1 /* bnx2x_cmn.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/etherdevice.h>
21 #include <linux/if_vlan.h>
22 #include <linux/interrupt.h>
23 #include <linux/ip.h>
24 #include <net/tcp.h>
25 #include <net/ipv6.h>
26 #include <net/ip6_checksum.h>
27 #include <linux/prefetch.h>
28 #include "bnx2x_cmn.h"
29 #include "bnx2x_init.h"
30 #include "bnx2x_sp.h"
31 
32 /**
33  * bnx2x_move_fp - move content of the fastpath structure.
34  *
35  * @bp:		driver handle
36  * @from:	source FP index
37  * @to:		destination FP index
38  *
39  * Makes sure the contents of the bp->fp[to].napi is kept
40  * intact. This is done by first copying the napi struct from
41  * the target to the source, and then mem copying the entire
42  * source onto the target. Update txdata pointers and related
43  * content.
44  */
45 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
46 {
47 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
48 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
49 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
50 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
51 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
52 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
53 	int old_max_eth_txqs, new_max_eth_txqs;
54 	int old_txdata_index = 0, new_txdata_index = 0;
55 
56 	/* Copy the NAPI object as it has been already initialized */
57 	from_fp->napi = to_fp->napi;
58 
59 	/* Move bnx2x_fastpath contents */
60 	memcpy(to_fp, from_fp, sizeof(*to_fp));
61 	to_fp->index = to;
62 
63 	/* move sp_objs contents as well, as their indices match fp ones */
64 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
65 
66 	/* move fp_stats contents as well, as their indices match fp ones */
67 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
68 
69 	/* Update txdata pointers in fp and move txdata content accordingly:
70 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
71 	 * decremented by max_cos x delta.
72 	 */
73 
74 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
75 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
76 				(bp)->max_cos;
77 	if (from == FCOE_IDX(bp)) {
78 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
79 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
80 	}
81 
82 	memcpy(&bp->bnx2x_txq[new_txdata_index],
83 	       &bp->bnx2x_txq[old_txdata_index],
84 	       sizeof(struct bnx2x_fp_txdata));
85 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
86 }
87 
88 /**
89  * bnx2x_fill_fw_str - Fill buffer with FW version string.
90  *
91  * @bp:        driver handle
92  * @buf:       character buffer to fill with the fw name
93  * @buf_len:   length of the above buffer
94  *
95  */
96 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
97 {
98 	if (IS_PF(bp)) {
99 		u8 phy_fw_ver[PHY_FW_VER_LEN];
100 
101 		phy_fw_ver[0] = '\0';
102 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
103 					     phy_fw_ver, PHY_FW_VER_LEN);
104 		strlcpy(buf, bp->fw_ver, buf_len);
105 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
106 			 "bc %d.%d.%d%s%s",
107 			 (bp->common.bc_ver & 0xff0000) >> 16,
108 			 (bp->common.bc_ver & 0xff00) >> 8,
109 			 (bp->common.bc_ver & 0xff),
110 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
111 	} else {
112 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
113 	}
114 }
115 
116 /**
117  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
118  *
119  * @bp:	driver handle
120  * @delta:	number of eth queues which were not allocated
121  */
122 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
123 {
124 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
125 
126 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
127 	 * backward along the array could cause memory to be overriden
128 	 */
129 	for (cos = 1; cos < bp->max_cos; cos++) {
130 		for (i = 0; i < old_eth_num - delta; i++) {
131 			struct bnx2x_fastpath *fp = &bp->fp[i];
132 			int new_idx = cos * (old_eth_num - delta) + i;
133 
134 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
135 			       sizeof(struct bnx2x_fp_txdata));
136 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
137 		}
138 	}
139 }
140 
141 int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
142 
143 /* free skb in the packet ring at pos idx
144  * return idx of last bd freed
145  */
146 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
147 			     u16 idx, unsigned int *pkts_compl,
148 			     unsigned int *bytes_compl)
149 {
150 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
151 	struct eth_tx_start_bd *tx_start_bd;
152 	struct eth_tx_bd *tx_data_bd;
153 	struct sk_buff *skb = tx_buf->skb;
154 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
155 	int nbd;
156 
157 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
158 	prefetch(&skb->end);
159 
160 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
161 	   txdata->txq_index, idx, tx_buf, skb);
162 
163 	/* unmap first bd */
164 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
165 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
166 			 BD_UNMAP_LEN(tx_start_bd), DMA_TO_DEVICE);
167 
168 
169 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
170 #ifdef BNX2X_STOP_ON_ERROR
171 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
172 		BNX2X_ERR("BAD nbd!\n");
173 		bnx2x_panic();
174 	}
175 #endif
176 	new_cons = nbd + tx_buf->first_bd;
177 
178 	/* Get the next bd */
179 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
180 
181 	/* Skip a parse bd... */
182 	--nbd;
183 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
184 
185 	/* ...and the TSO split header bd since they have no mapping */
186 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
187 		--nbd;
188 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
189 	}
190 
191 	/* now free frags */
192 	while (nbd > 0) {
193 
194 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
195 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
196 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
197 		if (--nbd)
198 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
199 	}
200 
201 	/* release skb */
202 	WARN_ON(!skb);
203 	if (likely(skb)) {
204 		(*pkts_compl)++;
205 		(*bytes_compl) += skb->len;
206 	}
207 
208 	dev_kfree_skb_any(skb);
209 	tx_buf->first_bd = 0;
210 	tx_buf->skb = NULL;
211 
212 	return new_cons;
213 }
214 
215 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
216 {
217 	struct netdev_queue *txq;
218 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
219 	unsigned int pkts_compl = 0, bytes_compl = 0;
220 
221 #ifdef BNX2X_STOP_ON_ERROR
222 	if (unlikely(bp->panic))
223 		return -1;
224 #endif
225 
226 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
227 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
228 	sw_cons = txdata->tx_pkt_cons;
229 
230 	while (sw_cons != hw_cons) {
231 		u16 pkt_cons;
232 
233 		pkt_cons = TX_BD(sw_cons);
234 
235 		DP(NETIF_MSG_TX_DONE,
236 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
237 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
238 
239 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
240 					    &pkts_compl, &bytes_compl);
241 
242 		sw_cons++;
243 	}
244 
245 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
246 
247 	txdata->tx_pkt_cons = sw_cons;
248 	txdata->tx_bd_cons = bd_cons;
249 
250 	/* Need to make the tx_bd_cons update visible to start_xmit()
251 	 * before checking for netif_tx_queue_stopped().  Without the
252 	 * memory barrier, there is a small possibility that
253 	 * start_xmit() will miss it and cause the queue to be stopped
254 	 * forever.
255 	 * On the other hand we need an rmb() here to ensure the proper
256 	 * ordering of bit testing in the following
257 	 * netif_tx_queue_stopped(txq) call.
258 	 */
259 	smp_mb();
260 
261 	if (unlikely(netif_tx_queue_stopped(txq))) {
262 		/* Taking tx_lock() is needed to prevent reenabling the queue
263 		 * while it's empty. This could have happen if rx_action() gets
264 		 * suspended in bnx2x_tx_int() after the condition before
265 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
266 		 *
267 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
268 		 * sends some packets consuming the whole queue again->
269 		 * stops the queue
270 		 */
271 
272 		__netif_tx_lock(txq, smp_processor_id());
273 
274 		if ((netif_tx_queue_stopped(txq)) &&
275 		    (bp->state == BNX2X_STATE_OPEN) &&
276 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
277 			netif_tx_wake_queue(txq);
278 
279 		__netif_tx_unlock(txq);
280 	}
281 	return 0;
282 }
283 
284 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
285 					     u16 idx)
286 {
287 	u16 last_max = fp->last_max_sge;
288 
289 	if (SUB_S16(idx, last_max) > 0)
290 		fp->last_max_sge = idx;
291 }
292 
293 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
294 					 u16 sge_len,
295 					 struct eth_end_agg_rx_cqe *cqe)
296 {
297 	struct bnx2x *bp = fp->bp;
298 	u16 last_max, last_elem, first_elem;
299 	u16 delta = 0;
300 	u16 i;
301 
302 	if (!sge_len)
303 		return;
304 
305 	/* First mark all used pages */
306 	for (i = 0; i < sge_len; i++)
307 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
308 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
309 
310 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
311 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
312 
313 	/* Here we assume that the last SGE index is the biggest */
314 	prefetch((void *)(fp->sge_mask));
315 	bnx2x_update_last_max_sge(fp,
316 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
317 
318 	last_max = RX_SGE(fp->last_max_sge);
319 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
320 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
321 
322 	/* If ring is not full */
323 	if (last_elem + 1 != first_elem)
324 		last_elem++;
325 
326 	/* Now update the prod */
327 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
328 		if (likely(fp->sge_mask[i]))
329 			break;
330 
331 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
332 		delta += BIT_VEC64_ELEM_SZ;
333 	}
334 
335 	if (delta > 0) {
336 		fp->rx_sge_prod += delta;
337 		/* clear page-end entries */
338 		bnx2x_clear_sge_mask_next_elems(fp);
339 	}
340 
341 	DP(NETIF_MSG_RX_STATUS,
342 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
343 	   fp->last_max_sge, fp->rx_sge_prod);
344 }
345 
346 /* Get Toeplitz hash value in the skb using the value from the
347  * CQE (calculated by HW).
348  */
349 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
350 			    const struct eth_fast_path_rx_cqe *cqe,
351 			    bool *l4_rxhash)
352 {
353 	/* Get Toeplitz hash from CQE */
354 	if ((bp->dev->features & NETIF_F_RXHASH) &&
355 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
356 		enum eth_rss_hash_type htype;
357 
358 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
359 		*l4_rxhash = (htype == TCP_IPV4_HASH_TYPE) ||
360 			     (htype == TCP_IPV6_HASH_TYPE);
361 		return le32_to_cpu(cqe->rss_hash_result);
362 	}
363 	*l4_rxhash = false;
364 	return 0;
365 }
366 
367 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
368 			    u16 cons, u16 prod,
369 			    struct eth_fast_path_rx_cqe *cqe)
370 {
371 	struct bnx2x *bp = fp->bp;
372 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
373 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
374 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
375 	dma_addr_t mapping;
376 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
377 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
378 
379 	/* print error if current state != stop */
380 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
381 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
382 
383 	/* Try to map an empty data buffer from the aggregation info  */
384 	mapping = dma_map_single(&bp->pdev->dev,
385 				 first_buf->data + NET_SKB_PAD,
386 				 fp->rx_buf_size, DMA_FROM_DEVICE);
387 	/*
388 	 *  ...if it fails - move the skb from the consumer to the producer
389 	 *  and set the current aggregation state as ERROR to drop it
390 	 *  when TPA_STOP arrives.
391 	 */
392 
393 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
394 		/* Move the BD from the consumer to the producer */
395 		bnx2x_reuse_rx_data(fp, cons, prod);
396 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
397 		return;
398 	}
399 
400 	/* move empty data from pool to prod */
401 	prod_rx_buf->data = first_buf->data;
402 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
403 	/* point prod_bd to new data */
404 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
405 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
406 
407 	/* move partial skb from cons to pool (don't unmap yet) */
408 	*first_buf = *cons_rx_buf;
409 
410 	/* mark bin state as START */
411 	tpa_info->parsing_flags =
412 		le16_to_cpu(cqe->pars_flags.flags);
413 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
414 	tpa_info->tpa_state = BNX2X_TPA_START;
415 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
416 	tpa_info->placement_offset = cqe->placement_offset;
417 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->l4_rxhash);
418 	if (fp->mode == TPA_MODE_GRO) {
419 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
420 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
421 		tpa_info->gro_size = gro_size;
422 	}
423 
424 #ifdef BNX2X_STOP_ON_ERROR
425 	fp->tpa_queue_used |= (1 << queue);
426 #ifdef _ASM_GENERIC_INT_L64_H
427 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n",
428 #else
429 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
430 #endif
431 	   fp->tpa_queue_used);
432 #endif
433 }
434 
435 /* Timestamp option length allowed for TPA aggregation:
436  *
437  *		nop nop kind length echo val
438  */
439 #define TPA_TSTAMP_OPT_LEN	12
440 /**
441  * bnx2x_set_gro_params - compute GRO values
442  *
443  * @skb:		packet skb
444  * @parsing_flags:	parsing flags from the START CQE
445  * @len_on_bd:		total length of the first packet for the
446  *			aggregation.
447  * @pkt_len:		length of all segments
448  *
449  * Approximate value of the MSS for this aggregation calculated using
450  * the first packet of it.
451  * Compute number of aggregated segments, and gso_type.
452  */
453 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
454 				 u16 len_on_bd, unsigned int pkt_len)
455 {
456 	/* TPA aggregation won't have either IP options or TCP options
457 	 * other than timestamp or IPv6 extension headers.
458 	 */
459 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
460 
461 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
462 	    PRS_FLAG_OVERETH_IPV6) {
463 		hdrs_len += sizeof(struct ipv6hdr);
464 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
465 	} else {
466 		hdrs_len += sizeof(struct iphdr);
467 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
468 	}
469 
470 	/* Check if there was a TCP timestamp, if there is it's will
471 	 * always be 12 bytes length: nop nop kind length echo val.
472 	 *
473 	 * Otherwise FW would close the aggregation.
