1 /* bnx2x_cmn.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/etherdevice.h> 23 #include <linux/if_vlan.h> 24 #include <linux/interrupt.h> 25 #include <linux/ip.h> 26 #include <linux/crash_dump.h> 27 #include <net/tcp.h> 28 #include <net/gro.h> 29 #include <net/ipv6.h> 30 #include <net/ip6_checksum.h> 31 #include <linux/prefetch.h> 32 #include "bnx2x_cmn.h" 33 #include "bnx2x_init.h" 34 #include "bnx2x_sp.h" 35 36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 39 static int bnx2x_poll(struct napi_struct *napi, int budget); 40 41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 42 { 43 int i; 44 45 /* Add NAPI objects */ 46 for_each_rx_queue_cnic(bp, i) { 47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll); 48 } 49 } 50 51 static void bnx2x_add_all_napi(struct bnx2x *bp) 52 { 53 int i; 54 55 /* Add NAPI objects */ 56 for_each_eth_queue(bp, i) { 57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll); 58 } 59 } 60 61 static int bnx2x_calc_num_queues(struct bnx2x *bp) 62 { 63 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues(); 64 65 /* Reduce memory usage in kdump environment by using only one queue */ 66 if (is_kdump_kernel()) 67 nq = 1; 68 69 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp)); 70 return nq; 71 } 72 73 /** 74 * bnx2x_move_fp - move content of the fastpath structure. 75 * 76 * @bp: driver handle 77 * @from: source FP index 78 * @to: destination FP index 79 * 80 * Makes sure the contents of the bp->fp[to].napi is kept 81 * intact. This is done by first copying the napi struct from 82 * the target to the source, and then mem copying the entire 83 * source onto the target. Update txdata pointers and related 84 * content. 85 */ 86 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 87 { 88 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 89 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 90 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 91 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 92 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 93 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 94 int old_max_eth_txqs, new_max_eth_txqs; 95 int old_txdata_index = 0, new_txdata_index = 0; 96 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 97 98 /* Copy the NAPI object as it has been already initialized */ 99 from_fp->napi = to_fp->napi; 100 101 /* Move bnx2x_fastpath contents */ 102 memcpy(to_fp, from_fp, sizeof(*to_fp)); 103 to_fp->index = to; 104 105 /* Retain the tpa_info of the original `to' version as we don't want 106 * 2 FPs to contain the same tpa_info pointer. 107 */ 108 to_fp->tpa_info = old_tpa_info; 109 110 /* move sp_objs contents as well, as their indices match fp ones */ 111 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 112 113 /* move fp_stats contents as well, as their indices match fp ones */ 114 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 115 116 /* Update txdata pointers in fp and move txdata content accordingly: 117 * Each fp consumes 'max_cos' txdata structures, so the index should be 118 * decremented by max_cos x delta. 119 */ 120 121 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 122 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 123 (bp)->max_cos; 124 if (from == FCOE_IDX(bp)) { 125 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 126 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 127 } 128 129 memcpy(&bp->bnx2x_txq[new_txdata_index], 130 &bp->bnx2x_txq[old_txdata_index], 131 sizeof(struct bnx2x_fp_txdata)); 132 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 133 } 134 135 /** 136 * bnx2x_fill_fw_str - Fill buffer with FW version string. 137 * 138 * @bp: driver handle 139 * @buf: character buffer to fill with the fw name 140 * @buf_len: length of the above buffer 141 * 142 */ 143 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 144 { 145 if (IS_PF(bp)) { 146 u8 phy_fw_ver[PHY_FW_VER_LEN]; 147 148 phy_fw_ver[0] = '\0'; 149 bnx2x_get_ext_phy_fw_version(&bp->link_params, 150 phy_fw_ver, PHY_FW_VER_LEN); 151 strscpy(buf, bp->fw_ver, buf_len); 152 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 153 "bc %d.%d.%d%s%s", 154 (bp->common.bc_ver & 0xff0000) >> 16, 155 (bp->common.bc_ver & 0xff00) >> 8, 156 (bp->common.bc_ver & 0xff), 157 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 158 } else { 159 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 160 } 161 } 162 163 /** 164 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 165 * 166 * @bp: driver handle 167 * @delta: number of eth queues which were not allocated 168 */ 169 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 170 { 171 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 172 173 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 174 * backward along the array could cause memory to be overridden 175 */ 176 for (cos = 1; cos < bp->max_cos; cos++) { 177 for (i = 0; i < old_eth_num - delta; i++) { 178 struct bnx2x_fastpath *fp = &bp->fp[i]; 179 int new_idx = cos * (old_eth_num - delta) + i; 180 181 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 182 sizeof(struct bnx2x_fp_txdata)); 183 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 184 } 185 } 186 } 187 188 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 189 190 /* free skb in the packet ring at pos idx 191 * return idx of last bd freed 192 */ 193 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 194 u16 idx, unsigned int *pkts_compl, 195 unsigned int *bytes_compl) 196 { 197 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 198 struct eth_tx_start_bd *tx_start_bd; 199 struct eth_tx_bd *tx_data_bd; 200 struct sk_buff *skb = tx_buf->skb; 201 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 202 int nbd; 203 u16 split_bd_len = 0; 204 205 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 206 prefetch(&skb->end); 207 208 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 209 txdata->txq_index, idx, tx_buf, skb); 210 211 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 212 213 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 214 #ifdef BNX2X_STOP_ON_ERROR 215 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 216 BNX2X_ERR("BAD nbd!\n"); 217 bnx2x_panic(); 218 } 219 #endif 220 new_cons = nbd + tx_buf->first_bd; 221 222 /* Get the next bd */ 223 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 224 225 /* Skip a parse bd... */ 226 --nbd; 227 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 228 229 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { 230 /* Skip second parse bd... */ 231 --nbd; 232 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 233 } 234 235 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 236 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 237 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 238 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 239 --nbd; 240 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 241 } 242 243 /* unmap first bd */ 244 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 245 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 246 DMA_TO_DEVICE); 247 248 /* now free frags */ 249 while (nbd > 0) { 250 251 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 252 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 253 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 254 if (--nbd) 255 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 256 } 257 258 /* release skb */ 259 WARN_ON(!skb); 260 if (likely(skb)) { 261 (*pkts_compl)++; 262 (*bytes_compl) += skb->len; 263 dev_kfree_skb_any(skb); 264 } 265 266 tx_buf->first_bd = 0; 267 tx_buf->skb = NULL; 268 269 return new_cons; 270 } 271 272 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 273 { 274 struct netdev_queue *txq; 275 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 276 unsigned int pkts_compl = 0, bytes_compl = 0; 277 278 #ifdef BNX2X_STOP_ON_ERROR 279 if (unlikely(bp->panic)) 280 return -1; 281 #endif 282 283 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 284 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 285 sw_cons = txdata->tx_pkt_cons; 286 287 /* Ensure subsequent loads occur after hw_cons */ 288 smp_rmb(); 289 290 while (sw_cons != hw_cons) { 291 u16 pkt_cons; 292 293 pkt_cons = TX_BD(sw_cons); 294 295 DP(NETIF_MSG_TX_DONE, 296 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 297 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 298 299 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 300 &pkts_compl, &bytes_compl); 301 302 sw_cons++; 303 } 304 305 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 306 307 txdata->tx_pkt_cons = sw_cons; 308 txdata->tx_bd_cons = bd_cons; 309 310 /* Need to make the tx_bd_cons update visible to start_xmit() 311 * before checking for netif_tx_queue_stopped(). Without the 312 * memory barrier, there is a small possibility that 313 * start_xmit() will miss it and cause the queue to be stopped 314 * forever. 315 * On the other hand we need an rmb() here to ensure the proper 316 * ordering of bit testing in the following 317 * netif_tx_queue_stopped(txq) call. 318 */ 319 smp_mb(); 320 321 if (unlikely(netif_tx_queue_stopped(txq))) { 322 /* Taking tx_lock() is needed to prevent re-enabling the queue 323 * while it's empty. This could have happen if rx_action() gets 324 * suspended in bnx2x_tx_int() after the condition before 325 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 326 * 327 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 328 * sends some packets consuming the whole queue again-> 329 * stops the queue 330 */ 331 332 __netif_tx_lock(txq, smp_processor_id()); 333 334 if ((netif_tx_queue_stopped(txq)) && 335 (bp->state == BNX2X_STATE_OPEN) && 336 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 337 netif_tx_wake_queue(txq); 338 339 __netif_tx_unlock(txq); 340 } 341 return 0; 342 } 343 344 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 345 u16 idx) 346 { 347 u16 last_max = fp->last_max_sge; 348 349 if (SUB_S16(idx, last_max) > 0) 350 fp->last_max_sge = idx; 351 } 352 353 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 354 u16 sge_len, 355 struct eth_end_agg_rx_cqe *cqe) 356 { 357 struct bnx2x *bp = fp->bp; 358 u16 last_max, last_elem, first_elem; 359 u16 delta = 0; 360 u16 i; 361 362 if (!sge_len) 363 return; 364 365 /* First mark all used pages */ 366 for (i = 0; i < sge_len; i++) 367 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 368 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 369 370 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 371 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 372 373 /* Here we assume that the last SGE index is the biggest */ 374 prefetch((void *)(fp->sge_mask)); 375 bnx2x_update_last_max_sge(fp, 376 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 377 378 last_max = RX_SGE(fp->last_max_sge); 379 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 380 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 381 382 /* If ring is not full */ 383 if (last_elem + 1 != first_elem) 384 last_elem++; 385 386 /* Now update the prod */ 387 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 388 if (likely(fp->sge_mask[i])) 389 break; 390 391 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 392 delta += BIT_VEC64_ELEM_SZ; 393 } 394 395 if (delta > 0) { 396 fp->rx_sge_prod += delta; 397 /* clear page-end entries */ 398 bnx2x_clear_sge_mask_next_elems(fp); 399 } 400 401 DP(NETIF_MSG_RX_STATUS, 402 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 403 fp->last_max_sge, fp->rx_sge_prod); 404 } 405 406 /* Get Toeplitz hash value in the skb using the value from the 407 * CQE (calculated by HW). 408 */ 409 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 410 const struct eth_fast_path_rx_cqe *cqe, 411 enum pkt_hash_types *rxhash_type) 412 { 413 /* Get Toeplitz hash from CQE */ 414 if ((bp->dev->features & NETIF_F_RXHASH) && 415 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 416 enum eth_rss_hash_type htype; 417 418 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 419 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 420 (htype == TCP_IPV6_HASH_TYPE)) ? 421 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 422 423 return le32_to_cpu(cqe->rss_hash_result); 424 } 425 *rxhash_type = PKT_HASH_TYPE_NONE; 426 return 0; 427 } 428 429 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 430 u16 cons, u16 prod, 431 struct eth_fast_path_rx_cqe *cqe) 432 { 433 struct bnx2x *bp = fp->bp; 434 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 435 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 436 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 437 dma_addr_t mapping; 438 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 439 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 440 441 /* print error if current state != stop */ 442 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 443 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 444 445 /* Try to map an empty data buffer from the aggregation info */ 446 mapping = dma_map_single(&bp->pdev->dev, 447 first_buf->data + NET_SKB_PAD, 448 fp->rx_buf_size, DMA_FROM_DEVICE); 449 /* 450 * ...if it fails - move the skb from the consumer to the producer 451 * and set the current aggregation state as ERROR to drop it 452 * when TPA_STOP arrives. 453 */ 454 455 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 456 /* Move the BD from the consumer to the producer */ 457 bnx2x_reuse_rx_data(fp, cons, prod); 458 tpa_info->tpa_state = BNX2X_TPA_ERROR; 459 return; 460 } 461 462 /* move empty data from pool to prod */ 463 prod_rx_buf->data = first_buf->data; 464 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 465 /* point prod_bd to new data */ 466 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 467 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 468 469 /* move partial skb from cons to pool (don't unmap yet) */ 470 *first_buf = *cons_rx_buf; 471 472 /* mark bin state as START */ 473 tpa_info->parsing_flags = 474 le16_to_cpu(cqe->pars_flags.flags); 475 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 476 tpa_info->tpa_state = BNX2X_TPA_START; 477 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 478 tpa_info->placement_offset = cqe->placement_offset; 479 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 480 if (fp->mode == TPA_MODE_GRO) { 481 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 482 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 483 tpa_info->gro_size = gro_size; 484 } 485 486 #ifdef BNX2X_STOP_ON_ERROR 487 fp->tpa_queue_used |= (1 << queue); 488 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 489 fp->tpa_queue_used); 490 #endif 491 } 492 493 /* Timestamp option length allowed for TPA aggregation: 494 * 495 * nop nop kind length echo val 496 */ 497 #define TPA_TSTAMP_OPT_LEN 12 498 /** 499 * bnx2x_set_gro_params - compute GRO values 500 * 501 * @skb: packet skb 502 * @parsing_flags: parsing flags from the START CQE 503 * @len_on_bd: total length of the first packet for the 504 * aggregation. 505 * @pkt_len: length of all segments 506 * @num_of_coalesced_segs: count of segments 507 * 508 * Approximate value of the MSS for this aggregation calculated using 509 * the first packet of it. 510 * Compute number of aggregated segments, and gso_type. 511 */ 512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 513 u16 len_on_bd, unsigned int pkt_len, 514 u16 num_of_coalesced_segs) 515 { 516 /* TPA aggregation won't have either IP options or TCP options 517 * other than timestamp or IPv6 extension headers. 518 */ 519 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 520 521 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 522 PRS_FLAG_OVERETH_IPV6) { 523 hdrs_len += sizeof(struct ipv6hdr); 524 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 525 } else { 526 hdrs_len += sizeof(struct iphdr); 527 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 528 } 529 530 /* Check if there was a TCP timestamp, if there is it's will 531 * always be 12 bytes length: nop nop kind length echo val. 532 * 533 * Otherwise FW would close the aggregation. 534 */ 535 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 536 hdrs_len += TPA_TSTAMP_OPT_LEN; 537 538 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 539 540 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 541 * to skb_shinfo(skb)->gso_segs 542 */ 543 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 544 } 545 546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 547 u16 index, gfp_t gfp_mask) 548 { 549 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 550 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 551 struct bnx2x_alloc_pool *pool = &fp->page_pool; 552 dma_addr_t mapping; 553 554 if (!pool->page) { 555 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 556 if (unlikely(!pool->page)) 557 return -ENOMEM; 558 559 pool->offset = 0; 560 } 561 562 mapping = dma_map_page(&bp->pdev->dev, pool->page, 563 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE); 564 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 565 BNX2X_ERR("Can't map sge\n"); 566 return -ENOMEM; 567 } 568 569 sw_buf->page = pool->page; 570 sw_buf->offset = pool->offset; 571 572 dma_unmap_addr_set(sw_buf, mapping, mapping); 573 574 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 575 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 576 577 pool->offset += SGE_PAGE_SIZE; 578 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE) 579 get_page(pool->page); 580 else 581 pool->page = NULL; 582 return 0; 583 } 584 585 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 586 struct bnx2x_agg_info *tpa_info, 587 u16 pages, 588 struct sk_buff *skb, 589 struct eth_end_agg_rx_cqe *cqe, 590 u16 cqe_idx) 591 { 592 struct sw_rx_page *rx_pg, old_rx_pg; 593 u32 i, frag_len, frag_size; 594 int err, j, frag_id = 0; 595 u16 len_on_bd = tpa_info->len_on_bd; 596 u16 full_page = 0, gro_size = 0; 597 598 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 599 600 if (fp->mode == TPA_MODE_GRO) { 601 gro_size = tpa_info->gro_size; 602 full_page = tpa_info->full_page; 603 } 604 605 /* This is needed in order to enable forwarding support */ 606 if (frag_size) 607 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 608 le16_to_cpu(cqe->pkt_len), 609 le16_to_cpu(cqe->num_of_coalesced_segs)); 610 611 #ifdef BNX2X_STOP_ON_ERROR 612 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 613 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 614 pages, cqe_idx); 615 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 616 bnx2x_panic(); 617 return -EINVAL; 618 } 619 #endif 620 621 /* Run through the SGL and compose the fragmented skb */ 622 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 623 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 624 625 /* FW gives the indices of the SGE as if the ring is an array 626 (meaning that "next" element will consume 2 indices) */ 627 if (fp->mode == TPA_MODE_GRO) 628 frag_len = min_t(u32, frag_size, (u32)full_page); 629 else /* LRO */ 630 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 631 632 rx_pg = &fp->rx_page_ring[sge_idx]; 633 old_rx_pg = *rx_pg; 634 635 /* If we