 		u8 *data;
929 		u32 rxhash;
930 		enum pkt_hash_types rxhash_type;
931 
932 #ifdef BNX2X_STOP_ON_ERROR
933 		if (unlikely(bp->panic))
934 			return 0;
935 #endif
936 
937 		bd_prod = RX_BD(bd_prod);
938 		bd_cons = RX_BD(bd_cons);
939 
940 		/* A rmb() is required to ensure that the CQE is not read
941 		 * before it is written by the adapter DMA.  PCI ordering
942 		 * rules will make sure the other fields are written before
943 		 * the marker at the end of struct eth_fast_path_rx_cqe
944 		 * but without rmb() a weakly ordered processor can process
945 		 * stale data.  Without the barrier TPA state-machine might
946 		 * enter inconsistent state and kernel stack might be
947 		 * provided with incorrect packet description - these lead
948 		 * to various kernel crashed.
949 		 */
950 		rmb();
951 
952 		cqe_fp_flags = cqe_fp->type_error_flags;
953 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
954 
955 		DP(NETIF_MSG_RX_STATUS,
956 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
957 		   CQE_TYPE(cqe_fp_flags),
958 		   cqe_fp_flags, cqe_fp->status_flags,
959 		   le32_to_cpu(cqe_fp->rss_hash_result),
960 		   le16_to_cpu(cqe_fp->vlan_tag),
961 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
962 
963 		/* is this a slowpath msg? */
964 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
965 			bnx2x_sp_event(fp, cqe);
966 			goto next_cqe;
967 		}
968 
969 		rx_buf = &fp->rx_buf_ring[bd_cons];
970 		data = rx_buf->data;
971 
972 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
973 			struct bnx2x_agg_info *tpa_info;
974 			u16 frag_size, pages;
975 #ifdef BNX2X_STOP_ON_ERROR
976 			/* sanity check */
977 			if (fp->mode == TPA_MODE_DISABLED &&
978 			    (CQE_TYPE_START(cqe_fp_type) ||
979 			     CQE_TYPE_STOP(cqe_fp_type)))
980 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
981 					  CQE_TYPE(cqe_fp_type));
982 #endif
983 
984 			if (CQE_TYPE_START(cqe_fp_type)) {
985 				u16 queue = cqe_fp->queue_index;
986 				DP(NETIF_MSG_RX_STATUS,
987 				   "calling tpa_start on queue %d\n",
988 				   queue);
989 
990 				bnx2x_tpa_start(fp, queue,
991 						bd_cons, bd_prod,
992 						cqe_fp);
993 
994 				goto next_rx;
995 			}
996 			queue = cqe->end_agg_cqe.queue_index;
997 			tpa_info = &fp->tpa_info[queue];
998 			DP(NETIF_MSG_RX_STATUS,
999 			   "calling tpa_stop on queue %d\n",
1000 			   queue);
1001 
1002 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
1003 				    tpa_info->len_on_bd;
1004 
1005 			if (fp->mode == TPA_MODE_GRO)
1006 				pages = (frag_size + tpa_info->full_page - 1) /
1007 					 tpa_info->full_page;
1008 			else
1009 				pages = SGE_PAGE_ALIGN(frag_size) >>
1010 					SGE_PAGE_SHIFT;
1011 
1012 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1013 				       &cqe->end_agg_cqe, comp_ring_cons);
1014 #ifdef BNX2X_STOP_ON_ERROR
1015 			if (bp->panic)
1016 				return 0;
1017 #endif
1018 
1019 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1020 			goto next_cqe;
1021 		}
1022 		/* non TPA */
1023 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1024 		pad = cqe_fp->placement_offset;
1025 		dma_sync_single_for_cpu(&bp->pdev->dev,
1026 					dma_unmap_addr(rx_buf, mapping),
1027 					pad + RX_COPY_THRESH,
1028 					DMA_FROM_DEVICE);
1029 		pad += NET_SKB_PAD;
1030 		prefetch(data + pad); /* speedup eth_type_trans() */
1031 		/* is this an error packet? */
1032 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1033 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1034 			   "ERROR  flags %x  rx packet %u\n",
1035 			   cqe_fp_flags, sw_comp_cons);
1036 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1037 			goto reuse_rx;
1038 		}
1039 
1040 		/* Since we don't have a jumbo ring
1041 		 * copy small packets if mtu > 1500
1042 		 */
1043 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1044 		    (len <= RX_COPY_THRESH)) {
1045 			skb = napi_alloc_skb(&fp->napi, len);
1046 			if (skb == NULL) {
1047 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1048 				   "ERROR  packet dropped because of alloc failure\n");
1049 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1050 				goto reuse_rx;
1051 			}
1052 			memcpy(skb->data, data + pad, len);
1053 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1054 		} else {
1055 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1056 						       GFP_ATOMIC) == 0)) {
1057 				dma_unmap_single(&bp->pdev->dev,
1058 						 dma_unmap_addr(rx_buf, mapping),
1059 						 fp->rx_buf_size,
1060 						 DMA_FROM_DEVICE);
1061 				skb = bnx2x_build_skb(fp, data);
1062 				if (unlikely(!skb)) {
1063 					bnx2x_frag_free(fp, data);
1064 					bnx2x_fp_qstats(bp, fp)->
1065 							rx_skb_alloc_failed++;
1066 					goto next_rx;
1067 				}
1068 				skb_reserve(skb, pad);
1069 			} else {
1070 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1071 				   "ERROR  packet dropped because of alloc failure\n");
1072 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1073 reuse_rx:
1074 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1075 				goto next_rx;
1076 			}
1077 		}
1078 
1079 		skb_put(skb, len);
1080 		skb->protocol = eth_type_trans(skb, bp->dev);
1081 
1082 		/* Set Toeplitz hash for a none-LRO skb */
1083 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1084 		skb_set_hash(skb, rxhash, rxhash_type);
1085 
1086 		skb_checksum_none_assert(skb);
1087 
1088 		if (bp->dev->features & NETIF_F_RXCSUM)
1089 			bnx2x_csum_validate(skb, cqe, fp,
1090 					    bnx2x_fp_qstats(bp, fp));
1091 
1092 		skb_record_rx_queue(skb, fp->rx_queue);
1093 
1094 		/* Check if this packet was timestamped */
1095 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1096 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1097 			bnx2x_set_rx_ts(bp, skb);
1098 
1099 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1100 		    PARSING_FLAGS_VLAN)
1101 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1102 					       le16_to_cpu(cqe_fp->vlan_tag));
1103 
1104 		napi_gro_receive(&fp->napi, skb);
1105 next_rx:
1106 		rx_buf->data = NULL;
1107 
1108 		bd_cons = NEXT_RX_IDX(bd_cons);
1109 		bd_prod = NEXT_RX_IDX(bd_prod);
1110 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1111 		rx_pkt++;
1112 next_cqe:
1113 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1114 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1115 
1116 		/* mark CQE as free */
1117 		BNX2X_SEED_CQE(cqe_fp);
1118 
1119 		if (rx_pkt == budget)
1120 			break;
1121 
1122 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1123 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1124 		cqe_fp = &cqe->fast_path_cqe;
1125 	} /* while */
1126 
1127 	fp->rx_bd_cons = bd_cons;
1128 	fp->rx_bd_prod = bd_prod_fw;
1129 	fp->rx_comp_cons = sw_comp_cons;
1130 	fp->rx_comp_prod = sw_comp_prod;
1131 
1132 	/* Update producers */
1133 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1134 			     fp->rx_sge_prod);
1135 
1136 	return rx_pkt;
1137 }
1138 
1139 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1140 {
1141 	struct bnx2x_fastpath *fp = fp_cookie;
1142 	struct bnx2x *bp = fp->bp;
1143 	u8 cos;
1144 
1145 	DP(NETIF_MSG_INTR,
1146 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1147 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1148 
1149 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1150 
1151 #ifdef BNX2X_STOP_ON_ERROR
1152 	if (unlikely(bp->panic))
1153 		return IRQ_HANDLED;
1154 #endif
1155 
1156 	/* Handle Rx and Tx according to MSI-X vector */
1157 	for_each_cos_in_tx_queue(fp, cos)
1158 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1159 
1160 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1161 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1162 
1163 	return IRQ_HANDLED;
1164 }
1165 
1166 /* HW Lock for shared dual port PHYs */
1167 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1168 {
1169 	mutex_lock(&bp->port.phy_mutex);
1170 
1171 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1172 }
1173 
1174 void bnx2x_release_phy_lock(struct bnx2x *bp)
1175 {
1176 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1177 
1178 	mutex_unlock(&bp->port.phy_mutex);
1179 }
1180 
1181 /* calculates MF speed according to current linespeed and MF configuration */
1182 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1183 {
1184 	u16 line_speed = bp->link_vars.line_speed;
1185 	if (IS_MF(bp)) {
1186 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1187 						   bp->mf_config[BP_VN(bp)]);
1188 
1189 		/* Calculate the current MAX line speed limit for the MF
1190 		 * devices
1191 		 */
1192 		if (IS_MF_PERCENT_BW(bp))
1193 			line_speed = (line_speed * maxCfg) / 100;
1194 		else { /* SD mode */
1195 			u16 vn_max_rate = maxCfg * 100;
1196 
1197 			if (vn_max_rate < line_speed)
1198 				line_speed = vn_max_rate;
1199 		}
1200 	}
1201 
1202 	return line_speed;
1203 }
1204 
1205 /**
1206  * bnx2x_fill_report_data - fill link report data to report
1207  *
1208  * @bp:		driver handle
1209  * @data:	link state to update
1210  *
1211  * It uses a none-atomic bit operations because is called under the mutex.
1212  */
1213 static void bnx2x_fill_report_data(struct bnx2x *bp,
1214 				   struct bnx2x_link_report_data *data)
1215 {
1216 	memset(data, 0, sizeof(*data));
1217 
1218 	if (IS_PF(bp)) {
1219 		/* Fill the report data: effective line speed */
1220 		data->line_speed = bnx2x_get_mf_speed(bp);
1221 
1222 		/* Link is down */
1223 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1224 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1225 				  &data->link_report_flags);
1226 
1227 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1228 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1229 				  &data->link_report_flags);
1230 
1231 		/* Full DUPLEX */
1232 		if (bp->link_vars.duplex == DUPLEX_FULL)
1233 			__set_bit(BNX2X_LINK_REPORT_FD,
1234 				  &data->link_report_flags);
1235 
1236 		/* Rx Flow Control is ON */
1237 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1238 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1239 				  &data->link_report_flags);
1240 
1241 		/* Tx Flow Control is ON */
1242 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1243 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1244 				  &data->link_report_flags);
1245 	} else { /* VF */
1246 		*data = bp->vf_link_vars;
1247 	}
1248 }
1249 
1250 /**
1251  * bnx2x_link_report - report link status to OS.
1252  *
1253  * @bp:		driver handle
1254  *
1255  * Calls the __bnx2x_link_report() under the same locking scheme
1256  * as a link/PHY state managing code to ensure a consistent link
1257  * reporting.
1258  */
1259 
1260 void bnx2x_link_report(struct bnx2x *bp)
1261 {
1262 	bnx2x_acquire_phy_lock(bp);
1263 	__bnx2x_link_report(bp);
1264 	bnx2x_release_phy_lock(bp);
1265 }
1266 
1267 /**
1268  * __bnx2x_link_report - report link status to OS.
1269  *
1270  * @bp:		driver handle
1271  *
1272  * None atomic implementation.
1273  * Should be called under the phy_lock.
1274  */
1275 void __bnx2x_link_report(struct bnx2x *bp)
1276 {
1277 	struct bnx2x_link_report_data cur_data;
1278 
1279 	if (bp->force_link_down) {
1280 		bp->link_vars.link_up = 0;
1281 		return;
1282 	}
1283 
1284 	/* reread mf_cfg */
1285 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1286 		bnx2x_read_mf_cfg(bp);
1287 
1288 	/* Read the current link report info */
1289 	bnx2x_fill_report_data(bp, &cur_data);
1290 
1291 	/* Don't report link down or exactly the same link status twice */
1292 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1293 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1294 		      &bp->last_reported_link.link_report_flags) &&
1295 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1296 		      &cur_data.link_report_flags)))
1297 		return;
1298 
1299 	bp->link_cnt++;
1300 
1301 	/* We are going to report a new link parameters now -
1302 	 * remember the current data for the next time.
1303 	 */
1304 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1305 
1306 	/* propagate status to VFs */
1307 	if (IS_PF(bp))
1308 		bnx2x_iov_link_update(bp);
1309 
1310 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1311 		     &cur_data.link_report_flags)) {
1312 		netif_carrier_off(bp->dev);
1313 		netdev_err(bp->dev, "NIC Link is Down\n");
1314 		return;
1315 	} else {
1316 		const char *duplex;
1317 		const char *flow;
1318 
1319 		netif_carrier_on(bp->dev);
1320 
1321 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1322 				       &cur_data.link_report_flags))
1323 			duplex = "full";
1324 		else
1325 			duplex = "half";
1326 
1327 		/* Handle the FC at the end so that only these flags would be
1328 		 * possibly set. This way we may easily check if there is no FC
1329 		 * enabled.
1330 		 */
1331 		if (cur_data.link_report_flags) {
1332 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1333 				     &cur_data.link_report_flags)) {
1334 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1335 				     &cur_data.link_report_flags))
1336 					flow = "ON - receive & transmit";
1337 				else
1338 					flow = "ON - receive";
1339 			} else {
1340 				flow = "ON - transmit";
1341 			}
1342 		} else {
1343 			flow = "none";
1344 		}
1345 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1346 			    cur_data.line_speed, duplex, flow);
1347 	}
1348 }
1349 
1350 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1351 {
1352 	int i;
1353 
1354 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1355 		struct eth_rx_sge *sge;
1356 
1357 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1358 		sge->addr_hi =
1359 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1360 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1361 
1362 		sge->addr_lo =
1363 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1364 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1365 	}
1366 }
1367 
1368 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1369 				struct bnx2x_fastpath *fp, int last)
1370 {
1371 	int i;
1372 
1373 	for (i = 0; i < last; i++) {
1374 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1375 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1376 		u8 *data = first_buf->data;
1377 
1378 		if (data == NULL) {
1379 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1380 			continue;
1381 		}
1382 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1383 			dma_unmap_single(&bp->pdev->dev,
1384 					 dma_unmap_addr(first_buf, mapping),
1385 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1386 		bnx2x_frag_free(fp, data);
1387 		first_buf->data = NULL;
1388 	}
1389 }
1390 
1391 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1392 {
1393 	int j;
1394 
1395 	for_each_rx_queue_cnic(bp, j) {
1396 		struct bnx2x_fastpath *fp = &bp->fp[j];
1397 
1398 		fp->rx_bd_cons = 0;
1399 
1400 		/* Activate BD ring */
1401 		/* Warning!