474 	 */
475 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
476 		hdrs_len += TPA_TSTAMP_OPT_LEN;
477 
478 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
479 
480 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
481 	 * to skb_shinfo(skb)->gso_segs
482 	 */
483 	NAPI_GRO_CB(skb)->count = DIV_ROUND_UP(pkt_len - hdrs_len,
484 					       skb_shinfo(skb)->gso_size);
485 }
486 
487 static int bnx2x_alloc_rx_sge(struct bnx2x *bp,
488 			      struct bnx2x_fastpath *fp, u16 index)
489 {
490 	struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
491 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
492 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
493 	dma_addr_t mapping;
494 
495 	if (unlikely(page == NULL)) {
496 		BNX2X_ERR("Can't alloc sge\n");
497 		return -ENOMEM;
498 	}
499 
500 	mapping = dma_map_page(&bp->pdev->dev, page, 0,
501 			       SGE_PAGES, DMA_FROM_DEVICE);
502 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
503 		__free_pages(page, PAGES_PER_SGE_SHIFT);
504 		BNX2X_ERR("Can't map sge\n");
505 		return -ENOMEM;
506 	}
507 
508 	sw_buf->page = page;
509 	dma_unmap_addr_set(sw_buf, mapping, mapping);
510 
511 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
512 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
513 
514 	return 0;
515 }
516 
517 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
518 			       struct bnx2x_agg_info *tpa_info,
519 			       u16 pages,
520 			       struct sk_buff *skb,
521 			       struct eth_end_agg_rx_cqe *cqe,
522 			       u16 cqe_idx)
523 {
524 	struct sw_rx_page *rx_pg, old_rx_pg;
525 	u32 i, frag_len, frag_size;
526 	int err, j, frag_id = 0;
527 	u16 len_on_bd = tpa_info->len_on_bd;
528 	u16 full_page = 0, gro_size = 0;
529 
530 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
531 
532 	if (fp->mode == TPA_MODE_GRO) {
533 		gro_size = tpa_info->gro_size;
534 		full_page = tpa_info->full_page;
535 	}
536 
537 	/* This is needed in order to enable forwarding support */
538 	if (frag_size)
539 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
540 				     le16_to_cpu(cqe->pkt_len));
541 
542 #ifdef BNX2X_STOP_ON_ERROR
543 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
544 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
545 			  pages, cqe_idx);
546 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
547 		bnx2x_panic();
548 		return -EINVAL;
549 	}
550 #endif
551 
552 	/* Run through the SGL and compose the fragmented skb */
553 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
554 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
555 
556 		/* FW gives the indices of the SGE as if the ring is an array
557 		   (meaning that "next" element will consume 2 indices) */
558 		if (fp->mode == TPA_MODE_GRO)
559 			frag_len = min_t(u32, frag_size, (u32)full_page);
560 		else /* LRO */
561 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
562 
563 		rx_pg = &fp->rx_page_ring[sge_idx];
564 		old_rx_pg = *rx_pg;
565 
566 		/* If we fail to allocate a substitute page, we simply stop
567 		   where we are and drop the whole packet */
568 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx);
569 		if (unlikely(err)) {
570 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
571 			return err;
572 		}
573 
574 		/* Unmap the page as we r going to pass it to the stack */
575 		dma_unmap_page(&bp->pdev->dev,
576 			       dma_unmap_addr(&old_rx_pg, mapping),
577 			       SGE_PAGES, DMA_FROM_DEVICE);
578 		/* Add one frag and update the appropriate fields in the skb */
579 		if (fp->mode == TPA_MODE_LRO)
580 			skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len);
581 		else { /* GRO */
582 			int rem;
583 			int offset = 0;
584 			for (rem = frag_len; rem > 0; rem -= gro_size) {
585 				int len = rem > gro_size ? gro_size : rem;
586 				skb_fill_page_desc(skb, frag_id++,
587 						   old_rx_pg.page, offset, len);
588 				if (offset)
589 					get_page(old_rx_pg.page);
590 				offset += len;
591 			}
592 		}
593 
594 		skb->data_len += frag_len;
595 		skb->truesize += SGE_PAGES;
596 		skb->len += frag_len;
597 
598 		frag_size -= frag_len;
599 	}
600 
601 	return 0;
602 }
603 
604 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
605 {
606 	if (fp->rx_frag_size)
607 		put_page(virt_to_head_page(data));
608 	else
609 		kfree(data);
610 }
611 
612 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp)
613 {
614 	if (fp->rx_frag_size)
615 		return netdev_alloc_frag(fp->rx_frag_size);
616 
617 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC);
618 }
619 
620 #ifdef CONFIG_INET
621 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
622 {
623 	const struct iphdr *iph = ip_hdr(skb);
624 	struct tcphdr *th;
625 
626 	skb_set_transport_header(skb, sizeof(struct iphdr));
627 	th = tcp_hdr(skb);
628 
629 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
630 				  iph->saddr, iph->daddr, 0);
631 }
632 
633 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
634 {
635 	struct ipv6hdr *iph = ipv6_hdr(skb);
636 	struct tcphdr *th;
637 
638 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
639 	th = tcp_hdr(skb);
640 
641 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
642 				  &iph->saddr, &iph->daddr, 0);
643 }
644 #endif
645 
646 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
647 			       struct sk_buff *skb)
648 {
649 #ifdef CONFIG_INET
650 	if (skb_shinfo(skb)->gso_size) {
651 		skb_set_network_header(skb, 0);
652 		switch (be16_to_cpu(skb->protocol)) {
653 		case ETH_P_IP:
654 			bnx2x_gro_ip_csum(bp, skb);
655 			break;
656 		case ETH_P_IPV6:
657 			bnx2x_gro_ipv6_csum(bp, skb);
658 			break;
659 		default:
660 			BNX2X_ERR("FW GRO supports only IPv4/IPv6, not 0x%04x\n",
661 				  be16_to_cpu(skb->protocol));
662 		}
663 		tcp_gro_complete(skb);
664 	}
665 #endif
666 	napi_gro_receive(&fp->napi, skb);
667 }
668 
669 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
670 			   struct bnx2x_agg_info *tpa_info,
671 			   u16 pages,
672 			   struct eth_end_agg_rx_cqe *cqe,
673 			   u16 cqe_idx)
674 {
675 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
676 	u8 pad = tpa_info->placement_offset;
677 	u16 len = tpa_info->len_on_bd;
678 	struct sk_buff *skb = NULL;
679 	u8 *new_data, *data = rx_buf->data;
680 	u8 old_tpa_state = tpa_info->tpa_state;
681 
682 	tpa_info->tpa_state = BNX2X_TPA_STOP;
683 
684 	/* If we there was an error during the handling of the TPA_START -
685 	 * drop this aggregation.
686 	 */
687 	if (old_tpa_state == BNX2X_TPA_ERROR)
688 		goto drop;
689 
690 	/* Try to allocate the new data */
691 	new_data = bnx2x_frag_alloc(fp);
692 	/* Unmap skb in the pool anyway, as we are going to change
693 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
694 	   fails. */
695 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
696 			 fp->rx_buf_size, DMA_FROM_DEVICE);
697 	if (likely(new_data))
698 		skb = build_skb(data, fp->rx_frag_size);
699 
700 	if (likely(skb)) {
701 #ifdef BNX2X_STOP_ON_ERROR
702 		if (pad + len > fp->rx_buf_size) {
703 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
704 				  pad, len, fp->rx_buf_size);
705 			bnx2x_panic();
706 			return;
707 		}
708 #endif
709 
710 		skb_reserve(skb, pad + NET_SKB_PAD);
711 		skb_put(skb, len);
712 		skb->rxhash = tpa_info->rxhash;
713 		skb->l4_rxhash = tpa_info->l4_rxhash;
714 
715 		skb->protocol = eth_type_trans(skb, bp->dev);
716 		skb->ip_summed = CHECKSUM_UNNECESSARY;
717 
718 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
719 					 skb, cqe, cqe_idx)) {
720 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
721 				__vlan_hwaccel_put_tag(skb, tpa_info->vlan_tag);
722 			bnx2x_gro_receive(bp, fp, skb);
723 		} else {
724 			DP(NETIF_MSG_RX_STATUS,
725 			   "Failed to allocate new pages - dropping packet!\n");
726 			dev_kfree_skb_any(skb);
727 		}
728 
729 
730 		/* put new data in bin */
731 		rx_buf->data = new_data;
732 
733 		return;
734 	}
735 	bnx2x_frag_free(fp, new_data);
736 drop:
737 	/* drop the packet and keep the buffer in the bin */
738 	DP(NETIF_MSG_RX_STATUS,
739 	   "Failed to allocate or map a new skb - dropping packet!\n");
740 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
741 }
742 
743 static int bnx2x_alloc_rx_data(struct bnx2x *bp,
744 			       struct bnx2x_fastpath *fp, u16 index)
745 {
746 	u8 *data;
747 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
748 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
749 	dma_addr_t mapping;
750 
751 	data = bnx2x_frag_alloc(fp);
752 	if (unlikely(data == NULL))
753 		return -ENOMEM;
754 
755 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
756 				 fp->rx_buf_size,
757 				 DMA_FROM_DEVICE);
758 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
759 		bnx2x_frag_free(fp, data);
760 		BNX2X_ERR("Can't map rx data\n");
761 		return -ENOMEM;
762 	}
763 
764 	rx_buf->data = data;
765 	dma_unmap_addr_set(rx_buf, mapping, mapping);
766 
767 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
768 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
769 
770 	return 0;
771 }
772 
773 static
774 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
775 				 struct bnx2x_fastpath *fp,
776 				 struct bnx2x_eth_q_stats *qstats)
777 {
778 	/* Do nothing if no L4 csum validation was done.
779 	 * We do not check whether IP csum was validated. For IPv4 we assume
780 	 * that if the card got as far as validating the L4 csum, it also
781 	 * validated the IP csum. IPv6 has no IP csum.
782 	 */
783 	if (cqe->fast_path_cqe.status_flags &
784 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
785 		return;
786 
787 	/* If L4 validation was done, check if an error was found. */
788 
789 	if (cqe->fast_path_cqe.type_error_flags &
790 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
791 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
792 		qstats->hw_csum_err++;
793 	else
794 		skb->ip_summed = CHECKSUM_UNNECESSARY;
795 }
796 
797 int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
798 {
799 	struct bnx2x *bp = fp->bp;
800 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
801 	u16 hw_comp_cons, sw_comp_cons, sw_comp_prod;
802 	int rx_pkt = 0;
803 
804 #ifdef BNX2X_STOP_ON_ERROR
805 	if (unlikely(bp->panic))
806 		return 0;
807 #endif
808 
809 	/* CQ "next element" is of the size of the regular element,
810 	   that's why it's ok here */
811 	hw_comp_cons = le16_to_cpu(*fp->rx_cons_sb);
812 	if ((hw_comp_cons & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
813 		hw_comp_cons++;
814 
815 	bd_cons = fp->rx_bd_cons;
816 	bd_prod = fp->rx_bd_prod;
817 	bd_prod_fw = bd_prod;
818 	sw_comp_cons = fp->rx_comp_cons;
819 	sw_comp_prod = fp->rx_comp_prod;
820 
821 	/* Memory barrier necessary as speculative reads of the rx
822 	 * buffer can be ahead of the index in the status block
823 	 */
824 	rmb();
825 
826 	DP(NETIF_MSG_RX_STATUS,
827 	   "queue[%d]:  hw_comp_cons %u  sw_comp_cons %u\n",
828 	   fp->index, hw_comp_cons, sw_comp_cons);
829 
830 	while (sw_comp_cons != hw_comp_cons) {
831 		struct sw_rx_bd *rx_buf = NULL;
832 		struct sk_buff *skb;
833 		union eth_rx_cqe *cqe;
834 		struct eth_fast_path_rx_cqe *cqe_fp;
835 		u8 cqe_fp_flags;
836 		enum eth_rx_cqe_type cqe_fp_type;
837 		u16 len, pad, queue;
838 		u8 *data;
839 		bool l4_rxhash;
840 
841 #ifdef BNX2X_STOP_ON_ERROR
842 		if (unlikely(bp->panic))
843 			return 0;
844 #endif
845 
846 		comp_ring_cons = RCQ_BD(sw_comp_cons);
847 		bd_prod = RX_BD(bd_prod);
848 		bd_cons = RX_BD(bd_cons);
849 
850 		cqe = &fp->rx_comp_ring[comp_ring_cons];
851 		cqe_fp = &cqe->fast_path_cqe;
852 		cqe_fp_flags = cqe_fp->type_error_flags;
853 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
854 
855 		DP(NETIF_MSG_RX_STATUS,
856 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
857 		   CQE_TYPE(cqe_fp_flags),
858 		   cqe_fp_flags, cqe_fp->status_flags,
859 		   le32_to_cpu(cqe_fp->rss_hash_result),
860 		   le16_to_cpu(cqe_fp->vlan_tag),
861 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
862 
863 		/* is this a slowpath msg? */
864 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
865 			bnx2x_sp_event(fp, cqe);
866 			goto next_cqe;
867 		}
868 
869 		rx_buf = &fp->rx_buf_ring[bd_cons];
870 		data = rx_buf->data;
871 
872 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
873 			struct bnx2x_agg_info *tpa_info;
874 			u16 frag_size, pages;
875 #ifdef BNX2X_STOP_ON_ERROR
876 			/* sanity check */
877 			if (fp->disable_tpa &&
878 			    (CQE_TYPE_START(cqe_fp_type) ||
879 			     CQE_TYPE_STOP(cqe_fp_type)))
880 				BNX2X_ERR("START/STOP packet while disable_tpa type %x\n",
881 					  CQE_TYPE(cqe_fp_type));
882 #endif
883 
884 			if (CQE_TYPE_START(cqe_fp_type)) {
885 				u16 queue = cqe_fp->queue_index;
886 				DP(NETIF_MSG_RX_STATUS,
887 				   "calling tpa_start on queue %d\n",
888 				   queue);
889 
890 				bnx2x_tpa_start(fp, queue,
891 						bd_cons, bd_prod,
892 						cqe_fp);
893 
894 				goto next_rx;
895 
896 			}
897 			queue = cqe->end_agg_cqe.queue_index;
898 			tpa_info = &fp->tpa_info[queue];
899 			DP(NETIF_MSG_RX_STATUS,
900 			   "calling tpa_stop on queue %d\n",
901 			   queue);
902 
903 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
904 				    tpa_info->len_on_bd;
905 
906 			if (fp->mode == TPA_MODE_GRO)
907 				pages = (frag_size + tpa_info->full_page - 1) /
908 					 tpa_info->full_page;
909 			else
910 				pages = SGE_PAGE_ALIGN(frag_size) >>
911 					SGE_PAGE_SHIFT;
912 
913 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
914 				       &cqe->end_agg_cqe, comp_ring_cons);
915 #ifdef BNX2X_STOP_ON_ERROR
916 			if (bp->panic)
917 				return 0;
918 #endif
919 
920 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
921 			goto next_cqe;
922 		}
923 		/* non TPA */
924 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
925 		pad = cqe_fp->placement_offset;
926 		dma_sync_single_for_cpu(&bp->pdev->dev,
927 					dma_unmap_addr(rx_buf, mapping),
928 					pad + RX_COPY_THRESH,
929 					DMA_FROM_DEVICE);
930 		pad += NET_SKB_PAD;
931 		prefetch(data + pad); /* speedup eth_type_trans() */
932 		/* is this an error packet? */
933 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
934 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
935 			   "ERROR  flags %x  rx packet %u\n",
936 			   cqe_fp_flags, sw_comp_cons);
937 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
938 			goto reuse_rx;
939 		}
940 
941 		/* Since we don't have a jumbo ring
942 		 * copy small packets if mtu > 1500
943 		 */
944 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
945 		    (len <= RX_COPY_THRESH)) {
946 			skb = netdev_alloc_skb_ip_align(bp->dev, len);
947 			if (skb == NULL) {
948 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
949 				   "ERROR  packet dropped because of alloc failure\n");
950 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
951 				goto reuse_rx;
952 			}
953 			memcpy(skb->data, data + pad, len);
954 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
955 		} else {
956 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod) == 0)) {
957 				dma_unmap_single(&bp->pdev->dev,
958 						 dma_unmap_addr(rx_buf, mapping),
959 						 fp->rx_buf_size,
960 						 DMA_FROM_DEVICE);
961 				skb = build_skb(data, fp->rx_frag_size);
962 				if (unlikely(!skb)) {
963 					bnx2x_frag_free(fp, data);
964 					bnx2x_fp_qstats(bp, fp)->
965 							rx_skb_alloc_failed++;
966 					goto next_rx;
967 				}
968 				skb_reserve(skb, pad);
969 			} else {
970 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
971 				   "ERROR  packet dropped because of alloc failure\n");
972 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
973 reuse_rx:
974 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
975 				goto next_rx;
976 			}
977 		}
978 
979 		skb_put(skb, len);
980 		skb->protocol = eth_type_trans(skb, bp->dev);
981 
982 		/* Set Toeplitz hash for a none-LRO skb */
983 		skb->rxhash = bnx2x_get_rxhash(bp, cqe_fp, &l4_rxhash);
984 		skb->l4_rxhash = l4_rxhash;
985 
986 		skb_checksum_none_assert(skb);
987 
988 		if (bp->dev->features & NETIF_F_RXCSUM)
989 			bnx2x_csum_validate(skb, cqe, fp,
990 					    bnx2x_fp_qstats(bp, fp));
991 
992 		skb_record_rx_queue(skb, fp->rx_queue);
993 
994 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
995 		    PARSING_FLAGS_VLAN)
996 			__vlan_hwaccel_put_tag(skb,
997 					       le16_to_cpu(cqe_fp->vlan_tag));
998 		napi_gro_receive(&fp->napi, skb);
999 
1000 
1001 next_rx:
1002 		rx_buf->data = NULL;
1003 
1004 		bd_cons = NEXT_RX_IDX(bd_cons);
1005 		bd_prod = NEXT_RX_IDX(bd_prod);
1006 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1007 		rx_pkt++;
1008 next_cqe:
1009 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1010 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1011 
1012 		if (rx_pkt == budget)
1013 			break;
1014 	} /* while */
1015 
1016 	fp->rx_bd_cons = bd_cons;
1017 	fp->rx_bd_prod = bd_prod_fw;
1018 	fp->rx_comp_cons = sw_comp_cons;
1019 	fp->rx_comp_prod = sw_comp_prod;
1020 
1021 	/* Update producers */
1022 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1023 			     fp->rx_sge_prod);
1024 
1025 	fp->rx_pkt += rx_pkt;
1026 	fp->rx_calls++;
1027 
1028 	return rx_pkt;
1029 }
1030 
1031 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1032 {
1033 	struct bnx2x_fastpath *fp = fp_cookie;
1034 	struct bnx2x *bp = fp->bp;
1035 	u8 cos;
1036 
1037 	DP(NETIF_MSG_INTR,
1038 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1039 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1040 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1041 
1042 #ifdef BNX2X_STOP_ON_ERROR
1043 	if (unlikely(bp->panic))
1044 		return IRQ_HANDLED;
1045 #endif
1046 
1047 	/* Handle Rx and Tx according to MSI-X vector */
1048 	prefetch(fp->rx_cons_sb);
1049 
1050 	for_each_cos_in_tx_queue(fp, cos)
1051 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1052 
1053 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1054 	napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1055 
1056 	return IRQ_HANDLED;
1057 }
1058 
1059 /* HW Lock for shared dual port PHYs */
1060 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1061 {
1062 	mutex_lock(&bp->port.phy_mutex);
1063 
1064 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1065 }
1066 
1067 void bnx2x_release_phy_lock(struct bnx2x *bp)
1068 {
1069 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1070 
1071 	mutex_unlock(&bp->port.phy_mutex);
1072 }
1073 
1074 /* calculates MF speed according to current linespeed and MF configuration */
1075 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1076 {
1077 	u16 line_speed = bp->link_vars.line_speed;
1078 	if (IS_MF(bp)) {
1079 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1080 						   bp->mf_config[BP_VN(bp)]);
1081 
1082 		/* Calculate the current MAX line speed limit for the MF
1083 		 * devices
1084 		 */
1085 		if (IS_MF_SI(bp))
1086 			line_speed = (line_speed * maxCfg) / 100;
1087 		else { /* SD mode */
1088 			u16 vn_max_rate = maxCfg * 100;
1089 
1090 			if (vn_max_rate < line_speed)
1091 				line_speed = vn_max_rate;
1092 		}
1093 	}
1094 
1095 	return line_speed;
1096 }
1097 
1098 /**
1099  * bnx2x_fill_report_data - fill link report data to report
1100  *
1101  * @bp:		driver handle
1102  * @data:	link state to update
1103  *
1104  * It uses a none-atomic bit operations because is called under the mutex.
