1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34 
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39 
40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 	int i;
43 
44 	/* Add NAPI objects */
45 	for_each_rx_queue_cnic(bp, i) {
46 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 			       bnx2x_poll, NAPI_POLL_WEIGHT);
48 	}
49 }
50 
51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 	int i;
54 
55 	/* Add NAPI objects */
56 	for_each_eth_queue(bp, i) {
57 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 			       bnx2x_poll, NAPI_POLL_WEIGHT);
59 	}
60 }
61 
62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65 
66 	/* Reduce memory usage in kdump environment by using only one queue */
67 	if (is_kdump_kernel())
68 		nq = 1;
69 
70 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 	return nq;
72 }
73 
74 /**
75  * bnx2x_move_fp - move content of the fastpath structure.
76  *
77  * @bp:		driver handle
78  * @from:	source FP index
79  * @to:		destination FP index
80  *
81  * Makes sure the contents of the bp->fp[to].napi is kept
82  * intact. This is done by first copying the napi struct from
83  * the target to the source, and then mem copying the entire
84  * source onto the target. Update txdata pointers and related
85  * content.
86  */
87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 	int old_max_eth_txqs, new_max_eth_txqs;
96 	int old_txdata_index = 0, new_txdata_index = 0;
97 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98 
99 	/* Copy the NAPI object as it has been already initialized */
100 	from_fp->napi = to_fp->napi;
101 
102 	/* Move bnx2x_fastpath contents */
103 	memcpy(to_fp, from_fp, sizeof(*to_fp));
104 	to_fp->index = to;
105 
106 	/* Retain the tpa_info of the original `to' version as we don't want
107 	 * 2 FPs to contain the same tpa_info pointer.
108 	 */
109 	to_fp->tpa_info = old_tpa_info;
110 
111 	/* move sp_objs contents as well, as their indices match fp ones */
112 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113 
114 	/* move fp_stats contents as well, as their indices match fp ones */
115 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116 
117 	/* Update txdata pointers in fp and move txdata content accordingly:
118 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 	 * decremented by max_cos x delta.
120 	 */
121 
122 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 				(bp)->max_cos;
125 	if (from == FCOE_IDX(bp)) {
126 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 	}
129 
130 	memcpy(&bp->bnx2x_txq[new_txdata_index],
131 	       &bp->bnx2x_txq[old_txdata_index],
132 	       sizeof(struct bnx2x_fp_txdata));
133 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135 
136 /**
137  * bnx2x_fill_fw_str - Fill buffer with FW version string.
138  *
139  * @bp:        driver handle
140  * @buf:       character buffer to fill with the fw name
141  * @buf_len:   length of the above buffer
142  *
143  */
144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 	if (IS_PF(bp)) {
147 		u8 phy_fw_ver[PHY_FW_VER_LEN];
148 
149 		phy_fw_ver[0] = '\0';
150 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 					     phy_fw_ver, PHY_FW_VER_LEN);
152 		strlcpy(buf, bp->fw_ver, buf_len);
153 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 			 "bc %d.%d.%d%s%s",
155 			 (bp->common.bc_ver & 0xff0000) >> 16,
156 			 (bp->common.bc_ver & 0xff00) >> 8,
157 			 (bp->common.bc_ver & 0xff),
158 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 	} else {
160 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 	}
162 }
163 
164 /**
165  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166  *
167  * @bp:	driver handle
168  * @delta:	number of eth queues which were not allocated
169  */
170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173 
174 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 	 * backward along the array could cause memory to be overridden
176 	 */
177 	for (cos = 1; cos < bp->max_cos; cos++) {
178 		for (i = 0; i < old_eth_num - delta; i++) {
179 			struct bnx2x_fastpath *fp = &bp->fp[i];
180 			int new_idx = cos * (old_eth_num - delta) + i;
181 
182 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 			       sizeof(struct bnx2x_fp_txdata));
184 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 		}
186 	}
187 }
188 
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190 
191 /* free skb in the packet ring at pos idx
192  * return idx of last bd freed
193  */
194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 			     u16 idx, unsigned int *pkts_compl,
196 			     unsigned int *bytes_compl)
197 {
198 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 	struct eth_tx_start_bd *tx_start_bd;
200 	struct eth_tx_bd *tx_data_bd;
201 	struct sk_buff *skb = tx_buf->skb;
202 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 	int nbd;
204 	u16 split_bd_len = 0;
205 
206 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
207 	prefetch(&skb->end);
208 
209 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
210 	   txdata->txq_index, idx, tx_buf, skb);
211 
212 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213 
214 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 		BNX2X_ERR("BAD nbd!\n");
218 		bnx2x_panic();
219 	}
220 #endif
221 	new_cons = nbd + tx_buf->first_bd;
222 
223 	/* Get the next bd */
224 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225 
226 	/* Skip a parse bd... */
227 	--nbd;
228 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229 
230 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 		/* Skip second parse bd... */
232 		--nbd;
233 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 	}
235 
236 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 		--nbd;
241 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 	}
243 
244 	/* unmap first bd */
245 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 			 DMA_TO_DEVICE);
248 
249 	/* now free frags */
250 	while (nbd > 0) {
251 
252 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 		if (--nbd)
256 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 	}
258 
259 	/* release skb */
260 	WARN_ON(!skb);
261 	if (likely(skb)) {
262 		(*pkts_compl)++;
263 		(*bytes_compl) += skb->len;
264 		dev_kfree_skb_any(skb);
265 	}
266 
267 	tx_buf->first_bd = 0;
268 	tx_buf->skb = NULL;
269 
270 	return new_cons;
271 }
272 
273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 	struct netdev_queue *txq;
276 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 	unsigned int pkts_compl = 0, bytes_compl = 0;
278 
279 #ifdef BNX2X_STOP_ON_ERROR
280 	if (unlikely(bp->panic))
281 		return -1;
282 #endif
283 
284 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 	sw_cons = txdata->tx_pkt_cons;
287 
288 	/* Ensure subsequent loads occur after hw_cons */
289 	smp_rmb();
290 
291 	while (sw_cons != hw_cons) {
292 		u16 pkt_cons;
293 
294 		pkt_cons = TX_BD(sw_cons);
295 
296 		DP(NETIF_MSG_TX_DONE,
297 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
298 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299 
300 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 					    &pkts_compl, &bytes_compl);
302 
303 		sw_cons++;
304 	}
305 
306 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307 
308 	txdata->tx_pkt_cons = sw_cons;
309 	txdata->tx_bd_cons = bd_cons;
310 
311 	/* Need to make the tx_bd_cons update visible to start_xmit()
312 	 * before checking for netif_tx_queue_stopped().  Without the
313 	 * memory barrier, there is a small possibility that
314 	 * start_xmit() will miss it and cause the queue to be stopped
315 	 * forever.
316 	 * On the other hand we need an rmb() here to ensure the proper
317 	 * ordering of bit testing in the following
318 	 * netif_tx_queue_stopped(txq) call.
319 	 */
320 	smp_mb();
321 
322 	if (unlikely(netif_tx_queue_stopped(txq))) {
323 		/* Taking tx_lock() is needed to prevent re-enabling the queue
324 		 * while it's empty. This could have happen if rx_action() gets
325 		 * suspended in bnx2x_tx_int() after the condition before
326 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 		 *
328 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 		 * sends some packets consuming the whole queue again->
330 		 * stops the queue
331 		 */
332 
333 		__netif_tx_lock(txq, smp_processor_id());
334 
335 		if ((netif_tx_queue_stopped(txq)) &&
336 		    (bp->state == BNX2X_STATE_OPEN) &&
337 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 			netif_tx_wake_queue(txq);
339 
340 		__netif_tx_unlock(txq);
341 	}
342 	return 0;
343 }
344 
345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 					     u16 idx)
347 {
348 	u16 last_max = fp->last_max_sge;
349 
350 	if (SUB_S16(idx, last_max) > 0)
351 		fp->last_max_sge = idx;
352 }
353 
354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 					 u16 sge_len,
356 					 struct eth_end_agg_rx_cqe *cqe)
357 {
358 	struct bnx2x *bp = fp->bp;
359 	u16 last_max, last_elem, first_elem;
360 	u16 delta = 0;
361 	u16 i;
362 
363 	if (!sge_len)
364 		return;
365 
366 	/* First mark all used pages */
367 	for (i = 0; i < sge_len; i++)
368 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370 
371 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373 
374 	/* Here we assume that the last SGE index is the biggest */
375 	prefetch((void *)(fp->sge_mask));
376 	bnx2x_update_last_max_sge(fp,
377 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378 
379 	last_max = RX_SGE(fp->last_max_sge);
380 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382 
383 	/* If ring is not full */
384 	if (last_elem + 1 != first_elem)
385 		last_elem++;
386 
387 	/* Now update the prod */
388 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 		if (likely(fp->sge_mask[i]))
390 			break;
391 
392 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 		delta += BIT_VEC64_ELEM_SZ;
394 	}
395 
396 	if (delta > 0) {
397 		fp->rx_sge_prod += delta;
398 		/* clear page-end entries */
399 		bnx2x_clear_sge_mask_next_elems(fp);
400 	}
401 
402 	DP(NETIF_MSG_RX_STATUS,
403 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
404 	   fp->last_max_sge, fp->rx_sge_prod);
405 }
406 
407 /* Get Toeplitz hash value in the skb using the value from the
408  * CQE (calculated by HW).
409  */
410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 			    const struct eth_fast_path_rx_cqe *cqe,
412 			    enum pkt_hash_types *rxhash_type)
413 {
414 	/* Get Toeplitz hash from CQE */
415 	if ((bp->dev->features & NETIF_F_RXHASH) &&
416 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 		enum eth_rss_hash_type htype;
418 
419 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 				(htype == TCP_IPV6_HASH_TYPE)) ?
422 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423 
424 		return le32_to_cpu(cqe->rss_hash_result);
425 	}
426 	*rxhash_type = PKT_HASH_TYPE_NONE;
427 	return 0;
428 }
429 
430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 			    u16 cons, u16 prod,
432 			    struct eth_fast_path_rx_cqe *cqe)
433 {
434 	struct bnx2x *bp = fp->bp;
435 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 	dma_addr_t mapping;
439 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441 
442 	/* print error if current state != stop */
443 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445 
446 	/* Try to map an empty data buffer from the aggregation info  */
447 	mapping = dma_map_single(&bp->pdev->dev,
448 				 first_buf->data + NET_SKB_PAD,
449 				 fp->rx_buf_size, DMA_FROM_DEVICE);
450 	/*
451 	 *  ...if it fails - move the skb from the consumer to the producer
452 	 *  and set the current aggregation state as ERROR to drop it
453 	 *  when TPA_STOP arrives.
454 	 */
455 
456 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 		/* Move the BD from the consumer to the producer */
458 		bnx2x_reuse_rx_data(fp, cons, prod);
459 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 		return;
461 	}
462 
463 	/* move empty data from pool to prod */
464 	prod_rx_buf->data = first_buf->data;
465 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 	/* point prod_bd to new data */
467 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469 
470 	/* move partial skb from cons to pool (don't unmap yet) */
471 	*first_buf = *cons_rx_buf;
472 
473 	/* mark bin state as START */
474 	tpa_info->parsing_flags =
475 		le16_to_cpu(cqe->pars_flags.flags);
476 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 	tpa_info->tpa_state = BNX2X_TPA_START;
478 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 	tpa_info->placement_offset = cqe->placement_offset;
480 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 	if (fp->mode == TPA_MODE_GRO) {
482 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 		tpa_info->gro_size = gro_size;
485 	}
486 
487 #ifdef BNX2X_STOP_ON_ERROR
488 	fp->tpa_queue_used |= (1 << queue);
489 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 	   fp->tpa_queue_used);
491 #endif
492 }
493 
494 /* Timestamp option length allowed for TPA aggregation:
495  *
496  *		nop nop kind length echo val
497  */
498 #define TPA_TSTAMP_OPT_LEN	12
499 /**
500  * bnx2x_set_gro_params - compute GRO values
501  *
502  * @skb:		packet skb
503  * @parsing_flags:	parsing flags from the START CQE
504  * @len_on_bd:		total length of the first packet for the
505  *			aggregation.
506  * @pkt_len:		length of all segments
507  *
508  * Approximate value of the MSS for this aggregation calculated using
509  * the first packet of it.
510  * Compute number of aggregated segments, and gso_type.
511  */
512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
513 				 u16 len_on_bd, unsigned int pkt_len,
514 				 u16 num_of_coalesced_segs)
515 {
516 	/* TPA aggregation won't have either IP options or TCP options
517 	 * other than timestamp or IPv6 extension headers.
518 	 */
519 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
520 
521 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
522 	    PRS_FLAG_OVERETH_IPV6) {
523 		hdrs_len += sizeof(struct ipv6hdr);
524 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
525 	} else {
526 		hdrs_len += sizeof(struct iphdr);
527 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
528 	}
529 
530 	/* Check if there was a TCP timestamp, if there is it's will
531 	 * always be 12 bytes length: nop nop kind length echo val.
532 	 *
533 	 * Otherwise FW would close the aggregation.
534 	 */
535 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
536 		hdrs_len += TPA_TSTAMP_OPT_LEN;
537 
538 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
539 
540 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
541 	 * to skb_shinfo(skb)->gso_segs
542 	 */
543 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
544 }
545 
546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
547 			      u16 index, gfp_t gfp_mask)
548 {
549 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
550 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
551 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
552 	dma_addr_t mapping;
553 
554 	if (!pool->page) {
555 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
556 		if (unlikely(!pool->page))
557 			return -ENOMEM;
558 
559 		pool->offset = 0;
560 	}
561 
562 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
563 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
564 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
565 		BNX2X_ERR("Can't map sge\n");
566 		return -ENOMEM;
567 	}
568 
569 	sw_buf->page = pool->page;
570 	sw_buf->offset = pool->offset;
571 
572 	dma_unmap_addr_set(sw_buf, mapping, mapping);
573 
574 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
575 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
576 
577 	pool->offset += SGE_PAGE_SIZE;
578 	if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
579 		get_page(pool->page);
580 	else
581 		pool->page = NULL;
582 	return 0;
583 }
584 
585 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
586 			       struct bnx2x_agg_info *tpa_info,
587 			       u16 pages,
588 			       struct sk_buff *skb,
589 			       struct eth_end_agg_rx_cqe *cqe,
590 			       u16 cqe_idx)
591 {
592 	struct sw_rx_page *rx_pg, old_rx_pg;
593 	u32 i, frag_len, frag_size;
594 	int err, j, frag_id = 0;
595 	u16 len_on_bd = tpa_info->len_on_bd;
596 	u16 full_page = 0, gro_size = 0;
597 
598 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
599 
600 	if (fp->mode == TPA_MODE_GRO) {
601 		gro_size = tpa_info->gro_size;
602 		full_page = tpa_info->full_page;
603 	}
604 
605 	/* This is needed in order to enable forwarding support */
606 	if (frag_size)
607 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
608 				     le16_to_cpu(cqe->pkt_len),
609 				     le16_to_cpu(cqe->num_of_coalesced_segs));
610 
611 #ifdef BNX2X_STOP_ON_ERROR
612 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
613 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
614 			  pages, cqe_idx);
615 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
616 		bnx2x_panic();
617 		return -EINVAL;
618 	}
619 #endif
620 
621 	/* Run through the SGL and compose the fragmented skb */
622 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
623 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
624 
625 		/* FW gives the indices of the SGE as if the ring is an array
626 		   (meaning that "next" element will consume 2 indices) */
627 		if (fp->mode == TPA_MODE_GRO)
628 			frag_len = min_t(u32, frag_size, (u32)full_page);
629 		else /* LRO */
630 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
631 
632 		rx_pg = &fp->rx_page_ring[sge_idx];
633 		old_rx_pg = *rx_pg;
634 
635 		/* If we fail to allocate a substitute page, we simply stop
636 		   where we are and drop the whole packet */
637 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
638 		if (unlikely(err)) {
639 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
640 			return err;
641 		}
642 
643 		dma_unmap_page(&bp->pdev->dev,
644 			       dma_unmap_addr(&old_rx_pg, mapping),
645 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
646 		/* Add one frag and update the appropriate fields in the skb */
647 		if (fp->mode == TPA_MODE_LRO)
648 			skb_fill_page_desc(skb, j, old_rx_pg.page,
649 					   old_rx_pg.offset, frag_len);
650 		else { /* GRO */
651 			int rem;
652 			int offset = 0;
653 			for (rem = frag_len; rem > 0; rem -= gro_size) {
654 				int len = rem > gro_size ? gro_size : rem;
655 				skb_fill_page_desc(skb, frag_id++,
656 						   old_rx_pg.page,
657 						   old_rx_pg.offset + offset,
658 						   len);
659 				if (offset)
660 					get_page(old_rx_pg.page);
661 				offset += len;
662 			}
663 		}
664 
665 		skb->data_len += frag_len;
666 		skb->truesize += SGE_PAGES;
667 		skb->len += frag_len;
668 
669 		frag_size -= frag_len;
670 	}
671 
672 	return 0;
673 }
674 
675 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
676 {
677 	if (fp->rx_frag_size)
678 		skb_free_frag(data);
679 	else
680 		kfree(data);
681 }
682 
683 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
684 {
685 	if (fp->rx_frag_size) {
686 		/* GFP_KERNEL allocations are used only during initialization */
687 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
688 			return (void *)__get_free_page(gfp_mask);
689 
690 		return napi_alloc_frag(fp->rx_frag_size);
691 	}
692 
693 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
694 }
695 
696 #ifdef CONFIG_INET
697 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
698 {
699 	const struct iphdr *iph = ip_hdr(skb);
700 	struct tcphdr *th;
701 
702 	skb_set_transport_header(skb, sizeof(struct iphdr));
703 	th = tcp_hdr(skb);
704 
705 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
706 				  iph->saddr, iph->daddr, 0);
707 }
708 
709 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
710 {
711 	struct ipv6hdr *iph = ipv6_hdr(skb);
712 	struct tcphdr *th;
713 
714 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
715 	th = tcp_hdr(skb);
716 
717 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
718 				  &iph->saddr, &iph->daddr, 0);
719 }
720 
721 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
722 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
723 {
724 	skb_reset_network_header(skb);
725 	gro_func(bp, skb);
726 	tcp_gro_complete(skb);
727 }
728 #endif
729 
730 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
731 			       struct sk_buff *skb)
732 {
733 #ifdef CONFIG_INET
734 	if (skb_shinfo(skb)->gso_size) {
735 		switch (be16_to_cpu(skb->protocol)) {
736 		case ETH_P_IP:
737 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
738 			break;
739 		case ETH_P_IPV6:
740 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
741 			break;
742 		default:
743 			netdev_WARN_ONCE(bp->dev,
744 					 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
745 					 be16_to_cpu(skb->protocol));
746 		}
747 	}
748 #endif
749 	skb_record_rx_queue(skb, fp->rx_queue);
750 	napi_gro_receive(&fp->napi, skb);
751 }
752 
753 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
754 			   struct bnx2x_agg_info *tpa_info,
755 			   u16 pages,
756 			   struct eth_end_agg_rx_cqe *cqe,
757 			   u16 cqe_idx)
758 {
759 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
760 	u8 pad = tpa_info->placement_offset;
761 	u16 len = tpa_info->len_on_bd;
762 	struct sk_buff *skb = NULL;
763 	u8 *new_data, *data = rx_buf->data;
764 	u8 old_tpa_state = tpa_info->tpa_state;
765 
766 	tpa_info->tpa_state = BNX2X_TPA_STOP;
767 
768 	/* If we there was an error during the handling of the TPA_START -
769 	 * drop this aggregation.