fail to allocate a substitute page, we simply stop 636 where we are and drop the whole packet */ 637 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 638 if (unlikely(err)) { 639 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 640 return err; 641 } 642 643 dma_unmap_page(&bp->pdev->dev, 644 dma_unmap_addr(&old_rx_pg, mapping), 645 SGE_PAGE_SIZE, DMA_FROM_DEVICE); 646 /* Add one frag and update the appropriate fields in the skb */ 647 if (fp->mode == TPA_MODE_LRO) 648 skb_fill_page_desc(skb, j, old_rx_pg.page, 649 old_rx_pg.offset, frag_len); 650 else { /* GRO */ 651 int rem; 652 int offset = 0; 653 for (rem = frag_len; rem > 0; rem -= gro_size) { 654 int len = rem > gro_size ? gro_size : rem; 655 skb_fill_page_desc(skb, frag_id++, 656 old_rx_pg.page, 657 old_rx_pg.offset + offset, 658 len); 659 if (offset) 660 get_page(old_rx_pg.page); 661 offset += len; 662 } 663 } 664 665 skb->data_len += frag_len; 666 skb->truesize += SGE_PAGES; 667 skb->len += frag_len; 668 669 frag_size -= frag_len; 670 } 671 672 return 0; 673 } 674 675 static struct sk_buff * 676 bnx2x_build_skb(const struct bnx2x_fastpath *fp, void *data) 677 { 678 struct sk_buff *skb; 679 680 if (fp->rx_frag_size) 681 skb = build_skb(data, fp->rx_frag_size); 682 else 683 skb = slab_build_skb(data); 684 return skb; 685 } 686 687 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 688 { 689 if (fp->rx_frag_size) 690 skb_free_frag(data); 691 else 692 kfree(data); 693 } 694 695 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 696 { 697 if (fp->rx_frag_size) { 698 /* GFP_KERNEL allocations are used only during initialization */ 699 if (unlikely(gfpflags_allow_blocking(gfp_mask))) 700 return (void *)__get_free_page(gfp_mask); 701 702 return napi_alloc_frag(fp->rx_frag_size); 703 } 704 705 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 706 } 707 708 #ifdef CONFIG_INET 709 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 710 { 711 const struct iphdr *iph = ip_hdr(skb); 712 struct tcphdr *th; 713 714 skb_set_transport_header(skb, sizeof(struct iphdr)); 715 th = tcp_hdr(skb); 716 717 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 718 iph->saddr, iph->daddr, 0); 719 } 720 721 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 722 { 723 struct ipv6hdr *iph = ipv6_hdr(skb); 724 struct tcphdr *th; 725 726 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 727 th = tcp_hdr(skb); 728 729 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 730 &iph->saddr, &iph->daddr, 0); 731 } 732 733 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 734 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 735 { 736 skb_reset_network_header(skb); 737 gro_func(bp, skb); 738 tcp_gro_complete(skb); 739 } 740 #endif 741 742 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 743 struct sk_buff *skb) 744 { 745 #ifdef CONFIG_INET 746 if (skb_shinfo(skb)->gso_size) { 747 switch (be16_to_cpu(skb->protocol)) { 748 case ETH_P_IP: 749 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 750 break; 751 case ETH_P_IPV6: 752 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 753 break; 754 default: 755 netdev_WARN_ONCE(bp->dev, 756 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 757 be16_to_cpu(skb->protocol)); 758 } 759 } 760 #endif 761 skb_record_rx_queue(skb, fp->rx_queue); 762 napi_gro_receive(&fp->napi, skb); 763 } 764 765 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 766 struct bnx2x_agg_info *tpa_info, 767 u16 pages, 768 struct eth_end_agg_rx_cqe *cqe, 769 u16 cqe_idx) 770 { 771 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 772 u8 pad = tpa_info->placement_offset; 773 u16 len = tpa_info->len_on_bd; 774 struct sk_buff *skb = NULL; 775 u8 *new_data, *data = rx_buf->data; 776 u8 old_tpa_state = tpa_info->tpa_state; 777 778 tpa_info->tpa_state = BNX2X_TPA_STOP; 779 780 /* If we there was an error during the handling of the TPA_START - 781 * drop this aggregation. 782 */ 783 if (old_tpa_state == BNX2X_TPA_ERROR) 784 goto drop; 785 786 /* Try to allocate the new data */ 787 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 788 /* Unmap skb in the pool anyway, as we are going to change 789 pool entry status to BNX2X_TPA_STOP even if new skb allocation 790 fails. */ 791 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 792 fp->rx_buf_size, DMA_FROM_DEVICE); 793 if (likely(new_data)) 794 skb = bnx2x_build_skb(fp, data); 795 796 if (likely(skb)) { 797 #ifdef BNX2X_STOP_ON_ERROR 798 if (pad + len > fp->rx_buf_size) { 799 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 800 pad, len, fp->rx_buf_size); 801 bnx2x_panic(); 802 bnx2x_frag_free(fp, new_data); 803 return; 804 } 805 #endif 806 807 skb_reserve(skb, pad + NET_SKB_PAD); 808 skb_put(skb, len); 809 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 810 811 skb->protocol = eth_type_trans(skb, bp->dev); 812 skb->ip_summed = CHECKSUM_UNNECESSARY; 813 814 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 815 skb, cqe, cqe_idx)) { 816 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 817 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 818 bnx2x_gro_receive(bp, fp, skb); 819 } else { 820 DP(NETIF_MSG_RX_STATUS, 821 "Failed to allocate new pages - dropping packet!\n"); 822 dev_kfree_skb_any(skb); 823 } 824 825 /* put new data in bin */ 826 rx_buf->data = new_data; 827 828 return; 829 } 830 if (new_data) 831 bnx2x_frag_free(fp, new_data); 832 drop: 833 /* drop the packet and keep the buffer in the bin */ 834 DP(NETIF_MSG_RX_STATUS, 835 "Failed to allocate or map a new skb - dropping packet!\n"); 836 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 837 } 838 839 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 840 u16 index, gfp_t gfp_mask) 841 { 842 u8 *data; 843 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 844 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 845 dma_addr_t mapping; 846 847 data = bnx2x_frag_alloc(fp, gfp_mask); 848 if (unlikely(data == NULL)) 849 return -ENOMEM; 850 851 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 852 fp->rx_buf_size, 853 DMA_FROM_DEVICE); 854 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 855 bnx2x_frag_free(fp, data); 856 BNX2X_ERR("Can't map rx data\n"); 857 return -ENOMEM; 858 } 859 860 rx_buf->data = data; 861 dma_unmap_addr_set(rx_buf, mapping, mapping); 862 863 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 864 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 865 866 return 0; 867 } 868 869 static 870 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 871 struct bnx2x_fastpath *fp, 872 struct bnx2x_eth_q_stats *qstats) 873 { 874 /* Do nothing if no L4 csum validation was done. 875 * We do not check whether IP csum was validated. For IPv4 we assume 876 * that if the card got as far as validating the L4 csum, it also 877 * validated the IP csum. IPv6 has no IP csum. 878 */ 879 if (cqe->fast_path_cqe.status_flags & 880 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 881 return; 882 883 /* If L4 validation was done, check if an error was found. */ 884 885 if (cqe->fast_path_cqe.type_error_flags & 886 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 887 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 888 qstats->hw_csum_err++; 889 else 890 skb->ip_summed = CHECKSUM_UNNECESSARY; 891 } 892 893 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 894 { 895 struct bnx2x *bp = fp->bp; 896 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 897 u16 sw_comp_cons, sw_comp_prod; 898 int rx_pkt = 0; 899 union eth_rx_cqe *cqe; 900 struct eth_fast_path_rx_cqe *cqe_fp; 901 902 #ifdef BNX2X_STOP_ON_ERROR 903 if (unlikely(bp->panic)) 904 return 0; 905 #endif 906 if (budget <= 0) 907 return rx_pkt; 908 909 bd_cons = fp->rx_bd_cons; 910 bd_prod = fp->rx_bd_prod; 911 bd_prod_fw = bd_prod; 912 sw_comp_cons = fp->rx_comp_cons; 913 sw_comp_prod = fp->rx_comp_prod; 914 915 comp_ring_cons = RCQ_BD(sw_comp_cons); 916 cqe = &fp->rx_comp_ring[comp_ring_cons]; 917 cqe_fp = &cqe->fast_path_cqe; 918 919 DP(NETIF_MSG_RX_STATUS, 920 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 921 922 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 923 struct sw_rx_bd *rx_buf = NULL; 924 struct sk_buff *skb; 925 u8 cqe_fp_flags; 926 enum eth_rx_cqe_type cqe_fp_type; 927 u16 len, pad, queue; 928 u8 *data; 929 u32 rxhash; 930 enum pkt_hash_types rxhash_type; 931 932 #ifdef BNX2X_STOP_ON_ERROR 933 if (unlikely(bp->panic)) 934 return 0; 935 #endif 936 937 bd_prod = RX_BD(bd_prod); 938 bd_cons = RX_BD(bd_cons); 939 940 /* A rmb() is required to ensure that the CQE is not read 941 * before it is written by the adapter DMA. PCI ordering 942 * rules will make sure the other fields are written before 943 * the marker at the end of struct eth_fast_path_rx_cqe 944 * but without rmb() a weakly ordered processor can process 945 * stale data. Without the barrier TPA state-machine might 946 * enter inconsistent state and kernel stack might be 947 * provided with incorrect packet description - these lead 948 * to various kernel crashed. 949 */ 950 rmb(); 951 952 cqe_fp_flags = cqe_fp->type_error_flags; 953 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 954 955 DP(NETIF_MSG_RX_STATUS, 956 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 957 CQE_TYPE(cqe_fp_flags), 958 cqe_fp_flags, cqe_fp->status_flags, 959 le32_to_cpu(cqe_fp->rss_hash_result), 960 le16_to_cpu(cqe_fp->vlan_tag), 961 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 962 963 /* is this a slowpath msg? */ 964 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 965 bnx2x_sp_event(fp, cqe); 966 goto next_cqe; 967 } 968 969 rx_buf = &fp->rx_buf_ring[bd_cons]; 970 data = rx_buf->data; 971 972 if (!CQE_TYPE_FAST(cqe_fp_type)) { 973 struct bnx2x_agg_info *tpa_info; 974 u16 frag_size, pages; 975 #ifdef BNX2X_STOP_ON_ERROR 976 /* sanity check */ 977 if (fp->mode == TPA_MODE_DISABLED && 978 (CQE_TYPE_START(cqe_fp_type) || 979 CQE_TYPE_STOP(cqe_fp_type))) 980 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n", 981 CQE_TYPE(cqe_fp_type)); 982 #endif 983 984 if (CQE_TYPE_START(cqe_fp_type)) { 985 u16 queue = cqe_fp->queue_index; 986 DP(NETIF_MSG_RX_STATUS, 987 "calling tpa_start on queue %d\n", 988 queue); 989 990 bnx2x_tpa_start(fp, queue, 991 bd_cons, bd_prod, 992 cqe_fp); 993 994 goto next_rx; 995 } 996 queue = cqe->end_agg_cqe.queue_index; 997 tpa_info = &fp->tpa_info[queue]; 998 DP(NETIF_MSG_RX_STATUS, 999 "calling tpa_stop on queue %d\n", 1000 queue); 1001 1002 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 1003 tpa_info->len_on_bd; 1004 1005 if (fp->mode == TPA_MODE_GRO) 1006 pages = (frag_size + tpa_info->full_page - 1) / 1007 tpa_info->full_page; 1008 else 1009 pages = SGE_PAGE_ALIGN(frag_size) >> 1010 SGE_PAGE_SHIFT; 1011 1012 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 1013 &cqe->end_agg_cqe, comp_ring_cons); 1014 #ifdef BNX2X_STOP_ON_ERROR 1015 if (bp->panic) 1016 return 0; 1017 #endif 1018 1019 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 1020 goto next_cqe; 1021 } 1022 /* non TPA */ 1023 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 1024 pad = cqe_fp->placement_offset; 1025 dma_sync_single_for_cpu(&bp->pdev->dev, 1026 dma_unmap_addr(rx_buf, mapping), 1027 pad + RX_COPY_THRESH, 1028 DMA_FROM_DEVICE); 1029 pad += NET_SKB_PAD; 1030 prefetch(data + pad); /* speedup eth_type_trans() */ 1031 /* is this an error packet? */ 1032 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 1033 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1034 "ERROR flags %x rx packet %u\n", 1035 cqe_fp_flags, sw_comp_cons); 1036 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 1037 goto reuse_rx; 1038 } 1039 1040 /* Since we don't have a jumbo ring 1041 * copy small packets if mtu > 1500 1042 */ 1043 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 1044 (len <= RX_COPY_THRESH)) { 1045 skb = napi_alloc_skb(&fp->napi, len); 1046 if (skb == NULL) { 1047 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1048 "ERROR packet dropped because of alloc failure\n"); 1049 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1050 goto reuse_rx; 1051 } 1052 memcpy(skb->data, data + pad, len); 1053 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1054 } else { 1055 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1056 GFP_ATOMIC) == 0)) { 1057 dma_unmap_single(&bp->pdev->dev, 1058 dma_unmap_addr(rx_buf, mapping), 1059 fp->rx_buf_size, 1060 DMA_FROM_DEVICE); 1061 skb = bnx2x_build_skb(fp, data); 1062 if (unlikely(!skb)) { 1063 bnx2x_frag_free(fp, data); 1064 bnx2x_fp_qstats(bp, fp)-> 1065 rx_skb_alloc_failed++; 1066 goto next_rx; 1067 } 1068 skb_reserve(skb, pad); 1069 } else { 1070 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1071 "ERROR packet dropped because of alloc failure\n"); 1072 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1073 reuse_rx: 1074 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1075 goto next_rx; 1076 } 1077 } 1078 1079 skb_put(skb, len); 1080 skb->protocol = eth_type_trans(skb, bp->dev); 1081 1082 /* Set Toeplitz hash for a none-LRO skb */ 1083 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1084 skb_set_hash(skb, rxhash, rxhash_type); 1085 1086 skb_checksum_none_assert(skb); 1087 1088 if (bp->dev->features & NETIF_F_RXCSUM) 1089 bnx2x_csum_validate(skb, cqe, fp, 1090 bnx2x_fp_qstats(bp, fp)); 1091 1092 skb_record_rx_queue(skb, fp->rx_queue); 1093 1094 /* Check if this packet was timestamped */ 1095 if (unlikely(cqe->fast_path_cqe.type_error_flags & 1096 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT))) 1097 bnx2x_set_rx_ts(bp, skb); 1098 1099 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1100 PARSING_FLAGS_VLAN) 1101 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1102 le16_to_cpu(cqe_fp->vlan_tag)); 1103 1104 napi_gro_receive(&fp->napi, skb); 1105 next_rx: 1106 rx_buf->data = NULL; 1107 1108 bd_cons = NEXT_RX_IDX(bd_cons); 1109 bd_prod = NEXT_RX_IDX(bd_prod); 1110 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1111 rx_pkt++; 1112 next_cqe: 1113 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1114 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1115 1116 /* mark CQE as free */ 1117 BNX2X_SEED_CQE(cqe_fp); 1118 1119 if (rx_pkt == budget) 1120 break; 1121 1122 comp_ring_cons = RCQ_BD(sw_comp_cons); 1123 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1124 cqe_fp = &cqe->fast_path_cqe; 1125 } /* while */ 1126 1127 fp->rx_bd_cons = bd_cons; 1128 fp->rx_bd_prod = bd_prod_fw; 1129 fp->rx_comp_cons = sw_comp_cons; 1130 fp->rx_comp_prod = sw_comp_prod; 1131 1132 /* Update producers */ 1133 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1134 fp->rx_sge_prod); 1135 1136 return rx_pkt; 1137 } 1138 1139 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1140 { 1141 struct bnx2x_fastpath *fp = fp_cookie; 1142 struct bnx2x *bp = fp->bp; 1143 u8 cos; 1144 1145 DP(NETIF_MSG_INTR, 1146 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1147 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1148 1149 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1150 1151 #ifdef BNX2X_STOP_ON_ERROR 1152 if (unlikely(bp->panic)) 1153 return IRQ_HANDLED; 1154 #endif 1155 1156 /* Handle Rx and Tx according to MSI-X vector */ 1157 for_each_cos_in_tx_queue(fp, cos) 1158 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1159 1160 prefetch(&fp->sb_running_index[SM_RX_ID]); 1161 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1162 1163 return IRQ_HANDLED; 1164 } 1165 1166 /* HW Lock for shared dual port PHYs */ 1167 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1168 { 1169 mutex_lock(&bp->port.phy_mutex); 1170 1171 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1172 } 1173 1174 void bnx2x_release_phy_lock(struct bnx2x *bp) 1175 { 1176 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1177 1178 mutex_unlock(&bp->port.phy_mutex); 1179 } 1180 1181 /* calculates MF speed according to current linespeed and MF configuration */ 1182 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1183 { 1184 u16 line_speed = bp->link_vars.line_speed; 1185 if (IS_MF(bp)) { 1186 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1187 bp->mf_config[BP_VN(bp)]); 1188 1189 /* Calculate the current MAX line speed limit for the MF 1190 * devices 1191 */ 1192 if (IS_MF_PERCENT_BW(bp)) 1193 line_speed = (line_speed * maxCfg) / 100; 1194 else { /* SD mode */ 1195 u16 vn_max_rate = maxCfg * 100; 1196 1197 if (vn_max_rate < line_speed) 1198 line_speed = vn_max_rate; 1199 } 1200 } 1201 1202 return line_speed; 1203 } 1204 1205 /** 1206 * bnx2x_fill_report_data - fill link report data to report 1207 * 1208 * @bp: driver handle 1209 * @data: link state to update 1210 * 1211 * It uses a none-atomic bit operations because is called under the mutex. 1212 */ 1213 static void bnx2x_fill_report_data(struct bnx2x *bp, 1214 struct bnx2x_link_report_data *data) 1215 { 1216 memset(data, 0, sizeof(*data)); 1217 1218 if (IS_PF(bp)) { 1219 /* Fill the report data: effective line speed */ 1220 data->line_speed = bnx2x_get_mf_speed(bp); 1221 1222 /* Link is down */ 1223 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1224 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1225 &data->link_report_flags); 1226 1227 if (!BNX2X_NUM_ETH_QUEUES(bp)) 1228 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1229 &data->link_report_flags); 1230 1231 /* Full DUPLEX */ 1232 if (bp->link_vars.duplex == DUPLEX_FULL) 1233 __set_bit(BNX2X_LINK_REPORT_FD, 1234 &data->link_report_flags); 1235 1236 /* Rx Flow Control is ON */ 1237 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1238 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1239 &data->link_report_flags); 1240 1241 /* Tx Flow Control is ON */ 1242 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1243 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1244 &data->link_report_flags); 1245 } else { /* VF */ 1246 *data = bp->vf_link_vars; 1247 } 1248 } 1249 1250 /** 1251 * bnx2x_link_report - report link status to OS. 1252 * 1253 * @bp: driver handle 1254 * 1255 * Calls the __bnx2x_link_report() under the same locking scheme 1256 * as a link/PHY state managing code to ensure a consistent link 1257 * reporting. 1258 */ 1259 1260 void bnx2x_link_report(struct bnx2x *bp) 1261 { 1262 bnx2x_acquire_phy_lock(bp); 1263 __bnx2x_link_report(bp); 1264 bnx2x_release_phy_lock(bp); 1265 } 1266 1267 /** 1268 * __bnx2x_link_report - report link status to OS. 1269 * 1270 * @bp: driver handle 1271 * 1272 * None atomic implementation. 