1105  */
1106 static void bnx2x_fill_report_data(struct bnx2x *bp,
1107 				   struct bnx2x_link_report_data *data)
1108 {
1109 	u16 line_speed = bnx2x_get_mf_speed(bp);
1110 
1111 	memset(data, 0, sizeof(*data));
1112 
1113 	/* Fill the report data: efective line speed */
1114 	data->line_speed = line_speed;
1115 
1116 	/* Link is down */
1117 	if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1118 		__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1119 			  &data->link_report_flags);
1120 
1121 	/* Full DUPLEX */
1122 	if (bp->link_vars.duplex == DUPLEX_FULL)
1123 		__set_bit(BNX2X_LINK_REPORT_FD, &data->link_report_flags);
1124 
1125 	/* Rx Flow Control is ON */
1126 	if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1127 		__set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
1128 
1129 	/* Tx Flow Control is ON */
1130 	if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1131 		__set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
1132 }
1133 
1134 /**
1135  * bnx2x_link_report - report link status to OS.
1136  *
1137  * @bp:		driver handle
1138  *
1139  * Calls the __bnx2x_link_report() under the same locking scheme
1140  * as a link/PHY state managing code to ensure a consistent link
1141  * reporting.
1142  */
1143 
1144 void bnx2x_link_report(struct bnx2x *bp)
1145 {
1146 	bnx2x_acquire_phy_lock(bp);
1147 	__bnx2x_link_report(bp);
1148 	bnx2x_release_phy_lock(bp);
1149 }
1150 
1151 /**
1152  * __bnx2x_link_report - report link status to OS.
1153  *
1154  * @bp:		driver handle
1155  *
1156  * None atomic inmlementation.
1157  * Should be called under the phy_lock.
1158  */
1159 void __bnx2x_link_report(struct bnx2x *bp)
1160 {
1161 	struct bnx2x_link_report_data cur_data;
1162 
1163 	/* reread mf_cfg */
1164 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1165 		bnx2x_read_mf_cfg(bp);
1166 
1167 	/* Read the current link report info */
1168 	bnx2x_fill_report_data(bp, &cur_data);
1169 
1170 	/* Don't report link down or exactly the same link status twice */
1171 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1172 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1173 		      &bp->last_reported_link.link_report_flags) &&
1174 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1175 		      &cur_data.link_report_flags)))
1176 		return;
1177 
1178 	bp->link_cnt++;
1179 
1180 	/* We are going to report a new link parameters now -
1181 	 * remember the current data for the next time.
1182 	 */
1183 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1184 
1185 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1186 		     &cur_data.link_report_flags)) {
1187 		netif_carrier_off(bp->dev);
1188 		netdev_err(bp->dev, "NIC Link is Down\n");
1189 		return;
1190 	} else {
1191 		const char *duplex;
1192 		const char *flow;
1193 
1194 		netif_carrier_on(bp->dev);
1195 
1196 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1197 				       &cur_data.link_report_flags))
1198 			duplex = "full";
1199 		else
1200 			duplex = "half";
1201 
1202 		/* Handle the FC at the end so that only these flags would be
1203 		 * possibly set. This way we may easily check if there is no FC
1204 		 * enabled.
1205 		 */
1206 		if (cur_data.link_report_flags) {
1207 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1208 				     &cur_data.link_report_flags)) {
1209 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1210 				     &cur_data.link_report_flags))
1211 					flow = "ON - receive & transmit";
1212 				else
1213 					flow = "ON - receive";
1214 			} else {
1215 				flow = "ON - transmit";
1216 			}
1217 		} else {
1218 			flow = "none";
1219 		}
1220 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1221 			    cur_data.line_speed, duplex, flow);
1222 	}
1223 }
1224 
1225 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1226 {
1227 	int i;
1228 
1229 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1230 		struct eth_rx_sge *sge;
1231 
1232 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1233 		sge->addr_hi =
1234 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1235 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1236 
1237 		sge->addr_lo =
1238 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1239 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1240 	}
1241 }
1242 
1243 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1244 				struct bnx2x_fastpath *fp, int last)
1245 {
1246 	int i;
1247 
1248 	for (i = 0; i < last; i++) {
1249 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1250 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1251 		u8 *data = first_buf->data;
1252 
1253 		if (data == NULL) {
1254 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1255 			continue;
1256 		}
1257 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1258 			dma_unmap_single(&bp->pdev->dev,
1259 					 dma_unmap_addr(first_buf, mapping),
1260 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1261 		bnx2x_frag_free(fp, data);
1262 		first_buf->data = NULL;
1263 	}
1264 }
1265 
1266 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1267 {
1268 	int j;
1269 
1270 	for_each_rx_queue_cnic(bp, j) {
1271 		struct bnx2x_fastpath *fp = &bp->fp[j];
1272 
1273 		fp->rx_bd_cons = 0;
1274 
1275 		/* Activate BD ring */
1276 		/* Warning!
1277 		 * this will generate an interrupt (to the TSTORM)
1278 		 * must only be done after chip is initialized
1279 		 */
1280 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1281 				     fp->rx_sge_prod);
1282 	}
1283 }
1284 
1285 void bnx2x_init_rx_rings(struct bnx2x *bp)
1286 {
1287 	int func = BP_FUNC(bp);
1288 	u16 ring_prod;
1289 	int i, j;
1290 
1291 	/* Allocate TPA resources */
1292 	for_each_eth_queue(bp, j) {
1293 		struct bnx2x_fastpath *fp = &bp->fp[j];
1294 
1295 		DP(NETIF_MSG_IFUP,
1296 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1297 
1298 		if (!fp->disable_tpa) {
1299 			/* Fill the per-aggregtion pool */
1300 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1301 				struct bnx2x_agg_info *tpa_info =
1302 					&fp->tpa_info[i];
1303 				struct sw_rx_bd *first_buf =
1304 					&tpa_info->first_buf;
1305 
1306 				first_buf->data = bnx2x_frag_alloc(fp);
1307 				if (!first_buf->data) {
1308 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1309 						  j);
1310 					bnx2x_free_tpa_pool(bp, fp, i);
1311 					fp->disable_tpa = 1;
1312 					break;
1313 				}
1314 				dma_unmap_addr_set(first_buf, mapping, 0);
1315 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1316 			}
1317 
1318 			/* "next page" elements initialization */
1319 			bnx2x_set_next_page_sgl(fp);
1320 
1321 			/* set SGEs bit mask */
1322 			bnx2x_init_sge_ring_bit_mask(fp);
1323 
1324 			/* Allocate SGEs and initialize the ring elements */
1325 			for (i = 0, ring_prod = 0;
1326 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1327 
1328 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod) < 0) {
1329 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1330 						  i);
1331 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1332 						  j);
1333 					/* Cleanup already allocated elements */
1334 					bnx2x_free_rx_sge_range(bp, fp,
1335 								ring_prod);
1336 					bnx2x_free_tpa_pool(bp, fp,
1337 							    MAX_AGG_QS(bp));
1338 					fp->disable_tpa = 1;
1339 					ring_prod = 0;
1340 					break;
1341 				}
1342 				ring_prod = NEXT_SGE_IDX(ring_prod);
1343 			}
1344 
1345 			fp->rx_sge_prod = ring_prod;
1346 		}
1347 	}
1348 
1349 	for_each_eth_queue(bp, j) {
1350 		struct bnx2x_fastpath *fp = &bp->fp[j];
1351 
1352 		fp->rx_bd_cons = 0;
1353 
1354 		/* Activate BD ring */
1355 		/* Warning!