1402 		 * this will generate an interrupt (to the TSTORM)
1403 		 * must only be done after chip is initialized
1404 		 */
1405 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1406 				     fp->rx_sge_prod);
1407 	}
1408 }
1409 
1410 void bnx2x_init_rx_rings(struct bnx2x *bp)
1411 {
1412 	int func = BP_FUNC(bp);
1413 	u16 ring_prod;
1414 	int i, j;
1415 
1416 	/* Allocate TPA resources */
1417 	for_each_eth_queue(bp, j) {
1418 		struct bnx2x_fastpath *fp = &bp->fp[j];
1419 
1420 		DP(NETIF_MSG_IFUP,
1421 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1422 
1423 		if (fp->mode != TPA_MODE_DISABLED) {
1424 			/* Fill the per-aggregation pool */
1425 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1426 				struct bnx2x_agg_info *tpa_info =
1427 					&fp->tpa_info[i];
1428 				struct sw_rx_bd *first_buf =
1429 					&tpa_info->first_buf;
1430 
1431 				first_buf->data =
1432 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1433 				if (!first_buf->data) {
1434 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1435 						  j);
1436 					bnx2x_free_tpa_pool(bp, fp, i);
1437 					fp->mode = TPA_MODE_DISABLED;
1438 					break;
1439 				}
1440 				dma_unmap_addr_set(first_buf, mapping, 0);
1441 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1442 			}
1443 
1444 			/* "next page" elements initialization */
1445 			bnx2x_set_next_page_sgl(fp);
1446 
1447 			/* set SGEs bit mask */
1448 			bnx2x_init_sge_ring_bit_mask(fp);
1449 
1450 			/* Allocate SGEs and initialize the ring elements */
1451 			for (i = 0, ring_prod = 0;
1452 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1453 
1454 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1455 						       GFP_KERNEL) < 0) {
1456 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1457 						  i);
1458 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1459 						  j);
1460 					/* Cleanup already allocated elements */
1461 					bnx2x_free_rx_sge_range(bp, fp,
1462 								ring_prod);
1463 					bnx2x_free_tpa_pool(bp, fp,
1464 							    MAX_AGG_QS(bp));
1465 					fp->mode = TPA_MODE_DISABLED;
1466 					ring_prod = 0;
1467 					break;
1468 				}
1469 				ring_prod = NEXT_SGE_IDX(ring_prod);
1470 			}
1471 
1472 			fp->rx_sge_prod = ring_prod;
1473 		}
1474 	}
1475 
1476 	for_each_eth_queue(bp, j) {
1477 		struct bnx2x_fastpath *fp = &bp->fp[j];
1478 
1479 		fp->rx_bd_cons = 0;
1480 
1481 		/* Activate BD ring */
1482 		/* Warning!
1483 		 * this will generate an interrupt (to the TSTORM)
1484 		 * must only be done after chip is initialized
1485 		 */
1486 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1487 				     fp->rx_sge_prod);
1488 
1489 		if (j != 0)
1490 			continue;
1491 
1492 		if (CHIP_IS_E1(bp)) {
1493 			REG_WR(bp, BAR_USTRORM_INTMEM +
1494 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1495 			       U64_LO(fp->rx_comp_mapping));
1496 			REG_WR(bp, BAR_USTRORM_INTMEM +
1497 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1498 			       U64_HI(fp->rx_comp_mapping));
1499 		}
1500 	}
1501 }
1502 
1503 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1504 {
1505 	u8 cos;
1506 	struct bnx2x *bp = fp->bp;
1507 
1508 	for_each_cos_in_tx_queue(fp, cos) {
1509 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1510 		unsigned pkts_compl = 0, bytes_compl = 0;
1511 
1512 		u16 sw_prod = txdata->tx_pkt_prod;
1513 		u16 sw_cons = txdata->tx_pkt_cons;
1514 
1515 		while (sw_cons != sw_prod) {
1516 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1517 					  &pkts_compl, &bytes_compl);
1518 			sw_cons++;
1519 		}
1520 
1521 		netdev_tx_reset_queue(
1522 			netdev_get_tx_queue(bp->dev,
1523 					    txdata->txq_index));
1524 	}
1525 }
1526 
1527 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1528 {
1529 	int i;
1530 
1531 	for_each_tx_queue_cnic(bp, i) {
1532 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1533 	}
1534 }
1535 
1536 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1537 {
1538 	int i;
1539 
1540 	for_each_eth_queue(bp, i) {
1541 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1542 	}
1543 }
1544 
1545 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1546 {
1547 	struct bnx2x *bp = fp->bp;
1548 	int i;
1549 
1550 	/* ring wasn't allocated */
1551 	if (fp->rx_buf_ring == NULL)
1552 		return;
1553 
1554 	for (i = 0; i < NUM_RX_BD; i++) {
1555 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1556 		u8 *data = rx_buf->data;
1557 
1558 		if (data == NULL)
1559 			continue;
1560 		dma_unmap_single(&bp->pdev->dev,
1561 				 dma_unmap_addr(rx_buf, mapping),
1562 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1563 
1564 		rx_buf->data = NULL;
1565 		bnx2x_frag_free(fp, data);
1566 	}
1567 }
1568 
1569 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1570 {
1571 	int j;
1572 
1573 	for_each_rx_queue_cnic(bp, j) {
1574 		bnx2x_free_rx_bds(&bp->fp[j]);
1575 	}
1576 }
1577 
1578 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1579 {
1580 	int j;
1581 
1582 	for_each_eth_queue(bp, j) {
1583 		struct bnx2x_fastpath *fp = &bp->fp[j];
1584 
1585 		bnx2x_free_rx_bds(fp);
1586 
1587 		if (fp->mode != TPA_MODE_DISABLED)
1588 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1589 	}
1590 }
1591 
1592 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1593 {
1594 	bnx2x_free_tx_skbs_cnic(bp);
1595 	bnx2x_free_rx_skbs_cnic(bp);
1596 }
1597 
1598 void bnx2x_free_skbs(struct bnx2x *bp)
1599 {
1600 	bnx2x_free_tx_skbs(bp);
1601 	bnx2x_free_rx_skbs(bp);
1602 }
1603 
1604 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1605 {
1606 	/* load old values */
1607 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1608 
1609 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1610 		/* leave all but MAX value */
1611 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1612 
1613 		/* set new MAX value */
1614 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1615 				& FUNC_MF_CFG_MAX_BW_MASK;
1616 
1617 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1618 	}
1619 }
1620 
1621 /**
1622  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1623  *
1624  * @bp:		driver handle
1625  * @nvecs:	number of vectors to be released
1626  */
1627 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1628 {
1629 	int i, offset = 0;
1630 
1631 	if (nvecs == offset)
1632 		return;
1633 
1634 	/* VFs don't have a default SB */
1635 	if (IS_PF(bp)) {
1636 		free_irq(bp->msix_table[offset].vector, bp->dev);
1637 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1638 		   bp->msix_table[offset].vector);
1639 		offset++;
1640 	}
1641 
1642 	if (CNIC_SUPPORT(bp)) {
1643 		if (nvecs == offset)
1644 			return;
1645 		offset++;
1646 	}
1647 
1648 	for_each_eth_queue(bp, i) {
1649 		if (nvecs == offset)
1650 			return;
1651 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1652 		   i, bp->msix_table[offset].vector);
1653 
1654 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1655 	}
1656 }
1657 
1658 void bnx2x_free_irq(struct bnx2x *bp)
1659 {
1660 	if (bp->flags & USING_MSIX_FLAG &&
1661 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1662 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1663 
1664 		/* vfs don't have a default status block */
1665 		if (IS_PF(bp))
1666 			nvecs++;
1667 
1668 		bnx2x_free_msix_irqs(bp, nvecs);
1669 	} else {
1670 		free_irq(bp->dev->irq, bp->dev);
1671 	}
1672 }
1673 
1674 int bnx2x_enable_msix(struct bnx2x *bp)
1675 {
1676 	int msix_vec = 0, i, rc;
1677 
1678 	/* VFs don't have a default status block */
1679 	if (IS_PF(bp)) {
1680 		bp->msix_table[msix_vec].entry = msix_vec;
1681 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1682 			       bp->msix_table[0].entry);
1683 		msix_vec++;
1684 	}
1685 
1686 	/* Cnic requires an msix vector for itself */
1687 	if (CNIC_SUPPORT(bp)) {
1688 		bp->msix_table[msix_vec].entry = msix_vec;
1689 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1690 			       msix_vec, bp->msix_table[msix_vec].entry);
1691 		msix_vec++;
1692 	}
1693 
1694 	/* We need separate vectors for ETH queues only (not FCoE) */
1695 	for_each_eth_queue(bp, i) {
1696 		bp->msix_table[msix_vec].entry = msix_vec;
1697 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1698 			       msix_vec, msix_vec, i);
1699 		msix_vec++;
1700 	}
1701 
1702 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1703 	   msix_vec);
1704 
1705 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1706 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1707 	/*
1708 	 * reconfigure number of tx/rx queues according to available
1709 	 * MSI-X vectors
1710 	 */
1711 	if (rc == -ENOSPC) {
1712 		/* Get by with single vector */
1713 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1714 		if (rc < 0) {
1715 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1716 				       rc);
1717 			goto no_msix;
1718 		}
1719 
1720 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1721 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1722 
1723 		BNX2X_DEV_INFO("set number of queues to 1\n");
1724 		bp->num_ethernet_queues = 1;
1725 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1726 	} else if (rc < 0) {
1727 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1728 		goto no_msix;
1729 	} else if (rc < msix_vec) {
1730 		/* how less vectors we will have? */
1731 		int diff = msix_vec - rc;
1732 
1733 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1734 
1735 		/*
1736 		 * decrease number of queues by number of unallocated entries
1737 		 */
1738 		bp->num_ethernet_queues -= diff;
1739 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1740 
1741 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1742 			       bp->num_queues);
1743 	}
1744 
1745 	bp->flags |= USING_MSIX_FLAG;
1746 
1747 	return 0;
1748 
1749 no_msix:
1750 	/* fall to INTx if not enough memory */
1751 	if (rc == -ENOMEM)
1752 		bp->flags |= DISABLE_MSI_FLAG;
1753 
1754 	return rc;
1755 }
1756 
1757 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1758 {
1759 	int i, rc, offset = 0;
1760 
1761 	/* no default status block for vf */
1762 	if (IS_PF(bp)) {
1763 		rc = request_irq(bp->msix_table[offset++].vector,
1764 				 bnx2x_msix_sp_int, 0,
1765 				 bp->dev->name, bp->dev);
1766 		if (rc) {
1767 			BNX2X_ERR("request sp irq failed\n");
1768 			return -EBUSY;
1769 		}
1770 	}
1771 
1772 	if (CNIC_SUPPORT(bp))
1773 		offset++;
1774 
1775 	for_each_eth_queue(bp, i) {
1776 		struct bnx2x_fastpath *fp = &bp->fp[i];
1777 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1778 			 bp->dev->name, i);
1779 
1780 		rc = request_irq(bp->msix_table[offset].vector,
1781 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1782 		if (rc) {
1783 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1784 			      bp->msix_table[offset].vector, rc);
1785 			bnx2x_free_msix_irqs(bp, offset);
1786 			return -EBUSY;
1787 		}
1788 
1789 		offset++;
1790 	}
1791 
1792 	i = BNX2X_NUM_ETH_QUEUES(bp);
1793 	if (IS_PF(bp)) {
1794 		offset = 1 + CNIC_SUPPORT(bp);
1795 		netdev_info(bp->dev,
1796 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1797 			    bp->msix_table[0].vector,
1798 			    0, bp->msix_table[offset].vector,
1799 			    i - 1, bp->msix_table[offset + i - 1].vector);
1800 	} else {
1801 		offset = CNIC_SUPPORT(bp);
1802 		netdev_info(bp->dev,
1803 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1804 			    0, bp->msix_table[offset].vector,
1805 			    i - 1, bp->msix_table[offset + i - 1].vector);
1806 	}
1807 	return 0;
1808 }
1809 
1810 int bnx2x_enable_msi(struct bnx2x *bp)
1811 {
1812 	int rc;
1813 
1814 	rc = pci_enable_msi(bp->pdev);
1815 	if (rc) {
1816 		BNX2X_DEV_INFO("MSI is not attainable\n");
1817 		return -1;
1818 	}
1819 	bp->flags |= USING_MSI_FLAG;
1820 
1821 	return 0;
1822 }
1823 
1824 static int bnx2x_req_irq(struct bnx2x *bp)
1825 {
1826 	unsigned long flags;
1827 	unsigned int irq;
1828 
1829 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1830 		flags = 0;
1831 	else
1832 		flags = IRQF_SHARED;
1833 
1834 	if (bp->flags & USING_MSIX_FLAG)
1835 		irq = bp->msix_table[0].vector;
1836 	else
1837 		irq = bp->pdev->irq;
1838 
1839 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1840 }
1841 
1842 static int bnx2x_setup_irqs(struct bnx2x *bp)
1843 {
1844 	int rc = 0;
1845 	if (bp->flags & USING_MSIX_FLAG &&
1846 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1847 		rc = bnx2x_req_msix_irqs(bp);
1848 		if (rc)
1849 			return rc;
1850 	} else {
1851 		rc = bnx2x_req_irq(bp);
1852 		if (rc) {
1853 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1854 			return rc;
1855 		}
1856 		if (bp->flags & USING_MSI_FLAG) {
1857 			bp->dev->irq = bp->pdev->irq;
1858 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1859 				    bp->dev->irq);
1860 		}
1861 		if (bp->flags & USING_MSIX_FLAG) {
1862 			bp->dev->irq = bp->msix_table[0].vector;
1863 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1864 				    bp->dev->irq);
1865 		}
1866 	}
1867 
1868 	return 0;
1869 }
1870 
1871 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1872 {
1873 	int i;
1874 
1875 	for_each_rx_queue_cnic(bp, i) {
1876 		napi_enable(&bnx2x_fp(bp, i, napi));
1877 	}
1878 }
1879 
1880 static void bnx2x_napi_enable(struct bnx2x *bp)
1881 {
1882 	int i;
1883 
1884 	for_each_eth_queue(bp, i) {
1885 		napi_enable(&bnx2x_fp(bp, i, napi));
1886 	}
1887 }
1888 
1889 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1890 {
1891 	int i;
1892 
1893 	for_each_rx_queue_cnic(bp, i) {
1894 		napi_disable(&bnx2x_fp(bp, i, napi));
1895 	}
1896 }
1897 
1898 static void bnx2x_napi_disable(struct bnx2x *bp)
1899 {
1900 	int i;
1901 
1902 	for_each_eth_queue(bp, i) {
1903 		napi_disable(&bnx2x_fp(bp, i, napi));
1904 	}
1905 }
1906 
1907 void bnx2x_netif_start(struct bnx2x *bp)
1908 {
1909 	if (netif_running(bp->dev)) {
1910 		bnx2x_napi_enable(bp);
1911 		if (CNIC_LOADED(bp))
1912 			bnx2x_napi_enable_cnic(bp);
1913 		bnx2x_int_enable(bp);
1914 		if (bp->state == BNX2X_STATE_OPEN)
1915 			netif_tx_wake_all_queues(bp->dev);
1916 	}
1917 }
1918 
1919 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1920 {
1921 	bnx2x_int_disable_sync(bp, disable_hw);
1922 	bnx2x_napi_disable(bp);
1923 	if (CNIC_LOADED(bp))
1924 		bnx2x_napi_disable_cnic(bp);
1925 }
1926 
1927 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1928 		       struct net_device *sb_dev)
1929 {
1930 	struct bnx2x *bp = netdev_priv(dev);
1931 
1932 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1933 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1934 		u16 ether_type = ntohs(hdr->h_proto);
1935 
1936 		/* Skip VLAN tag if present */
1937 		if (ether_type == ETH_P_8021Q) {
1938 			struct vlan_ethhdr *vhdr =
1939 				(struct vlan_ethhdr *)skb->data;
1940 
1941 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1942 		}
1943 
1944 		/* If ethertype is FCoE or FIP - use FCoE ring */
1945 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1946 			return bnx2x_fcoe_tx(bp, txq_index);
1947 	}
1948 
1949 	/* select a non-FCoE queue */
1950 	return netdev_pick_tx(dev, skb, NULL) %
1951 			(BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1952 }
1953 
1954 void bnx2x_set_num_queues(struct bnx2x *bp)
1955 {
1956 	/* RSS queues */
1957 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1958 
1959 	/* override in STORAGE SD modes */
1960 	if (IS_MF_STORAGE_ONLY(bp))
1961 		bp->num_ethernet_queues = 1;
1962 
1963 	/* Add special queues */
1964 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1965 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1966 
1967 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1968 }
1969 
1970 /**
1971  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1972  *
1973  * @bp:		Driver handle
1974  * @include_cnic: handle cnic case
1975  *
1976  * We currently support for at most 16 Tx queues for each CoS thus we will
1977  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1978  * bp->max_cos.
1979  *
1980  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1981  * index after all ETH L2 indices.
1982  *
1983  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1984  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1985  * 16..31,...) with indices that are not coupled with any real Tx queue.
1986  *
1987  * The proper configuration of skb->queue_mapping is handled by
1988  * bnx2x_select_queue() and __skb_tx_hash().