1273 * Should be called under the phy_lock. 1274 */ 1275 void __bnx2x_link_report(struct bnx2x *bp) 1276 { 1277 struct bnx2x_link_report_data cur_data; 1278 1279 if (bp->force_link_down) { 1280 bp->link_vars.link_up = 0; 1281 return; 1282 } 1283 1284 /* reread mf_cfg */ 1285 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1286 bnx2x_read_mf_cfg(bp); 1287 1288 /* Read the current link report info */ 1289 bnx2x_fill_report_data(bp, &cur_data); 1290 1291 /* Don't report link down or exactly the same link status twice */ 1292 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1293 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1294 &bp->last_reported_link.link_report_flags) && 1295 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1296 &cur_data.link_report_flags))) 1297 return; 1298 1299 bp->link_cnt++; 1300 1301 /* We are going to report a new link parameters now - 1302 * remember the current data for the next time. 1303 */ 1304 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1305 1306 /* propagate status to VFs */ 1307 if (IS_PF(bp)) 1308 bnx2x_iov_link_update(bp); 1309 1310 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1311 &cur_data.link_report_flags)) { 1312 netif_carrier_off(bp->dev); 1313 netdev_err(bp->dev, "NIC Link is Down\n"); 1314 return; 1315 } else { 1316 const char *duplex; 1317 const char *flow; 1318 1319 netif_carrier_on(bp->dev); 1320 1321 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1322 &cur_data.link_report_flags)) 1323 duplex = "full"; 1324 else 1325 duplex = "half"; 1326 1327 /* Handle the FC at the end so that only these flags would be 1328 * possibly set. This way we may easily check if there is no FC 1329 * enabled. 1330 */ 1331 if (cur_data.link_report_flags) { 1332 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1333 &cur_data.link_report_flags)) { 1334 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1335 &cur_data.link_report_flags)) 1336 flow = "ON - receive & transmit"; 1337 else 1338 flow = "ON - receive"; 1339 } else { 1340 flow = "ON - transmit"; 1341 } 1342 } else { 1343 flow = "none"; 1344 } 1345 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1346 cur_data.line_speed, duplex, flow); 1347 } 1348 } 1349 1350 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1351 { 1352 int i; 1353 1354 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1355 struct eth_rx_sge *sge; 1356 1357 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1358 sge->addr_hi = 1359 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1360 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1361 1362 sge->addr_lo = 1363 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1364 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1365 } 1366 } 1367 1368 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1369 struct bnx2x_fastpath *fp, int last) 1370 { 1371 int i; 1372 1373 for (i = 0; i < last; i++) { 1374 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1375 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1376 u8 *data = first_buf->data; 1377 1378 if (data == NULL) { 1379 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1380 continue; 1381 } 1382 if (tpa_info->tpa_state == BNX2X_TPA_START) 1383 dma_unmap_single(&bp->pdev->dev, 1384 dma_unmap_addr(first_buf, mapping), 1385 fp->rx_buf_size, DMA_FROM_DEVICE); 1386 bnx2x_frag_free(fp, data); 1387 first_buf->data = NULL; 1388 } 1389 } 1390 1391 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1392 { 1393 int j; 1394 1395 for_each_rx_queue_cnic(bp, j) { 1396 struct bnx2x_fastpath *fp = &bp->fp[j]; 1397 1398 fp->rx_bd_cons = 0; 1399 1400 /* Activate BD ring */ 1401 /* Warning! 1402 * this will generate an interrupt (to the TSTORM) 1403 * must only be done after chip is initialized 1404 */ 1405 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1406 fp->rx_sge_prod); 1407 } 1408 } 1409 1410 void bnx2x_init_rx_rings(struct bnx2x *bp) 1411 { 1412 int func = BP_FUNC(bp); 1413 u16 ring_prod; 1414 int i, j; 1415 1416 /* Allocate TPA resources */ 1417 for_each_eth_queue(bp, j) { 1418 struct bnx2x_fastpath *fp = &bp->fp[j]; 1419 1420 DP(NETIF_MSG_IFUP, 1421 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1422 1423 if (fp->mode != TPA_MODE_DISABLED) { 1424 /* Fill the per-aggregation pool */ 1425 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1426 struct bnx2x_agg_info *tpa_info = 1427 &fp->tpa_info[i]; 1428 struct sw_rx_bd *first_buf = 1429 &tpa_info->first_buf; 1430 1431 first_buf->data = 1432 bnx2x_frag_alloc(fp, GFP_KERNEL); 1433 if (!first_buf->data) { 1434 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1435 j); 1436 bnx2x_free_tpa_pool(bp, fp, i); 1437 fp->mode = TPA_MODE_DISABLED; 1438 break; 1439 } 1440 dma_unmap_addr_set(first_buf, mapping, 0); 1441 tpa_info->tpa_state = BNX2X_TPA_STOP; 1442 } 1443 1444 /* "next page" elements initialization */ 1445 bnx2x_set_next_page_sgl(fp); 1446 1447 /* set SGEs bit mask */ 1448 bnx2x_init_sge_ring_bit_mask(fp); 1449 1450 /* Allocate SGEs and initialize the ring elements */ 1451 for (i = 0, ring_prod = 0; 1452 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1453 1454 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1455 GFP_KERNEL) < 0) { 1456 BNX2X_ERR("was only able to allocate %d rx sges\n", 1457 i); 1458 BNX2X_ERR("disabling TPA for queue[%d]\n", 1459 j); 1460 /* Cleanup already allocated elements */ 1461 bnx2x_free_rx_sge_range(bp, fp, 1462 ring_prod); 1463 bnx2x_free_tpa_pool(bp, fp, 1464 MAX_AGG_QS(bp)); 1465 fp->mode = TPA_MODE_DISABLED; 1466 ring_prod = 0; 1467 break; 1468 } 1469 ring_prod = NEXT_SGE_IDX(ring_prod); 1470 } 1471 1472 fp->rx_sge_prod = ring_prod; 1473 } 1474 } 1475 1476 for_each_eth_queue(bp, j) { 1477 struct bnx2x_fastpath *fp = &bp->fp[j]; 1478 1479 fp->rx_bd_cons = 0; 1480 1481 /* Activate BD ring */ 1482 /* Warning! 1483 * this will generate an interrupt (to the TSTORM) 1484 * must only be done after chip is initialized 1485 */ 1486 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1487 fp->rx_sge_prod); 1488 1489 if (j != 0) 1490 continue; 1491 1492 if (CHIP_IS_E1(bp)) { 1493 REG_WR(bp, BAR_USTRORM_INTMEM + 1494 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1495 U64_LO(fp->rx_comp_mapping)); 1496 REG_WR(bp, BAR_USTRORM_INTMEM + 1497 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1498 U64_HI(fp->rx_comp_mapping)); 1499 } 1500 } 1501 } 1502 1503 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1504 { 1505 u8 cos; 1506 struct bnx2x *bp = fp->bp; 1507 1508 for_each_cos_in_tx_queue(fp, cos) { 1509 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1510 unsigned pkts_compl = 0, bytes_compl = 0; 1511 1512 u16 sw_prod = txdata->tx_pkt_prod; 1513 u16 sw_cons = txdata->tx_pkt_cons; 1514 1515 while (sw_cons != sw_prod) { 1516 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1517 &pkts_compl, &bytes_compl); 1518 sw_cons++; 1519 } 1520 1521 netdev_tx_reset_queue( 1522 netdev_get_tx_queue(bp->dev, 1523 txdata->txq_index)); 1524 } 1525 } 1526 1527 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1528 { 1529 int i; 1530 1531 for_each_tx_queue_cnic(bp, i) { 1532 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1533 } 1534 } 1535 1536 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1537 { 1538 int i; 1539 1540 for_each_eth_queue(bp, i) { 1541 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1542 } 1543 } 1544 1545 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1546 { 1547 struct bnx2x *bp = fp->bp; 1548 int i; 1549 1550 /* ring wasn't allocated */ 1551 if (fp->rx_buf_ring == NULL) 1552 return; 1553 1554 for (i = 0; i < NUM_RX_BD; i++) { 1555 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1556 u8 *data = rx_buf->data; 1557 1558 if (data == NULL) 1559 continue; 1560 dma_unmap_single(&bp->pdev->dev, 1561 dma_unmap_addr(rx_buf, mapping), 1562 fp->rx_buf_size, DMA_FROM_DEVICE); 1563 1564 rx_buf->data = NULL; 1565 bnx2x_frag_free(fp, data); 1566 } 1567 } 1568 1569 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1570 { 1571 int j; 1572 1573 for_each_rx_queue_cnic(bp, j) { 1574 bnx2x_free_rx_bds(&bp->fp[j]); 1575 } 1576 } 1577 1578 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1579 { 1580 int j; 1581 1582 for_each_eth_queue(bp, j) { 1583 struct bnx2x_fastpath *fp = &bp->fp[j]; 1584 1585 bnx2x_free_rx_bds(fp); 1586 1587 if (fp->mode != TPA_MODE_DISABLED) 1588 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1589 } 1590 } 1591 1592 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1593 { 1594 bnx2x_free_tx_skbs_cnic(bp); 1595 bnx2x_free_rx_skbs_cnic(bp); 1596 } 1597 1598 void bnx2x_free_skbs(struct bnx2x *bp) 1599 { 1600 bnx2x_free_tx_skbs(bp); 1601 bnx2x_free_rx_skbs(bp); 1602 } 1603 1604 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1605 { 1606 /* load old values */ 1607 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1608 1609 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1610 /* leave all but MAX value */ 1611 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1612 1613 /* set new MAX value */ 1614 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1615 & FUNC_MF_CFG_MAX_BW_MASK; 1616 1617 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1618 } 1619 } 1620 1621 /** 1622 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1623 * 1624 * @bp: driver handle 1625 * @nvecs: number of vectors to be released 1626 */ 1627 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1628 { 1629 int i, offset = 0; 1630 1631 if (nvecs == offset) 1632 return; 1633 1634 /* VFs don't have a default SB */ 1635 if (IS_PF(bp)) { 1636 free_irq(bp->msix_table[offset].vector, bp->dev); 1637 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1638 bp->msix_table[offset].vector); 1639 offset++; 1640 } 1641 1642 if (CNIC_SUPPORT(bp)) { 1643 if (nvecs == offset) 1644 return; 1645 offset++; 1646 } 1647 1648 for_each_eth_queue(bp, i) { 1649 if (nvecs == offset) 1650 return; 1651 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1652 i, bp->msix_table[offset].vector); 1653 1654 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1655 } 1656 } 1657 1658 void bnx2x_free_irq(struct bnx2x *bp) 1659 { 1660 if (bp->flags & USING_MSIX_FLAG && 1661 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1662 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1663 1664 /* vfs don't have a default status block */ 1665 if (IS_PF(bp)) 1666 nvecs++; 1667 1668 bnx2x_free_msix_irqs(bp, nvecs); 1669 } else { 1670 free_irq(bp->dev->irq, bp->dev); 1671 } 1672 } 1673 1674 int bnx2x_enable_msix(struct bnx2x *bp) 1675 { 1676 int msix_vec = 0, i, rc; 1677 1678 /* VFs don't have a default status block */ 1679 if (IS_PF(bp)) { 1680 bp->msix_table[msix_vec].entry = msix_vec; 1681 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1682 bp->msix_table[0].entry); 1683 msix_vec++; 1684 } 1685 1686 /* Cnic requires an msix vector for itself */ 1687 if (CNIC_SUPPORT(bp)) { 1688 bp->msix_table[msix_vec].entry = msix_vec; 1689 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1690 msix_vec, bp->msix_table[msix_vec].entry); 1691 msix_vec++; 1692 } 1693 1694 /* We need separate vectors for ETH queues only (not FCoE) */ 1695 for_each_eth_queue(bp, i) { 1696 bp->msix_table[msix_vec].entry = msix_vec; 1697 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1698 msix_vec, msix_vec, i); 1699 msix_vec++; 1700 } 1701 1702 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1703 msix_vec); 1704 1705 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1706 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); 1707 /* 1708 * reconfigure number of tx/rx queues according to available 1709 * MSI-X vectors 1710 */ 1711 if (rc == -ENOSPC) { 1712 /* Get by with single vector */ 1713 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); 1714 if (rc < 0) { 1715 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1716 rc); 1717 goto no_msix; 1718 } 1719 1720 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1721 bp->flags |= USING_SINGLE_MSIX_FLAG; 1722 1723 BNX2X_DEV_INFO("set number of queues to 1\n"); 1724 bp->num_ethernet_queues = 1; 1725 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1726 } else if (rc < 0) { 1727 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1728 goto no_msix; 1729 } else if (rc < msix_vec) { 1730 /* how less vectors we will have? */ 1731 int diff = msix_vec - rc; 1732 1733 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1734 1735 /* 1736 * decrease number of queues by number of unallocated entries 1737 */ 1738 bp->num_ethernet_queues -= diff; 1739 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1740 1741 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1742 bp->num_queues); 1743 } 1744 1745 bp->flags |= USING_MSIX_FLAG; 1746 1747 return 0; 1748 1749 no_msix: 1750 /* fall to INTx if not enough memory */ 1751 if (rc == -ENOMEM) 1752 bp->flags |= DISABLE_MSI_FLAG; 1753 1754 return rc; 1755 } 1756 1757 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1758 { 1759 int i, rc, offset = 0; 1760 1761 /* no default status block for vf */ 1762 if (IS_PF(bp)) { 1763 rc = request_irq(bp->msix_table[offset++].vector, 1764 bnx2x_msix_sp_int, 0, 1765 bp->dev->name, bp->dev); 1766 if (rc) { 1767 BNX2X_ERR("request sp irq failed\n"); 1768 return -EBUSY; 1769 } 1770 } 1771 1772 if (CNIC_SUPPORT(bp)) 1773 offset++; 1774 1775 for_each_eth_queue(bp, i) { 1776 struct bnx2x_fastpath *fp = &bp->fp[i]; 1777 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1778 bp->dev->name, i); 1779 1780 rc = request_irq(bp->msix_table[offset].vector, 1781 bnx2x_msix_fp_int, 0, fp->name, fp); 1782 if (rc) { 1783 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1784 bp->msix_table[offset].vector, rc); 1785 bnx2x_free_msix_irqs(bp, offset); 1786 return -EBUSY; 1787 } 1788 1789 offset++; 1790 } 1791 1792 i = BNX2X_NUM_ETH_QUEUES(bp); 1793 if (IS_PF(bp)) { 1794 offset = 1 + CNIC_SUPPORT(bp); 1795 netdev_info(bp->dev, 1796 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1797 bp->msix_table[0].vector, 1798 0, bp->msix_table[offset].vector, 1799 i - 1, bp->msix_table[offset + i - 1].vector); 1800 } else { 1801 offset = CNIC_SUPPORT(bp); 1802 netdev_info(bp->dev, 1803 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1804 0, bp->msix_table[offset].vector, 1805 i - 1, bp->msix_table[offset + i - 1].vector); 1806 } 1807 return 0; 1808 } 1809 1810 int bnx2x_enable_msi(struct bnx2x *bp) 1811 { 1812 int rc; 1813 1814 rc = pci_enable_msi(bp->pdev); 1815 if (rc) { 1816 BNX2X_DEV_INFO("MSI is not attainable\n"); 1817 return -1; 1818 } 1819 bp->flags |= USING_MSI_FLAG; 1820 1821 return 0; 1822 } 1823 1824 static int bnx2x_req_irq(struct bnx2x *bp) 1825 { 1826 unsigned long flags; 1827 unsigned int irq; 1828 1829 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1830 flags = 0; 1831 else 1832 flags = IRQF_SHARED; 1833 1834 if (bp->flags & USING_MSIX_FLAG) 1835 irq = bp->msix_table[0].vector; 1836 else 1837 irq = bp->pdev->irq; 1838 1839 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1840 } 1841 1842 static int bnx2x_setup_irqs(struct bnx2x *bp) 1843 { 1844 int rc = 0; 1845 if (bp->flags & USING_MSIX_FLAG && 1846 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1847 rc = bnx2x_req_msix_irqs(bp); 1848 if (rc) 1849 return rc; 1850 } else { 1851 rc = bnx2x_req_irq(bp); 1852 if (rc) { 1853 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1854 return rc; 1855 } 1856 if (bp->flags & USING_MSI_FLAG) { 1857 bp->dev->irq = bp->pdev->irq; 1858 netdev_info(bp->dev, "using MSI IRQ %d\n", 1859 bp->dev->irq); 1860 } 1861 if (bp->flags & USING_MSIX_FLAG) { 1862 bp->dev->irq = bp->msix_table[0].vector; 1863 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1864 bp->dev->irq); 1865 } 1866 } 1867 1868 return 0; 1869 } 1870 1871 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1872 { 1873 int i; 1874 1875 for_each_rx_queue_cnic(bp, i) { 1876 napi_enable(&bnx2x_fp(bp, i, napi)); 1877 } 1878 } 1879 1880 static void bnx2x_napi_enable(struct bnx2x *bp) 1881 { 1882 int i; 1883 1884 for_each_eth_queue(bp, i) { 1885 napi_enable(&bnx2x_fp(bp, i, napi)); 1886 } 1887 } 1888 1889 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1890 { 1891 int i; 1892 1893 for_each_rx_queue_cnic(bp, i) { 1894 napi_disable(&bnx2x_fp(bp, i, napi)); 1895 } 1896 } 1897 1898 static void bnx2x_napi_disable(struct bnx2x *bp) 1899 { 1900 int i; 1901 1902 for_each_eth_queue(bp, i) { 1903 napi_disable(&bnx2x_fp(bp, i, napi)); 1904 } 1905 } 1906 1907 void bnx2x_netif_start(struct bnx2x *bp) 1908 { 1909 if (netif_running(bp->dev)) { 1910 bnx2x_napi_enable(bp); 1911 if (CNIC_LOADED(bp)) 1912 bnx2x_napi_enable_cnic(bp); 1913 bnx2x_int_enable(bp); 1914 if (bp->state == BNX2X_STATE_OPEN) 1915 netif_tx_wake_all_queues(bp->dev); 1916 } 1917 } 1918 1919 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1920 { 1921 bnx2x_int_disable_sync(bp, disable_hw); 1922 bnx2x_napi_disable(bp); 1923 if (CNIC_LOADED(bp)) 1924 bnx2x_napi_disable_cnic(bp); 1925 } 1926 1927 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1928 struct net_device *sb_dev) 1929 { 1930 struct bnx2x *bp = netdev_priv(dev); 1931 1932 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1933 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1934 u16 ether_type = ntohs(hdr->h_proto); 1935 1936 /* Skip VLAN tag if present */ 1937 if (ether_type == ETH_P_8021Q) { 1938 struct vlan_ethhdr *vhdr = 1939 (struct vlan_ethhdr *)skb->data; 1940 1941 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1942 } 1943 1944 /* If ethertype is FCoE or FIP - use FCoE ring */ 1945 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1946 return bnx2x_fcoe_tx(bp, txq_index); 1947 } 1948 1949 /* select a non-FCoE queue */ 1950 return netdev_pick_tx(dev, skb, NULL) % 1951 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos); 1952 } 1953 1954 void bnx2x_set_num_queues(struct bnx2x *bp) 1955 { 1956 /* RSS queues */ 1957 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1958 1959 /* override in STORAGE SD modes */ 1960 if (IS_MF_STORAGE_ONLY(bp)) 1961 bp->num_ethernet_queues = 1; 1962 1963 /* Add special queues */ 1964 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1965 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1966 1967 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1968 } 1969 1970 /** 1971 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1972 * 1973 * @bp: Driver handle 1974 * @include_cnic: handle cnic case 1975 * 1976 * We currently support for at most 16 Tx queues for each CoS thus we will 1977 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1978 * bp->max_cos. 1979 * 1980 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1981 * index after all ETH L2 indices. 1982 * 1983 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1984 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1985 * 16..31,...) with indices that are not coupled with any real Tx queue. 1986 * 1987 * The proper configuration of skb->queue_mapping is handled by 1988 * bnx2x_select_queue() and __skb_tx_hash(). 1989 * 1990 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1991 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1992 */ 1993 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1994 { 1995 int rc, tx, rx; 1996 1997 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1998 rx = BNX2X_NUM_ETH_QUEUES(bp); 1999 2000 /* account for fcoe queue */ 2001 if (include_cnic && !NO_FCOE(bp)) { 2002 rx++; 2003 tx++; 2004 } 2005 2006 rc = netif_set_real_num_tx_queues(bp->dev, tx); 2007 if (rc) { 2008 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 2009 return rc; 2010 } 2011 rc = netif_set_real_num_rx_queues(bp->dev, rx); 2012 if (rc) { 2013 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 2014 return rc; 2015 } 2016 2017 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 2018 tx, rx); 2019 2020 return rc; 2021 } 2022 2023 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 2024 { 2025 int i; 2026 2027 for_each_queue(bp, i) { 2028 struct bnx2x_fastpath *fp = &bp->fp[i]; 2029 u32 mtu; 2030 2031 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 2032 if (IS_FCOE_IDX(i)) 2033 /* 2034 * Although there are no IP frames expected to arrive to 2035 * this ring we still want to add an 2036 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 2037 * overrun attack. 