770 	 */
771 	if (old_tpa_state == BNX2X_TPA_ERROR)
772 		goto drop;
773 
774 	/* Try to allocate the new data */
775 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
776 	/* Unmap skb in the pool anyway, as we are going to change
777 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
778 	   fails. */
779 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
780 			 fp->rx_buf_size, DMA_FROM_DEVICE);
781 	if (likely(new_data))
782 		skb = build_skb(data, fp->rx_frag_size);
783 
784 	if (likely(skb)) {
785 #ifdef BNX2X_STOP_ON_ERROR
786 		if (pad + len > fp->rx_buf_size) {
787 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
788 				  pad, len, fp->rx_buf_size);
789 			bnx2x_panic();
790 			return;
791 		}
792 #endif
793 
794 		skb_reserve(skb, pad + NET_SKB_PAD);
795 		skb_put(skb, len);
796 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
797 
798 		skb->protocol = eth_type_trans(skb, bp->dev);
799 		skb->ip_summed = CHECKSUM_UNNECESSARY;
800 
801 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
802 					 skb, cqe, cqe_idx)) {
803 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
804 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
805 			bnx2x_gro_receive(bp, fp, skb);
806 		} else {
807 			DP(NETIF_MSG_RX_STATUS,
808 			   "Failed to allocate new pages - dropping packet!\n");
809 			dev_kfree_skb_any(skb);
810 		}
811 
812 		/* put new data in bin */
813 		rx_buf->data = new_data;
814 
815 		return;
816 	}
817 	if (new_data)
818 		bnx2x_frag_free(fp, new_data);
819 drop:
820 	/* drop the packet and keep the buffer in the bin */
821 	DP(NETIF_MSG_RX_STATUS,
822 	   "Failed to allocate or map a new skb - dropping packet!\n");
823 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
824 }
825 
826 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
827 			       u16 index, gfp_t gfp_mask)
828 {
829 	u8 *data;
830 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
831 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
832 	dma_addr_t mapping;
833 
834 	data = bnx2x_frag_alloc(fp, gfp_mask);
835 	if (unlikely(data == NULL))
836 		return -ENOMEM;
837 
838 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
839 				 fp->rx_buf_size,
840 				 DMA_FROM_DEVICE);
841 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
842 		bnx2x_frag_free(fp, data);
843 		BNX2X_ERR("Can't map rx data\n");
844 		return -ENOMEM;
845 	}
846 
847 	rx_buf->data = data;
848 	dma_unmap_addr_set(rx_buf, mapping, mapping);
849 
850 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
851 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
852 
853 	return 0;
854 }
855 
856 static
857 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
858 				 struct bnx2x_fastpath *fp,
859 				 struct bnx2x_eth_q_stats *qstats)
860 {
861 	/* Do nothing if no L4 csum validation was done.
862 	 * We do not check whether IP csum was validated. For IPv4 we assume
863 	 * that if the card got as far as validating the L4 csum, it also
864 	 * validated the IP csum. IPv6 has no IP csum.
865 	 */
866 	if (cqe->fast_path_cqe.status_flags &
867 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
868 		return;
869 
870 	/* If L4 validation was done, check if an error was found. */
871 
872 	if (cqe->fast_path_cqe.type_error_flags &
873 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
874 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
875 		qstats->hw_csum_err++;
876 	else
877 		skb->ip_summed = CHECKSUM_UNNECESSARY;
878 }
879 
880 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
881 {
882 	struct bnx2x *bp = fp->bp;
883 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
884 	u16 sw_comp_cons, sw_comp_prod;
885 	int rx_pkt = 0;
886 	union eth_rx_cqe *cqe;
887 	struct eth_fast_path_rx_cqe *cqe_fp;
888 
889 #ifdef BNX2X_STOP_ON_ERROR
890 	if (unlikely(bp->panic))
891 		return 0;
892 #endif
893 	if (budget <= 0)
894 		return rx_pkt;
895 
896 	bd_cons = fp->rx_bd_cons;
897 	bd_prod = fp->rx_bd_prod;
898 	bd_prod_fw = bd_prod;
899 	sw_comp_cons = fp->rx_comp_cons;
900 	sw_comp_prod = fp->rx_comp_prod;
901 
902 	comp_ring_cons = RCQ_BD(sw_comp_cons);
903 	cqe = &fp->rx_comp_ring[comp_ring_cons];
904 	cqe_fp = &cqe->fast_path_cqe;
905 
906 	DP(NETIF_MSG_RX_STATUS,
907 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
908 
909 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
910 		struct sw_rx_bd *rx_buf = NULL;
911 		struct sk_buff *skb;
912 		u8 cqe_fp_flags;
913 		enum eth_rx_cqe_type cqe_fp_type;
914 		u16 len, pad, queue;
915 		u8 *data;
916 		u32 rxhash;
917 		enum pkt_hash_types rxhash_type;
918 
919 #ifdef BNX2X_STOP_ON_ERROR
920 		if (unlikely(bp->panic))
921 			return 0;
922 #endif
923 
924 		bd_prod = RX_BD(bd_prod);
925 		bd_cons = RX_BD(bd_cons);
926 
927 		/* A rmb() is required to ensure that the CQE is not read
928 		 * before it is written by the adapter DMA.  PCI ordering
929 		 * rules will make sure the other fields are written before
930 		 * the marker at the end of struct eth_fast_path_rx_cqe
931 		 * but without rmb() a weakly ordered processor can process
932 		 * stale data.  Without the barrier TPA state-machine might
933 		 * enter inconsistent state and kernel stack might be
934 		 * provided with incorrect packet description - these lead
935 		 * to various kernel crashed.
936 		 */
937 		rmb();
938 
939 		cqe_fp_flags = cqe_fp->type_error_flags;
940 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
941 
942 		DP(NETIF_MSG_RX_STATUS,
943 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
944 		   CQE_TYPE(cqe_fp_flags),
945 		   cqe_fp_flags, cqe_fp->status_flags,
946 		   le32_to_cpu(cqe_fp->rss_hash_result),
947 		   le16_to_cpu(cqe_fp->vlan_tag),
948 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
949 
950 		/* is this a slowpath msg? */
951 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
952 			bnx2x_sp_event(fp, cqe);
953 			goto next_cqe;
954 		}
955 
956 		rx_buf = &fp->rx_buf_ring[bd_cons];
957 		data = rx_buf->data;
958 
959 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
960 			struct bnx2x_agg_info *tpa_info;
961 			u16 frag_size, pages;
962 #ifdef BNX2X_STOP_ON_ERROR
963 			/* sanity check */
964 			if (fp->mode == TPA_MODE_DISABLED &&
965 			    (CQE_TYPE_START(cqe_fp_type) ||
966 			     CQE_TYPE_STOP(cqe_fp_type)))
967 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
968 					  CQE_TYPE(cqe_fp_type));
969 #endif
970 
971 			if (CQE_TYPE_START(cqe_fp_type)) {
972 				u16 queue = cqe_fp->queue_index;
973 				DP(NETIF_MSG_RX_STATUS,
974 				   "calling tpa_start on queue %d\n",
975 				   queue);
976 
977 				bnx2x_tpa_start(fp, queue,
978 						bd_cons, bd_prod,
979 						cqe_fp);
980 
981 				goto next_rx;
982 			}
983 			queue = cqe->end_agg_cqe.queue_index;
984 			tpa_info = &fp->tpa_info[queue];
985 			DP(NETIF_MSG_RX_STATUS,
986 			   "calling tpa_stop on queue %d\n",
987 			   queue);
988 
989 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
990 				    tpa_info->len_on_bd;
991 
992 			if (fp->mode == TPA_MODE_GRO)
993 				pages = (frag_size + tpa_info->full_page - 1) /
994 					 tpa_info->full_page;
995 			else
996 				pages = SGE_PAGE_ALIGN(frag_size) >>
997 					SGE_PAGE_SHIFT;
998 
999 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1000 				       &cqe->end_agg_cqe, comp_ring_cons);
1001 #ifdef BNX2X_STOP_ON_ERROR
1002 			if (bp->panic)
1003 				return 0;
1004 #endif
1005 
1006 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1007 			goto next_cqe;
1008 		}
1009 		/* non TPA */
1010 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1011 		pad = cqe_fp->placement_offset;
1012 		dma_sync_single_for_cpu(&bp->pdev->dev,
1013 					dma_unmap_addr(rx_buf, mapping),
1014 					pad + RX_COPY_THRESH,
1015 					DMA_FROM_DEVICE);
1016 		pad += NET_SKB_PAD;
1017 		prefetch(data + pad); /* speedup eth_type_trans() */
1018 		/* is this an error packet? */
1019 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1020 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1021 			   "ERROR  flags %x  rx packet %u\n",
1022 			   cqe_fp_flags, sw_comp_cons);
1023 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1024 			goto reuse_rx;
1025 		}
1026 
1027 		/* Since we don't have a jumbo ring
1028 		 * copy small packets if mtu > 1500
1029 		 */
1030 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1031 		    (len <= RX_COPY_THRESH)) {
1032 			skb = napi_alloc_skb(&fp->napi, len);
1033 			if (skb == NULL) {
1034 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1035 				   "ERROR  packet dropped because of alloc failure\n");
1036 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1037 				goto reuse_rx;
1038 			}
1039 			memcpy(skb->data, data + pad, len);
1040 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1041 		} else {
1042 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1043 						       GFP_ATOMIC) == 0)) {
1044 				dma_unmap_single(&bp->pdev->dev,
1045 						 dma_unmap_addr(rx_buf, mapping),
1046 						 fp->rx_buf_size,
1047 						 DMA_FROM_DEVICE);
1048 				skb = build_skb(data, fp->rx_frag_size);
1049 				if (unlikely(!skb)) {
1050 					bnx2x_frag_free(fp, data);
1051 					bnx2x_fp_qstats(bp, fp)->
1052 							rx_skb_alloc_failed++;
1053 					goto next_rx;
1054 				}
1055 				skb_reserve(skb, pad);
1056 			} else {
1057 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1058 				   "ERROR  packet dropped because of alloc failure\n");
1059 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1060 reuse_rx:
1061 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1062 				goto next_rx;
1063 			}
1064 		}
1065 
1066 		skb_put(skb, len);
1067 		skb->protocol = eth_type_trans(skb, bp->dev);
1068 
1069 		/* Set Toeplitz hash for a none-LRO skb */
1070 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1071 		skb_set_hash(skb, rxhash, rxhash_type);
1072 
1073 		skb_checksum_none_assert(skb);
1074 
1075 		if (bp->dev->features & NETIF_F_RXCSUM)
1076 			bnx2x_csum_validate(skb, cqe, fp,
1077 					    bnx2x_fp_qstats(bp, fp));
1078 
1079 		skb_record_rx_queue(skb, fp->rx_queue);
1080 
1081 		/* Check if this packet was timestamped */
1082 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1083 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1084 			bnx2x_set_rx_ts(bp, skb);
1085 
1086 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1087 		    PARSING_FLAGS_VLAN)
1088 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1089 					       le16_to_cpu(cqe_fp->vlan_tag));
1090 
1091 		napi_gro_receive(&fp->napi, skb);
1092 next_rx:
1093 		rx_buf->data = NULL;
1094 
1095 		bd_cons = NEXT_RX_IDX(bd_cons);
1096 		bd_prod = NEXT_RX_IDX(bd_prod);
1097 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1098 		rx_pkt++;
1099 next_cqe:
1100 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1101 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1102 
1103 		/* mark CQE as free */
1104 		BNX2X_SEED_CQE(cqe_fp);
1105 
1106 		if (rx_pkt == budget)
1107 			break;
1108 
1109 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1110 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1111 		cqe_fp = &cqe->fast_path_cqe;
1112 	} /* while */
1113 
1114 	fp->rx_bd_cons = bd_cons;
1115 	fp->rx_bd_prod = bd_prod_fw;
1116 	fp->rx_comp_cons = sw_comp_cons;
1117 	fp->rx_comp_prod = sw_comp_prod;
1118 
1119 	/* Update producers */
1120 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1121 			     fp->rx_sge_prod);
1122 
1123 	return rx_pkt;
1124 }
1125 
1126 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1127 {
1128 	struct bnx2x_fastpath *fp = fp_cookie;
1129 	struct bnx2x *bp = fp->bp;
1130 	u8 cos;
1131 
1132 	DP(NETIF_MSG_INTR,
1133 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1134 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1135 
1136 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1137 
1138 #ifdef BNX2X_STOP_ON_ERROR
1139 	if (unlikely(bp->panic))
1140 		return IRQ_HANDLED;
1141 #endif
1142 
1143 	/* Handle Rx and Tx according to MSI-X vector */
1144 	for_each_cos_in_tx_queue(fp, cos)
1145 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1146 
1147 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1148 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1149 
1150 	return IRQ_HANDLED;
1151 }
1152 
1153 /* HW Lock for shared dual port PHYs */
1154 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1155 {
1156 	mutex_lock(&bp->port.phy_mutex);
1157 
1158 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1159 }
1160 
1161 void bnx2x_release_phy_lock(struct bnx2x *bp)
1162 {
1163 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1164 
1165 	mutex_unlock(&bp->port.phy_mutex);
1166 }
1167 
1168 /* calculates MF speed according to current linespeed and MF configuration */
1169 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1170 {
1171 	u16 line_speed = bp->link_vars.line_speed;
1172 	if (IS_MF(bp)) {
1173 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1174 						   bp->mf_config[BP_VN(bp)]);
1175 
1176 		/* Calculate the current MAX line speed limit for the MF
1177 		 * devices
1178 		 */
1179 		if (IS_MF_PERCENT_BW(bp))
1180 			line_speed = (line_speed * maxCfg) / 100;
1181 		else { /* SD mode */
1182 			u16 vn_max_rate = maxCfg * 100;
1183 
1184 			if (vn_max_rate < line_speed)
1185 				line_speed = vn_max_rate;
1186 		}
1187 	}
1188 
1189 	return line_speed;
1190 }
1191 
1192 /**
1193  * bnx2x_fill_report_data - fill link report data to report
1194  *
1195  * @bp:		driver handle
1196  * @data:	link state to update
1197  *
1198  * It uses a none-atomic bit operations because is called under the mutex.
1199  */
1200 static void bnx2x_fill_report_data(struct bnx2x *bp,
1201 				   struct bnx2x_link_report_data *data)
1202 {
1203 	memset(data, 0, sizeof(*data));
1204 
1205 	if (IS_PF(bp)) {
1206 		/* Fill the report data: effective line speed */
1207 		data->line_speed = bnx2x_get_mf_speed(bp);
1208 
1209 		/* Link is down */
1210 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1211 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1212 				  &data->link_report_flags);
1213 
1214 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1215 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1216 				  &data->link_report_flags);
1217 
1218 		/* Full DUPLEX */
1219 		if (bp->link_vars.duplex == DUPLEX_FULL)
1220 			__set_bit(BNX2X_LINK_REPORT_FD,
1221 				  &data->link_report_flags);
1222 
1223 		/* Rx Flow Control is ON */
1224 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1225 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1226 				  &data->link_report_flags);
1227 
1228 		/* Tx Flow Control is ON */
1229 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1230 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1231 				  &data->link_report_flags);
1232 	} else { /* VF */
1233 		*data = bp->vf_link_vars;
1234 	}
1235 }
1236 
1237 /**
1238  * bnx2x_link_report - report link status to OS.
1239  *
1240  * @bp:		driver handle
1241  *
1242  * Calls the __bnx2x_link_report() under the same locking scheme
1243  * as a link/PHY state managing code to ensure a consistent link
1244  * reporting.
1245  */
1246 
1247 void bnx2x_link_report(struct bnx2x *bp)
1248 {
1249 	bnx2x_acquire_phy_lock(bp);
1250 	__bnx2x_link_report(bp);
1251 	bnx2x_release_phy_lock(bp);
1252 }
1253 
1254 /**
1255  * __bnx2x_link_report - report link status to OS.
1256  *
1257  * @bp:		driver handle
1258  *
1259  * None atomic implementation.
1260  * Should be called under the phy_lock.
1261  */
1262 void __bnx2x_link_report(struct bnx2x *bp)
1263 {
1264 	struct bnx2x_link_report_data cur_data;
1265 
1266 	if (bp->force_link_down) {
1267 		bp->link_vars.link_up = 0;
1268 		return;
1269 	}
1270 
1271 	/* reread mf_cfg */
1272 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1273 		bnx2x_read_mf_cfg(bp);
1274 
1275 	/* Read the current link report info */
1276 	bnx2x_fill_report_data(bp, &cur_data);
1277 
1278 	/* Don't report link down or exactly the same link status twice */
1279 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1280 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1281 		      &bp->last_reported_link.link_report_flags) &&
1282 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1283 		      &cur_data.link_report_flags)))
1284 		return;
1285 
1286 	bp->link_cnt++;
1287 
1288 	/* We are going to report a new link parameters now -
1289 	 * remember the current data for the next time.
1290 	 */
1291 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1292 
1293 	/* propagate status to VFs */
1294 	if (IS_PF(bp))
1295 		bnx2x_iov_link_update(bp);
1296 
1297 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1298 		     &cur_data.link_report_flags)) {
1299 		netif_carrier_off(bp->dev);
1300 		netdev_err(bp->dev, "NIC Link is Down\n");
1301 		return;
1302 	} else {
1303 		const char *duplex;
1304 		const char *flow;
1305 
1306 		netif_carrier_on(bp->dev);
1307 
1308 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1309 				       &cur_data.link_report_flags))
1310 			duplex = "full";
1311 		else
1312 			duplex = "half";
1313 
1314 		/* Handle the FC at the end so that only these flags would be
1315 		 * possibly set. This way we may easily check if there is no FC
1316 		 * enabled.