1356 		 * this will generate an interrupt (to the TSTORM)
1357 		 * must only be done after chip is initialized
1358 		 */
1359 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1360 				     fp->rx_sge_prod);
1361 
1362 		if (j != 0)
1363 			continue;
1364 
1365 		if (CHIP_IS_E1(bp)) {
1366 			REG_WR(bp, BAR_USTRORM_INTMEM +
1367 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1368 			       U64_LO(fp->rx_comp_mapping));
1369 			REG_WR(bp, BAR_USTRORM_INTMEM +
1370 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1371 			       U64_HI(fp->rx_comp_mapping));
1372 		}
1373 	}
1374 }
1375 
1376 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1377 {
1378 	u8 cos;
1379 	struct bnx2x *bp = fp->bp;
1380 
1381 	for_each_cos_in_tx_queue(fp, cos) {
1382 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1383 		unsigned pkts_compl = 0, bytes_compl = 0;
1384 
1385 		u16 sw_prod = txdata->tx_pkt_prod;
1386 		u16 sw_cons = txdata->tx_pkt_cons;
1387 
1388 		while (sw_cons != sw_prod) {
1389 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1390 					  &pkts_compl, &bytes_compl);
1391 			sw_cons++;
1392 		}
1393 
1394 		netdev_tx_reset_queue(
1395 			netdev_get_tx_queue(bp->dev,
1396 					    txdata->txq_index));
1397 	}
1398 }
1399 
1400 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1401 {
1402 	int i;
1403 
1404 	for_each_tx_queue_cnic(bp, i) {
1405 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1406 	}
1407 }
1408 
1409 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1410 {
1411 	int i;
1412 
1413 	for_each_eth_queue(bp, i) {
1414 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1415 	}
1416 }
1417 
1418 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1419 {
1420 	struct bnx2x *bp = fp->bp;
1421 	int i;
1422 
1423 	/* ring wasn't allocated */
1424 	if (fp->rx_buf_ring == NULL)
1425 		return;
1426 
1427 	for (i = 0; i < NUM_RX_BD; i++) {
1428 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1429 		u8 *data = rx_buf->data;
1430 
1431 		if (data == NULL)
1432 			continue;
1433 		dma_unmap_single(&bp->pdev->dev,
1434 				 dma_unmap_addr(rx_buf, mapping),
1435 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1436 
1437 		rx_buf->data = NULL;
1438 		bnx2x_frag_free(fp, data);
1439 	}
1440 }
1441 
1442 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1443 {
1444 	int j;
1445 
1446 	for_each_rx_queue_cnic(bp, j) {
1447 		bnx2x_free_rx_bds(&bp->fp[j]);
1448 	}
1449 }
1450 
1451 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1452 {
1453 	int j;
1454 
1455 	for_each_eth_queue(bp, j) {
1456 		struct bnx2x_fastpath *fp = &bp->fp[j];
1457 
1458 		bnx2x_free_rx_bds(fp);
1459 
1460 		if (!fp->disable_tpa)
1461 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1462 	}
1463 }
1464 
1465 void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1466 {
1467 	bnx2x_free_tx_skbs_cnic(bp);
1468 	bnx2x_free_rx_skbs_cnic(bp);
1469 }
1470 
1471 void bnx2x_free_skbs(struct bnx2x *bp)
1472 {
1473 	bnx2x_free_tx_skbs(bp);
1474 	bnx2x_free_rx_skbs(bp);
1475 }
1476 
1477 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1478 {
1479 	/* load old values */
1480 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1481 
1482 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1483 		/* leave all but MAX value */
1484 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1485 
1486 		/* set new MAX value */
1487 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1488 				& FUNC_MF_CFG_MAX_BW_MASK;
1489 
1490 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1491 	}
1492 }
1493 
1494 /**
1495  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1496  *
1497  * @bp:		driver handle
1498  * @nvecs:	number of vectors to be released
1499  */
1500 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1501 {
1502 	int i, offset = 0;
1503 
1504 	if (nvecs == offset)
1505 		return;
1506 
1507 	/* VFs don't have a default SB */
1508 	if (IS_PF(bp)) {
1509 		free_irq(bp->msix_table[offset].vector, bp->dev);
1510 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1511 		   bp->msix_table[offset].vector);
1512 		offset++;
1513 	}
1514 
1515 	if (CNIC_SUPPORT(bp)) {
1516 		if (nvecs == offset)
1517 			return;
1518 		offset++;
1519 	}
1520 
1521 	for_each_eth_queue(bp, i) {
1522 		if (nvecs == offset)
1523 			return;
1524 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1525 		   i, bp->msix_table[offset].vector);
1526 
1527 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1528 	}
1529 }
1530 
1531 void bnx2x_free_irq(struct bnx2x *bp)
1532 {
1533 	if (bp->flags & USING_MSIX_FLAG &&
1534 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1535 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1536 
1537 		/* vfs don't have a default status block */
1538 		if (IS_PF(bp))
1539 			nvecs++;
1540 
1541 		bnx2x_free_msix_irqs(bp, nvecs);
1542 	} else {
1543 		free_irq(bp->dev->irq, bp->dev);
1544 	}
1545 }
1546 
1547 int bnx2x_enable_msix(struct bnx2x *bp)
1548 {
1549 	int msix_vec = 0, i, rc;
1550 
1551 	/* VFs don't have a default status block */
1552 	if (IS_PF(bp)) {
1553 		bp->msix_table[msix_vec].entry = msix_vec;
1554 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1555 			       bp->msix_table[0].entry);
1556 		msix_vec++;
1557 	}
1558 
1559 	/* Cnic requires an msix vector for itself */
1560 	if (CNIC_SUPPORT(bp)) {
1561 		bp->msix_table[msix_vec].entry = msix_vec;
1562 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1563 			       msix_vec, bp->msix_table[msix_vec].entry);
1564 		msix_vec++;
1565 	}
1566 
1567 	/* We need separate vectors for ETH queues only (not FCoE) */
1568 	for_each_eth_queue(bp, i) {
1569 		bp->msix_table[msix_vec].entry = msix_vec;
1570 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1571 			       msix_vec, msix_vec, i);
1572 		msix_vec++;
1573 	}
1574 
1575 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1576 	   msix_vec);
1577 
1578 	rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], msix_vec);
1579 
1580 	/*
1581 	 * reconfigure number of tx/rx queues according to available
1582 	 * MSI-X vectors
1583 	 */
1584 	if (rc >= BNX2X_MIN_MSIX_VEC_CNT(bp)) {
1585 		/* how less vectors we will have? */
1586 		int diff = msix_vec - rc;
1587 
1588 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1589 
1590 		rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc);
1591 
1592 		if (rc) {
1593 			BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1594 			goto no_msix;
1595 		}
1596 		/*
1597 		 * decrease number of queues by number of unallocated entries
1598 		 */
1599 		bp->num_ethernet_queues -= diff;
1600 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1601 
1602 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1603 			       bp->num_queues);
1604 	} else if (rc > 0) {
1605 		/* Get by with single vector */
1606 		rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], 1);
1607 		if (rc) {
1608 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1609 				       rc);
1610 			goto no_msix;
1611 		}
1612 
1613 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1614 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1615 
1616 		BNX2X_DEV_INFO("set number of queues to 1\n");
1617 		bp->num_ethernet_queues = 1;
1618 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1619 	} else if (rc < 0) {
1620 		BNX2X_DEV_INFO("MSI-X is not attainable  rc %d\n", rc);
1621 		goto no_msix;
1622 	}
1623 
1624 	bp->flags |= USING_MSIX_FLAG;
1625 
1626 	return 0;
1627 
1628 no_msix:
1629 	/* fall to INTx if not enough memory */
1630 	if (rc == -ENOMEM)
1631 		bp->flags |= DISABLE_MSI_FLAG;
1632 
1633 	return rc;
1634 }
1635 
1636 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1637 {
1638 	int i, rc, offset = 0;
1639 
1640 	/* no default status block for vf */
1641 	if (IS_PF(bp)) {
1642 		rc = request_irq(bp->msix_table[offset++].vector,
1643 				 bnx2x_msix_sp_int, 0,
1644 				 bp->dev->name, bp->dev);
1645 		if (rc) {
1646 			BNX2X_ERR("request sp irq failed\n");
1647 			return -EBUSY;
1648 		}
1649 	}
1650 
1651 	if (CNIC_SUPPORT(bp))
1652 		offset++;
1653 
1654 	for_each_eth_queue(bp, i) {
1655 		struct bnx2x_fastpath *fp = &bp->fp[i];
1656 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1657 			 bp->dev->name, i);
1658 
1659 		rc = request_irq(bp->msix_table[offset].vector,
1660 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1661 		if (rc) {
1662 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1663 			      bp->msix_table[offset].vector, rc);
1664 			bnx2x_free_msix_irqs(bp, offset);
1665 			return -EBUSY;
1666 		}
1667 
1668 		offset++;
1669 	}
1670 
1671 	i = BNX2X_NUM_ETH_QUEUES(bp);
1672 	if (IS_PF(bp)) {
1673 		offset = 1 + CNIC_SUPPORT(bp);
1674 		netdev_info(bp->dev,
1675 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1676 			    bp->msix_table[0].vector,
1677 			    0, bp->msix_table[offset].vector,
1678 			    i - 1, bp->msix_table[offset + i - 1].vector);
1679 	} else {
1680 		offset = CNIC_SUPPORT(bp);
1681 		netdev_info(bp->dev,
1682 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1683 			    0, bp->msix_table[offset].vector,
1684 			    i - 1, bp->msix_table[offset + i - 1].vector);
1685 	}
1686 	return 0;
1687 }
1688 
1689 int bnx2x_enable_msi(struct bnx2x *bp)
1690 {
1691 	int rc;
1692 
1693 	rc = pci_enable_msi(bp->pdev);
1694 	if (rc) {
1695 		BNX2X_DEV_INFO("MSI is not attainable\n");
1696 		return -1;
1697 	}
1698 	bp->flags |= USING_MSI_FLAG;
1699 
1700 	return 0;
1701 }
1702 
1703 static int bnx2x_req_irq(struct bnx2x *bp)
1704 {
1705 	unsigned long flags;
1706 	unsigned int irq;
1707 
1708 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1709 		flags = 0;
1710 	else
1711 		flags = IRQF_SHARED;
1712 
1713 	if (bp->flags & USING_MSIX_FLAG)
1714 		irq = bp->msix_table[0].vector;
1715 	else
1716 		irq = bp->pdev->irq;
1717 
1718 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1719 }
1720 
1721 static int bnx2x_setup_irqs(struct bnx2x *bp)
1722 {
1723 	int rc = 0;
1724 	if (bp->flags & USING_MSIX_FLAG &&
1725 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1726 		rc = bnx2x_req_msix_irqs(bp);
1727 		if (rc)
1728 			return rc;
1729 	} else {
1730 		rc = bnx2x_req_irq(bp);
1731 		if (rc) {
1732 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1733 			return rc;
1734 		}
1735 		if (bp->flags & USING_MSI_FLAG) {
1736 			bp->dev->irq = bp->pdev->irq;
1737 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1738 				    bp->dev->irq);
1739 		}
1740 		if (bp->flags & USING_MSIX_FLAG) {
1741 			bp->dev->irq = bp->msix_table[0].vector;
1742 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1743 				    bp->dev->irq);
1744 		}
1745 	}
1746 
1747 	return 0;
1748 }
1749 
1750 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1751 {
1752 	int i;
1753 
1754 	for_each_rx_queue_cnic(bp, i)
1755 		napi_enable(&bnx2x_fp(bp, i, napi));
1756 }
1757 
1758 static void bnx2x_napi_enable(struct bnx2x *bp)
1759 {
1760 	int i;
1761 
1762 	for_each_eth_queue(bp, i)
1763 		napi_enable(&bnx2x_fp(bp, i, napi));
1764 }
1765 
1766 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1767 {
1768 	int i;
1769 
1770 	for_each_rx_queue_cnic(bp, i)
1771 		napi_disable(&bnx2x_fp(bp, i, napi));
1772 }
1773 
1774 static void bnx2x_napi_disable(struct bnx2x *bp)
1775 {
1776 	int i;
1777 
1778 	for_each_eth_queue(bp, i)
1779 		napi_disable(&bnx2x_fp(bp, i, napi));
1780 }
1781 
1782 void bnx2x_netif_start(struct bnx2x *bp)
1783 {
1784 	if (netif_running(bp->dev)) {
1785 		bnx2x_napi_enable(bp);
1786 		if (CNIC_LOADED(bp))
1787 			bnx2x_napi_enable_cnic(bp);
1788 		bnx2x_int_enable(bp);
1789 		if (bp->state == BNX2X_STATE_OPEN)
1790 			netif_tx_wake_all_queues(bp->dev);
1791 	}
1792 }
1793 
1794 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1795 {
1796 	bnx2x_int_disable_sync(bp, disable_hw);
1797 	bnx2x_napi_disable(bp);
1798 	if (CNIC_LOADED(bp))
1799 		bnx2x_napi_disable_cnic(bp);
1800 }
1801 
1802 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb)
1803 {
1804 	struct bnx2x *bp = netdev_priv(dev);
1805 
1806 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1807 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1808 		u16 ether_type = ntohs(hdr->h_proto);
1809 
1810 		/* Skip VLAN tag if present */
1811 		if (ether_type == ETH_P_8021Q) {
1812 			struct vlan_ethhdr *vhdr =
1813 				(struct vlan_ethhdr *)skb->data;
1814 
1815 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1816 		}
1817 
1818 		/* If ethertype is FCoE or FIP - use FCoE ring */
1819 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1820 			return bnx2x_fcoe_tx(bp, txq_index);
1821 	}
1822 
1823 	/* select a non-FCoE queue */
1824 	return __skb_tx_hash(dev, skb, BNX2X_NUM_ETH_QUEUES(bp));
1825 }
1826 
1827 void bnx2x_set_num_queues(struct bnx2x *bp)
1828 {
1829 	/* RSS queues */
1830 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1831 
1832 	/* override in STORAGE SD modes */
1833 	if (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))
1834 		bp->num_ethernet_queues = 1;
1835 
1836 	/* Add special queues */
1837 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1838 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1839 
1840 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1841 }
1842 
1843 /**
1844  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1845  *
1846  * @bp:		Driver handle
1847  *
1848  * We currently support for at most 16 Tx queues for each CoS thus we will
1849  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1850  * bp->max_cos.
1851  *
1852  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1853  * index after all ETH L2 indices.
1854  *
1855  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1856  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1857  * 16..31,...) with indicies that are not coupled with any real Tx queue.
1858  *
1859  * The proper configuration of skb->queue_mapping is handled by
1860  * bnx2x_select_queue() and __skb_tx_hash().
1861  *
1862  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1863  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1864  */
1865 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1866 {
1867 	int rc, tx, rx;
1868 
1869 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1870 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1871 
1872 /* account for fcoe queue */
1873 	if (include_cnic && !NO_FCOE(bp)) {
1874 		rx++;
1875 		tx++;
1876 	}
1877 
1878 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
1879 	if (rc) {
1880 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1881 		return rc;
1882 	}
1883 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
1884 	if (rc) {
1885 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1886 		return rc;
1887 	}
1888 
1889 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
1890 			  tx, rx);
1891 
1892 	return rc;
1893 }
1894 
1895 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
1896 {
1897 	int i;
1898 
1899 	for_each_queue(bp, i) {
1900 		struct bnx2x_fastpath *fp = &bp->fp[i];
1901 		u32 mtu;
1902 
1903 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
1904 		if (IS_FCOE_IDX(i))
1905 			/*
1906 			 * Although there are no IP frames expected to arrive to
1907 			 * this ring we still want to add an
1908 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
1909 			 * overrun attack.
1910 			 */
1911 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
1912 		else
1913 			mtu = bp->dev->mtu;
1914 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
1915 				  IP_HEADER_ALIGNMENT_PADDING +
1916 				  ETH_OVREHEAD +
1917 				  mtu +
1918 				  BNX2X_FW_RX_ALIGN_END;
1919 		/* Note : rx_buf_size doesnt take into account NET_SKB_PAD */
1920 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
1921 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
1922 		else
1923 			fp->rx_frag_size = 0;
1924 	}
1925 }
1926 
1927 static int bnx2x_init_rss_pf(struct bnx2x *bp)
1928 {
1929 	int i;
1930 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
1931 
1932 	/* Prepare the initial contents fo the indirection table if RSS is
1933 	 * enabled
1934 	 */
1935 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
1936 		bp->rss_conf_obj.ind_table[i] =
1937 			bp->fp->cl_id +
1938 			ethtool_rxfh_indir_default(i, num_eth_queues);
1939 
1940 	/*
1941 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
1942 	 * per-port, so if explicit configuration is needed , do it only
1943 	 * for a PMF.
1944 	 *
1945 	 * For 57712 and newer on the other hand it's a per-function
1946 	 * configuration.
1947 	 */
1948 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
1949 }
1950 
1951 int bnx2x_config_rss_pf(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
1952 			bool config_hash)
1953 {
1954 	struct bnx2x_config_rss_params params = {NULL};
1955 
1956 	/* Although RSS is meaningless when there is a single HW queue we
1957 	 * still need it enabled in order to have HW Rx hash generated.
1958 	 *
1959 	 * if (!is_eth_multi(bp))
1960 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
1961 	 */
1962 
1963 	params.rss_obj = rss_obj;
1964 
1965 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
1966 
1967 	__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
1968 
1969 	/* RSS configuration */
1970 	__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
1971 	__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
1972 	__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
1973 	__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
1974 	if (rss_obj->udp_rss_v4)
1975 		__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
1976 	if (rss_obj->udp_rss_v6)
1977 		__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
1978 
1979 	/* Hash bits */
1980 	params.rss_result_mask = MULTI_MASK;
1981 
1982 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
1983 
1984 	if (config_hash) {
1985 		/* RSS keys */
1986 		prandom_bytes(params.rss_key, sizeof(params.rss_key));
1987 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
1988 	}
1989 
1990 	return bnx2x_config_rss(bp, &params);
1991 }
1992 
1993 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
1994 {
1995 	struct bnx2x_func_state_params func_params = {NULL};
1996 
1997 	/* Prepare parameters for function state transitions */
1998 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1999 
2000 	func_params.f_obj = &bp->func_obj;
2001 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2002 
2003 	func_params.params.hw_init.load_phase = load_code;
2004 
2005 	return bnx2x_func_state_change(bp, &func_params);
2006 }
2007 
2008 /*
2009  * Cleans the object that have internal lists without sending
2010  * ramrods. Should be run when interrutps are disabled.