2038 */ 2039 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 2040 else 2041 mtu = bp->dev->mtu; 2042 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 2043 IP_HEADER_ALIGNMENT_PADDING + 2044 ETH_OVERHEAD + 2045 mtu + 2046 BNX2X_FW_RX_ALIGN_END; 2047 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size); 2048 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 2049 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 2050 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 2051 else 2052 fp->rx_frag_size = 0; 2053 } 2054 } 2055 2056 static int bnx2x_init_rss(struct bnx2x *bp) 2057 { 2058 int i; 2059 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2060 2061 /* Prepare the initial contents for the indirection table if RSS is 2062 * enabled 2063 */ 2064 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2065 bp->rss_conf_obj.ind_table[i] = 2066 bp->fp->cl_id + 2067 ethtool_rxfh_indir_default(i, num_eth_queues); 2068 2069 /* 2070 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2071 * per-port, so if explicit configuration is needed , do it only 2072 * for a PMF. 2073 * 2074 * For 57712 and newer on the other hand it's a per-function 2075 * configuration. 2076 */ 2077 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2078 } 2079 2080 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2081 bool config_hash, bool enable) 2082 { 2083 struct bnx2x_config_rss_params params = {NULL}; 2084 2085 /* Although RSS is meaningless when there is a single HW queue we 2086 * still need it enabled in order to have HW Rx hash generated. 2087 * 2088 * if (!is_eth_multi(bp)) 2089 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2090 */ 2091 2092 params.rss_obj = rss_obj; 2093 2094 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2095 2096 if (enable) { 2097 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2098 2099 /* RSS configuration */ 2100 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2101 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2102 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2103 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2104 if (rss_obj->udp_rss_v4) 2105 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2106 if (rss_obj->udp_rss_v6) 2107 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2108 2109 if (!CHIP_IS_E1x(bp)) { 2110 /* valid only for TUNN_MODE_VXLAN tunnel mode */ 2111 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags); 2112 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags); 2113 2114 /* valid only for TUNN_MODE_GRE tunnel mode */ 2115 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags); 2116 } 2117 } else { 2118 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2119 } 2120 2121 /* Hash bits */ 2122 params.rss_result_mask = MULTI_MASK; 2123 2124 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2125 2126 if (config_hash) { 2127 /* RSS keys */ 2128 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4); 2129 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2130 } 2131 2132 if (IS_PF(bp)) 2133 return bnx2x_config_rss(bp, ¶ms); 2134 else 2135 return bnx2x_vfpf_config_rss(bp, ¶ms); 2136 } 2137 2138 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2139 { 2140 struct bnx2x_func_state_params func_params = {NULL}; 2141 2142 /* Prepare parameters for function state transitions */ 2143 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2144 2145 func_params.f_obj = &bp->func_obj; 2146 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2147 2148 func_params.params.hw_init.load_phase = load_code; 2149 2150 return bnx2x_func_state_change(bp, &func_params); 2151 } 2152 2153 /* 2154 * Cleans the object that have internal lists without sending 2155 * ramrods. Should be run when interrupts are disabled. 2156 */ 2157 void bnx2x_squeeze_objects(struct bnx2x *bp) 2158 { 2159 int rc; 2160 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2161 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2162 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2163 2164 /***************** Cleanup MACs' object first *************************/ 2165 2166 /* Wait for completion of requested */ 2167 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2168 /* Perform a dry cleanup */ 2169 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2170 2171 /* Clean ETH primary MAC */ 2172 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2173 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2174 &ramrod_flags); 2175 if (rc != 0) 2176 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2177 2178 /* Cleanup UC list */ 2179 vlan_mac_flags = 0; 2180 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2181 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2182 &ramrod_flags); 2183 if (rc != 0) 2184 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2185 2186 /***************** Now clean mcast object *****************************/ 2187 rparam.mcast_obj = &bp->mcast_obj; 2188 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2189 2190 /* Add a DEL command... - Since we're doing a driver cleanup only, 2191 * we take a lock surrounding both the initial send and the CONTs, 2192 * as we don't want a true completion to disrupt us in the middle. 2193 */ 2194 netif_addr_lock_bh(bp->dev); 2195 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2196 if (rc < 0) 2197 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2198 rc); 2199 2200 /* ...and wait until all pending commands are cleared */ 2201 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2202 while (rc != 0) { 2203 if (rc < 0) { 2204 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2205 rc); 2206 netif_addr_unlock_bh(bp->dev); 2207 return; 2208 } 2209 2210 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2211 } 2212 netif_addr_unlock_bh(bp->dev); 2213 } 2214 2215 #ifndef BNX2X_STOP_ON_ERROR 2216 #define LOAD_ERROR_EXIT(bp, label) \ 2217 do { \ 2218 (bp)->state = BNX2X_STATE_ERROR; \ 2219 goto label; \ 2220 } while (0) 2221 2222 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2223 do { \ 2224 bp->cnic_loaded = false; \ 2225 goto label; \ 2226 } while (0) 2227 #else /*BNX2X_STOP_ON_ERROR*/ 2228 #define LOAD_ERROR_EXIT(bp, label) \ 2229 do { \ 2230 (bp)->state = BNX2X_STATE_ERROR; \ 2231 (bp)->panic = 1; \ 2232 return -EBUSY; \ 2233 } while (0) 2234 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2235 do { \ 2236 bp->cnic_loaded = false; \ 2237 (bp)->panic = 1; \ 2238 return -EBUSY; \ 2239 } while (0) 2240 #endif /*BNX2X_STOP_ON_ERROR*/ 2241 2242 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2243 { 2244 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2245 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2246 return; 2247 } 2248 2249 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2250 { 2251 int num_groups, vf_headroom = 0; 2252 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2253 2254 /* number of queues for statistics is number of eth queues + FCoE */ 2255 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2256 2257 /* Total number of FW statistics requests = 2258 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2259 * and fcoe l2 queue) stats + num of queues (which includes another 1 2260 * for fcoe l2 queue if applicable) 2261 */ 2262 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2263 2264 /* vf stats appear in the request list, but their data is allocated by 2265 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2266 * it is used to determine where to place the vf stats queries in the 2267 * request struct 2268 */ 2269 if (IS_SRIOV(bp)) 2270 vf_headroom = bnx2x_vf_headroom(bp); 2271 2272 /* Request is built from stats_query_header and an array of 2273 * stats_query_cmd_group each of which contains 2274 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2275 * configured in the stats_query_header. 2276 */ 2277 num_groups = 2278 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2279 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2280 1 : 0)); 2281 2282 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2283 bp->fw_stats_num, vf_headroom, num_groups); 2284 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2285 num_groups * sizeof(struct stats_query_cmd_group); 2286 2287 /* Data for statistics requests + stats_counter 2288 * stats_counter holds per-STORM counters that are incremented 2289 * when STORM has finished with the current request. 2290 * memory for FCoE offloaded statistics are counted anyway, 2291 * even if they will not be sent. 2292 * VF stats are not accounted for here as the data of VF stats is stored 2293 * in memory allocated by the VF, not here. 2294 */ 2295 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2296 sizeof(struct per_pf_stats) + 2297 sizeof(struct fcoe_statistics_params) + 2298 sizeof(struct per_queue_stats) * num_queue_stats + 2299 sizeof(struct stats_counter); 2300 2301 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, 2302 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2303 if (!bp->fw_stats) 2304 goto alloc_mem_err; 2305 2306 /* Set shortcuts */ 2307 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2308 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2309 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2310 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2311 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2312 bp->fw_stats_req_sz; 2313 2314 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2315 U64_HI(bp->fw_stats_req_mapping), 2316 U64_LO(bp->fw_stats_req_mapping)); 2317 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2318 U64_HI(bp->fw_stats_data_mapping), 2319 U64_LO(bp->fw_stats_data_mapping)); 2320 return 0; 2321 2322 alloc_mem_err: 2323 bnx2x_free_fw_stats_mem(bp); 2324 BNX2X_ERR("Can't allocate FW stats memory\n"); 2325 return -ENOMEM; 2326 } 2327 2328 /* send load request to mcp and analyze response */ 2329 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2330 { 2331 u32 param; 2332 2333 /* init fw_seq */ 2334 bp->fw_seq = 2335 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2336 DRV_MSG_SEQ_NUMBER_MASK); 2337 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2338 2339 /* Get current FW pulse sequence */ 2340 bp->fw_drv_pulse_wr_seq = 2341 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2342 DRV_PULSE_SEQ_MASK); 2343 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2344 2345 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2346 2347 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2348 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2349 2350 /* load request */ 2351 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2352 2353 /* if mcp fails to respond we must abort */ 2354 if (!(*load_code)) { 2355 BNX2X_ERR("MCP response failure, aborting\n"); 2356 return -EBUSY; 2357 } 2358 2359 /* If mcp refused (e.g. other port is in diagnostic mode) we 2360 * must abort 2361 */ 2362 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2363 BNX2X_ERR("MCP refused load request, aborting\n"); 2364 return -EBUSY; 2365 } 2366 return 0; 2367 } 2368 2369 /* check whether another PF has already loaded FW to chip. In 2370 * virtualized environments a pf from another VM may have already 2371 * initialized the device including loading FW 2372 */ 2373 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2374 { 2375 /* is another pf loaded on this engine? */ 2376 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2377 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2378 u8 loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng; 2379 u32 loaded_fw; 2380 2381 /* read loaded FW from chip */ 2382 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2383 2384 loaded_fw_major = loaded_fw & 0xff; 2385 loaded_fw_minor = (loaded_fw >> 8) & 0xff; 2386 loaded_fw_rev = (loaded_fw >> 16) & 0xff; 2387 loaded_fw_eng = (loaded_fw >> 24) & 0xff; 2388 2389 DP(BNX2X_MSG_SP, "loaded fw 0x%x major 0x%x minor 0x%x rev 0x%x eng 0x%x\n", 2390 loaded_fw, loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng); 2391 2392 /* abort nic load if version mismatch */ 2393 if (loaded_fw_major != BCM_5710_FW_MAJOR_VERSION || 2394 loaded_fw_minor != BCM_5710_FW_MINOR_VERSION || 2395 loaded_fw_eng != BCM_5710_FW_ENGINEERING_VERSION || 2396 loaded_fw_rev < BCM_5710_FW_REVISION_VERSION_V15) { 2397 if (print_err) 2398 BNX2X_ERR("loaded FW incompatible. Aborting\n"); 2399 else 2400 BNX2X_DEV_INFO("loaded FW incompatible, possibly due to MF UNDI\n"); 2401 2402 return -EBUSY; 2403 } 2404 } 2405 return 0; 2406 } 2407 2408 /* returns the "mcp load_code" according to global load_count array */ 2409 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2410 { 2411 int path = BP_PATH(bp); 2412 2413 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2414 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2415 bnx2x_load_count[path][2]); 2416 bnx2x_load_count[path][0]++; 2417 bnx2x_load_count[path][1 + port]++; 2418 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2419 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2420 bnx2x_load_count[path][2]); 2421 if (bnx2x_load_count[path][0] == 1) 2422 return FW_MSG_CODE_DRV_LOAD_COMMON; 2423 else if (bnx2x_load_count[path][1 + port] == 1) 2424 return FW_MSG_CODE_DRV_LOAD_PORT; 2425 else 2426 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2427 } 2428 2429 /* mark PMF if applicable */ 2430 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2431 { 2432 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2433 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2434 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2435 bp->port.pmf = 1; 2436 /* We need the barrier to ensure the ordering between the 2437 * writing to bp->port.pmf here and reading it from the 2438 * bnx2x_periodic_task(). 2439 */ 2440 smp_mb(); 2441 } else { 2442 bp->port.pmf = 0; 2443 } 2444 2445 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2446 } 2447 2448 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2449 { 2450 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2451 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2452 (bp->common.shmem2_base)) { 2453 if (SHMEM2_HAS(bp, dcc_support)) 2454 SHMEM2_WR(bp, dcc_support, 2455 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2456 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2457 if (SHMEM2_HAS(bp, afex_driver_support)) 2458 SHMEM2_WR(bp, afex_driver_support, 2459 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2460 } 2461 2462 /* Set AFEX default VLAN tag to an invalid value */ 2463 bp->afex_def_vlan_tag = -1; 2464 } 2465 2466 /** 2467 * bnx2x_bz_fp - zero content of the fastpath structure. 2468 * 2469 * @bp: driver handle 2470 * @index: fastpath index to be zeroed 2471 * 2472 * Makes sure the contents of the bp->fp[index].napi is kept 2473 * intact. 2474 */ 2475 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2476 { 2477 struct bnx2x_fastpath *fp = &bp->fp[index]; 2478 int cos; 2479 struct napi_struct orig_napi = fp->napi; 2480 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2481 2482 /* bzero bnx2x_fastpath contents */ 2483 if (fp->tpa_info) 2484 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2485 sizeof(struct bnx2x_agg_info)); 2486 memset(fp, 0, sizeof(*fp)); 2487 2488 /* Restore the NAPI object as it has been already initialized */ 2489 fp->napi = orig_napi; 2490 fp->tpa_info = orig_tpa_info; 2491 fp->bp = bp; 2492 fp->index = index; 2493 if (IS_ETH_FP(fp)) 2494 fp->max_cos = bp->max_cos; 2495 else 2496 /* Special queues support only one CoS */ 2497 fp->max_cos = 1; 2498 2499 /* Init txdata pointers */ 2500 if (IS_FCOE_FP(fp)) 2501 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2502 if (IS_ETH_FP(fp)) 2503 for_each_cos_in_tx_queue(fp, cos) 2504 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2505 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2506 2507 /* set the tpa flag for each queue. The tpa flag determines the queue 2508 * minimal size so it must be set prior to queue memory allocation 2509 */ 2510 if (bp->dev->features & NETIF_F_LRO) 2511 fp->mode = TPA_MODE_LRO; 2512 else if (bp->dev->features & NETIF_F_GRO_HW) 2513 fp->mode = TPA_MODE_GRO; 2514 else 2515 fp->mode = TPA_MODE_DISABLED; 2516 2517 /* We don't want TPA if it's disabled in bp 2518 * or if this is an FCoE L2 ring. 2519 */ 2520 if (bp->disable_tpa || IS_FCOE_FP(fp)) 2521 fp->mode = TPA_MODE_DISABLED; 2522 } 2523 2524 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state) 2525 { 2526 u32 cur; 2527 2528 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp)) 2529 return; 2530 2531 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]); 2532 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n", 2533 cur, state); 2534 2535 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state); 2536 } 2537 2538 int bnx2x_load_cnic(struct bnx2x *bp) 2539 { 2540 int i, rc, port = BP_PORT(bp); 2541 2542 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2543 2544 mutex_init(&bp->cnic_mutex); 2545 2546 if (IS_PF(bp)) { 2547 rc = bnx2x_alloc_mem_cnic(bp); 2548 if (rc) { 2549 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2550 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2551 } 2552 } 2553 2554 rc = bnx2x_alloc_fp_mem_cnic(bp); 2555 if (rc) { 2556 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2557 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2558 } 2559 2560 /* Update the number of queues with the cnic queues */ 2561 rc = bnx2x_set_real_num_queues(bp, 1); 2562 if (rc) { 2563 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2564 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2565 } 2566 2567 /* Add all CNIC NAPI objects */ 2568 bnx2x_add_all_napi_cnic(bp); 2569 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2570 bnx2x_napi_enable_cnic(bp); 2571 2572 rc = bnx2x_init_hw_func_cnic(bp); 2573 if (rc) 2574 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2575 2576 bnx2x_nic_init_cnic(bp); 2577 2578 if (IS_PF(bp)) { 2579 /* Enable Timer scan */ 2580 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2581 2582 /* setup cnic queues */ 2583 for_each_cnic_queue(bp, i) { 2584 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2585 if (rc) { 2586 BNX2X_ERR("Queue setup failed\n"); 2587 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2588 } 2589 } 2590 } 2591 2592 /* Initialize Rx filter. */ 2593 bnx2x_set_rx_mode_inner(bp); 2594 2595 /* re-read iscsi info */ 2596 bnx2x_get_iscsi_info(bp); 2597 bnx2x_setup_cnic_irq_info(bp); 2598 bnx2x_setup_cnic_info(bp); 2599 bp->cnic_loaded = true; 2600 if (bp->state == BNX2X_STATE_OPEN) 2601 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2602 2603 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2604 2605 return 0; 2606 2607 #ifndef BNX2X_STOP_ON_ERROR 2608 load_error_cnic2: 2609 /* Disable Timer scan */ 2610 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2611 2612 load_error_cnic1: 2613 bnx2x_napi_disable_cnic(bp); 2614 /* Update the number of queues without the cnic queues */ 2615 if (bnx2x_set_real_num_queues(bp, 0)) 2616 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2617 load_error_cnic0: 2618 BNX2X_ERR("CNIC-related load failed\n"); 2619 bnx2x_free_fp_mem_cnic(bp); 2620 bnx2x_free_mem_cnic(bp); 2621 return rc; 2622 #endif /* ! BNX2X_STOP_ON_ERROR */ 2623 } 2624 2625 /* must be called with rtnl_lock */ 2626 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2627 { 2628 int port = BP_PORT(bp); 2629 int i, rc = 0, load_code = 0; 2630 2631 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2632 DP(NETIF_MSG_IFUP, 2633 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2634 2635 #ifdef BNX2X_STOP_ON_ERROR 2636 if (unlikely(bp->panic)) { 2637 BNX2X_ERR("Can't load NIC when there is panic\n"); 2638 return -EPERM; 2639 } 2640 #endif 2641 2642 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2643 2644 /* zero the structure w/o any lock, before SP handler is initialized */ 2645 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2646 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2647 &bp->last_reported_link.link_report_flags); 2648 2649 if (IS_PF(bp)) 2650 /* must be called before memory allocation and HW init */ 2651 bnx2x_ilt_set_info(bp); 2652 2653 /* 2654 * Zero fastpath structures preserving invariants like napi, which are 2655 * allocated only once, fp index, max_cos, bp pointer. 