1317 		 */
1318 		if (cur_data.link_report_flags) {
1319 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1320 				     &cur_data.link_report_flags)) {
1321 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1322 				     &cur_data.link_report_flags))
1323 					flow = "ON - receive & transmit";
1324 				else
1325 					flow = "ON - receive";
1326 			} else {
1327 				flow = "ON - transmit";
1328 			}
1329 		} else {
1330 			flow = "none";
1331 		}
1332 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1333 			    cur_data.line_speed, duplex, flow);
1334 	}
1335 }
1336 
1337 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1338 {
1339 	int i;
1340 
1341 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1342 		struct eth_rx_sge *sge;
1343 
1344 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1345 		sge->addr_hi =
1346 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1347 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1348 
1349 		sge->addr_lo =
1350 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1351 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1352 	}
1353 }
1354 
1355 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1356 				struct bnx2x_fastpath *fp, int last)
1357 {
1358 	int i;
1359 
1360 	for (i = 0; i < last; i++) {
1361 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1362 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1363 		u8 *data = first_buf->data;
1364 
1365 		if (data == NULL) {
1366 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1367 			continue;
1368 		}
1369 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1370 			dma_unmap_single(&bp->pdev->dev,
1371 					 dma_unmap_addr(first_buf, mapping),
1372 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1373 		bnx2x_frag_free(fp, data);
1374 		first_buf->data = NULL;
1375 	}
1376 }
1377 
1378 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1379 {
1380 	int j;
1381 
1382 	for_each_rx_queue_cnic(bp, j) {
1383 		struct bnx2x_fastpath *fp = &bp->fp[j];
1384 
1385 		fp->rx_bd_cons = 0;
1386 
1387 		/* Activate BD ring */
1388 		/* Warning!
1389 		 * this will generate an interrupt (to the TSTORM)
1390 		 * must only be done after chip is initialized
1391 		 */
1392 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1393 				     fp->rx_sge_prod);
1394 	}
1395 }
1396 
1397 void bnx2x_init_rx_rings(struct bnx2x *bp)
1398 {
1399 	int func = BP_FUNC(bp);
1400 	u16 ring_prod;
1401 	int i, j;
1402 
1403 	/* Allocate TPA resources */
1404 	for_each_eth_queue(bp, j) {
1405 		struct bnx2x_fastpath *fp = &bp->fp[j];
1406 
1407 		DP(NETIF_MSG_IFUP,
1408 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1409 
1410 		if (fp->mode != TPA_MODE_DISABLED) {
1411 			/* Fill the per-aggregation pool */
1412 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1413 				struct bnx2x_agg_info *tpa_info =
1414 					&fp->tpa_info[i];
1415 				struct sw_rx_bd *first_buf =
1416 					&tpa_info->first_buf;
1417 
1418 				first_buf->data =
1419 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1420 				if (!first_buf->data) {
1421 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1422 						  j);
1423 					bnx2x_free_tpa_pool(bp, fp, i);
1424 					fp->mode = TPA_MODE_DISABLED;
1425 					break;
1426 				}
1427 				dma_unmap_addr_set(first_buf, mapping, 0);
1428 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1429 			}
1430 
1431 			/* "next page" elements initialization */
1432 			bnx2x_set_next_page_sgl(fp);
1433 
1434 			/* set SGEs bit mask */
1435 			bnx2x_init_sge_ring_bit_mask(fp);
1436 
1437 			/* Allocate SGEs and initialize the ring elements */
1438 			for (i = 0, ring_prod = 0;
1439 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1440 
1441 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1442 						       GFP_KERNEL) < 0) {
1443 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1444 						  i);
1445 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1446 						  j);
1447 					/* Cleanup already allocated elements */
1448 					bnx2x_free_rx_sge_range(bp, fp,
1449 								ring_prod);
1450 					bnx2x_free_tpa_pool(bp, fp,
1451 							    MAX_AGG_QS(bp));
1452 					fp->mode = TPA_MODE_DISABLED;
1453 					ring_prod = 0;
1454 					break;
1455 				}
1456 				ring_prod = NEXT_SGE_IDX(ring_prod);
1457 			}
1458 
1459 			fp->rx_sge_prod = ring_prod;
1460 		}
1461 	}
1462 
1463 	for_each_eth_queue(bp, j) {
1464 		struct bnx2x_fastpath *fp = &bp->fp[j];
1465 
1466 		fp->rx_bd_cons = 0;
1467 
1468 		/* Activate BD ring */
1469 		/* Warning!
1470 		 * this will generate an interrupt (to the TSTORM)
1471 		 * must only be done after chip is initialized
1472 		 */
1473 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1474 				     fp->rx_sge_prod);
1475 
1476 		if (j != 0)
1477 			continue;
1478 
1479 		if (CHIP_IS_E1(bp)) {
1480 			REG_WR(bp, BAR_USTRORM_INTMEM +
1481 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1482 			       U64_LO(fp->rx_comp_mapping));
1483 			REG_WR(bp, BAR_USTRORM_INTMEM +
1484 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1485 			       U64_HI(fp->rx_comp_mapping));
1486 		}
1487 	}
1488 }
1489 
1490 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1491 {
1492 	u8 cos;
1493 	struct bnx2x *bp = fp->bp;
1494 
1495 	for_each_cos_in_tx_queue(fp, cos) {
1496 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1497 		unsigned pkts_compl = 0, bytes_compl = 0;
1498 
1499 		u16 sw_prod = txdata->tx_pkt_prod;
1500 		u16 sw_cons = txdata->tx_pkt_cons;
1501 
1502 		while (sw_cons != sw_prod) {
1503 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1504 					  &pkts_compl, &bytes_compl);
1505 			sw_cons++;
1506 		}
1507 
1508 		netdev_tx_reset_queue(
1509 			netdev_get_tx_queue(bp->dev,
1510 					    txdata->txq_index));
1511 	}
1512 }
1513 
1514 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1515 {
1516 	int i;
1517 
1518 	for_each_tx_queue_cnic(bp, i) {
1519 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1520 	}
1521 }
1522 
1523 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1524 {
1525 	int i;
1526 
1527 	for_each_eth_queue(bp, i) {
1528 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1529 	}
1530 }
1531 
1532 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1533 {
1534 	struct bnx2x *bp = fp->bp;
1535 	int i;
1536 
1537 	/* ring wasn't allocated */
1538 	if (fp->rx_buf_ring == NULL)
1539 		return;
1540 
1541 	for (i = 0; i < NUM_RX_BD; i++) {
1542 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1543 		u8 *data = rx_buf->data;
1544 
1545 		if (data == NULL)
1546 			continue;
1547 		dma_unmap_single(&bp->pdev->dev,
1548 				 dma_unmap_addr(rx_buf, mapping),
1549 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1550 
1551 		rx_buf->data = NULL;
1552 		bnx2x_frag_free(fp, data);
1553 	}
1554 }
1555 
1556 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1557 {
1558 	int j;
1559 
1560 	for_each_rx_queue_cnic(bp, j) {
1561 		bnx2x_free_rx_bds(&bp->fp[j]);
1562 	}
1563 }
1564 
1565 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1566 {
1567 	int j;
1568 
1569 	for_each_eth_queue(bp, j) {
1570 		struct bnx2x_fastpath *fp = &bp->fp[j];
1571 
1572 		bnx2x_free_rx_bds(fp);
1573 
1574 		if (fp->mode != TPA_MODE_DISABLED)
1575 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1576 	}
1577 }
1578 
1579 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1580 {
1581 	bnx2x_free_tx_skbs_cnic(bp);
1582 	bnx2x_free_rx_skbs_cnic(bp);
1583 }
1584 
1585 void bnx2x_free_skbs(struct bnx2x *bp)
1586 {
1587 	bnx2x_free_tx_skbs(bp);
1588 	bnx2x_free_rx_skbs(bp);
1589 }
1590 
1591 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1592 {
1593 	/* load old values */
1594 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1595 
1596 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1597 		/* leave all but MAX value */
1598 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1599 
1600 		/* set new MAX value */
1601 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1602 				& FUNC_MF_CFG_MAX_BW_MASK;
1603 
1604 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1605 	}
1606 }
1607 
1608 /**
1609  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1610  *
1611  * @bp:		driver handle
1612  * @nvecs:	number of vectors to be released
1613  */
1614 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1615 {
1616 	int i, offset = 0;
1617 
1618 	if (nvecs == offset)
1619 		return;
1620 
1621 	/* VFs don't have a default SB */
1622 	if (IS_PF(bp)) {
1623 		free_irq(bp->msix_table[offset].vector, bp->dev);
1624 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1625 		   bp->msix_table[offset].vector);
1626 		offset++;
1627 	}
1628 
1629 	if (CNIC_SUPPORT(bp)) {
1630 		if (nvecs == offset)
1631 			return;
1632 		offset++;
1633 	}
1634 
1635 	for_each_eth_queue(bp, i) {
1636 		if (nvecs == offset)
1637 			return;
1638 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1639 		   i, bp->msix_table[offset].vector);
1640 
1641 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1642 	}
1643 }
1644 
1645 void bnx2x_free_irq(struct bnx2x *bp)
1646 {
1647 	if (bp->flags & USING_MSIX_FLAG &&
1648 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1649 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1650 
1651 		/* vfs don't have a default status block */
1652 		if (IS_PF(bp))
1653 			nvecs++;
1654 
1655 		bnx2x_free_msix_irqs(bp, nvecs);
1656 	} else {
1657 		free_irq(bp->dev->irq, bp->dev);
1658 	}
1659 }
1660 
1661 int bnx2x_enable_msix(struct bnx2x *bp)
1662 {
1663 	int msix_vec = 0, i, rc;
1664 
1665 	/* VFs don't have a default status block */
1666 	if (IS_PF(bp)) {
1667 		bp->msix_table[msix_vec].entry = msix_vec;
1668 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1669 			       bp->msix_table[0].entry);
1670 		msix_vec++;
1671 	}
1672 
1673 	/* Cnic requires an msix vector for itself */
1674 	if (CNIC_SUPPORT(bp)) {
1675 		bp->msix_table[msix_vec].entry = msix_vec;
1676 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1677 			       msix_vec, bp->msix_table[msix_vec].entry);
1678 		msix_vec++;
1679 	}
1680 
1681 	/* We need separate vectors for ETH queues only (not FCoE) */
1682 	for_each_eth_queue(bp, i) {
1683 		bp->msix_table[msix_vec].entry = msix_vec;
1684 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1685 			       msix_vec, msix_vec, i);
1686 		msix_vec++;
1687 	}
1688 
1689 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1690 	   msix_vec);
1691 
1692 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1693 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1694 	/*
1695 	 * reconfigure number of tx/rx queues according to available
1696 	 * MSI-X vectors
1697 	 */
1698 	if (rc == -ENOSPC) {
1699 		/* Get by with single vector */
1700 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1701 		if (rc < 0) {
1702 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1703 				       rc);
1704 			goto no_msix;
1705 		}
1706 
1707 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1708 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1709 
1710 		BNX2X_DEV_INFO("set number of queues to 1\n");
1711 		bp->num_ethernet_queues = 1;
1712 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1713 	} else if (rc < 0) {
1714 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1715 		goto no_msix;
1716 	} else if (rc < msix_vec) {
1717 		/* how less vectors we will have? */
1718 		int diff = msix_vec - rc;
1719 
1720 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1721 
1722 		/*
1723 		 * decrease number of queues by number of unallocated entries
1724 		 */
1725 		bp->num_ethernet_queues -= diff;
1726 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1727 
1728 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1729 			       bp->num_queues);
1730 	}
1731 
1732 	bp->flags |= USING_MSIX_FLAG;
1733 
1734 	return 0;
1735 
1736 no_msix:
1737 	/* fall to INTx if not enough memory */
1738 	if (rc == -ENOMEM)
1739 		bp->flags |= DISABLE_MSI_FLAG;
1740 
1741 	return rc;
1742 }
1743 
1744 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1745 {
1746 	int i, rc, offset = 0;
1747 
1748 	/* no default status block for vf */
1749 	if (IS_PF(bp)) {
1750 		rc = request_irq(bp->msix_table[offset++].vector,
1751 				 bnx2x_msix_sp_int, 0,
1752 				 bp->dev->name, bp->dev);
1753 		if (rc) {
1754 			BNX2X_ERR("request sp irq failed\n");
1755 			return -EBUSY;
1756 		}
1757 	}
1758 
1759 	if (CNIC_SUPPORT(bp))
1760 		offset++;
1761 
1762 	for_each_eth_queue(bp, i) {
1763 		struct bnx2x_fastpath *fp = &bp->fp[i];
1764 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1765 			 bp->dev->name, i);
1766 
1767 		rc = request_irq(bp->msix_table[offset].vector,
1768 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1769 		if (rc) {
1770 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1771 			      bp->msix_table[offset].vector, rc);
1772 			bnx2x_free_msix_irqs(bp, offset);
1773 			return -EBUSY;
1774 		}
1775 
1776 		offset++;
1777 	}
1778 
1779 	i = BNX2X_NUM_ETH_QUEUES(bp);
1780 	if (IS_PF(bp)) {
1781 		offset = 1 + CNIC_SUPPORT(bp);
1782 		netdev_info(bp->dev,
1783 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1784 			    bp->msix_table[0].vector,
1785 			    0, bp->msix_table[offset].vector,
1786 			    i - 1, bp->msix_table[offset + i - 1].vector);
1787 	} else {
1788 		offset = CNIC_SUPPORT(bp);
1789 		netdev_info(bp->dev,
1790 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1791 			    0, bp->msix_table[offset].vector,
1792 			    i - 1, bp->msix_table[offset + i - 1].vector);
1793 	}
1794 	return 0;
1795 }
1796 
1797 int bnx2x_enable_msi(struct bnx2x *bp)
1798 {
1799 	int rc;
1800 
1801 	rc = pci_enable_msi(bp->pdev);
1802 	if (rc) {
1803 		BNX2X_DEV_INFO("MSI is not attainable\n");
1804 		return -1;
1805 	}
1806 	bp->flags |= USING_MSI_FLAG;
1807 
1808 	return 0;
1809 }
1810 
1811 static int bnx2x_req_irq(struct bnx2x *bp)
1812 {
1813 	unsigned long flags;
1814 	unsigned int irq;
1815 
1816 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1817 		flags = 0;
1818 	else
1819 		flags = IRQF_SHARED;
1820 
1821 	if (bp->flags & USING_MSIX_FLAG)
1822 		irq = bp->msix_table[0].vector;
1823 	else
1824 		irq = bp->pdev->irq;
1825 
1826 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1827 }
1828 
1829 static int bnx2x_setup_irqs(struct bnx2x *bp)
1830 {
1831 	int rc = 0;
1832 	if (bp->flags & USING_MSIX_FLAG &&
1833 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1834 		rc = bnx2x_req_msix_irqs(bp);
1835 		if (rc)
1836 			return rc;
1837 	} else {
1838 		rc = bnx2x_req_irq(bp);
1839 		if (rc) {
1840 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1841 			return rc;
1842 		}
1843 		if (bp->flags & USING_MSI_FLAG) {
1844 			bp->dev->irq = bp->pdev->irq;
1845 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1846 				    bp->dev->irq);
1847 		}
1848 		if (bp->flags & USING_MSIX_FLAG) {
1849 			bp->dev->irq = bp->msix_table[0].vector;
1850 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1851 				    bp->dev->irq);
1852 		}
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1859 {
1860 	int i;
1861 
1862 	for_each_rx_queue_cnic(bp, i) {
1863 		napi_enable(&bnx2x_fp(bp, i, napi));
1864 	}
1865 }
1866 
1867 static void bnx2x_napi_enable(struct bnx2x *bp)
1868 {
1869 	int i;
1870 
1871 	for_each_eth_queue(bp, i) {
1872 		napi_enable(&bnx2x_fp(bp, i, napi));
1873 	}
1874 }
1875 
1876 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1877 {
1878 	int i;
1879 
1880 	for_each_rx_queue_cnic(bp, i) {
1881 		napi_disable(&bnx2x_fp(bp, i, napi));
1882 	}
1883 }
1884 
1885 static void bnx2x_napi_disable(struct bnx2x *bp)
1886 {
1887 	int i;
1888 
1889 	for_each_eth_queue(bp, i) {
1890 		napi_disable(&bnx2x_fp(bp, i, napi));
1891 	}
1892 }
1893 
1894 void bnx2x_netif_start(struct bnx2x *bp)
1895 {
1896 	if (netif_running(bp->dev)) {
1897 		bnx2x_napi_enable(bp);
1898 		if (CNIC_LOADED(bp))
1899 			bnx2x_napi_enable_cnic(bp);
1900 		bnx2x_int_enable(bp);
1901 		if (bp->state == BNX2X_STATE_OPEN)
1902 			netif_tx_wake_all_queues(bp->dev);
1903 	}
1904 }
1905 
1906 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1907 {
1908 	bnx2x_int_disable_sync(bp, disable_hw);
1909 	bnx2x_napi_disable(bp);
1910 	if (CNIC_LOADED(bp))
1911 		bnx2x_napi_disable_cnic(bp);
1912 }
1913 
1914 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1915 		       struct net_device *sb_dev)
1916 {
1917 	struct bnx2x *bp = netdev_priv(dev);
1918 
1919 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1920 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1921 		u16 ether_type = ntohs(hdr->h_proto);
1922 
1923 		/* Skip VLAN tag if present */
1924 		if (ether_type == ETH_P_8021Q) {
1925 			struct vlan_ethhdr *vhdr =
1926 				(struct vlan_ethhdr *)skb->data;
1927 
1928 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1929 		}
1930 
1931 		/* If ethertype is FCoE or FIP - use FCoE ring */
1932 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1933 			return bnx2x_fcoe_tx(bp, txq_index);
1934 	}
1935 
1936 	/* select a non-FCoE queue */
1937 	return netdev_pick_tx(dev, skb, NULL) %
1938 	       (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1939 }
1940 
1941 void bnx2x_set_num_queues(struct bnx2x *bp)
1942 {
1943 	/* RSS queues */
1944 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1945 
1946 	/* override in STORAGE SD modes */
1947 	if (IS_MF_STORAGE_ONLY(bp))
1948 		bp->num_ethernet_queues = 1;
1949 
1950 	/* Add special queues */
1951 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1952 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1953 
1954 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1955 }
1956 
1957 /**
1958  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1959  *
1960  * @bp:		Driver handle
1961  *
1962  * We currently support for at most 16 Tx queues for each CoS thus we will
1963  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1964  * bp->max_cos.
1965  *
1966  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1967  * index after all ETH L2 indices.
1968  *
1969  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1970  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1971  * 16..31,...) with indices that are not coupled with any real Tx queue.
1972  *
1973  * The proper configuration of skb->queue_mapping is handled by
1974  * bnx2x_select_queue() and __skb_tx_hash().
1975  *
1976  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1977  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1978  */
1979 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1980 {
1981 	int rc, tx, rx;
1982 
1983 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1984 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1985 
1986 /* account for fcoe queue */
1987 	if (include_cnic && !NO_FCOE(bp)) {
1988 		rx++;
1989 		tx++;
1990 	}
1991 
1992 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
1993 	if (rc) {
1994 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1995 		return rc;
1996 	}
1997 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
1998 	if (rc) {
1999 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2000 		return rc;
2001 	}
2002 
2003 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2004 			  tx, rx);
2005 
2006 	return rc;
2007 }
2008 
2009 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2010 {
2011 	int i;
2012 
2013 	for_each_queue(bp, i) {
2014 		struct bnx2x_fastpath *fp = &bp->fp[i];
2015 		u32 mtu;
2016 
2017 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2018 		if (IS_FCOE_IDX(i))
2019 			/*
2020 			 * Although there are no IP frames expected to arrive to
2021 			 * this ring we still want to add an
2022 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2023 			 * overrun attack.
