1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34 
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39 
40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 	int i;
43 
44 	/* Add NAPI objects */
45 	for_each_rx_queue_cnic(bp, i) {
46 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 			       bnx2x_poll, NAPI_POLL_WEIGHT);
48 	}
49 }
50 
51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 	int i;
54 
55 	/* Add NAPI objects */
56 	for_each_eth_queue(bp, i) {
57 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 			       bnx2x_poll, NAPI_POLL_WEIGHT);
59 	}
60 }
61 
62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65 
66 	/* Reduce memory usage in kdump environment by using only one queue */
67 	if (is_kdump_kernel())
68 		nq = 1;
69 
70 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 	return nq;
72 }
73 
74 /**
75  * bnx2x_move_fp - move content of the fastpath structure.
76  *
77  * @bp:		driver handle
78  * @from:	source FP index
79  * @to:		destination FP index
80  *
81  * Makes sure the contents of the bp->fp[to].napi is kept
82  * intact. This is done by first copying the napi struct from
83  * the target to the source, and then mem copying the entire
84  * source onto the target. Update txdata pointers and related
85  * content.
86  */
87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 	int old_max_eth_txqs, new_max_eth_txqs;
96 	int old_txdata_index = 0, new_txdata_index = 0;
97 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98 
99 	/* Copy the NAPI object as it has been already initialized */
100 	from_fp->napi = to_fp->napi;
101 
102 	/* Move bnx2x_fastpath contents */
103 	memcpy(to_fp, from_fp, sizeof(*to_fp));
104 	to_fp->index = to;
105 
106 	/* Retain the tpa_info of the original `to' version as we don't want
107 	 * 2 FPs to contain the same tpa_info pointer.
108 	 */
109 	to_fp->tpa_info = old_tpa_info;
110 
111 	/* move sp_objs contents as well, as their indices match fp ones */
112 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113 
114 	/* move fp_stats contents as well, as their indices match fp ones */
115 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116 
117 	/* Update txdata pointers in fp and move txdata content accordingly:
118 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 	 * decremented by max_cos x delta.
120 	 */
121 
122 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 				(bp)->max_cos;
125 	if (from == FCOE_IDX(bp)) {
126 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 	}
129 
130 	memcpy(&bp->bnx2x_txq[new_txdata_index],
131 	       &bp->bnx2x_txq[old_txdata_index],
132 	       sizeof(struct bnx2x_fp_txdata));
133 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135 
136 /**
137  * bnx2x_fill_fw_str - Fill buffer with FW version string.
138  *
139  * @bp:        driver handle
140  * @buf:       character buffer to fill with the fw name
141  * @buf_len:   length of the above buffer
142  *
143  */
144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 	if (IS_PF(bp)) {
147 		u8 phy_fw_ver[PHY_FW_VER_LEN];
148 
149 		phy_fw_ver[0] = '\0';
150 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 					     phy_fw_ver, PHY_FW_VER_LEN);
152 		strlcpy(buf, bp->fw_ver, buf_len);
153 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 			 "bc %d.%d.%d%s%s",
155 			 (bp->common.bc_ver & 0xff0000) >> 16,
156 			 (bp->common.bc_ver & 0xff00) >> 8,
157 			 (bp->common.bc_ver & 0xff),
158 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 	} else {
160 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 	}
162 }
163 
164 /**
165  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166  *
167  * @bp:	driver handle
168  * @delta:	number of eth queues which were not allocated
169  */
170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173 
174 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 	 * backward along the array could cause memory to be overridden
176 	 */
177 	for (cos = 1; cos < bp->max_cos; cos++) {
178 		for (i = 0; i < old_eth_num - delta; i++) {
179 			struct bnx2x_fastpath *fp = &bp->fp[i];
180 			int new_idx = cos * (old_eth_num - delta) + i;
181 
182 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 			       sizeof(struct bnx2x_fp_txdata));
184 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 		}
186 	}
187 }
188 
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190 
191 /* free skb in the packet ring at pos idx
192  * return idx of last bd freed
193  */
194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 			     u16 idx, unsigned int *pkts_compl,
196 			     unsigned int *bytes_compl)
197 {
198 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 	struct eth_tx_start_bd *tx_start_bd;
200 	struct eth_tx_bd *tx_data_bd;
201 	struct sk_buff *skb = tx_buf->skb;
202 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 	int nbd;
204 	u16 split_bd_len = 0;
205 
206 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
207 	prefetch(&skb->end);
208 
209 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
210 	   txdata->txq_index, idx, tx_buf, skb);
211 
212 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213 
214 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 		BNX2X_ERR("BAD nbd!\n");
218 		bnx2x_panic();
219 	}
220 #endif
221 	new_cons = nbd + tx_buf->first_bd;
222 
223 	/* Get the next bd */
224 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225 
226 	/* Skip a parse bd... */
227 	--nbd;
228 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229 
230 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 		/* Skip second parse bd... */
232 		--nbd;
233 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 	}
235 
236 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 		--nbd;
241 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 	}
243 
244 	/* unmap first bd */
245 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 			 DMA_TO_DEVICE);
248 
249 	/* now free frags */
250 	while (nbd > 0) {
251 
252 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 		if (--nbd)
256 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 	}
258 
259 	/* release skb */
260 	WARN_ON(!skb);
261 	if (likely(skb)) {
262 		(*pkts_compl)++;
263 		(*bytes_compl) += skb->len;
264 		dev_kfree_skb_any(skb);
265 	}
266 
267 	tx_buf->first_bd = 0;
268 	tx_buf->skb = NULL;
269 
270 	return new_cons;
271 }
272 
273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 	struct netdev_queue *txq;
276 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 	unsigned int pkts_compl = 0, bytes_compl = 0;
278 
279 #ifdef BNX2X_STOP_ON_ERROR
280 	if (unlikely(bp->panic))
281 		return -1;
282 #endif
283 
284 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 	sw_cons = txdata->tx_pkt_cons;
287 
288 	/* Ensure subsequent loads occur after hw_cons */
289 	smp_rmb();
290 
291 	while (sw_cons != hw_cons) {
292 		u16 pkt_cons;
293 
294 		pkt_cons = TX_BD(sw_cons);
295 
296 		DP(NETIF_MSG_TX_DONE,
297 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
298 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299 
300 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 					    &pkts_compl, &bytes_compl);
302 
303 		sw_cons++;
304 	}
305 
306 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307 
308 	txdata->tx_pkt_cons = sw_cons;
309 	txdata->tx_bd_cons = bd_cons;
310 
311 	/* Need to make the tx_bd_cons update visible to start_xmit()
312 	 * before checking for netif_tx_queue_stopped().  Without the
313 	 * memory barrier, there is a small possibility that
314 	 * start_xmit() will miss it and cause the queue to be stopped
315 	 * forever.
316 	 * On the other hand we need an rmb() here to ensure the proper
317 	 * ordering of bit testing in the following
318 	 * netif_tx_queue_stopped(txq) call.
319 	 */
320 	smp_mb();
321 
322 	if (unlikely(netif_tx_queue_stopped(txq))) {
323 		/* Taking tx_lock() is needed to prevent re-enabling the queue
324 		 * while it's empty. This could have happen if rx_action() gets
325 		 * suspended in bnx2x_tx_int() after the condition before
326 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 		 *
328 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 		 * sends some packets consuming the whole queue again->
330 		 * stops the queue
331 		 */
332 
333 		__netif_tx_lock(txq, smp_processor_id());
334 
335 		if ((netif_tx_queue_stopped(txq)) &&
336 		    (bp->state == BNX2X_STATE_OPEN) &&
337 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 			netif_tx_wake_queue(txq);
339 
340 		__netif_tx_unlock(txq);
341 	}
342 	return 0;
343 }
344 
345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 					     u16 idx)
347 {
348 	u16 last_max = fp->last_max_sge;
349 
350 	if (SUB_S16(idx, last_max) > 0)
351 		fp->last_max_sge = idx;
352 }
353 
354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 					 u16 sge_len,
356 					 struct eth_end_agg_rx_cqe *cqe)
357 {
358 	struct bnx2x *bp = fp->bp;
359 	u16 last_max, last_elem, first_elem;
360 	u16 delta = 0;
361 	u16 i;
362 
363 	if (!sge_len)
364 		return;
365 
366 	/* First mark all used pages */
367 	for (i = 0; i < sge_len; i++)
368 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370 
371 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373 
374 	/* Here we assume that the last SGE index is the biggest */
375 	prefetch((void *)(fp->sge_mask));
376 	bnx2x_update_last_max_sge(fp,
377 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378 
379 	last_max = RX_SGE(fp->last_max_sge);
380 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382 
383 	/* If ring is not full */
384 	if (last_elem + 1 != first_elem)
385 		last_elem++;
386 
387 	/* Now update the prod */
388 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 		if (likely(fp->sge_mask[i]))
390 			break;
391 
392 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 		delta += BIT_VEC64_ELEM_SZ;
394 	}
395 
396 	if (delta > 0) {
397 		fp->rx_sge_prod += delta;
398 		/* clear page-end entries */
399 		bnx2x_clear_sge_mask_next_elems(fp);
400 	}
401 
402 	DP(NETIF_MSG_RX_STATUS,
403 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
404 	   fp->last_max_sge, fp->rx_sge_prod);
405 }
406 
407 /* Get Toeplitz hash value in the skb using the value from the
408  * CQE (calculated by HW).
409  */
410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 			    const struct eth_fast_path_rx_cqe *cqe,
412 			    enum pkt_hash_types *rxhash_type)
413 {
414 	/* Get Toeplitz hash from CQE */
415 	if ((bp->dev->features & NETIF_F_RXHASH) &&
416 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 		enum eth_rss_hash_type htype;
418 
419 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 				(htype == TCP_IPV6_HASH_TYPE)) ?
422 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423 
424 		return le32_to_cpu(cqe->rss_hash_result);
425 	}
426 	*rxhash_type = PKT_HASH_TYPE_NONE;
427 	return 0;
428 }
429 
430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 			    u16 cons, u16 prod,
432 			    struct eth_fast_path_rx_cqe *cqe)
433 {
434 	struct bnx2x *bp = fp->bp;
435 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 	dma_addr_t mapping;
439 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441 
442 	/* print error if current state != stop */
443 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445 
446 	/* Try to map an empty data buffer from the aggregation info  */
447 	mapping = dma_map_single(&bp->pdev->dev,
448 				 first_buf->data + NET_SKB_PAD,
449 				 fp->rx_buf_size, DMA_FROM_DEVICE);
450 	/*
451 	 *  ...if it fails - move the skb from the consumer to the producer
452 	 *  and set the current aggregation state as ERROR to drop it
453 	 *  when TPA_STOP arrives.
454 	 */
455 
456 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 		/* Move the BD from the consumer to the producer */
458 		bnx2x_reuse_rx_data(fp, cons, prod);
459 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 		return;
461 	}
462 
463 	/* move empty data from pool to prod */
464 	prod_rx_buf->data = first_buf->data;
465 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 	/* point prod_bd to new data */
467 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469 
470 	/* move partial skb from cons to pool (don't unmap yet) */
471 	*first_buf = *cons_rx_buf;
472 
473 	/* mark bin state as START */
474 	tpa_info->parsing_flags =
475 		le16_to_cpu(cqe->pars_flags.flags);
476 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 	tpa_info->tpa_state = BNX2X_TPA_START;
478 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 	tpa_info->placement_offset = cqe->placement_offset;
480 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 	if (fp->mode == TPA_MODE_GRO) {
482 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 		tpa_info->gro_size = gro_size;
485 	}
486 
487 #ifdef BNX2X_STOP_ON_ERROR
488 	fp->tpa_queue_used |= (1 << queue);
489 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 	   fp->tpa_queue_used);
491 #endif
492 }
493 
494 /* Timestamp option length allowed for TPA aggregation:
495  *
496  *		nop nop kind length echo val
497  */
498 #define TPA_TSTAMP_OPT_LEN	12
499 /**
500  * bnx2x_set_gro_params - compute GRO values
501  *
502  * @skb:		packet skb
503  * @parsing_flags:	parsing flags from the START CQE
504  * @len_on_bd:		total length of the first packet for the
505  *			aggregation.
506  * @pkt_len:		length of all segments
507  * @num_of_coalesced_segs: count of segments
508  *
509  * Approximate value of the MSS for this aggregation calculated using
510  * the first packet of it.
511  * Compute number of aggregated segments, and gso_type.
512  */
513 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
514 				 u16 len_on_bd, unsigned int pkt_len,
515 				 u16 num_of_coalesced_segs)
516 {
517 	/* TPA aggregation won't have either IP options or TCP options
518 	 * other than timestamp or IPv6 extension headers.
519 	 */
520 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
521 
522 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
523 	    PRS_FLAG_OVERETH_IPV6) {
524 		hdrs_len += sizeof(struct ipv6hdr);
525 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
526 	} else {
527 		hdrs_len += sizeof(struct iphdr);
528 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
529 	}
530 
531 	/* Check if there was a TCP timestamp, if there is it's will
532 	 * always be 12 bytes length: nop nop kind length echo val.
533 	 *
534 	 * Otherwise FW would close the aggregation.
535 	 */
536 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
537 		hdrs_len += TPA_TSTAMP_OPT_LEN;
538 
539 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
540 
541 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
542 	 * to skb_shinfo(skb)->gso_segs
543 	 */
544 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
545 }
546 
547 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
548 			      u16 index, gfp_t gfp_mask)
549 {
550 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
551 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
552 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
553 	dma_addr_t mapping;
554 
555 	if (!pool->page) {
556 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
557 		if (unlikely(!pool->page))
558 			return -ENOMEM;
559 
560 		pool->offset = 0;
561 	}
562 
563 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
564 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
565 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
566 		BNX2X_ERR("Can't map sge\n");
567 		return -ENOMEM;
568 	}
569 
570 	sw_buf->page = pool->page;
571 	sw_buf->offset = pool->offset;
572 
573 	dma_unmap_addr_set(sw_buf, mapping, mapping);
574 
575 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
576 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
577 
578 	pool->offset += SGE_PAGE_SIZE;
579 	if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
580 		get_page(pool->page);
581 	else
582 		pool->page = NULL;
583 	return 0;
584 }
585 
586 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
587 			       struct bnx2x_agg_info *tpa_info,
588 			       u16 pages,
589 			       struct sk_buff *skb,
590 			       struct eth_end_agg_rx_cqe *cqe,
591 			       u16 cqe_idx)
592 {
593 	struct sw_rx_page *rx_pg, old_rx_pg;
594 	u32 i, frag_len, frag_size;
595 	int err, j, frag_id = 0;
596 	u16 len_on_bd = tpa_info->len_on_bd;
597 	u16 full_page = 0, gro_size = 0;
598 
599 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
600 
601 	if (fp->mode == TPA_MODE_GRO) {
602 		gro_size = tpa_info->gro_size;
603 		full_page = tpa_info->full_page;
604 	}
605 
606 	/* This is needed in order to enable forwarding support */
607 	if (frag_size)
608 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
609 				     le16_to_cpu(cqe->pkt_len),
610 				     le16_to_cpu(cqe->num_of_coalesced_segs));
611 
612 #ifdef BNX2X_STOP_ON_ERROR
613 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
614 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
615 			  pages, cqe_idx);
616 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
617 		bnx2x_panic();
618 		return -EINVAL;
619 	}
620 #endif
621 
622 	/* Run through the SGL and compose the fragmented skb */
623 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
624 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
625 
626 		/* FW gives the indices of the SGE as if the ring is an array
627 		   (meaning that "next" element will consume 2 indices) */
628 		if (fp->mode == TPA_MODE_GRO)
629 			frag_len = min_t(u32, frag_size, (u32)full_page);
630 		else /* LRO */
631 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
632 
633 		rx_pg = &fp->rx_page_ring[sge_idx];
634 		old_rx_pg = *rx_pg;
635 
636 		/* If we fail to allocate a substitute page, we simply stop
637 		   where we are and drop the whole packet */
638 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
639 		if (unlikely(err)) {
640 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
641 			return err;
642 		}
643 
644 		dma_unmap_page(&bp->pdev->dev,
645 			       dma_unmap_addr(&old_rx_pg, mapping),
646 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
647 		/* Add one frag and update the appropriate fields in the skb */
648 		if (fp->mode == TPA_MODE_LRO)
649 			skb_fill_page_desc(skb, j, old_rx_pg.page,
650 					   old_rx_pg.offset, frag_len);
651 		else { /* GRO */
652 			int rem;
653 			int offset = 0;
654 			for (rem = frag_len; rem > 0; rem -= gro_size) {
655 				int len = rem > gro_size ? gro_size : rem;
656 				skb_fill_page_desc(skb, frag_id++,
657 						   old_rx_pg.page,
658 						   old_rx_pg.offset + offset,
659 						   len);
660 				if (offset)
661 					get_page(old_rx_pg.page);
662 				offset += len;
663 			}
664 		}
665 
666 		skb->data_len += frag_len;
667 		skb->truesize += SGE_PAGES;
668 		skb->len += frag_len;
669 
670 		frag_size -= frag_len;
671 	}
672 
673 	return 0;
674 }
675 
676 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
677 {
678 	if (fp->rx_frag_size)
679 		skb_free_frag(data);
680 	else
681 		kfree(data);
682 }
683 
684 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
685 {
686 	if (fp->rx_frag_size) {
687 		/* GFP_KERNEL allocations are used only during initialization */
688 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
689 			return (void *)__get_free_page(gfp_mask);
690 
691 		return napi_alloc_frag(fp->rx_frag_size);
692 	}
693 
694 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
695 }
696 
697 #ifdef CONFIG_INET
698 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
699 {
700 	const struct iphdr *iph = ip_hdr(skb);
701 	struct tcphdr *th;
702 
703 	skb_set_transport_header(skb, sizeof(struct iphdr));
704 	th = tcp_hdr(skb);
705 
706 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
707 				  iph->saddr, iph->daddr, 0);
708 }
709 
710 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
711 {
712 	struct ipv6hdr *iph = ipv6_hdr(skb);
713 	struct tcphdr *th;
714 
715 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
716 	th = tcp_hdr(skb);
717 
718 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
719 				  &iph->saddr, &iph->daddr, 0);
720 }
721 
722 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
723 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
724 {
725 	skb_reset_network_header(skb);
726 	gro_func(bp, skb);
727 	tcp_gro_complete(skb);
728 }
729 #endif
730 
731 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
732 			       struct sk_buff *skb)
733 {
734 #ifdef CONFIG_INET
735 	if (skb_shinfo(skb)->gso_size) {
736 		switch (be16_to_cpu(skb->protocol)) {
737 		case ETH_P_IP:
738 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
739 			break;
740 		case ETH_P_IPV6:
741 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
742 			break;
743 		default:
744 			netdev_WARN_ONCE(bp->dev,
745 					 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
746 					 be16_to_cpu(skb->protocol));
747 		}
748 	}
749 #endif
750 	skb_record_rx_queue(skb, fp->rx_queue);
751 	napi_gro_receive(&fp->napi, skb);
752 }
753 
754 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
755 			   struct bnx2x_agg_info *tpa_info,
756 			   u16 pages,
757 			   struct eth_end_agg_rx_cqe *cqe,
758 			   u16 cqe_idx)
759 {
760 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
761 	u8 pad = tpa_info->placement_offset;
762 	u16 len = tpa_info->len_on_bd;
763 	struct sk_buff *skb = NULL;
764 	u8 *new_data, *data = rx_buf->data;
765 	u8 old_tpa_state = tpa_info->tpa_state;
766 
767 	tpa_info->tpa_state = BNX2X_TPA_STOP;
768 
769 	/* If we there was an error during the handling of the TPA_START -
770 	 * drop this aggregation.