1989  *
1990  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1991  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1992  */
1993 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1994 {
1995 	int rc, tx, rx;
1996 
1997 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1998 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1999 
2000 /* account for fcoe queue */
2001 	if (include_cnic && !NO_FCOE(bp)) {
2002 		rx++;
2003 		tx++;
2004 	}
2005 
2006 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
2007 	if (rc) {
2008 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
2009 		return rc;
2010 	}
2011 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
2012 	if (rc) {
2013 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2014 		return rc;
2015 	}
2016 
2017 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2018 			  tx, rx);
2019 
2020 	return rc;
2021 }
2022 
2023 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2024 {
2025 	int i;
2026 
2027 	for_each_queue(bp, i) {
2028 		struct bnx2x_fastpath *fp = &bp->fp[i];
2029 		u32 mtu;
2030 
2031 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2032 		if (IS_FCOE_IDX(i))
2033 			/*
2034 			 * Although there are no IP frames expected to arrive to
2035 			 * this ring we still want to add an
2036 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2037 			 * overrun attack.
2038 			 */
2039 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2040 		else
2041 			mtu = bp->dev->mtu;
2042 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2043 				  IP_HEADER_ALIGNMENT_PADDING +
2044 				  ETH_OVERHEAD +
2045 				  mtu +
2046 				  BNX2X_FW_RX_ALIGN_END;
2047 		fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2048 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2049 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2050 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2051 		else
2052 			fp->rx_frag_size = 0;
2053 	}
2054 }
2055 
2056 static int bnx2x_init_rss(struct bnx2x *bp)
2057 {
2058 	int i;
2059 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2060 
2061 	/* Prepare the initial contents for the indirection table if RSS is
2062 	 * enabled
2063 	 */
2064 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2065 		bp->rss_conf_obj.ind_table[i] =
2066 			bp->fp->cl_id +
2067 			ethtool_rxfh_indir_default(i, num_eth_queues);
2068 
2069 	/*
2070 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2071 	 * per-port, so if explicit configuration is needed , do it only
2072 	 * for a PMF.
2073 	 *
2074 	 * For 57712 and newer on the other hand it's a per-function
2075 	 * configuration.
2076 	 */
2077 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2078 }
2079 
2080 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2081 	      bool config_hash, bool enable)
2082 {
2083 	struct bnx2x_config_rss_params params = {NULL};
2084 
2085 	/* Although RSS is meaningless when there is a single HW queue we
2086 	 * still need it enabled in order to have HW Rx hash generated.
2087 	 *
2088 	 * if (!is_eth_multi(bp))
2089 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2090 	 */
2091 
2092 	params.rss_obj = rss_obj;
2093 
2094 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2095 
2096 	if (enable) {
2097 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2098 
2099 		/* RSS configuration */
2100 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2101 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2102 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2103 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2104 		if (rss_obj->udp_rss_v4)
2105 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2106 		if (rss_obj->udp_rss_v6)
2107 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2108 
2109 		if (!CHIP_IS_E1x(bp)) {
2110 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2111 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2112 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2113 
2114 			/* valid only for TUNN_MODE_GRE tunnel mode */
2115 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2116 		}
2117 	} else {
2118 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2119 	}
2120 
2121 	/* Hash bits */
2122 	params.rss_result_mask = MULTI_MASK;
2123 
2124 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2125 
2126 	if (config_hash) {
2127 		/* RSS keys */
2128 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2129 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2130 	}
2131 
2132 	if (IS_PF(bp))
2133 		return bnx2x_config_rss(bp, &params);
2134 	else
2135 		return bnx2x_vfpf_config_rss(bp, &params);
2136 }
2137 
2138 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2139 {
2140 	struct bnx2x_func_state_params func_params = {NULL};
2141 
2142 	/* Prepare parameters for function state transitions */
2143 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2144 
2145 	func_params.f_obj = &bp->func_obj;
2146 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2147 
2148 	func_params.params.hw_init.load_phase = load_code;
2149 
2150 	return bnx2x_func_state_change(bp, &func_params);
2151 }
2152 
2153 /*
2154  * Cleans the object that have internal lists without sending
2155  * ramrods. Should be run when interrupts are disabled.
2156  */
2157 void bnx2x_squeeze_objects(struct bnx2x *bp)
2158 {
2159 	int rc;
2160 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2161 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2162 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2163 
2164 	/***************** Cleanup MACs' object first *************************/
2165 
2166 	/* Wait for completion of requested */
2167 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2168 	/* Perform a dry cleanup */
2169 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2170 
2171 	/* Clean ETH primary MAC */
2172 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2173 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2174 				 &ramrod_flags);
2175 	if (rc != 0)
2176 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2177 
2178 	/* Cleanup UC list */
2179 	vlan_mac_flags = 0;
2180 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2181 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2182 				 &ramrod_flags);
2183 	if (rc != 0)
2184 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2185 
2186 	/***************** Now clean mcast object *****************************/
2187 	rparam.mcast_obj = &bp->mcast_obj;
2188 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2189 
2190 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2191 	 * we take a lock surrounding both the initial send and the CONTs,
2192 	 * as we don't want a true completion to disrupt us in the middle.
2193 	 */
2194 	netif_addr_lock_bh(bp->dev);
2195 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2196 	if (rc < 0)
2197 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2198 			  rc);
2199 
2200 	/* ...and wait until all pending commands are cleared */
2201 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2202 	while (rc != 0) {
2203 		if (rc < 0) {
2204 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2205 				  rc);
2206 			netif_addr_unlock_bh(bp->dev);
2207 			return;
2208 		}
2209 
2210 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2211 	}
2212 	netif_addr_unlock_bh(bp->dev);
2213 }
2214 
2215 #ifndef BNX2X_STOP_ON_ERROR
2216 #define LOAD_ERROR_EXIT(bp, label) \
2217 	do { \
2218 		(bp)->state = BNX2X_STATE_ERROR; \
2219 		goto label; \
2220 	} while (0)
2221 
2222 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2223 	do { \
2224 		bp->cnic_loaded = false; \
2225 		goto label; \
2226 	} while (0)
2227 #else /*BNX2X_STOP_ON_ERROR*/
2228 #define LOAD_ERROR_EXIT(bp, label) \
2229 	do { \
2230 		(bp)->state = BNX2X_STATE_ERROR; \
2231 		(bp)->panic = 1; \
2232 		return -EBUSY; \
2233 	} while (0)
2234 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2235 	do { \
2236 		bp->cnic_loaded = false; \
2237 		(bp)->panic = 1; \
2238 		return -EBUSY; \
2239 	} while (0)
2240 #endif /*BNX2X_STOP_ON_ERROR*/
2241 
2242 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2243 {
2244 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2245 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2246 	return;
2247 }
2248 
2249 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2250 {
2251 	int num_groups, vf_headroom = 0;
2252 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2253 
2254 	/* number of queues for statistics is number of eth queues + FCoE */
2255 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2256 
2257 	/* Total number of FW statistics requests =
2258 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2259 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2260 	 * for fcoe l2 queue if applicable)
2261 	 */
2262 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2263 
2264 	/* vf stats appear in the request list, but their data is allocated by
2265 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2266 	 * it is used to determine where to place the vf stats queries in the
2267 	 * request struct
2268 	 */
2269 	if (IS_SRIOV(bp))
2270 		vf_headroom = bnx2x_vf_headroom(bp);
2271 
2272 	/* Request is built from stats_query_header and an array of
2273 	 * stats_query_cmd_group each of which contains
2274 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2275 	 * configured in the stats_query_header.
2276 	 */
2277 	num_groups =
2278 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2279 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2280 		 1 : 0));
2281 
2282 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2283 	   bp->fw_stats_num, vf_headroom, num_groups);
2284 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2285 		num_groups * sizeof(struct stats_query_cmd_group);
2286 
2287 	/* Data for statistics requests + stats_counter
2288 	 * stats_counter holds per-STORM counters that are incremented
2289 	 * when STORM has finished with the current request.
2290 	 * memory for FCoE offloaded statistics are counted anyway,
2291 	 * even if they will not be sent.
2292 	 * VF stats are not accounted for here as the data of VF stats is stored
2293 	 * in memory allocated by the VF, not here.
2294 	 */
2295 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2296 		sizeof(struct per_pf_stats) +
2297 		sizeof(struct fcoe_statistics_params) +
2298 		sizeof(struct per_queue_stats) * num_queue_stats +
2299 		sizeof(struct stats_counter);
2300 
2301 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2302 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2303 	if (!bp->fw_stats)
2304 		goto alloc_mem_err;
2305 
2306 	/* Set shortcuts */
2307 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2308 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2309 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2310 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2311 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2312 		bp->fw_stats_req_sz;
2313 
2314 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2315 	   U64_HI(bp->fw_stats_req_mapping),
2316 	   U64_LO(bp->fw_stats_req_mapping));
2317 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2318 	   U64_HI(bp->fw_stats_data_mapping),
2319 	   U64_LO(bp->fw_stats_data_mapping));
2320 	return 0;
2321 
2322 alloc_mem_err:
2323 	bnx2x_free_fw_stats_mem(bp);
2324 	BNX2X_ERR("Can't allocate FW stats memory\n");
2325 	return -ENOMEM;
2326 }
2327 
2328 /* send load request to mcp and analyze response */
2329 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2330 {
2331 	u32 param;
2332 
2333 	/* init fw_seq */
2334 	bp->fw_seq =
2335 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2336 		 DRV_MSG_SEQ_NUMBER_MASK);
2337 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2338 
2339 	/* Get current FW pulse sequence */
2340 	bp->fw_drv_pulse_wr_seq =
2341 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2342 		 DRV_PULSE_SEQ_MASK);
2343 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2344 
2345 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2346 
2347 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2348 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2349 
2350 	/* load request */
2351 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2352 
2353 	/* if mcp fails to respond we must abort */
2354 	if (!(*load_code)) {
2355 		BNX2X_ERR("MCP response failure, aborting\n");
2356 		return -EBUSY;
2357 	}
2358 
2359 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2360 	 * must abort
2361 	 */
2362 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2363 		BNX2X_ERR("MCP refused load request, aborting\n");
2364 		return -EBUSY;
2365 	}
2366 	return 0;
2367 }
2368 
2369 /* check whether another PF has already loaded FW to chip. In
2370  * virtualized environments a pf from another VM may have already
2371  * initialized the device including loading FW
2372  */
2373 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2374 {
2375 	/* is another pf loaded on this engine? */
2376 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2377 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2378 		u8 loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng;
2379 		u32 loaded_fw;
2380 
2381 		/* read loaded FW from chip */
2382 		loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2383 
2384 		loaded_fw_major = loaded_fw & 0xff;
2385 		loaded_fw_minor = (loaded_fw >> 8) & 0xff;
2386 		loaded_fw_rev = (loaded_fw >> 16) & 0xff;
2387 		loaded_fw_eng = (loaded_fw >> 24) & 0xff;
2388 
2389 		DP(BNX2X_MSG_SP, "loaded fw 0x%x major 0x%x minor 0x%x rev 0x%x eng 0x%x\n",
2390 		   loaded_fw, loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng);
2391 
2392 		/* abort nic load if version mismatch */
2393 		if (loaded_fw_major != BCM_5710_FW_MAJOR_VERSION ||
2394 		    loaded_fw_minor != BCM_5710_FW_MINOR_VERSION ||
2395 		    loaded_fw_eng != BCM_5710_FW_ENGINEERING_VERSION ||
2396 		    loaded_fw_rev < BCM_5710_FW_REVISION_VERSION_V15) {
2397 			if (print_err)
2398 				BNX2X_ERR("loaded FW incompatible. Aborting\n");
2399 			else
2400 				BNX2X_DEV_INFO("loaded FW incompatible, possibly due to MF UNDI\n");
2401 
2402 			return -EBUSY;
2403 		}
2404 	}
2405 	return 0;
2406 }
2407 
2408 /* returns the "mcp load_code" according to global load_count array */
2409 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2410 {
2411 	int path = BP_PATH(bp);
2412 
2413 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2414 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2415 	   bnx2x_load_count[path][2]);
2416 	bnx2x_load_count[path][0]++;
2417 	bnx2x_load_count[path][1 + port]++;
2418 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2419 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2420 	   bnx2x_load_count[path][2]);
2421 	if (bnx2x_load_count[path][0] == 1)
2422 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2423 	else if (bnx2x_load_count[path][1 + port] == 1)
2424 		return FW_MSG_CODE_DRV_LOAD_PORT;
2425 	else
2426 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2427 }
2428 
2429 /* mark PMF if applicable */
2430 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2431 {
2432 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2433 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2434 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2435 		bp->port.pmf = 1;
2436 		/* We need the barrier to ensure the ordering between the
2437 		 * writing to bp->port.pmf here and reading it from the
2438 		 * bnx2x_periodic_task().
2439 		 */
2440 		smp_mb();
2441 	} else {
2442 		bp->port.pmf = 0;
2443 	}
2444 
2445 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2446 }
2447 
2448 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2449 {
2450 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2451 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2452 	    (bp->common.shmem2_base)) {
2453 		if (SHMEM2_HAS(bp, dcc_support))
2454 			SHMEM2_WR(bp, dcc_support,
2455 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2456 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2457 		if (SHMEM2_HAS(bp, afex_driver_support))
2458 			SHMEM2_WR(bp, afex_driver_support,
2459 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2460 	}
2461 
2462 	/* Set AFEX default VLAN tag to an invalid value */
2463 	bp->afex_def_vlan_tag = -1;
2464 }
2465 
2466 /**
2467  * bnx2x_bz_fp - zero content of the fastpath structure.
2468  *
2469  * @bp:		driver handle
2470  * @index:	fastpath index to be zeroed
2471  *
2472  * Makes sure the contents of the bp->fp[index].napi is kept
2473  * intact.
2474  */
2475 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2476 {
2477 	struct bnx2x_fastpath *fp = &bp->fp[index];
2478 	int cos;
2479 	struct napi_struct orig_napi = fp->napi;
2480 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2481 
2482 	/* bzero bnx2x_fastpath contents */
2483 	if (fp->tpa_info)
2484 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2485 		       sizeof(struct bnx2x_agg_info));
2486 	memset(fp, 0, sizeof(*fp));
2487 
2488 	/* Restore the NAPI object as it has been already initialized */
2489 	fp->napi = orig_napi;
2490 	fp->tpa_info = orig_tpa_info;
2491 	fp->bp = bp;
2492 	fp->index = index;
2493 	if (IS_ETH_FP(fp))
2494 		fp->max_cos = bp->max_cos;
2495 	else
2496 		/* Special queues support only one CoS */
2497 		fp->max_cos = 1;
2498 
2499 	/* Init txdata pointers */
2500 	if (IS_FCOE_FP(fp))
2501 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2502 	if (IS_ETH_FP(fp))
2503 		for_each_cos_in_tx_queue(fp, cos)
2504 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2505 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2506 
2507 	/* set the tpa flag for each queue. The tpa flag determines the queue
2508 	 * minimal size so it must be set prior to queue memory allocation
2509 	 */
2510 	if (bp->dev->features & NETIF_F_LRO)
2511 		fp->mode = TPA_MODE_LRO;
2512 	else if (bp->dev->features & NETIF_F_GRO_HW)
2513 		fp->mode = TPA_MODE_GRO;
2514 	else
2515 		fp->mode = TPA_MODE_DISABLED;
2516 
2517 	/* We don't want TPA if it's disabled in bp
2518 	 * or if this is an FCoE L2 ring.