2024 			 */
2025 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2026 		else
2027 			mtu = bp->dev->mtu;
2028 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2029 				  IP_HEADER_ALIGNMENT_PADDING +
2030 				  ETH_OVERHEAD +
2031 				  mtu +
2032 				  BNX2X_FW_RX_ALIGN_END;
2033 		fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2034 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2035 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2036 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2037 		else
2038 			fp->rx_frag_size = 0;
2039 	}
2040 }
2041 
2042 static int bnx2x_init_rss(struct bnx2x *bp)
2043 {
2044 	int i;
2045 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2046 
2047 	/* Prepare the initial contents for the indirection table if RSS is
2048 	 * enabled
2049 	 */
2050 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2051 		bp->rss_conf_obj.ind_table[i] =
2052 			bp->fp->cl_id +
2053 			ethtool_rxfh_indir_default(i, num_eth_queues);
2054 
2055 	/*
2056 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2057 	 * per-port, so if explicit configuration is needed , do it only
2058 	 * for a PMF.
2059 	 *
2060 	 * For 57712 and newer on the other hand it's a per-function
2061 	 * configuration.
2062 	 */
2063 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2064 }
2065 
2066 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2067 	      bool config_hash, bool enable)
2068 {
2069 	struct bnx2x_config_rss_params params = {NULL};
2070 
2071 	/* Although RSS is meaningless when there is a single HW queue we
2072 	 * still need it enabled in order to have HW Rx hash generated.
2073 	 *
2074 	 * if (!is_eth_multi(bp))
2075 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2076 	 */
2077 
2078 	params.rss_obj = rss_obj;
2079 
2080 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2081 
2082 	if (enable) {
2083 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2084 
2085 		/* RSS configuration */
2086 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2087 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2088 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2089 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2090 		if (rss_obj->udp_rss_v4)
2091 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2092 		if (rss_obj->udp_rss_v6)
2093 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2094 
2095 		if (!CHIP_IS_E1x(bp)) {
2096 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2097 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2098 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2099 
2100 			/* valid only for TUNN_MODE_GRE tunnel mode */
2101 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2102 		}
2103 	} else {
2104 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2105 	}
2106 
2107 	/* Hash bits */
2108 	params.rss_result_mask = MULTI_MASK;
2109 
2110 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2111 
2112 	if (config_hash) {
2113 		/* RSS keys */
2114 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2115 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2116 	}
2117 
2118 	if (IS_PF(bp))
2119 		return bnx2x_config_rss(bp, &params);
2120 	else
2121 		return bnx2x_vfpf_config_rss(bp, &params);
2122 }
2123 
2124 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2125 {
2126 	struct bnx2x_func_state_params func_params = {NULL};
2127 
2128 	/* Prepare parameters for function state transitions */
2129 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2130 
2131 	func_params.f_obj = &bp->func_obj;
2132 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2133 
2134 	func_params.params.hw_init.load_phase = load_code;
2135 
2136 	return bnx2x_func_state_change(bp, &func_params);
2137 }
2138 
2139 /*
2140  * Cleans the object that have internal lists without sending
2141  * ramrods. Should be run when interrupts are disabled.
2142  */
2143 void bnx2x_squeeze_objects(struct bnx2x *bp)
2144 {
2145 	int rc;
2146 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2147 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2148 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2149 
2150 	/***************** Cleanup MACs' object first *************************/
2151 
2152 	/* Wait for completion of requested */
2153 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2154 	/* Perform a dry cleanup */
2155 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2156 
2157 	/* Clean ETH primary MAC */
2158 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2159 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2160 				 &ramrod_flags);
2161 	if (rc != 0)
2162 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2163 
2164 	/* Cleanup UC list */
2165 	vlan_mac_flags = 0;
2166 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2167 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2168 				 &ramrod_flags);
2169 	if (rc != 0)
2170 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2171 
2172 	/***************** Now clean mcast object *****************************/
2173 	rparam.mcast_obj = &bp->mcast_obj;
2174 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2175 
2176 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2177 	 * we take a lock surrounding both the initial send and the CONTs,
2178 	 * as we don't want a true completion to disrupt us in the middle.
2179 	 */
2180 	netif_addr_lock_bh(bp->dev);
2181 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2182 	if (rc < 0)
2183 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2184 			  rc);
2185 
2186 	/* ...and wait until all pending commands are cleared */
2187 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2188 	while (rc != 0) {
2189 		if (rc < 0) {
2190 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2191 				  rc);
2192 			netif_addr_unlock_bh(bp->dev);
2193 			return;
2194 		}
2195 
2196 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2197 	}
2198 	netif_addr_unlock_bh(bp->dev);
2199 }
2200 
2201 #ifndef BNX2X_STOP_ON_ERROR
2202 #define LOAD_ERROR_EXIT(bp, label) \
2203 	do { \
2204 		(bp)->state = BNX2X_STATE_ERROR; \
2205 		goto label; \
2206 	} while (0)
2207 
2208 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2209 	do { \
2210 		bp->cnic_loaded = false; \
2211 		goto label; \
2212 	} while (0)
2213 #else /*BNX2X_STOP_ON_ERROR*/
2214 #define LOAD_ERROR_EXIT(bp, label) \
2215 	do { \
2216 		(bp)->state = BNX2X_STATE_ERROR; \
2217 		(bp)->panic = 1; \
2218 		return -EBUSY; \
2219 	} while (0)
2220 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2221 	do { \
2222 		bp->cnic_loaded = false; \
2223 		(bp)->panic = 1; \
2224 		return -EBUSY; \
2225 	} while (0)
2226 #endif /*BNX2X_STOP_ON_ERROR*/
2227 
2228 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2229 {
2230 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2231 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2232 	return;
2233 }
2234 
2235 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2236 {
2237 	int num_groups, vf_headroom = 0;
2238 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2239 
2240 	/* number of queues for statistics is number of eth queues + FCoE */
2241 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2242 
2243 	/* Total number of FW statistics requests =
2244 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2245 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2246 	 * for fcoe l2 queue if applicable)
2247 	 */
2248 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2249 
2250 	/* vf stats appear in the request list, but their data is allocated by
2251 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2252 	 * it is used to determine where to place the vf stats queries in the
2253 	 * request struct
2254 	 */
2255 	if (IS_SRIOV(bp))
2256 		vf_headroom = bnx2x_vf_headroom(bp);
2257 
2258 	/* Request is built from stats_query_header and an array of
2259 	 * stats_query_cmd_group each of which contains
2260 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2261 	 * configured in the stats_query_header.
2262 	 */
2263 	num_groups =
2264 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2265 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2266 		 1 : 0));
2267 
2268 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2269 	   bp->fw_stats_num, vf_headroom, num_groups);
2270 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2271 		num_groups * sizeof(struct stats_query_cmd_group);
2272 
2273 	/* Data for statistics requests + stats_counter
2274 	 * stats_counter holds per-STORM counters that are incremented
2275 	 * when STORM has finished with the current request.
2276 	 * memory for FCoE offloaded statistics are counted anyway,
2277 	 * even if they will not be sent.
2278 	 * VF stats are not accounted for here as the data of VF stats is stored
2279 	 * in memory allocated by the VF, not here.
2280 	 */
2281 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2282 		sizeof(struct per_pf_stats) +
2283 		sizeof(struct fcoe_statistics_params) +
2284 		sizeof(struct per_queue_stats) * num_queue_stats +
2285 		sizeof(struct stats_counter);
2286 
2287 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2288 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2289 	if (!bp->fw_stats)
2290 		goto alloc_mem_err;
2291 
2292 	/* Set shortcuts */
2293 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2294 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2295 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2296 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2297 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2298 		bp->fw_stats_req_sz;
2299 
2300 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2301 	   U64_HI(bp->fw_stats_req_mapping),
2302 	   U64_LO(bp->fw_stats_req_mapping));
2303 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2304 	   U64_HI(bp->fw_stats_data_mapping),
2305 	   U64_LO(bp->fw_stats_data_mapping));
2306 	return 0;
2307 
2308 alloc_mem_err:
2309 	bnx2x_free_fw_stats_mem(bp);
2310 	BNX2X_ERR("Can't allocate FW stats memory\n");
2311 	return -ENOMEM;
2312 }
2313 
2314 /* send load request to mcp and analyze response */
2315 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2316 {
2317 	u32 param;
2318 
2319 	/* init fw_seq */
2320 	bp->fw_seq =
2321 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2322 		 DRV_MSG_SEQ_NUMBER_MASK);
2323 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2324 
2325 	/* Get current FW pulse sequence */
2326 	bp->fw_drv_pulse_wr_seq =
2327 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2328 		 DRV_PULSE_SEQ_MASK);
2329 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2330 
2331 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2332 
2333 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2334 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2335 
2336 	/* load request */
2337 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2338 
2339 	/* if mcp fails to respond we must abort */
2340 	if (!(*load_code)) {
2341 		BNX2X_ERR("MCP response failure, aborting\n");
2342 		return -EBUSY;
2343 	}
2344 
2345 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2346 	 * must abort
2347 	 */
2348 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2349 		BNX2X_ERR("MCP refused load request, aborting\n");
2350 		return -EBUSY;
2351 	}
2352 	return 0;
2353 }
2354 
2355 /* check whether another PF has already loaded FW to chip. In
2356  * virtualized environments a pf from another VM may have already
2357  * initialized the device including loading FW
2358  */
2359 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2360 {
2361 	/* is another pf loaded on this engine? */
2362 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2363 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2364 		/* build my FW version dword */
2365 		u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2366 			(BCM_5710_FW_MINOR_VERSION << 8) +
2367 			(BCM_5710_FW_REVISION_VERSION << 16) +
2368 			(BCM_5710_FW_ENGINEERING_VERSION << 24);
2369 
2370 		/* read loaded FW from chip */
2371 		u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2372 
2373 		DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2374 		   loaded_fw, my_fw);
2375 
2376 		/* abort nic load if version mismatch */
2377 		if (my_fw != loaded_fw) {
2378 			if (print_err)
2379 				BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2380 					  loaded_fw, my_fw);
2381 			else
2382 				BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2383 					       loaded_fw, my_fw);
2384 			return -EBUSY;
2385 		}
2386 	}
2387 	return 0;
2388 }
2389 
2390 /* returns the "mcp load_code" according to global load_count array */
2391 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2392 {
2393 	int path = BP_PATH(bp);
2394 
2395 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2396 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2397 	   bnx2x_load_count[path][2]);
2398 	bnx2x_load_count[path][0]++;
2399 	bnx2x_load_count[path][1 + port]++;
2400 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2401 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2402 	   bnx2x_load_count[path][2]);
2403 	if (bnx2x_load_count[path][0] == 1)
2404 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2405 	else if (bnx2x_load_count[path][1 + port] == 1)
2406 		return FW_MSG_CODE_DRV_LOAD_PORT;
2407 	else
2408 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2409 }
2410 
2411 /* mark PMF if applicable */
2412 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2413 {
2414 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2415 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2416 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2417 		bp->port.pmf = 1;
2418 		/* We need the barrier to ensure the ordering between the
2419 		 * writing to bp->port.pmf here and reading it from the
2420 		 * bnx2x_periodic_task().
2421 		 */
2422 		smp_mb();
2423 	} else {
2424 		bp->port.pmf = 0;
2425 	}
2426 
2427 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2428 }
2429 
2430 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2431 {
2432 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2433 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2434 	    (bp->common.shmem2_base)) {
2435 		if (SHMEM2_HAS(bp, dcc_support))
2436 			SHMEM2_WR(bp, dcc_support,
2437 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2438 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2439 		if (SHMEM2_HAS(bp, afex_driver_support))
2440 			SHMEM2_WR(bp, afex_driver_support,
2441 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2442 	}
2443 
2444 	/* Set AFEX default VLAN tag to an invalid value */
2445 	bp->afex_def_vlan_tag = -1;
2446 }
2447 
2448 /**
2449  * bnx2x_bz_fp - zero content of the fastpath structure.
2450  *
2451  * @bp:		driver handle
2452  * @index:	fastpath index to be zeroed
2453  *
2454  * Makes sure the contents of the bp->fp[index].napi is kept
2455  * intact.
2456  */
2457 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2458 {
2459 	struct bnx2x_fastpath *fp = &bp->fp[index];
2460 	int cos;
2461 	struct napi_struct orig_napi = fp->napi;
2462 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2463 
2464 	/* bzero bnx2x_fastpath contents */
2465 	if (fp->tpa_info)
2466 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2467 		       sizeof(struct bnx2x_agg_info));
2468 	memset(fp, 0, sizeof(*fp));
2469 
2470 	/* Restore the NAPI object as it has been already initialized */
2471 	fp->napi = orig_napi;
2472 	fp->tpa_info = orig_tpa_info;
2473 	fp->bp = bp;
2474 	fp->index = index;
2475 	if (IS_ETH_FP(fp))
2476 		fp->max_cos = bp->max_cos;
2477 	else
2478 		/* Special queues support only one CoS */
2479 		fp->max_cos = 1;
2480 
2481 	/* Init txdata pointers */
2482 	if (IS_FCOE_FP(fp))
2483 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2484 	if (IS_ETH_FP(fp))
2485 		for_each_cos_in_tx_queue(fp, cos)
2486 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2487 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2488 
2489 	/* set the tpa flag for each queue. The tpa flag determines the queue
2490 	 * minimal size so it must be set prior to queue memory allocation
2491 	 */
2492 	if (bp->dev->features & NETIF_F_LRO)
2493 		fp->mode = TPA_MODE_LRO;
2494 	else if (bp->dev->features & NETIF_F_GRO_HW)
2495 		fp->mode = TPA_MODE_GRO;
2496 	else
2497 		fp->mode = TPA_MODE_DISABLED;
2498 
2499 	/* We don't want TPA if it's disabled in bp
2500 	 * or if this is an FCoE L2 ring.
2501 	 */
2502 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2503 		fp->mode = TPA_MODE_DISABLED;
2504 }
2505 
2506 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2507 {
2508 	u32 cur;
2509 
2510 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2511 		return;
2512 
2513 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2514 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2515 	   cur, state);
2516 
2517 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2518 }
2519 
2520 int bnx2x_load_cnic(struct bnx2x *bp)
2521 {
2522 	int i, rc, port = BP_PORT(bp);
2523 
2524 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2525 
2526 	mutex_init(&bp->cnic_mutex);
2527 
2528 	if (IS_PF(bp)) {
2529 		rc = bnx2x_alloc_mem_cnic(bp);
2530 		if (rc) {
2531 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2532 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2533 		}
2534 	}
2535 
2536 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2537 	if (rc) {
2538 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2539 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2540 	}
2541 
2542 	/* Update the number of queues with the cnic queues */
2543 	rc = bnx2x_set_real_num_queues(bp, 1);
2544 	if (rc) {
2545 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2546 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2547 	}
2548 
2549 	/* Add all CNIC NAPI objects */
2550 	bnx2x_add_all_napi_cnic(bp);
2551 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2552 	bnx2x_napi_enable_cnic(bp);
2553 
2554 	rc = bnx2x_init_hw_func_cnic(bp);
2555 	if (rc)
2556 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2557 
2558 	bnx2x_nic_init_cnic(bp);
2559 
2560 	if (IS_PF(bp)) {
2561 		/* Enable Timer scan */
2562 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2563 
2564 		/* setup cnic queues */
2565 		for_each_cnic_queue(bp, i) {
2566 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2567 			if (rc) {
2568 				BNX2X_ERR("Queue setup failed\n");
2569 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2570 			}
2571 		}
2572 	}
2573 
2574 	/* Initialize Rx filter. */
2575 	bnx2x_set_rx_mode_inner(bp);
2576 
2577 	/* re-read iscsi info */
2578 	bnx2x_get_iscsi_info(bp);
2579 	bnx2x_setup_cnic_irq_info(bp);
2580 	bnx2x_setup_cnic_info(bp);
2581 	bp->cnic_loaded = true;
2582 	if (bp->state == BNX2X_STATE_OPEN)
2583 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2584 
2585 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2586 
2587 	return 0;
2588 
2589 #ifndef BNX2X_STOP_ON_ERROR
2590 load_error_cnic2:
2591 	/* Disable Timer scan */
2592 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2593 
2594 load_error_cnic1:
2595 	bnx2x_napi_disable_cnic(bp);
2596 	/* Update the number of queues without the cnic queues */
2597 	if (bnx2x_set_real_num_queues(bp, 0))
2598 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2599 load_error_cnic0:
2600 	BNX2X_ERR("CNIC-related load failed\n");
2601 	bnx2x_free_fp_mem_cnic(bp);
2602 	bnx2x_free_mem_cnic(bp);
2603 	return rc;
2604 #endif /* ! BNX2X_STOP_ON_ERROR */
2605 }
2606 
2607 /* must be called with rtnl_lock */
2608 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2609 {
2610 	int port = BP_PORT(bp);
2611 	int i, rc = 0, load_code = 0;
2612 
2613 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2614 	DP(NETIF_MSG_IFUP,
2615 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2616 
2617 #ifdef BNX2X_STOP_ON_ERROR
2618 	if (unlikely(bp->panic)) {
2619 		BNX2X_ERR("Can't load NIC when there is panic\n");
2620 		return -EPERM;
2621 	}
2622 #endif
2623 
2624 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2625 
2626 	/* zero the structure w/o any lock, before SP handler is initialized */
2627 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2628 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2629 		&bp->last_reported_link.link_report_flags);
2630 
2631 	if (IS_PF(bp))
2632 		/* must be called before memory allocation and HW init */
2633 		bnx2x_ilt_set_info(bp);
2634 
2635 	/*
2636 	 * Zero fastpath structures preserving invariants like napi, which are
2637 	 * allocated only once, fp index, max_cos, bp pointer.
2638 	 * Also set fp->mode and txdata_ptr.