2656 * Also set fp->mode and txdata_ptr. 2657 */ 2658 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2659 for_each_queue(bp, i) 2660 bnx2x_bz_fp(bp, i); 2661 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2662 bp->num_cnic_queues) * 2663 sizeof(struct bnx2x_fp_txdata)); 2664 2665 bp->fcoe_init = false; 2666 2667 /* Set the receive queues buffer size */ 2668 bnx2x_set_rx_buf_size(bp); 2669 2670 if (IS_PF(bp)) { 2671 rc = bnx2x_alloc_mem(bp); 2672 if (rc) { 2673 BNX2X_ERR("Unable to allocate bp memory\n"); 2674 return rc; 2675 } 2676 } 2677 2678 /* need to be done after alloc mem, since it's self adjusting to amount 2679 * of memory available for RSS queues 2680 */ 2681 rc = bnx2x_alloc_fp_mem(bp); 2682 if (rc) { 2683 BNX2X_ERR("Unable to allocate memory for fps\n"); 2684 LOAD_ERROR_EXIT(bp, load_error0); 2685 } 2686 2687 /* Allocated memory for FW statistics */ 2688 rc = bnx2x_alloc_fw_stats_mem(bp); 2689 if (rc) 2690 LOAD_ERROR_EXIT(bp, load_error0); 2691 2692 /* request pf to initialize status blocks */ 2693 if (IS_VF(bp)) { 2694 rc = bnx2x_vfpf_init(bp); 2695 if (rc) 2696 LOAD_ERROR_EXIT(bp, load_error0); 2697 } 2698 2699 /* As long as bnx2x_alloc_mem() may possibly update 2700 * bp->num_queues, bnx2x_set_real_num_queues() should always 2701 * come after it. At this stage cnic queues are not counted. 2702 */ 2703 rc = bnx2x_set_real_num_queues(bp, 0); 2704 if (rc) { 2705 BNX2X_ERR("Unable to set real_num_queues\n"); 2706 LOAD_ERROR_EXIT(bp, load_error0); 2707 } 2708 2709 /* configure multi cos mappings in kernel. 2710 * this configuration may be overridden by a multi class queue 2711 * discipline or by a dcbx negotiation result. 2712 */ 2713 bnx2x_setup_tc(bp->dev, bp->max_cos); 2714 2715 /* Add all NAPI objects */ 2716 bnx2x_add_all_napi(bp); 2717 DP(NETIF_MSG_IFUP, "napi added\n"); 2718 bnx2x_napi_enable(bp); 2719 2720 if (IS_PF(bp)) { 2721 /* set pf load just before approaching the MCP */ 2722 bnx2x_set_pf_load(bp); 2723 2724 /* if mcp exists send load request and analyze response */ 2725 if (!BP_NOMCP(bp)) { 2726 /* attempt to load pf */ 2727 rc = bnx2x_nic_load_request(bp, &load_code); 2728 if (rc) 2729 LOAD_ERROR_EXIT(bp, load_error1); 2730 2731 /* what did mcp say? */ 2732 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2733 if (rc) { 2734 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2735 LOAD_ERROR_EXIT(bp, load_error2); 2736 } 2737 } else { 2738 load_code = bnx2x_nic_load_no_mcp(bp, port); 2739 } 2740 2741 /* mark pmf if applicable */ 2742 bnx2x_nic_load_pmf(bp, load_code); 2743 2744 /* Init Function state controlling object */ 2745 bnx2x__init_func_obj(bp); 2746 2747 /* Initialize HW */ 2748 rc = bnx2x_init_hw(bp, load_code); 2749 if (rc) { 2750 BNX2X_ERR("HW init failed, aborting\n"); 2751 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2752 LOAD_ERROR_EXIT(bp, load_error2); 2753 } 2754 } 2755 2756 bnx2x_pre_irq_nic_init(bp); 2757 2758 /* Connect to IRQs */ 2759 rc = bnx2x_setup_irqs(bp); 2760 if (rc) { 2761 BNX2X_ERR("setup irqs failed\n"); 2762 if (IS_PF(bp)) 2763 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2764 LOAD_ERROR_EXIT(bp, load_error2); 2765 } 2766 2767 /* Init per-function objects */ 2768 if (IS_PF(bp)) { 2769 /* Setup NIC internals and enable interrupts */ 2770 bnx2x_post_irq_nic_init(bp, load_code); 2771 2772 bnx2x_init_bp_objs(bp); 2773 bnx2x_iov_nic_init(bp); 2774 2775 /* Set AFEX default VLAN tag to an invalid value */ 2776 bp->afex_def_vlan_tag = -1; 2777 bnx2x_nic_load_afex_dcc(bp, load_code); 2778 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2779 rc = bnx2x_func_start(bp); 2780 if (rc) { 2781 BNX2X_ERR("Function start failed!\n"); 2782 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2783 2784 LOAD_ERROR_EXIT(bp, load_error3); 2785 } 2786 2787 /* Send LOAD_DONE command to MCP */ 2788 if (!BP_NOMCP(bp)) { 2789 load_code = bnx2x_fw_command(bp, 2790 DRV_MSG_CODE_LOAD_DONE, 0); 2791 if (!load_code) { 2792 BNX2X_ERR("MCP response failure, aborting\n"); 2793 rc = -EBUSY; 2794 LOAD_ERROR_EXIT(bp, load_error3); 2795 } 2796 } 2797 2798 /* initialize FW coalescing state machines in RAM */ 2799 bnx2x_update_coalesce(bp); 2800 } 2801 2802 /* setup the leading queue */ 2803 rc = bnx2x_setup_leading(bp); 2804 if (rc) { 2805 BNX2X_ERR("Setup leading failed!\n"); 2806 LOAD_ERROR_EXIT(bp, load_error3); 2807 } 2808 2809 /* set up the rest of the queues */ 2810 for_each_nondefault_eth_queue(bp, i) { 2811 if (IS_PF(bp)) 2812 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2813 else /* VF */ 2814 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2815 if (rc) { 2816 BNX2X_ERR("Queue %d setup failed\n", i); 2817 LOAD_ERROR_EXIT(bp, load_error3); 2818 } 2819 } 2820 2821 /* setup rss */ 2822 rc = bnx2x_init_rss(bp); 2823 if (rc) { 2824 BNX2X_ERR("PF RSS init failed\n"); 2825 LOAD_ERROR_EXIT(bp, load_error3); 2826 } 2827 2828 /* Now when Clients are configured we are ready to work */ 2829 bp->state = BNX2X_STATE_OPEN; 2830 2831 /* Configure a ucast MAC */ 2832 if (IS_PF(bp)) 2833 rc = bnx2x_set_eth_mac(bp, true); 2834 else /* vf */ 2835 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2836 true); 2837 if (rc) { 2838 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2839 LOAD_ERROR_EXIT(bp, load_error3); 2840 } 2841 2842 if (IS_PF(bp) && bp->pending_max) { 2843 bnx2x_update_max_mf_config(bp, bp->pending_max); 2844 bp->pending_max = 0; 2845 } 2846 2847 bp->force_link_down = false; 2848 if (bp->port.pmf) { 2849 rc = bnx2x_initial_phy_init(bp, load_mode); 2850 if (rc) 2851 LOAD_ERROR_EXIT(bp, load_error3); 2852 } 2853 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2854 2855 /* Start fast path */ 2856 2857 /* Re-configure vlan filters */ 2858 rc = bnx2x_vlan_reconfigure_vid(bp); 2859 if (rc) 2860 LOAD_ERROR_EXIT(bp, load_error3); 2861 2862 /* Initialize Rx filter. */ 2863 bnx2x_set_rx_mode_inner(bp); 2864 2865 if (bp->flags & PTP_SUPPORTED) { 2866 bnx2x_register_phc(bp); 2867 bnx2x_init_ptp(bp); 2868 bnx2x_configure_ptp_filters(bp); 2869 } 2870 /* Start Tx */ 2871 switch (load_mode) { 2872 case LOAD_NORMAL: 2873 /* Tx queue should be only re-enabled */ 2874 netif_tx_wake_all_queues(bp->dev); 2875 break; 2876 2877 case LOAD_OPEN: 2878 netif_tx_start_all_queues(bp->dev); 2879 smp_mb__after_atomic(); 2880 break; 2881 2882 case LOAD_DIAG: 2883 case LOAD_LOOPBACK_EXT: 2884 bp->state = BNX2X_STATE_DIAG; 2885 break; 2886 2887 default: 2888 break; 2889 } 2890 2891 if (bp->port.pmf) 2892 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2893 else 2894 bnx2x__link_status_update(bp); 2895 2896 /* start the timer */ 2897 mod_timer(&bp->timer, jiffies + bp->current_interval); 2898 2899 if (CNIC_ENABLED(bp)) 2900 bnx2x_load_cnic(bp); 2901 2902 if (IS_PF(bp)) 2903 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 2904 2905 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2906 /* mark driver is loaded in shmem2 */ 2907 u32 val; 2908 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2909 val &= ~DRV_FLAGS_MTU_MASK; 2910 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT); 2911 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2912 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2913 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2914 } 2915 2916 /* Wait for all pending SP commands to complete */ 2917 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2918 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2919 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2920 return -EBUSY; 2921 } 2922 2923 /* Update driver data for On-Chip MFW dump. */ 2924 if (IS_PF(bp)) 2925 bnx2x_update_mfw_dump(bp); 2926 2927 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2928 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2929 bnx2x_dcbx_init(bp, false); 2930 2931 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2932 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE); 2933 2934 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2935 2936 return 0; 2937 2938 #ifndef BNX2X_STOP_ON_ERROR 2939 load_error3: 2940 if (IS_PF(bp)) { 2941 bnx2x_int_disable_sync(bp, 1); 2942 2943 /* Clean queueable objects */ 2944 bnx2x_squeeze_objects(bp); 2945 } 2946 2947 /* Free SKBs, SGEs, TPA pool and driver internals */ 2948 bnx2x_free_skbs(bp); 2949 for_each_rx_queue(bp, i) 2950 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2951 2952 /* Release IRQs */ 2953 bnx2x_free_irq(bp); 2954 load_error2: 2955 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2956 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2957 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2958 } 2959 2960 bp->port.pmf = 0; 2961 load_error1: 2962 bnx2x_napi_disable(bp); 2963 bnx2x_del_all_napi(bp); 2964 2965 /* clear pf_load status, as it was already set */ 2966 if (IS_PF(bp)) 2967 bnx2x_clear_pf_load(bp); 2968 load_error0: 2969 bnx2x_free_fw_stats_mem(bp); 2970 bnx2x_free_fp_mem(bp); 2971 bnx2x_free_mem(bp); 2972 2973 return rc; 2974 #endif /* ! BNX2X_STOP_ON_ERROR */ 2975 } 2976 2977 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2978 { 2979 u8 rc = 0, cos, i; 2980 2981 /* Wait until tx fastpath tasks complete */ 2982 for_each_tx_queue(bp, i) { 2983 struct bnx2x_fastpath *fp = &bp->fp[i]; 2984 2985 for_each_cos_in_tx_queue(fp, cos) 2986 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2987 if (rc) 2988 return rc; 2989 } 2990 return 0; 2991 } 2992 2993 /* must be called with rtnl_lock */ 2994 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2995 { 2996 int i; 2997 bool global = false; 2998 2999 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 3000 3001 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 3002 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 3003 3004 /* mark driver is unloaded in shmem2 */ 3005 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 3006 u32 val; 3007 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 3008 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 3009 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 3010 } 3011 3012 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 3013 (bp->state == BNX2X_STATE_CLOSED || 3014 bp->state == BNX2X_STATE_ERROR)) { 3015 /* We can get here if the driver has been unloaded 3016 * during parity error recovery and is either waiting for a 3017 * leader to complete or for other functions to unload and 3018 * then ifdown has been issued. In this case we want to 3019 * unload and let other functions to complete a recovery 3020 * process. 3021 */ 3022 bp->recovery_state = BNX2X_RECOVERY_DONE; 3023 bp->is_leader = 0; 3024 bnx2x_release_leader_lock(bp); 3025 smp_mb(); 3026 3027 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 3028 BNX2X_ERR("Can't unload in closed or error state\n"); 3029 return -EINVAL; 3030 } 3031 3032 /* Nothing to do during unload if previous bnx2x_nic_load() 3033 * have not completed successfully - all resources are released. 3034 * 3035 * we can get here only after unsuccessful ndo_* callback, during which 3036 * dev->IFF_UP flag is still on. 3037 */ 3038 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 3039 return 0; 3040 3041 /* It's important to set the bp->state to the value different from 3042 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 3043 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 3044 */ 3045 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 3046 smp_mb(); 3047 3048 /* indicate to VFs that the PF is going down */ 3049 bnx2x_iov_channel_down(bp); 3050 3051 if (CNIC_LOADED(bp)) 3052 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 3053 3054 /* Stop Tx */ 3055 bnx2x_tx_disable(bp); 3056 netdev_reset_tc(bp->dev); 3057 3058 bp->rx_mode = BNX2X_RX_MODE_NONE; 3059 3060 del_timer_sync(&bp->timer); 3061 3062 if (IS_PF(bp) && !BP_NOMCP(bp)) { 3063 /* Set ALWAYS_ALIVE bit in shmem */ 3064 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 3065 bnx2x_drv_pulse(bp); 3066 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 3067 bnx2x_save_statistics(bp); 3068 } 3069 3070 /* wait till consumers catch up with producers in all queues. 3071 * If we're recovering, FW can't write to host so no reason 3072 * to wait for the queues to complete all Tx. 3073 */ 3074 if (unload_mode != UNLOAD_RECOVERY) 3075 bnx2x_drain_tx_queues(bp); 3076 3077 /* if VF indicate to PF this function is going down (PF will delete sp 3078 * elements and clear initializations 3079 */ 3080 if (IS_VF(bp)) { 3081 bnx2x_clear_vlan_info(bp); 3082 bnx2x_vfpf_close_vf(bp); 3083 } else if (unload_mode != UNLOAD_RECOVERY) { 3084 /* if this is a normal/close unload need to clean up chip*/ 3085 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 3086 } else { 3087 /* Send the UNLOAD_REQUEST to the MCP */ 3088 bnx2x_send_unload_req(bp, unload_mode); 3089 3090 /* Prevent transactions to host from the functions on the 3091 * engine that doesn't reset global blocks in case of global 3092 * attention once global blocks are reset and gates are opened 3093 * (the engine which leader will perform the recovery 3094 * last). 3095 */ 3096 if (!CHIP_IS_E1x(bp)) 3097 bnx2x_pf_disable(bp); 3098 3099 /* Disable HW interrupts, NAPI */ 3100 bnx2x_netif_stop(bp, 1); 3101 /* Delete all NAPI objects */ 3102 bnx2x_del_all_napi(bp); 3103 if (CNIC_LOADED(bp)) 3104 bnx2x_del_all_napi_cnic(bp); 3105 /* Release IRQs */ 3106 bnx2x_free_irq(bp); 3107 3108 /* Report UNLOAD_DONE to MCP */ 3109 bnx2x_send_unload_done(bp, false); 3110 } 3111 3112 /* 3113 * At this stage no more interrupts will arrive so we may safely clean 3114 * the queueable objects here in case they failed to get cleaned so far. 3115 */ 3116 if (IS_PF(bp)) 3117 bnx2x_squeeze_objects(bp); 3118 3119 /* There should be no more pending SP commands at this stage */ 3120 bp->sp_state = 0; 3121 3122 bp->port.pmf = 0; 3123 3124 /* clear pending work in rtnl task */ 3125 bp->sp_rtnl_state = 0; 3126 smp_mb(); 3127 3128 /* Free SKBs, SGEs, TPA pool and driver internals */ 3129 bnx2x_free_skbs(bp); 3130 if (CNIC_LOADED(bp)) 3131 bnx2x_free_skbs_cnic(bp); 3132 for_each_rx_queue(bp, i) 3133 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3134 3135 bnx2x_free_fp_mem(bp); 3136 if (CNIC_LOADED(bp)) 3137 bnx2x_free_fp_mem_cnic(bp); 3138 3139 if (IS_PF(bp)) { 3140 if (CNIC_LOADED(bp)) 3141 bnx2x_free_mem_cnic(bp); 3142 } 3143 bnx2x_free_mem(bp); 3144 3145 bp->state = BNX2X_STATE_CLOSED; 3146 bp->cnic_loaded = false; 3147 3148 /* Clear driver version indication in shmem */ 3149 if (IS_PF(bp) && !BP_NOMCP(bp)) 3150 bnx2x_update_mng_version(bp); 3151 3152 /* Check if there are pending parity attentions. If there are - set 3153 * RECOVERY_IN_PROGRESS. 3154 */ 3155 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3156 bnx2x_set_reset_in_progress(bp); 3157 3158 /* Set RESET_IS_GLOBAL if needed */ 3159 if (global) 3160 bnx2x_set_reset_global(bp); 3161 } 3162 3163 /* The last driver must disable a "close the gate" if there is no 3164 * parity attention or "process kill" pending. 3165 */ 3166 if (IS_PF(bp) && 3167 !bnx2x_clear_pf_load(bp) && 3168 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3169 bnx2x_disable_close_the_gate(bp); 3170 3171 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3172 3173 return 0; 3174 } 3175 3176 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3177 { 3178 u16 pmcsr; 3179 3180 /* If there is no power capability, silently succeed */ 3181 if (!bp->pdev->pm_cap) { 3182 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3183 return 0; 3184 } 3185 3186 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3187 3188 switch (state) { 3189 case PCI_D0: 3190 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3191 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3192 PCI_PM_CTRL_PME_STATUS)); 3193 3194 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3195 /* delay required during transition out of D3hot */ 3196 msleep(20); 3197 break; 3198 3199 case PCI_D3hot: 3200 /* If there are other clients above don't 3201 shut down the power */ 3202 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3203 return 0; 3204 /* Don't shut down the power for emulation and FPGA */ 3205 if (CHIP_REV_IS_SLOW(bp)) 3206 return 0; 3207 3208 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3209 pmcsr |= 3; 3210 3211 if (bp->wol) 3212 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3213 3214 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3215 pmcsr); 3216 3217 /* No more memory access after this point until 3218 * device is brought back to D0. 3219 */ 3220 break; 3221 3222 default: 3223 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3224 return -EINVAL; 3225 } 3226 return 0; 3227 } 3228 3229 /* 3230 * net_device service functions 3231 */ 3232 static int bnx2x_poll(struct napi_struct *napi, int budget) 3233 { 3234 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3235 napi); 3236 struct bnx2x *bp = fp->bp; 3237 int rx_work_done; 3238 u8 cos; 3239 3240 #ifdef BNX2X_STOP_ON_ERROR 3241 if (unlikely(bp->panic)) { 3242 napi_complete(napi); 3243 return 0; 3244 } 3245 #endif 3246 for_each_cos_in_tx_queue(fp, cos) 3247 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3248 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3249 3250 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0; 3251 3252 if (rx_work_done < budget) { 3253 /* No need to update SB for FCoE L2 ring as long as 3254 * it's connected to the default SB and the SB 3255 * has been updated when NAPI was scheduled. 