2519 	 */
2520 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2521 		fp->mode = TPA_MODE_DISABLED;
2522 }
2523 
2524 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2525 {
2526 	u32 cur;
2527 
2528 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2529 		return;
2530 
2531 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2532 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2533 	   cur, state);
2534 
2535 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2536 }
2537 
2538 int bnx2x_load_cnic(struct bnx2x *bp)
2539 {
2540 	int i, rc, port = BP_PORT(bp);
2541 
2542 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2543 
2544 	mutex_init(&bp->cnic_mutex);
2545 
2546 	if (IS_PF(bp)) {
2547 		rc = bnx2x_alloc_mem_cnic(bp);
2548 		if (rc) {
2549 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2550 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2551 		}
2552 	}
2553 
2554 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2555 	if (rc) {
2556 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2557 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2558 	}
2559 
2560 	/* Update the number of queues with the cnic queues */
2561 	rc = bnx2x_set_real_num_queues(bp, 1);
2562 	if (rc) {
2563 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2564 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2565 	}
2566 
2567 	/* Add all CNIC NAPI objects */
2568 	bnx2x_add_all_napi_cnic(bp);
2569 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2570 	bnx2x_napi_enable_cnic(bp);
2571 
2572 	rc = bnx2x_init_hw_func_cnic(bp);
2573 	if (rc)
2574 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2575 
2576 	bnx2x_nic_init_cnic(bp);
2577 
2578 	if (IS_PF(bp)) {
2579 		/* Enable Timer scan */
2580 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2581 
2582 		/* setup cnic queues */
2583 		for_each_cnic_queue(bp, i) {
2584 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2585 			if (rc) {
2586 				BNX2X_ERR("Queue setup failed\n");
2587 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2588 			}
2589 		}
2590 	}
2591 
2592 	/* Initialize Rx filter. */
2593 	bnx2x_set_rx_mode_inner(bp);
2594 
2595 	/* re-read iscsi info */
2596 	bnx2x_get_iscsi_info(bp);
2597 	bnx2x_setup_cnic_irq_info(bp);
2598 	bnx2x_setup_cnic_info(bp);
2599 	bp->cnic_loaded = true;
2600 	if (bp->state == BNX2X_STATE_OPEN)
2601 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2602 
2603 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2604 
2605 	return 0;
2606 
2607 #ifndef BNX2X_STOP_ON_ERROR
2608 load_error_cnic2:
2609 	/* Disable Timer scan */
2610 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2611 
2612 load_error_cnic1:
2613 	bnx2x_napi_disable_cnic(bp);
2614 	/* Update the number of queues without the cnic queues */
2615 	if (bnx2x_set_real_num_queues(bp, 0))
2616 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2617 load_error_cnic0:
2618 	BNX2X_ERR("CNIC-related load failed\n");
2619 	bnx2x_free_fp_mem_cnic(bp);
2620 	bnx2x_free_mem_cnic(bp);
2621 	return rc;
2622 #endif /* ! BNX2X_STOP_ON_ERROR */
2623 }
2624 
2625 /* must be called with rtnl_lock */
2626 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2627 {
2628 	int port = BP_PORT(bp);
2629 	int i, rc = 0, load_code = 0;
2630 
2631 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2632 	DP(NETIF_MSG_IFUP,
2633 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2634 
2635 #ifdef BNX2X_STOP_ON_ERROR
2636 	if (unlikely(bp->panic)) {
2637 		BNX2X_ERR("Can't load NIC when there is panic\n");
2638 		return -EPERM;
2639 	}
2640 #endif
2641 
2642 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2643 
2644 	/* zero the structure w/o any lock, before SP handler is initialized */
2645 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2646 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2647 		&bp->last_reported_link.link_report_flags);
2648 
2649 	if (IS_PF(bp))
2650 		/* must be called before memory allocation and HW init */
2651 		bnx2x_ilt_set_info(bp);
2652 
2653 	/*
2654 	 * Zero fastpath structures preserving invariants like napi, which are
2655 	 * allocated only once, fp index, max_cos, bp pointer.
2656 	 * Also set fp->mode and txdata_ptr.
2657 	 */
2658 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2659 	for_each_queue(bp, i)
2660 		bnx2x_bz_fp(bp, i);
2661 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2662 				  bp->num_cnic_queues) *
2663 				  sizeof(struct bnx2x_fp_txdata));
2664 
2665 	bp->fcoe_init = false;
2666 
2667 	/* Set the receive queues buffer size */
2668 	bnx2x_set_rx_buf_size(bp);
2669 
2670 	if (IS_PF(bp)) {
2671 		rc = bnx2x_alloc_mem(bp);
2672 		if (rc) {
2673 			BNX2X_ERR("Unable to allocate bp memory\n");
2674 			return rc;
2675 		}
2676 	}
2677 
2678 	/* need to be done after alloc mem, since it's self adjusting to amount
2679 	 * of memory available for RSS queues
2680 	 */
2681 	rc = bnx2x_alloc_fp_mem(bp);
2682 	if (rc) {
2683 		BNX2X_ERR("Unable to allocate memory for fps\n");
2684 		LOAD_ERROR_EXIT(bp, load_error0);
2685 	}
2686 
2687 	/* Allocated memory for FW statistics  */
2688 	rc = bnx2x_alloc_fw_stats_mem(bp);
2689 	if (rc)
2690 		LOAD_ERROR_EXIT(bp, load_error0);
2691 
2692 	/* request pf to initialize status blocks */
2693 	if (IS_VF(bp)) {
2694 		rc = bnx2x_vfpf_init(bp);
2695 		if (rc)
2696 			LOAD_ERROR_EXIT(bp, load_error0);
2697 	}
2698 
2699 	/* As long as bnx2x_alloc_mem() may possibly update
2700 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2701 	 * come after it. At this stage cnic queues are not counted.
2702 	 */
2703 	rc = bnx2x_set_real_num_queues(bp, 0);
2704 	if (rc) {
2705 		BNX2X_ERR("Unable to set real_num_queues\n");
2706 		LOAD_ERROR_EXIT(bp, load_error0);
2707 	}
2708 
2709 	/* configure multi cos mappings in kernel.
2710 	 * this configuration may be overridden by a multi class queue
2711 	 * discipline or by a dcbx negotiation result.
2712 	 */
2713 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2714 
2715 	/* Add all NAPI objects */
2716 	bnx2x_add_all_napi(bp);
2717 	DP(NETIF_MSG_IFUP, "napi added\n");
2718 	bnx2x_napi_enable(bp);
2719 
2720 	if (IS_PF(bp)) {
2721 		/* set pf load just before approaching the MCP */
2722 		bnx2x_set_pf_load(bp);
2723 
2724 		/* if mcp exists send load request and analyze response */
2725 		if (!BP_NOMCP(bp)) {
2726 			/* attempt to load pf */
2727 			rc = bnx2x_nic_load_request(bp, &load_code);
2728 			if (rc)
2729 				LOAD_ERROR_EXIT(bp, load_error1);
2730 
2731 			/* what did mcp say? */
2732 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2733 			if (rc) {
2734 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2735 				LOAD_ERROR_EXIT(bp, load_error2);
2736 			}
2737 		} else {
2738 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2739 		}
2740 
2741 		/* mark pmf if applicable */
2742 		bnx2x_nic_load_pmf(bp, load_code);
2743 
2744 		/* Init Function state controlling object */
2745 		bnx2x__init_func_obj(bp);
2746 
2747 		/* Initialize HW */
2748 		rc = bnx2x_init_hw(bp, load_code);
2749 		if (rc) {
2750 			BNX2X_ERR("HW init failed, aborting\n");
2751 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2752 			LOAD_ERROR_EXIT(bp, load_error2);
2753 		}
2754 	}
2755 
2756 	bnx2x_pre_irq_nic_init(bp);
2757 
2758 	/* Connect to IRQs */
2759 	rc = bnx2x_setup_irqs(bp);
2760 	if (rc) {
2761 		BNX2X_ERR("setup irqs failed\n");
2762 		if (IS_PF(bp))
2763 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2764 		LOAD_ERROR_EXIT(bp, load_error2);
2765 	}
2766 
2767 	/* Init per-function objects */
2768 	if (IS_PF(bp)) {
2769 		/* Setup NIC internals and enable interrupts */
2770 		bnx2x_post_irq_nic_init(bp, load_code);
2771 
2772 		bnx2x_init_bp_objs(bp);
2773 		bnx2x_iov_nic_init(bp);
2774 
2775 		/* Set AFEX default VLAN tag to an invalid value */
2776 		bp->afex_def_vlan_tag = -1;
2777 		bnx2x_nic_load_afex_dcc(bp, load_code);
2778 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2779 		rc = bnx2x_func_start(bp);
2780 		if (rc) {
2781 			BNX2X_ERR("Function start failed!\n");
2782 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2783 
2784 			LOAD_ERROR_EXIT(bp, load_error3);
2785 		}
2786 
2787 		/* Send LOAD_DONE command to MCP */
2788 		if (!BP_NOMCP(bp)) {
2789 			load_code = bnx2x_fw_command(bp,
2790 						     DRV_MSG_CODE_LOAD_DONE, 0);
2791 			if (!load_code) {
2792 				BNX2X_ERR("MCP response failure, aborting\n");
2793 				rc = -EBUSY;
2794 				LOAD_ERROR_EXIT(bp, load_error3);
2795 			}
2796 		}
2797 
2798 		/* initialize FW coalescing state machines in RAM */
2799 		bnx2x_update_coalesce(bp);
2800 	}
2801 
2802 	/* setup the leading queue */
2803 	rc = bnx2x_setup_leading(bp);
2804 	if (rc) {
2805 		BNX2X_ERR("Setup leading failed!\n");
2806 		LOAD_ERROR_EXIT(bp, load_error3);
2807 	}
2808 
2809 	/* set up the rest of the queues */
2810 	for_each_nondefault_eth_queue(bp, i) {
2811 		if (IS_PF(bp))
2812 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2813 		else /* VF */
2814 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2815 		if (rc) {
2816 			BNX2X_ERR("Queue %d setup failed\n", i);
2817 			LOAD_ERROR_EXIT(bp, load_error3);
2818 		}
2819 	}
2820 
2821 	/* setup rss */
2822 	rc = bnx2x_init_rss(bp);
2823 	if (rc) {
2824 		BNX2X_ERR("PF RSS init failed\n");
2825 		LOAD_ERROR_EXIT(bp, load_error3);
2826 	}
2827 
2828 	/* Now when Clients are configured we are ready to work */
2829 	bp->state = BNX2X_STATE_OPEN;
2830 
2831 	/* Configure a ucast MAC */
2832 	if (IS_PF(bp))
2833 		rc = bnx2x_set_eth_mac(bp, true);
2834 	else /* vf */
2835 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2836 					   true);
2837 	if (rc) {
2838 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2839 		LOAD_ERROR_EXIT(bp, load_error3);
2840 	}
2841 
2842 	if (IS_PF(bp) && bp->pending_max) {
2843 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2844 		bp->pending_max = 0;
2845 	}
2846 
2847 	bp->force_link_down = false;
2848 	if (bp->port.pmf) {
2849 		rc = bnx2x_initial_phy_init(bp, load_mode);
2850 		if (rc)
2851 			LOAD_ERROR_EXIT(bp, load_error3);
2852 	}
2853 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2854 
2855 	/* Start fast path */
2856 
2857 	/* Re-configure vlan filters */
2858 	rc = bnx2x_vlan_reconfigure_vid(bp);
2859 	if (rc)
2860 		LOAD_ERROR_EXIT(bp, load_error3);
2861 
2862 	/* Initialize Rx filter. */
2863 	bnx2x_set_rx_mode_inner(bp);
2864 
2865 	if (bp->flags & PTP_SUPPORTED) {
2866 		bnx2x_register_phc(bp);
2867 		bnx2x_init_ptp(bp);
2868 		bnx2x_configure_ptp_filters(bp);
2869 	}
2870 	/* Start Tx */
2871 	switch (load_mode) {
2872 	case LOAD_NORMAL:
2873 		/* Tx queue should be only re-enabled */
2874 		netif_tx_wake_all_queues(bp->dev);
2875 		break;
2876 
2877 	case LOAD_OPEN:
2878 		netif_tx_start_all_queues(bp->dev);
2879 		smp_mb__after_atomic();
2880 		break;
2881 
2882 	case LOAD_DIAG:
2883 	case LOAD_LOOPBACK_EXT:
2884 		bp->state = BNX2X_STATE_DIAG;
2885 		break;
2886 
2887 	default:
2888 		break;
2889 	}
2890 
2891 	if (bp->port.pmf)
2892 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2893 	else
2894 		bnx2x__link_status_update(bp);
2895 
2896 	/* start the timer */
2897 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2898 
2899 	if (CNIC_ENABLED(bp))
2900 		bnx2x_load_cnic(bp);
2901 
2902 	if (IS_PF(bp))
2903 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2904 
2905 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2906 		/* mark driver is loaded in shmem2 */
2907 		u32 val;
2908 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2909 		val &= ~DRV_FLAGS_MTU_MASK;
2910 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2911 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2912 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2913 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2914 	}
2915 
2916 	/* Wait for all pending SP commands to complete */
2917 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2918 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2919 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2920 		return -EBUSY;
2921 	}
2922 
2923 	/* Update driver data for On-Chip MFW dump. */
2924 	if (IS_PF(bp))
2925 		bnx2x_update_mfw_dump(bp);
2926 
2927 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2928 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2929 		bnx2x_dcbx_init(bp, false);
2930 
2931 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2932 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2933 
2934 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2935 
2936 	return 0;
2937 
2938 #ifndef BNX2X_STOP_ON_ERROR
2939 load_error3:
2940 	if (IS_PF(bp)) {
2941 		bnx2x_int_disable_sync(bp, 1);
2942 
2943 		/* Clean queueable objects */
2944 		bnx2x_squeeze_objects(bp);
2945 	}
2946 
2947 	/* Free SKBs, SGEs, TPA pool and driver internals */
2948 	bnx2x_free_skbs(bp);
2949 	for_each_rx_queue(bp, i)
2950 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2951 
2952 	/* Release IRQs */
2953 	bnx2x_free_irq(bp);
2954 load_error2:
2955 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2956 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2957 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2958 	}
2959 
2960 	bp->port.pmf = 0;
2961 load_error1:
2962 	bnx2x_napi_disable(bp);
2963 	bnx2x_del_all_napi(bp);
2964 
2965 	/* clear pf_load status, as it was already set */
2966 	if (IS_PF(bp))
2967 		bnx2x_clear_pf_load(bp);
2968 load_error0:
2969 	bnx2x_free_fw_stats_mem(bp);
2970 	bnx2x_free_fp_mem(bp);
2971 	bnx2x_free_mem(bp);
2972 
2973 	return rc;
2974 #endif /* ! BNX2X_STOP_ON_ERROR */
2975 }
2976 
2977 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2978 {
2979 	u8 rc = 0, cos, i;
2980 
2981 	/* Wait until tx fastpath tasks complete */
2982 	for_each_tx_queue(bp, i) {
2983 		struct bnx2x_fastpath *fp = &bp->fp[i];
2984 
2985 		for_each_cos_in_tx_queue(fp, cos)
2986 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2987 		if (rc)
2988 			return rc;
2989 	}
2990 	return 0;
2991 }
2992 
2993 /* must be called with rtnl_lock */
2994 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2995 {
2996 	int i;
2997 	bool global = false;
2998 
2999 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
3000 
3001 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
3002 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
3003 
3004 	/* mark driver is unloaded in shmem2 */
3005 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
3006 		u32 val;
3007 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
3008 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
3009 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
3010 	}
3011 
3012 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
3013 	    (bp->state == BNX2X_STATE_CLOSED ||
3014 	     bp->state == BNX2X_STATE_ERROR)) {
3015 		/* We can get here if the driver has been unloaded
3016 		 * during parity error recovery and is either waiting for a
3017 		 * leader to complete or for other functions to unload and
3018 		 * then ifdown has been issued. In this case we want to
3019 		 * unload and let other functions to complete a recovery
3020 		 * process.
3021 		 */
3022 		bp->recovery_state = BNX2X_RECOVERY_DONE;
3023 		bp->is_leader = 0;
3024 		bnx2x_release_leader_lock(bp);
3025 		smp_mb();
3026 
3027 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3028 		BNX2X_ERR("Can't unload in closed or error state\n");
3029 		return -EINVAL;
3030 	}
3031 
3032 	/* Nothing to do during unload if previous bnx2x_nic_load()
3033 	 * have not completed successfully - all resources are released.