2011  */
2012 static void bnx2x_squeeze_objects(struct bnx2x *bp)
2013 {
2014 	int rc;
2015 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2016 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2017 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2018 
2019 	/***************** Cleanup MACs' object first *************************/
2020 
2021 	/* Wait for completion of requested */
2022 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2023 	/* Perform a dry cleanup */
2024 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2025 
2026 	/* Clean ETH primary MAC */
2027 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2028 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2029 				 &ramrod_flags);
2030 	if (rc != 0)
2031 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2032 
2033 	/* Cleanup UC list */
2034 	vlan_mac_flags = 0;
2035 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2036 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2037 				 &ramrod_flags);
2038 	if (rc != 0)
2039 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2040 
2041 	/***************** Now clean mcast object *****************************/
2042 	rparam.mcast_obj = &bp->mcast_obj;
2043 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2044 
2045 	/* Add a DEL command... */
2046 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2047 	if (rc < 0)
2048 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2049 			  rc);
2050 
2051 	/* ...and wait until all pending commands are cleared */
2052 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2053 	while (rc != 0) {
2054 		if (rc < 0) {
2055 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2056 				  rc);
2057 			return;
2058 		}
2059 
2060 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2061 	}
2062 }
2063 
2064 #ifndef BNX2X_STOP_ON_ERROR
2065 #define LOAD_ERROR_EXIT(bp, label) \
2066 	do { \
2067 		(bp)->state = BNX2X_STATE_ERROR; \
2068 		goto label; \
2069 	} while (0)
2070 
2071 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2072 	do { \
2073 		bp->cnic_loaded = false; \
2074 		goto label; \
2075 	} while (0)
2076 #else /*BNX2X_STOP_ON_ERROR*/
2077 #define LOAD_ERROR_EXIT(bp, label) \
2078 	do { \
2079 		(bp)->state = BNX2X_STATE_ERROR; \
2080 		(bp)->panic = 1; \
2081 		return -EBUSY; \
2082 	} while (0)
2083 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2084 	do { \
2085 		bp->cnic_loaded = false; \
2086 		(bp)->panic = 1; \
2087 		return -EBUSY; \
2088 	} while (0)
2089 #endif /*BNX2X_STOP_ON_ERROR*/
2090 
2091 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2092 {
2093 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2094 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2095 	return;
2096 }
2097 
2098 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2099 {
2100 	int num_groups, vf_headroom = 0;
2101 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2102 
2103 	/* number of queues for statistics is number of eth queues + FCoE */
2104 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2105 
2106 	/* Total number of FW statistics requests =
2107 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2108 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2109 	 * for fcoe l2 queue if applicable)
2110 	 */
2111 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2112 
2113 	/* vf stats appear in the request list, but their data is allocated by
2114 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2115 	 * it is used to determine where to place the vf stats queries in the
2116 	 * request struct
2117 	 */
2118 	if (IS_SRIOV(bp))
2119 		vf_headroom = bnx2x_vf_headroom(bp);
2120 
2121 	/* Request is built from stats_query_header and an array of
2122 	 * stats_query_cmd_group each of which contains
2123 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2124 	 * configured in the stats_query_header.
2125 	 */
2126 	num_groups =
2127 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2128 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2129 		 1 : 0));
2130 
2131 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2132 	   bp->fw_stats_num, vf_headroom, num_groups);
2133 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2134 		num_groups * sizeof(struct stats_query_cmd_group);
2135 
2136 	/* Data for statistics requests + stats_counter
2137 	 * stats_counter holds per-STORM counters that are incremented
2138 	 * when STORM has finished with the current request.
2139 	 * memory for FCoE offloaded statistics are counted anyway,
2140 	 * even if they will not be sent.
2141 	 * VF stats are not accounted for here as the data of VF stats is stored
2142 	 * in memory allocated by the VF, not here.
2143 	 */
2144 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2145 		sizeof(struct per_pf_stats) +
2146 		sizeof(struct fcoe_statistics_params) +
2147 		sizeof(struct per_queue_stats) * num_queue_stats +
2148 		sizeof(struct stats_counter);
2149 
2150 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
2151 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2152 
2153 	/* Set shortcuts */
2154 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2155 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2156 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2157 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2158 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2159 		bp->fw_stats_req_sz;
2160 
2161 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x",
2162 	   U64_HI(bp->fw_stats_req_mapping),
2163 	   U64_LO(bp->fw_stats_req_mapping));
2164 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x",
2165 	   U64_HI(bp->fw_stats_data_mapping),
2166 	   U64_LO(bp->fw_stats_data_mapping));
2167 	return 0;
2168 
2169 alloc_mem_err:
2170 	bnx2x_free_fw_stats_mem(bp);
2171 	BNX2X_ERR("Can't allocate FW stats memory\n");
2172 	return -ENOMEM;
2173 }
2174 
2175 /* send load request to mcp and analyze response */
2176 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2177 {
2178 	/* init fw_seq */
2179 	bp->fw_seq =
2180 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2181 		 DRV_MSG_SEQ_NUMBER_MASK);
2182 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2183 
2184 	/* Get current FW pulse sequence */
2185 	bp->fw_drv_pulse_wr_seq =
2186 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2187 		 DRV_PULSE_SEQ_MASK);
2188 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2189 
2190 	/* load request */
2191 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
2192 					DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2193 
2194 	/* if mcp fails to respond we must abort */
2195 	if (!(*load_code)) {
2196 		BNX2X_ERR("MCP response failure, aborting\n");
2197 		return -EBUSY;
2198 	}
2199 
2200 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2201 	 * must abort
2202 	 */
2203 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2204 		BNX2X_ERR("MCP refused load request, aborting\n");
2205 		return -EBUSY;
2206 	}
2207 	return 0;
2208 }
2209 
2210 /* check whether another PF has already loaded FW to chip. In
2211  * virtualized environments a pf from another VM may have already
2212  * initialized the device including loading FW
2213  */
2214 int bnx2x_nic_load_analyze_req(struct bnx2x *bp, u32 load_code)
2215 {
2216 	/* is another pf loaded on this engine? */
2217 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2218 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2219 		/* build my FW version dword */
2220 		u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2221 			(BCM_5710_FW_MINOR_VERSION << 8) +
2222 			(BCM_5710_FW_REVISION_VERSION << 16) +
2223 			(BCM_5710_FW_ENGINEERING_VERSION << 24);
2224 
2225 		/* read loaded FW from chip */
2226 		u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2227 
2228 		DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2229 		   loaded_fw, my_fw);
2230 
2231 		/* abort nic load if version mismatch */
2232 		if (my_fw != loaded_fw) {
2233 			BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. aborting\n",
2234 				  loaded_fw, my_fw);
2235 			return -EBUSY;
2236 		}
2237 	}
2238 	return 0;
2239 }
2240 
2241 /* returns the "mcp load_code" according to global load_count array */
2242 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2243 {
2244 	int path = BP_PATH(bp);
2245 
2246 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2247 	   path, load_count[path][0], load_count[path][1],
2248 	   load_count[path][2]);
2249 	load_count[path][0]++;
2250 	load_count[path][1 + port]++;
2251 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2252 	   path, load_count[path][0], load_count[path][1],
2253 	   load_count[path][2]);
2254 	if (load_count[path][0] == 1)
2255 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2256 	else if (load_count[path][1 + port] == 1)
2257 		return FW_MSG_CODE_DRV_LOAD_PORT;
2258 	else
2259 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2260 }
2261 
2262 /* mark PMF if applicable */
2263 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2264 {
2265 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2266 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2267 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2268 		bp->port.pmf = 1;
2269 		/* We need the barrier to ensure the ordering between the
2270 		 * writing to bp->port.pmf here and reading it from the
2271 		 * bnx2x_periodic_task().
2272 		 */
2273 		smp_mb();
2274 	} else {
2275 		bp->port.pmf = 0;
2276 	}
2277 
2278 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2279 }
2280 
2281 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2282 {
2283 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2284 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2285 	    (bp->common.shmem2_base)) {
2286 		if (SHMEM2_HAS(bp, dcc_support))
2287 			SHMEM2_WR(bp, dcc_support,
2288 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2289 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2290 		if (SHMEM2_HAS(bp, afex_driver_support))
2291 			SHMEM2_WR(bp, afex_driver_support,
2292 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2293 	}
2294 
2295 	/* Set AFEX default VLAN tag to an invalid value */
2296 	bp->afex_def_vlan_tag = -1;
2297 }
2298 
2299 /**
2300  * bnx2x_bz_fp - zero content of the fastpath structure.
2301  *
2302  * @bp:		driver handle
2303  * @index:	fastpath index to be zeroed
2304  *
2305  * Makes sure the contents of the bp->fp[index].napi is kept
2306  * intact.
2307  */
2308 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2309 {
2310 	struct bnx2x_fastpath *fp = &bp->fp[index];
2311 
2312 	int cos;
2313 	struct napi_struct orig_napi = fp->napi;
2314 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2315 	/* bzero bnx2x_fastpath contents */
2316 	if (fp->tpa_info)
2317 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2318 		       sizeof(struct bnx2x_agg_info));
2319 	memset(fp, 0, sizeof(*fp));
2320 
2321 	/* Restore the NAPI object as it has been already initialized */
2322 	fp->napi = orig_napi;
2323 	fp->tpa_info = orig_tpa_info;
2324 	fp->bp = bp;
2325 	fp->index = index;
2326 	if (IS_ETH_FP(fp))
2327 		fp->max_cos = bp->max_cos;
2328 	else
2329 		/* Special queues support only one CoS */
2330 		fp->max_cos = 1;
2331 
2332 	/* Init txdata pointers */
2333 	if (IS_FCOE_FP(fp))
2334 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2335 	if (IS_ETH_FP(fp))
2336 		for_each_cos_in_tx_queue(fp, cos)
2337 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2338 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2339 
2340 	/*
2341 	 * set the tpa flag for each queue. The tpa flag determines the queue
2342 	 * minimal size so it must be set prior to queue memory allocation
2343 	 */
2344 	fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG ||
2345 				  (bp->flags & GRO_ENABLE_FLAG &&
2346 				   bnx2x_mtu_allows_gro(bp->dev->mtu)));
2347 	if (bp->flags & TPA_ENABLE_FLAG)
2348 		fp->mode = TPA_MODE_LRO;
2349 	else if (bp->flags & GRO_ENABLE_FLAG)
2350 		fp->mode = TPA_MODE_GRO;
2351 
2352 	/* We don't want TPA on an FCoE L2 ring */
2353 	if (IS_FCOE_FP(fp))
2354 		fp->disable_tpa = 1;
2355 }
2356 
2357 int bnx2x_load_cnic(struct bnx2x *bp)
2358 {
2359 	int i, rc, port = BP_PORT(bp);
2360 
2361 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2362 
2363 	mutex_init(&bp->cnic_mutex);
2364 
2365 	if (IS_PF(bp)) {
2366 		rc = bnx2x_alloc_mem_cnic(bp);
2367 		if (rc) {
2368 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2369 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2370 		}
2371 	}
2372 
2373 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2374 	if (rc) {
2375 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2376 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2377 	}
2378 
2379 	/* Update the number of queues with the cnic queues */
2380 	rc = bnx2x_set_real_num_queues(bp, 1);
2381 	if (rc) {
2382 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2383 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2384 	}
2385 
2386 	/* Add all CNIC NAPI objects */
2387 	bnx2x_add_all_napi_cnic(bp);
2388 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2389 	bnx2x_napi_enable_cnic(bp);
2390 
2391 	rc = bnx2x_init_hw_func_cnic(bp);
2392 	if (rc)
2393 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2394 
2395 	bnx2x_nic_init_cnic(bp);
2396 
2397 	if (IS_PF(bp)) {
2398 		/* Enable Timer scan */
2399 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2400 
2401 		/* setup cnic queues */
2402 		for_each_cnic_queue(bp, i) {
2403 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2404 			if (rc) {
2405 				BNX2X_ERR("Queue setup failed\n");
2406 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2407 			}
2408 		}
2409 	}
2410 
2411 	/* Initialize Rx filter. */
2412 	netif_addr_lock_bh(bp->dev);
2413 	bnx2x_set_rx_mode(bp->dev);
2414 	netif_addr_unlock_bh(bp->dev);
2415 
2416 	/* re-read iscsi info */
2417 	bnx2x_get_iscsi_info(bp);
2418 	bnx2x_setup_cnic_irq_info(bp);
2419 	bnx2x_setup_cnic_info(bp);
2420 	bp->cnic_loaded = true;
2421 	if (bp->state == BNX2X_STATE_OPEN)
2422 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2423 
2424 
2425 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2426 
2427 	return 0;
2428 
2429 #ifndef BNX2X_STOP_ON_ERROR
2430 load_error_cnic2:
2431 	/* Disable Timer scan */
2432 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2433 
2434 load_error_cnic1:
2435 	bnx2x_napi_disable_cnic(bp);
2436 	/* Update the number of queues without the cnic queues */
2437 	rc = bnx2x_set_real_num_queues(bp, 0);
2438 	if (rc)
2439 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2440 load_error_cnic0:
2441 	BNX2X_ERR("CNIC-related load failed\n");
2442 	bnx2x_free_fp_mem_cnic(bp);
2443 	bnx2x_free_mem_cnic(bp);
2444 	return rc;
2445 #endif /* ! BNX2X_STOP_ON_ERROR */
2446 }
2447 
2448 /* must be called with rtnl_lock */
2449 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2450 {
2451 	int port = BP_PORT(bp);
2452 	int i, rc = 0, load_code = 0;
2453 
2454 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2455 	DP(NETIF_MSG_IFUP,
2456 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2457 
2458 #ifdef BNX2X_STOP_ON_ERROR
2459 	if (unlikely(bp->panic)) {
2460 		BNX2X_ERR("Can't load NIC when there is panic\n");
2461 		return -EPERM;
2462 	}
2463 #endif
2464 
2465 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2466 
2467 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2468 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2469 		&bp->last_reported_link.link_report_flags);
2470 
2471 	if (IS_PF(bp))
2472 		/* must be called before memory allocation and HW init */
2473 		bnx2x_ilt_set_info(bp);
2474 
2475 	/*
2476 	 * Zero fastpath structures preserving invariants like napi, which are
2477 	 * allocated only once, fp index, max_cos, bp pointer.
2478 	 * Also set fp->disable_tpa and txdata_ptr.
2479 	 */
2480 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2481 	for_each_queue(bp, i)
2482 		bnx2x_bz_fp(bp, i);
2483 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2484 				  bp->num_cnic_queues) *
2485 				  sizeof(struct bnx2x_fp_txdata));
2486 
2487 	bp->fcoe_init = false;
2488 
2489 	/* Set the receive queues buffer size */
2490 	bnx2x_set_rx_buf_size(bp);
2491 
2492 	if (IS_PF(bp)) {
2493 		rc = bnx2x_alloc_mem(bp);
2494 		if (rc) {
2495 			BNX2X_ERR("Unable to allocate bp memory\n");
2496 			return rc;
2497 		}
2498 	}
2499 
2500 	/* Allocated memory for FW statistics  */
2501 	if (bnx2x_alloc_fw_stats_mem(bp))
2502 		LOAD_ERROR_EXIT(bp, load_error0);
2503 
2504 	/* need to be done after alloc mem, since it's self adjusting to amount
2505 	 * of memory available for RSS queues
2506 	 */
2507 	rc = bnx2x_alloc_fp_mem(bp);
2508 	if (rc) {
2509 		BNX2X_ERR("Unable to allocate memory for fps\n");
2510 		LOAD_ERROR_EXIT(bp, load_error0);
2511 	}
2512 
2513 	/* request pf to initialize status blocks */
2514 	if (IS_VF(bp)) {
2515 		rc = bnx2x_vfpf_init(bp);
2516 		if (rc)
2517 			LOAD_ERROR_EXIT(bp, load_error0);
2518 	}
2519 
2520 	/* As long as bnx2x_alloc_mem() may possibly update
2521 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2522 	 * come after it. At this stage cnic queues are not counted.
2523 	 */
2524 	rc = bnx2x_set_real_num_queues(bp, 0);
2525 	if (rc) {
2526 		BNX2X_ERR("Unable to set real_num_queues\n");
2527 		LOAD_ERROR_EXIT(bp, load_error0);
2528 	}
2529 
2530 	/* configure multi cos mappings in kernel.
2531 	 * this configuration may be overriden by a multi class queue discipline
2532 	 * or by a dcbx negotiation result.