771 	 */
772 	if (old_tpa_state == BNX2X_TPA_ERROR)
773 		goto drop;
774 
775 	/* Try to allocate the new data */
776 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
777 	/* Unmap skb in the pool anyway, as we are going to change
778 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
779 	   fails. */
780 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
781 			 fp->rx_buf_size, DMA_FROM_DEVICE);
782 	if (likely(new_data))
783 		skb = build_skb(data, fp->rx_frag_size);
784 
785 	if (likely(skb)) {
786 #ifdef BNX2X_STOP_ON_ERROR
787 		if (pad + len > fp->rx_buf_size) {
788 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
789 				  pad, len, fp->rx_buf_size);
790 			bnx2x_panic();
791 			return;
792 		}
793 #endif
794 
795 		skb_reserve(skb, pad + NET_SKB_PAD);
796 		skb_put(skb, len);
797 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
798 
799 		skb->protocol = eth_type_trans(skb, bp->dev);
800 		skb->ip_summed = CHECKSUM_UNNECESSARY;
801 
802 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
803 					 skb, cqe, cqe_idx)) {
804 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
805 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
806 			bnx2x_gro_receive(bp, fp, skb);
807 		} else {
808 			DP(NETIF_MSG_RX_STATUS,
809 			   "Failed to allocate new pages - dropping packet!\n");
810 			dev_kfree_skb_any(skb);
811 		}
812 
813 		/* put new data in bin */
814 		rx_buf->data = new_data;
815 
816 		return;
817 	}
818 	if (new_data)
819 		bnx2x_frag_free(fp, new_data);
820 drop:
821 	/* drop the packet and keep the buffer in the bin */
822 	DP(NETIF_MSG_RX_STATUS,
823 	   "Failed to allocate or map a new skb - dropping packet!\n");
824 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
825 }
826 
827 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
828 			       u16 index, gfp_t gfp_mask)
829 {
830 	u8 *data;
831 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
832 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
833 	dma_addr_t mapping;
834 
835 	data = bnx2x_frag_alloc(fp, gfp_mask);
836 	if (unlikely(data == NULL))
837 		return -ENOMEM;
838 
839 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
840 				 fp->rx_buf_size,
841 				 DMA_FROM_DEVICE);
842 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
843 		bnx2x_frag_free(fp, data);
844 		BNX2X_ERR("Can't map rx data\n");
845 		return -ENOMEM;
846 	}
847 
848 	rx_buf->data = data;
849 	dma_unmap_addr_set(rx_buf, mapping, mapping);
850 
851 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
852 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
853 
854 	return 0;
855 }
856 
857 static
858 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
859 				 struct bnx2x_fastpath *fp,
860 				 struct bnx2x_eth_q_stats *qstats)
861 {
862 	/* Do nothing if no L4 csum validation was done.
863 	 * We do not check whether IP csum was validated. For IPv4 we assume
864 	 * that if the card got as far as validating the L4 csum, it also
865 	 * validated the IP csum. IPv6 has no IP csum.
866 	 */
867 	if (cqe->fast_path_cqe.status_flags &
868 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
869 		return;
870 
871 	/* If L4 validation was done, check if an error was found. */
872 
873 	if (cqe->fast_path_cqe.type_error_flags &
874 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
875 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
876 		qstats->hw_csum_err++;
877 	else
878 		skb->ip_summed = CHECKSUM_UNNECESSARY;
879 }
880 
881 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
882 {
883 	struct bnx2x *bp = fp->bp;
884 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
885 	u16 sw_comp_cons, sw_comp_prod;
886 	int rx_pkt = 0;
887 	union eth_rx_cqe *cqe;
888 	struct eth_fast_path_rx_cqe *cqe_fp;
889 
890 #ifdef BNX2X_STOP_ON_ERROR
891 	if (unlikely(bp->panic))
892 		return 0;
893 #endif
894 	if (budget <= 0)
895 		return rx_pkt;
896 
897 	bd_cons = fp->rx_bd_cons;
898 	bd_prod = fp->rx_bd_prod;
899 	bd_prod_fw = bd_prod;
900 	sw_comp_cons = fp->rx_comp_cons;
901 	sw_comp_prod = fp->rx_comp_prod;
902 
903 	comp_ring_cons = RCQ_BD(sw_comp_cons);
904 	cqe = &fp->rx_comp_ring[comp_ring_cons];
905 	cqe_fp = &cqe->fast_path_cqe;
906 
907 	DP(NETIF_MSG_RX_STATUS,
908 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
909 
910 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
911 		struct sw_rx_bd *rx_buf = NULL;
912 		struct sk_buff *skb;
913 		u8 cqe_fp_flags;
914 		enum eth_rx_cqe_type cqe_fp_type;
915 		u16 len, pad, queue;
916 		u8 *data;
917 		u32 rxhash;
918 		enum pkt_hash_types rxhash_type;
919 
920 #ifdef BNX2X_STOP_ON_ERROR
921 		if (unlikely(bp->panic))
922 			return 0;
923 #endif
924 
925 		bd_prod = RX_BD(bd_prod);
926 		bd_cons = RX_BD(bd_cons);
927 
928 		/* A rmb() is required to ensure that the CQE is not read
929 		 * before it is written by the adapter DMA.  PCI ordering
930 		 * rules will make sure the other fields are written before
931 		 * the marker at the end of struct eth_fast_path_rx_cqe
932 		 * but without rmb() a weakly ordered processor can process
933 		 * stale data.  Without the barrier TPA state-machine might
934 		 * enter inconsistent state and kernel stack might be
935 		 * provided with incorrect packet description - these lead
936 		 * to various kernel crashed.
937 		 */
938 		rmb();
939 
940 		cqe_fp_flags = cqe_fp->type_error_flags;
941 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
942 
943 		DP(NETIF_MSG_RX_STATUS,
944 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
945 		   CQE_TYPE(cqe_fp_flags),
946 		   cqe_fp_flags, cqe_fp->status_flags,
947 		   le32_to_cpu(cqe_fp->rss_hash_result),
948 		   le16_to_cpu(cqe_fp->vlan_tag),
949 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
950 
951 		/* is this a slowpath msg? */
952 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
953 			bnx2x_sp_event(fp, cqe);
954 			goto next_cqe;
955 		}
956 
957 		rx_buf = &fp->rx_buf_ring[bd_cons];
958 		data = rx_buf->data;
959 
960 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
961 			struct bnx2x_agg_info *tpa_info;
962 			u16 frag_size, pages;
963 #ifdef BNX2X_STOP_ON_ERROR
964 			/* sanity check */
965 			if (fp->mode == TPA_MODE_DISABLED &&
966 			    (CQE_TYPE_START(cqe_fp_type) ||
967 			     CQE_TYPE_STOP(cqe_fp_type)))
968 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
969 					  CQE_TYPE(cqe_fp_type));
970 #endif
971 
972 			if (CQE_TYPE_START(cqe_fp_type)) {
973 				u16 queue = cqe_fp->queue_index;
974 				DP(NETIF_MSG_RX_STATUS,
975 				   "calling tpa_start on queue %d\n",
976 				   queue);
977 
978 				bnx2x_tpa_start(fp, queue,
979 						bd_cons, bd_prod,
980 						cqe_fp);
981 
982 				goto next_rx;
983 			}
984 			queue = cqe->end_agg_cqe.queue_index;
985 			tpa_info = &fp->tpa_info[queue];
986 			DP(NETIF_MSG_RX_STATUS,
987 			   "calling tpa_stop on queue %d\n",
988 			   queue);
989 
990 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
991 				    tpa_info->len_on_bd;
992 
993 			if (fp->mode == TPA_MODE_GRO)
994 				pages = (frag_size + tpa_info->full_page - 1) /
995 					 tpa_info->full_page;
996 			else
997 				pages = SGE_PAGE_ALIGN(frag_size) >>
998 					SGE_PAGE_SHIFT;
999 
1000 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1001 				       &cqe->end_agg_cqe, comp_ring_cons);
1002 #ifdef BNX2X_STOP_ON_ERROR
1003 			if (bp->panic)
1004 				return 0;
1005 #endif
1006 
1007 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1008 			goto next_cqe;
1009 		}
1010 		/* non TPA */
1011 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1012 		pad = cqe_fp->placement_offset;
1013 		dma_sync_single_for_cpu(&bp->pdev->dev,
1014 					dma_unmap_addr(rx_buf, mapping),
1015 					pad + RX_COPY_THRESH,
1016 					DMA_FROM_DEVICE);
1017 		pad += NET_SKB_PAD;
1018 		prefetch(data + pad); /* speedup eth_type_trans() */
1019 		/* is this an error packet? */
1020 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1021 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1022 			   "ERROR  flags %x  rx packet %u\n",
1023 			   cqe_fp_flags, sw_comp_cons);
1024 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1025 			goto reuse_rx;
1026 		}
1027 
1028 		/* Since we don't have a jumbo ring
1029 		 * copy small packets if mtu > 1500
1030 		 */
1031 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1032 		    (len <= RX_COPY_THRESH)) {
1033 			skb = napi_alloc_skb(&fp->napi, len);
1034 			if (skb == NULL) {
1035 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1036 				   "ERROR  packet dropped because of alloc failure\n");
1037 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1038 				goto reuse_rx;
1039 			}
1040 			memcpy(skb->data, data + pad, len);
1041 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1042 		} else {
1043 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1044 						       GFP_ATOMIC) == 0)) {
1045 				dma_unmap_single(&bp->pdev->dev,
1046 						 dma_unmap_addr(rx_buf, mapping),
1047 						 fp->rx_buf_size,
1048 						 DMA_FROM_DEVICE);
1049 				skb = build_skb(data, fp->rx_frag_size);
1050 				if (unlikely(!skb)) {
1051 					bnx2x_frag_free(fp, data);
1052 					bnx2x_fp_qstats(bp, fp)->
1053 							rx_skb_alloc_failed++;
1054 					goto next_rx;
1055 				}
1056 				skb_reserve(skb, pad);
1057 			} else {
1058 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1059 				   "ERROR  packet dropped because of alloc failure\n");
1060 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1061 reuse_rx:
1062 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1063 				goto next_rx;
1064 			}
1065 		}
1066 
1067 		skb_put(skb, len);
1068 		skb->protocol = eth_type_trans(skb, bp->dev);
1069 
1070 		/* Set Toeplitz hash for a none-LRO skb */
1071 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1072 		skb_set_hash(skb, rxhash, rxhash_type);
1073 
1074 		skb_checksum_none_assert(skb);
1075 
1076 		if (bp->dev->features & NETIF_F_RXCSUM)
1077 			bnx2x_csum_validate(skb, cqe, fp,
1078 					    bnx2x_fp_qstats(bp, fp));
1079 
1080 		skb_record_rx_queue(skb, fp->rx_queue);
1081 
1082 		/* Check if this packet was timestamped */
1083 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1084 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1085 			bnx2x_set_rx_ts(bp, skb);
1086 
1087 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1088 		    PARSING_FLAGS_VLAN)
1089 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1090 					       le16_to_cpu(cqe_fp->vlan_tag));
1091 
1092 		napi_gro_receive(&fp->napi, skb);
1093 next_rx:
1094 		rx_buf->data = NULL;
1095 
1096 		bd_cons = NEXT_RX_IDX(bd_cons);
1097 		bd_prod = NEXT_RX_IDX(bd_prod);
1098 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1099 		rx_pkt++;
1100 next_cqe:
1101 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1102 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1103 
1104 		/* mark CQE as free */
1105 		BNX2X_SEED_CQE(cqe_fp);
1106 
1107 		if (rx_pkt == budget)
1108 			break;
1109 
1110 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1111 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1112 		cqe_fp = &cqe->fast_path_cqe;
1113 	} /* while */
1114 
1115 	fp->rx_bd_cons = bd_cons;
1116 	fp->rx_bd_prod = bd_prod_fw;
1117 	fp->rx_comp_cons = sw_comp_cons;
1118 	fp->rx_comp_prod = sw_comp_prod;
1119 
1120 	/* Update producers */
1121 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1122 			     fp->rx_sge_prod);
1123 
1124 	return rx_pkt;
1125 }
1126 
1127 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1128 {
1129 	struct bnx2x_fastpath *fp = fp_cookie;
1130 	struct bnx2x *bp = fp->bp;
1131 	u8 cos;
1132 
1133 	DP(NETIF_MSG_INTR,
1134 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1135 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1136 
1137 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1138 
1139 #ifdef BNX2X_STOP_ON_ERROR
1140 	if (unlikely(bp->panic))
1141 		return IRQ_HANDLED;
1142 #endif
1143 
1144 	/* Handle Rx and Tx according to MSI-X vector */
1145 	for_each_cos_in_tx_queue(fp, cos)
1146 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1147 
1148 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1149 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1150 
1151 	return IRQ_HANDLED;
1152 }
1153 
1154 /* HW Lock for shared dual port PHYs */
1155 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1156 {
1157 	mutex_lock(&bp->port.phy_mutex);
1158 
1159 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1160 }
1161 
1162 void bnx2x_release_phy_lock(struct bnx2x *bp)
1163 {
1164 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1165 
1166 	mutex_unlock(&bp->port.phy_mutex);
1167 }
1168 
1169 /* calculates MF speed according to current linespeed and MF configuration */
1170 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1171 {
1172 	u16 line_speed = bp->link_vars.line_speed;
1173 	if (IS_MF(bp)) {
1174 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1175 						   bp->mf_config[BP_VN(bp)]);
1176 
1177 		/* Calculate the current MAX line speed limit for the MF
1178 		 * devices
1179 		 */
1180 		if (IS_MF_PERCENT_BW(bp))
1181 			line_speed = (line_speed * maxCfg) / 100;
1182 		else { /* SD mode */
1183 			u16 vn_max_rate = maxCfg * 100;
1184 
1185 			if (vn_max_rate < line_speed)
1186 				line_speed = vn_max_rate;
1187 		}
1188 	}
1189 
1190 	return line_speed;
1191 }
1192 
1193 /**
1194  * bnx2x_fill_report_data - fill link report data to report
1195  *
1196  * @bp:		driver handle
1197  * @data:	link state to update
1198  *
1199  * It uses a none-atomic bit operations because is called under the mutex.
1200  */
1201 static void bnx2x_fill_report_data(struct bnx2x *bp,
1202 				   struct bnx2x_link_report_data *data)
1203 {
1204 	memset(data, 0, sizeof(*data));
1205 
1206 	if (IS_PF(bp)) {
1207 		/* Fill the report data: effective line speed */
1208 		data->line_speed = bnx2x_get_mf_speed(bp);
1209 
1210 		/* Link is down */
1211 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1212 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1213 				  &data->link_report_flags);
1214 
1215 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1216 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1217 				  &data->link_report_flags);
1218 
1219 		/* Full DUPLEX */
1220 		if (bp->link_vars.duplex == DUPLEX_FULL)
1221 			__set_bit(BNX2X_LINK_REPORT_FD,
1222 				  &data->link_report_flags);
1223 
1224 		/* Rx Flow Control is ON */
1225 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1226 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1227 				  &data->link_report_flags);
1228 
1229 		/* Tx Flow Control is ON */
1230 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1231 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1232 				  &data->link_report_flags);
1233 	} else { /* VF */
1234 		*data = bp->vf_link_vars;
1235 	}
1236 }
1237 
1238 /**
1239  * bnx2x_link_report - report link status to OS.
1240  *
1241  * @bp:		driver handle
1242  *
1243  * Calls the __bnx2x_link_report() under the same locking scheme
1244  * as a link/PHY state managing code to ensure a consistent link
1245  * reporting.
1246  */
1247 
1248 void bnx2x_link_report(struct bnx2x *bp)
1249 {
1250 	bnx2x_acquire_phy_lock(bp);
1251 	__bnx2x_link_report(bp);
1252 	bnx2x_release_phy_lock(bp);
1253 }
1254 
1255 /**
1256  * __bnx2x_link_report - report link status to OS.
1257  *
1258  * @bp:		driver handle
1259  *
1260  * None atomic implementation.
1261  * Should be called under the phy_lock.
1262  */
1263 void __bnx2x_link_report(struct bnx2x *bp)
1264 {
1265 	struct bnx2x_link_report_data cur_data;
1266 
1267 	if (bp->force_link_down) {
1268 		bp->link_vars.link_up = 0;
1269 		return;
1270 	}
1271 
1272 	/* reread mf_cfg */
1273 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1274 		bnx2x_read_mf_cfg(bp);
1275 
1276 	/* Read the current link report info */
1277 	bnx2x_fill_report_data(bp, &cur_data);
1278 
1279 	/* Don't report link down or exactly the same link status twice */
1280 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1281 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1282 		      &bp->last_reported_link.link_report_flags) &&
1283 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1284 		      &cur_data.link_report_flags)))
1285 		return;
1286 
1287 	bp->link_cnt++;
1288 
1289 	/* We are going to report a new link parameters now -
1290 	 * remember the current data for the next time.
1291 	 */
1292 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1293 
1294 	/* propagate status to VFs */
1295 	if (IS_PF(bp))
1296 		bnx2x_iov_link_update(bp);
1297 
1298 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1299 		     &cur_data.link_report_flags)) {
1300 		netif_carrier_off(bp->dev);
1301 		netdev_err(bp->dev, "NIC Link is Down\n");
1302 		return;
1303 	} else {
1304 		const char *duplex;
1305 		const char *flow;
1306 
1307 		netif_carrier_on(bp->dev);
1308 
1309 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1310 				       &cur_data.link_report_flags))
1311 			duplex = "full";
1312 		else
1313 			duplex = "half";
1314 
1315 		/* Handle the FC at the end so that only these flags would be
1316 		 * possibly set. This way we may easily check if there is no FC
1317 		 * enabled.