3034 	 *
3035 	 * we can get here only after unsuccessful ndo_* callback, during which
3036 	 * dev->IFF_UP flag is still on.
3037 	 */
3038 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3039 		return 0;
3040 
3041 	/* It's important to set the bp->state to the value different from
3042 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3043 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3044 	 */
3045 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3046 	smp_mb();
3047 
3048 	/* indicate to VFs that the PF is going down */
3049 	bnx2x_iov_channel_down(bp);
3050 
3051 	if (CNIC_LOADED(bp))
3052 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3053 
3054 	/* Stop Tx */
3055 	bnx2x_tx_disable(bp);
3056 	netdev_reset_tc(bp->dev);
3057 
3058 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3059 
3060 	del_timer_sync(&bp->timer);
3061 
3062 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
3063 		/* Set ALWAYS_ALIVE bit in shmem */
3064 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3065 		bnx2x_drv_pulse(bp);
3066 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3067 		bnx2x_save_statistics(bp);
3068 	}
3069 
3070 	/* wait till consumers catch up with producers in all queues.
3071 	 * If we're recovering, FW can't write to host so no reason
3072 	 * to wait for the queues to complete all Tx.
3073 	 */
3074 	if (unload_mode != UNLOAD_RECOVERY)
3075 		bnx2x_drain_tx_queues(bp);
3076 
3077 	/* if VF indicate to PF this function is going down (PF will delete sp
3078 	 * elements and clear initializations
3079 	 */
3080 	if (IS_VF(bp)) {
3081 		bnx2x_clear_vlan_info(bp);
3082 		bnx2x_vfpf_close_vf(bp);
3083 	} else if (unload_mode != UNLOAD_RECOVERY) {
3084 		/* if this is a normal/close unload need to clean up chip*/
3085 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3086 	} else {
3087 		/* Send the UNLOAD_REQUEST to the MCP */
3088 		bnx2x_send_unload_req(bp, unload_mode);
3089 
3090 		/* Prevent transactions to host from the functions on the
3091 		 * engine that doesn't reset global blocks in case of global
3092 		 * attention once global blocks are reset and gates are opened
3093 		 * (the engine which leader will perform the recovery
3094 		 * last).
3095 		 */
3096 		if (!CHIP_IS_E1x(bp))
3097 			bnx2x_pf_disable(bp);
3098 
3099 		/* Disable HW interrupts, NAPI */
3100 		bnx2x_netif_stop(bp, 1);
3101 		/* Delete all NAPI objects */
3102 		bnx2x_del_all_napi(bp);
3103 		if (CNIC_LOADED(bp))
3104 			bnx2x_del_all_napi_cnic(bp);
3105 		/* Release IRQs */
3106 		bnx2x_free_irq(bp);
3107 
3108 		/* Report UNLOAD_DONE to MCP */
3109 		bnx2x_send_unload_done(bp, false);
3110 	}
3111 
3112 	/*
3113 	 * At this stage no more interrupts will arrive so we may safely clean
3114 	 * the queueable objects here in case they failed to get cleaned so far.
3115 	 */
3116 	if (IS_PF(bp))
3117 		bnx2x_squeeze_objects(bp);
3118 
3119 	/* There should be no more pending SP commands at this stage */
3120 	bp->sp_state = 0;
3121 
3122 	bp->port.pmf = 0;
3123 
3124 	/* clear pending work in rtnl task */
3125 	bp->sp_rtnl_state = 0;
3126 	smp_mb();
3127 
3128 	/* Free SKBs, SGEs, TPA pool and driver internals */
3129 	bnx2x_free_skbs(bp);
3130 	if (CNIC_LOADED(bp))
3131 		bnx2x_free_skbs_cnic(bp);
3132 	for_each_rx_queue(bp, i)
3133 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3134 
3135 	bnx2x_free_fp_mem(bp);
3136 	if (CNIC_LOADED(bp))
3137 		bnx2x_free_fp_mem_cnic(bp);
3138 
3139 	if (IS_PF(bp)) {
3140 		if (CNIC_LOADED(bp))
3141 			bnx2x_free_mem_cnic(bp);
3142 	}
3143 	bnx2x_free_mem(bp);
3144 
3145 	bp->state = BNX2X_STATE_CLOSED;
3146 	bp->cnic_loaded = false;
3147 
3148 	/* Clear driver version indication in shmem */
3149 	if (IS_PF(bp) && !BP_NOMCP(bp))
3150 		bnx2x_update_mng_version(bp);
3151 
3152 	/* Check if there are pending parity attentions. If there are - set
3153 	 * RECOVERY_IN_PROGRESS.
3154 	 */
3155 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3156 		bnx2x_set_reset_in_progress(bp);
3157 
3158 		/* Set RESET_IS_GLOBAL if needed */
3159 		if (global)
3160 			bnx2x_set_reset_global(bp);
3161 	}
3162 
3163 	/* The last driver must disable a "close the gate" if there is no
3164 	 * parity attention or "process kill" pending.
3165 	 */
3166 	if (IS_PF(bp) &&
3167 	    !bnx2x_clear_pf_load(bp) &&
3168 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3169 		bnx2x_disable_close_the_gate(bp);
3170 
3171 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3172 
3173 	return 0;
3174 }
3175 
3176 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3177 {
3178 	u16 pmcsr;
3179 
3180 	/* If there is no power capability, silently succeed */
3181 	if (!bp->pdev->pm_cap) {
3182 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3183 		return 0;
3184 	}
3185 
3186 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3187 
3188 	switch (state) {
3189 	case PCI_D0:
3190 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3191 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3192 				       PCI_PM_CTRL_PME_STATUS));
3193 
3194 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3195 			/* delay required during transition out of D3hot */
3196 			msleep(20);
3197 		break;
3198 
3199 	case PCI_D3hot:
3200 		/* If there are other clients above don't
3201 		   shut down the power */
3202 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3203 			return 0;
3204 		/* Don't shut down the power for emulation and FPGA */
3205 		if (CHIP_REV_IS_SLOW(bp))
3206 			return 0;
3207 
3208 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3209 		pmcsr |= 3;
3210 
3211 		if (bp->wol)
3212 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3213 
3214 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3215 				      pmcsr);
3216 
3217 		/* No more memory access after this point until
3218 		* device is brought back to D0.
3219 		*/
3220 		break;
3221 
3222 	default:
3223 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3224 		return -EINVAL;
3225 	}
3226 	return 0;
3227 }
3228 
3229 /*
3230  * net_device service functions
3231  */
3232 static int bnx2x_poll(struct napi_struct *napi, int budget)
3233 {
3234 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3235 						 napi);
3236 	struct bnx2x *bp = fp->bp;
3237 	int rx_work_done;
3238 	u8 cos;
3239 
3240 #ifdef BNX2X_STOP_ON_ERROR
3241 	if (unlikely(bp->panic)) {
3242 		napi_complete(napi);
3243 		return 0;
3244 	}
3245 #endif
3246 	for_each_cos_in_tx_queue(fp, cos)
3247 		if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3248 			bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3249 
3250 	rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3251 
3252 	if (rx_work_done < budget) {
3253 		/* No need to update SB for FCoE L2 ring as long as
3254 		 * it's connected to the default SB and the SB
3255 		 * has been updated when NAPI was scheduled.
3256 		 */
3257 		if (IS_FCOE_FP(fp)) {
3258 			napi_complete_done(napi, rx_work_done);
3259 		} else {
3260 			bnx2x_update_fpsb_idx(fp);
3261 			/* bnx2x_has_rx_work() reads the status block,
3262 			 * thus we need to ensure that status block indices
3263 			 * have been actually read (bnx2x_update_fpsb_idx)
3264 			 * prior to this check (bnx2x_has_rx_work) so that
3265 			 * we won't write the "newer" value of the status block
3266 			 * to IGU (if there was a DMA right after
3267 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3268 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3269 			 * to right before bnx2x_ack_sb). In this case there
3270 			 * will never be another interrupt until there is
3271 			 * another update of the status block, while there
3272 			 * is still unhandled work.
3273 			 */
3274 			rmb();
3275 
3276 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3277 				if (napi_complete_done(napi, rx_work_done)) {
3278 					/* Re-enable interrupts */
3279 					DP(NETIF_MSG_RX_STATUS,
3280 					   "Update index to %d\n", fp->fp_hc_idx);
3281 					bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3282 						     le16_to_cpu(fp->fp_hc_idx),
3283 						     IGU_INT_ENABLE, 1);
3284 				}
3285 			} else {
3286 				rx_work_done = budget;
3287 			}
3288 		}
3289 	}
3290 
3291 	return rx_work_done;
3292 }
3293 
3294 /* we split the first BD into headers and data BDs
3295  * to ease the pain of our fellow microcode engineers
3296  * we use one mapping for both BDs
3297  */
3298 static u16 bnx2x_tx_split(struct bnx2x *bp,
3299 			  struct bnx2x_fp_txdata *txdata,
3300 			  struct sw_tx_bd *tx_buf,
3301 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3302 			  u16 bd_prod)
3303 {
3304 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3305 	struct eth_tx_bd *d_tx_bd;
3306 	dma_addr_t mapping;
3307 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3308 
3309 	/* first fix first BD */
3310 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3311 
3312 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3313 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3314 
3315 	/* now get a new data BD
3316 	 * (after the pbd) and fill it */
3317 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3318 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3319 
3320 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3321 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3322 
3323 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3324 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3325 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3326 
3327 	/* this marks the BD as one that has no individual mapping */
3328 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3329 
3330 	DP(NETIF_MSG_TX_QUEUED,
3331 	   "TSO split data size is %d (%x:%x)\n",
3332 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3333 
3334 	/* update tx_bd */
3335 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3336 
3337 	return bd_prod;
3338 }
3339 
3340 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3341 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3342 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3343 {
3344 	__sum16 tsum = (__force __sum16) csum;
3345 
3346 	if (fix > 0)
3347 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3348 				  csum_partial(t_header - fix, fix, 0)));
3349 
3350 	else if (fix < 0)
3351 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3352 				  csum_partial(t_header, -fix, 0)));
3353 
3354 	return bswab16(tsum);
3355 }
3356 
3357 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3358 {
3359 	u32 rc;
3360 	__u8 prot = 0;
3361 	__be16 protocol;
3362 
3363 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3364 		return XMIT_PLAIN;
3365 
3366 	protocol = vlan_get_protocol(skb);
3367 	if (protocol == htons(ETH_P_IPV6)) {
3368 		rc = XMIT_CSUM_V6;
3369 		prot = ipv6_hdr(skb)->nexthdr;
3370 	} else {
3371 		rc = XMIT_CSUM_V4;
3372 		prot = ip_hdr(skb)->protocol;
3373 	}
3374 
3375 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3376 		if (inner_ip_hdr(skb)->version == 6) {
3377 			rc |= XMIT_CSUM_ENC_V6;
3378 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3379 				rc |= XMIT_CSUM_TCP;
3380 		} else {
3381 			rc |= XMIT_CSUM_ENC_V4;
3382 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3383 				rc |= XMIT_CSUM_TCP;
3384 		}
3385 	}
3386 	if (prot == IPPROTO_TCP)
3387 		rc |= XMIT_CSUM_TCP;
3388 
3389 	if (skb_is_gso(skb)) {
3390 		if (skb_is_gso_v6(skb)) {
3391 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3392 			if (rc & XMIT_CSUM_ENC)
3393 				rc |= XMIT_GSO_ENC_V6;
3394 		} else {
3395 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3396 			if (rc & XMIT_CSUM_ENC)
3397 				rc |= XMIT_GSO_ENC_V4;
3398 		}
3399 	}
3400 
3401 	return rc;
3402 }
3403 
3404 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3405 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS         4
3406 
3407 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3408 #define BNX2X_NUM_TSO_WIN_SUB_BDS               3
3409 
3410 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3411 /* check if packet requires linearization (packet is too fragmented)
3412    no need to check fragmentation if page size > 8K (there will be no
3413    violation to FW restrictions) */
3414 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3415 			     u32 xmit_type)
3416 {
3417 	int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3418 	int to_copy = 0, hlen = 0;
3419 
3420 	if (xmit_type & XMIT_GSO_ENC)
3421 		num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3422 
3423 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3424 		if (xmit_type & XMIT_GSO) {
3425 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3426 			int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3427 			/* Number of windows to check */
3428 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3429 			int wnd_idx = 0;
3430 			int frag_idx = 0;
3431 			u32 wnd_sum = 0;
3432 
3433 			/* Headers length */
3434 			if (xmit_type & XMIT_GSO_ENC)
3435 				hlen = skb_inner_tcp_all_headers(skb);
3436 			else
3437 				hlen = skb_tcp_all_headers(skb);
3438 
3439 			/* Amount of data (w/o headers) on linear part of SKB*/
3440 			first_bd_sz = skb_headlen(skb) - hlen;
3441 
3442 			wnd_sum  = first_bd_sz;
3443 
3444 			/* Calculate the first sum - it's special */
3445 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3446 				wnd_sum +=
3447 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3448 
3449 			/* If there was data on linear skb data - check it */
3450 			if (first_bd_sz > 0) {
3451 				if (unlikely(wnd_sum < lso_mss)) {
3452 					to_copy = 1;
3453 					goto exit_lbl;
3454 				}
3455 
3456 				wnd_sum -= first_bd_sz;
3457 			}
3458 
3459 			/* Others are easier: run through the frag list and
3460 			   check all windows */
3461 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3462 				wnd_sum +=
3463 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3464 
3465 				if (unlikely(wnd_sum < lso_mss)) {
3466 					to_copy = 1;
3467 					break;
3468 				}
3469 				wnd_sum -=
3470 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3471 			}
3472 		} else {
3473 			/* in non-LSO too fragmented packet should always
3474 			   be linearized */
3475 			to_copy = 1;
3476 		}
3477 	}
3478 
3479 exit_lbl:
3480 	if (unlikely(to_copy))
3481 		DP(NETIF_MSG_TX_QUEUED,
3482 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3483 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3484 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3485 
3486 	return to_copy;
3487 }
3488 #endif
3489 
3490 /**
3491  * bnx2x_set_pbd_gso - update PBD in GSO case.
3492  *
3493  * @skb:	packet skb
3494  * @pbd:	parse BD
3495  * @xmit_type:	xmit flags
3496  */
3497 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3498 			      struct eth_tx_parse_bd_e1x *pbd,
3499 			      u32 xmit_type)
3500 {
3501 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3502 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3503 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3504 
3505 	if (xmit_type & XMIT_GSO_V4) {
3506 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3507 		pbd->tcp_pseudo_csum =
3508 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3509 						   ip_hdr(skb)->daddr,
3510 						   0, IPPROTO_TCP, 0));
3511 	} else {
3512 		pbd->tcp_pseudo_csum =
3513 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3514 						 &ipv6_hdr(skb)->daddr,
3515 						 0, IPPROTO_TCP, 0));
3516 	}
3517 
3518 	pbd->global_data |=
3519 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3520 }
3521 
3522 /**
3523  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3524  *
3525  * @bp:			driver handle
3526  * @skb:		packet skb
3527  * @parsing_data:	data to be updated
3528  * @xmit_type:		xmit flags
3529  *
3530  * 57712/578xx related, when skb has encapsulation
3531  */
3532 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3533 				 u32 *parsing_data, u32 xmit_type)
3534 {
3535 	*parsing_data |=
3536 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3537 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3538 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3539 
3540 	if (xmit_type & XMIT_CSUM_TCP) {
3541 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3542 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3543 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3544 
3545 		return skb_inner_tcp_all_headers(skb);
3546 	}
3547 
3548 	/* We support checksum offload for TCP and UDP only.
3549 	 * No need to pass the UDP header length - it's a constant.