2533 	 */
2534 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2535 
2536 	/* Add all NAPI objects */
2537 	bnx2x_add_all_napi(bp);
2538 	DP(NETIF_MSG_IFUP, "napi added\n");
2539 	bnx2x_napi_enable(bp);
2540 
2541 	if (IS_PF(bp)) {
2542 		/* set pf load just before approaching the MCP */
2543 		bnx2x_set_pf_load(bp);
2544 
2545 		/* if mcp exists send load request and analyze response */
2546 		if (!BP_NOMCP(bp)) {
2547 			/* attempt to load pf */
2548 			rc = bnx2x_nic_load_request(bp, &load_code);
2549 			if (rc)
2550 				LOAD_ERROR_EXIT(bp, load_error1);
2551 
2552 			/* what did mcp say? */
2553 			rc = bnx2x_nic_load_analyze_req(bp, load_code);
2554 			if (rc) {
2555 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2556 				LOAD_ERROR_EXIT(bp, load_error2);
2557 			}
2558 		} else {
2559 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2560 		}
2561 
2562 		/* mark pmf if applicable */
2563 		bnx2x_nic_load_pmf(bp, load_code);
2564 
2565 		/* Init Function state controlling object */
2566 		bnx2x__init_func_obj(bp);
2567 
2568 		/* Initialize HW */
2569 		rc = bnx2x_init_hw(bp, load_code);
2570 		if (rc) {
2571 			BNX2X_ERR("HW init failed, aborting\n");
2572 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2573 			LOAD_ERROR_EXIT(bp, load_error2);
2574 		}
2575 	}
2576 
2577 	/* Connect to IRQs */
2578 	rc = bnx2x_setup_irqs(bp);
2579 	if (rc) {
2580 		BNX2X_ERR("setup irqs failed\n");
2581 		if (IS_PF(bp))
2582 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2583 		LOAD_ERROR_EXIT(bp, load_error2);
2584 	}
2585 
2586 	/* Setup NIC internals and enable interrupts */
2587 	bnx2x_nic_init(bp, load_code);
2588 
2589 	/* Init per-function objects */
2590 	if (IS_PF(bp)) {
2591 		bnx2x_init_bp_objs(bp);
2592 		bnx2x_iov_nic_init(bp);
2593 
2594 		/* Set AFEX default VLAN tag to an invalid value */
2595 		bp->afex_def_vlan_tag = -1;
2596 		bnx2x_nic_load_afex_dcc(bp, load_code);
2597 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2598 		rc = bnx2x_func_start(bp);
2599 		if (rc) {
2600 			BNX2X_ERR("Function start failed!\n");
2601 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2602 
2603 			LOAD_ERROR_EXIT(bp, load_error3);
2604 		}
2605 
2606 		/* Send LOAD_DONE command to MCP */
2607 		if (!BP_NOMCP(bp)) {
2608 			load_code = bnx2x_fw_command(bp,
2609 						     DRV_MSG_CODE_LOAD_DONE, 0);
2610 			if (!load_code) {
2611 				BNX2X_ERR("MCP response failure, aborting\n");
2612 				rc = -EBUSY;
2613 				LOAD_ERROR_EXIT(bp, load_error3);
2614 			}
2615 		}
2616 
2617 		/* setup the leading queue */
2618 		rc = bnx2x_setup_leading(bp);
2619 		if (rc) {
2620 			BNX2X_ERR("Setup leading failed!\n");
2621 			LOAD_ERROR_EXIT(bp, load_error3);
2622 		}
2623 
2624 		/* set up the rest of the queues */
2625 		for_each_nondefault_eth_queue(bp, i) {
2626 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2627 			if (rc) {
2628 				BNX2X_ERR("Queue setup failed\n");
2629 				LOAD_ERROR_EXIT(bp, load_error3);
2630 			}
2631 		}
2632 
2633 		/* setup rss */
2634 		rc = bnx2x_init_rss_pf(bp);
2635 		if (rc) {
2636 			BNX2X_ERR("PF RSS init failed\n");
2637 			LOAD_ERROR_EXIT(bp, load_error3);
2638 		}
2639 
2640 	} else { /* vf */
2641 		for_each_eth_queue(bp, i) {
2642 			rc = bnx2x_vfpf_setup_q(bp, i);
2643 			if (rc) {
2644 				BNX2X_ERR("Queue setup failed\n");
2645 				LOAD_ERROR_EXIT(bp, load_error3);
2646 			}
2647 		}
2648 	}
2649 
2650 	/* Now when Clients are configured we are ready to work */
2651 	bp->state = BNX2X_STATE_OPEN;
2652 
2653 	/* Configure a ucast MAC */
2654 	if (IS_PF(bp))
2655 		rc = bnx2x_set_eth_mac(bp, true);
2656 	else /* vf */
2657 		rc = bnx2x_vfpf_set_mac(bp);
2658 	if (rc) {
2659 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2660 		LOAD_ERROR_EXIT(bp, load_error3);
2661 	}
2662 
2663 	if (IS_PF(bp) && bp->pending_max) {
2664 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2665 		bp->pending_max = 0;
2666 	}
2667 
2668 	if (bp->port.pmf) {
2669 		rc = bnx2x_initial_phy_init(bp, load_mode);
2670 		if (rc)
2671 			LOAD_ERROR_EXIT(bp, load_error3);
2672 	}
2673 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2674 
2675 	/* Start fast path */
2676 
2677 	/* Initialize Rx filter. */
2678 	netif_addr_lock_bh(bp->dev);
2679 	bnx2x_set_rx_mode(bp->dev);
2680 	netif_addr_unlock_bh(bp->dev);
2681 
2682 	/* Start the Tx */
2683 	switch (load_mode) {
2684 	case LOAD_NORMAL:
2685 		/* Tx queue should be only reenabled */
2686 		netif_tx_wake_all_queues(bp->dev);
2687 		break;
2688 
2689 	case LOAD_OPEN:
2690 		netif_tx_start_all_queues(bp->dev);
2691 		smp_mb__after_clear_bit();
2692 		break;
2693 
2694 	case LOAD_DIAG:
2695 	case LOAD_LOOPBACK_EXT:
2696 		bp->state = BNX2X_STATE_DIAG;
2697 		break;
2698 
2699 	default:
2700 		break;
2701 	}
2702 
2703 	if (bp->port.pmf)
2704 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2705 	else
2706 		bnx2x__link_status_update(bp);
2707 
2708 	/* start the timer */
2709 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2710 
2711 	if (CNIC_ENABLED(bp))
2712 		bnx2x_load_cnic(bp);
2713 
2714 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2715 		/* mark driver is loaded in shmem2 */
2716 		u32 val;
2717 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2718 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2719 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2720 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2721 	}
2722 
2723 	/* Wait for all pending SP commands to complete */
2724 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2725 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2726 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2727 		return -EBUSY;
2728 	}
2729 
2730 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2731 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2732 		bnx2x_dcbx_init(bp, false);
2733 
2734 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2735 
2736 	return 0;
2737 
2738 #ifndef BNX2X_STOP_ON_ERROR
2739 load_error3:
2740 	if (IS_PF(bp)) {
2741 		bnx2x_int_disable_sync(bp, 1);
2742 
2743 		/* Clean queueable objects */
2744 		bnx2x_squeeze_objects(bp);
2745 	}
2746 
2747 	/* Free SKBs, SGEs, TPA pool and driver internals */
2748 	bnx2x_free_skbs(bp);
2749 	for_each_rx_queue(bp, i)
2750 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2751 
2752 	/* Release IRQs */
2753 	bnx2x_free_irq(bp);
2754 load_error2:
2755 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2756 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2757 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2758 	}
2759 
2760 	bp->port.pmf = 0;
2761 load_error1:
2762 	bnx2x_napi_disable(bp);
2763 
2764 	/* clear pf_load status, as it was already set */
2765 	if (IS_PF(bp))
2766 		bnx2x_clear_pf_load(bp);
2767 load_error0:
2768 	bnx2x_free_fp_mem(bp);
2769 	bnx2x_free_fw_stats_mem(bp);
2770 	bnx2x_free_mem(bp);
2771 
2772 	return rc;
2773 #endif /* ! BNX2X_STOP_ON_ERROR */
2774 }
2775 
2776 static int bnx2x_drain_tx_queues(struct bnx2x *bp)
2777 {
2778 	u8 rc = 0, cos, i;
2779 
2780 	/* Wait until tx fastpath tasks complete */
2781 	for_each_tx_queue(bp, i) {
2782 		struct bnx2x_fastpath *fp = &bp->fp[i];
2783 
2784 		for_each_cos_in_tx_queue(fp, cos)
2785 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2786 		if (rc)
2787 			return rc;
2788 	}
2789 	return 0;
2790 }
2791 
2792 /* must be called with rtnl_lock */
2793 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2794 {
2795 	int i;
2796 	bool global = false;
2797 
2798 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2799 
2800 	/* mark driver is unloaded in shmem2 */
2801 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2802 		u32 val;
2803 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2804 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2805 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2806 	}
2807 
2808 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2809 	    (bp->state == BNX2X_STATE_CLOSED ||
2810 	     bp->state == BNX2X_STATE_ERROR)) {
2811 		/* We can get here if the driver has been unloaded
2812 		 * during parity error recovery and is either waiting for a
2813 		 * leader to complete or for other functions to unload and
2814 		 * then ifdown has been issued. In this case we want to
2815 		 * unload and let other functions to complete a recovery
2816 		 * process.
2817 		 */
2818 		bp->recovery_state = BNX2X_RECOVERY_DONE;
2819 		bp->is_leader = 0;
2820 		bnx2x_release_leader_lock(bp);
2821 		smp_mb();
2822 
2823 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
2824 		BNX2X_ERR("Can't unload in closed or error state\n");
2825 		return -EINVAL;
2826 	}
2827 
2828 	/* Nothing to do during unload if previous bnx2x_nic_load()
2829 	 * have not completed succesfully - all resourses are released.
2830 	 *
2831 	 * we can get here only after unsuccessful ndo_* callback, during which
2832 	 * dev->IFF_UP flag is still on.
2833 	 */
2834 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
2835 		return 0;
2836 
2837 	/* It's important to set the bp->state to the value different from
2838 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
2839 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
2840 	 */
2841 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
2842 	smp_mb();
2843 
2844 	if (CNIC_LOADED(bp))
2845 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
2846 
2847 	/* Stop Tx */
2848 	bnx2x_tx_disable(bp);
2849 	netdev_reset_tc(bp->dev);
2850 
2851 	bp->rx_mode = BNX2X_RX_MODE_NONE;
2852 
2853 	del_timer_sync(&bp->timer);
2854 
2855 	if (IS_PF(bp)) {
2856 		/* Set ALWAYS_ALIVE bit in shmem */
2857 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2858 		bnx2x_drv_pulse(bp);
2859 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2860 		bnx2x_save_statistics(bp);
2861 	}
2862 
2863 	/* wait till consumers catch up with producers in all queues */
2864 	bnx2x_drain_tx_queues(bp);
2865 
2866 	/* if VF indicate to PF this function is going down (PF will delete sp
2867 	 * elements and clear initializations
2868 	 */
2869 	if (IS_VF(bp))
2870 		bnx2x_vfpf_close_vf(bp);
2871 	else if (unload_mode != UNLOAD_RECOVERY)
2872 		/* if this is a normal/close unload need to clean up chip*/
2873 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
2874 	else {
2875 		/* Send the UNLOAD_REQUEST to the MCP */
2876 		bnx2x_send_unload_req(bp, unload_mode);
2877 
2878 		/*
2879 		 * Prevent transactions to host from the functions on the
2880 		 * engine that doesn't reset global blocks in case of global
2881 		 * attention once gloabl blocks are reset and gates are opened
2882 		 * (the engine which leader will perform the recovery
2883 		 * last).
2884 		 */
2885 		if (!CHIP_IS_E1x(bp))
2886 			bnx2x_pf_disable(bp);
2887 
2888 		/* Disable HW interrupts, NAPI */
2889 		bnx2x_netif_stop(bp, 1);
2890 		/* Delete all NAPI objects */
2891 		bnx2x_del_all_napi(bp);
2892 		if (CNIC_LOADED(bp))
2893 			bnx2x_del_all_napi_cnic(bp);
2894 		/* Release IRQs */
2895 		bnx2x_free_irq(bp);
2896 
2897 		/* Report UNLOAD_DONE to MCP */
2898 		bnx2x_send_unload_done(bp, false);
2899 	}
2900 
2901 	/*
2902 	 * At this stage no more interrupts will arrive so we may safly clean
2903 	 * the queueable objects here in case they failed to get cleaned so far.
2904 	 */
2905 	if (IS_PF(bp))
2906 		bnx2x_squeeze_objects(bp);
2907 
2908 	/* There should be no more pending SP commands at this stage */
2909 	bp->sp_state = 0;
2910 
2911 	bp->port.pmf = 0;
2912 
2913 	/* Free SKBs, SGEs, TPA pool and driver internals */
2914 	bnx2x_free_skbs(bp);
2915 	if (CNIC_LOADED(bp))
2916 		bnx2x_free_skbs_cnic(bp);
2917 	for_each_rx_queue(bp, i)
2918 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2919 
2920 	bnx2x_free_fp_mem(bp);
2921 	if (CNIC_LOADED(bp))
2922 		bnx2x_free_fp_mem_cnic(bp);
2923 
2924 	if (IS_PF(bp)) {
2925 		bnx2x_free_mem(bp);
2926 		if (CNIC_LOADED(bp))
2927 			bnx2x_free_mem_cnic(bp);
2928 	}
2929 	bp->state = BNX2X_STATE_CLOSED;
2930 	bp->cnic_loaded = false;
2931 
2932 	/* Check if there are pending parity attentions. If there are - set
2933 	 * RECOVERY_IN_PROGRESS.
2934 	 */
2935 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
2936 		bnx2x_set_reset_in_progress(bp);
2937 
2938 		/* Set RESET_IS_GLOBAL if needed */
2939 		if (global)
2940 			bnx2x_set_reset_global(bp);
2941 	}
2942 
2943 
2944 	/* The last driver must disable a "close the gate" if there is no
2945 	 * parity attention or "process kill" pending.
2946 	 */
2947 	if (IS_PF(bp) &&
2948 	    !bnx2x_clear_pf_load(bp) &&
2949 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
2950 		bnx2x_disable_close_the_gate(bp);
2951 
2952 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
2953 
2954 	return 0;
2955 }
2956 
2957 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
2958 {
2959 	u16 pmcsr;
2960 
2961 	/* If there is no power capability, silently succeed */
2962 	if (!bp->pm_cap) {
2963 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
2964 		return 0;
2965 	}
2966 
2967 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
2968 
2969 	switch (state) {
2970 	case PCI_D0:
2971 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2972 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
2973 				       PCI_PM_CTRL_PME_STATUS));
2974 
2975 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
2976 			/* delay required during transition out of D3hot */
2977 			msleep(20);
2978 		break;
2979 
2980 	case PCI_D3hot:
2981 		/* If there are other clients above don't
2982 		   shut down the power */
2983 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
2984 			return 0;
2985 		/* Don't shut down the power for emulation and FPGA */
2986 		if (CHIP_REV_IS_SLOW(bp))
2987 			return 0;
2988 
2989 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2990 		pmcsr |= 3;
2991 
2992 		if (bp->wol)
2993 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2994 
2995 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2996 				      pmcsr);
2997 
2998 		/* No more memory access after this point until
2999 		* device is brought back to D0.