1318 		 */
1319 		if (cur_data.link_report_flags) {
1320 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1321 				     &cur_data.link_report_flags)) {
1322 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1323 				     &cur_data.link_report_flags))
1324 					flow = "ON - receive & transmit";
1325 				else
1326 					flow = "ON - receive";
1327 			} else {
1328 				flow = "ON - transmit";
1329 			}
1330 		} else {
1331 			flow = "none";
1332 		}
1333 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1334 			    cur_data.line_speed, duplex, flow);
1335 	}
1336 }
1337 
1338 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1339 {
1340 	int i;
1341 
1342 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1343 		struct eth_rx_sge *sge;
1344 
1345 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1346 		sge->addr_hi =
1347 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1348 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1349 
1350 		sge->addr_lo =
1351 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1352 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1353 	}
1354 }
1355 
1356 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1357 				struct bnx2x_fastpath *fp, int last)
1358 {
1359 	int i;
1360 
1361 	for (i = 0; i < last; i++) {
1362 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1363 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1364 		u8 *data = first_buf->data;
1365 
1366 		if (data == NULL) {
1367 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1368 			continue;
1369 		}
1370 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1371 			dma_unmap_single(&bp->pdev->dev,
1372 					 dma_unmap_addr(first_buf, mapping),
1373 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1374 		bnx2x_frag_free(fp, data);
1375 		first_buf->data = NULL;
1376 	}
1377 }
1378 
1379 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1380 {
1381 	int j;
1382 
1383 	for_each_rx_queue_cnic(bp, j) {
1384 		struct bnx2x_fastpath *fp = &bp->fp[j];
1385 
1386 		fp->rx_bd_cons = 0;
1387 
1388 		/* Activate BD ring */
1389 		/* Warning!
1390 		 * this will generate an interrupt (to the TSTORM)
1391 		 * must only be done after chip is initialized
1392 		 */
1393 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1394 				     fp->rx_sge_prod);
1395 	}
1396 }
1397 
1398 void bnx2x_init_rx_rings(struct bnx2x *bp)
1399 {
1400 	int func = BP_FUNC(bp);
1401 	u16 ring_prod;
1402 	int i, j;
1403 
1404 	/* Allocate TPA resources */
1405 	for_each_eth_queue(bp, j) {
1406 		struct bnx2x_fastpath *fp = &bp->fp[j];
1407 
1408 		DP(NETIF_MSG_IFUP,
1409 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1410 
1411 		if (fp->mode != TPA_MODE_DISABLED) {
1412 			/* Fill the per-aggregation pool */
1413 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1414 				struct bnx2x_agg_info *tpa_info =
1415 					&fp->tpa_info[i];
1416 				struct sw_rx_bd *first_buf =
1417 					&tpa_info->first_buf;
1418 
1419 				first_buf->data =
1420 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1421 				if (!first_buf->data) {
1422 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1423 						  j);
1424 					bnx2x_free_tpa_pool(bp, fp, i);
1425 					fp->mode = TPA_MODE_DISABLED;
1426 					break;
1427 				}
1428 				dma_unmap_addr_set(first_buf, mapping, 0);
1429 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1430 			}
1431 
1432 			/* "next page" elements initialization */
1433 			bnx2x_set_next_page_sgl(fp);
1434 
1435 			/* set SGEs bit mask */
1436 			bnx2x_init_sge_ring_bit_mask(fp);
1437 
1438 			/* Allocate SGEs and initialize the ring elements */
1439 			for (i = 0, ring_prod = 0;
1440 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1441 
1442 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1443 						       GFP_KERNEL) < 0) {
1444 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1445 						  i);
1446 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1447 						  j);
1448 					/* Cleanup already allocated elements */
1449 					bnx2x_free_rx_sge_range(bp, fp,
1450 								ring_prod);
1451 					bnx2x_free_tpa_pool(bp, fp,
1452 							    MAX_AGG_QS(bp));
1453 					fp->mode = TPA_MODE_DISABLED;
1454 					ring_prod = 0;
1455 					break;
1456 				}
1457 				ring_prod = NEXT_SGE_IDX(ring_prod);
1458 			}
1459 
1460 			fp->rx_sge_prod = ring_prod;
1461 		}
1462 	}
1463 
1464 	for_each_eth_queue(bp, j) {
1465 		struct bnx2x_fastpath *fp = &bp->fp[j];
1466 
1467 		fp->rx_bd_cons = 0;
1468 
1469 		/* Activate BD ring */
1470 		/* Warning!
1471 		 * this will generate an interrupt (to the TSTORM)
1472 		 * must only be done after chip is initialized
1473 		 */
1474 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1475 				     fp->rx_sge_prod);
1476 
1477 		if (j != 0)
1478 			continue;
1479 
1480 		if (CHIP_IS_E1(bp)) {
1481 			REG_WR(bp, BAR_USTRORM_INTMEM +
1482 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1483 			       U64_LO(fp->rx_comp_mapping));
1484 			REG_WR(bp, BAR_USTRORM_INTMEM +
1485 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1486 			       U64_HI(fp->rx_comp_mapping));
1487 		}
1488 	}
1489 }
1490 
1491 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1492 {
1493 	u8 cos;
1494 	struct bnx2x *bp = fp->bp;
1495 
1496 	for_each_cos_in_tx_queue(fp, cos) {
1497 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1498 		unsigned pkts_compl = 0, bytes_compl = 0;
1499 
1500 		u16 sw_prod = txdata->tx_pkt_prod;
1501 		u16 sw_cons = txdata->tx_pkt_cons;
1502 
1503 		while (sw_cons != sw_prod) {
1504 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1505 					  &pkts_compl, &bytes_compl);
1506 			sw_cons++;
1507 		}
1508 
1509 		netdev_tx_reset_queue(
1510 			netdev_get_tx_queue(bp->dev,
1511 					    txdata->txq_index));
1512 	}
1513 }
1514 
1515 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1516 {
1517 	int i;
1518 
1519 	for_each_tx_queue_cnic(bp, i) {
1520 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1521 	}
1522 }
1523 
1524 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1525 {
1526 	int i;
1527 
1528 	for_each_eth_queue(bp, i) {
1529 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1530 	}
1531 }
1532 
1533 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1534 {
1535 	struct bnx2x *bp = fp->bp;
1536 	int i;
1537 
1538 	/* ring wasn't allocated */
1539 	if (fp->rx_buf_ring == NULL)
1540 		return;
1541 
1542 	for (i = 0; i < NUM_RX_BD; i++) {
1543 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1544 		u8 *data = rx_buf->data;
1545 
1546 		if (data == NULL)
1547 			continue;
1548 		dma_unmap_single(&bp->pdev->dev,
1549 				 dma_unmap_addr(rx_buf, mapping),
1550 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1551 
1552 		rx_buf->data = NULL;
1553 		bnx2x_frag_free(fp, data);
1554 	}
1555 }
1556 
1557 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1558 {
1559 	int j;
1560 
1561 	for_each_rx_queue_cnic(bp, j) {
1562 		bnx2x_free_rx_bds(&bp->fp[j]);
1563 	}
1564 }
1565 
1566 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1567 {
1568 	int j;
1569 
1570 	for_each_eth_queue(bp, j) {
1571 		struct bnx2x_fastpath *fp = &bp->fp[j];
1572 
1573 		bnx2x_free_rx_bds(fp);
1574 
1575 		if (fp->mode != TPA_MODE_DISABLED)
1576 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1577 	}
1578 }
1579 
1580 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1581 {
1582 	bnx2x_free_tx_skbs_cnic(bp);
1583 	bnx2x_free_rx_skbs_cnic(bp);
1584 }
1585 
1586 void bnx2x_free_skbs(struct bnx2x *bp)
1587 {
1588 	bnx2x_free_tx_skbs(bp);
1589 	bnx2x_free_rx_skbs(bp);
1590 }
1591 
1592 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1593 {
1594 	/* load old values */
1595 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1596 
1597 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1598 		/* leave all but MAX value */
1599 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1600 
1601 		/* set new MAX value */
1602 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1603 				& FUNC_MF_CFG_MAX_BW_MASK;
1604 
1605 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1606 	}
1607 }
1608 
1609 /**
1610  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1611  *
1612  * @bp:		driver handle
1613  * @nvecs:	number of vectors to be released
1614  */
1615 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1616 {
1617 	int i, offset = 0;
1618 
1619 	if (nvecs == offset)
1620 		return;
1621 
1622 	/* VFs don't have a default SB */
1623 	if (IS_PF(bp)) {
1624 		free_irq(bp->msix_table[offset].vector, bp->dev);
1625 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1626 		   bp->msix_table[offset].vector);
1627 		offset++;
1628 	}
1629 
1630 	if (CNIC_SUPPORT(bp)) {
1631 		if (nvecs == offset)
1632 			return;
1633 		offset++;
1634 	}
1635 
1636 	for_each_eth_queue(bp, i) {
1637 		if (nvecs == offset)
1638 			return;
1639 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1640 		   i, bp->msix_table[offset].vector);
1641 
1642 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1643 	}
1644 }
1645 
1646 void bnx2x_free_irq(struct bnx2x *bp)
1647 {
1648 	if (bp->flags & USING_MSIX_FLAG &&
1649 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1650 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1651 
1652 		/* vfs don't have a default status block */
1653 		if (IS_PF(bp))
1654 			nvecs++;
1655 
1656 		bnx2x_free_msix_irqs(bp, nvecs);
1657 	} else {
1658 		free_irq(bp->dev->irq, bp->dev);
1659 	}
1660 }
1661 
1662 int bnx2x_enable_msix(struct bnx2x *bp)
1663 {
1664 	int msix_vec = 0, i, rc;
1665 
1666 	/* VFs don't have a default status block */
1667 	if (IS_PF(bp)) {
1668 		bp->msix_table[msix_vec].entry = msix_vec;
1669 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1670 			       bp->msix_table[0].entry);
1671 		msix_vec++;
1672 	}
1673 
1674 	/* Cnic requires an msix vector for itself */
1675 	if (CNIC_SUPPORT(bp)) {
1676 		bp->msix_table[msix_vec].entry = msix_vec;
1677 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1678 			       msix_vec, bp->msix_table[msix_vec].entry);
1679 		msix_vec++;
1680 	}
1681 
1682 	/* We need separate vectors for ETH queues only (not FCoE) */
1683 	for_each_eth_queue(bp, i) {
1684 		bp->msix_table[msix_vec].entry = msix_vec;
1685 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1686 			       msix_vec, msix_vec, i);
1687 		msix_vec++;
1688 	}
1689 
1690 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1691 	   msix_vec);
1692 
1693 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1694 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1695 	/*
1696 	 * reconfigure number of tx/rx queues according to available
1697 	 * MSI-X vectors
1698 	 */
1699 	if (rc == -ENOSPC) {
1700 		/* Get by with single vector */
1701 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1702 		if (rc < 0) {
1703 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1704 				       rc);
1705 			goto no_msix;
1706 		}
1707 
1708 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1709 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1710 
1711 		BNX2X_DEV_INFO("set number of queues to 1\n");
1712 		bp->num_ethernet_queues = 1;
1713 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1714 	} else if (rc < 0) {
1715 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1716 		goto no_msix;
1717 	} else if (rc < msix_vec) {
1718 		/* how less vectors we will have? */
1719 		int diff = msix_vec - rc;
1720 
1721 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1722 
1723 		/*
1724 		 * decrease number of queues by number of unallocated entries
1725 		 */
1726 		bp->num_ethernet_queues -= diff;
1727 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1728 
1729 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1730 			       bp->num_queues);
1731 	}
1732 
1733 	bp->flags |= USING_MSIX_FLAG;
1734 
1735 	return 0;
1736 
1737 no_msix:
1738 	/* fall to INTx if not enough memory */
1739 	if (rc == -ENOMEM)
1740 		bp->flags |= DISABLE_MSI_FLAG;
1741 
1742 	return rc;
1743 }
1744 
1745 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1746 {
1747 	int i, rc, offset = 0;
1748 
1749 	/* no default status block for vf */
1750 	if (IS_PF(bp)) {
1751 		rc = request_irq(bp->msix_table[offset++].vector,
1752 				 bnx2x_msix_sp_int, 0,
1753 				 bp->dev->name, bp->dev);
1754 		if (rc) {
1755 			BNX2X_ERR("request sp irq failed\n");
1756 			return -EBUSY;
1757 		}
1758 	}
1759 
1760 	if (CNIC_SUPPORT(bp))
1761 		offset++;
1762 
1763 	for_each_eth_queue(bp, i) {
1764 		struct bnx2x_fastpath *fp = &bp->fp[i];
1765 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1766 			 bp->dev->name, i);
1767 
1768 		rc = request_irq(bp->msix_table[offset].vector,
1769 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1770 		if (rc) {
1771 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1772 			      bp->msix_table[offset].vector, rc);
1773 			bnx2x_free_msix_irqs(bp, offset);
1774 			return -EBUSY;
1775 		}
1776 
1777 		offset++;
1778 	}
1779 
1780 	i = BNX2X_NUM_ETH_QUEUES(bp);
1781 	if (IS_PF(bp)) {
1782 		offset = 1 + CNIC_SUPPORT(bp);
1783 		netdev_info(bp->dev,
1784 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1785 			    bp->msix_table[0].vector,
1786 			    0, bp->msix_table[offset].vector,
1787 			    i - 1, bp->msix_table[offset + i - 1].vector);
1788 	} else {
1789 		offset = CNIC_SUPPORT(bp);
1790 		netdev_info(bp->dev,
1791 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1792 			    0, bp->msix_table[offset].vector,
1793 			    i - 1, bp->msix_table[offset + i - 1].vector);
1794 	}
1795 	return 0;
1796 }
1797 
1798 int bnx2x_enable_msi(struct bnx2x *bp)
1799 {
1800 	int rc;
1801 
1802 	rc = pci_enable_msi(bp->pdev);
1803 	if (rc) {
1804 		BNX2X_DEV_INFO("MSI is not attainable\n");
1805 		return -1;
1806 	}
1807 	bp->flags |= USING_MSI_FLAG;
1808 
1809 	return 0;
1810 }
1811 
1812 static int bnx2x_req_irq(struct bnx2x *bp)
1813 {
1814 	unsigned long flags;
1815 	unsigned int irq;
1816 
1817 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1818 		flags = 0;
1819 	else
1820 		flags = IRQF_SHARED;
1821 
1822 	if (bp->flags & USING_MSIX_FLAG)
1823 		irq = bp->msix_table[0].vector;
1824 	else
1825 		irq = bp->pdev->irq;
1826 
1827 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1828 }
1829 
1830 static int bnx2x_setup_irqs(struct bnx2x *bp)
1831 {
1832 	int rc = 0;
1833 	if (bp->flags & USING_MSIX_FLAG &&
1834 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1835 		rc = bnx2x_req_msix_irqs(bp);
1836 		if (rc)
1837 			return rc;
1838 	} else {
1839 		rc = bnx2x_req_irq(bp);
1840 		if (rc) {
1841 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1842 			return rc;
1843 		}
1844 		if (bp->flags & USING_MSI_FLAG) {
1845 			bp->dev->irq = bp->pdev->irq;
1846 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1847 				    bp->dev->irq);
1848 		}
1849 		if (bp->flags & USING_MSIX_FLAG) {
1850 			bp->dev->irq = bp->msix_table[0].vector;
1851 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1852 				    bp->dev->irq);
1853 		}
1854 	}
1855 
1856 	return 0;
1857 }
1858 
1859 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1860 {
1861 	int i;
1862 
1863 	for_each_rx_queue_cnic(bp, i) {
1864 		napi_enable(&bnx2x_fp(bp, i, napi));
1865 	}
1866 }
1867 
1868 static void bnx2x_napi_enable(struct bnx2x *bp)
1869 {
1870 	int i;
1871 
1872 	for_each_eth_queue(bp, i) {
1873 		napi_enable(&bnx2x_fp(bp, i, napi));
1874 	}
1875 }
1876 
1877 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1878 {
1879 	int i;
1880 
1881 	for_each_rx_queue_cnic(bp, i) {
1882 		napi_disable(&bnx2x_fp(bp, i, napi));
1883 	}
1884 }
1885 
1886 static void bnx2x_napi_disable(struct bnx2x *bp)
1887 {
1888 	int i;
1889 
1890 	for_each_eth_queue(bp, i) {
1891 		napi_disable(&bnx2x_fp(bp, i, napi));
1892 	}
1893 }
1894 
1895 void bnx2x_netif_start(struct bnx2x *bp)
1896 {
1897 	if (netif_running(bp->dev)) {
1898 		bnx2x_napi_enable(bp);
1899 		if (CNIC_LOADED(bp))
1900 			bnx2x_napi_enable_cnic(bp);
1901 		bnx2x_int_enable(bp);
1902 		if (bp->state == BNX2X_STATE_OPEN)
1903 			netif_tx_wake_all_queues(bp->dev);
1904 	}
1905 }
1906 
1907 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1908 {
1909 	bnx2x_int_disable_sync(bp, disable_hw);
1910 	bnx2x_napi_disable(bp);
1911 	if (CNIC_LOADED(bp))
1912 		bnx2x_napi_disable_cnic(bp);
1913 }
1914 
1915 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1916 		       struct net_device *sb_dev)
1917 {
1918 	struct bnx2x *bp = netdev_priv(dev);
1919 
1920 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1921 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1922 		u16 ether_type = ntohs(hdr->h_proto);
1923 
1924 		/* Skip VLAN tag if present */
1925 		if (ether_type == ETH_P_8021Q) {
1926 			struct vlan_ethhdr *vhdr =
1927 				(struct vlan_ethhdr *)skb->data;
1928 
1929 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1930 		}
1931 
1932 		/* If ethertype is FCoE or FIP - use FCoE ring */
1933 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1934 			return bnx2x_fcoe_tx(bp, txq_index);
1935 	}
1936 
1937 	/* select a non-FCoE queue */
1938 	return netdev_pick_tx(dev, skb, NULL) %
1939 			(BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1940 }
1941 
1942 void bnx2x_set_num_queues(struct bnx2x *bp)
1943 {
1944 	/* RSS queues */
1945 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1946 
1947 	/* override in STORAGE SD modes */
1948 	if (IS_MF_STORAGE_ONLY(bp))
1949 		bp->num_ethernet_queues = 1;
1950 
1951 	/* Add special queues */
1952 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1953 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1954 
1955 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1956 }
1957 
1958 /**
1959  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1960  *
1961  * @bp:		Driver handle
1962  * @include_cnic: handle cnic case
1963  *
1964  * We currently support for at most 16 Tx queues for each CoS thus we will
1965  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1966  * bp->max_cos.
1967  *
1968  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1969  * index after all ETH L2 indices.
1970  *
1971  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1972  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1973  * 16..31,...) with indices that are not coupled with any real Tx queue.
1974  *
1975  * The proper configuration of skb->queue_mapping is handled by
1976  * bnx2x_select_queue() and __skb_tx_hash().
1977  *
1978  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1979  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1980  */
1981 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1982 {
1983 	int rc, tx, rx;
1984 
1985 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1986 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1987 
1988 /* account for fcoe queue */
1989 	if (include_cnic && !NO_FCOE(bp)) {
1990 		rx++;
1991 		tx++;
1992 	}
1993 
1994 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
1995 	if (rc) {
1996 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1997 		return rc;
1998 	}
1999 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
2000 	if (rc) {
2001 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2002 		return rc;
2003 	}
2004 
2005 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2006 			  tx, rx);
2007 
2008 	return rc;
2009 }
2010 
2011 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2012 {
2013 	int i;
2014 
2015 	for_each_queue(bp, i) {
2016 		struct bnx2x_fastpath *fp = &bp->fp[i];
2017 		u32 mtu;
2018 
2019 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2020 		if (IS_FCOE_IDX(i))
2021 			/*
2022 			 * Although there are no IP frames expected to arrive to
2023 			 * this ring we still want to add an
2024 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2025 			 * overrun attack.