2639 	 */
2640 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2641 	for_each_queue(bp, i)
2642 		bnx2x_bz_fp(bp, i);
2643 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2644 				  bp->num_cnic_queues) *
2645 				  sizeof(struct bnx2x_fp_txdata));
2646 
2647 	bp->fcoe_init = false;
2648 
2649 	/* Set the receive queues buffer size */
2650 	bnx2x_set_rx_buf_size(bp);
2651 
2652 	if (IS_PF(bp)) {
2653 		rc = bnx2x_alloc_mem(bp);
2654 		if (rc) {
2655 			BNX2X_ERR("Unable to allocate bp memory\n");
2656 			return rc;
2657 		}
2658 	}
2659 
2660 	/* need to be done after alloc mem, since it's self adjusting to amount
2661 	 * of memory available for RSS queues
2662 	 */
2663 	rc = bnx2x_alloc_fp_mem(bp);
2664 	if (rc) {
2665 		BNX2X_ERR("Unable to allocate memory for fps\n");
2666 		LOAD_ERROR_EXIT(bp, load_error0);
2667 	}
2668 
2669 	/* Allocated memory for FW statistics  */
2670 	if (bnx2x_alloc_fw_stats_mem(bp))
2671 		LOAD_ERROR_EXIT(bp, load_error0);
2672 
2673 	/* request pf to initialize status blocks */
2674 	if (IS_VF(bp)) {
2675 		rc = bnx2x_vfpf_init(bp);
2676 		if (rc)
2677 			LOAD_ERROR_EXIT(bp, load_error0);
2678 	}
2679 
2680 	/* As long as bnx2x_alloc_mem() may possibly update
2681 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2682 	 * come after it. At this stage cnic queues are not counted.
2683 	 */
2684 	rc = bnx2x_set_real_num_queues(bp, 0);
2685 	if (rc) {
2686 		BNX2X_ERR("Unable to set real_num_queues\n");
2687 		LOAD_ERROR_EXIT(bp, load_error0);
2688 	}
2689 
2690 	/* configure multi cos mappings in kernel.
2691 	 * this configuration may be overridden by a multi class queue
2692 	 * discipline or by a dcbx negotiation result.
2693 	 */
2694 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2695 
2696 	/* Add all NAPI objects */
2697 	bnx2x_add_all_napi(bp);
2698 	DP(NETIF_MSG_IFUP, "napi added\n");
2699 	bnx2x_napi_enable(bp);
2700 
2701 	if (IS_PF(bp)) {
2702 		/* set pf load just before approaching the MCP */
2703 		bnx2x_set_pf_load(bp);
2704 
2705 		/* if mcp exists send load request and analyze response */
2706 		if (!BP_NOMCP(bp)) {
2707 			/* attempt to load pf */
2708 			rc = bnx2x_nic_load_request(bp, &load_code);
2709 			if (rc)
2710 				LOAD_ERROR_EXIT(bp, load_error1);
2711 
2712 			/* what did mcp say? */
2713 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2714 			if (rc) {
2715 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2716 				LOAD_ERROR_EXIT(bp, load_error2);
2717 			}
2718 		} else {
2719 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2720 		}
2721 
2722 		/* mark pmf if applicable */
2723 		bnx2x_nic_load_pmf(bp, load_code);
2724 
2725 		/* Init Function state controlling object */
2726 		bnx2x__init_func_obj(bp);
2727 
2728 		/* Initialize HW */
2729 		rc = bnx2x_init_hw(bp, load_code);
2730 		if (rc) {
2731 			BNX2X_ERR("HW init failed, aborting\n");
2732 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2733 			LOAD_ERROR_EXIT(bp, load_error2);
2734 		}
2735 	}
2736 
2737 	bnx2x_pre_irq_nic_init(bp);
2738 
2739 	/* Connect to IRQs */
2740 	rc = bnx2x_setup_irqs(bp);
2741 	if (rc) {
2742 		BNX2X_ERR("setup irqs failed\n");
2743 		if (IS_PF(bp))
2744 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2745 		LOAD_ERROR_EXIT(bp, load_error2);
2746 	}
2747 
2748 	/* Init per-function objects */
2749 	if (IS_PF(bp)) {
2750 		/* Setup NIC internals and enable interrupts */
2751 		bnx2x_post_irq_nic_init(bp, load_code);
2752 
2753 		bnx2x_init_bp_objs(bp);
2754 		bnx2x_iov_nic_init(bp);
2755 
2756 		/* Set AFEX default VLAN tag to an invalid value */
2757 		bp->afex_def_vlan_tag = -1;
2758 		bnx2x_nic_load_afex_dcc(bp, load_code);
2759 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2760 		rc = bnx2x_func_start(bp);
2761 		if (rc) {
2762 			BNX2X_ERR("Function start failed!\n");
2763 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2764 
2765 			LOAD_ERROR_EXIT(bp, load_error3);
2766 		}
2767 
2768 		/* Send LOAD_DONE command to MCP */
2769 		if (!BP_NOMCP(bp)) {
2770 			load_code = bnx2x_fw_command(bp,
2771 						     DRV_MSG_CODE_LOAD_DONE, 0);
2772 			if (!load_code) {
2773 				BNX2X_ERR("MCP response failure, aborting\n");
2774 				rc = -EBUSY;
2775 				LOAD_ERROR_EXIT(bp, load_error3);
2776 			}
2777 		}
2778 
2779 		/* initialize FW coalescing state machines in RAM */
2780 		bnx2x_update_coalesce(bp);
2781 	}
2782 
2783 	/* setup the leading queue */
2784 	rc = bnx2x_setup_leading(bp);
2785 	if (rc) {
2786 		BNX2X_ERR("Setup leading failed!\n");
2787 		LOAD_ERROR_EXIT(bp, load_error3);
2788 	}
2789 
2790 	/* set up the rest of the queues */
2791 	for_each_nondefault_eth_queue(bp, i) {
2792 		if (IS_PF(bp))
2793 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2794 		else /* VF */
2795 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2796 		if (rc) {
2797 			BNX2X_ERR("Queue %d setup failed\n", i);
2798 			LOAD_ERROR_EXIT(bp, load_error3);
2799 		}
2800 	}
2801 
2802 	/* setup rss */
2803 	rc = bnx2x_init_rss(bp);
2804 	if (rc) {
2805 		BNX2X_ERR("PF RSS init failed\n");
2806 		LOAD_ERROR_EXIT(bp, load_error3);
2807 	}
2808 
2809 	/* Now when Clients are configured we are ready to work */
2810 	bp->state = BNX2X_STATE_OPEN;
2811 
2812 	/* Configure a ucast MAC */
2813 	if (IS_PF(bp))
2814 		rc = bnx2x_set_eth_mac(bp, true);
2815 	else /* vf */
2816 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2817 					   true);
2818 	if (rc) {
2819 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2820 		LOAD_ERROR_EXIT(bp, load_error3);
2821 	}
2822 
2823 	if (IS_PF(bp) && bp->pending_max) {
2824 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2825 		bp->pending_max = 0;
2826 	}
2827 
2828 	bp->force_link_down = false;
2829 	if (bp->port.pmf) {
2830 		rc = bnx2x_initial_phy_init(bp, load_mode);
2831 		if (rc)
2832 			LOAD_ERROR_EXIT(bp, load_error3);
2833 	}
2834 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2835 
2836 	/* Start fast path */
2837 
2838 	/* Re-configure vlan filters */
2839 	rc = bnx2x_vlan_reconfigure_vid(bp);
2840 	if (rc)
2841 		LOAD_ERROR_EXIT(bp, load_error3);
2842 
2843 	/* Initialize Rx filter. */
2844 	bnx2x_set_rx_mode_inner(bp);
2845 
2846 	if (bp->flags & PTP_SUPPORTED) {
2847 		bnx2x_register_phc(bp);
2848 		bnx2x_init_ptp(bp);
2849 		bnx2x_configure_ptp_filters(bp);
2850 	}
2851 	/* Start Tx */
2852 	switch (load_mode) {
2853 	case LOAD_NORMAL:
2854 		/* Tx queue should be only re-enabled */
2855 		netif_tx_wake_all_queues(bp->dev);
2856 		break;
2857 
2858 	case LOAD_OPEN:
2859 		netif_tx_start_all_queues(bp->dev);
2860 		smp_mb__after_atomic();
2861 		break;
2862 
2863 	case LOAD_DIAG:
2864 	case LOAD_LOOPBACK_EXT:
2865 		bp->state = BNX2X_STATE_DIAG;
2866 		break;
2867 
2868 	default:
2869 		break;
2870 	}
2871 
2872 	if (bp->port.pmf)
2873 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2874 	else
2875 		bnx2x__link_status_update(bp);
2876 
2877 	/* start the timer */
2878 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2879 
2880 	if (CNIC_ENABLED(bp))
2881 		bnx2x_load_cnic(bp);
2882 
2883 	if (IS_PF(bp))
2884 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2885 
2886 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2887 		/* mark driver is loaded in shmem2 */
2888 		u32 val;
2889 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2890 		val &= ~DRV_FLAGS_MTU_MASK;
2891 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2892 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2893 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2894 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2895 	}
2896 
2897 	/* Wait for all pending SP commands to complete */
2898 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2899 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2900 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2901 		return -EBUSY;
2902 	}
2903 
2904 	/* Update driver data for On-Chip MFW dump. */
2905 	if (IS_PF(bp))
2906 		bnx2x_update_mfw_dump(bp);
2907 
2908 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2909 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2910 		bnx2x_dcbx_init(bp, false);
2911 
2912 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2913 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2914 
2915 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2916 
2917 	return 0;
2918 
2919 #ifndef BNX2X_STOP_ON_ERROR
2920 load_error3:
2921 	if (IS_PF(bp)) {
2922 		bnx2x_int_disable_sync(bp, 1);
2923 
2924 		/* Clean queueable objects */
2925 		bnx2x_squeeze_objects(bp);
2926 	}
2927 
2928 	/* Free SKBs, SGEs, TPA pool and driver internals */
2929 	bnx2x_free_skbs(bp);
2930 	for_each_rx_queue(bp, i)
2931 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2932 
2933 	/* Release IRQs */
2934 	bnx2x_free_irq(bp);
2935 load_error2:
2936 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2937 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2938 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2939 	}
2940 
2941 	bp->port.pmf = 0;
2942 load_error1:
2943 	bnx2x_napi_disable(bp);
2944 	bnx2x_del_all_napi(bp);
2945 
2946 	/* clear pf_load status, as it was already set */
2947 	if (IS_PF(bp))
2948 		bnx2x_clear_pf_load(bp);
2949 load_error0:
2950 	bnx2x_free_fw_stats_mem(bp);
2951 	bnx2x_free_fp_mem(bp);
2952 	bnx2x_free_mem(bp);
2953 
2954 	return rc;
2955 #endif /* ! BNX2X_STOP_ON_ERROR */
2956 }
2957 
2958 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2959 {
2960 	u8 rc = 0, cos, i;
2961 
2962 	/* Wait until tx fastpath tasks complete */
2963 	for_each_tx_queue(bp, i) {
2964 		struct bnx2x_fastpath *fp = &bp->fp[i];
2965 
2966 		for_each_cos_in_tx_queue(fp, cos)
2967 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2968 		if (rc)
2969 			return rc;
2970 	}
2971 	return 0;
2972 }
2973 
2974 /* must be called with rtnl_lock */
2975 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2976 {
2977 	int i;
2978 	bool global = false;
2979 
2980 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2981 
2982 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2983 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2984 
2985 	/* mark driver is unloaded in shmem2 */
2986 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2987 		u32 val;
2988 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2989 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2990 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2991 	}
2992 
2993 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2994 	    (bp->state == BNX2X_STATE_CLOSED ||
2995 	     bp->state == BNX2X_STATE_ERROR)) {
2996 		/* We can get here if the driver has been unloaded
2997 		 * during parity error recovery and is either waiting for a
2998 		 * leader to complete or for other functions to unload and
2999 		 * then ifdown has been issued. In this case we want to
3000 		 * unload and let other functions to complete a recovery
3001 		 * process.
3002 		 */
3003 		bp->recovery_state = BNX2X_RECOVERY_DONE;
3004 		bp->is_leader = 0;
3005 		bnx2x_release_leader_lock(bp);
3006 		smp_mb();
3007 
3008 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3009 		BNX2X_ERR("Can't unload in closed or error state\n");
3010 		return -EINVAL;
3011 	}
3012 
3013 	/* Nothing to do during unload if previous bnx2x_nic_load()
3014 	 * have not completed successfully - all resources are released.
3015 	 *
3016 	 * we can get here only after unsuccessful ndo_* callback, during which
3017 	 * dev->IFF_UP flag is still on.
3018 	 */
3019 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3020 		return 0;
3021 
3022 	/* It's important to set the bp->state to the value different from
3023 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3024 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3025 	 */
3026 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3027 	smp_mb();
3028 
3029 	/* indicate to VFs that the PF is going down */
3030 	bnx2x_iov_channel_down(bp);
3031 
3032 	if (CNIC_LOADED(bp))
3033 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3034 
3035 	/* Stop Tx */
3036 	bnx2x_tx_disable(bp);
3037 	netdev_reset_tc(bp->dev);
3038 
3039 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3040 
3041 	del_timer_sync(&bp->timer);
3042 
3043 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
3044 		/* Set ALWAYS_ALIVE bit in shmem */
3045 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3046 		bnx2x_drv_pulse(bp);
3047 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3048 		bnx2x_save_statistics(bp);
3049 	}
3050 
3051 	/* wait till consumers catch up with producers in all queues.
3052 	 * If we're recovering, FW can't write to host so no reason
3053 	 * to wait for the queues to complete all Tx.
3054 	 */
3055 	if (unload_mode != UNLOAD_RECOVERY)
3056 		bnx2x_drain_tx_queues(bp);
3057 
3058 	/* if VF indicate to PF this function is going down (PF will delete sp
3059 	 * elements and clear initializations
3060 	 */
3061 	if (IS_VF(bp))
3062 		bnx2x_vfpf_close_vf(bp);
3063 	else if (unload_mode != UNLOAD_RECOVERY)
3064 		/* if this is a normal/close unload need to clean up chip*/
3065 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3066 	else {
3067 		/* Send the UNLOAD_REQUEST to the MCP */
3068 		bnx2x_send_unload_req(bp, unload_mode);
3069 
3070 		/* Prevent transactions to host from the functions on the
3071 		 * engine that doesn't reset global blocks in case of global
3072 		 * attention once global blocks are reset and gates are opened
3073 		 * (the engine which leader will perform the recovery
3074 		 * last).
3075 		 */
3076 		if (!CHIP_IS_E1x(bp))
3077 			bnx2x_pf_disable(bp);
3078 
3079 		/* Disable HW interrupts, NAPI */
3080 		bnx2x_netif_stop(bp, 1);
3081 		/* Delete all NAPI objects */
3082 		bnx2x_del_all_napi(bp);
3083 		if (CNIC_LOADED(bp))
3084 			bnx2x_del_all_napi_cnic(bp);
3085 		/* Release IRQs */
3086 		bnx2x_free_irq(bp);
3087 
3088 		/* Report UNLOAD_DONE to MCP */
3089 		bnx2x_send_unload_done(bp, false);
3090 	}
3091 
3092 	/*
3093 	 * At this stage no more interrupts will arrive so we may safely clean
3094 	 * the queueable objects here in case they failed to get cleaned so far.
3095 	 */
3096 	if (IS_PF(bp))
3097 		bnx2x_squeeze_objects(bp);
3098 
3099 	/* There should be no more pending SP commands at this stage */
3100 	bp->sp_state = 0;
3101 
3102 	bp->port.pmf = 0;
3103 
3104 	/* clear pending work in rtnl task */
3105 	bp->sp_rtnl_state = 0;
3106 	smp_mb();
3107 
3108 	/* Free SKBs, SGEs, TPA pool and driver internals */
3109 	bnx2x_free_skbs(bp);
3110 	if (CNIC_LOADED(bp))
3111 		bnx2x_free_skbs_cnic(bp);
3112 	for_each_rx_queue(bp, i)
3113 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3114 
3115 	bnx2x_free_fp_mem(bp);
3116 	if (CNIC_LOADED(bp))
3117 		bnx2x_free_fp_mem_cnic(bp);
3118 
3119 	if (IS_PF(bp)) {
3120 		if (CNIC_LOADED(bp))
3121 			bnx2x_free_mem_cnic(bp);
3122 	}
3123 	bnx2x_free_mem(bp);
3124 
3125 	bp->state = BNX2X_STATE_CLOSED;
3126 	bp->cnic_loaded = false;
3127 
3128 	/* Clear driver version indication in shmem */
3129 	if (IS_PF(bp) && !BP_NOMCP(bp))
3130 		bnx2x_update_mng_version(bp);
3131 
3132 	/* Check if there are pending parity attentions. If there are - set
3133 	 * RECOVERY_IN_PROGRESS.
3134 	 */
3135 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3136 		bnx2x_set_reset_in_progress(bp);
3137 
3138 		/* Set RESET_IS_GLOBAL if needed */
3139 		if (global)
3140 			bnx2x_set_reset_global(bp);
3141 	}
3142 
3143 	/* The last driver must disable a "close the gate" if there is no
3144 	 * parity attention or "process kill" pending.
3145 	 */
3146 	if (IS_PF(bp) &&
3147 	    !bnx2x_clear_pf_load(bp) &&
3148 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3149 		bnx2x_disable_close_the_gate(bp);
3150 
3151 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3152 
3153 	return 0;
3154 }
3155 
3156 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3157 {
3158 	u16 pmcsr;
3159 
3160 	/* If there is no power capability, silently succeed */
3161 	if (!bp->pdev->pm_cap) {
3162 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3163 		return 0;
3164 	}
3165 
3166 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3167 
3168 	switch (state) {
3169 	case PCI_D0:
3170 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3171 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3172 				       PCI_PM_CTRL_PME_STATUS));
3173 
3174 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3175 			/* delay required during transition out of D3hot */
3176 			msleep(20);
3177 		break;
3178 
3179 	case PCI_D3hot:
3180 		/* If there are other clients above don't
3181 		   shut down the power */
3182 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3183 			return 0;
3184 		/* Don't shut down the power for emulation and FPGA */
3185 		if (CHIP_REV_IS_SLOW(bp))
3186 			return 0;
3187 
3188 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3189 		pmcsr |= 3;
3190 
3191 		if (bp->wol)
3192 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3193 
3194 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3195 				      pmcsr);
3196 
3197 		/* No more memory access after this point until
3198 		* device is brought back to D0.
3199 		*/
3200 		break;
3201 
3202 	default:
3203 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3204 		return -EINVAL;
3205 	}
3206 	return 0;
3207 }
3208 
3209 /*
3210  * net_device service functions
3211  */
3212 static int bnx2x_poll(struct napi_struct *napi, int budget)
3213 {
3214 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3215 						 napi);
3216 	struct bnx2x *bp = fp->bp;
3217 	int rx_work_done;
3218 	u8 cos;
3219 
3220 #ifdef BNX2X_STOP_ON_ERROR
3221 	if (unlikely(bp->panic)) {
3222 		napi_complete(napi);
3223 		return 0;
3224 	}
3225 #endif
3226 	for_each_cos_in_tx_queue(fp, cos)
3227 		if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3228 			bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3229 
3230 	rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3231 
3232 	if (rx_work_done < budget) {
3233 		/* No need to update SB for FCoE L2 ring as long as
3234 		 * it's connected to the default SB and the SB
3235 		 * has been updated when NAPI was scheduled.