3550 	 */
3551 	return skb_inner_transport_offset(skb) + sizeof(struct udphdr);
3552 }
3553 
3554 /**
3555  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3556  *
3557  * @bp:			driver handle
3558  * @skb:		packet skb
3559  * @parsing_data:	data to be updated
3560  * @xmit_type:		xmit flags
3561  *
3562  * 57712/578xx related
3563  */
3564 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3565 				u32 *parsing_data, u32 xmit_type)
3566 {
3567 	*parsing_data |=
3568 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3569 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3570 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3571 
3572 	if (xmit_type & XMIT_CSUM_TCP) {
3573 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3574 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3575 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3576 
3577 		return skb_tcp_all_headers(skb);
3578 	}
3579 	/* We support checksum offload for TCP and UDP only.
3580 	 * No need to pass the UDP header length - it's a constant.
3581 	 */
3582 	return skb_transport_offset(skb) + sizeof(struct udphdr);
3583 }
3584 
3585 /* set FW indication according to inner or outer protocols if tunneled */
3586 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3587 			       struct eth_tx_start_bd *tx_start_bd,
3588 			       u32 xmit_type)
3589 {
3590 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3591 
3592 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3593 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3594 
3595 	if (!(xmit_type & XMIT_CSUM_TCP))
3596 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3597 }
3598 
3599 /**
3600  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3601  *
3602  * @bp:		driver handle
3603  * @skb:	packet skb
3604  * @pbd:	parse BD to be updated
3605  * @xmit_type:	xmit flags
3606  */
3607 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3608 			     struct eth_tx_parse_bd_e1x *pbd,
3609 			     u32 xmit_type)
3610 {
3611 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3612 
3613 	/* for now NS flag is not used in Linux */
3614 	pbd->global_data =
3615 		cpu_to_le16(hlen |
3616 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3617 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3618 
3619 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3620 			skb_network_header(skb)) >> 1;
3621 
3622 	hlen += pbd->ip_hlen_w;
3623 
3624 	/* We support checksum offload for TCP and UDP only */
3625 	if (xmit_type & XMIT_CSUM_TCP)
3626 		hlen += tcp_hdrlen(skb) / 2;
3627 	else
3628 		hlen += sizeof(struct udphdr) / 2;
3629 
3630 	pbd->total_hlen_w = cpu_to_le16(hlen);
3631 	hlen = hlen*2;
3632 
3633 	if (xmit_type & XMIT_CSUM_TCP) {
3634 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3635 
3636 	} else {
3637 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3638 
3639 		DP(NETIF_MSG_TX_QUEUED,
3640 		   "hlen %d  fix %d  csum before fix %x\n",
3641 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3642 
3643 		/* HW bug: fixup the CSUM */
3644 		pbd->tcp_pseudo_csum =
3645 			bnx2x_csum_fix(skb_transport_header(skb),
3646 				       SKB_CS(skb), fix);
3647 
3648 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3649 		   pbd->tcp_pseudo_csum);
3650 	}
3651 
3652 	return hlen;
3653 }
3654 
3655 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3656 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3657 				      struct eth_tx_parse_2nd_bd *pbd2,
3658 				      u16 *global_data,
3659 				      u32 xmit_type)
3660 {
3661 	u16 hlen_w = 0;
3662 	u8 outerip_off, outerip_len = 0;
3663 
3664 	/* from outer IP to transport */
3665 	hlen_w = (skb_inner_transport_header(skb) -
3666 		  skb_network_header(skb)) >> 1;
3667 
3668 	/* transport len */
3669 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3670 
3671 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3672 
3673 	/* outer IP header info */
3674 	if (xmit_type & XMIT_CSUM_V4) {
3675 		struct iphdr *iph = ip_hdr(skb);
3676 		u32 csum = (__force u32)(~iph->check) -
3677 			   (__force u32)iph->tot_len -
3678 			   (__force u32)iph->frag_off;
3679 
3680 		outerip_len = iph->ihl << 1;
3681 
3682 		pbd2->fw_ip_csum_wo_len_flags_frag =
3683 			bswab16(csum_fold((__force __wsum)csum));
3684 	} else {
3685 		pbd2->fw_ip_hdr_to_payload_w =
3686 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3687 		pbd_e2->data.tunnel_data.flags |=
3688 			ETH_TUNNEL_DATA_IPV6_OUTER;
3689 	}
3690 
3691 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3692 
3693 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3694 
3695 	/* inner IP header info */
3696 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3697 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3698 
3699 		pbd_e2->data.tunnel_data.pseudo_csum =
3700 			bswab16(~csum_tcpudp_magic(
3701 					inner_ip_hdr(skb)->saddr,
3702 					inner_ip_hdr(skb)->daddr,
3703 					0, IPPROTO_TCP, 0));
3704 	} else {
3705 		pbd_e2->data.tunnel_data.pseudo_csum =
3706 			bswab16(~csum_ipv6_magic(
3707 					&inner_ipv6_hdr(skb)->saddr,
3708 					&inner_ipv6_hdr(skb)->daddr,
3709 					0, IPPROTO_TCP, 0));
3710 	}
3711 
3712 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3713 
3714 	*global_data |=
3715 		outerip_off |
3716 		(outerip_len <<
3717 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3718 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3719 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3720 
3721 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3722 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3723 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3724 	}
3725 }
3726 
3727 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3728 					 u32 xmit_type)
3729 {
3730 	struct ipv6hdr *ipv6;
3731 
3732 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3733 		return;
3734 
3735 	if (xmit_type & XMIT_GSO_ENC_V6)
3736 		ipv6 = inner_ipv6_hdr(skb);
3737 	else /* XMIT_GSO_V6 */
3738 		ipv6 = ipv6_hdr(skb);
3739 
3740 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3741 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3742 }
3743 
3744 /* called with netif_tx_lock
3745  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3746  * netif_wake_queue()
3747  */
3748 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3749 {
3750 	struct bnx2x *bp = netdev_priv(dev);
3751 
3752 	struct netdev_queue *txq;
3753 	struct bnx2x_fp_txdata *txdata;
3754 	struct sw_tx_bd *tx_buf;
3755 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3756 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3757 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3758 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3759 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3760 	u32 pbd_e2_parsing_data = 0;
3761 	u16 pkt_prod, bd_prod;
3762 	int nbd, txq_index;
3763 	dma_addr_t mapping;
3764 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3765 	int i;
3766 	u8 hlen = 0;
3767 	__le16 pkt_size = 0;
3768 	struct ethhdr *eth;
3769 	u8 mac_type = UNICAST_ADDRESS;
3770 
3771 #ifdef BNX2X_STOP_ON_ERROR
3772 	if (unlikely(bp->panic))
3773 		return NETDEV_TX_BUSY;
3774 #endif
3775 
3776 	txq_index = skb_get_queue_mapping(skb);
3777 	txq = netdev_get_tx_queue(dev, txq_index);
3778 
3779 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3780 
3781 	txdata = &bp->bnx2x_txq[txq_index];
3782 
3783 	/* enable this debug print to view the transmission queue being used
3784 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3785 	   txq_index, fp_index, txdata_index); */
3786 
3787 	/* enable this debug print to view the transmission details
3788 	DP(NETIF_MSG_TX_QUEUED,
3789 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3790 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3791 
3792 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3793 			skb_shinfo(skb)->nr_frags +
3794 			BDS_PER_TX_PKT +
3795 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3796 		/* Handle special storage cases separately */
3797 		if (txdata->tx_ring_size == 0) {
3798 			struct bnx2x_eth_q_stats *q_stats =
3799 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3800 			q_stats->driver_filtered_tx_pkt++;
3801 			dev_kfree_skb(skb);
3802 			return NETDEV_TX_OK;
3803 		}
3804 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3805 		netif_tx_stop_queue(txq);
3806 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3807 
3808 		return NETDEV_TX_BUSY;
3809 	}
3810 
3811 	DP(NETIF_MSG_TX_QUEUED,
3812 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3813 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3814 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3815 	   skb->len);
3816 
3817 	eth = (struct ethhdr *)skb->data;
3818 
3819 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3820 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3821 		if (is_broadcast_ether_addr(eth->h_dest))
3822 			mac_type = BROADCAST_ADDRESS;
3823 		else
3824 			mac_type = MULTICAST_ADDRESS;
3825 	}
3826 
3827 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3828 	/* First, check if we need to linearize the skb (due to FW
3829 	   restrictions). No need to check fragmentation if page size > 8K
3830 	   (there will be no violation to FW restrictions) */
3831 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3832 		/* Statistics of linearization */
3833 		bp->lin_cnt++;
3834 		if (skb_linearize(skb) != 0) {
3835 			DP(NETIF_MSG_TX_QUEUED,
3836 			   "SKB linearization failed - silently dropping this SKB\n");
3837 			dev_kfree_skb_any(skb);
3838 			return NETDEV_TX_OK;
3839 		}
3840 	}
3841 #endif
3842 	/* Map skb linear data for DMA */
3843 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3844 				 skb_headlen(skb), DMA_TO_DEVICE);
3845 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3846 		DP(NETIF_MSG_TX_QUEUED,
3847 		   "SKB mapping failed - silently dropping this SKB\n");
3848 		dev_kfree_skb_any(skb);
3849 		return NETDEV_TX_OK;
3850 	}
3851 	/*
3852 	Please read carefully. First we use one BD which we mark as start,
3853 	then we have a parsing info BD (used for TSO or xsum),
3854 	and only then we have the rest of the TSO BDs.
3855 	(don't forget to mark the last one as last,
3856 	and to unmap only AFTER you write to the BD ...)
3857 	And above all, all pdb sizes are in words - NOT DWORDS!
3858 	*/
3859 
3860 	/* get current pkt produced now - advance it just before sending packet
3861 	 * since mapping of pages may fail and cause packet to be dropped
3862 	 */
3863 	pkt_prod = txdata->tx_pkt_prod;
3864 	bd_prod = TX_BD(txdata->tx_bd_prod);
3865 
3866 	/* get a tx_buf and first BD
3867 	 * tx_start_bd may be changed during SPLIT,
3868 	 * but first_bd will always stay first
3869 	 */
3870 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3871 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3872 	first_bd = tx_start_bd;
3873 
3874 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3875 
3876 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3877 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3878 			bp->eth_stats.ptp_skip_tx_ts++;
3879 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3880 		} else if (bp->ptp_tx_skb) {
3881 			bp->eth_stats.ptp_skip_tx_ts++;
3882 			netdev_err_once(bp->dev,
3883 					"Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3884 		} else {
3885 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3886 			/* schedule check for Tx timestamp */
3887 			bp->ptp_tx_skb = skb_get(skb);
3888 			bp->ptp_tx_start = jiffies;
3889 			schedule_work(&bp->ptp_task);
3890 		}
3891 	}
3892 
3893 	/* header nbd: indirectly zero other flags! */
3894 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3895 
3896 	/* remember the first BD of the packet */
3897 	tx_buf->first_bd = txdata->tx_bd_prod;
3898 	tx_buf->skb = skb;
3899 	tx_buf->flags = 0;
3900 
3901 	DP(NETIF_MSG_TX_QUEUED,
3902 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3903 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3904 
3905 	if (skb_vlan_tag_present(skb)) {
3906 		tx_start_bd->vlan_or_ethertype =
3907 		    cpu_to_le16(skb_vlan_tag_get(skb));
3908 		tx_start_bd->bd_flags.as_bitfield |=
3909 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3910 	} else {
3911 		/* when transmitting in a vf, start bd must hold the ethertype
3912 		 * for fw to enforce it
3913 		 */
3914 		u16 vlan_tci = 0;
3915 #ifndef BNX2X_STOP_ON_ERROR
3916 		if (IS_VF(bp)) {
3917 #endif
3918 			/* Still need to consider inband vlan for enforced */
3919 			if (__vlan_get_tag(skb, &vlan_tci)) {
3920 				tx_start_bd->vlan_or_ethertype =
3921 					cpu_to_le16(ntohs(eth->h_proto));
3922 			} else {
3923 				tx_start_bd->bd_flags.as_bitfield |=
3924 					(X_ETH_INBAND_VLAN <<
3925 					 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3926 				tx_start_bd->vlan_or_ethertype =
3927 					cpu_to_le16(vlan_tci);
3928 			}
3929 #ifndef BNX2X_STOP_ON_ERROR
3930 		} else {
3931 			/* used by FW for packet accounting */
3932 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3933 		}
3934 #endif
3935 	}
3936 
3937 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3938 
3939 	/* turn on parsing and get a BD */
3940 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3941 
3942 	if (xmit_type & XMIT_CSUM)
3943 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3944 
3945 	if (!CHIP_IS_E1x(bp)) {
3946 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3947 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3948 
3949 		if (xmit_type & XMIT_CSUM_ENC) {
3950 			u16 global_data = 0;
3951 
3952 			/* Set PBD in enc checksum offload case */
3953 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3954 						      &pbd_e2_parsing_data,
3955 						      xmit_type);
3956 
3957 			/* turn on 2nd parsing and get a BD */
3958 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3959 
3960 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3961 
3962 			memset(pbd2, 0, sizeof(*pbd2));
3963 
3964 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3965 				(skb_inner_network_header(skb) -
3966 				 skb->data) >> 1;
3967 
3968 			if (xmit_type & XMIT_GSO_ENC)
3969 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3970 							  &global_data,
3971 							  xmit_type);
3972 
3973 			pbd2->global_data = cpu_to_le16(global_data);
3974 
3975 			/* add addition parse BD indication to start BD */
3976 			SET_FLAG(tx_start_bd->general_data,
3977 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3978 			/* set encapsulation flag in start BD */
3979 			SET_FLAG(tx_start_bd->general_data,
3980 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3981 
3982 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3983 
3984 			nbd++;
3985 		} else if (xmit_type & XMIT_CSUM) {
3986 			/* Set PBD in checksum offload case w/o encapsulation */
3987 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3988 						     &pbd_e2_parsing_data,
3989 						     xmit_type);
3990 		}
3991 
3992 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3993 		/* Add the macs to the parsing BD if this is a vf or if
3994 		 * Tx Switching is enabled.
3995 		 */
3996 		if (IS_VF(bp)) {
3997 			/* override GRE parameters in BD */
3998 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3999 					      &pbd_e2->data.mac_addr.src_mid,
4000 					      &pbd_e2->data.mac_addr.src_lo,
4001 					      eth->h_source);
4002 
4003 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
4004 					      &pbd_e2->data.mac_addr.dst_mid,
4005 					      &pbd_e2->data.mac_addr.dst_lo,
4006 					      eth->h_dest);
4007 		} else {
4008 			if (bp->flags & TX_SWITCHING)
4009 				bnx2x_set_fw_mac_addr(
4010 						&pbd_e2->data.mac_addr.dst_hi,
4011 						&pbd_e2->data.mac_addr.dst_mid,
4012 						&pbd_e2->data.mac_addr.dst_lo,
4013 						eth->h_dest);
4014 #ifdef BNX2X_STOP_ON_ERROR
4015 			/* Enforce security is always set in Stop on Error -
4016 			 * source mac should be present in the parsing BD
4017 			 */
4018 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4019 					      &pbd_e2->data.mac_addr.src_mid,
4020 					      &pbd_e2->data.mac_addr.src_lo,
4021 					      eth->h_source);
4022 #endif
4023 		}
4024 
4025 		SET_FLAG(pbd_e2_parsing_data,
4026 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4027 	} else {
4028 		u16 global_data = 0;
4029 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4030 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4031 		/* Set PBD in checksum offload case */
4032 		if (xmit_type & XMIT_CSUM)
4033 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4034 
4035 		SET_FLAG(global_data,
4036 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4037 		pbd_e1x->global_data |= cpu_to_le16(global_data);
4038 	}
4039 
4040 	/* Setup the data pointer of the first BD of the packet */
4041 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4042 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4043 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4044 	pkt_size = tx_start_bd->nbytes;
4045 
4046 	DP(NETIF_MSG_TX_QUEUED,
4047 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4048 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4049 	   le16_to_cpu(tx_start_bd->nbytes),
4050 	   tx_start_bd->bd_flags.as_bitfield,
4051 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4052 
4053 	if (xmit_type & XMIT_GSO) {
4054 
4055 		DP(NETIF_MSG_TX_QUEUED,
4056 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4057 		   skb->len, hlen, skb_headlen(skb),
4058 		   skb_shinfo(skb)->gso_size);
4059 
4060 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4061 
4062 		if (unlikely(skb_headlen(skb) > hlen)) {
4063 			nbd++;
4064 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4065 						 &tx_start_bd, hlen,
4066 						 bd_prod);
4067 		}
4068 		if (!CHIP_IS_E1x(bp))
4069 			pbd_e2_parsing_data |=
4070 				(skb_shinfo(skb)->gso_size <<
4071 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4072 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4073 		else
4074 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4075 	}
4076 
4077 	/* Set the PBD's parsing_data field if not zero
4078 	 * (for the chips newer than 57711).