2026 			 */
2027 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2028 		else
2029 			mtu = bp->dev->mtu;
2030 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2031 				  IP_HEADER_ALIGNMENT_PADDING +
2032 				  ETH_OVERHEAD +
2033 				  mtu +
2034 				  BNX2X_FW_RX_ALIGN_END;
2035 		fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2036 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2037 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2038 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2039 		else
2040 			fp->rx_frag_size = 0;
2041 	}
2042 }
2043 
2044 static int bnx2x_init_rss(struct bnx2x *bp)
2045 {
2046 	int i;
2047 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2048 
2049 	/* Prepare the initial contents for the indirection table if RSS is
2050 	 * enabled
2051 	 */
2052 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2053 		bp->rss_conf_obj.ind_table[i] =
2054 			bp->fp->cl_id +
2055 			ethtool_rxfh_indir_default(i, num_eth_queues);
2056 
2057 	/*
2058 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2059 	 * per-port, so if explicit configuration is needed , do it only
2060 	 * for a PMF.
2061 	 *
2062 	 * For 57712 and newer on the other hand it's a per-function
2063 	 * configuration.
2064 	 */
2065 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2066 }
2067 
2068 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2069 	      bool config_hash, bool enable)
2070 {
2071 	struct bnx2x_config_rss_params params = {NULL};
2072 
2073 	/* Although RSS is meaningless when there is a single HW queue we
2074 	 * still need it enabled in order to have HW Rx hash generated.
2075 	 *
2076 	 * if (!is_eth_multi(bp))
2077 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2078 	 */
2079 
2080 	params.rss_obj = rss_obj;
2081 
2082 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2083 
2084 	if (enable) {
2085 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2086 
2087 		/* RSS configuration */
2088 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2089 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2090 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2091 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2092 		if (rss_obj->udp_rss_v4)
2093 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2094 		if (rss_obj->udp_rss_v6)
2095 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2096 
2097 		if (!CHIP_IS_E1x(bp)) {
2098 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2099 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2100 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2101 
2102 			/* valid only for TUNN_MODE_GRE tunnel mode */
2103 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2104 		}
2105 	} else {
2106 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2107 	}
2108 
2109 	/* Hash bits */
2110 	params.rss_result_mask = MULTI_MASK;
2111 
2112 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2113 
2114 	if (config_hash) {
2115 		/* RSS keys */
2116 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2117 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2118 	}
2119 
2120 	if (IS_PF(bp))
2121 		return bnx2x_config_rss(bp, &params);
2122 	else
2123 		return bnx2x_vfpf_config_rss(bp, &params);
2124 }
2125 
2126 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2127 {
2128 	struct bnx2x_func_state_params func_params = {NULL};
2129 
2130 	/* Prepare parameters for function state transitions */
2131 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2132 
2133 	func_params.f_obj = &bp->func_obj;
2134 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2135 
2136 	func_params.params.hw_init.load_phase = load_code;
2137 
2138 	return bnx2x_func_state_change(bp, &func_params);
2139 }
2140 
2141 /*
2142  * Cleans the object that have internal lists without sending
2143  * ramrods. Should be run when interrupts are disabled.
2144  */
2145 void bnx2x_squeeze_objects(struct bnx2x *bp)
2146 {
2147 	int rc;
2148 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2149 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2150 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2151 
2152 	/***************** Cleanup MACs' object first *************************/
2153 
2154 	/* Wait for completion of requested */
2155 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2156 	/* Perform a dry cleanup */
2157 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2158 
2159 	/* Clean ETH primary MAC */
2160 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2161 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2162 				 &ramrod_flags);
2163 	if (rc != 0)
2164 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2165 
2166 	/* Cleanup UC list */
2167 	vlan_mac_flags = 0;
2168 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2169 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2170 				 &ramrod_flags);
2171 	if (rc != 0)
2172 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2173 
2174 	/***************** Now clean mcast object *****************************/
2175 	rparam.mcast_obj = &bp->mcast_obj;
2176 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2177 
2178 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2179 	 * we take a lock surrounding both the initial send and the CONTs,
2180 	 * as we don't want a true completion to disrupt us in the middle.
2181 	 */
2182 	netif_addr_lock_bh(bp->dev);
2183 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2184 	if (rc < 0)
2185 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2186 			  rc);
2187 
2188 	/* ...and wait until all pending commands are cleared */
2189 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2190 	while (rc != 0) {
2191 		if (rc < 0) {
2192 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2193 				  rc);
2194 			netif_addr_unlock_bh(bp->dev);
2195 			return;
2196 		}
2197 
2198 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2199 	}
2200 	netif_addr_unlock_bh(bp->dev);
2201 }
2202 
2203 #ifndef BNX2X_STOP_ON_ERROR
2204 #define LOAD_ERROR_EXIT(bp, label) \
2205 	do { \
2206 		(bp)->state = BNX2X_STATE_ERROR; \
2207 		goto label; \
2208 	} while (0)
2209 
2210 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2211 	do { \
2212 		bp->cnic_loaded = false; \
2213 		goto label; \
2214 	} while (0)
2215 #else /*BNX2X_STOP_ON_ERROR*/
2216 #define LOAD_ERROR_EXIT(bp, label) \
2217 	do { \
2218 		(bp)->state = BNX2X_STATE_ERROR; \
2219 		(bp)->panic = 1; \
2220 		return -EBUSY; \
2221 	} while (0)
2222 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2223 	do { \
2224 		bp->cnic_loaded = false; \
2225 		(bp)->panic = 1; \
2226 		return -EBUSY; \
2227 	} while (0)
2228 #endif /*BNX2X_STOP_ON_ERROR*/
2229 
2230 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2231 {
2232 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2233 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2234 	return;
2235 }
2236 
2237 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2238 {
2239 	int num_groups, vf_headroom = 0;
2240 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2241 
2242 	/* number of queues for statistics is number of eth queues + FCoE */
2243 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2244 
2245 	/* Total number of FW statistics requests =
2246 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2247 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2248 	 * for fcoe l2 queue if applicable)
2249 	 */
2250 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2251 
2252 	/* vf stats appear in the request list, but their data is allocated by
2253 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2254 	 * it is used to determine where to place the vf stats queries in the
2255 	 * request struct
2256 	 */
2257 	if (IS_SRIOV(bp))
2258 		vf_headroom = bnx2x_vf_headroom(bp);
2259 
2260 	/* Request is built from stats_query_header and an array of
2261 	 * stats_query_cmd_group each of which contains
2262 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2263 	 * configured in the stats_query_header.
2264 	 */
2265 	num_groups =
2266 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2267 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2268 		 1 : 0));
2269 
2270 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2271 	   bp->fw_stats_num, vf_headroom, num_groups);
2272 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2273 		num_groups * sizeof(struct stats_query_cmd_group);
2274 
2275 	/* Data for statistics requests + stats_counter
2276 	 * stats_counter holds per-STORM counters that are incremented
2277 	 * when STORM has finished with the current request.
2278 	 * memory for FCoE offloaded statistics are counted anyway,
2279 	 * even if they will not be sent.
2280 	 * VF stats are not accounted for here as the data of VF stats is stored
2281 	 * in memory allocated by the VF, not here.
2282 	 */
2283 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2284 		sizeof(struct per_pf_stats) +
2285 		sizeof(struct fcoe_statistics_params) +
2286 		sizeof(struct per_queue_stats) * num_queue_stats +
2287 		sizeof(struct stats_counter);
2288 
2289 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2290 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2291 	if (!bp->fw_stats)
2292 		goto alloc_mem_err;
2293 
2294 	/* Set shortcuts */
2295 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2296 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2297 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2298 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2299 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2300 		bp->fw_stats_req_sz;
2301 
2302 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2303 	   U64_HI(bp->fw_stats_req_mapping),
2304 	   U64_LO(bp->fw_stats_req_mapping));
2305 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2306 	   U64_HI(bp->fw_stats_data_mapping),
2307 	   U64_LO(bp->fw_stats_data_mapping));
2308 	return 0;
2309 
2310 alloc_mem_err:
2311 	bnx2x_free_fw_stats_mem(bp);
2312 	BNX2X_ERR("Can't allocate FW stats memory\n");
2313 	return -ENOMEM;
2314 }
2315 
2316 /* send load request to mcp and analyze response */
2317 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2318 {
2319 	u32 param;
2320 
2321 	/* init fw_seq */
2322 	bp->fw_seq =
2323 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2324 		 DRV_MSG_SEQ_NUMBER_MASK);
2325 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2326 
2327 	/* Get current FW pulse sequence */
2328 	bp->fw_drv_pulse_wr_seq =
2329 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2330 		 DRV_PULSE_SEQ_MASK);
2331 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2332 
2333 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2334 
2335 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2336 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2337 
2338 	/* load request */
2339 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2340 
2341 	/* if mcp fails to respond we must abort */
2342 	if (!(*load_code)) {
2343 		BNX2X_ERR("MCP response failure, aborting\n");
2344 		return -EBUSY;
2345 	}
2346 
2347 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2348 	 * must abort
2349 	 */
2350 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2351 		BNX2X_ERR("MCP refused load request, aborting\n");
2352 		return -EBUSY;
2353 	}
2354 	return 0;
2355 }
2356 
2357 /* check whether another PF has already loaded FW to chip. In
2358  * virtualized environments a pf from another VM may have already
2359  * initialized the device including loading FW
2360  */
2361 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2362 {
2363 	/* is another pf loaded on this engine? */
2364 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2365 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2366 		/* build my FW version dword */
2367 		u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2368 			(BCM_5710_FW_MINOR_VERSION << 8) +
2369 			(BCM_5710_FW_REVISION_VERSION << 16) +
2370 			(BCM_5710_FW_ENGINEERING_VERSION << 24);
2371 
2372 		/* read loaded FW from chip */
2373 		u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2374 
2375 		DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2376 		   loaded_fw, my_fw);
2377 
2378 		/* abort nic load if version mismatch */
2379 		if (my_fw != loaded_fw) {
2380 			if (print_err)
2381 				BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2382 					  loaded_fw, my_fw);
2383 			else
2384 				BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2385 					       loaded_fw, my_fw);
2386 			return -EBUSY;
2387 		}
2388 	}
2389 	return 0;
2390 }
2391 
2392 /* returns the "mcp load_code" according to global load_count array */
2393 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2394 {
2395 	int path = BP_PATH(bp);
2396 
2397 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2398 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2399 	   bnx2x_load_count[path][2]);
2400 	bnx2x_load_count[path][0]++;
2401 	bnx2x_load_count[path][1 + port]++;
2402 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2403 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2404 	   bnx2x_load_count[path][2]);
2405 	if (bnx2x_load_count[path][0] == 1)
2406 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2407 	else if (bnx2x_load_count[path][1 + port] == 1)
2408 		return FW_MSG_CODE_DRV_LOAD_PORT;
2409 	else
2410 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2411 }
2412 
2413 /* mark PMF if applicable */
2414 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2415 {
2416 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2417 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2418 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2419 		bp->port.pmf = 1;
2420 		/* We need the barrier to ensure the ordering between the
2421 		 * writing to bp->port.pmf here and reading it from the
2422 		 * bnx2x_periodic_task().
2423 		 */
2424 		smp_mb();
2425 	} else {
2426 		bp->port.pmf = 0;
2427 	}
2428 
2429 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2430 }
2431 
2432 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2433 {
2434 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2435 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2436 	    (bp->common.shmem2_base)) {
2437 		if (SHMEM2_HAS(bp, dcc_support))
2438 			SHMEM2_WR(bp, dcc_support,
2439 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2440 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2441 		if (SHMEM2_HAS(bp, afex_driver_support))
2442 			SHMEM2_WR(bp, afex_driver_support,
2443 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2444 	}
2445 
2446 	/* Set AFEX default VLAN tag to an invalid value */
2447 	bp->afex_def_vlan_tag = -1;
2448 }
2449 
2450 /**
2451  * bnx2x_bz_fp - zero content of the fastpath structure.
2452  *
2453  * @bp:		driver handle
2454  * @index:	fastpath index to be zeroed
2455  *
2456  * Makes sure the contents of the bp->fp[index].napi is kept
2457  * intact.
2458  */
2459 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2460 {
2461 	struct bnx2x_fastpath *fp = &bp->fp[index];
2462 	int cos;
2463 	struct napi_struct orig_napi = fp->napi;
2464 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2465 
2466 	/* bzero bnx2x_fastpath contents */
2467 	if (fp->tpa_info)
2468 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2469 		       sizeof(struct bnx2x_agg_info));
2470 	memset(fp, 0, sizeof(*fp));
2471 
2472 	/* Restore the NAPI object as it has been already initialized */
2473 	fp->napi = orig_napi;
2474 	fp->tpa_info = orig_tpa_info;
2475 	fp->bp = bp;
2476 	fp->index = index;
2477 	if (IS_ETH_FP(fp))
2478 		fp->max_cos = bp->max_cos;
2479 	else
2480 		/* Special queues support only one CoS */
2481 		fp->max_cos = 1;
2482 
2483 	/* Init txdata pointers */
2484 	if (IS_FCOE_FP(fp))
2485 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2486 	if (IS_ETH_FP(fp))
2487 		for_each_cos_in_tx_queue(fp, cos)
2488 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2489 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2490 
2491 	/* set the tpa flag for each queue. The tpa flag determines the queue
2492 	 * minimal size so it must be set prior to queue memory allocation
2493 	 */
2494 	if (bp->dev->features & NETIF_F_LRO)
2495 		fp->mode = TPA_MODE_LRO;
2496 	else if (bp->dev->features & NETIF_F_GRO_HW)
2497 		fp->mode = TPA_MODE_GRO;
2498 	else
2499 		fp->mode = TPA_MODE_DISABLED;
2500 
2501 	/* We don't want TPA if it's disabled in bp
2502 	 * or if this is an FCoE L2 ring.
2503 	 */
2504 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2505 		fp->mode = TPA_MODE_DISABLED;
2506 }
2507 
2508 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2509 {
2510 	u32 cur;
2511 
2512 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2513 		return;
2514 
2515 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2516 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2517 	   cur, state);
2518 
2519 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2520 }
2521 
2522 int bnx2x_load_cnic(struct bnx2x *bp)
2523 {
2524 	int i, rc, port = BP_PORT(bp);
2525 
2526 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2527 
2528 	mutex_init(&bp->cnic_mutex);
2529 
2530 	if (IS_PF(bp)) {
2531 		rc = bnx2x_alloc_mem_cnic(bp);
2532 		if (rc) {
2533 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2534 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2535 		}
2536 	}
2537 
2538 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2539 	if (rc) {
2540 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2541 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2542 	}
2543 
2544 	/* Update the number of queues with the cnic queues */
2545 	rc = bnx2x_set_real_num_queues(bp, 1);
2546 	if (rc) {
2547 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2548 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2549 	}
2550 
2551 	/* Add all CNIC NAPI objects */
2552 	bnx2x_add_all_napi_cnic(bp);
2553 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2554 	bnx2x_napi_enable_cnic(bp);
2555 
2556 	rc = bnx2x_init_hw_func_cnic(bp);
2557 	if (rc)
2558 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2559 
2560 	bnx2x_nic_init_cnic(bp);
2561 
2562 	if (IS_PF(bp)) {
2563 		/* Enable Timer scan */
2564 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2565 
2566 		/* setup cnic queues */
2567 		for_each_cnic_queue(bp, i) {
2568 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2569 			if (rc) {
2570 				BNX2X_ERR("Queue setup failed\n");
2571 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2572 			}
2573 		}
2574 	}
2575 
2576 	/* Initialize Rx filter. */
2577 	bnx2x_set_rx_mode_inner(bp);
2578 
2579 	/* re-read iscsi info */
2580 	bnx2x_get_iscsi_info(bp);
2581 	bnx2x_setup_cnic_irq_info(bp);
2582 	bnx2x_setup_cnic_info(bp);
2583 	bp->cnic_loaded = true;
2584 	if (bp->state == BNX2X_STATE_OPEN)
2585 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2586 
2587 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2588 
2589 	return 0;
2590 
2591 #ifndef BNX2X_STOP_ON_ERROR
2592 load_error_cnic2:
2593 	/* Disable Timer scan */
2594 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2595 
2596 load_error_cnic1:
2597 	bnx2x_napi_disable_cnic(bp);
2598 	/* Update the number of queues without the cnic queues */
2599 	if (bnx2x_set_real_num_queues(bp, 0))
2600 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2601 load_error_cnic0:
2602 	BNX2X_ERR("CNIC-related load failed\n");
2603 	bnx2x_free_fp_mem_cnic(bp);
2604 	bnx2x_free_mem_cnic(bp);
2605 	return rc;
2606 #endif /* ! BNX2X_STOP_ON_ERROR */
2607 }
2608 
2609 /* must be called with rtnl_lock */
2610 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2611 {
2612 	int port = BP_PORT(bp);
2613 	int i, rc = 0, load_code = 0;
2614 
2615 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2616 	DP(NETIF_MSG_IFUP,
2617 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2618 
2619 #ifdef BNX2X_STOP_ON_ERROR
2620 	if (unlikely(bp->panic)) {
2621 		BNX2X_ERR("Can't load NIC when there is panic\n");
2622 		return -EPERM;
2623 	}
2624 #endif
2625 
2626 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2627 
2628 	/* zero the structure w/o any lock, before SP handler is initialized */
2629 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2630 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2631 		&bp->last_reported_link.link_report_flags);
2632 
2633 	if (IS_PF(bp))
2634 		/* must be called before memory allocation and HW init */
2635 		bnx2x_ilt_set_info(bp);
2636 
2637 	/*
2638 	 * Zero fastpath structures preserving invariants like napi, which are
2639 	 * allocated only once, fp index, max_cos, bp pointer.
2640 	 * Also set fp->mode and txdata_ptr.