3256 */ 3257 if (IS_FCOE_FP(fp)) { 3258 napi_complete_done(napi, rx_work_done); 3259 } else { 3260 bnx2x_update_fpsb_idx(fp); 3261 /* bnx2x_has_rx_work() reads the status block, 3262 * thus we need to ensure that status block indices 3263 * have been actually read (bnx2x_update_fpsb_idx) 3264 * prior to this check (bnx2x_has_rx_work) so that 3265 * we won't write the "newer" value of the status block 3266 * to IGU (if there was a DMA right after 3267 * bnx2x_has_rx_work and if there is no rmb, the memory 3268 * reading (bnx2x_update_fpsb_idx) may be postponed 3269 * to right before bnx2x_ack_sb). In this case there 3270 * will never be another interrupt until there is 3271 * another update of the status block, while there 3272 * is still unhandled work. 3273 */ 3274 rmb(); 3275 3276 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3277 if (napi_complete_done(napi, rx_work_done)) { 3278 /* Re-enable interrupts */ 3279 DP(NETIF_MSG_RX_STATUS, 3280 "Update index to %d\n", fp->fp_hc_idx); 3281 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3282 le16_to_cpu(fp->fp_hc_idx), 3283 IGU_INT_ENABLE, 1); 3284 } 3285 } else { 3286 rx_work_done = budget; 3287 } 3288 } 3289 } 3290 3291 return rx_work_done; 3292 } 3293 3294 /* we split the first BD into headers and data BDs 3295 * to ease the pain of our fellow microcode engineers 3296 * we use one mapping for both BDs 3297 */ 3298 static u16 bnx2x_tx_split(struct bnx2x *bp, 3299 struct bnx2x_fp_txdata *txdata, 3300 struct sw_tx_bd *tx_buf, 3301 struct eth_tx_start_bd **tx_bd, u16 hlen, 3302 u16 bd_prod) 3303 { 3304 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3305 struct eth_tx_bd *d_tx_bd; 3306 dma_addr_t mapping; 3307 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3308 3309 /* first fix first BD */ 3310 h_tx_bd->nbytes = cpu_to_le16(hlen); 3311 3312 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3313 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3314 3315 /* now get a new data BD 3316 * (after the pbd) and fill it */ 3317 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3318 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3319 3320 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3321 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3322 3323 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3324 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3325 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3326 3327 /* this marks the BD as one that has no individual mapping */ 3328 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3329 3330 DP(NETIF_MSG_TX_QUEUED, 3331 "TSO split data size is %d (%x:%x)\n", 3332 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3333 3334 /* update tx_bd */ 3335 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3336 3337 return bd_prod; 3338 } 3339 3340 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3341 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3342 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3343 { 3344 __sum16 tsum = (__force __sum16) csum; 3345 3346 if (fix > 0) 3347 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3348 csum_partial(t_header - fix, fix, 0))); 3349 3350 else if (fix < 0) 3351 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3352 csum_partial(t_header, -fix, 0))); 3353 3354 return bswab16(tsum); 3355 } 3356 3357 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3358 { 3359 u32 rc; 3360 __u8 prot = 0; 3361 __be16 protocol; 3362 3363 if (skb->ip_summed != CHECKSUM_PARTIAL) 3364 return XMIT_PLAIN; 3365 3366 protocol = vlan_get_protocol(skb); 3367 if (protocol == htons(ETH_P_IPV6)) { 3368 rc = XMIT_CSUM_V6; 3369 prot = ipv6_hdr(skb)->nexthdr; 3370 } else { 3371 rc = XMIT_CSUM_V4; 3372 prot = ip_hdr(skb)->protocol; 3373 } 3374 3375 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3376 if (inner_ip_hdr(skb)->version == 6) { 3377 rc |= XMIT_CSUM_ENC_V6; 3378 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3379 rc |= XMIT_CSUM_TCP; 3380 } else { 3381 rc |= XMIT_CSUM_ENC_V4; 3382 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3383 rc |= XMIT_CSUM_TCP; 3384 } 3385 } 3386 if (prot == IPPROTO_TCP) 3387 rc |= XMIT_CSUM_TCP; 3388 3389 if (skb_is_gso(skb)) { 3390 if (skb_is_gso_v6(skb)) { 3391 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3392 if (rc & XMIT_CSUM_ENC) 3393 rc |= XMIT_GSO_ENC_V6; 3394 } else { 3395 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3396 if (rc & XMIT_CSUM_ENC) 3397 rc |= XMIT_GSO_ENC_V4; 3398 } 3399 } 3400 3401 return rc; 3402 } 3403 3404 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */ 3405 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4 3406 3407 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3408 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3 3409 3410 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3411 /* check if packet requires linearization (packet is too fragmented) 3412 no need to check fragmentation if page size > 8K (there will be no 3413 violation to FW restrictions) */ 3414 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3415 u32 xmit_type) 3416 { 3417 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS; 3418 int to_copy = 0, hlen = 0; 3419 3420 if (xmit_type & XMIT_GSO_ENC) 3421 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS; 3422 3423 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) { 3424 if (xmit_type & XMIT_GSO) { 3425 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3426 int wnd_size = MAX_FETCH_BD - num_tso_win_sub; 3427 /* Number of windows to check */ 3428 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3429 int wnd_idx = 0; 3430 int frag_idx = 0; 3431 u32 wnd_sum = 0; 3432 3433 /* Headers length */ 3434 if (xmit_type & XMIT_GSO_ENC) 3435 hlen = skb_inner_tcp_all_headers(skb); 3436 else 3437 hlen = skb_tcp_all_headers(skb); 3438 3439 /* Amount of data (w/o headers) on linear part of SKB*/ 3440 first_bd_sz = skb_headlen(skb) - hlen; 3441 3442 wnd_sum = first_bd_sz; 3443 3444 /* Calculate the first sum - it's special */ 3445 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3446 wnd_sum += 3447 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3448 3449 /* If there was data on linear skb data - check it */ 3450 if (first_bd_sz > 0) { 3451 if (unlikely(wnd_sum < lso_mss)) { 3452 to_copy = 1; 3453 goto exit_lbl; 3454 } 3455 3456 wnd_sum -= first_bd_sz; 3457 } 3458 3459 /* Others are easier: run through the frag list and 3460 check all windows */ 3461 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3462 wnd_sum += 3463 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3464 3465 if (unlikely(wnd_sum < lso_mss)) { 3466 to_copy = 1; 3467 break; 3468 } 3469 wnd_sum -= 3470 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3471 } 3472 } else { 3473 /* in non-LSO too fragmented packet should always 3474 be linearized */ 3475 to_copy = 1; 3476 } 3477 } 3478 3479 exit_lbl: 3480 if (unlikely(to_copy)) 3481 DP(NETIF_MSG_TX_QUEUED, 3482 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3483 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3484 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3485 3486 return to_copy; 3487 } 3488 #endif 3489 3490 /** 3491 * bnx2x_set_pbd_gso - update PBD in GSO case. 3492 * 3493 * @skb: packet skb 3494 * @pbd: parse BD 3495 * @xmit_type: xmit flags 3496 */ 3497 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3498 struct eth_tx_parse_bd_e1x *pbd, 3499 u32 xmit_type) 3500 { 3501 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3502 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3503 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3504 3505 if (xmit_type & XMIT_GSO_V4) { 3506 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3507 pbd->tcp_pseudo_csum = 3508 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3509 ip_hdr(skb)->daddr, 3510 0, IPPROTO_TCP, 0)); 3511 } else { 3512 pbd->tcp_pseudo_csum = 3513 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3514 &ipv6_hdr(skb)->daddr, 3515 0, IPPROTO_TCP, 0)); 3516 } 3517 3518 pbd->global_data |= 3519 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3520 } 3521 3522 /** 3523 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3524 * 3525 * @bp: driver handle 3526 * @skb: packet skb 3527 * @parsing_data: data to be updated 3528 * @xmit_type: xmit flags 3529 * 3530 * 57712/578xx related, when skb has encapsulation 3531 */ 3532 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3533 u32 *parsing_data, u32 xmit_type) 3534 { 3535 *parsing_data |= 3536 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3537 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3538 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3539 3540 if (xmit_type & XMIT_CSUM_TCP) { 3541 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3542 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3543 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3544 3545 return skb_inner_tcp_all_headers(skb); 3546 } 3547 3548 /* We support checksum offload for TCP and UDP only. 3549 * No need to pass the UDP header length - it's a constant. 3550 */ 3551 return skb_inner_transport_offset(skb) + sizeof(struct udphdr); 3552 } 3553 3554 /** 3555 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3556 * 3557 * @bp: driver handle 3558 * @skb: packet skb 3559 * @parsing_data: data to be updated 3560 * @xmit_type: xmit flags 3561 * 3562 * 57712/578xx related 3563 */ 3564 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3565 u32 *parsing_data, u32 xmit_type) 3566 { 3567 *parsing_data |= 3568 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3569 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3570 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3571 3572 if (xmit_type & XMIT_CSUM_TCP) { 3573 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3574 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3575 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3576 3577 return skb_tcp_all_headers(skb); 3578 } 3579 /* We support checksum offload for TCP and UDP only. 3580 * No need to pass the UDP header length - it's a constant. 3581 */ 3582 return skb_transport_offset(skb) + sizeof(struct udphdr); 3583 } 3584 3585 /* set FW indication according to inner or outer protocols if tunneled */ 3586 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3587 struct eth_tx_start_bd *tx_start_bd, 3588 u32 xmit_type) 3589 { 3590 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3591 3592 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3593 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3594 3595 if (!(xmit_type & XMIT_CSUM_TCP)) 3596 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3597 } 3598 3599 /** 3600 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3601 * 3602 * @bp: driver handle 3603 * @skb: packet skb 3604 * @pbd: parse BD to be updated 3605 * @xmit_type: xmit flags 3606 */ 3607 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3608 struct eth_tx_parse_bd_e1x *pbd, 3609 u32 xmit_type) 3610 { 3611 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3612 3613 /* for now NS flag is not used in Linux */ 3614 pbd->global_data = 3615 cpu_to_le16(hlen | 3616 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3617 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3618 3619 pbd->ip_hlen_w = (skb_transport_header(skb) - 3620 skb_network_header(skb)) >> 1; 3621 3622 hlen += pbd->ip_hlen_w; 3623 3624 /* We support checksum offload for TCP and UDP only */ 3625 if (xmit_type & XMIT_CSUM_TCP) 3626 hlen += tcp_hdrlen(skb) / 2; 3627 else 3628 hlen += sizeof(struct udphdr) / 2; 3629 3630 pbd->total_hlen_w = cpu_to_le16(hlen); 3631 hlen = hlen*2; 3632 3633 if (xmit_type & XMIT_CSUM_TCP) { 3634 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3635 3636 } else { 3637 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3638 3639 DP(NETIF_MSG_TX_QUEUED, 3640 "hlen %d fix %d csum before fix %x\n", 3641 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3642 3643 /* HW bug: fixup the CSUM */ 3644 pbd->tcp_pseudo_csum = 3645 bnx2x_csum_fix(skb_transport_header(skb), 3646 SKB_CS(skb), fix); 3647 3648 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3649 pbd->tcp_pseudo_csum); 3650 } 3651 3652 return hlen; 3653 } 3654 3655 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3656 struct eth_tx_parse_bd_e2 *pbd_e2, 3657 struct eth_tx_parse_2nd_bd *pbd2, 3658 u16 *global_data, 3659 u32 xmit_type) 3660 { 3661 u16 hlen_w = 0; 3662 u8 outerip_off, outerip_len = 0; 3663 3664 /* from outer IP to transport */ 3665 hlen_w = (skb_inner_transport_header(skb) - 3666 skb_network_header(skb)) >> 1; 3667 3668 /* transport len */ 3669 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3670 3671 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3672 3673 /* outer IP header info */ 3674 if (xmit_type & XMIT_CSUM_V4) { 3675 struct iphdr *iph = ip_hdr(skb); 3676 u32 csum = (__force u32)(~iph->check) - 3677 (__force u32)iph->tot_len - 3678 (__force u32)iph->frag_off; 3679 3680 outerip_len = iph->ihl << 1; 3681 3682 pbd2->fw_ip_csum_wo_len_flags_frag = 3683 bswab16(csum_fold((__force __wsum)csum)); 3684 } else { 3685 pbd2->fw_ip_hdr_to_payload_w = 3686 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3687 pbd_e2->data.tunnel_data.flags |= 3688 ETH_TUNNEL_DATA_IPV6_OUTER; 3689 } 3690 3691 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3692 3693 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3694 3695 /* inner IP header info */ 3696 if (xmit_type & XMIT_CSUM_ENC_V4) { 3697 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3698 3699 pbd_e2->data.tunnel_data.pseudo_csum = 3700 bswab16(~csum_tcpudp_magic( 3701 inner_ip_hdr(skb)->saddr, 3702 inner_ip_hdr(skb)->daddr, 3703 0, IPPROTO_TCP, 0)); 3704 } else { 3705 pbd_e2->data.tunnel_data.pseudo_csum = 3706 bswab16(~csum_ipv6_magic( 3707 &inner_ipv6_hdr(skb)->saddr, 3708 &inner_ipv6_hdr(skb)->daddr, 3709 0, IPPROTO_TCP, 0)); 3710 } 3711 3712 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3713 3714 *global_data |= 3715 outerip_off | 3716 (outerip_len << 3717 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3718 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3719 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3720 3721 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3722 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3723 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3724 } 3725 } 3726 3727 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data, 3728 u32 xmit_type) 3729 { 3730 struct ipv6hdr *ipv6; 3731 3732 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6))) 3733 return; 3734 3735 if (xmit_type & XMIT_GSO_ENC_V6) 3736 ipv6 = inner_ipv6_hdr(skb); 3737 else /* XMIT_GSO_V6 */ 3738 ipv6 = ipv6_hdr(skb); 3739 3740 if (ipv6->nexthdr == NEXTHDR_IPV6) 3741 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3742 } 3743 3744 /* called with netif_tx_lock 3745 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3746 * netif_wake_queue() 3747 */ 3748 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3749 { 3750 struct bnx2x *bp = netdev_priv(dev); 3751 3752 struct netdev_queue *txq; 3753 struct bnx2x_fp_txdata *txdata; 3754 struct sw_tx_bd *tx_buf; 3755 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3756 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3757 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3758 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3759 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3760 u32 pbd_e2_parsing_data = 0; 3761 u16 pkt_prod, bd_prod; 3762 int nbd, txq_index; 3763 dma_addr_t mapping; 3764 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3765 int i; 3766 u8 hlen = 0; 3767 __le16 pkt_size = 0; 3768 struct ethhdr *eth; 3769 u8 mac_type = UNICAST_ADDRESS; 3770 3771 #ifdef BNX2X_STOP_ON_ERROR 3772 if (unlikely(bp->panic)) 3773 return NETDEV_TX_BUSY; 3774 #endif 3775 3776 txq_index = skb_get_queue_mapping(skb); 3777 txq = netdev_get_tx_queue(dev, txq_index); 3778 3779 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3780 3781 txdata = &bp->bnx2x_txq[txq_index]; 3782 3783 /* enable this debug print to view the transmission queue being used 3784 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3785 txq_index, fp_index, txdata_index); */ 3786 3787 /* enable this debug print to view the transmission details 3788 DP(NETIF_MSG_TX_QUEUED, 3789 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3790 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3791 3792 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3793 skb_shinfo(skb)->nr_frags + 3794 BDS_PER_TX_PKT + 3795 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3796 /* Handle special storage cases separately */ 3797 if (txdata->tx_ring_size == 0) { 3798 struct bnx2x_eth_q_stats *q_stats = 3799 bnx2x_fp_qstats(bp, txdata->parent_fp); 3800 q_stats->driver_filtered_tx_pkt++; 3801 dev_kfree_skb(skb); 3802 return NETDEV_TX_OK; 3803 } 3804 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3805 netif_tx_stop_queue(txq); 3806 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3807 3808 return NETDEV_TX_BUSY; 3809 } 3810 3811 DP(NETIF_MSG_TX_QUEUED, 3812 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3813 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3814 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3815 skb->len); 3816 3817 eth = (struct ethhdr *)skb->data; 3818 3819 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3820 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3821 if (is_broadcast_ether_addr(eth->h_dest)) 3822 mac_type = BROADCAST_ADDRESS; 3823 else 3824 mac_type = MULTICAST_ADDRESS; 3825 } 3826 3827 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3828 /* First, check if we need to linearize the skb (due to FW 3829 restrictions). No need to check fragmentation if page size > 8K 3830 (there will be no violation to FW restrictions) */ 3831 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3832 /* Statistics of linearization */ 3833 bp->lin_cnt++; 3834 if (skb_linearize(skb) != 0) { 3835 DP(NETIF_MSG_TX_QUEUED, 3836 "SKB linearization failed - silently dropping this SKB\n"); 3837 dev_kfree_skb_any(skb); 3838 return NETDEV_TX_OK; 3839 } 3840 } 3841 #endif 3842 /* Map skb linear data for DMA */ 3843 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3844 skb_headlen(skb), DMA_TO_DEVICE); 3845 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3846 DP(NETIF_MSG_TX_QUEUED, 3847 "SKB mapping failed - silently dropping this SKB\n"); 3848 dev_kfree_skb_any(skb); 3849 return NETDEV_TX_OK; 3850 } 3851 /* 3852 Please read carefully. First we use one BD which we mark as start, 3853 then we have a parsing info BD (used for TSO or xsum), 3854 and only then we have the rest of the TSO BDs. 3855 (don't forget to mark the last one as last, 3856 and to unmap only AFTER you write to the BD ...) 3857 And above all, all pdb sizes are in words - NOT DWORDS! 3858 */ 3859 3860 /* get current pkt produced now - advance it just before sending packet 3861 * since mapping of pages may fail and cause packet to be dropped 3862 */ 3863 pkt_prod = txdata->tx_pkt_prod; 3864 bd_prod = TX_BD(txdata->tx_bd_prod); 3865 3866 /* get a tx_buf and first BD 3867 * tx_start_bd may be changed during SPLIT, 3868 * but first_bd will always stay first 3869 */ 3870 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3871 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3872 first_bd = tx_start_bd; 3873 3874 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3875 3876 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3877 if (!