4079 	 */
4080 	if (pbd_e2_parsing_data)
4081 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4082 
4083 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4084 
4085 	/* Handle fragmented skb */
4086 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4087 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4088 
4089 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4090 					   skb_frag_size(frag), DMA_TO_DEVICE);
4091 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4092 			unsigned int pkts_compl = 0, bytes_compl = 0;
4093 
4094 			DP(NETIF_MSG_TX_QUEUED,
4095 			   "Unable to map page - dropping packet...\n");
4096 
4097 			/* we need unmap all buffers already mapped
4098 			 * for this SKB;
4099 			 * first_bd->nbd need to be properly updated
4100 			 * before call to bnx2x_free_tx_pkt
4101 			 */
4102 			first_bd->nbd = cpu_to_le16(nbd);
4103 			bnx2x_free_tx_pkt(bp, txdata,
4104 					  TX_BD(txdata->tx_pkt_prod),
4105 					  &pkts_compl, &bytes_compl);
4106 			return NETDEV_TX_OK;
4107 		}
4108 
4109 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4110 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4111 		if (total_pkt_bd == NULL)
4112 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4113 
4114 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4115 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4116 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4117 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4118 		nbd++;
4119 
4120 		DP(NETIF_MSG_TX_QUEUED,
4121 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4122 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4123 		   le16_to_cpu(tx_data_bd->nbytes));
4124 	}
4125 
4126 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4127 
4128 	/* update with actual num BDs */
4129 	first_bd->nbd = cpu_to_le16(nbd);
4130 
4131 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4132 
4133 	/* now send a tx doorbell, counting the next BD
4134 	 * if the packet contains or ends with it
4135 	 */
4136 	if (TX_BD_POFF(bd_prod) < nbd)
4137 		nbd++;
4138 
4139 	/* total_pkt_bytes should be set on the first data BD if
4140 	 * it's not an LSO packet and there is more than one
4141 	 * data BD. In this case pkt_size is limited by an MTU value.
4142 	 * However we prefer to set it for an LSO packet (while we don't
4143 	 * have to) in order to save some CPU cycles in a none-LSO
4144 	 * case, when we much more care about them.
4145 	 */
4146 	if (total_pkt_bd != NULL)
4147 		total_pkt_bd->total_pkt_bytes = pkt_size;
4148 
4149 	if (pbd_e1x)
4150 		DP(NETIF_MSG_TX_QUEUED,
4151 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4152 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4153 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4154 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4155 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4156 	if (pbd_e2)
4157 		DP(NETIF_MSG_TX_QUEUED,
4158 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4159 		   pbd_e2,
4160 		   pbd_e2->data.mac_addr.dst_hi,
4161 		   pbd_e2->data.mac_addr.dst_mid,
4162 		   pbd_e2->data.mac_addr.dst_lo,
4163 		   pbd_e2->data.mac_addr.src_hi,
4164 		   pbd_e2->data.mac_addr.src_mid,
4165 		   pbd_e2->data.mac_addr.src_lo,
4166 		   pbd_e2->parsing_data);
4167 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4168 
4169 	netdev_tx_sent_queue(txq, skb->len);
4170 
4171 	skb_tx_timestamp(skb);
4172 
4173 	txdata->tx_pkt_prod++;
4174 	/*
4175 	 * Make sure that the BD data is updated before updating the producer
4176 	 * since FW might read the BD right after the producer is updated.
4177 	 * This is only applicable for weak-ordered memory model archs such
4178 	 * as IA-64. The following barrier is also mandatory since FW will
4179 	 * assumes packets must have BDs.
4180 	 */
4181 	wmb();
4182 
4183 	txdata->tx_db.data.prod += nbd;
4184 	/* make sure descriptor update is observed by HW */
4185 	wmb();
4186 
4187 	DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4188 
4189 	txdata->tx_bd_prod += nbd;
4190 
4191 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4192 		netif_tx_stop_queue(txq);
4193 
4194 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4195 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4196 		 * fp->bd_tx_cons */
4197 		smp_mb();
4198 
4199 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4200 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4201 			netif_tx_wake_queue(txq);
4202 	}
4203 	txdata->tx_pkt++;
4204 
4205 	return NETDEV_TX_OK;
4206 }
4207 
4208 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4209 {
4210 	int mfw_vn = BP_FW_MB_IDX(bp);
4211 	u32 tmp;
4212 
4213 	/* If the shmem shouldn't affect configuration, reflect */
4214 	if (!IS_MF_BD(bp)) {
4215 		int i;
4216 
4217 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4218 			c2s_map[i] = i;
4219 		*c2s_default = 0;
4220 
4221 		return;
4222 	}
4223 
4224 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4225 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4226 	c2s_map[0] = tmp & 0xff;
4227 	c2s_map[1] = (tmp >> 8) & 0xff;
4228 	c2s_map[2] = (tmp >> 16) & 0xff;
4229 	c2s_map[3] = (tmp >> 24) & 0xff;
4230 
4231 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4232 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4233 	c2s_map[4] = tmp & 0xff;
4234 	c2s_map[5] = (tmp >> 8) & 0xff;
4235 	c2s_map[6] = (tmp >> 16) & 0xff;
4236 	c2s_map[7] = (tmp >> 24) & 0xff;
4237 
4238 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4239 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4240 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4241 }
4242 
4243 /**
4244  * bnx2x_setup_tc - routine to configure net_device for multi tc
4245  *
4246  * @dev: net device to configure
4247  * @num_tc: number of traffic classes to enable
4248  *
4249  * callback connected to the ndo_setup_tc function pointer
4250  */
4251 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4252 {
4253 	struct bnx2x *bp = netdev_priv(dev);
4254 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4255 	int cos, prio, count, offset;
4256 
4257 	/* setup tc must be called under rtnl lock */
4258 	ASSERT_RTNL();
4259 
4260 	/* no traffic classes requested. Aborting */
4261 	if (!num_tc) {
4262 		netdev_reset_tc(dev);
4263 		return 0;
4264 	}
4265 
4266 	/* requested to support too many traffic classes */
4267 	if (num_tc > bp->max_cos) {
4268 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4269 			  num_tc, bp->max_cos);
4270 		return -EINVAL;
4271 	}
4272 
4273 	/* declare amount of supported traffic classes */
4274 	if (netdev_set_num_tc(dev, num_tc)) {
4275 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4276 		return -EINVAL;
4277 	}
4278 
4279 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4280 
4281 	/* configure priority to traffic class mapping */
4282 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4283 		int outer_prio = c2s_map[prio];
4284 
4285 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4286 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4287 		   "mapping priority %d to tc %d\n",
4288 		   outer_prio, bp->prio_to_cos[outer_prio]);
4289 	}
4290 
4291 	/* Use this configuration to differentiate tc0 from other COSes
4292 	   This can be used for ets or pfc, and save the effort of setting
4293 	   up a multio class queue disc or negotiating DCBX with a switch
4294 	netdev_set_prio_tc_map(dev, 0, 0);
4295 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4296 	for (prio = 1; prio < 16; prio++) {
4297 		netdev_set_prio_tc_map(dev, prio, 1);
4298 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4299 	} */
4300 
4301 	/* configure traffic class to transmission queue mapping */
4302 	for (cos = 0; cos < bp->max_cos; cos++) {
4303 		count = BNX2X_NUM_ETH_QUEUES(bp);
4304 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4305 		netdev_set_tc_queue(dev, cos, count, offset);
4306 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4307 		   "mapping tc %d to offset %d count %d\n",
4308 		   cos, offset, count);
4309 	}
4310 
4311 	return 0;
4312 }
4313 
4314 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4315 		     void *type_data)
4316 {
4317 	struct tc_mqprio_qopt *mqprio = type_data;
4318 
4319 	if (type != TC_SETUP_QDISC_MQPRIO)
4320 		return -EOPNOTSUPP;
4321 
4322 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4323 
4324 	return bnx2x_setup_tc(dev, mqprio->num_tc);
4325 }
4326 
4327 /* called with rtnl_lock */
4328 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4329 {
4330 	struct sockaddr *addr = p;
4331 	struct bnx2x *bp = netdev_priv(dev);
4332 	int rc = 0;
4333 
4334 	if (!is_valid_ether_addr(addr->sa_data)) {
4335 		BNX2X_ERR("Requested MAC address is not valid\n");
4336 		return -EINVAL;
4337 	}
4338 
4339 	if (IS_MF_STORAGE_ONLY(bp)) {
4340 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4341 		return -EINVAL;
4342 	}
4343 
4344 	if (netif_running(dev))  {
4345 		rc = bnx2x_set_eth_mac(bp, false);
4346 		if (rc)
4347 			return rc;
4348 	}
4349 
4350 	eth_hw_addr_set(dev, addr->sa_data);
4351 
4352 	if (netif_running(dev))
4353 		rc = bnx2x_set_eth_mac(bp, true);
4354 
4355 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4356 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4357 
4358 	return rc;
4359 }
4360 
4361 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4362 {
4363 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4364 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4365 	u8 cos;
4366 
4367 	/* Common */
4368 
4369 	if (IS_FCOE_IDX(fp_index)) {
4370 		memset(sb, 0, sizeof(union host_hc_status_block));
4371 		fp->status_blk_mapping = 0;
4372 	} else {
4373 		/* status blocks */
4374 		if (!CHIP_IS_E1x(bp))
4375 			BNX2X_PCI_FREE(sb->e2_sb,
4376 				       bnx2x_fp(bp, fp_index,
4377 						status_blk_mapping),
4378 				       sizeof(struct host_hc_status_block_e2));
4379 		else
4380 			BNX2X_PCI_FREE(sb->e1x_sb,
4381 				       bnx2x_fp(bp, fp_index,
4382 						status_blk_mapping),
4383 				       sizeof(struct host_hc_status_block_e1x));
4384 	}
4385 
4386 	/* Rx */
4387 	if (!skip_rx_queue(bp, fp_index)) {
4388 		bnx2x_free_rx_bds(fp);
4389 
4390 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4391 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4392 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4393 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4394 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4395 
4396 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4397 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4398 			       sizeof(struct eth_fast_path_rx_cqe) *
4399 			       NUM_RCQ_BD);
4400 
4401 		/* SGE ring */
4402 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4403 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4404 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4405 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4406 	}
4407 
4408 	/* Tx */
4409 	if (!skip_tx_queue(bp, fp_index)) {
4410 		/* fastpath tx rings: tx_buf tx_desc */
4411 		for_each_cos_in_tx_queue(fp, cos) {
4412 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4413 
4414 			DP(NETIF_MSG_IFDOWN,
4415 			   "freeing tx memory of fp %d cos %d cid %d\n",
4416 			   fp_index, cos, txdata->cid);
4417 
4418 			BNX2X_FREE(txdata->tx_buf_ring);
4419 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4420 				txdata->tx_desc_mapping,
4421 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4422 		}
4423 	}
4424 	/* end of fastpath */
4425 }
4426 
4427 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4428 {
4429 	int i;
4430 	for_each_cnic_queue(bp, i)
4431 		bnx2x_free_fp_mem_at(bp, i);
4432 }
4433 
4434 void bnx2x_free_fp_mem(struct bnx2x *bp)
4435 {
4436 	int i;
4437 	for_each_eth_queue(bp, i)
4438 		bnx2x_free_fp_mem_at(bp, i);
4439 }
4440 
4441 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4442 {
4443 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4444 	if (!CHIP_IS_E1x(bp)) {
4445 		bnx2x_fp(bp, index, sb_index_values) =
4446 			(__le16 *)status_blk.e2_sb->sb.index_values;
4447 		bnx2x_fp(bp, index, sb_running_index) =
4448 			(__le16 *)status_blk.e2_sb->sb.running_index;
4449 	} else {
4450 		bnx2x_fp(bp, index, sb_index_values) =
4451 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4452 		bnx2x_fp(bp, index, sb_running_index) =
4453 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4454 	}
4455 }
4456 
4457 /* Returns the number of actually allocated BDs */
4458 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4459 			      int rx_ring_size)
4460 {
4461 	struct bnx2x *bp = fp->bp;
4462 	u16 ring_prod, cqe_ring_prod;
4463 	int i, failure_cnt = 0;
4464 
4465 	fp->rx_comp_cons = 0;
4466 	cqe_ring_prod = ring_prod = 0;
4467 
4468 	/* This routine is called only during fo init so
4469 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4470 	 */
4471 	for (i = 0; i < rx_ring_size; i++) {
4472 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4473 			failure_cnt++;
4474 			continue;
4475 		}
4476 		ring_prod = NEXT_RX_IDX(ring_prod);
4477 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4478 		WARN_ON(ring_prod <= (i - failure_cnt));
4479 	}
4480 
4481 	if (failure_cnt)
4482 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4483 			  i - failure_cnt, fp->index);
4484 
4485 	fp->rx_bd_prod = ring_prod;
4486 	/* Limit the CQE producer by the CQE ring size */
4487 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4488 			       cqe_ring_prod);
4489 
4490 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4491 
4492 	return i - failure_cnt;
4493 }
4494 
4495 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4496 {
4497 	int i;
4498 
4499 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4500 		struct eth_rx_cqe_next_page *nextpg;
4501 
4502 		nextpg = (struct eth_rx_cqe_next_page *)
4503 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4504 		nextpg->addr_hi =
4505 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4506 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4507 		nextpg->addr_lo =
4508 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4509 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4510 	}
4511 }
4512 
4513 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4514 {
4515 	union host_hc_status_block *sb;
4516 	struct bnx2x_fastpath *fp = &bp->fp[index];
4517 	int ring_size = 0;
4518 	u8 cos;
4519 	int rx_ring_size = 0;
4520 
4521 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4522 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4523 		bp->rx_ring_size = rx_ring_size;
4524 	} else if (!bp->rx_ring_size) {
4525 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4526 
4527 		if (CHIP_IS_E3(bp)) {
4528 			u32 cfg = SHMEM_RD(bp,
4529 					   dev_info.port_hw_config[BP_PORT(bp)].
4530 					   default_cfg);
4531 
4532 			/* Decrease ring size for 1G functions */
4533 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4534 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4535 				rx_ring_size /= 10;
4536 		}
4537 
4538 		/* allocate at least number of buffers required by FW */
4539 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4540 				     MIN_RX_SIZE_TPA, rx_ring_size);
4541 
4542 		bp->rx_ring_size = rx_ring_size;
4543 	} else /* if rx_ring_size specified - use it */
4544 		rx_ring_size = bp->rx_ring_size;
4545 
4546 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4547 
4548 	/* Common */
4549 	sb = &bnx2x_fp(bp, index, status_blk);
4550 
4551 	if (!IS_FCOE_IDX(index)) {
4552 		/* status blocks */
4553 		if (!CHIP_IS_E1x(bp)) {
4554 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4555 						    sizeof(struct host_hc_status_block_e2));
4556 			if (!sb->e2_sb)
4557 				goto alloc_mem_err;
4558 		} else {
4559 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4560 						     sizeof(struct host_hc_status_block_e1x));
4561 			if (!sb->e1x_sb)
4562 				goto alloc_mem_err;
4563 		}
4564 	}
4565 
4566 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4567 	 * set shortcuts for it.