2641 	 */
2642 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2643 	for_each_queue(bp, i)
2644 		bnx2x_bz_fp(bp, i);
2645 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2646 				  bp->num_cnic_queues) *
2647 				  sizeof(struct bnx2x_fp_txdata));
2648 
2649 	bp->fcoe_init = false;
2650 
2651 	/* Set the receive queues buffer size */
2652 	bnx2x_set_rx_buf_size(bp);
2653 
2654 	if (IS_PF(bp)) {
2655 		rc = bnx2x_alloc_mem(bp);
2656 		if (rc) {
2657 			BNX2X_ERR("Unable to allocate bp memory\n");
2658 			return rc;
2659 		}
2660 	}
2661 
2662 	/* need to be done after alloc mem, since it's self adjusting to amount
2663 	 * of memory available for RSS queues
2664 	 */
2665 	rc = bnx2x_alloc_fp_mem(bp);
2666 	if (rc) {
2667 		BNX2X_ERR("Unable to allocate memory for fps\n");
2668 		LOAD_ERROR_EXIT(bp, load_error0);
2669 	}
2670 
2671 	/* Allocated memory for FW statistics  */
2672 	rc = bnx2x_alloc_fw_stats_mem(bp);
2673 	if (rc)
2674 		LOAD_ERROR_EXIT(bp, load_error0);
2675 
2676 	/* request pf to initialize status blocks */
2677 	if (IS_VF(bp)) {
2678 		rc = bnx2x_vfpf_init(bp);
2679 		if (rc)
2680 			LOAD_ERROR_EXIT(bp, load_error0);
2681 	}
2682 
2683 	/* As long as bnx2x_alloc_mem() may possibly update
2684 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2685 	 * come after it. At this stage cnic queues are not counted.
2686 	 */
2687 	rc = bnx2x_set_real_num_queues(bp, 0);
2688 	if (rc) {
2689 		BNX2X_ERR("Unable to set real_num_queues\n");
2690 		LOAD_ERROR_EXIT(bp, load_error0);
2691 	}
2692 
2693 	/* configure multi cos mappings in kernel.
2694 	 * this configuration may be overridden by a multi class queue
2695 	 * discipline or by a dcbx negotiation result.
2696 	 */
2697 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2698 
2699 	/* Add all NAPI objects */
2700 	bnx2x_add_all_napi(bp);
2701 	DP(NETIF_MSG_IFUP, "napi added\n");
2702 	bnx2x_napi_enable(bp);
2703 
2704 	if (IS_PF(bp)) {
2705 		/* set pf load just before approaching the MCP */
2706 		bnx2x_set_pf_load(bp);
2707 
2708 		/* if mcp exists send load request and analyze response */
2709 		if (!BP_NOMCP(bp)) {
2710 			/* attempt to load pf */
2711 			rc = bnx2x_nic_load_request(bp, &load_code);
2712 			if (rc)
2713 				LOAD_ERROR_EXIT(bp, load_error1);
2714 
2715 			/* what did mcp say? */
2716 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2717 			if (rc) {
2718 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2719 				LOAD_ERROR_EXIT(bp, load_error2);
2720 			}
2721 		} else {
2722 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2723 		}
2724 
2725 		/* mark pmf if applicable */
2726 		bnx2x_nic_load_pmf(bp, load_code);
2727 
2728 		/* Init Function state controlling object */
2729 		bnx2x__init_func_obj(bp);
2730 
2731 		/* Initialize HW */
2732 		rc = bnx2x_init_hw(bp, load_code);
2733 		if (rc) {
2734 			BNX2X_ERR("HW init failed, aborting\n");
2735 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2736 			LOAD_ERROR_EXIT(bp, load_error2);
2737 		}
2738 	}
2739 
2740 	bnx2x_pre_irq_nic_init(bp);
2741 
2742 	/* Connect to IRQs */
2743 	rc = bnx2x_setup_irqs(bp);
2744 	if (rc) {
2745 		BNX2X_ERR("setup irqs failed\n");
2746 		if (IS_PF(bp))
2747 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2748 		LOAD_ERROR_EXIT(bp, load_error2);
2749 	}
2750 
2751 	/* Init per-function objects */
2752 	if (IS_PF(bp)) {
2753 		/* Setup NIC internals and enable interrupts */
2754 		bnx2x_post_irq_nic_init(bp, load_code);
2755 
2756 		bnx2x_init_bp_objs(bp);
2757 		bnx2x_iov_nic_init(bp);
2758 
2759 		/* Set AFEX default VLAN tag to an invalid value */
2760 		bp->afex_def_vlan_tag = -1;
2761 		bnx2x_nic_load_afex_dcc(bp, load_code);
2762 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2763 		rc = bnx2x_func_start(bp);
2764 		if (rc) {
2765 			BNX2X_ERR("Function start failed!\n");
2766 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2767 
2768 			LOAD_ERROR_EXIT(bp, load_error3);
2769 		}
2770 
2771 		/* Send LOAD_DONE command to MCP */
2772 		if (!BP_NOMCP(bp)) {
2773 			load_code = bnx2x_fw_command(bp,
2774 						     DRV_MSG_CODE_LOAD_DONE, 0);
2775 			if (!load_code) {
2776 				BNX2X_ERR("MCP response failure, aborting\n");
2777 				rc = -EBUSY;
2778 				LOAD_ERROR_EXIT(bp, load_error3);
2779 			}
2780 		}
2781 
2782 		/* initialize FW coalescing state machines in RAM */
2783 		bnx2x_update_coalesce(bp);
2784 	}
2785 
2786 	/* setup the leading queue */
2787 	rc = bnx2x_setup_leading(bp);
2788 	if (rc) {
2789 		BNX2X_ERR("Setup leading failed!\n");
2790 		LOAD_ERROR_EXIT(bp, load_error3);
2791 	}
2792 
2793 	/* set up the rest of the queues */
2794 	for_each_nondefault_eth_queue(bp, i) {
2795 		if (IS_PF(bp))
2796 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2797 		else /* VF */
2798 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2799 		if (rc) {
2800 			BNX2X_ERR("Queue %d setup failed\n", i);
2801 			LOAD_ERROR_EXIT(bp, load_error3);
2802 		}
2803 	}
2804 
2805 	/* setup rss */
2806 	rc = bnx2x_init_rss(bp);
2807 	if (rc) {
2808 		BNX2X_ERR("PF RSS init failed\n");
2809 		LOAD_ERROR_EXIT(bp, load_error3);
2810 	}
2811 
2812 	/* Now when Clients are configured we are ready to work */
2813 	bp->state = BNX2X_STATE_OPEN;
2814 
2815 	/* Configure a ucast MAC */
2816 	if (IS_PF(bp))
2817 		rc = bnx2x_set_eth_mac(bp, true);
2818 	else /* vf */
2819 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2820 					   true);
2821 	if (rc) {
2822 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2823 		LOAD_ERROR_EXIT(bp, load_error3);
2824 	}
2825 
2826 	if (IS_PF(bp) && bp->pending_max) {
2827 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2828 		bp->pending_max = 0;
2829 	}
2830 
2831 	bp->force_link_down = false;
2832 	if (bp->port.pmf) {
2833 		rc = bnx2x_initial_phy_init(bp, load_mode);
2834 		if (rc)
2835 			LOAD_ERROR_EXIT(bp, load_error3);
2836 	}
2837 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2838 
2839 	/* Start fast path */
2840 
2841 	/* Re-configure vlan filters */
2842 	rc = bnx2x_vlan_reconfigure_vid(bp);
2843 	if (rc)
2844 		LOAD_ERROR_EXIT(bp, load_error3);
2845 
2846 	/* Initialize Rx filter. */
2847 	bnx2x_set_rx_mode_inner(bp);
2848 
2849 	if (bp->flags & PTP_SUPPORTED) {
2850 		bnx2x_register_phc(bp);
2851 		bnx2x_init_ptp(bp);
2852 		bnx2x_configure_ptp_filters(bp);
2853 	}
2854 	/* Start Tx */
2855 	switch (load_mode) {
2856 	case LOAD_NORMAL:
2857 		/* Tx queue should be only re-enabled */
2858 		netif_tx_wake_all_queues(bp->dev);
2859 		break;
2860 
2861 	case LOAD_OPEN:
2862 		netif_tx_start_all_queues(bp->dev);
2863 		smp_mb__after_atomic();
2864 		break;
2865 
2866 	case LOAD_DIAG:
2867 	case LOAD_LOOPBACK_EXT:
2868 		bp->state = BNX2X_STATE_DIAG;
2869 		break;
2870 
2871 	default:
2872 		break;
2873 	}
2874 
2875 	if (bp->port.pmf)
2876 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2877 	else
2878 		bnx2x__link_status_update(bp);
2879 
2880 	/* start the timer */
2881 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2882 
2883 	if (CNIC_ENABLED(bp))
2884 		bnx2x_load_cnic(bp);
2885 
2886 	if (IS_PF(bp))
2887 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2888 
2889 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2890 		/* mark driver is loaded in shmem2 */
2891 		u32 val;
2892 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2893 		val &= ~DRV_FLAGS_MTU_MASK;
2894 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2895 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2896 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2897 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2898 	}
2899 
2900 	/* Wait for all pending SP commands to complete */
2901 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2902 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2903 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2904 		return -EBUSY;
2905 	}
2906 
2907 	/* Update driver data for On-Chip MFW dump. */
2908 	if (IS_PF(bp))
2909 		bnx2x_update_mfw_dump(bp);
2910 
2911 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2912 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2913 		bnx2x_dcbx_init(bp, false);
2914 
2915 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2916 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2917 
2918 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2919 
2920 	return 0;
2921 
2922 #ifndef BNX2X_STOP_ON_ERROR
2923 load_error3:
2924 	if (IS_PF(bp)) {
2925 		bnx2x_int_disable_sync(bp, 1);
2926 
2927 		/* Clean queueable objects */
2928 		bnx2x_squeeze_objects(bp);
2929 	}
2930 
2931 	/* Free SKBs, SGEs, TPA pool and driver internals */
2932 	bnx2x_free_skbs(bp);
2933 	for_each_rx_queue(bp, i)
2934 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2935 
2936 	/* Release IRQs */
2937 	bnx2x_free_irq(bp);
2938 load_error2:
2939 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2940 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2941 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2942 	}
2943 
2944 	bp->port.pmf = 0;
2945 load_error1:
2946 	bnx2x_napi_disable(bp);
2947 	bnx2x_del_all_napi(bp);
2948 
2949 	/* clear pf_load status, as it was already set */
2950 	if (IS_PF(bp))
2951 		bnx2x_clear_pf_load(bp);
2952 load_error0:
2953 	bnx2x_free_fw_stats_mem(bp);
2954 	bnx2x_free_fp_mem(bp);
2955 	bnx2x_free_mem(bp);
2956 
2957 	return rc;
2958 #endif /* ! BNX2X_STOP_ON_ERROR */
2959 }
2960 
2961 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2962 {
2963 	u8 rc = 0, cos, i;
2964 
2965 	/* Wait until tx fastpath tasks complete */
2966 	for_each_tx_queue(bp, i) {
2967 		struct bnx2x_fastpath *fp = &bp->fp[i];
2968 
2969 		for_each_cos_in_tx_queue(fp, cos)
2970 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2971 		if (rc)
2972 			return rc;
2973 	}
2974 	return 0;
2975 }
2976 
2977 /* must be called with rtnl_lock */
2978 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2979 {
2980 	int i;
2981 	bool global = false;
2982 
2983 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2984 
2985 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2986 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2987 
2988 	/* mark driver is unloaded in shmem2 */
2989 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2990 		u32 val;
2991 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2992 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2993 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2994 	}
2995 
2996 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2997 	    (bp->state == BNX2X_STATE_CLOSED ||
2998 	     bp->state == BNX2X_STATE_ERROR)) {
2999 		/* We can get here if the driver has been unloaded
3000 		 * during parity error recovery and is either waiting for a
3001 		 * leader to complete or for other functions to unload and
3002 		 * then ifdown has been issued. In this case we want to
3003 		 * unload and let other functions to complete a recovery
3004 		 * process.
3005 		 */
3006 		bp->recovery_state = BNX2X_RECOVERY_DONE;
3007 		bp->is_leader = 0;
3008 		bnx2x_release_leader_lock(bp);
3009 		smp_mb();
3010 
3011 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3012 		BNX2X_ERR("Can't unload in closed or error state\n");
3013 		return -EINVAL;
3014 	}
3015 
3016 	/* Nothing to do during unload if previous bnx2x_nic_load()
3017 	 * have not completed successfully - all resources are released.
3018 	 *
3019 	 * we can get here only after unsuccessful ndo_* callback, during which
3020 	 * dev->IFF_UP flag is still on.
3021 	 */
3022 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3023 		return 0;
3024 
3025 	/* It's important to set the bp->state to the value different from
3026 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3027 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3028 	 */
3029 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3030 	smp_mb();
3031 
3032 	/* indicate to VFs that the PF is going down */
3033 	bnx2x_iov_channel_down(bp);
3034 
3035 	if (CNIC_LOADED(bp))
3036 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3037 
3038 	/* Stop Tx */
3039 	bnx2x_tx_disable(bp);
3040 	netdev_reset_tc(bp->dev);
3041 
3042 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3043 
3044 	del_timer_sync(&bp->timer);
3045 
3046 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
3047 		/* Set ALWAYS_ALIVE bit in shmem */
3048 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3049 		bnx2x_drv_pulse(bp);
3050 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3051 		bnx2x_save_statistics(bp);
3052 	}
3053 
3054 	/* wait till consumers catch up with producers in all queues.
3055 	 * If we're recovering, FW can't write to host so no reason
3056 	 * to wait for the queues to complete all Tx.
3057 	 */
3058 	if (unload_mode != UNLOAD_RECOVERY)
3059 		bnx2x_drain_tx_queues(bp);
3060 
3061 	/* if VF indicate to PF this function is going down (PF will delete sp
3062 	 * elements and clear initializations
3063 	 */
3064 	if (IS_VF(bp)) {
3065 		bnx2x_clear_vlan_info(bp);
3066 		bnx2x_vfpf_close_vf(bp);
3067 	} else if (unload_mode != UNLOAD_RECOVERY) {
3068 		/* if this is a normal/close unload need to clean up chip*/
3069 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3070 	} else {
3071 		/* Send the UNLOAD_REQUEST to the MCP */
3072 		bnx2x_send_unload_req(bp, unload_mode);
3073 
3074 		/* Prevent transactions to host from the functions on the
3075 		 * engine that doesn't reset global blocks in case of global
3076 		 * attention once global blocks are reset and gates are opened
3077 		 * (the engine which leader will perform the recovery
3078 		 * last).
3079 		 */
3080 		if (!CHIP_IS_E1x(bp))
3081 			bnx2x_pf_disable(bp);
3082 
3083 		/* Disable HW interrupts, NAPI */
3084 		bnx2x_netif_stop(bp, 1);
3085 		/* Delete all NAPI objects */
3086 		bnx2x_del_all_napi(bp);
3087 		if (CNIC_LOADED(bp))
3088 			bnx2x_del_all_napi_cnic(bp);
3089 		/* Release IRQs */
3090 		bnx2x_free_irq(bp);
3091 
3092 		/* Report UNLOAD_DONE to MCP */
3093 		bnx2x_send_unload_done(bp, false);
3094 	}
3095 
3096 	/*
3097 	 * At this stage no more interrupts will arrive so we may safely clean
3098 	 * the queueable objects here in case they failed to get cleaned so far.
3099 	 */
3100 	if (IS_PF(bp))
3101 		bnx2x_squeeze_objects(bp);
3102 
3103 	/* There should be no more pending SP commands at this stage */
3104 	bp->sp_state = 0;
3105 
3106 	bp->port.pmf = 0;
3107 
3108 	/* clear pending work in rtnl task */
3109 	bp->sp_rtnl_state = 0;
3110 	smp_mb();
3111 
3112 	/* Free SKBs, SGEs, TPA pool and driver internals */
3113 	bnx2x_free_skbs(bp);
3114 	if (CNIC_LOADED(bp))
3115 		bnx2x_free_skbs_cnic(bp);
3116 	for_each_rx_queue(bp, i)
3117 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3118 
3119 	bnx2x_free_fp_mem(bp);
3120 	if (CNIC_LOADED(bp))
3121 		bnx2x_free_fp_mem_cnic(bp);
3122 
3123 	if (IS_PF(bp)) {
3124 		if (CNIC_LOADED(bp))
3125 			bnx2x_free_mem_cnic(bp);
3126 	}
3127 	bnx2x_free_mem(bp);
3128 
3129 	bp->state = BNX2X_STATE_CLOSED;
3130 	bp->cnic_loaded = false;
3131 
3132 	/* Clear driver version indication in shmem */
3133 	if (IS_PF(bp) && !BP_NOMCP(bp))
3134 		bnx2x_update_mng_version(bp);
3135 
3136 	/* Check if there are pending parity attentions. If there are - set
3137 	 * RECOVERY_IN_PROGRESS.
3138 	 */
3139 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3140 		bnx2x_set_reset_in_progress(bp);
3141 
3142 		/* Set RESET_IS_GLOBAL if needed */
3143 		if (global)
3144 			bnx2x_set_reset_global(bp);
3145 	}
3146 
3147 	/* The last driver must disable a "close the gate" if there is no
3148 	 * parity attention or "process kill" pending.
3149 	 */
3150 	if (IS_PF(bp) &&
3151 	    !bnx2x_clear_pf_load(bp) &&
3152 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3153 		bnx2x_disable_close_the_gate(bp);
3154 
3155 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3156 
3157 	return 0;
3158 }
3159 
3160 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3161 {
3162 	u16 pmcsr;
3163 
3164 	/* If there is no power capability, silently succeed */
3165 	if (!bp->pdev->pm_cap) {
3166 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3167 		return 0;
3168 	}
3169 
3170 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3171 
3172 	switch (state) {
3173 	case PCI_D0:
3174 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3175 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3176 				       PCI_PM_CTRL_PME_STATUS));
3177 
3178 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3179 			/* delay required during transition out of D3hot */
3180 			msleep(20);
3181 		break;
3182 
3183 	case PCI_D3hot:
3184 		/* If there are other clients above don't
3185 		   shut down the power */
3186 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3187 			return 0;
3188 		/* Don't shut down the power for emulation and FPGA */
3189 		if (CHIP_REV_IS_SLOW(bp))
3190 			return 0;
3191 
3192 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3193 		pmcsr |= 3;
3194 
3195 		if (bp->wol)
3196 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3197 
3198 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3199 				      pmcsr);
3200 
3201 		/* No more memory access after this point until
3202 		* device is brought back to D0.
3203 		*/
3204 		break;
3205 
3206 	default:
3207 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3208 		return -EINVAL;
3209 	}
3210 	return 0;
3211 }
3212 
3213 /*
3214  * net_device service functions
3215  */
3216 static int bnx2x_poll(struct napi_struct *napi, int budget)
3217 {
3218 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3219 						 napi);
3220 	struct bnx2x *bp = fp->bp;
3221 	int rx_work_done;
3222 	u8 cos;
3223 
3224 #ifdef BNX2X_STOP_ON_ERROR
3225 	if (unlikely(bp->panic)) {
3226 		napi_complete(napi);
3227 		return 0;
3228 	}
3229 #endif
3230 	for_each_cos_in_tx_queue(fp, cos)
3231 		if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3232 			bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3233 
3234 	rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3235 
3236 	if (rx_work_done < budget) {
3237 		/* No need to update SB for FCoE L2 ring as long as
3238 		 * it's connected to the default SB and the SB
3239 		 * has been updated when NAPI was scheduled.