(bp->flags & TX_TIMESTAMPING_EN)) { 3878 bp->eth_stats.ptp_skip_tx_ts++; 3879 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n"); 3880 } else if (bp->ptp_tx_skb) { 3881 bp->eth_stats.ptp_skip_tx_ts++; 3882 netdev_err_once(bp->dev, 3883 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n"); 3884 } else { 3885 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3886 /* schedule check for Tx timestamp */ 3887 bp->ptp_tx_skb = skb_get(skb); 3888 bp->ptp_tx_start = jiffies; 3889 schedule_work(&bp->ptp_task); 3890 } 3891 } 3892 3893 /* header nbd: indirectly zero other flags! */ 3894 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3895 3896 /* remember the first BD of the packet */ 3897 tx_buf->first_bd = txdata->tx_bd_prod; 3898 tx_buf->skb = skb; 3899 tx_buf->flags = 0; 3900 3901 DP(NETIF_MSG_TX_QUEUED, 3902 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3903 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3904 3905 if (skb_vlan_tag_present(skb)) { 3906 tx_start_bd->vlan_or_ethertype = 3907 cpu_to_le16(skb_vlan_tag_get(skb)); 3908 tx_start_bd->bd_flags.as_bitfield |= 3909 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3910 } else { 3911 /* when transmitting in a vf, start bd must hold the ethertype 3912 * for fw to enforce it 3913 */ 3914 u16 vlan_tci = 0; 3915 #ifndef BNX2X_STOP_ON_ERROR 3916 if (IS_VF(bp)) { 3917 #endif 3918 /* Still need to consider inband vlan for enforced */ 3919 if (__vlan_get_tag(skb, &vlan_tci)) { 3920 tx_start_bd->vlan_or_ethertype = 3921 cpu_to_le16(ntohs(eth->h_proto)); 3922 } else { 3923 tx_start_bd->bd_flags.as_bitfield |= 3924 (X_ETH_INBAND_VLAN << 3925 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3926 tx_start_bd->vlan_or_ethertype = 3927 cpu_to_le16(vlan_tci); 3928 } 3929 #ifndef BNX2X_STOP_ON_ERROR 3930 } else { 3931 /* used by FW for packet accounting */ 3932 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3933 } 3934 #endif 3935 } 3936 3937 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3938 3939 /* turn on parsing and get a BD */ 3940 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3941 3942 if (xmit_type & XMIT_CSUM) 3943 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3944 3945 if (!CHIP_IS_E1x(bp)) { 3946 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3947 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3948 3949 if (xmit_type & XMIT_CSUM_ENC) { 3950 u16 global_data = 0; 3951 3952 /* Set PBD in enc checksum offload case */ 3953 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3954 &pbd_e2_parsing_data, 3955 xmit_type); 3956 3957 /* turn on 2nd parsing and get a BD */ 3958 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3959 3960 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3961 3962 memset(pbd2, 0, sizeof(*pbd2)); 3963 3964 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3965 (skb_inner_network_header(skb) - 3966 skb->data) >> 1; 3967 3968 if (xmit_type & XMIT_GSO_ENC) 3969 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3970 &global_data, 3971 xmit_type); 3972 3973 pbd2->global_data = cpu_to_le16(global_data); 3974 3975 /* add addition parse BD indication to start BD */ 3976 SET_FLAG(tx_start_bd->general_data, 3977 ETH_TX_START_BD_PARSE_NBDS, 1); 3978 /* set encapsulation flag in start BD */ 3979 SET_FLAG(tx_start_bd->general_data, 3980 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3981 3982 tx_buf->flags |= BNX2X_HAS_SECOND_PBD; 3983 3984 nbd++; 3985 } else if (xmit_type & XMIT_CSUM) { 3986 /* Set PBD in checksum offload case w/o encapsulation */ 3987 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3988 &pbd_e2_parsing_data, 3989 xmit_type); 3990 } 3991 3992 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type); 3993 /* Add the macs to the parsing BD if this is a vf or if 3994 * Tx Switching is enabled. 3995 */ 3996 if (IS_VF(bp)) { 3997 /* override GRE parameters in BD */ 3998 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3999 &pbd_e2->data.mac_addr.src_mid, 4000 &pbd_e2->data.mac_addr.src_lo, 4001 eth->h_source); 4002 4003 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 4004 &pbd_e2->data.mac_addr.dst_mid, 4005 &pbd_e2->data.mac_addr.dst_lo, 4006 eth->h_dest); 4007 } else { 4008 if (bp->flags & TX_SWITCHING) 4009 bnx2x_set_fw_mac_addr( 4010 &pbd_e2->data.mac_addr.dst_hi, 4011 &pbd_e2->data.mac_addr.dst_mid, 4012 &pbd_e2->data.mac_addr.dst_lo, 4013 eth->h_dest); 4014 #ifdef BNX2X_STOP_ON_ERROR 4015 /* Enforce security is always set in Stop on Error - 4016 * source mac should be present in the parsing BD 4017 */ 4018 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 4019 &pbd_e2->data.mac_addr.src_mid, 4020 &pbd_e2->data.mac_addr.src_lo, 4021 eth->h_source); 4022 #endif 4023 } 4024 4025 SET_FLAG(pbd_e2_parsing_data, 4026 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 4027 } else { 4028 u16 global_data = 0; 4029 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 4030 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 4031 /* Set PBD in checksum offload case */ 4032 if (xmit_type & XMIT_CSUM) 4033 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 4034 4035 SET_FLAG(global_data, 4036 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 4037 pbd_e1x->global_data |= cpu_to_le16(global_data); 4038 } 4039 4040 /* Setup the data pointer of the first BD of the packet */ 4041 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4042 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4043 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 4044 pkt_size = tx_start_bd->nbytes; 4045 4046 DP(NETIF_MSG_TX_QUEUED, 4047 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 4048 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 4049 le16_to_cpu(tx_start_bd->nbytes), 4050 tx_start_bd->bd_flags.as_bitfield, 4051 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 4052 4053 if (xmit_type & XMIT_GSO) { 4054 4055 DP(NETIF_MSG_TX_QUEUED, 4056 "TSO packet len %d hlen %d total len %d tso size %d\n", 4057 skb->len, hlen, skb_headlen(skb), 4058 skb_shinfo(skb)->gso_size); 4059 4060 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 4061 4062 if (unlikely(skb_headlen(skb) > hlen)) { 4063 nbd++; 4064 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 4065 &tx_start_bd, hlen, 4066 bd_prod); 4067 } 4068 if (!CHIP_IS_E1x(bp)) 4069 pbd_e2_parsing_data |= 4070 (skb_shinfo(skb)->gso_size << 4071 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 4072 ETH_TX_PARSE_BD_E2_LSO_MSS; 4073 else 4074 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); 4075 } 4076 4077 /* Set the PBD's parsing_data field if not zero 4078 * (for the chips newer than 57711). 4079 */ 4080 if (pbd_e2_parsing_data) 4081 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 4082 4083 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 4084 4085 /* Handle fragmented skb */ 4086 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4087 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4088 4089 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 4090 skb_frag_size(frag), DMA_TO_DEVICE); 4091 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 4092 unsigned int pkts_compl = 0, bytes_compl = 0; 4093 4094 DP(NETIF_MSG_TX_QUEUED, 4095 "Unable to map page - dropping packet...\n"); 4096 4097 /* we need unmap all buffers already mapped 4098 * for this SKB; 4099 * first_bd->nbd need to be properly updated 4100 * before call to bnx2x_free_tx_pkt 4101 */ 4102 first_bd->nbd = cpu_to_le16(nbd); 4103 bnx2x_free_tx_pkt(bp, txdata, 4104 TX_BD(txdata->tx_pkt_prod), 4105 &pkts_compl, &bytes_compl); 4106 return NETDEV_TX_OK; 4107 } 4108 4109 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4110 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4111 if (total_pkt_bd == NULL) 4112 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4113 4114 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4115 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4116 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 4117 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 4118 nbd++; 4119 4120 DP(NETIF_MSG_TX_QUEUED, 4121 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 4122 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 4123 le16_to_cpu(tx_data_bd->nbytes)); 4124 } 4125 4126 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 4127 4128 /* update with actual num BDs */ 4129 first_bd->nbd = cpu_to_le16(nbd); 4130 4131 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4132 4133 /* now send a tx doorbell, counting the next BD 4134 * if the packet contains or ends with it 4135 */ 4136 if (TX_BD_POFF(bd_prod) < nbd) 4137 nbd++; 4138 4139 /* total_pkt_bytes should be set on the first data BD if 4140 * it's not an LSO packet and there is more than one 4141 * data BD. In this case pkt_size is limited by an MTU value. 4142 * However we prefer to set it for an LSO packet (while we don't 4143 * have to) in order to save some CPU cycles in a none-LSO 4144 * case, when we much more care about them. 4145 */ 4146 if (total_pkt_bd != NULL) 4147 total_pkt_bd->total_pkt_bytes = pkt_size; 4148 4149 if (pbd_e1x) 4150 DP(NETIF_MSG_TX_QUEUED, 4151 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4152 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4153 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4154 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4155 le16_to_cpu(pbd_e1x->total_hlen_w)); 4156 if (pbd_e2) 4157 DP(NETIF_MSG_TX_QUEUED, 4158 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4159 pbd_e2, 4160 pbd_e2->data.mac_addr.dst_hi, 4161 pbd_e2->data.mac_addr.dst_mid, 4162 pbd_e2->data.mac_addr.dst_lo, 4163 pbd_e2->data.mac_addr.src_hi, 4164 pbd_e2->data.mac_addr.src_mid, 4165 pbd_e2->data.mac_addr.src_lo, 4166 pbd_e2->parsing_data); 4167 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4168 4169 netdev_tx_sent_queue(txq, skb->len); 4170 4171 skb_tx_timestamp(skb); 4172 4173 txdata->tx_pkt_prod++; 4174 /* 4175 * Make sure that the BD data is updated before updating the producer 4176 * since FW might read the BD right after the producer is updated. 4177 * This is only applicable for weak-ordered memory model archs such 4178 * as IA-64. The following barrier is also mandatory since FW will 4179 * assumes packets must have BDs. 4180 */ 4181 wmb(); 4182 4183 txdata->tx_db.data.prod += nbd; 4184 /* make sure descriptor update is observed by HW */ 4185 wmb(); 4186 4187 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw); 4188 4189 txdata->tx_bd_prod += nbd; 4190 4191 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4192 netif_tx_stop_queue(txq); 4193 4194 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4195 * ordering of set_bit() in netif_tx_stop_queue() and read of 4196 * fp->bd_tx_cons */ 4197 smp_mb(); 4198 4199 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4200 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4201 netif_tx_wake_queue(txq); 4202 } 4203 txdata->tx_pkt++; 4204 4205 return NETDEV_TX_OK; 4206 } 4207 4208 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default) 4209 { 4210 int mfw_vn = BP_FW_MB_IDX(bp); 4211 u32 tmp; 4212 4213 /* If the shmem shouldn't affect configuration, reflect */ 4214 if (!IS_MF_BD(bp)) { 4215 int i; 4216 4217 for (i = 0; i < BNX2X_MAX_PRIORITY; i++) 4218 c2s_map[i] = i; 4219 *c2s_default = 0; 4220 4221 return; 4222 } 4223 4224 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]); 4225 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4226 c2s_map[0] = tmp & 0xff; 4227 c2s_map[1] = (tmp >> 8) & 0xff; 4228 c2s_map[2] = (tmp >> 16) & 0xff; 4229 c2s_map[3] = (tmp >> 24) & 0xff; 4230 4231 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]); 4232 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4233 c2s_map[4] = tmp & 0xff; 4234 c2s_map[5] = (tmp >> 8) & 0xff; 4235 c2s_map[6] = (tmp >> 16) & 0xff; 4236 c2s_map[7] = (tmp >> 24) & 0xff; 4237 4238 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]); 4239 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4240 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff; 4241 } 4242 4243 /** 4244 * bnx2x_setup_tc - routine to configure net_device for multi tc 4245 * 4246 * @dev: net device to configure 4247 * @num_tc: number of traffic classes to enable 4248 * 4249 * callback connected to the ndo_setup_tc function pointer 4250 */ 4251 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4252 { 4253 struct bnx2x *bp = netdev_priv(dev); 4254 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def; 4255 int cos, prio, count, offset; 4256 4257 /* setup tc must be called under rtnl lock */ 4258 ASSERT_RTNL(); 4259 4260 /* no traffic classes requested. Aborting */ 4261 if (!num_tc) { 4262 netdev_reset_tc(dev); 4263 return 0; 4264 } 4265 4266 /* requested to support too many traffic classes */ 4267 if (num_tc > bp->max_cos) { 4268 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4269 num_tc, bp->max_cos); 4270 return -EINVAL; 4271 } 4272 4273 /* declare amount of supported traffic classes */ 4274 if (netdev_set_num_tc(dev, num_tc)) { 4275 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4276 return -EINVAL; 4277 } 4278 4279 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def); 4280 4281 /* configure priority to traffic class mapping */ 4282 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4283 int outer_prio = c2s_map[prio]; 4284 4285 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]); 4286 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4287 "mapping priority %d to tc %d\n", 4288 outer_prio, bp->prio_to_cos[outer_prio]); 4289 } 4290 4291 /* Use this configuration to differentiate tc0 from other COSes 4292 This can be used for ets or pfc, and save the effort of setting 4293 up a multio class queue disc or negotiating DCBX with a switch 4294 netdev_set_prio_tc_map(dev, 0, 0); 4295 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4296 for (prio = 1; prio < 16; prio++) { 4297 netdev_set_prio_tc_map(dev, prio, 1); 4298 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4299 } */ 4300 4301 /* configure traffic class to transmission queue mapping */ 4302 for (cos = 0; cos < bp->max_cos; cos++) { 4303 count = BNX2X_NUM_ETH_QUEUES(bp); 4304 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4305 netdev_set_tc_queue(dev, cos, count, offset); 4306 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4307 "mapping tc %d to offset %d count %d\n", 4308 cos, offset, count); 4309 } 4310 4311 return 0; 4312 } 4313 4314 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type, 4315 void *type_data) 4316 { 4317 struct tc_mqprio_qopt *mqprio = type_data; 4318 4319 if (type != TC_SETUP_QDISC_MQPRIO) 4320 return -EOPNOTSUPP; 4321 4322 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 4323 4324 return bnx2x_setup_tc(dev, mqprio->num_tc); 4325 } 4326 4327 /* called with rtnl_lock */ 4328 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4329 { 4330 struct sockaddr *addr = p; 4331 struct bnx2x *bp = netdev_priv(dev); 4332 int rc = 0; 4333 4334 if (!is_valid_ether_addr(addr->sa_data)) { 4335 BNX2X_ERR("Requested MAC address is not valid\n"); 4336 return -EINVAL; 4337 } 4338 4339 if (IS_MF_STORAGE_ONLY(bp)) { 4340 BNX2X_ERR("Can't change address on STORAGE ONLY function\n"); 4341 return -EINVAL; 4342 } 4343 4344 if (netif_running(dev)) { 4345 rc = bnx2x_set_eth_mac(bp, false); 4346 if (rc) 4347 return rc; 4348 } 4349 4350 eth_hw_addr_set(dev, addr->sa_data); 4351 4352 if (netif_running(dev)) 4353 rc = bnx2x_set_eth_mac(bp, true); 4354 4355 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4356 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4357 4358 return rc; 4359 } 4360 4361 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4362 { 4363 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4364 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4365 u8 cos; 4366 4367 /* Common */ 4368 4369 if (IS_FCOE_IDX(fp_index)) { 4370 memset(sb, 0, sizeof(union host_hc_status_block)); 4371 fp->status_blk_mapping = 0; 4372 } else { 4373 /* status blocks */ 4374 if (!CHIP_IS_E1x(bp)) 4375 BNX2X_PCI_FREE(sb->e2_sb, 4376 bnx2x_fp(bp, fp_index, 4377 status_blk_mapping), 4378 sizeof(struct host_hc_status_block_e2)); 4379 else 4380 BNX2X_PCI_FREE(sb->e1x_sb, 4381 bnx2x_fp(bp, fp_index, 4382 status_blk_mapping), 4383 sizeof(struct host_hc_status_block_e1x)); 4384 } 4385 4386 /* Rx */ 4387 if (!skip_rx_queue(bp, fp_index)) { 4388 bnx2x_free_rx_bds(fp); 4389 4390 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4391 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4392 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4393 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4394 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4395 4396 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4397 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4398 sizeof(struct eth_fast_path_rx_cqe) * 4399 NUM_RCQ_BD); 4400 4401 /* SGE ring */ 4402 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4403 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4404 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4405 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4406 } 4407 4408 /* Tx */ 4409 if (!skip_tx_queue(bp, fp_index)) { 4410 /* fastpath tx rings: tx_buf tx_desc */ 4411 for_each_cos_in_tx_queue(fp, cos) { 4412 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4413 4414 DP(NETIF_MSG_IFDOWN, 4415 "freeing tx memory of fp %d cos %d cid %d\n", 4416 fp_index, cos, txdata->cid); 4417 4418 BNX2X_FREE(txdata->tx_buf_ring); 4419 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4420 txdata->tx_desc_mapping, 4421 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4422 } 4423 } 4424 /* end of fastpath */ 4425 } 4426 4427 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4428 { 4429 int i; 4430 for_each_cnic_queue(bp, i) 4431 bnx2x_free_fp_mem_at(bp, i); 4432 } 4433 4434 void bnx2x_free_fp_mem(struct bnx2x *bp) 4435 { 4436 int i; 4437 for_each_eth_queue(bp, i) 4438 bnx2x_free_fp_mem_at(bp, i); 4439 } 4440 4441 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4442 { 4443 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4444 if (!CHIP_IS_E1x(bp)) { 4445 bnx2x_fp(bp, index, sb_index_values) = 4446 (__le16 *)status_blk.e2_sb->sb.index_values; 4447 bnx2x_fp(bp, index, sb_running_index) = 4448 (__le16 *)status_blk.e2_sb->sb.running_index; 4449 } else { 4450 bnx2x_fp(bp, index, sb_index_values) = 4451 (__le16 *)status_blk.e1x_sb->sb.index_values; 4452 bnx2x_fp(bp, index, sb_running_index) = 4453 (__le16 *)status_blk.e1x_sb->sb.running_index; 4454 } 4455 } 4456 4457 /* Returns the number of actually allocated BDs */ 4458 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4459 int rx_ring_size) 4460 { 4461 struct bnx2x *bp = fp->bp; 4462 u16 ring_prod, cqe_ring_prod; 4463 int i, failure_cnt = 0; 4464 4465 fp->rx_comp_cons = 0; 4466 cqe_ring_prod = ring_prod = 0; 4467 4468 /* This routine is called only during fo init so 4469 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4470 */ 4471 for (i = 0; i < rx_ring_size; i++) { 4472 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4473 failure_cnt++; 4474 continue; 4475 } 4476 ring_prod = NEXT_RX_IDX(ring_prod); 4477 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4478 WARN_ON(ring_prod <= (i - failure_cnt)); 4479 } 4480 4481 if (failure_cnt) 4482 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4483 i - failure_cnt, fp->index); 4484 4485 fp->rx_bd_prod = ring_prod; 4486 /* Limit the CQE producer by the CQE ring size */ 4487 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4488 cqe_ring_prod); 4489 4490 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4491 4492 return i - failure_cnt; 4493 } 4494 4495 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4496 { 4497 int i; 4498 4499 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4500 struct eth_rx_cqe_next_page *nextpg; 4501 4502 nextpg = (struct eth_rx_cqe_next_page *) 4503 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4504 nextpg->addr_hi = 4505 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4506 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4507 nextpg->addr_lo = 4508 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4509 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4510 } 4511 } 4512 4513 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4514 { 4515 union host_hc_status_block *sb; 4516 struct bnx2x_fastpath *fp = &bp->fp[index]; 4517 int ring_size = 0; 4518 u8 cos; 4519 int rx_ring_size = 0; 4520 4521 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) { 4522 rx_ring_size = MIN_RX_SIZE_NONTPA; 4523 bp->rx_ring_size = rx_ring_size; 4524 } else if (!bp->rx_ring_size) { 4525 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4526 4527 if (CHIP_IS_E3(bp)) { 4528 u32 cfg = SHMEM_RD(bp, 4529 dev_info.port_hw_config[BP_PORT(bp)]. 