3000 		*/
3001 		break;
3002 
3003 	default:
3004 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3005 		return -EINVAL;
3006 	}
3007 	return 0;
3008 }
3009 
3010 /*
3011  * net_device service functions
3012  */
3013 int bnx2x_poll(struct napi_struct *napi, int budget)
3014 {
3015 	int work_done = 0;
3016 	u8 cos;
3017 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3018 						 napi);
3019 	struct bnx2x *bp = fp->bp;
3020 
3021 	while (1) {
3022 #ifdef BNX2X_STOP_ON_ERROR
3023 		if (unlikely(bp->panic)) {
3024 			napi_complete(napi);
3025 			return 0;
3026 		}
3027 #endif
3028 
3029 		for_each_cos_in_tx_queue(fp, cos)
3030 			if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3031 				bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3032 
3033 		if (bnx2x_has_rx_work(fp)) {
3034 			work_done += bnx2x_rx_int(fp, budget - work_done);
3035 
3036 			/* must not complete if we consumed full budget */
3037 			if (work_done >= budget)
3038 				break;
3039 		}
3040 
3041 		/* Fall out from the NAPI loop if needed */
3042 		if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3043 
3044 			/* No need to update SB for FCoE L2 ring as long as
3045 			 * it's connected to the default SB and the SB
3046 			 * has been updated when NAPI was scheduled.
3047 			 */
3048 			if (IS_FCOE_FP(fp)) {
3049 				napi_complete(napi);
3050 				break;
3051 			}
3052 			bnx2x_update_fpsb_idx(fp);
3053 			/* bnx2x_has_rx_work() reads the status block,
3054 			 * thus we need to ensure that status block indices
3055 			 * have been actually read (bnx2x_update_fpsb_idx)
3056 			 * prior to this check (bnx2x_has_rx_work) so that
3057 			 * we won't write the "newer" value of the status block
3058 			 * to IGU (if there was a DMA right after
3059 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3060 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3061 			 * to right before bnx2x_ack_sb). In this case there
3062 			 * will never be another interrupt until there is
3063 			 * another update of the status block, while there
3064 			 * is still unhandled work.
3065 			 */
3066 			rmb();
3067 
3068 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3069 				napi_complete(napi);
3070 				/* Re-enable interrupts */
3071 				DP(NETIF_MSG_RX_STATUS,
3072 				   "Update index to %d\n", fp->fp_hc_idx);
3073 				bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3074 					     le16_to_cpu(fp->fp_hc_idx),
3075 					     IGU_INT_ENABLE, 1);
3076 				break;
3077 			}
3078 		}
3079 	}
3080 
3081 	return work_done;
3082 }
3083 
3084 /* we split the first BD into headers and data BDs
3085  * to ease the pain of our fellow microcode engineers
3086  * we use one mapping for both BDs
3087  */
3088 static noinline u16 bnx2x_tx_split(struct bnx2x *bp,
3089 				   struct bnx2x_fp_txdata *txdata,
3090 				   struct sw_tx_bd *tx_buf,
3091 				   struct eth_tx_start_bd **tx_bd, u16 hlen,
3092 				   u16 bd_prod, int nbd)
3093 {
3094 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3095 	struct eth_tx_bd *d_tx_bd;
3096 	dma_addr_t mapping;
3097 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3098 
3099 	/* first fix first BD */
3100 	h_tx_bd->nbd = cpu_to_le16(nbd);
3101 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3102 
3103 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x) nbd %d\n",
3104 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo, h_tx_bd->nbd);
3105 
3106 	/* now get a new data BD
3107 	 * (after the pbd) and fill it */
3108 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3109 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3110 
3111 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3112 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3113 
3114 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3115 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3116 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3117 
3118 	/* this marks the BD as one that has no individual mapping */
3119 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3120 
3121 	DP(NETIF_MSG_TX_QUEUED,
3122 	   "TSO split data size is %d (%x:%x)\n",
3123 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3124 
3125 	/* update tx_bd */
3126 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3127 
3128 	return bd_prod;
3129 }
3130 
3131 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3132 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3133 static inline __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3134 {
3135 	__sum16 tsum = (__force __sum16) csum;
3136 
3137 	if (fix > 0)
3138 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3139 				  csum_partial(t_header - fix, fix, 0)));
3140 
3141 	else if (fix < 0)
3142 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3143 				  csum_partial(t_header, -fix, 0)));
3144 
3145 	return bswab16(csum);
3146 }
3147 
3148 static inline u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3149 {
3150 	u32 rc;
3151 
3152 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3153 		rc = XMIT_PLAIN;
3154 
3155 	else {
3156 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) {
3157 			rc = XMIT_CSUM_V6;
3158 			if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3159 				rc |= XMIT_CSUM_TCP;
3160 
3161 		} else {
3162 			rc = XMIT_CSUM_V4;
3163 			if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3164 				rc |= XMIT_CSUM_TCP;
3165 		}
3166 	}
3167 
3168 	if (skb_is_gso_v6(skb))
3169 		rc |= XMIT_GSO_V6 | XMIT_CSUM_TCP | XMIT_CSUM_V6;
3170 	else if (skb_is_gso(skb))
3171 		rc |= XMIT_GSO_V4 | XMIT_CSUM_V4 | XMIT_CSUM_TCP;
3172 
3173 	return rc;
3174 }
3175 
3176 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
3177 /* check if packet requires linearization (packet is too fragmented)
3178    no need to check fragmentation if page size > 8K (there will be no
3179    violation to FW restrictions) */
3180 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3181 			     u32 xmit_type)
3182 {
3183 	int to_copy = 0;
3184 	int hlen = 0;
3185 	int first_bd_sz = 0;
3186 
3187 	/* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3188 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) {
3189 
3190 		if (xmit_type & XMIT_GSO) {
3191 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3192 			/* Check if LSO packet needs to be copied:
3193 			   3 = 1 (for headers BD) + 2 (for PBD and last BD) */
3194 			int wnd_size = MAX_FETCH_BD - 3;
3195 			/* Number of windows to check */
3196 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3197 			int wnd_idx = 0;
3198 			int frag_idx = 0;
3199 			u32 wnd_sum = 0;
3200 
3201 			/* Headers length */
3202 			hlen = (int)(skb_transport_header(skb) - skb->data) +
3203 				tcp_hdrlen(skb);
3204 
3205 			/* Amount of data (w/o headers) on linear part of SKB*/
3206 			first_bd_sz = skb_headlen(skb) - hlen;
3207 
3208 			wnd_sum  = first_bd_sz;
3209 
3210 			/* Calculate the first sum - it's special */
3211 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3212 				wnd_sum +=
3213 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3214 
3215 			/* If there was data on linear skb data - check it */
3216 			if (first_bd_sz > 0) {
3217 				if (unlikely(wnd_sum < lso_mss)) {
3218 					to_copy = 1;
3219 					goto exit_lbl;
3220 				}
3221 
3222 				wnd_sum -= first_bd_sz;
3223 			}
3224 
3225 			/* Others are easier: run through the frag list and
3226 			   check all windows */
3227 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3228 				wnd_sum +=
3229 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3230 
3231 				if (unlikely(wnd_sum < lso_mss)) {
3232 					to_copy = 1;
3233 					break;
3234 				}
3235 				wnd_sum -=
3236 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3237 			}
3238 		} else {
3239 			/* in non-LSO too fragmented packet should always
3240 			   be linearized */
3241 			to_copy = 1;
3242 		}
3243 	}
3244 
3245 exit_lbl:
3246 	if (unlikely(to_copy))
3247 		DP(NETIF_MSG_TX_QUEUED,
3248 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3249 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3250 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3251 
3252 	return to_copy;
3253 }
3254 #endif
3255 
3256 static inline void bnx2x_set_pbd_gso_e2(struct sk_buff *skb, u32 *parsing_data,
3257 					u32 xmit_type)
3258 {
3259 	*parsing_data |= (skb_shinfo(skb)->gso_size <<
3260 			      ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
3261 			      ETH_TX_PARSE_BD_E2_LSO_MSS;
3262 	if ((xmit_type & XMIT_GSO_V6) &&
3263 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
3264 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3265 }
3266 
3267 /**
3268  * bnx2x_set_pbd_gso - update PBD in GSO case.
3269  *
3270  * @skb:	packet skb
3271  * @pbd:	parse BD
3272  * @xmit_type:	xmit flags
3273  */
3274 static inline void bnx2x_set_pbd_gso(struct sk_buff *skb,
3275 				     struct eth_tx_parse_bd_e1x *pbd,
3276 				     u32 xmit_type)
3277 {
3278 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3279 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3280 	pbd->tcp_flags = pbd_tcp_flags(skb);
3281 
3282 	if (xmit_type & XMIT_GSO_V4) {
3283 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3284 		pbd->tcp_pseudo_csum =
3285 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3286 						   ip_hdr(skb)->daddr,
3287 						   0, IPPROTO_TCP, 0));
3288 
3289 	} else
3290 		pbd->tcp_pseudo_csum =
3291 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3292 						 &ipv6_hdr(skb)->daddr,
3293 						 0, IPPROTO_TCP, 0));
3294 
3295 	pbd->global_data |=
3296 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3297 }
3298 
3299 /**
3300  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3301  *
3302  * @bp:			driver handle
3303  * @skb:		packet skb
3304  * @parsing_data:	data to be updated
3305  * @xmit_type:		xmit flags
3306  *
3307  * 57712 related
3308  */
3309 static inline  u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3310 					u32 *parsing_data, u32 xmit_type)
3311 {
3312 	*parsing_data |=
3313 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3314 		ETH_TX_PARSE_BD_E2_TCP_HDR_START_OFFSET_W_SHIFT) &
3315 		ETH_TX_PARSE_BD_E2_TCP_HDR_START_OFFSET_W;
3316 
3317 	if (xmit_type & XMIT_CSUM_TCP) {
3318 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3319 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3320 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3321 
3322 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3323 	}
3324 	/* We support checksum offload for TCP and UDP only.
3325 	 * No need to pass the UDP header length - it's a constant.
3326 	 */
3327 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3328 }
3329 
3330 static inline void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3331 	struct eth_tx_start_bd *tx_start_bd, u32 xmit_type)
3332 {
3333 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3334 
3335 	if (xmit_type & XMIT_CSUM_V4)
3336 		tx_start_bd->bd_flags.as_bitfield |=
3337 					ETH_TX_BD_FLAGS_IP_CSUM;
3338 	else
3339 		tx_start_bd->bd_flags.as_bitfield |=
3340 					ETH_TX_BD_FLAGS_IPV6;
3341 
3342 	if (!(xmit_type & XMIT_CSUM_TCP))
3343 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3344 }
3345 
3346 /**
3347  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3348  *
3349  * @bp:		driver handle
3350  * @skb:	packet skb
3351  * @pbd:	parse BD to be updated
3352  * @xmit_type:	xmit flags
3353  */
3354 static inline u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3355 	struct eth_tx_parse_bd_e1x *pbd,
3356 	u32 xmit_type)
3357 {
3358 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3359 
3360 	/* for now NS flag is not used in Linux */
3361 	pbd->global_data =
3362 		cpu_to_le16(hlen |
3363 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3364 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3365 
3366 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3367 			skb_network_header(skb)) >> 1;
3368 
3369 	hlen += pbd->ip_hlen_w;
3370 
3371 	/* We support checksum offload for TCP and UDP only */
3372 	if (xmit_type & XMIT_CSUM_TCP)
3373 		hlen += tcp_hdrlen(skb) / 2;
3374 	else
3375 		hlen += sizeof(struct udphdr) / 2;
3376 
3377 	pbd->total_hlen_w = cpu_to_le16(hlen);
3378 	hlen = hlen*2;
3379 
3380 	if (xmit_type & XMIT_CSUM_TCP) {
3381 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3382 
3383 	} else {
3384 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3385 
3386 		DP(NETIF_MSG_TX_QUEUED,
3387 		   "hlen %d  fix %d  csum before fix %x\n",
3388 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3389 
3390 		/* HW bug: fixup the CSUM */
3391 		pbd->tcp_pseudo_csum =
3392 			bnx2x_csum_fix(skb_transport_header(skb),
3393 				       SKB_CS(skb), fix);
3394 
3395 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3396 		   pbd->tcp_pseudo_csum);
3397 	}
3398 
3399 	return hlen;
3400 }
3401 
3402 /* called with netif_tx_lock
3403  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3404  * netif_wake_queue()
3405  */
3406 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3407 {
3408 	struct bnx2x *bp = netdev_priv(dev);
3409 
3410 	struct netdev_queue *txq;
3411 	struct bnx2x_fp_txdata *txdata;
3412 	struct sw_tx_bd *tx_buf;
3413 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3414 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3415 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3416 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3417 	u32 pbd_e2_parsing_data = 0;
3418 	u16 pkt_prod, bd_prod;
3419 	int nbd, txq_index;
3420 	dma_addr_t mapping;
3421 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3422 	int i;
3423 	u8 hlen = 0;
3424 	__le16 pkt_size = 0;
3425 	struct ethhdr *eth;
3426 	u8 mac_type = UNICAST_ADDRESS;
3427 
3428 #ifdef BNX2X_STOP_ON_ERROR
3429 	if (unlikely(bp->panic))
3430 		return NETDEV_TX_BUSY;
3431 #endif
3432 
3433 	txq_index = skb_get_queue_mapping(skb);
3434 	txq = netdev_get_tx_queue(dev, txq_index);
3435 
3436 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3437 
3438 	txdata = &bp->bnx2x_txq[txq_index];
3439 
3440 	/* enable this debug print to view the transmission queue being used
3441 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3442 	   txq_index, fp_index, txdata_index); */
3443 
3444 	/* enable this debug print to view the tranmission details
3445 	DP(NETIF_MSG_TX_QUEUED,
3446 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3447 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3448 
3449 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3450 			skb_shinfo(skb)->nr_frags +
3451 			BDS_PER_TX_PKT +
3452 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3453 		/* Handle special storage cases separately */
3454 		if (txdata->tx_ring_size == 0) {
3455 			struct bnx2x_eth_q_stats *q_stats =
3456 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3457 			q_stats->driver_filtered_tx_pkt++;
3458 			dev_kfree_skb(skb);
3459 			return NETDEV_TX_OK;
3460 		}
3461 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3462 		netif_tx_stop_queue(txq);
3463 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3464 
3465 		return NETDEV_TX_BUSY;
3466 	}
3467 
3468 	DP(NETIF_MSG_TX_QUEUED,
3469 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3470 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3471 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3472 	   skb->len);
3473 
3474 	eth = (struct ethhdr *)skb->data;
3475 
3476 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3477 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3478 		if (is_broadcast_ether_addr(eth->h_dest))
3479 			mac_type = BROADCAST_ADDRESS;
3480 		else
3481 			mac_type = MULTICAST_ADDRESS;
3482 	}
3483 
3484 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
3485 	/* First, check if we need to linearize the skb (due to FW
3486 	   restrictions). No need to check fragmentation if page size > 8K
3487 	   (there will be no violation to FW restrictions) */
3488 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3489 		/* Statistics of linearization */
3490 		bp->lin_cnt++;
3491 		if (skb_linearize(skb) != 0) {
3492 			DP(NETIF_MSG_TX_QUEUED,
3493 			   "SKB linearization failed - silently dropping this SKB\n");
3494 			dev_kfree_skb_any(skb);
3495 			return NETDEV_TX_OK;
3496 		}
3497 	}
3498 #endif
3499 	/* Map skb linear data for DMA */
3500 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3501 				 skb_headlen(skb), DMA_TO_DEVICE);
3502 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3503 		DP(NETIF_MSG_TX_QUEUED,
3504 		   "SKB mapping failed - silently dropping this SKB\n");
3505 		dev_kfree_skb_any(skb);
3506 		return NETDEV_TX_OK;
3507 	}
3508 	/*
3509 	Please read carefully. First we use one BD which we mark as start,
3510 	then we have a parsing info BD (used for TSO or xsum),
3511 	and only then we have the rest of the TSO BDs.