3240 		 */
3241 		if (IS_FCOE_FP(fp)) {
3242 			napi_complete_done(napi, rx_work_done);
3243 		} else {
3244 			bnx2x_update_fpsb_idx(fp);
3245 			/* bnx2x_has_rx_work() reads the status block,
3246 			 * thus we need to ensure that status block indices
3247 			 * have been actually read (bnx2x_update_fpsb_idx)
3248 			 * prior to this check (bnx2x_has_rx_work) so that
3249 			 * we won't write the "newer" value of the status block
3250 			 * to IGU (if there was a DMA right after
3251 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3252 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3253 			 * to right before bnx2x_ack_sb). In this case there
3254 			 * will never be another interrupt until there is
3255 			 * another update of the status block, while there
3256 			 * is still unhandled work.
3257 			 */
3258 			rmb();
3259 
3260 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3261 				if (napi_complete_done(napi, rx_work_done)) {
3262 					/* Re-enable interrupts */
3263 					DP(NETIF_MSG_RX_STATUS,
3264 					   "Update index to %d\n", fp->fp_hc_idx);
3265 					bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3266 						     le16_to_cpu(fp->fp_hc_idx),
3267 						     IGU_INT_ENABLE, 1);
3268 				}
3269 			} else {
3270 				rx_work_done = budget;
3271 			}
3272 		}
3273 	}
3274 
3275 	return rx_work_done;
3276 }
3277 
3278 /* we split the first BD into headers and data BDs
3279  * to ease the pain of our fellow microcode engineers
3280  * we use one mapping for both BDs
3281  */
3282 static u16 bnx2x_tx_split(struct bnx2x *bp,
3283 			  struct bnx2x_fp_txdata *txdata,
3284 			  struct sw_tx_bd *tx_buf,
3285 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3286 			  u16 bd_prod)
3287 {
3288 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3289 	struct eth_tx_bd *d_tx_bd;
3290 	dma_addr_t mapping;
3291 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3292 
3293 	/* first fix first BD */
3294 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3295 
3296 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3297 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3298 
3299 	/* now get a new data BD
3300 	 * (after the pbd) and fill it */
3301 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3302 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3303 
3304 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3305 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3306 
3307 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3308 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3309 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3310 
3311 	/* this marks the BD as one that has no individual mapping */
3312 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3313 
3314 	DP(NETIF_MSG_TX_QUEUED,
3315 	   "TSO split data size is %d (%x:%x)\n",
3316 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3317 
3318 	/* update tx_bd */
3319 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3320 
3321 	return bd_prod;
3322 }
3323 
3324 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3325 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3326 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3327 {
3328 	__sum16 tsum = (__force __sum16) csum;
3329 
3330 	if (fix > 0)
3331 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3332 				  csum_partial(t_header - fix, fix, 0)));
3333 
3334 	else if (fix < 0)
3335 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3336 				  csum_partial(t_header, -fix, 0)));
3337 
3338 	return bswab16(tsum);
3339 }
3340 
3341 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3342 {
3343 	u32 rc;
3344 	__u8 prot = 0;
3345 	__be16 protocol;
3346 
3347 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3348 		return XMIT_PLAIN;
3349 
3350 	protocol = vlan_get_protocol(skb);
3351 	if (protocol == htons(ETH_P_IPV6)) {
3352 		rc = XMIT_CSUM_V6;
3353 		prot = ipv6_hdr(skb)->nexthdr;
3354 	} else {
3355 		rc = XMIT_CSUM_V4;
3356 		prot = ip_hdr(skb)->protocol;
3357 	}
3358 
3359 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3360 		if (inner_ip_hdr(skb)->version == 6) {
3361 			rc |= XMIT_CSUM_ENC_V6;
3362 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3363 				rc |= XMIT_CSUM_TCP;
3364 		} else {
3365 			rc |= XMIT_CSUM_ENC_V4;
3366 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3367 				rc |= XMIT_CSUM_TCP;
3368 		}
3369 	}
3370 	if (prot == IPPROTO_TCP)
3371 		rc |= XMIT_CSUM_TCP;
3372 
3373 	if (skb_is_gso(skb)) {
3374 		if (skb_is_gso_v6(skb)) {
3375 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3376 			if (rc & XMIT_CSUM_ENC)
3377 				rc |= XMIT_GSO_ENC_V6;
3378 		} else {
3379 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3380 			if (rc & XMIT_CSUM_ENC)
3381 				rc |= XMIT_GSO_ENC_V4;
3382 		}
3383 	}
3384 
3385 	return rc;
3386 }
3387 
3388 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3389 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS         4
3390 
3391 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3392 #define BNX2X_NUM_TSO_WIN_SUB_BDS               3
3393 
3394 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3395 /* check if packet requires linearization (packet is too fragmented)
3396    no need to check fragmentation if page size > 8K (there will be no
3397    violation to FW restrictions) */
3398 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3399 			     u32 xmit_type)
3400 {
3401 	int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3402 	int to_copy = 0, hlen = 0;
3403 
3404 	if (xmit_type & XMIT_GSO_ENC)
3405 		num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3406 
3407 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3408 		if (xmit_type & XMIT_GSO) {
3409 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3410 			int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3411 			/* Number of windows to check */
3412 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3413 			int wnd_idx = 0;
3414 			int frag_idx = 0;
3415 			u32 wnd_sum = 0;
3416 
3417 			/* Headers length */
3418 			if (xmit_type & XMIT_GSO_ENC)
3419 				hlen = (int)(skb_inner_transport_header(skb) -
3420 					     skb->data) +
3421 					     inner_tcp_hdrlen(skb);
3422 			else
3423 				hlen = (int)(skb_transport_header(skb) -
3424 					     skb->data) + tcp_hdrlen(skb);
3425 
3426 			/* Amount of data (w/o headers) on linear part of SKB*/
3427 			first_bd_sz = skb_headlen(skb) - hlen;
3428 
3429 			wnd_sum  = first_bd_sz;
3430 
3431 			/* Calculate the first sum - it's special */
3432 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3433 				wnd_sum +=
3434 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3435 
3436 			/* If there was data on linear skb data - check it */
3437 			if (first_bd_sz > 0) {
3438 				if (unlikely(wnd_sum < lso_mss)) {
3439 					to_copy = 1;
3440 					goto exit_lbl;
3441 				}
3442 
3443 				wnd_sum -= first_bd_sz;
3444 			}
3445 
3446 			/* Others are easier: run through the frag list and
3447 			   check all windows */
3448 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3449 				wnd_sum +=
3450 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3451 
3452 				if (unlikely(wnd_sum < lso_mss)) {
3453 					to_copy = 1;
3454 					break;
3455 				}
3456 				wnd_sum -=
3457 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3458 			}
3459 		} else {
3460 			/* in non-LSO too fragmented packet should always
3461 			   be linearized */
3462 			to_copy = 1;
3463 		}
3464 	}
3465 
3466 exit_lbl:
3467 	if (unlikely(to_copy))
3468 		DP(NETIF_MSG_TX_QUEUED,
3469 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3470 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3471 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3472 
3473 	return to_copy;
3474 }
3475 #endif
3476 
3477 /**
3478  * bnx2x_set_pbd_gso - update PBD in GSO case.
3479  *
3480  * @skb:	packet skb
3481  * @pbd:	parse BD
3482  * @xmit_type:	xmit flags
3483  */
3484 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3485 			      struct eth_tx_parse_bd_e1x *pbd,
3486 			      u32 xmit_type)
3487 {
3488 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3489 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3490 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3491 
3492 	if (xmit_type & XMIT_GSO_V4) {
3493 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3494 		pbd->tcp_pseudo_csum =
3495 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3496 						   ip_hdr(skb)->daddr,
3497 						   0, IPPROTO_TCP, 0));
3498 	} else {
3499 		pbd->tcp_pseudo_csum =
3500 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3501 						 &ipv6_hdr(skb)->daddr,
3502 						 0, IPPROTO_TCP, 0));
3503 	}
3504 
3505 	pbd->global_data |=
3506 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3507 }
3508 
3509 /**
3510  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3511  *
3512  * @bp:			driver handle
3513  * @skb:		packet skb
3514  * @parsing_data:	data to be updated
3515  * @xmit_type:		xmit flags
3516  *
3517  * 57712/578xx related, when skb has encapsulation
3518  */
3519 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3520 				 u32 *parsing_data, u32 xmit_type)
3521 {
3522 	*parsing_data |=
3523 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3524 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3525 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3526 
3527 	if (xmit_type & XMIT_CSUM_TCP) {
3528 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3529 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3530 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3531 
3532 		return skb_inner_transport_header(skb) +
3533 			inner_tcp_hdrlen(skb) - skb->data;
3534 	}
3535 
3536 	/* We support checksum offload for TCP and UDP only.
3537 	 * No need to pass the UDP header length - it's a constant.
3538 	 */
3539 	return skb_inner_transport_header(skb) +
3540 		sizeof(struct udphdr) - skb->data;
3541 }
3542 
3543 /**
3544  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3545  *
3546  * @bp:			driver handle
3547  * @skb:		packet skb
3548  * @parsing_data:	data to be updated
3549  * @xmit_type:		xmit flags
3550  *
3551  * 57712/578xx related
3552  */
3553 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3554 				u32 *parsing_data, u32 xmit_type)
3555 {
3556 	*parsing_data |=
3557 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3558 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3559 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3560 
3561 	if (xmit_type & XMIT_CSUM_TCP) {
3562 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3563 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3564 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3565 
3566 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3567 	}
3568 	/* We support checksum offload for TCP and UDP only.
3569 	 * No need to pass the UDP header length - it's a constant.
3570 	 */
3571 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3572 }
3573 
3574 /* set FW indication according to inner or outer protocols if tunneled */
3575 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3576 			       struct eth_tx_start_bd *tx_start_bd,
3577 			       u32 xmit_type)
3578 {
3579 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3580 
3581 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3582 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3583 
3584 	if (!(xmit_type & XMIT_CSUM_TCP))
3585 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3586 }
3587 
3588 /**
3589  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3590  *
3591  * @bp:		driver handle
3592  * @skb:	packet skb
3593  * @pbd:	parse BD to be updated
3594  * @xmit_type:	xmit flags
3595  */
3596 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3597 			     struct eth_tx_parse_bd_e1x *pbd,
3598 			     u32 xmit_type)
3599 {
3600 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3601 
3602 	/* for now NS flag is not used in Linux */
3603 	pbd->global_data =
3604 		cpu_to_le16(hlen |
3605 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3606 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3607 
3608 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3609 			skb_network_header(skb)) >> 1;
3610 
3611 	hlen += pbd->ip_hlen_w;
3612 
3613 	/* We support checksum offload for TCP and UDP only */
3614 	if (xmit_type & XMIT_CSUM_TCP)
3615 		hlen += tcp_hdrlen(skb) / 2;
3616 	else
3617 		hlen += sizeof(struct udphdr) / 2;
3618 
3619 	pbd->total_hlen_w = cpu_to_le16(hlen);
3620 	hlen = hlen*2;
3621 
3622 	if (xmit_type & XMIT_CSUM_TCP) {
3623 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3624 
3625 	} else {
3626 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3627 
3628 		DP(NETIF_MSG_TX_QUEUED,
3629 		   "hlen %d  fix %d  csum before fix %x\n",
3630 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3631 
3632 		/* HW bug: fixup the CSUM */
3633 		pbd->tcp_pseudo_csum =
3634 			bnx2x_csum_fix(skb_transport_header(skb),
3635 				       SKB_CS(skb), fix);
3636 
3637 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3638 		   pbd->tcp_pseudo_csum);
3639 	}
3640 
3641 	return hlen;
3642 }
3643 
3644 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3645 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3646 				      struct eth_tx_parse_2nd_bd *pbd2,
3647 				      u16 *global_data,
3648 				      u32 xmit_type)
3649 {
3650 	u16 hlen_w = 0;
3651 	u8 outerip_off, outerip_len = 0;
3652 
3653 	/* from outer IP to transport */
3654 	hlen_w = (skb_inner_transport_header(skb) -
3655 		  skb_network_header(skb)) >> 1;
3656 
3657 	/* transport len */
3658 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3659 
3660 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3661 
3662 	/* outer IP header info */
3663 	if (xmit_type & XMIT_CSUM_V4) {
3664 		struct iphdr *iph = ip_hdr(skb);
3665 		u32 csum = (__force u32)(~iph->check) -
3666 			   (__force u32)iph->tot_len -
3667 			   (__force u32)iph->frag_off;
3668 
3669 		outerip_len = iph->ihl << 1;
3670 
3671 		pbd2->fw_ip_csum_wo_len_flags_frag =
3672 			bswab16(csum_fold((__force __wsum)csum));
3673 	} else {
3674 		pbd2->fw_ip_hdr_to_payload_w =
3675 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3676 		pbd_e2->data.tunnel_data.flags |=
3677 			ETH_TUNNEL_DATA_IPV6_OUTER;
3678 	}
3679 
3680 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3681 
3682 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3683 
3684 	/* inner IP header info */
3685 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3686 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3687 
3688 		pbd_e2->data.tunnel_data.pseudo_csum =
3689 			bswab16(~csum_tcpudp_magic(
3690 					inner_ip_hdr(skb)->saddr,
3691 					inner_ip_hdr(skb)->daddr,
3692 					0, IPPROTO_TCP, 0));
3693 	} else {
3694 		pbd_e2->data.tunnel_data.pseudo_csum =
3695 			bswab16(~csum_ipv6_magic(
3696 					&inner_ipv6_hdr(skb)->saddr,
3697 					&inner_ipv6_hdr(skb)->daddr,
3698 					0, IPPROTO_TCP, 0));
3699 	}
3700 
3701 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3702 
3703 	*global_data |=
3704 		outerip_off |
3705 		(outerip_len <<
3706 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3707 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3708 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3709 
3710 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3711 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3712 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3713 	}
3714 }
3715 
3716 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3717 					 u32 xmit_type)
3718 {
3719 	struct ipv6hdr *ipv6;
3720 
3721 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3722 		return;
3723 
3724 	if (xmit_type & XMIT_GSO_ENC_V6)
3725 		ipv6 = inner_ipv6_hdr(skb);
3726 	else /* XMIT_GSO_V6 */
3727 		ipv6 = ipv6_hdr(skb);
3728 
3729 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3730 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3731 }
3732 
3733 /* called with netif_tx_lock
3734  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3735  * netif_wake_queue()
3736  */
3737 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3738 {
3739 	struct bnx2x *bp = netdev_priv(dev);
3740 
3741 	struct netdev_queue *txq;
3742 	struct bnx2x_fp_txdata *txdata;
3743 	struct sw_tx_bd *tx_buf;
3744 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3745 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3746 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3747 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3748 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3749 	u32 pbd_e2_parsing_data = 0;
3750 	u16 pkt_prod, bd_prod;
3751 	int nbd, txq_index;
3752 	dma_addr_t mapping;
3753 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3754 	int i;
3755 	u8 hlen = 0;
3756 	__le16 pkt_size = 0;
3757 	struct ethhdr *eth;
3758 	u8 mac_type = UNICAST_ADDRESS;
3759 
3760 #ifdef BNX2X_STOP_ON_ERROR
3761 	if (unlikely(bp->panic))
3762 		return NETDEV_TX_BUSY;
3763 #endif
3764 
3765 	txq_index = skb_get_queue_mapping(skb);
3766 	txq = netdev_get_tx_queue(dev, txq_index);
3767 
3768 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3769 
3770 	txdata = &bp->bnx2x_txq[txq_index];
3771 
3772 	/* enable this debug print to view the transmission queue being used
3773 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3774 	   txq_index, fp_index, txdata_index); */
3775 
3776 	/* enable this debug print to view the transmission details
3777 	DP(NETIF_MSG_TX_QUEUED,
3778 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3779 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3780 
3781 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3782 			skb_shinfo(skb)->nr_frags +
3783 			BDS_PER_TX_PKT +
3784 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3785 		/* Handle special storage cases separately */
3786 		if (txdata->tx_ring_size == 0) {
3787 			struct bnx2x_eth_q_stats *q_stats =
3788 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3789 			q_stats->driver_filtered_tx_pkt++;
3790 			dev_kfree_skb(skb);
3791 			return NETDEV_TX_OK;
3792 		}
3793 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3794 		netif_tx_stop_queue(txq);
3795 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3796 
3797 		return NETDEV_TX_BUSY;
3798 	}
3799 
3800 	DP(NETIF_MSG_TX_QUEUED,
3801 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3802 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3803 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3804 	   skb->len);
3805 
3806 	eth = (struct ethhdr *)skb->data;
3807 
3808 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3809 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3810 		if (is_broadcast_ether_addr(eth->h_dest))
3811 			mac_type = BROADCAST_ADDRESS;
3812 		else
3813 			mac_type = MULTICAST_ADDRESS;
3814 	}
3815 
3816 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3817 	/* First, check if we need to linearize the skb (due to FW
3818 	   restrictions). No need to check fragmentation if page size > 8K
3819 	   (there will be no violation to FW restrictions) */
3820 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3821 		/* Statistics of linearization */
3822 		bp->lin_cnt++;
3823 		if (skb_linearize(skb) != 0) {
3824 			DP(NETIF_MSG_TX_QUEUED,
3825 			   "SKB linearization failed - silently dropping this SKB\n");
3826 			dev_kfree_skb_any(skb);
3827 			return NETDEV_TX_OK;
3828 		}
3829 	}
3830 #endif
3831 	/* Map skb linear data for DMA */
3832 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3833 				 skb_headlen(skb), DMA_TO_DEVICE);
3834 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3835 		DP(NETIF_MSG_TX_QUEUED,
3836 		   "SKB mapping failed - silently dropping this SKB\n");
3837 		dev_kfree_skb_any(skb);
3838 		return NETDEV_TX_OK;
3839 	}
3840 	/*
3841 	Please read carefully. First we use one BD which we mark as start,
3842 	then we have a parsing info BD (used for TSO or xsum),
3843 	and only then we have the rest of the TSO BDs.
3844 	(don't forget to mark the last one as last,
3845 	and to unmap only AFTER you write to the BD ...)