4530 default_cfg); 4531 4532 /* Decrease ring size for 1G functions */ 4533 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4534 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4535 rx_ring_size /= 10; 4536 } 4537 4538 /* allocate at least number of buffers required by FW */ 4539 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4540 MIN_RX_SIZE_TPA, rx_ring_size); 4541 4542 bp->rx_ring_size = rx_ring_size; 4543 } else /* if rx_ring_size specified - use it */ 4544 rx_ring_size = bp->rx_ring_size; 4545 4546 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4547 4548 /* Common */ 4549 sb = &bnx2x_fp(bp, index, status_blk); 4550 4551 if (!IS_FCOE_IDX(index)) { 4552 /* status blocks */ 4553 if (!CHIP_IS_E1x(bp)) { 4554 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4555 sizeof(struct host_hc_status_block_e2)); 4556 if (!sb->e2_sb) 4557 goto alloc_mem_err; 4558 } else { 4559 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4560 sizeof(struct host_hc_status_block_e1x)); 4561 if (!sb->e1x_sb) 4562 goto alloc_mem_err; 4563 } 4564 } 4565 4566 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4567 * set shortcuts for it. 4568 */ 4569 if (!IS_FCOE_IDX(index)) 4570 set_sb_shortcuts(bp, index); 4571 4572 /* Tx */ 4573 if (!skip_tx_queue(bp, index)) { 4574 /* fastpath tx rings: tx_buf tx_desc */ 4575 for_each_cos_in_tx_queue(fp, cos) { 4576 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4577 4578 DP(NETIF_MSG_IFUP, 4579 "allocating tx memory of fp %d cos %d\n", 4580 index, cos); 4581 4582 txdata->tx_buf_ring = kcalloc(NUM_TX_BD, 4583 sizeof(struct sw_tx_bd), 4584 GFP_KERNEL); 4585 if (!txdata->tx_buf_ring) 4586 goto alloc_mem_err; 4587 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, 4588 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4589 if (!txdata->tx_desc_ring) 4590 goto alloc_mem_err; 4591 } 4592 } 4593 4594 /* Rx */ 4595 if (!skip_rx_queue(bp, index)) { 4596 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4597 bnx2x_fp(bp, index, rx_buf_ring) = 4598 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL); 4599 if (!bnx2x_fp(bp, index, rx_buf_ring)) 4600 goto alloc_mem_err; 4601 bnx2x_fp(bp, index, rx_desc_ring) = 4602 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), 4603 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4604 if (!bnx2x_fp(bp, index, rx_desc_ring)) 4605 goto alloc_mem_err; 4606 4607 /* Seed all CQEs by 1s */ 4608 bnx2x_fp(bp, index, rx_comp_ring) = 4609 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), 4610 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); 4611 if (!bnx2x_fp(bp, index, rx_comp_ring)) 4612 goto alloc_mem_err; 4613 4614 /* SGE ring */ 4615 bnx2x_fp(bp, index, rx_page_ring) = 4616 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page), 4617 GFP_KERNEL); 4618 if (!bnx2x_fp(bp, index, rx_page_ring)) 4619 goto alloc_mem_err; 4620 bnx2x_fp(bp, index, rx_sge_ring) = 4621 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), 4622 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4623 if (!bnx2x_fp(bp, index, rx_sge_ring)) 4624 goto alloc_mem_err; 4625 /* RX BD ring */ 4626 bnx2x_set_next_page_rx_bd(fp); 4627 4628 /* CQ ring */ 4629 bnx2x_set_next_page_rx_cq(fp); 4630 4631 /* BDs */ 4632 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4633 if (ring_size < rx_ring_size) 4634 goto alloc_mem_err; 4635 } 4636 4637 return 0; 4638 4639 /* handles low memory cases */ 4640 alloc_mem_err: 4641 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4642 index, ring_size); 4643 /* FW will drop all packets if queue is not big enough, 4644 * In these cases we disable the queue 4645 * Min size is different for OOO, TPA and non-TPA queues 4646 */ 4647 if (ring_size < (fp->mode == TPA_MODE_DISABLED ? 4648 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4649 /* release memory allocated for this queue */ 4650 bnx2x_free_fp_mem_at(bp, index); 4651 return -ENOMEM; 4652 } 4653 return 0; 4654 } 4655 4656 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4657 { 4658 if (!NO_FCOE(bp)) 4659 /* FCoE */ 4660 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4661 /* we will fail load process instead of mark 4662 * NO_FCOE_FLAG 4663 */ 4664 return -ENOMEM; 4665 4666 return 0; 4667 } 4668 4669 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4670 { 4671 int i; 4672 4673 /* 1. Allocate FP for leading - fatal if error 4674 * 2. Allocate RSS - fix number of queues if error 4675 */ 4676 4677 /* leading */ 4678 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4679 return -ENOMEM; 4680 4681 /* RSS */ 4682 for_each_nondefault_eth_queue(bp, i) 4683 if (bnx2x_alloc_fp_mem_at(bp, i)) 4684 break; 4685 4686 /* handle memory failures */ 4687 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4688 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4689 4690 WARN_ON(delta < 0); 4691 bnx2x_shrink_eth_fp(bp, delta); 4692 if (CNIC_SUPPORT(bp)) 4693 /* move non eth FPs next to last eth FP 4694 * must be done in that order 4695 * FCOE_IDX < FWD_IDX < OOO_IDX 4696 */ 4697 4698 /* move FCoE fp even NO_FCOE_FLAG is on */ 4699 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4700 bp->num_ethernet_queues -= delta; 4701 bp->num_queues = bp->num_ethernet_queues + 4702 bp->num_cnic_queues; 4703 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4704 bp->num_queues + delta, bp->num_queues); 4705 } 4706 4707 return 0; 4708 } 4709 4710 void bnx2x_free_mem_bp(struct bnx2x *bp) 4711 { 4712 int i; 4713 4714 for (i = 0; i < bp->fp_array_size; i++) 4715 kfree(bp->fp[i].tpa_info); 4716 kfree(bp->fp); 4717 kfree(bp->sp_objs); 4718 kfree(bp->fp_stats); 4719 kfree(bp->bnx2x_txq); 4720 kfree(bp->msix_table); 4721 kfree(bp->ilt); 4722 } 4723 4724 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4725 { 4726 struct bnx2x_fastpath *fp; 4727 struct msix_entry *tbl; 4728 struct bnx2x_ilt *ilt; 4729 int msix_table_size = 0; 4730 int fp_array_size, txq_array_size; 4731 int i; 4732 4733 /* 4734 * The biggest MSI-X table we might need is as a maximum number of fast 4735 * path IGU SBs plus default SB (for PF only). 4736 */ 4737 msix_table_size = bp->igu_sb_cnt; 4738 if (IS_PF(bp)) 4739 msix_table_size++; 4740 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4741 4742 /* fp array: RSS plus CNIC related L2 queues */ 4743 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4744 bp->fp_array_size = fp_array_size; 4745 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4746 4747 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4748 if (!fp) 4749 goto alloc_err; 4750 for (i = 0; i < bp->fp_array_size; i++) { 4751 fp[i].tpa_info = 4752 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4753 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4754 if (!(fp[i].tpa_info)) 4755 goto alloc_err; 4756 } 4757 4758 bp->fp = fp; 4759 4760 /* allocate sp objs */ 4761 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4762 GFP_KERNEL); 4763 if (!bp->sp_objs) 4764 goto alloc_err; 4765 4766 /* allocate fp_stats */ 4767 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4768 GFP_KERNEL); 4769 if (!bp->fp_stats) 4770 goto alloc_err; 4771 4772 /* Allocate memory for the transmission queues array */ 4773 txq_array_size = 4774 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4775 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4776 4777 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4778 GFP_KERNEL); 4779 if (!bp->bnx2x_txq) 4780 goto alloc_err; 4781 4782 /* msix table */ 4783 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4784 if (!tbl) 4785 goto alloc_err; 4786 bp->msix_table = tbl; 4787 4788 /* ilt */ 4789 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4790 if (!ilt) 4791 goto alloc_err; 4792 bp->ilt = ilt; 4793 4794 return 0; 4795 alloc_err: 4796 bnx2x_free_mem_bp(bp); 4797 return -ENOMEM; 4798 } 4799 4800 int bnx2x_reload_if_running(struct net_device *dev) 4801 { 4802 struct bnx2x *bp = netdev_priv(dev); 4803 4804 if (unlikely(!netif_running(dev))) 4805 return 0; 4806 4807 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4808 return bnx2x_nic_load(bp, LOAD_NORMAL); 4809 } 4810 4811 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4812 { 4813 u32 sel_phy_idx = 0; 4814 if (bp->link_params.num_phys <= 1) 4815 return INT_PHY; 4816 4817 if (bp->link_vars.link_up) { 4818 sel_phy_idx = EXT_PHY1; 4819 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4820 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4821 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4822 sel_phy_idx = EXT_PHY2; 4823 } else { 4824 4825 switch (bnx2x_phy_selection(&bp->link_params)) { 4826 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4827 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4828 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4829 sel_phy_idx = EXT_PHY1; 4830 break; 4831 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4832 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4833 sel_phy_idx = EXT_PHY2; 4834 break; 4835 } 4836 } 4837 4838 return sel_phy_idx; 4839 } 4840 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4841 { 4842 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4843 /* 4844 * The selected activated PHY is always after swapping (in case PHY 4845 * swapping is enabled). So when swapping is enabled, we need to reverse 4846 * the configuration 4847 */ 4848 4849 if (bp->link_params.multi_phy_config & 4850 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4851 if (sel_phy_idx == EXT_PHY1) 4852 sel_phy_idx = EXT_PHY2; 4853 else if (sel_phy_idx == EXT_PHY2) 4854 sel_phy_idx = EXT_PHY1; 4855 } 4856 return LINK_CONFIG_IDX(sel_phy_idx); 4857 } 4858 4859 #ifdef NETDEV_FCOE_WWNN 4860 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4861 { 4862 struct bnx2x *bp = netdev_priv(dev); 4863 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4864 4865 switch (type) { 4866 case NETDEV_FCOE_WWNN: 4867 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4868 cp->fcoe_wwn_node_name_lo); 4869 break; 4870 case NETDEV_FCOE_WWPN: 4871 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4872 cp->fcoe_wwn_port_name_lo); 4873 break; 4874 default: 4875 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4876 return -EINVAL; 4877 } 4878 4879 return 0; 4880 } 4881 #endif 4882 4883 /* called with rtnl_lock */ 4884 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4885 { 4886 struct bnx2x *bp = netdev_priv(dev); 4887 4888 if (pci_num_vf(bp->pdev)) { 4889 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n"); 4890 return -EPERM; 4891 } 4892 4893 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4894 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4895 return -EAGAIN; 4896 } 4897 4898 /* This does not race with packet allocation 4899 * because the actual alloc size is 4900 * only updated as part of load 4901 */ 4902 dev->mtu = new_mtu; 4903 4904 if (!bnx2x_mtu_allows_gro(new_mtu)) 4905 dev->features &= ~NETIF_F_GRO_HW; 4906 4907 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4908 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4909 4910 return bnx2x_reload_if_running(dev); 4911 } 4912 4913 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4914 netdev_features_t features) 4915 { 4916 struct bnx2x *bp = netdev_priv(dev); 4917 4918 if (pci_num_vf(bp->pdev)) { 4919 netdev_features_t changed = dev->features ^ features; 4920 4921 /* Revert the requested changes in features if they 4922 * would require internal reload of PF in bnx2x_set_features(). 4923 */ 4924 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) { 4925 features &= ~NETIF_F_RXCSUM; 4926 features |= dev->features & NETIF_F_RXCSUM; 4927 } 4928 4929 if (changed & NETIF_F_LOOPBACK) { 4930 features &= ~NETIF_F_LOOPBACK; 4931 features |= dev->features & NETIF_F_LOOPBACK; 4932 } 4933 } 4934 4935 /* TPA requires Rx CSUM offloading */ 4936 if (!(features & NETIF_F_RXCSUM)) 4937 features &= ~NETIF_F_LRO; 4938 4939 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu)) 4940 features &= ~NETIF_F_GRO_HW; 4941 if (features & NETIF_F_GRO_HW) 4942 features &= ~NETIF_F_LRO; 4943 4944 return features; 4945 } 4946 4947 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4948 { 4949 struct bnx2x *bp = netdev_priv(dev); 4950 netdev_features_t changes = features ^ dev->features; 4951 bool bnx2x_reload = false; 4952 int rc; 4953 4954 /* VFs or non SRIOV PFs should be able to change loopback feature */ 4955 if (!pci_num_vf(bp->pdev)) { 4956 if (features & NETIF_F_LOOPBACK) { 4957 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4958 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4959 bnx2x_reload = true; 4960 } 4961 } else { 4962 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4963 bp->link_params.loopback_mode = LOOPBACK_NONE; 4964 bnx2x_reload = true; 4965 } 4966 } 4967 } 4968 4969 /* Don't care about GRO changes */ 4970 changes &= ~NETIF_F_GRO; 4971 4972 if (changes) 4973 bnx2x_reload = true; 4974 4975 if (bnx2x_reload) { 4976 if (bp->recovery_state == BNX2X_RECOVERY_DONE) { 4977 dev->features = features; 4978 rc = bnx2x_reload_if_running(dev); 4979 return rc ? rc : 1; 4980 } 4981 /* else: bnx2x_nic_load() will be called at end of recovery */ 4982 } 4983 4984 return 0; 4985 } 4986 4987 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue) 4988 { 4989 struct bnx2x *bp = netdev_priv(dev); 4990 4991 /* We want the information of the dump logged, 4992 * but calling bnx2x_panic() would kill all chances of recovery. 4993 */ 4994 if (!bp->panic) 4995 #ifndef BNX2X_STOP_ON_ERROR 4996 bnx2x_panic_dump(bp, false); 4997 #else 4998 bnx2x_panic(); 4999 #endif 5000 5001 /* This allows the netif to be shutdown gracefully before resetting */ 5002 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); 5003 } 5004 5005 static int __maybe_unused bnx2x_suspend(struct device *dev_d) 5006 { 5007 struct pci_dev *pdev = to_pci_dev(dev_d); 5008 struct net_device *dev = pci_get_drvdata(pdev); 5009 struct bnx2x *bp; 5010 5011 if (!dev) { 5012 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5013 return -ENODEV; 5014 } 5015 bp = netdev_priv(dev); 5016 5017 rtnl_lock(); 5018 5019 if (!netif_running(dev)) { 5020 rtnl_unlock(); 5021 return 0; 5022 } 5023 5024 netif_device_detach(dev); 5025 5026 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 5027 5028 rtnl_unlock(); 5029 5030 return 0; 5031 } 5032 5033 static int __maybe_unused bnx2x_resume(struct device *dev_d) 5034 { 5035 struct pci_dev *pdev = to_pci_dev(dev_d); 5036 struct net_device *dev = pci_get_drvdata(pdev); 5037 struct bnx2x *bp; 5038 int rc; 5039 5040 if (!dev) { 5041 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5042 return -ENODEV; 5043 } 5044 bp = netdev_priv(dev); 5045 5046 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 5047 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 5048 return -EAGAIN; 5049 } 5050 5051 rtnl_lock(); 5052 5053 if (!netif_running(dev)) { 5054 rtnl_unlock(); 5055 return 0; 5056 } 5057 5058 netif_device_attach(dev); 5059 5060 rc = bnx2x_nic_load(bp, LOAD_OPEN); 5061 5062 rtnl_unlock(); 5063 5064 return rc; 5065 } 5066 5067 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume); 5068 5069 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 5070 u32 cid) 5071 { 5072 if (!cxt) { 5073 BNX2X_ERR("bad context pointer %p\n", cxt); 5074 return; 5075 } 5076 5077 /* ustorm cxt validation */ 5078 cxt->ustorm_ag_context.cdu_usage = 5079 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5080 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 5081 /* xcontext validation */ 5082 cxt->xstorm_ag_context.cdu_reserved = 5083 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5084 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 5085 } 5086 5087 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 5088 u8 fw_sb_id, u8 sb_index, 5089 u8 ticks) 5090 { 5091 u32 addr = BAR_CSTRORM_INTMEM + 5092 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 5093 REG_WR8(bp, addr, ticks); 5094 DP(NETIF_MSG_IFUP, 5095 "port %x fw_sb_id %d sb_index %d ticks %d\n", 5096 port, fw_sb_id, sb_index, ticks); 5097 } 5098 5099 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 5100 u16 fw_sb_id, u8 sb_index, 5101 u8 disable) 5102 { 5103 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 5104 u32 addr = BAR_CSTRORM_INTMEM + 5105 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 5106 u8 flags = REG_RD8(bp, addr); 5107 /* clear and set */ 5108 flags &= ~HC_INDEX_DATA_HC_ENABLED; 5109 flags |= enable_flag; 5110 REG_WR8(bp, addr, flags); 5111 DP(NETIF_MSG_IFUP, 5112 "port %x fw_sb_id %d sb_index %d disable %d\n", 5113 port, fw_sb_id, sb_index, disable); 5114 } 5115 5116 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 5117 u8 sb_index, u8 disable, u16 usec) 5118 { 5119 int port = BP_PORT(bp); 5120 u8 ticks = usec / BNX2X_BTR; 5121 5122 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 5123 5124 disable = disable ? 1 : (usec ? 0 : 1); 5125 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 5126 } 5127 5128 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, 5129 u32 verbose) 5130 { 5131 smp_mb__before_atomic(); 5132 set_bit(flag, &bp->sp_rtnl_state); 5133 smp_mb__after_atomic(); 5134 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", 5135 flag); 5136 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5137 } 5138