3236 		 */
3237 		if (IS_FCOE_FP(fp)) {
3238 			napi_complete_done(napi, rx_work_done);
3239 		} else {
3240 			bnx2x_update_fpsb_idx(fp);
3241 			/* bnx2x_has_rx_work() reads the status block,
3242 			 * thus we need to ensure that status block indices
3243 			 * have been actually read (bnx2x_update_fpsb_idx)
3244 			 * prior to this check (bnx2x_has_rx_work) so that
3245 			 * we won't write the "newer" value of the status block
3246 			 * to IGU (if there was a DMA right after
3247 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3248 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3249 			 * to right before bnx2x_ack_sb). In this case there
3250 			 * will never be another interrupt until there is
3251 			 * another update of the status block, while there
3252 			 * is still unhandled work.
3253 			 */
3254 			rmb();
3255 
3256 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3257 				if (napi_complete_done(napi, rx_work_done)) {
3258 					/* Re-enable interrupts */
3259 					DP(NETIF_MSG_RX_STATUS,
3260 					   "Update index to %d\n", fp->fp_hc_idx);
3261 					bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3262 						     le16_to_cpu(fp->fp_hc_idx),
3263 						     IGU_INT_ENABLE, 1);
3264 				}
3265 			} else {
3266 				rx_work_done = budget;
3267 			}
3268 		}
3269 	}
3270 
3271 	return rx_work_done;
3272 }
3273 
3274 /* we split the first BD into headers and data BDs
3275  * to ease the pain of our fellow microcode engineers
3276  * we use one mapping for both BDs
3277  */
3278 static u16 bnx2x_tx_split(struct bnx2x *bp,
3279 			  struct bnx2x_fp_txdata *txdata,
3280 			  struct sw_tx_bd *tx_buf,
3281 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3282 			  u16 bd_prod)
3283 {
3284 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3285 	struct eth_tx_bd *d_tx_bd;
3286 	dma_addr_t mapping;
3287 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3288 
3289 	/* first fix first BD */
3290 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3291 
3292 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3293 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3294 
3295 	/* now get a new data BD
3296 	 * (after the pbd) and fill it */
3297 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3298 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3299 
3300 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3301 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3302 
3303 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3304 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3305 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3306 
3307 	/* this marks the BD as one that has no individual mapping */
3308 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3309 
3310 	DP(NETIF_MSG_TX_QUEUED,
3311 	   "TSO split data size is %d (%x:%x)\n",
3312 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3313 
3314 	/* update tx_bd */
3315 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3316 
3317 	return bd_prod;
3318 }
3319 
3320 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3321 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3322 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3323 {
3324 	__sum16 tsum = (__force __sum16) csum;
3325 
3326 	if (fix > 0)
3327 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3328 				  csum_partial(t_header - fix, fix, 0)));
3329 
3330 	else if (fix < 0)
3331 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3332 				  csum_partial(t_header, -fix, 0)));
3333 
3334 	return bswab16(tsum);
3335 }
3336 
3337 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3338 {
3339 	u32 rc;
3340 	__u8 prot = 0;
3341 	__be16 protocol;
3342 
3343 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3344 		return XMIT_PLAIN;
3345 
3346 	protocol = vlan_get_protocol(skb);
3347 	if (protocol == htons(ETH_P_IPV6)) {
3348 		rc = XMIT_CSUM_V6;
3349 		prot = ipv6_hdr(skb)->nexthdr;
3350 	} else {
3351 		rc = XMIT_CSUM_V4;
3352 		prot = ip_hdr(skb)->protocol;
3353 	}
3354 
3355 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3356 		if (inner_ip_hdr(skb)->version == 6) {
3357 			rc |= XMIT_CSUM_ENC_V6;
3358 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3359 				rc |= XMIT_CSUM_TCP;
3360 		} else {
3361 			rc |= XMIT_CSUM_ENC_V4;
3362 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3363 				rc |= XMIT_CSUM_TCP;
3364 		}
3365 	}
3366 	if (prot == IPPROTO_TCP)
3367 		rc |= XMIT_CSUM_TCP;
3368 
3369 	if (skb_is_gso(skb)) {
3370 		if (skb_is_gso_v6(skb)) {
3371 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3372 			if (rc & XMIT_CSUM_ENC)
3373 				rc |= XMIT_GSO_ENC_V6;
3374 		} else {
3375 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3376 			if (rc & XMIT_CSUM_ENC)
3377 				rc |= XMIT_GSO_ENC_V4;
3378 		}
3379 	}
3380 
3381 	return rc;
3382 }
3383 
3384 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3385 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS         4
3386 
3387 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3388 #define BNX2X_NUM_TSO_WIN_SUB_BDS               3
3389 
3390 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3391 /* check if packet requires linearization (packet is too fragmented)
3392    no need to check fragmentation if page size > 8K (there will be no
3393    violation to FW restrictions) */
3394 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3395 			     u32 xmit_type)
3396 {
3397 	int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3398 	int to_copy = 0, hlen = 0;
3399 
3400 	if (xmit_type & XMIT_GSO_ENC)
3401 		num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3402 
3403 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3404 		if (xmit_type & XMIT_GSO) {
3405 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3406 			int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3407 			/* Number of windows to check */
3408 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3409 			int wnd_idx = 0;
3410 			int frag_idx = 0;
3411 			u32 wnd_sum = 0;
3412 
3413 			/* Headers length */
3414 			if (xmit_type & XMIT_GSO_ENC)
3415 				hlen = (int)(skb_inner_transport_header(skb) -
3416 					     skb->data) +
3417 					     inner_tcp_hdrlen(skb);
3418 			else
3419 				hlen = (int)(skb_transport_header(skb) -
3420 					     skb->data) + tcp_hdrlen(skb);
3421 
3422 			/* Amount of data (w/o headers) on linear part of SKB*/
3423 			first_bd_sz = skb_headlen(skb) - hlen;
3424 
3425 			wnd_sum  = first_bd_sz;
3426 
3427 			/* Calculate the first sum - it's special */
3428 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3429 				wnd_sum +=
3430 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3431 
3432 			/* If there was data on linear skb data - check it */
3433 			if (first_bd_sz > 0) {
3434 				if (unlikely(wnd_sum < lso_mss)) {
3435 					to_copy = 1;
3436 					goto exit_lbl;
3437 				}
3438 
3439 				wnd_sum -= first_bd_sz;
3440 			}
3441 
3442 			/* Others are easier: run through the frag list and
3443 			   check all windows */
3444 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3445 				wnd_sum +=
3446 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3447 
3448 				if (unlikely(wnd_sum < lso_mss)) {
3449 					to_copy = 1;
3450 					break;
3451 				}
3452 				wnd_sum -=
3453 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3454 			}
3455 		} else {
3456 			/* in non-LSO too fragmented packet should always
3457 			   be linearized */
3458 			to_copy = 1;
3459 		}
3460 	}
3461 
3462 exit_lbl:
3463 	if (unlikely(to_copy))
3464 		DP(NETIF_MSG_TX_QUEUED,
3465 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3466 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3467 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3468 
3469 	return to_copy;
3470 }
3471 #endif
3472 
3473 /**
3474  * bnx2x_set_pbd_gso - update PBD in GSO case.
3475  *
3476  * @skb:	packet skb
3477  * @pbd:	parse BD
3478  * @xmit_type:	xmit flags
3479  */
3480 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3481 			      struct eth_tx_parse_bd_e1x *pbd,
3482 			      u32 xmit_type)
3483 {
3484 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3485 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3486 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3487 
3488 	if (xmit_type & XMIT_GSO_V4) {
3489 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3490 		pbd->tcp_pseudo_csum =
3491 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3492 						   ip_hdr(skb)->daddr,
3493 						   0, IPPROTO_TCP, 0));
3494 	} else {
3495 		pbd->tcp_pseudo_csum =
3496 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3497 						 &ipv6_hdr(skb)->daddr,
3498 						 0, IPPROTO_TCP, 0));
3499 	}
3500 
3501 	pbd->global_data |=
3502 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3503 }
3504 
3505 /**
3506  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3507  *
3508  * @bp:			driver handle
3509  * @skb:		packet skb
3510  * @parsing_data:	data to be updated
3511  * @xmit_type:		xmit flags
3512  *
3513  * 57712/578xx related, when skb has encapsulation
3514  */
3515 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3516 				 u32 *parsing_data, u32 xmit_type)
3517 {
3518 	*parsing_data |=
3519 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3520 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3521 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3522 
3523 	if (xmit_type & XMIT_CSUM_TCP) {
3524 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3525 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3526 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3527 
3528 		return skb_inner_transport_header(skb) +
3529 			inner_tcp_hdrlen(skb) - skb->data;
3530 	}
3531 
3532 	/* We support checksum offload for TCP and UDP only.
3533 	 * No need to pass the UDP header length - it's a constant.
3534 	 */
3535 	return skb_inner_transport_header(skb) +
3536 		sizeof(struct udphdr) - skb->data;
3537 }
3538 
3539 /**
3540  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3541  *
3542  * @bp:			driver handle
3543  * @skb:		packet skb
3544  * @parsing_data:	data to be updated
3545  * @xmit_type:		xmit flags
3546  *
3547  * 57712/578xx related
3548  */
3549 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3550 				u32 *parsing_data, u32 xmit_type)
3551 {
3552 	*parsing_data |=
3553 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3554 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3555 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3556 
3557 	if (xmit_type & XMIT_CSUM_TCP) {
3558 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3559 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3560 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3561 
3562 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3563 	}
3564 	/* We support checksum offload for TCP and UDP only.
3565 	 * No need to pass the UDP header length - it's a constant.
3566 	 */
3567 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3568 }
3569 
3570 /* set FW indication according to inner or outer protocols if tunneled */
3571 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3572 			       struct eth_tx_start_bd *tx_start_bd,
3573 			       u32 xmit_type)
3574 {
3575 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3576 
3577 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3578 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3579 
3580 	if (!(xmit_type & XMIT_CSUM_TCP))
3581 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3582 }
3583 
3584 /**
3585  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3586  *
3587  * @bp:		driver handle
3588  * @skb:	packet skb
3589  * @pbd:	parse BD to be updated
3590  * @xmit_type:	xmit flags
3591  */
3592 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3593 			     struct eth_tx_parse_bd_e1x *pbd,
3594 			     u32 xmit_type)
3595 {
3596 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3597 
3598 	/* for now NS flag is not used in Linux */
3599 	pbd->global_data =
3600 		cpu_to_le16(hlen |
3601 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3602 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3603 
3604 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3605 			skb_network_header(skb)) >> 1;
3606 
3607 	hlen += pbd->ip_hlen_w;
3608 
3609 	/* We support checksum offload for TCP and UDP only */
3610 	if (xmit_type & XMIT_CSUM_TCP)
3611 		hlen += tcp_hdrlen(skb) / 2;
3612 	else
3613 		hlen += sizeof(struct udphdr) / 2;
3614 
3615 	pbd->total_hlen_w = cpu_to_le16(hlen);
3616 	hlen = hlen*2;
3617 
3618 	if (xmit_type & XMIT_CSUM_TCP) {
3619 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3620 
3621 	} else {
3622 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3623 
3624 		DP(NETIF_MSG_TX_QUEUED,
3625 		   "hlen %d  fix %d  csum before fix %x\n",
3626 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3627 
3628 		/* HW bug: fixup the CSUM */
3629 		pbd->tcp_pseudo_csum =
3630 			bnx2x_csum_fix(skb_transport_header(skb),
3631 				       SKB_CS(skb), fix);
3632 
3633 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3634 		   pbd->tcp_pseudo_csum);
3635 	}
3636 
3637 	return hlen;
3638 }
3639 
3640 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3641 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3642 				      struct eth_tx_parse_2nd_bd *pbd2,
3643 				      u16 *global_data,
3644 				      u32 xmit_type)
3645 {
3646 	u16 hlen_w = 0;
3647 	u8 outerip_off, outerip_len = 0;
3648 
3649 	/* from outer IP to transport */
3650 	hlen_w = (skb_inner_transport_header(skb) -
3651 		  skb_network_header(skb)) >> 1;
3652 
3653 	/* transport len */
3654 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3655 
3656 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3657 
3658 	/* outer IP header info */
3659 	if (xmit_type & XMIT_CSUM_V4) {
3660 		struct iphdr *iph = ip_hdr(skb);
3661 		u32 csum = (__force u32)(~iph->check) -
3662 			   (__force u32)iph->tot_len -
3663 			   (__force u32)iph->frag_off;
3664 
3665 		outerip_len = iph->ihl << 1;
3666 
3667 		pbd2->fw_ip_csum_wo_len_flags_frag =
3668 			bswab16(csum_fold((__force __wsum)csum));
3669 	} else {
3670 		pbd2->fw_ip_hdr_to_payload_w =
3671 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3672 		pbd_e2->data.tunnel_data.flags |=
3673 			ETH_TUNNEL_DATA_IPV6_OUTER;
3674 	}
3675 
3676 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3677 
3678 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3679 
3680 	/* inner IP header info */
3681 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3682 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3683 
3684 		pbd_e2->data.tunnel_data.pseudo_csum =
3685 			bswab16(~csum_tcpudp_magic(
3686 					inner_ip_hdr(skb)->saddr,
3687 					inner_ip_hdr(skb)->daddr,
3688 					0, IPPROTO_TCP, 0));
3689 	} else {
3690 		pbd_e2->data.tunnel_data.pseudo_csum =
3691 			bswab16(~csum_ipv6_magic(
3692 					&inner_ipv6_hdr(skb)->saddr,
3693 					&inner_ipv6_hdr(skb)->daddr,
3694 					0, IPPROTO_TCP, 0));
3695 	}
3696 
3697 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3698 
3699 	*global_data |=
3700 		outerip_off |
3701 		(outerip_len <<
3702 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3703 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3704 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3705 
3706 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3707 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3708 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3709 	}
3710 }
3711 
3712 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3713 					 u32 xmit_type)
3714 {
3715 	struct ipv6hdr *ipv6;
3716 
3717 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3718 		return;
3719 
3720 	if (xmit_type & XMIT_GSO_ENC_V6)
3721 		ipv6 = inner_ipv6_hdr(skb);
3722 	else /* XMIT_GSO_V6 */
3723 		ipv6 = ipv6_hdr(skb);
3724 
3725 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3726 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3727 }
3728 
3729 /* called with netif_tx_lock
3730  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3731  * netif_wake_queue()
3732  */
3733 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3734 {
3735 	struct bnx2x *bp = netdev_priv(dev);
3736 
3737 	struct netdev_queue *txq;
3738 	struct bnx2x_fp_txdata *txdata;
3739 	struct sw_tx_bd *tx_buf;
3740 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3741 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3742 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3743 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3744 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3745 	u32 pbd_e2_parsing_data = 0;
3746 	u16 pkt_prod, bd_prod;
3747 	int nbd, txq_index;
3748 	dma_addr_t mapping;
3749 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3750 	int i;
3751 	u8 hlen = 0;
3752 	__le16 pkt_size = 0;
3753 	struct ethhdr *eth;
3754 	u8 mac_type = UNICAST_ADDRESS;
3755 
3756 #ifdef BNX2X_STOP_ON_ERROR
3757 	if (unlikely(bp->panic))
3758 		return NETDEV_TX_BUSY;
3759 #endif
3760 
3761 	txq_index = skb_get_queue_mapping(skb);
3762 	txq = netdev_get_tx_queue(dev, txq_index);
3763 
3764 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3765 
3766 	txdata = &bp->bnx2x_txq[txq_index];
3767 
3768 	/* enable this debug print to view the transmission queue being used
3769 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3770 	   txq_index, fp_index, txdata_index); */
3771 
3772 	/* enable this debug print to view the transmission details
3773 	DP(NETIF_MSG_TX_QUEUED,
3774 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3775 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3776 
3777 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3778 			skb_shinfo(skb)->nr_frags +
3779 			BDS_PER_TX_PKT +
3780 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3781 		/* Handle special storage cases separately */
3782 		if (txdata->tx_ring_size == 0) {
3783 			struct bnx2x_eth_q_stats *q_stats =
3784 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3785 			q_stats->driver_filtered_tx_pkt++;
3786 			dev_kfree_skb(skb);
3787 			return NETDEV_TX_OK;
3788 		}
3789 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3790 		netif_tx_stop_queue(txq);
3791 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3792 
3793 		return NETDEV_TX_BUSY;
3794 	}
3795 
3796 	DP(NETIF_MSG_TX_QUEUED,
3797 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3798 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3799 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3800 	   skb->len);
3801 
3802 	eth = (struct ethhdr *)skb->data;
3803 
3804 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3805 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3806 		if (is_broadcast_ether_addr(eth->h_dest))
3807 			mac_type = BROADCAST_ADDRESS;
3808 		else
3809 			mac_type = MULTICAST_ADDRESS;
3810 	}
3811 
3812 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3813 	/* First, check if we need to linearize the skb (due to FW
3814 	   restrictions). No need to check fragmentation if page size > 8K
3815 	   (there will be no violation to FW restrictions) */
3816 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3817 		/* Statistics of linearization */
3818 		bp->lin_cnt++;
3819 		if (skb_linearize(skb) != 0) {
3820 			DP(NETIF_MSG_TX_QUEUED,
3821 			   "SKB linearization failed - silently dropping this SKB\n");
3822 			dev_kfree_skb_any(skb);
3823 			return NETDEV_TX_OK;
3824 		}
3825 	}
3826 #endif
3827 	/* Map skb linear data for DMA */
3828 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3829 				 skb_headlen(skb), DMA_TO_DEVICE);
3830 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3831 		DP(NETIF_MSG_TX_QUEUED,
3832 		   "SKB mapping failed - silently dropping this SKB\n");
3833 		dev_kfree_skb_any(skb);
3834 		return NETDEV_TX_OK;
3835 	}
3836 	/*
3837 	Please read carefully. First we use one BD which we mark as start,
3838 	then we have a parsing info BD (used for TSO or xsum),
3839 	and only then we have the rest of the TSO BDs.
3840 	(don't forget to mark the last one as last,
3841 	and to unmap only AFTER you write to the BD ...)