3846 	And above all, all pdb sizes are in words - NOT DWORDS!
3847 	*/
3848 
3849 	/* get current pkt produced now - advance it just before sending packet
3850 	 * since mapping of pages may fail and cause packet to be dropped
3851 	 */
3852 	pkt_prod = txdata->tx_pkt_prod;
3853 	bd_prod = TX_BD(txdata->tx_bd_prod);
3854 
3855 	/* get a tx_buf and first BD
3856 	 * tx_start_bd may be changed during SPLIT,
3857 	 * but first_bd will always stay first
3858 	 */
3859 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3860 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3861 	first_bd = tx_start_bd;
3862 
3863 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3864 
3865 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3866 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3867 			bp->eth_stats.ptp_skip_tx_ts++;
3868 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3869 		} else if (bp->ptp_tx_skb) {
3870 			bp->eth_stats.ptp_skip_tx_ts++;
3871 			netdev_err_once(bp->dev,
3872 					"Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3873 		} else {
3874 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3875 			/* schedule check for Tx timestamp */
3876 			bp->ptp_tx_skb = skb_get(skb);
3877 			bp->ptp_tx_start = jiffies;
3878 			schedule_work(&bp->ptp_task);
3879 		}
3880 	}
3881 
3882 	/* header nbd: indirectly zero other flags! */
3883 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3884 
3885 	/* remember the first BD of the packet */
3886 	tx_buf->first_bd = txdata->tx_bd_prod;
3887 	tx_buf->skb = skb;
3888 	tx_buf->flags = 0;
3889 
3890 	DP(NETIF_MSG_TX_QUEUED,
3891 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3892 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3893 
3894 	if (skb_vlan_tag_present(skb)) {
3895 		tx_start_bd->vlan_or_ethertype =
3896 		    cpu_to_le16(skb_vlan_tag_get(skb));
3897 		tx_start_bd->bd_flags.as_bitfield |=
3898 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3899 	} else {
3900 		/* when transmitting in a vf, start bd must hold the ethertype
3901 		 * for fw to enforce it
3902 		 */
3903 		u16 vlan_tci = 0;
3904 #ifndef BNX2X_STOP_ON_ERROR
3905 		if (IS_VF(bp)) {
3906 #endif
3907 			/* Still need to consider inband vlan for enforced */
3908 			if (__vlan_get_tag(skb, &vlan_tci)) {
3909 				tx_start_bd->vlan_or_ethertype =
3910 					cpu_to_le16(ntohs(eth->h_proto));
3911 			} else {
3912 				tx_start_bd->bd_flags.as_bitfield |=
3913 					(X_ETH_INBAND_VLAN <<
3914 					 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3915 				tx_start_bd->vlan_or_ethertype =
3916 					cpu_to_le16(vlan_tci);
3917 			}
3918 #ifndef BNX2X_STOP_ON_ERROR
3919 		} else {
3920 			/* used by FW for packet accounting */
3921 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3922 		}
3923 #endif
3924 	}
3925 
3926 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3927 
3928 	/* turn on parsing and get a BD */
3929 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3930 
3931 	if (xmit_type & XMIT_CSUM)
3932 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3933 
3934 	if (!CHIP_IS_E1x(bp)) {
3935 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3936 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3937 
3938 		if (xmit_type & XMIT_CSUM_ENC) {
3939 			u16 global_data = 0;
3940 
3941 			/* Set PBD in enc checksum offload case */
3942 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3943 						      &pbd_e2_parsing_data,
3944 						      xmit_type);
3945 
3946 			/* turn on 2nd parsing and get a BD */
3947 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3948 
3949 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3950 
3951 			memset(pbd2, 0, sizeof(*pbd2));
3952 
3953 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3954 				(skb_inner_network_header(skb) -
3955 				 skb->data) >> 1;
3956 
3957 			if (xmit_type & XMIT_GSO_ENC)
3958 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3959 							  &global_data,
3960 							  xmit_type);
3961 
3962 			pbd2->global_data = cpu_to_le16(global_data);
3963 
3964 			/* add addition parse BD indication to start BD */
3965 			SET_FLAG(tx_start_bd->general_data,
3966 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3967 			/* set encapsulation flag in start BD */
3968 			SET_FLAG(tx_start_bd->general_data,
3969 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3970 
3971 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3972 
3973 			nbd++;
3974 		} else if (xmit_type & XMIT_CSUM) {
3975 			/* Set PBD in checksum offload case w/o encapsulation */
3976 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3977 						     &pbd_e2_parsing_data,
3978 						     xmit_type);
3979 		}
3980 
3981 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3982 		/* Add the macs to the parsing BD if this is a vf or if
3983 		 * Tx Switching is enabled.
3984 		 */
3985 		if (IS_VF(bp)) {
3986 			/* override GRE parameters in BD */
3987 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3988 					      &pbd_e2->data.mac_addr.src_mid,
3989 					      &pbd_e2->data.mac_addr.src_lo,
3990 					      eth->h_source);
3991 
3992 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3993 					      &pbd_e2->data.mac_addr.dst_mid,
3994 					      &pbd_e2->data.mac_addr.dst_lo,
3995 					      eth->h_dest);
3996 		} else {
3997 			if (bp->flags & TX_SWITCHING)
3998 				bnx2x_set_fw_mac_addr(
3999 						&pbd_e2->data.mac_addr.dst_hi,
4000 						&pbd_e2->data.mac_addr.dst_mid,
4001 						&pbd_e2->data.mac_addr.dst_lo,
4002 						eth->h_dest);
4003 #ifdef BNX2X_STOP_ON_ERROR
4004 			/* Enforce security is always set in Stop on Error -
4005 			 * source mac should be present in the parsing BD
4006 			 */
4007 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4008 					      &pbd_e2->data.mac_addr.src_mid,
4009 					      &pbd_e2->data.mac_addr.src_lo,
4010 					      eth->h_source);
4011 #endif
4012 		}
4013 
4014 		SET_FLAG(pbd_e2_parsing_data,
4015 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4016 	} else {
4017 		u16 global_data = 0;
4018 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4019 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4020 		/* Set PBD in checksum offload case */
4021 		if (xmit_type & XMIT_CSUM)
4022 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4023 
4024 		SET_FLAG(global_data,
4025 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4026 		pbd_e1x->global_data |= cpu_to_le16(global_data);
4027 	}
4028 
4029 	/* Setup the data pointer of the first BD of the packet */
4030 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4031 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4032 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4033 	pkt_size = tx_start_bd->nbytes;
4034 
4035 	DP(NETIF_MSG_TX_QUEUED,
4036 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4037 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4038 	   le16_to_cpu(tx_start_bd->nbytes),
4039 	   tx_start_bd->bd_flags.as_bitfield,
4040 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4041 
4042 	if (xmit_type & XMIT_GSO) {
4043 
4044 		DP(NETIF_MSG_TX_QUEUED,
4045 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4046 		   skb->len, hlen, skb_headlen(skb),
4047 		   skb_shinfo(skb)->gso_size);
4048 
4049 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4050 
4051 		if (unlikely(skb_headlen(skb) > hlen)) {
4052 			nbd++;
4053 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4054 						 &tx_start_bd, hlen,
4055 						 bd_prod);
4056 		}
4057 		if (!CHIP_IS_E1x(bp))
4058 			pbd_e2_parsing_data |=
4059 				(skb_shinfo(skb)->gso_size <<
4060 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4061 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4062 		else
4063 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4064 	}
4065 
4066 	/* Set the PBD's parsing_data field if not zero
4067 	 * (for the chips newer than 57711).
4068 	 */
4069 	if (pbd_e2_parsing_data)
4070 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4071 
4072 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4073 
4074 	/* Handle fragmented skb */
4075 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4076 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4077 
4078 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4079 					   skb_frag_size(frag), DMA_TO_DEVICE);
4080 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4081 			unsigned int pkts_compl = 0, bytes_compl = 0;
4082 
4083 			DP(NETIF_MSG_TX_QUEUED,
4084 			   "Unable to map page - dropping packet...\n");
4085 
4086 			/* we need unmap all buffers already mapped
4087 			 * for this SKB;
4088 			 * first_bd->nbd need to be properly updated
4089 			 * before call to bnx2x_free_tx_pkt
4090 			 */
4091 			first_bd->nbd = cpu_to_le16(nbd);
4092 			bnx2x_free_tx_pkt(bp, txdata,
4093 					  TX_BD(txdata->tx_pkt_prod),
4094 					  &pkts_compl, &bytes_compl);
4095 			return NETDEV_TX_OK;
4096 		}
4097 
4098 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4099 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4100 		if (total_pkt_bd == NULL)
4101 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4102 
4103 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4104 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4105 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4106 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4107 		nbd++;
4108 
4109 		DP(NETIF_MSG_TX_QUEUED,
4110 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4111 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4112 		   le16_to_cpu(tx_data_bd->nbytes));
4113 	}
4114 
4115 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4116 
4117 	/* update with actual num BDs */
4118 	first_bd->nbd = cpu_to_le16(nbd);
4119 
4120 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4121 
4122 	/* now send a tx doorbell, counting the next BD
4123 	 * if the packet contains or ends with it
4124 	 */
4125 	if (TX_BD_POFF(bd_prod) < nbd)
4126 		nbd++;
4127 
4128 	/* total_pkt_bytes should be set on the first data BD if
4129 	 * it's not an LSO packet and there is more than one
4130 	 * data BD. In this case pkt_size is limited by an MTU value.
4131 	 * However we prefer to set it for an LSO packet (while we don't
4132 	 * have to) in order to save some CPU cycles in a none-LSO
4133 	 * case, when we much more care about them.
4134 	 */
4135 	if (total_pkt_bd != NULL)
4136 		total_pkt_bd->total_pkt_bytes = pkt_size;
4137 
4138 	if (pbd_e1x)
4139 		DP(NETIF_MSG_TX_QUEUED,
4140 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4141 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4142 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4143 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4144 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4145 	if (pbd_e2)
4146 		DP(NETIF_MSG_TX_QUEUED,
4147 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4148 		   pbd_e2,
4149 		   pbd_e2->data.mac_addr.dst_hi,
4150 		   pbd_e2->data.mac_addr.dst_mid,
4151 		   pbd_e2->data.mac_addr.dst_lo,
4152 		   pbd_e2->data.mac_addr.src_hi,
4153 		   pbd_e2->data.mac_addr.src_mid,
4154 		   pbd_e2->data.mac_addr.src_lo,
4155 		   pbd_e2->parsing_data);
4156 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4157 
4158 	netdev_tx_sent_queue(txq, skb->len);
4159 
4160 	skb_tx_timestamp(skb);
4161 
4162 	txdata->tx_pkt_prod++;
4163 	/*
4164 	 * Make sure that the BD data is updated before updating the producer
4165 	 * since FW might read the BD right after the producer is updated.
4166 	 * This is only applicable for weak-ordered memory model archs such
4167 	 * as IA-64. The following barrier is also mandatory since FW will
4168 	 * assumes packets must have BDs.
4169 	 */
4170 	wmb();
4171 
4172 	txdata->tx_db.data.prod += nbd;
4173 	/* make sure descriptor update is observed by HW */
4174 	wmb();
4175 
4176 	DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4177 
4178 	txdata->tx_bd_prod += nbd;
4179 
4180 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4181 		netif_tx_stop_queue(txq);
4182 
4183 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4184 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4185 		 * fp->bd_tx_cons */
4186 		smp_mb();
4187 
4188 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4189 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4190 			netif_tx_wake_queue(txq);
4191 	}
4192 	txdata->tx_pkt++;
4193 
4194 	return NETDEV_TX_OK;
4195 }
4196 
4197 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4198 {
4199 	int mfw_vn = BP_FW_MB_IDX(bp);
4200 	u32 tmp;
4201 
4202 	/* If the shmem shouldn't affect configuration, reflect */
4203 	if (!IS_MF_BD(bp)) {
4204 		int i;
4205 
4206 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4207 			c2s_map[i] = i;
4208 		*c2s_default = 0;
4209 
4210 		return;
4211 	}
4212 
4213 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4214 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4215 	c2s_map[0] = tmp & 0xff;
4216 	c2s_map[1] = (tmp >> 8) & 0xff;
4217 	c2s_map[2] = (tmp >> 16) & 0xff;
4218 	c2s_map[3] = (tmp >> 24) & 0xff;
4219 
4220 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4221 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4222 	c2s_map[4] = tmp & 0xff;
4223 	c2s_map[5] = (tmp >> 8) & 0xff;
4224 	c2s_map[6] = (tmp >> 16) & 0xff;
4225 	c2s_map[7] = (tmp >> 24) & 0xff;
4226 
4227 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4228 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4229 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4230 }
4231 
4232 /**
4233  * bnx2x_setup_tc - routine to configure net_device for multi tc
4234  *
4235  * @dev: net device to configure
4236  * @num_tc: number of traffic classes to enable
4237  *
4238  * callback connected to the ndo_setup_tc function pointer
4239  */
4240 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4241 {
4242 	struct bnx2x *bp = netdev_priv(dev);
4243 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4244 	int cos, prio, count, offset;
4245 
4246 	/* setup tc must be called under rtnl lock */
4247 	ASSERT_RTNL();
4248 
4249 	/* no traffic classes requested. Aborting */
4250 	if (!num_tc) {
4251 		netdev_reset_tc(dev);
4252 		return 0;
4253 	}
4254 
4255 	/* requested to support too many traffic classes */
4256 	if (num_tc > bp->max_cos) {
4257 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4258 			  num_tc, bp->max_cos);
4259 		return -EINVAL;
4260 	}
4261 
4262 	/* declare amount of supported traffic classes */
4263 	if (netdev_set_num_tc(dev, num_tc)) {
4264 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4265 		return -EINVAL;
4266 	}
4267 
4268 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4269 
4270 	/* configure priority to traffic class mapping */
4271 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4272 		int outer_prio = c2s_map[prio];
4273 
4274 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4275 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4276 		   "mapping priority %d to tc %d\n",
4277 		   outer_prio, bp->prio_to_cos[outer_prio]);
4278 	}
4279 
4280 	/* Use this configuration to differentiate tc0 from other COSes
4281 	   This can be used for ets or pfc, and save the effort of setting
4282 	   up a multio class queue disc or negotiating DCBX with a switch
4283 	netdev_set_prio_tc_map(dev, 0, 0);
4284 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4285 	for (prio = 1; prio < 16; prio++) {
4286 		netdev_set_prio_tc_map(dev, prio, 1);
4287 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4288 	} */
4289 
4290 	/* configure traffic class to transmission queue mapping */
4291 	for (cos = 0; cos < bp->max_cos; cos++) {
4292 		count = BNX2X_NUM_ETH_QUEUES(bp);
4293 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4294 		netdev_set_tc_queue(dev, cos, count, offset);
4295 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4296 		   "mapping tc %d to offset %d count %d\n",
4297 		   cos, offset, count);
4298 	}
4299 
4300 	return 0;
4301 }
4302 
4303 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4304 		     void *type_data)
4305 {
4306 	struct tc_mqprio_qopt *mqprio = type_data;
4307 
4308 	if (type != TC_SETUP_QDISC_MQPRIO)
4309 		return -EOPNOTSUPP;
4310 
4311 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4312 
4313 	return bnx2x_setup_tc(dev, mqprio->num_tc);
4314 }
4315 
4316 /* called with rtnl_lock */
4317 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4318 {
4319 	struct sockaddr *addr = p;
4320 	struct bnx2x *bp = netdev_priv(dev);
4321 	int rc = 0;
4322 
4323 	if (!is_valid_ether_addr(addr->sa_data)) {
4324 		BNX2X_ERR("Requested MAC address is not valid\n");
4325 		return -EINVAL;
4326 	}
4327 
4328 	if (IS_MF_STORAGE_ONLY(bp)) {
4329 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4330 		return -EINVAL;
4331 	}
4332 
4333 	if (netif_running(dev))  {
4334 		rc = bnx2x_set_eth_mac(bp, false);
4335 		if (rc)
4336 			return rc;
4337 	}
4338 
4339 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4340 
4341 	if (netif_running(dev))
4342 		rc = bnx2x_set_eth_mac(bp, true);
4343 
4344 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4345 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4346 
4347 	return rc;
4348 }
4349 
4350 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4351 {
4352 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4353 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4354 	u8 cos;
4355 
4356 	/* Common */
4357 
4358 	if (IS_FCOE_IDX(fp_index)) {
4359 		memset(sb, 0, sizeof(union host_hc_status_block));
4360 		fp->status_blk_mapping = 0;
4361 	} else {
4362 		/* status blocks */
4363 		if (!CHIP_IS_E1x(bp))
4364 			BNX2X_PCI_FREE(sb->e2_sb,
4365 				       bnx2x_fp(bp, fp_index,
4366 						status_blk_mapping),
4367 				       sizeof(struct host_hc_status_block_e2));
4368 		else
4369 			BNX2X_PCI_FREE(sb->e1x_sb,
4370 				       bnx2x_fp(bp, fp_index,
4371 						status_blk_mapping),
4372 				       sizeof(struct host_hc_status_block_e1x));
4373 	}
4374 
4375 	/* Rx */
4376 	if (!skip_rx_queue(bp, fp_index)) {
4377 		bnx2x_free_rx_bds(fp);
4378 
4379 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4380 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4381 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4382 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4383 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4384 
4385 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4386 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4387 			       sizeof(struct eth_fast_path_rx_cqe) *
4388 			       NUM_RCQ_BD);
4389 
4390 		/* SGE ring */
4391 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4392 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4393 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4394 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4395 	}
4396 
4397 	/* Tx */
4398 	if (!skip_tx_queue(bp, fp_index)) {
4399 		/* fastpath tx rings: tx_buf tx_desc */
4400 		for_each_cos_in_tx_queue(fp, cos) {
4401 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4402 
4403 			DP(NETIF_MSG_IFDOWN,
4404 			   "freeing tx memory of fp %d cos %d cid %d\n",
4405 			   fp_index, cos, txdata->cid);
4406 
4407 			BNX2X_FREE(txdata->tx_buf_ring);
4408 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4409 				txdata->tx_desc_mapping,
4410 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4411 		}
4412 	}
4413 	/* end of fastpath */
4414 }
4415 
4416 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4417 {
4418 	int i;
4419 	for_each_cnic_queue(bp, i)
4420 		bnx2x_free_fp_mem_at(bp, i);
4421 }
4422 
4423 void bnx2x_free_fp_mem(struct bnx2x *bp)
4424 {
4425 	int i;
4426 	for_each_eth_queue(bp, i)
4427 		bnx2x_free_fp_mem_at(bp, i);
4428 }
4429 
4430 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4431 {
4432 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4433 	if (!CHIP_IS_E1x(bp)) {
4434 		bnx2x_fp(bp, index, sb_index_values) =
4435 			(__le16 *)status_blk.e2_sb->sb.index_values;
4436 		bnx2x_fp(bp, index, sb_running_index) =
4437 			(__le16 *)status_blk.e2_sb->sb.running_index;
4438 	} else {
4439 		bnx2x_fp(bp, index, sb_index_values) =
4440 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4441 		bnx2x_fp(bp, index, sb_running_index) =
4442 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4443 	}
4444 }
4445 
4446 /* Returns the number of actually allocated BDs */
4447 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4448 			      int rx_ring_size)
4449 {
4450 	struct bnx2x *bp = fp->bp;
4451 	u16 ring_prod, cqe_ring_prod;
4452 	int i, failure_cnt = 0;
4453 
4454 	fp->rx_comp_cons = 0;
4455 	cqe_ring_prod = ring_prod = 0;
4456 
4457 	/* This routine is called only during fo init so
4458 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4459 	 */
4460 	for (i = 0; i < rx_ring_size; i++) {
4461 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4462 			failure_cnt++;
4463 			continue;
4464 		}
4465 		ring_prod = NEXT_RX_IDX(ring_prod);
4466 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4467 		WARN_ON(ring_prod <= (i - failure_cnt));
4468 	}
4469 
4470 	if (failure_cnt)
4471 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4472 			  i - failure_cnt, fp->index);
4473 
4474 	fp->rx_bd_prod = ring_prod;
4475 	/* Limit the CQE producer by the CQE ring size */
4476 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4477 			       cqe_ring_prod);
4478 
4479 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4480 
4481 	return i - failure_cnt;
4482 }
4483 
4484 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4485 {
4486 	int i;
4487 
4488 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4489 		struct eth_rx_cqe_next_page *nextpg;
4490 
4491 		nextpg = (struct eth_rx_cqe_next_page *)
4492 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4493 		nextpg->addr_hi =
4494 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4495 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4496 		nextpg->addr_lo =
4497 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4498 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4499 	}
4500 }
4501 
4502 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4503 {
4504 	union host_hc_status_block *sb;
4505 	struct bnx2x_fastpath *fp = &bp->fp[index];
4506 	int ring_size = 0;
4507 	u8 cos;
4508 	int rx_ring_size = 0;
4509 
4510 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4511 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4512 		bp->rx_ring_size = rx_ring_size;
4513 	} else if (!bp->rx_ring_size) {
4514 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4515 
4516 		if (CHIP_IS_E3(bp)) {
4517 			u32 cfg = SHMEM_RD(bp,
4518 					   dev_info.port_hw_config[BP_PORT(bp)].