4568 	 */
4569 	if (!IS_FCOE_IDX(index))
4570 		set_sb_shortcuts(bp, index);
4571 
4572 	/* Tx */
4573 	if (!skip_tx_queue(bp, index)) {
4574 		/* fastpath tx rings: tx_buf tx_desc */
4575 		for_each_cos_in_tx_queue(fp, cos) {
4576 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4577 
4578 			DP(NETIF_MSG_IFUP,
4579 			   "allocating tx memory of fp %d cos %d\n",
4580 			   index, cos);
4581 
4582 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4583 						      sizeof(struct sw_tx_bd),
4584 						      GFP_KERNEL);
4585 			if (!txdata->tx_buf_ring)
4586 				goto alloc_mem_err;
4587 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4588 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4589 			if (!txdata->tx_desc_ring)
4590 				goto alloc_mem_err;
4591 		}
4592 	}
4593 
4594 	/* Rx */
4595 	if (!skip_rx_queue(bp, index)) {
4596 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4597 		bnx2x_fp(bp, index, rx_buf_ring) =
4598 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4599 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4600 			goto alloc_mem_err;
4601 		bnx2x_fp(bp, index, rx_desc_ring) =
4602 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4603 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4604 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4605 			goto alloc_mem_err;
4606 
4607 		/* Seed all CQEs by 1s */
4608 		bnx2x_fp(bp, index, rx_comp_ring) =
4609 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4610 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4611 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4612 			goto alloc_mem_err;
4613 
4614 		/* SGE ring */
4615 		bnx2x_fp(bp, index, rx_page_ring) =
4616 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4617 				GFP_KERNEL);
4618 		if (!bnx2x_fp(bp, index, rx_page_ring))
4619 			goto alloc_mem_err;
4620 		bnx2x_fp(bp, index, rx_sge_ring) =
4621 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4622 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4623 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4624 			goto alloc_mem_err;
4625 		/* RX BD ring */
4626 		bnx2x_set_next_page_rx_bd(fp);
4627 
4628 		/* CQ ring */
4629 		bnx2x_set_next_page_rx_cq(fp);
4630 
4631 		/* BDs */
4632 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4633 		if (ring_size < rx_ring_size)
4634 			goto alloc_mem_err;
4635 	}
4636 
4637 	return 0;
4638 
4639 /* handles low memory cases */
4640 alloc_mem_err:
4641 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4642 						index, ring_size);
4643 	/* FW will drop all packets if queue is not big enough,
4644 	 * In these cases we disable the queue
4645 	 * Min size is different for OOO, TPA and non-TPA queues
4646 	 */
4647 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4648 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4649 			/* release memory allocated for this queue */
4650 			bnx2x_free_fp_mem_at(bp, index);
4651 			return -ENOMEM;
4652 	}
4653 	return 0;
4654 }
4655 
4656 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4657 {
4658 	if (!NO_FCOE(bp))
4659 		/* FCoE */
4660 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4661 			/* we will fail load process instead of mark
4662 			 * NO_FCOE_FLAG
4663 			 */
4664 			return -ENOMEM;
4665 
4666 	return 0;
4667 }
4668 
4669 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4670 {
4671 	int i;
4672 
4673 	/* 1. Allocate FP for leading - fatal if error
4674 	 * 2. Allocate RSS - fix number of queues if error
4675 	 */
4676 
4677 	/* leading */
4678 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4679 		return -ENOMEM;
4680 
4681 	/* RSS */
4682 	for_each_nondefault_eth_queue(bp, i)
4683 		if (bnx2x_alloc_fp_mem_at(bp, i))
4684 			break;
4685 
4686 	/* handle memory failures */
4687 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4688 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4689 
4690 		WARN_ON(delta < 0);
4691 		bnx2x_shrink_eth_fp(bp, delta);
4692 		if (CNIC_SUPPORT(bp))
4693 			/* move non eth FPs next to last eth FP
4694 			 * must be done in that order
4695 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4696 			 */
4697 
4698 			/* move FCoE fp even NO_FCOE_FLAG is on */
4699 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4700 		bp->num_ethernet_queues -= delta;
4701 		bp->num_queues = bp->num_ethernet_queues +
4702 				 bp->num_cnic_queues;
4703 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4704 			  bp->num_queues + delta, bp->num_queues);
4705 	}
4706 
4707 	return 0;
4708 }
4709 
4710 void bnx2x_free_mem_bp(struct bnx2x *bp)
4711 {
4712 	int i;
4713 
4714 	for (i = 0; i < bp->fp_array_size; i++)
4715 		kfree(bp->fp[i].tpa_info);
4716 	kfree(bp->fp);
4717 	kfree(bp->sp_objs);
4718 	kfree(bp->fp_stats);
4719 	kfree(bp->bnx2x_txq);
4720 	kfree(bp->msix_table);
4721 	kfree(bp->ilt);
4722 }
4723 
4724 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4725 {
4726 	struct bnx2x_fastpath *fp;
4727 	struct msix_entry *tbl;
4728 	struct bnx2x_ilt *ilt;
4729 	int msix_table_size = 0;
4730 	int fp_array_size, txq_array_size;
4731 	int i;
4732 
4733 	/*
4734 	 * The biggest MSI-X table we might need is as a maximum number of fast
4735 	 * path IGU SBs plus default SB (for PF only).
4736 	 */
4737 	msix_table_size = bp->igu_sb_cnt;
4738 	if (IS_PF(bp))
4739 		msix_table_size++;
4740 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4741 
4742 	/* fp array: RSS plus CNIC related L2 queues */
4743 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4744 	bp->fp_array_size = fp_array_size;
4745 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4746 
4747 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4748 	if (!fp)
4749 		goto alloc_err;
4750 	for (i = 0; i < bp->fp_array_size; i++) {
4751 		fp[i].tpa_info =
4752 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4753 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4754 		if (!(fp[i].tpa_info))
4755 			goto alloc_err;
4756 	}
4757 
4758 	bp->fp = fp;
4759 
4760 	/* allocate sp objs */
4761 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4762 			      GFP_KERNEL);
4763 	if (!bp->sp_objs)
4764 		goto alloc_err;
4765 
4766 	/* allocate fp_stats */
4767 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4768 			       GFP_KERNEL);
4769 	if (!bp->fp_stats)
4770 		goto alloc_err;
4771 
4772 	/* Allocate memory for the transmission queues array */
4773 	txq_array_size =
4774 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4775 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4776 
4777 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4778 				GFP_KERNEL);
4779 	if (!bp->bnx2x_txq)
4780 		goto alloc_err;
4781 
4782 	/* msix table */
4783 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4784 	if (!tbl)
4785 		goto alloc_err;
4786 	bp->msix_table = tbl;
4787 
4788 	/* ilt */
4789 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4790 	if (!ilt)
4791 		goto alloc_err;
4792 	bp->ilt = ilt;
4793 
4794 	return 0;
4795 alloc_err:
4796 	bnx2x_free_mem_bp(bp);
4797 	return -ENOMEM;
4798 }
4799 
4800 int bnx2x_reload_if_running(struct net_device *dev)
4801 {
4802 	struct bnx2x *bp = netdev_priv(dev);
4803 
4804 	if (unlikely(!netif_running(dev)))
4805 		return 0;
4806 
4807 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4808 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4809 }
4810 
4811 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4812 {
4813 	u32 sel_phy_idx = 0;
4814 	if (bp->link_params.num_phys <= 1)
4815 		return INT_PHY;
4816 
4817 	if (bp->link_vars.link_up) {
4818 		sel_phy_idx = EXT_PHY1;
4819 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4820 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4821 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4822 			sel_phy_idx = EXT_PHY2;
4823 	} else {
4824 
4825 		switch (bnx2x_phy_selection(&bp->link_params)) {
4826 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4827 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4828 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4829 		       sel_phy_idx = EXT_PHY1;
4830 		       break;
4831 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4832 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4833 		       sel_phy_idx = EXT_PHY2;
4834 		       break;
4835 		}
4836 	}
4837 
4838 	return sel_phy_idx;
4839 }
4840 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4841 {
4842 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4843 	/*
4844 	 * The selected activated PHY is always after swapping (in case PHY
4845 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4846 	 * the configuration
4847 	 */
4848 
4849 	if (bp->link_params.multi_phy_config &
4850 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4851 		if (sel_phy_idx == EXT_PHY1)
4852 			sel_phy_idx = EXT_PHY2;
4853 		else if (sel_phy_idx == EXT_PHY2)
4854 			sel_phy_idx = EXT_PHY1;
4855 	}
4856 	return LINK_CONFIG_IDX(sel_phy_idx);
4857 }
4858 
4859 #ifdef NETDEV_FCOE_WWNN
4860 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4861 {
4862 	struct bnx2x *bp = netdev_priv(dev);
4863 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4864 
4865 	switch (type) {
4866 	case NETDEV_FCOE_WWNN:
4867 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4868 				cp->fcoe_wwn_node_name_lo);
4869 		break;
4870 	case NETDEV_FCOE_WWPN:
4871 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4872 				cp->fcoe_wwn_port_name_lo);
4873 		break;
4874 	default:
4875 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4876 		return -EINVAL;
4877 	}
4878 
4879 	return 0;
4880 }
4881 #endif
4882 
4883 /* called with rtnl_lock */
4884 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4885 {
4886 	struct bnx2x *bp = netdev_priv(dev);
4887 
4888 	if (pci_num_vf(bp->pdev)) {
4889 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4890 		return -EPERM;
4891 	}
4892 
4893 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4894 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4895 		return -EAGAIN;
4896 	}
4897 
4898 	/* This does not race with packet allocation
4899 	 * because the actual alloc size is
4900 	 * only updated as part of load
4901 	 */
4902 	dev->mtu = new_mtu;
4903 
4904 	if (!bnx2x_mtu_allows_gro(new_mtu))
4905 		dev->features &= ~NETIF_F_GRO_HW;
4906 
4907 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4908 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4909 
4910 	return bnx2x_reload_if_running(dev);
4911 }
4912 
4913 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4914 				     netdev_features_t features)
4915 {
4916 	struct bnx2x *bp = netdev_priv(dev);
4917 
4918 	if (pci_num_vf(bp->pdev)) {
4919 		netdev_features_t changed = dev->features ^ features;
4920 
4921 		/* Revert the requested changes in features if they
4922 		 * would require internal reload of PF in bnx2x_set_features().
4923 		 */
4924 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4925 			features &= ~NETIF_F_RXCSUM;
4926 			features |= dev->features & NETIF_F_RXCSUM;
4927 		}
4928 
4929 		if (changed & NETIF_F_LOOPBACK) {
4930 			features &= ~NETIF_F_LOOPBACK;
4931 			features |= dev->features & NETIF_F_LOOPBACK;
4932 		}
4933 	}
4934 
4935 	/* TPA requires Rx CSUM offloading */
4936 	if (!(features & NETIF_F_RXCSUM))
4937 		features &= ~NETIF_F_LRO;
4938 
4939 	if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4940 		features &= ~NETIF_F_GRO_HW;
4941 	if (features & NETIF_F_GRO_HW)
4942 		features &= ~NETIF_F_LRO;
4943 
4944 	return features;
4945 }
4946 
4947 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4948 {
4949 	struct bnx2x *bp = netdev_priv(dev);
4950 	netdev_features_t changes = features ^ dev->features;
4951 	bool bnx2x_reload = false;
4952 	int rc;
4953 
4954 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4955 	if (!pci_num_vf(bp->pdev)) {
4956 		if (features & NETIF_F_LOOPBACK) {
4957 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4958 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4959 				bnx2x_reload = true;
4960 			}
4961 		} else {
4962 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4963 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4964 				bnx2x_reload = true;
4965 			}
4966 		}
4967 	}
4968 
4969 	/* Don't care about GRO changes */
4970 	changes &= ~NETIF_F_GRO;
4971 
4972 	if (changes)
4973 		bnx2x_reload = true;
4974 
4975 	if (bnx2x_reload) {
4976 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4977 			dev->features = features;
4978 			rc = bnx2x_reload_if_running(dev);
4979 			return rc ? rc : 1;
4980 		}
4981 		/* else: bnx2x_nic_load() will be called at end of recovery */
4982 	}
4983 
4984 	return 0;
4985 }
4986 
4987 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue)
4988 {
4989 	struct bnx2x *bp = netdev_priv(dev);
4990 
4991 	/* We want the information of the dump logged,
4992 	 * but calling bnx2x_panic() would kill all chances of recovery.
4993 	 */
4994 	if (!bp->panic)
4995 #ifndef BNX2X_STOP_ON_ERROR
4996 		bnx2x_panic_dump(bp, false);
4997 #else
4998 		bnx2x_panic();
4999 #endif
5000 
5001 	/* This allows the netif to be shutdown gracefully before resetting */
5002 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
5003 }
5004 
5005 static int __maybe_unused bnx2x_suspend(struct device *dev_d)
5006 {
5007 	struct pci_dev *pdev = to_pci_dev(dev_d);
5008 	struct net_device *dev = pci_get_drvdata(pdev);
5009 	struct bnx2x *bp;
5010 
5011 	if (!dev) {
5012 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5013 		return -ENODEV;
5014 	}
5015 	bp = netdev_priv(dev);
5016 
5017 	rtnl_lock();
5018 
5019 	if (!netif_running(dev)) {
5020 		rtnl_unlock();
5021 		return 0;
5022 	}
5023 
5024 	netif_device_detach(dev);
5025 
5026 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5027 
5028 	rtnl_unlock();
5029 
5030 	return 0;
5031 }
5032 
5033 static int __maybe_unused bnx2x_resume(struct device *dev_d)
5034 {
5035 	struct pci_dev *pdev = to_pci_dev(dev_d);
5036 	struct net_device *dev = pci_get_drvdata(pdev);
5037 	struct bnx2x *bp;
5038 	int rc;
5039 
5040 	if (!dev) {
5041 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5042 		return -ENODEV;
5043 	}
5044 	bp = netdev_priv(dev);
5045 
5046 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5047 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5048 		return -EAGAIN;
5049 	}
5050 
5051 	rtnl_lock();
5052 
5053 	if (!netif_running(dev)) {
5054 		rtnl_unlock();
5055 		return 0;
5056 	}
5057 
5058 	netif_device_attach(dev);
5059 
5060 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5061 
5062 	rtnl_unlock();
5063 
5064 	return rc;
5065 }
5066 
5067 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume);
5068 
5069 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5070 			      u32 cid)
5071 {
5072 	if (!cxt) {
5073 		BNX2X_ERR("bad context pointer %p\n", cxt);
5074 		return;
5075 	}
5076 
5077 	/* ustorm cxt validation */
5078 	cxt->ustorm_ag_context.cdu_usage =
5079 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5080 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5081 	/* xcontext validation */
5082 	cxt->xstorm_ag_context.cdu_reserved =
5083 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5084 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5085 }
5086 
5087 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5088 				    u8 fw_sb_id, u8 sb_index,
5089 				    u8 ticks)
5090 {
5091 	u32 addr = BAR_CSTRORM_INTMEM +
5092 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5093 	REG_WR8(bp, addr, ticks);
5094 	DP(NETIF_MSG_IFUP,
5095 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5096 	   port, fw_sb_id, sb_index, ticks);
5097 }
5098 
5099 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5100 				    u16 fw_sb_id, u8 sb_index,
5101 				    u8 disable)
5102 {
5103 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5104 	u32 addr = BAR_CSTRORM_INTMEM +
5105 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5106 	u8 flags = REG_RD8(bp, addr);
5107 	/* clear and set */
5108 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5109 	flags |= enable_flag;
5110 	REG_WR8(bp, addr, flags);
5111 	DP(NETIF_MSG_IFUP,
5112 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5113 	   port, fw_sb_id, sb_index, disable);
5114 }
5115 
5116 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5117 				    u8 sb_index, u8 disable, u16 usec)
5118 {
5119 	int port = BP_PORT(bp);
5120 	u8 ticks = usec / BNX2X_BTR;
5121 
5122 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5123 
5124 	disable = disable ? 1 : (usec ? 0 : 1);
5125 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5126 }
5127 
5128 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5129 			    u32 verbose)
5130 {
5131 	smp_mb__before_atomic();
5132 	set_bit(flag, &bp->sp_rtnl_state);
5133 	smp_mb__after_atomic();
5134 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5135 	   flag);
5136 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5137 }
5138