3842 	And above all, all pdb sizes are in words - NOT DWORDS!
3843 	*/
3844 
3845 	/* get current pkt produced now - advance it just before sending packet
3846 	 * since mapping of pages may fail and cause packet to be dropped
3847 	 */
3848 	pkt_prod = txdata->tx_pkt_prod;
3849 	bd_prod = TX_BD(txdata->tx_bd_prod);
3850 
3851 	/* get a tx_buf and first BD
3852 	 * tx_start_bd may be changed during SPLIT,
3853 	 * but first_bd will always stay first
3854 	 */
3855 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3856 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3857 	first_bd = tx_start_bd;
3858 
3859 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3860 
3861 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3862 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3863 			bp->eth_stats.ptp_skip_tx_ts++;
3864 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3865 		} else if (bp->ptp_tx_skb) {
3866 			bp->eth_stats.ptp_skip_tx_ts++;
3867 			netdev_err_once(bp->dev,
3868 					"Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3869 		} else {
3870 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3871 			/* schedule check for Tx timestamp */
3872 			bp->ptp_tx_skb = skb_get(skb);
3873 			bp->ptp_tx_start = jiffies;
3874 			schedule_work(&bp->ptp_task);
3875 		}
3876 	}
3877 
3878 	/* header nbd: indirectly zero other flags! */
3879 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3880 
3881 	/* remember the first BD of the packet */
3882 	tx_buf->first_bd = txdata->tx_bd_prod;
3883 	tx_buf->skb = skb;
3884 	tx_buf->flags = 0;
3885 
3886 	DP(NETIF_MSG_TX_QUEUED,
3887 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3888 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3889 
3890 	if (skb_vlan_tag_present(skb)) {
3891 		tx_start_bd->vlan_or_ethertype =
3892 		    cpu_to_le16(skb_vlan_tag_get(skb));
3893 		tx_start_bd->bd_flags.as_bitfield |=
3894 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3895 	} else {
3896 		/* when transmitting in a vf, start bd must hold the ethertype
3897 		 * for fw to enforce it
3898 		 */
3899 		u16 vlan_tci = 0;
3900 #ifndef BNX2X_STOP_ON_ERROR
3901 		if (IS_VF(bp)) {
3902 #endif
3903 			/* Still need to consider inband vlan for enforced */
3904 			if (__vlan_get_tag(skb, &vlan_tci)) {
3905 				tx_start_bd->vlan_or_ethertype =
3906 					cpu_to_le16(ntohs(eth->h_proto));
3907 			} else {
3908 				tx_start_bd->bd_flags.as_bitfield |=
3909 					(X_ETH_INBAND_VLAN <<
3910 					 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3911 				tx_start_bd->vlan_or_ethertype =
3912 					cpu_to_le16(vlan_tci);
3913 			}
3914 #ifndef BNX2X_STOP_ON_ERROR
3915 		} else {
3916 			/* used by FW for packet accounting */
3917 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3918 		}
3919 #endif
3920 	}
3921 
3922 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3923 
3924 	/* turn on parsing and get a BD */
3925 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3926 
3927 	if (xmit_type & XMIT_CSUM)
3928 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3929 
3930 	if (!CHIP_IS_E1x(bp)) {
3931 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3932 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3933 
3934 		if (xmit_type & XMIT_CSUM_ENC) {
3935 			u16 global_data = 0;
3936 
3937 			/* Set PBD in enc checksum offload case */
3938 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3939 						      &pbd_e2_parsing_data,
3940 						      xmit_type);
3941 
3942 			/* turn on 2nd parsing and get a BD */
3943 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3944 
3945 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3946 
3947 			memset(pbd2, 0, sizeof(*pbd2));
3948 
3949 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3950 				(skb_inner_network_header(skb) -
3951 				 skb->data) >> 1;
3952 
3953 			if (xmit_type & XMIT_GSO_ENC)
3954 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3955 							  &global_data,
3956 							  xmit_type);
3957 
3958 			pbd2->global_data = cpu_to_le16(global_data);
3959 
3960 			/* add addition parse BD indication to start BD */
3961 			SET_FLAG(tx_start_bd->general_data,
3962 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3963 			/* set encapsulation flag in start BD */
3964 			SET_FLAG(tx_start_bd->general_data,
3965 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3966 
3967 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3968 
3969 			nbd++;
3970 		} else if (xmit_type & XMIT_CSUM) {
3971 			/* Set PBD in checksum offload case w/o encapsulation */
3972 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3973 						     &pbd_e2_parsing_data,
3974 						     xmit_type);
3975 		}
3976 
3977 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3978 		/* Add the macs to the parsing BD if this is a vf or if
3979 		 * Tx Switching is enabled.
3980 		 */
3981 		if (IS_VF(bp)) {
3982 			/* override GRE parameters in BD */
3983 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3984 					      &pbd_e2->data.mac_addr.src_mid,
3985 					      &pbd_e2->data.mac_addr.src_lo,
3986 					      eth->h_source);
3987 
3988 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3989 					      &pbd_e2->data.mac_addr.dst_mid,
3990 					      &pbd_e2->data.mac_addr.dst_lo,
3991 					      eth->h_dest);
3992 		} else {
3993 			if (bp->flags & TX_SWITCHING)
3994 				bnx2x_set_fw_mac_addr(
3995 						&pbd_e2->data.mac_addr.dst_hi,
3996 						&pbd_e2->data.mac_addr.dst_mid,
3997 						&pbd_e2->data.mac_addr.dst_lo,
3998 						eth->h_dest);
3999 #ifdef BNX2X_STOP_ON_ERROR
4000 			/* Enforce security is always set in Stop on Error -
4001 			 * source mac should be present in the parsing BD
4002 			 */
4003 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4004 					      &pbd_e2->data.mac_addr.src_mid,
4005 					      &pbd_e2->data.mac_addr.src_lo,
4006 					      eth->h_source);
4007 #endif
4008 		}
4009 
4010 		SET_FLAG(pbd_e2_parsing_data,
4011 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4012 	} else {
4013 		u16 global_data = 0;
4014 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4015 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4016 		/* Set PBD in checksum offload case */
4017 		if (xmit_type & XMIT_CSUM)
4018 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4019 
4020 		SET_FLAG(global_data,
4021 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4022 		pbd_e1x->global_data |= cpu_to_le16(global_data);
4023 	}
4024 
4025 	/* Setup the data pointer of the first BD of the packet */
4026 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4027 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4028 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4029 	pkt_size = tx_start_bd->nbytes;
4030 
4031 	DP(NETIF_MSG_TX_QUEUED,
4032 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4033 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4034 	   le16_to_cpu(tx_start_bd->nbytes),
4035 	   tx_start_bd->bd_flags.as_bitfield,
4036 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4037 
4038 	if (xmit_type & XMIT_GSO) {
4039 
4040 		DP(NETIF_MSG_TX_QUEUED,
4041 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4042 		   skb->len, hlen, skb_headlen(skb),
4043 		   skb_shinfo(skb)->gso_size);
4044 
4045 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4046 
4047 		if (unlikely(skb_headlen(skb) > hlen)) {
4048 			nbd++;
4049 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4050 						 &tx_start_bd, hlen,
4051 						 bd_prod);
4052 		}
4053 		if (!CHIP_IS_E1x(bp))
4054 			pbd_e2_parsing_data |=
4055 				(skb_shinfo(skb)->gso_size <<
4056 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4057 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4058 		else
4059 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4060 	}
4061 
4062 	/* Set the PBD's parsing_data field if not zero
4063 	 * (for the chips newer than 57711).
4064 	 */
4065 	if (pbd_e2_parsing_data)
4066 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4067 
4068 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4069 
4070 	/* Handle fragmented skb */
4071 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4072 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4073 
4074 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4075 					   skb_frag_size(frag), DMA_TO_DEVICE);
4076 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4077 			unsigned int pkts_compl = 0, bytes_compl = 0;
4078 
4079 			DP(NETIF_MSG_TX_QUEUED,
4080 			   "Unable to map page - dropping packet...\n");
4081 
4082 			/* we need unmap all buffers already mapped
4083 			 * for this SKB;
4084 			 * first_bd->nbd need to be properly updated
4085 			 * before call to bnx2x_free_tx_pkt
4086 			 */
4087 			first_bd->nbd = cpu_to_le16(nbd);
4088 			bnx2x_free_tx_pkt(bp, txdata,
4089 					  TX_BD(txdata->tx_pkt_prod),
4090 					  &pkts_compl, &bytes_compl);
4091 			return NETDEV_TX_OK;
4092 		}
4093 
4094 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4095 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4096 		if (total_pkt_bd == NULL)
4097 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4098 
4099 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4100 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4101 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4102 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4103 		nbd++;
4104 
4105 		DP(NETIF_MSG_TX_QUEUED,
4106 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4107 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4108 		   le16_to_cpu(tx_data_bd->nbytes));
4109 	}
4110 
4111 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4112 
4113 	/* update with actual num BDs */
4114 	first_bd->nbd = cpu_to_le16(nbd);
4115 
4116 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4117 
4118 	/* now send a tx doorbell, counting the next BD
4119 	 * if the packet contains or ends with it
4120 	 */
4121 	if (TX_BD_POFF(bd_prod) < nbd)
4122 		nbd++;
4123 
4124 	/* total_pkt_bytes should be set on the first data BD if
4125 	 * it's not an LSO packet and there is more than one
4126 	 * data BD. In this case pkt_size is limited by an MTU value.
4127 	 * However we prefer to set it for an LSO packet (while we don't
4128 	 * have to) in order to save some CPU cycles in a none-LSO
4129 	 * case, when we much more care about them.
4130 	 */
4131 	if (total_pkt_bd != NULL)
4132 		total_pkt_bd->total_pkt_bytes = pkt_size;
4133 
4134 	if (pbd_e1x)
4135 		DP(NETIF_MSG_TX_QUEUED,
4136 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4137 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4138 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4139 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4140 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4141 	if (pbd_e2)
4142 		DP(NETIF_MSG_TX_QUEUED,
4143 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4144 		   pbd_e2,
4145 		   pbd_e2->data.mac_addr.dst_hi,
4146 		   pbd_e2->data.mac_addr.dst_mid,
4147 		   pbd_e2->data.mac_addr.dst_lo,
4148 		   pbd_e2->data.mac_addr.src_hi,
4149 		   pbd_e2->data.mac_addr.src_mid,
4150 		   pbd_e2->data.mac_addr.src_lo,
4151 		   pbd_e2->parsing_data);
4152 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4153 
4154 	netdev_tx_sent_queue(txq, skb->len);
4155 
4156 	skb_tx_timestamp(skb);
4157 
4158 	txdata->tx_pkt_prod++;
4159 	/*
4160 	 * Make sure that the BD data is updated before updating the producer
4161 	 * since FW might read the BD right after the producer is updated.
4162 	 * This is only applicable for weak-ordered memory model archs such
4163 	 * as IA-64. The following barrier is also mandatory since FW will
4164 	 * assumes packets must have BDs.
4165 	 */
4166 	wmb();
4167 
4168 	txdata->tx_db.data.prod += nbd;
4169 	/* make sure descriptor update is observed by HW */
4170 	wmb();
4171 
4172 	DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4173 
4174 	txdata->tx_bd_prod += nbd;
4175 
4176 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4177 		netif_tx_stop_queue(txq);
4178 
4179 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4180 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4181 		 * fp->bd_tx_cons */
4182 		smp_mb();
4183 
4184 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4185 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4186 			netif_tx_wake_queue(txq);
4187 	}
4188 	txdata->tx_pkt++;
4189 
4190 	return NETDEV_TX_OK;
4191 }
4192 
4193 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4194 {
4195 	int mfw_vn = BP_FW_MB_IDX(bp);
4196 	u32 tmp;
4197 
4198 	/* If the shmem shouldn't affect configuration, reflect */
4199 	if (!IS_MF_BD(bp)) {
4200 		int i;
4201 
4202 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4203 			c2s_map[i] = i;
4204 		*c2s_default = 0;
4205 
4206 		return;
4207 	}
4208 
4209 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4210 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4211 	c2s_map[0] = tmp & 0xff;
4212 	c2s_map[1] = (tmp >> 8) & 0xff;
4213 	c2s_map[2] = (tmp >> 16) & 0xff;
4214 	c2s_map[3] = (tmp >> 24) & 0xff;
4215 
4216 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4217 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4218 	c2s_map[4] = tmp & 0xff;
4219 	c2s_map[5] = (tmp >> 8) & 0xff;
4220 	c2s_map[6] = (tmp >> 16) & 0xff;
4221 	c2s_map[7] = (tmp >> 24) & 0xff;
4222 
4223 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4224 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4225 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4226 }
4227 
4228 /**
4229  * bnx2x_setup_tc - routine to configure net_device for multi tc
4230  *
4231  * @netdev: net device to configure
4232  * @tc: number of traffic classes to enable
4233  *
4234  * callback connected to the ndo_setup_tc function pointer
4235  */
4236 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4237 {
4238 	struct bnx2x *bp = netdev_priv(dev);
4239 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4240 	int cos, prio, count, offset;
4241 
4242 	/* setup tc must be called under rtnl lock */
4243 	ASSERT_RTNL();
4244 
4245 	/* no traffic classes requested. Aborting */
4246 	if (!num_tc) {
4247 		netdev_reset_tc(dev);
4248 		return 0;
4249 	}
4250 
4251 	/* requested to support too many traffic classes */
4252 	if (num_tc > bp->max_cos) {
4253 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4254 			  num_tc, bp->max_cos);
4255 		return -EINVAL;
4256 	}
4257 
4258 	/* declare amount of supported traffic classes */
4259 	if (netdev_set_num_tc(dev, num_tc)) {
4260 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4261 		return -EINVAL;
4262 	}
4263 
4264 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4265 
4266 	/* configure priority to traffic class mapping */
4267 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4268 		int outer_prio = c2s_map[prio];
4269 
4270 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4271 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4272 		   "mapping priority %d to tc %d\n",
4273 		   outer_prio, bp->prio_to_cos[outer_prio]);
4274 	}
4275 
4276 	/* Use this configuration to differentiate tc0 from other COSes
4277 	   This can be used for ets or pfc, and save the effort of setting
4278 	   up a multio class queue disc or negotiating DCBX with a switch
4279 	netdev_set_prio_tc_map(dev, 0, 0);
4280 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4281 	for (prio = 1; prio < 16; prio++) {
4282 		netdev_set_prio_tc_map(dev, prio, 1);
4283 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4284 	} */
4285 
4286 	/* configure traffic class to transmission queue mapping */
4287 	for (cos = 0; cos < bp->max_cos; cos++) {
4288 		count = BNX2X_NUM_ETH_QUEUES(bp);
4289 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4290 		netdev_set_tc_queue(dev, cos, count, offset);
4291 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4292 		   "mapping tc %d to offset %d count %d\n",
4293 		   cos, offset, count);
4294 	}
4295 
4296 	return 0;
4297 }
4298 
4299 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4300 		     void *type_data)
4301 {
4302 	struct tc_mqprio_qopt *mqprio = type_data;
4303 
4304 	if (type != TC_SETUP_QDISC_MQPRIO)
4305 		return -EOPNOTSUPP;
4306 
4307 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4308 
4309 	return bnx2x_setup_tc(dev, mqprio->num_tc);
4310 }
4311 
4312 /* called with rtnl_lock */
4313 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4314 {
4315 	struct sockaddr *addr = p;
4316 	struct bnx2x *bp = netdev_priv(dev);
4317 	int rc = 0;
4318 
4319 	if (!is_valid_ether_addr(addr->sa_data)) {
4320 		BNX2X_ERR("Requested MAC address is not valid\n");
4321 		return -EINVAL;
4322 	}
4323 
4324 	if (IS_MF_STORAGE_ONLY(bp)) {
4325 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4326 		return -EINVAL;
4327 	}
4328 
4329 	if (netif_running(dev))  {
4330 		rc = bnx2x_set_eth_mac(bp, false);
4331 		if (rc)
4332 			return rc;
4333 	}
4334 
4335 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4336 
4337 	if (netif_running(dev))
4338 		rc = bnx2x_set_eth_mac(bp, true);
4339 
4340 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4341 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4342 
4343 	return rc;
4344 }
4345 
4346 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4347 {
4348 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4349 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4350 	u8 cos;
4351 
4352 	/* Common */
4353 
4354 	if (IS_FCOE_IDX(fp_index)) {
4355 		memset(sb, 0, sizeof(union host_hc_status_block));
4356 		fp->status_blk_mapping = 0;
4357 	} else {
4358 		/* status blocks */
4359 		if (!CHIP_IS_E1x(bp))
4360 			BNX2X_PCI_FREE(sb->e2_sb,
4361 				       bnx2x_fp(bp, fp_index,
4362 						status_blk_mapping),
4363 				       sizeof(struct host_hc_status_block_e2));
4364 		else
4365 			BNX2X_PCI_FREE(sb->e1x_sb,
4366 				       bnx2x_fp(bp, fp_index,
4367 						status_blk_mapping),
4368 				       sizeof(struct host_hc_status_block_e1x));
4369 	}
4370 
4371 	/* Rx */
4372 	if (!skip_rx_queue(bp, fp_index)) {
4373 		bnx2x_free_rx_bds(fp);
4374 
4375 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4376 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4377 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4378 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4379 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4380 
4381 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4382 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4383 			       sizeof(struct eth_fast_path_rx_cqe) *
4384 			       NUM_RCQ_BD);
4385 
4386 		/* SGE ring */
4387 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4388 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4389 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4390 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4391 	}
4392 
4393 	/* Tx */
4394 	if (!skip_tx_queue(bp, fp_index)) {
4395 		/* fastpath tx rings: tx_buf tx_desc */
4396 		for_each_cos_in_tx_queue(fp, cos) {
4397 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4398 
4399 			DP(NETIF_MSG_IFDOWN,
4400 			   "freeing tx memory of fp %d cos %d cid %d\n",
4401 			   fp_index, cos, txdata->cid);
4402 
4403 			BNX2X_FREE(txdata->tx_buf_ring);
4404 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4405 				txdata->tx_desc_mapping,
4406 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4407 		}
4408 	}
4409 	/* end of fastpath */
4410 }
4411 
4412 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4413 {
4414 	int i;
4415 	for_each_cnic_queue(bp, i)
4416 		bnx2x_free_fp_mem_at(bp, i);
4417 }
4418 
4419 void bnx2x_free_fp_mem(struct bnx2x *bp)
4420 {
4421 	int i;
4422 	for_each_eth_queue(bp, i)
4423 		bnx2x_free_fp_mem_at(bp, i);
4424 }
4425 
4426 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4427 {
4428 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4429 	if (!CHIP_IS_E1x(bp)) {
4430 		bnx2x_fp(bp, index, sb_index_values) =
4431 			(__le16 *)status_blk.e2_sb->sb.index_values;
4432 		bnx2x_fp(bp, index, sb_running_index) =
4433 			(__le16 *)status_blk.e2_sb->sb.running_index;
4434 	} else {
4435 		bnx2x_fp(bp, index, sb_index_values) =
4436 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4437 		bnx2x_fp(bp, index, sb_running_index) =
4438 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4439 	}
4440 }
4441 
4442 /* Returns the number of actually allocated BDs */
4443 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4444 			      int rx_ring_size)
4445 {
4446 	struct bnx2x *bp = fp->bp;
4447 	u16 ring_prod, cqe_ring_prod;
4448 	int i, failure_cnt = 0;
4449 
4450 	fp->rx_comp_cons = 0;
4451 	cqe_ring_prod = ring_prod = 0;
4452 
4453 	/* This routine is called only during fo init so
4454 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4455 	 */
4456 	for (i = 0; i < rx_ring_size; i++) {
4457 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4458 			failure_cnt++;
4459 			continue;
4460 		}
4461 		ring_prod = NEXT_RX_IDX(ring_prod);
4462 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4463 		WARN_ON(ring_prod <= (i - failure_cnt));
4464 	}
4465 
4466 	if (failure_cnt)
4467 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4468 			  i - failure_cnt, fp->index);
4469 
4470 	fp->rx_bd_prod = ring_prod;
4471 	/* Limit the CQE producer by the CQE ring size */
4472 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4473 			       cqe_ring_prod);
4474 
4475 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4476 
4477 	return i - failure_cnt;
4478 }
4479 
4480 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4481 {
4482 	int i;
4483 
4484 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4485 		struct eth_rx_cqe_next_page *nextpg;
4486 
4487 		nextpg = (struct eth_rx_cqe_next_page *)
4488 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4489 		nextpg->addr_hi =
4490 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4491 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4492 		nextpg->addr_lo =
4493 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4494 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4495 	}
4496 }
4497 
4498 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4499 {
4500 	union host_hc_status_block *sb;
4501 	struct bnx2x_fastpath *fp = &bp->fp[index];
4502 	int ring_size = 0;
4503 	u8 cos;
4504 	int rx_ring_size = 0;
4505 
4506 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4507 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4508 		bp->rx_ring_size = rx_ring_size;
4509 	} else if (!bp->rx_ring_size) {
4510 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4511 
4512 		if (CHIP_IS_E3(bp)) {
4513 			u32 cfg = SHMEM_RD(bp,
4514 					   dev_info.port_hw_config[BP_PORT(bp)].