4519 					   default_cfg);
4520 
4521 			/* Decrease ring size for 1G functions */
4522 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4523 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4524 				rx_ring_size /= 10;
4525 		}
4526 
4527 		/* allocate at least number of buffers required by FW */
4528 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4529 				     MIN_RX_SIZE_TPA, rx_ring_size);
4530 
4531 		bp->rx_ring_size = rx_ring_size;
4532 	} else /* if rx_ring_size specified - use it */
4533 		rx_ring_size = bp->rx_ring_size;
4534 
4535 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4536 
4537 	/* Common */
4538 	sb = &bnx2x_fp(bp, index, status_blk);
4539 
4540 	if (!IS_FCOE_IDX(index)) {
4541 		/* status blocks */
4542 		if (!CHIP_IS_E1x(bp)) {
4543 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4544 						    sizeof(struct host_hc_status_block_e2));
4545 			if (!sb->e2_sb)
4546 				goto alloc_mem_err;
4547 		} else {
4548 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4549 						     sizeof(struct host_hc_status_block_e1x));
4550 			if (!sb->e1x_sb)
4551 				goto alloc_mem_err;
4552 		}
4553 	}
4554 
4555 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4556 	 * set shortcuts for it.
4557 	 */
4558 	if (!IS_FCOE_IDX(index))
4559 		set_sb_shortcuts(bp, index);
4560 
4561 	/* Tx */
4562 	if (!skip_tx_queue(bp, index)) {
4563 		/* fastpath tx rings: tx_buf tx_desc */
4564 		for_each_cos_in_tx_queue(fp, cos) {
4565 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4566 
4567 			DP(NETIF_MSG_IFUP,
4568 			   "allocating tx memory of fp %d cos %d\n",
4569 			   index, cos);
4570 
4571 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4572 						      sizeof(struct sw_tx_bd),
4573 						      GFP_KERNEL);
4574 			if (!txdata->tx_buf_ring)
4575 				goto alloc_mem_err;
4576 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4577 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4578 			if (!txdata->tx_desc_ring)
4579 				goto alloc_mem_err;
4580 		}
4581 	}
4582 
4583 	/* Rx */
4584 	if (!skip_rx_queue(bp, index)) {
4585 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4586 		bnx2x_fp(bp, index, rx_buf_ring) =
4587 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4588 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4589 			goto alloc_mem_err;
4590 		bnx2x_fp(bp, index, rx_desc_ring) =
4591 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4592 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4593 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4594 			goto alloc_mem_err;
4595 
4596 		/* Seed all CQEs by 1s */
4597 		bnx2x_fp(bp, index, rx_comp_ring) =
4598 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4599 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4600 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4601 			goto alloc_mem_err;
4602 
4603 		/* SGE ring */
4604 		bnx2x_fp(bp, index, rx_page_ring) =
4605 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4606 				GFP_KERNEL);
4607 		if (!bnx2x_fp(bp, index, rx_page_ring))
4608 			goto alloc_mem_err;
4609 		bnx2x_fp(bp, index, rx_sge_ring) =
4610 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4611 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4612 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4613 			goto alloc_mem_err;
4614 		/* RX BD ring */
4615 		bnx2x_set_next_page_rx_bd(fp);
4616 
4617 		/* CQ ring */
4618 		bnx2x_set_next_page_rx_cq(fp);
4619 
4620 		/* BDs */
4621 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4622 		if (ring_size < rx_ring_size)
4623 			goto alloc_mem_err;
4624 	}
4625 
4626 	return 0;
4627 
4628 /* handles low memory cases */
4629 alloc_mem_err:
4630 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4631 						index, ring_size);
4632 	/* FW will drop all packets if queue is not big enough,
4633 	 * In these cases we disable the queue
4634 	 * Min size is different for OOO, TPA and non-TPA queues
4635 	 */
4636 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4637 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4638 			/* release memory allocated for this queue */
4639 			bnx2x_free_fp_mem_at(bp, index);
4640 			return -ENOMEM;
4641 	}
4642 	return 0;
4643 }
4644 
4645 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4646 {
4647 	if (!NO_FCOE(bp))
4648 		/* FCoE */
4649 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4650 			/* we will fail load process instead of mark
4651 			 * NO_FCOE_FLAG
4652 			 */
4653 			return -ENOMEM;
4654 
4655 	return 0;
4656 }
4657 
4658 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4659 {
4660 	int i;
4661 
4662 	/* 1. Allocate FP for leading - fatal if error
4663 	 * 2. Allocate RSS - fix number of queues if error
4664 	 */
4665 
4666 	/* leading */
4667 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4668 		return -ENOMEM;
4669 
4670 	/* RSS */
4671 	for_each_nondefault_eth_queue(bp, i)
4672 		if (bnx2x_alloc_fp_mem_at(bp, i))
4673 			break;
4674 
4675 	/* handle memory failures */
4676 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4677 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4678 
4679 		WARN_ON(delta < 0);
4680 		bnx2x_shrink_eth_fp(bp, delta);
4681 		if (CNIC_SUPPORT(bp))
4682 			/* move non eth FPs next to last eth FP
4683 			 * must be done in that order
4684 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4685 			 */
4686 
4687 			/* move FCoE fp even NO_FCOE_FLAG is on */
4688 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4689 		bp->num_ethernet_queues -= delta;
4690 		bp->num_queues = bp->num_ethernet_queues +
4691 				 bp->num_cnic_queues;
4692 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4693 			  bp->num_queues + delta, bp->num_queues);
4694 	}
4695 
4696 	return 0;
4697 }
4698 
4699 void bnx2x_free_mem_bp(struct bnx2x *bp)
4700 {
4701 	int i;
4702 
4703 	for (i = 0; i < bp->fp_array_size; i++)
4704 		kfree(bp->fp[i].tpa_info);
4705 	kfree(bp->fp);
4706 	kfree(bp->sp_objs);
4707 	kfree(bp->fp_stats);
4708 	kfree(bp->bnx2x_txq);
4709 	kfree(bp->msix_table);
4710 	kfree(bp->ilt);
4711 }
4712 
4713 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4714 {
4715 	struct bnx2x_fastpath *fp;
4716 	struct msix_entry *tbl;
4717 	struct bnx2x_ilt *ilt;
4718 	int msix_table_size = 0;
4719 	int fp_array_size, txq_array_size;
4720 	int i;
4721 
4722 	/*
4723 	 * The biggest MSI-X table we might need is as a maximum number of fast
4724 	 * path IGU SBs plus default SB (for PF only).
4725 	 */
4726 	msix_table_size = bp->igu_sb_cnt;
4727 	if (IS_PF(bp))
4728 		msix_table_size++;
4729 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4730 
4731 	/* fp array: RSS plus CNIC related L2 queues */
4732 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4733 	bp->fp_array_size = fp_array_size;
4734 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4735 
4736 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4737 	if (!fp)
4738 		goto alloc_err;
4739 	for (i = 0; i < bp->fp_array_size; i++) {
4740 		fp[i].tpa_info =
4741 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4742 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4743 		if (!(fp[i].tpa_info))
4744 			goto alloc_err;
4745 	}
4746 
4747 	bp->fp = fp;
4748 
4749 	/* allocate sp objs */
4750 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4751 			      GFP_KERNEL);
4752 	if (!bp->sp_objs)
4753 		goto alloc_err;
4754 
4755 	/* allocate fp_stats */
4756 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4757 			       GFP_KERNEL);
4758 	if (!bp->fp_stats)
4759 		goto alloc_err;
4760 
4761 	/* Allocate memory for the transmission queues array */
4762 	txq_array_size =
4763 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4764 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4765 
4766 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4767 				GFP_KERNEL);
4768 	if (!bp->bnx2x_txq)
4769 		goto alloc_err;
4770 
4771 	/* msix table */
4772 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4773 	if (!tbl)
4774 		goto alloc_err;
4775 	bp->msix_table = tbl;
4776 
4777 	/* ilt */
4778 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4779 	if (!ilt)
4780 		goto alloc_err;
4781 	bp->ilt = ilt;
4782 
4783 	return 0;
4784 alloc_err:
4785 	bnx2x_free_mem_bp(bp);
4786 	return -ENOMEM;
4787 }
4788 
4789 int bnx2x_reload_if_running(struct net_device *dev)
4790 {
4791 	struct bnx2x *bp = netdev_priv(dev);
4792 
4793 	if (unlikely(!netif_running(dev)))
4794 		return 0;
4795 
4796 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4797 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4798 }
4799 
4800 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4801 {
4802 	u32 sel_phy_idx = 0;
4803 	if (bp->link_params.num_phys <= 1)
4804 		return INT_PHY;
4805 
4806 	if (bp->link_vars.link_up) {
4807 		sel_phy_idx = EXT_PHY1;
4808 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4809 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4810 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4811 			sel_phy_idx = EXT_PHY2;
4812 	} else {
4813 
4814 		switch (bnx2x_phy_selection(&bp->link_params)) {
4815 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4816 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4817 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4818 		       sel_phy_idx = EXT_PHY1;
4819 		       break;
4820 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4821 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4822 		       sel_phy_idx = EXT_PHY2;
4823 		       break;
4824 		}
4825 	}
4826 
4827 	return sel_phy_idx;
4828 }
4829 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4830 {
4831 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4832 	/*
4833 	 * The selected activated PHY is always after swapping (in case PHY
4834 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4835 	 * the configuration
4836 	 */
4837 
4838 	if (bp->link_params.multi_phy_config &
4839 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4840 		if (sel_phy_idx == EXT_PHY1)
4841 			sel_phy_idx = EXT_PHY2;
4842 		else if (sel_phy_idx == EXT_PHY2)
4843 			sel_phy_idx = EXT_PHY1;
4844 	}
4845 	return LINK_CONFIG_IDX(sel_phy_idx);
4846 }
4847 
4848 #ifdef NETDEV_FCOE_WWNN
4849 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4850 {
4851 	struct bnx2x *bp = netdev_priv(dev);
4852 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4853 
4854 	switch (type) {
4855 	case NETDEV_FCOE_WWNN:
4856 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4857 				cp->fcoe_wwn_node_name_lo);
4858 		break;
4859 	case NETDEV_FCOE_WWPN:
4860 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4861 				cp->fcoe_wwn_port_name_lo);
4862 		break;
4863 	default:
4864 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4865 		return -EINVAL;
4866 	}
4867 
4868 	return 0;
4869 }
4870 #endif
4871 
4872 /* called with rtnl_lock */
4873 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4874 {
4875 	struct bnx2x *bp = netdev_priv(dev);
4876 
4877 	if (pci_num_vf(bp->pdev)) {
4878 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4879 		return -EPERM;
4880 	}
4881 
4882 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4883 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4884 		return -EAGAIN;
4885 	}
4886 
4887 	/* This does not race with packet allocation
4888 	 * because the actual alloc size is
4889 	 * only updated as part of load
4890 	 */
4891 	dev->mtu = new_mtu;
4892 
4893 	if (!bnx2x_mtu_allows_gro(new_mtu))
4894 		dev->features &= ~NETIF_F_GRO_HW;
4895 
4896 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4897 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4898 
4899 	return bnx2x_reload_if_running(dev);
4900 }
4901 
4902 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4903 				     netdev_features_t features)
4904 {
4905 	struct bnx2x *bp = netdev_priv(dev);
4906 
4907 	if (pci_num_vf(bp->pdev)) {
4908 		netdev_features_t changed = dev->features ^ features;
4909 
4910 		/* Revert the requested changes in features if they
4911 		 * would require internal reload of PF in bnx2x_set_features().
4912 		 */
4913 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4914 			features &= ~NETIF_F_RXCSUM;
4915 			features |= dev->features & NETIF_F_RXCSUM;
4916 		}
4917 
4918 		if (changed & NETIF_F_LOOPBACK) {
4919 			features &= ~NETIF_F_LOOPBACK;
4920 			features |= dev->features & NETIF_F_LOOPBACK;
4921 		}
4922 	}
4923 
4924 	/* TPA requires Rx CSUM offloading */
4925 	if (!(features & NETIF_F_RXCSUM))
4926 		features &= ~NETIF_F_LRO;
4927 
4928 	if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4929 		features &= ~NETIF_F_GRO_HW;
4930 	if (features & NETIF_F_GRO_HW)
4931 		features &= ~NETIF_F_LRO;
4932 
4933 	return features;
4934 }
4935 
4936 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4937 {
4938 	struct bnx2x *bp = netdev_priv(dev);
4939 	netdev_features_t changes = features ^ dev->features;
4940 	bool bnx2x_reload = false;
4941 	int rc;
4942 
4943 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4944 	if (!pci_num_vf(bp->pdev)) {
4945 		if (features & NETIF_F_LOOPBACK) {
4946 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4947 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4948 				bnx2x_reload = true;
4949 			}
4950 		} else {
4951 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4952 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4953 				bnx2x_reload = true;
4954 			}
4955 		}
4956 	}
4957 
4958 	/* Don't care about GRO changes */
4959 	changes &= ~NETIF_F_GRO;
4960 
4961 	if (changes)
4962 		bnx2x_reload = true;
4963 
4964 	if (bnx2x_reload) {
4965 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4966 			dev->features = features;
4967 			rc = bnx2x_reload_if_running(dev);
4968 			return rc ? rc : 1;
4969 		}
4970 		/* else: bnx2x_nic_load() will be called at end of recovery */
4971 	}
4972 
4973 	return 0;
4974 }
4975 
4976 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue)
4977 {
4978 	struct bnx2x *bp = netdev_priv(dev);
4979 
4980 	/* We want the information of the dump logged,
4981 	 * but calling bnx2x_panic() would kill all chances of recovery.
4982 	 */
4983 	if (!bp->panic)
4984 #ifndef BNX2X_STOP_ON_ERROR
4985 		bnx2x_panic_dump(bp, false);
4986 #else
4987 		bnx2x_panic();
4988 #endif
4989 
4990 	/* This allows the netif to be shutdown gracefully before resetting */
4991 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4992 }
4993 
4994 static int __maybe_unused bnx2x_suspend(struct device *dev_d)
4995 {
4996 	struct pci_dev *pdev = to_pci_dev(dev_d);
4997 	struct net_device *dev = pci_get_drvdata(pdev);
4998 	struct bnx2x *bp;
4999 
5000 	if (!dev) {
5001 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5002 		return -ENODEV;
5003 	}
5004 	bp = netdev_priv(dev);
5005 
5006 	rtnl_lock();
5007 
5008 	if (!netif_running(dev)) {
5009 		rtnl_unlock();
5010 		return 0;
5011 	}
5012 
5013 	netif_device_detach(dev);
5014 
5015 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5016 
5017 	rtnl_unlock();
5018 
5019 	return 0;
5020 }
5021 
5022 static int __maybe_unused bnx2x_resume(struct device *dev_d)
5023 {
5024 	struct pci_dev *pdev = to_pci_dev(dev_d);
5025 	struct net_device *dev = pci_get_drvdata(pdev);
5026 	struct bnx2x *bp;
5027 	int rc;
5028 
5029 	if (!dev) {
5030 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5031 		return -ENODEV;
5032 	}
5033 	bp = netdev_priv(dev);
5034 
5035 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5036 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5037 		return -EAGAIN;
5038 	}
5039 
5040 	rtnl_lock();
5041 
5042 	if (!netif_running(dev)) {
5043 		rtnl_unlock();
5044 		return 0;
5045 	}
5046 
5047 	netif_device_attach(dev);
5048 
5049 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5050 
5051 	rtnl_unlock();
5052 
5053 	return rc;
5054 }
5055 
5056 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume);
5057 
5058 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5059 			      u32 cid)
5060 {
5061 	if (!cxt) {
5062 		BNX2X_ERR("bad context pointer %p\n", cxt);
5063 		return;
5064 	}
5065 
5066 	/* ustorm cxt validation */
5067 	cxt->ustorm_ag_context.cdu_usage =
5068 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5069 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5070 	/* xcontext validation */
5071 	cxt->xstorm_ag_context.cdu_reserved =
5072 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5073 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5074 }
5075 
5076 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5077 				    u8 fw_sb_id, u8 sb_index,
5078 				    u8 ticks)
5079 {
5080 	u32 addr = BAR_CSTRORM_INTMEM +
5081 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5082 	REG_WR8(bp, addr, ticks);
5083 	DP(NETIF_MSG_IFUP,
5084 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5085 	   port, fw_sb_id, sb_index, ticks);
5086 }
5087 
5088 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5089 				    u16 fw_sb_id, u8 sb_index,
5090 				    u8 disable)
5091 {
5092 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5093 	u32 addr = BAR_CSTRORM_INTMEM +
5094 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5095 	u8 flags = REG_RD8(bp, addr);
5096 	/* clear and set */
5097 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5098 	flags |= enable_flag;
5099 	REG_WR8(bp, addr, flags);
5100 	DP(NETIF_MSG_IFUP,
5101 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5102 	   port, fw_sb_id, sb_index, disable);
5103 }
5104 
5105 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5106 				    u8 sb_index, u8 disable, u16 usec)
5107 {
5108 	int port = BP_PORT(bp);
5109 	u8 ticks = usec / BNX2X_BTR;
5110 
5111 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5112 
5113 	disable = disable ? 1 : (usec ? 0 : 1);
5114 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5115 }
5116 
5117 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5118 			    u32 verbose)
5119 {
5120 	smp_mb__before_atomic();
5121 	set_bit(flag, &bp->sp_rtnl_state);
5122 	smp_mb__after_atomic();
5123 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5124 	   flag);
5125 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5126 }
5127