4515 					   default_cfg);
4516 
4517 			/* Decrease ring size for 1G functions */
4518 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4519 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4520 				rx_ring_size /= 10;
4521 		}
4522 
4523 		/* allocate at least number of buffers required by FW */
4524 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4525 				     MIN_RX_SIZE_TPA, rx_ring_size);
4526 
4527 		bp->rx_ring_size = rx_ring_size;
4528 	} else /* if rx_ring_size specified - use it */
4529 		rx_ring_size = bp->rx_ring_size;
4530 
4531 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4532 
4533 	/* Common */
4534 	sb = &bnx2x_fp(bp, index, status_blk);
4535 
4536 	if (!IS_FCOE_IDX(index)) {
4537 		/* status blocks */
4538 		if (!CHIP_IS_E1x(bp)) {
4539 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4540 						    sizeof(struct host_hc_status_block_e2));
4541 			if (!sb->e2_sb)
4542 				goto alloc_mem_err;
4543 		} else {
4544 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4545 						     sizeof(struct host_hc_status_block_e1x));
4546 			if (!sb->e1x_sb)
4547 				goto alloc_mem_err;
4548 		}
4549 	}
4550 
4551 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4552 	 * set shortcuts for it.
4553 	 */
4554 	if (!IS_FCOE_IDX(index))
4555 		set_sb_shortcuts(bp, index);
4556 
4557 	/* Tx */
4558 	if (!skip_tx_queue(bp, index)) {
4559 		/* fastpath tx rings: tx_buf tx_desc */
4560 		for_each_cos_in_tx_queue(fp, cos) {
4561 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4562 
4563 			DP(NETIF_MSG_IFUP,
4564 			   "allocating tx memory of fp %d cos %d\n",
4565 			   index, cos);
4566 
4567 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4568 						      sizeof(struct sw_tx_bd),
4569 						      GFP_KERNEL);
4570 			if (!txdata->tx_buf_ring)
4571 				goto alloc_mem_err;
4572 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4573 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4574 			if (!txdata->tx_desc_ring)
4575 				goto alloc_mem_err;
4576 		}
4577 	}
4578 
4579 	/* Rx */
4580 	if (!skip_rx_queue(bp, index)) {
4581 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4582 		bnx2x_fp(bp, index, rx_buf_ring) =
4583 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4584 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4585 			goto alloc_mem_err;
4586 		bnx2x_fp(bp, index, rx_desc_ring) =
4587 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4588 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4589 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4590 			goto alloc_mem_err;
4591 
4592 		/* Seed all CQEs by 1s */
4593 		bnx2x_fp(bp, index, rx_comp_ring) =
4594 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4595 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4596 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4597 			goto alloc_mem_err;
4598 
4599 		/* SGE ring */
4600 		bnx2x_fp(bp, index, rx_page_ring) =
4601 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4602 				GFP_KERNEL);
4603 		if (!bnx2x_fp(bp, index, rx_page_ring))
4604 			goto alloc_mem_err;
4605 		bnx2x_fp(bp, index, rx_sge_ring) =
4606 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4607 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4608 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4609 			goto alloc_mem_err;
4610 		/* RX BD ring */
4611 		bnx2x_set_next_page_rx_bd(fp);
4612 
4613 		/* CQ ring */
4614 		bnx2x_set_next_page_rx_cq(fp);
4615 
4616 		/* BDs */
4617 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4618 		if (ring_size < rx_ring_size)
4619 			goto alloc_mem_err;
4620 	}
4621 
4622 	return 0;
4623 
4624 /* handles low memory cases */
4625 alloc_mem_err:
4626 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4627 						index, ring_size);
4628 	/* FW will drop all packets if queue is not big enough,
4629 	 * In these cases we disable the queue
4630 	 * Min size is different for OOO, TPA and non-TPA queues
4631 	 */
4632 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4633 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4634 			/* release memory allocated for this queue */
4635 			bnx2x_free_fp_mem_at(bp, index);
4636 			return -ENOMEM;
4637 	}
4638 	return 0;
4639 }
4640 
4641 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4642 {
4643 	if (!NO_FCOE(bp))
4644 		/* FCoE */
4645 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4646 			/* we will fail load process instead of mark
4647 			 * NO_FCOE_FLAG
4648 			 */
4649 			return -ENOMEM;
4650 
4651 	return 0;
4652 }
4653 
4654 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4655 {
4656 	int i;
4657 
4658 	/* 1. Allocate FP for leading - fatal if error
4659 	 * 2. Allocate RSS - fix number of queues if error
4660 	 */
4661 
4662 	/* leading */
4663 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4664 		return -ENOMEM;
4665 
4666 	/* RSS */
4667 	for_each_nondefault_eth_queue(bp, i)
4668 		if (bnx2x_alloc_fp_mem_at(bp, i))
4669 			break;
4670 
4671 	/* handle memory failures */
4672 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4673 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4674 
4675 		WARN_ON(delta < 0);
4676 		bnx2x_shrink_eth_fp(bp, delta);
4677 		if (CNIC_SUPPORT(bp))
4678 			/* move non eth FPs next to last eth FP
4679 			 * must be done in that order
4680 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4681 			 */
4682 
4683 			/* move FCoE fp even NO_FCOE_FLAG is on */
4684 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4685 		bp->num_ethernet_queues -= delta;
4686 		bp->num_queues = bp->num_ethernet_queues +
4687 				 bp->num_cnic_queues;
4688 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4689 			  bp->num_queues + delta, bp->num_queues);
4690 	}
4691 
4692 	return 0;
4693 }
4694 
4695 void bnx2x_free_mem_bp(struct bnx2x *bp)
4696 {
4697 	int i;
4698 
4699 	for (i = 0; i < bp->fp_array_size; i++)
4700 		kfree(bp->fp[i].tpa_info);
4701 	kfree(bp->fp);
4702 	kfree(bp->sp_objs);
4703 	kfree(bp->fp_stats);
4704 	kfree(bp->bnx2x_txq);
4705 	kfree(bp->msix_table);
4706 	kfree(bp->ilt);
4707 }
4708 
4709 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4710 {
4711 	struct bnx2x_fastpath *fp;
4712 	struct msix_entry *tbl;
4713 	struct bnx2x_ilt *ilt;
4714 	int msix_table_size = 0;
4715 	int fp_array_size, txq_array_size;
4716 	int i;
4717 
4718 	/*
4719 	 * The biggest MSI-X table we might need is as a maximum number of fast
4720 	 * path IGU SBs plus default SB (for PF only).
4721 	 */
4722 	msix_table_size = bp->igu_sb_cnt;
4723 	if (IS_PF(bp))
4724 		msix_table_size++;
4725 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4726 
4727 	/* fp array: RSS plus CNIC related L2 queues */
4728 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4729 	bp->fp_array_size = fp_array_size;
4730 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4731 
4732 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4733 	if (!fp)
4734 		goto alloc_err;
4735 	for (i = 0; i < bp->fp_array_size; i++) {
4736 		fp[i].tpa_info =
4737 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4738 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4739 		if (!(fp[i].tpa_info))
4740 			goto alloc_err;
4741 	}
4742 
4743 	bp->fp = fp;
4744 
4745 	/* allocate sp objs */
4746 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4747 			      GFP_KERNEL);
4748 	if (!bp->sp_objs)
4749 		goto alloc_err;
4750 
4751 	/* allocate fp_stats */
4752 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4753 			       GFP_KERNEL);
4754 	if (!bp->fp_stats)
4755 		goto alloc_err;
4756 
4757 	/* Allocate memory for the transmission queues array */
4758 	txq_array_size =
4759 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4760 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4761 
4762 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4763 				GFP_KERNEL);
4764 	if (!bp->bnx2x_txq)
4765 		goto alloc_err;
4766 
4767 	/* msix table */
4768 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4769 	if (!tbl)
4770 		goto alloc_err;
4771 	bp->msix_table = tbl;
4772 
4773 	/* ilt */
4774 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4775 	if (!ilt)
4776 		goto alloc_err;
4777 	bp->ilt = ilt;
4778 
4779 	return 0;
4780 alloc_err:
4781 	bnx2x_free_mem_bp(bp);
4782 	return -ENOMEM;
4783 }
4784 
4785 int bnx2x_reload_if_running(struct net_device *dev)
4786 {
4787 	struct bnx2x *bp = netdev_priv(dev);
4788 
4789 	if (unlikely(!netif_running(dev)))
4790 		return 0;
4791 
4792 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4793 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4794 }
4795 
4796 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4797 {
4798 	u32 sel_phy_idx = 0;
4799 	if (bp->link_params.num_phys <= 1)
4800 		return INT_PHY;
4801 
4802 	if (bp->link_vars.link_up) {
4803 		sel_phy_idx = EXT_PHY1;
4804 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4805 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4806 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4807 			sel_phy_idx = EXT_PHY2;
4808 	} else {
4809 
4810 		switch (bnx2x_phy_selection(&bp->link_params)) {
4811 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4812 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4813 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4814 		       sel_phy_idx = EXT_PHY1;
4815 		       break;
4816 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4817 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4818 		       sel_phy_idx = EXT_PHY2;
4819 		       break;
4820 		}
4821 	}
4822 
4823 	return sel_phy_idx;
4824 }
4825 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4826 {
4827 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4828 	/*
4829 	 * The selected activated PHY is always after swapping (in case PHY
4830 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4831 	 * the configuration
4832 	 */
4833 
4834 	if (bp->link_params.multi_phy_config &
4835 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4836 		if (sel_phy_idx == EXT_PHY1)
4837 			sel_phy_idx = EXT_PHY2;
4838 		else if (sel_phy_idx == EXT_PHY2)
4839 			sel_phy_idx = EXT_PHY1;
4840 	}
4841 	return LINK_CONFIG_IDX(sel_phy_idx);
4842 }
4843 
4844 #ifdef NETDEV_FCOE_WWNN
4845 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4846 {
4847 	struct bnx2x *bp = netdev_priv(dev);
4848 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4849 
4850 	switch (type) {
4851 	case NETDEV_FCOE_WWNN:
4852 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4853 				cp->fcoe_wwn_node_name_lo);
4854 		break;
4855 	case NETDEV_FCOE_WWPN:
4856 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4857 				cp->fcoe_wwn_port_name_lo);
4858 		break;
4859 	default:
4860 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4861 		return -EINVAL;
4862 	}
4863 
4864 	return 0;
4865 }
4866 #endif
4867 
4868 /* called with rtnl_lock */
4869 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4870 {
4871 	struct bnx2x *bp = netdev_priv(dev);
4872 
4873 	if (pci_num_vf(bp->pdev)) {
4874 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4875 		return -EPERM;
4876 	}
4877 
4878 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4879 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4880 		return -EAGAIN;
4881 	}
4882 
4883 	/* This does not race with packet allocation
4884 	 * because the actual alloc size is
4885 	 * only updated as part of load
4886 	 */
4887 	dev->mtu = new_mtu;
4888 
4889 	if (!bnx2x_mtu_allows_gro(new_mtu))
4890 		dev->features &= ~NETIF_F_GRO_HW;
4891 
4892 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4893 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4894 
4895 	return bnx2x_reload_if_running(dev);
4896 }
4897 
4898 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4899 				     netdev_features_t features)
4900 {
4901 	struct bnx2x *bp = netdev_priv(dev);
4902 
4903 	if (pci_num_vf(bp->pdev)) {
4904 		netdev_features_t changed = dev->features ^ features;
4905 
4906 		/* Revert the requested changes in features if they
4907 		 * would require internal reload of PF in bnx2x_set_features().
4908 		 */
4909 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4910 			features &= ~NETIF_F_RXCSUM;
4911 			features |= dev->features & NETIF_F_RXCSUM;
4912 		}
4913 
4914 		if (changed & NETIF_F_LOOPBACK) {
4915 			features &= ~NETIF_F_LOOPBACK;
4916 			features |= dev->features & NETIF_F_LOOPBACK;
4917 		}
4918 	}
4919 
4920 	/* TPA requires Rx CSUM offloading */
4921 	if (!(features & NETIF_F_RXCSUM))
4922 		features &= ~NETIF_F_LRO;
4923 
4924 	if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4925 		features &= ~NETIF_F_GRO_HW;
4926 	if (features & NETIF_F_GRO_HW)
4927 		features &= ~NETIF_F_LRO;
4928 
4929 	return features;
4930 }
4931 
4932 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4933 {
4934 	struct bnx2x *bp = netdev_priv(dev);
4935 	netdev_features_t changes = features ^ dev->features;
4936 	bool bnx2x_reload = false;
4937 	int rc;
4938 
4939 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4940 	if (!pci_num_vf(bp->pdev)) {
4941 		if (features & NETIF_F_LOOPBACK) {
4942 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4943 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4944 				bnx2x_reload = true;
4945 			}
4946 		} else {
4947 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4948 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4949 				bnx2x_reload = true;
4950 			}
4951 		}
4952 	}
4953 
4954 	/* Don't care about GRO changes */
4955 	changes &= ~NETIF_F_GRO;
4956 
4957 	if (changes)
4958 		bnx2x_reload = true;
4959 
4960 	if (bnx2x_reload) {
4961 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4962 			dev->features = features;
4963 			rc = bnx2x_reload_if_running(dev);
4964 			return rc ? rc : 1;
4965 		}
4966 		/* else: bnx2x_nic_load() will be called at end of recovery */
4967 	}
4968 
4969 	return 0;
4970 }
4971 
4972 void bnx2x_tx_timeout(struct net_device *dev)
4973 {
4974 	struct bnx2x *bp = netdev_priv(dev);
4975 
4976 	/* We want the information of the dump logged,
4977 	 * but calling bnx2x_panic() would kill all chances of recovery.
4978 	 */
4979 	if (!bp->panic)
4980 #ifndef BNX2X_STOP_ON_ERROR
4981 		bnx2x_panic_dump(bp, false);
4982 #else
4983 		bnx2x_panic();
4984 #endif
4985 
4986 	/* This allows the netif to be shutdown gracefully before resetting */
4987 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4988 }
4989 
4990 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4991 {
4992 	struct net_device *dev = pci_get_drvdata(pdev);
4993 	struct bnx2x *bp;
4994 
4995 	if (!dev) {
4996 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4997 		return -ENODEV;
4998 	}
4999 	bp = netdev_priv(dev);
5000 
5001 	rtnl_lock();
5002 
5003 	pci_save_state(pdev);
5004 
5005 	if (!netif_running(dev)) {
5006 		rtnl_unlock();
5007 		return 0;
5008 	}
5009 
5010 	netif_device_detach(dev);
5011 
5012 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5013 
5014 	bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5015 
5016 	rtnl_unlock();
5017 
5018 	return 0;
5019 }
5020 
5021 int bnx2x_resume(struct pci_dev *pdev)
5022 {
5023 	struct net_device *dev = pci_get_drvdata(pdev);
5024 	struct bnx2x *bp;
5025 	int rc;
5026 
5027 	if (!dev) {
5028 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5029 		return -ENODEV;
5030 	}
5031 	bp = netdev_priv(dev);
5032 
5033 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5034 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5035 		return -EAGAIN;
5036 	}
5037 
5038 	rtnl_lock();
5039 
5040 	pci_restore_state(pdev);
5041 
5042 	if (!netif_running(dev)) {
5043 		rtnl_unlock();
5044 		return 0;
5045 	}
5046 
5047 	bnx2x_set_power_state(bp, PCI_D0);
5048 	netif_device_attach(dev);
5049 
5050 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5051 
5052 	rtnl_unlock();
5053 
5054 	return rc;
5055 }
5056 
5057 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5058 			      u32 cid)
5059 {
5060 	if (!cxt) {
5061 		BNX2X_ERR("bad context pointer %p\n", cxt);
5062 		return;
5063 	}
5064 
5065 	/* ustorm cxt validation */
5066 	cxt->ustorm_ag_context.cdu_usage =
5067 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5068 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5069 	/* xcontext validation */
5070 	cxt->xstorm_ag_context.cdu_reserved =
5071 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5072 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5073 }
5074 
5075 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5076 				    u8 fw_sb_id, u8 sb_index,
5077 				    u8 ticks)
5078 {
5079 	u32 addr = BAR_CSTRORM_INTMEM +
5080 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5081 	REG_WR8(bp, addr, ticks);
5082 	DP(NETIF_MSG_IFUP,
5083 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5084 	   port, fw_sb_id, sb_index, ticks);
5085 }
5086 
5087 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5088 				    u16 fw_sb_id, u8 sb_index,
5089 				    u8 disable)
5090 {
5091 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5092 	u32 addr = BAR_CSTRORM_INTMEM +
5093 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5094 	u8 flags = REG_RD8(bp, addr);
5095 	/* clear and set */
5096 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5097 	flags |= enable_flag;
5098 	REG_WR8(bp, addr, flags);
5099 	DP(NETIF_MSG_IFUP,
5100 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5101 	   port, fw_sb_id, sb_index, disable);
5102 }
5103 
5104 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5105 				    u8 sb_index, u8 disable, u16 usec)
5106 {
5107 	int port = BP_PORT(bp);
5108 	u8 ticks = usec / BNX2X_BTR;
5109 
5110 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5111 
5112 	disable = disable ? 1 : (usec ? 0 : 1);
5113 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5114 }
5115 
5116 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5117 			    u32 verbose)
5118 {
5119 	smp_mb__before_atomic();
5120 	set_bit(flag, &bp->sp_rtnl_state);
5121 	smp_mb__after_atomic();
5122 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5123 	   flag);
5124 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5125 }
5126