3512 	(don't forget to mark the last one as last,
3513 	and to unmap only AFTER you write to the BD ...)
3514 	And above all, all pdb sizes are in words - NOT DWORDS!
3515 	*/
3516 
3517 	/* get current pkt produced now - advance it just before sending packet
3518 	 * since mapping of pages may fail and cause packet to be dropped
3519 	 */
3520 	pkt_prod = txdata->tx_pkt_prod;
3521 	bd_prod = TX_BD(txdata->tx_bd_prod);
3522 
3523 	/* get a tx_buf and first BD
3524 	 * tx_start_bd may be changed during SPLIT,
3525 	 * but first_bd will always stay first
3526 	 */
3527 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3528 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3529 	first_bd = tx_start_bd;
3530 
3531 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3532 	SET_FLAG(tx_start_bd->general_data,
3533 		 ETH_TX_START_BD_PARSE_NBDS,
3534 		 0);
3535 
3536 	/* header nbd */
3537 	SET_FLAG(tx_start_bd->general_data, ETH_TX_START_BD_HDR_NBDS, 1);
3538 
3539 	/* remember the first BD of the packet */
3540 	tx_buf->first_bd = txdata->tx_bd_prod;
3541 	tx_buf->skb = skb;
3542 	tx_buf->flags = 0;
3543 
3544 	DP(NETIF_MSG_TX_QUEUED,
3545 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3546 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3547 
3548 	if (vlan_tx_tag_present(skb)) {
3549 		tx_start_bd->vlan_or_ethertype =
3550 		    cpu_to_le16(vlan_tx_tag_get(skb));
3551 		tx_start_bd->bd_flags.as_bitfield |=
3552 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3553 	} else {
3554 		/* when transmitting in a vf, start bd must hold the ethertype
3555 		 * for fw to enforce it
3556 		 */
3557 #ifndef BNX2X_STOP_ON_ERROR
3558 		if (IS_VF(bp)) {
3559 #endif
3560 			tx_start_bd->vlan_or_ethertype =
3561 				cpu_to_le16(ntohs(eth->h_proto));
3562 #ifndef BNX2X_STOP_ON_ERROR
3563 		} else {
3564 			/* used by FW for packet accounting */
3565 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3566 		}
3567 #endif
3568 	}
3569 
3570 	/* turn on parsing and get a BD */
3571 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3572 
3573 	if (xmit_type & XMIT_CSUM)
3574 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3575 
3576 	if (!CHIP_IS_E1x(bp)) {
3577 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3578 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3579 		/* Set PBD in checksum offload case */
3580 		if (xmit_type & XMIT_CSUM)
3581 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3582 						     &pbd_e2_parsing_data,
3583 						     xmit_type);
3584 
3585 		if (IS_MF_SI(bp) || IS_VF(bp)) {
3586 			/* fill in the MAC addresses in the PBD - for local
3587 			 * switching
3588 			 */
3589 			bnx2x_set_fw_mac_addr(&pbd_e2->src_mac_addr_hi,
3590 					      &pbd_e2->src_mac_addr_mid,
3591 					      &pbd_e2->src_mac_addr_lo,
3592 					      eth->h_source);
3593 			bnx2x_set_fw_mac_addr(&pbd_e2->dst_mac_addr_hi,
3594 					      &pbd_e2->dst_mac_addr_mid,
3595 					      &pbd_e2->dst_mac_addr_lo,
3596 					      eth->h_dest);
3597 		}
3598 
3599 		SET_FLAG(pbd_e2_parsing_data,
3600 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
3601 	} else {
3602 		u16 global_data = 0;
3603 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
3604 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
3605 		/* Set PBD in checksum offload case */
3606 		if (xmit_type & XMIT_CSUM)
3607 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
3608 
3609 		SET_FLAG(global_data,
3610 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
3611 		pbd_e1x->global_data |= cpu_to_le16(global_data);
3612 	}
3613 
3614 	/* Setup the data pointer of the first BD of the packet */
3615 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3616 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3617 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3618 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
3619 	pkt_size = tx_start_bd->nbytes;
3620 
3621 	DP(NETIF_MSG_TX_QUEUED,
3622 	   "first bd @%p  addr (%x:%x)  nbd %d  nbytes %d  flags %x  vlan %x\n",
3623 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
3624 	   le16_to_cpu(tx_start_bd->nbd), le16_to_cpu(tx_start_bd->nbytes),
3625 	   tx_start_bd->bd_flags.as_bitfield,
3626 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
3627 
3628 	if (xmit_type & XMIT_GSO) {
3629 
3630 		DP(NETIF_MSG_TX_QUEUED,
3631 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
3632 		   skb->len, hlen, skb_headlen(skb),
3633 		   skb_shinfo(skb)->gso_size);
3634 
3635 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
3636 
3637 		if (unlikely(skb_headlen(skb) > hlen))
3638 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
3639 						 &tx_start_bd, hlen,
3640 						 bd_prod, ++nbd);
3641 		if (!CHIP_IS_E1x(bp))
3642 			bnx2x_set_pbd_gso_e2(skb, &pbd_e2_parsing_data,
3643 					     xmit_type);
3644 		else
3645 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
3646 	}
3647 
3648 	/* Set the PBD's parsing_data field if not zero
3649 	 * (for the chips newer than 57711).
3650 	 */
3651 	if (pbd_e2_parsing_data)
3652 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
3653 
3654 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
3655 
3656 	/* Handle fragmented skb */
3657 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3658 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3659 
3660 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
3661 					   skb_frag_size(frag), DMA_TO_DEVICE);
3662 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3663 			unsigned int pkts_compl = 0, bytes_compl = 0;
3664 
3665 			DP(NETIF_MSG_TX_QUEUED,
3666 			   "Unable to map page - dropping packet...\n");
3667 
3668 			/* we need unmap all buffers already mapped
3669 			 * for this SKB;
3670 			 * first_bd->nbd need to be properly updated
3671 			 * before call to bnx2x_free_tx_pkt
3672 			 */
3673 			first_bd->nbd = cpu_to_le16(nbd);
3674 			bnx2x_free_tx_pkt(bp, txdata,
3675 					  TX_BD(txdata->tx_pkt_prod),
3676 					  &pkts_compl, &bytes_compl);
3677 			return NETDEV_TX_OK;
3678 		}
3679 
3680 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3681 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3682 		if (total_pkt_bd == NULL)
3683 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3684 
3685 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3686 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3687 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
3688 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
3689 		nbd++;
3690 
3691 		DP(NETIF_MSG_TX_QUEUED,
3692 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
3693 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
3694 		   le16_to_cpu(tx_data_bd->nbytes));
3695 	}
3696 
3697 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
3698 
3699 	/* update with actual num BDs */
3700 	first_bd->nbd = cpu_to_le16(nbd);
3701 
3702 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3703 
3704 	/* now send a tx doorbell, counting the next BD
3705 	 * if the packet contains or ends with it
3706 	 */
3707 	if (TX_BD_POFF(bd_prod) < nbd)
3708 		nbd++;
3709 
3710 	/* total_pkt_bytes should be set on the first data BD if
3711 	 * it's not an LSO packet and there is more than one
3712 	 * data BD. In this case pkt_size is limited by an MTU value.
3713 	 * However we prefer to set it for an LSO packet (while we don't
3714 	 * have to) in order to save some CPU cycles in a none-LSO
3715 	 * case, when we much more care about them.
3716 	 */
3717 	if (total_pkt_bd != NULL)
3718 		total_pkt_bd->total_pkt_bytes = pkt_size;
3719 
3720 	if (pbd_e1x)
3721 		DP(NETIF_MSG_TX_QUEUED,
3722 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
3723 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
3724 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
3725 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
3726 		    le16_to_cpu(pbd_e1x->total_hlen_w));
3727 	if (pbd_e2)
3728 		DP(NETIF_MSG_TX_QUEUED,
3729 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
3730 		   pbd_e2, pbd_e2->dst_mac_addr_hi, pbd_e2->dst_mac_addr_mid,
3731 		   pbd_e2->dst_mac_addr_lo, pbd_e2->src_mac_addr_hi,
3732 		   pbd_e2->src_mac_addr_mid, pbd_e2->src_mac_addr_lo,
3733 		   pbd_e2->parsing_data);
3734 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
3735 
3736 	netdev_tx_sent_queue(txq, skb->len);
3737 
3738 	skb_tx_timestamp(skb);
3739 
3740 	txdata->tx_pkt_prod++;
3741 	/*
3742 	 * Make sure that the BD data is updated before updating the producer
3743 	 * since FW might read the BD right after the producer is updated.
3744 	 * This is only applicable for weak-ordered memory model archs such
3745 	 * as IA-64. The following barrier is also mandatory since FW will
3746 	 * assumes packets must have BDs.
3747 	 */
3748 	wmb();
3749 
3750 	txdata->tx_db.data.prod += nbd;
3751 	barrier();
3752 
3753 	DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
3754 
3755 	mmiowb();
3756 
3757 	txdata->tx_bd_prod += nbd;
3758 
3759 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
3760 		netif_tx_stop_queue(txq);
3761 
3762 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
3763 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
3764 		 * fp->bd_tx_cons */
3765 		smp_mb();
3766 
3767 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3768 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
3769 			netif_tx_wake_queue(txq);
3770 	}
3771 	txdata->tx_pkt++;
3772 
3773 	return NETDEV_TX_OK;
3774 }
3775 
3776 /**
3777  * bnx2x_setup_tc - routine to configure net_device for multi tc
3778  *
3779  * @netdev: net device to configure
3780  * @tc: number of traffic classes to enable
3781  *
3782  * callback connected to the ndo_setup_tc function pointer
3783  */
3784 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
3785 {
3786 	int cos, prio, count, offset;
3787 	struct bnx2x *bp = netdev_priv(dev);
3788 
3789 	/* setup tc must be called under rtnl lock */
3790 	ASSERT_RTNL();
3791 
3792 	/* no traffic classes requested. aborting */
3793 	if (!num_tc) {
3794 		netdev_reset_tc(dev);
3795 		return 0;
3796 	}
3797 
3798 	/* requested to support too many traffic classes */
3799 	if (num_tc > bp->max_cos) {
3800 		BNX2X_ERR("support for too many traffic classes requested: %d. max supported is %d\n",
3801 			  num_tc, bp->max_cos);
3802 		return -EINVAL;
3803 	}
3804 
3805 	/* declare amount of supported traffic classes */
3806 	if (netdev_set_num_tc(dev, num_tc)) {
3807 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
3808 		return -EINVAL;
3809 	}
3810 
3811 	/* configure priority to traffic class mapping */
3812 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
3813 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[prio]);
3814 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
3815 		   "mapping priority %d to tc %d\n",
3816 		   prio, bp->prio_to_cos[prio]);
3817 	}
3818 
3819 
3820 	/* Use this configuration to diffrentiate tc0 from other COSes
3821 	   This can be used for ets or pfc, and save the effort of setting
3822 	   up a multio class queue disc or negotiating DCBX with a switch
3823 	netdev_set_prio_tc_map(dev, 0, 0);
3824 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
3825 	for (prio = 1; prio < 16; prio++) {
3826 		netdev_set_prio_tc_map(dev, prio, 1);
3827 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
3828 	} */
3829 
3830 	/* configure traffic class to transmission queue mapping */
3831 	for (cos = 0; cos < bp->max_cos; cos++) {
3832 		count = BNX2X_NUM_ETH_QUEUES(bp);
3833 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
3834 		netdev_set_tc_queue(dev, cos, count, offset);
3835 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
3836 		   "mapping tc %d to offset %d count %d\n",
3837 		   cos, offset, count);
3838 	}
3839 
3840 	return 0;
3841 }
3842 
3843 /* called with rtnl_lock */
3844 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
3845 {
3846 	struct sockaddr *addr = p;
3847 	struct bnx2x *bp = netdev_priv(dev);
3848 	int rc = 0;
3849 
3850 	if (!bnx2x_is_valid_ether_addr(bp, addr->sa_data)) {
3851 		BNX2X_ERR("Requested MAC address is not valid\n");
3852 		return -EINVAL;
3853 	}
3854 
3855 	if ((IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) &&
3856 	    !is_zero_ether_addr(addr->sa_data)) {
3857 		BNX2X_ERR("Can't configure non-zero address on iSCSI or FCoE functions in MF-SD mode\n");
3858 		return -EINVAL;
3859 	}
3860 
3861 	if (netif_running(dev))  {
3862 		rc = bnx2x_set_eth_mac(bp, false);
3863 		if (rc)
3864 			return rc;
3865 	}
3866 
3867 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3868 
3869 	if (netif_running(dev))
3870 		rc = bnx2x_set_eth_mac(bp, true);
3871 
3872 	return rc;
3873 }
3874 
3875 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
3876 {
3877 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
3878 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
3879 	u8 cos;
3880 
3881 	/* Common */
3882 
3883 	if (IS_FCOE_IDX(fp_index)) {
3884 		memset(sb, 0, sizeof(union host_hc_status_block));
3885 		fp->status_blk_mapping = 0;
3886 	} else {
3887 		/* status blocks */
3888 		if (!CHIP_IS_E1x(bp))
3889 			BNX2X_PCI_FREE(sb->e2_sb,
3890 				       bnx2x_fp(bp, fp_index,
3891 						status_blk_mapping),
3892 				       sizeof(struct host_hc_status_block_e2));
3893 		else
3894 			BNX2X_PCI_FREE(sb->e1x_sb,
3895 				       bnx2x_fp(bp, fp_index,
3896 						status_blk_mapping),
3897 				       sizeof(struct host_hc_status_block_e1x));
3898 	}
3899 
3900 	/* Rx */
3901 	if (!skip_rx_queue(bp, fp_index)) {
3902 		bnx2x_free_rx_bds(fp);
3903 
3904 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
3905 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
3906 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
3907 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
3908 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
3909 
3910 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
3911 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
3912 			       sizeof(struct eth_fast_path_rx_cqe) *
3913 			       NUM_RCQ_BD);
3914 
3915 		/* SGE ring */
3916 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
3917 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
3918 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
3919 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
3920 	}
3921 
3922 	/* Tx */
3923 	if (!skip_tx_queue(bp, fp_index)) {
3924 		/* fastpath tx rings: tx_buf tx_desc */
3925 		for_each_cos_in_tx_queue(fp, cos) {
3926 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
3927 
3928 			DP(NETIF_MSG_IFDOWN,
3929 			   "freeing tx memory of fp %d cos %d cid %d\n",
3930 			   fp_index, cos, txdata->cid);
3931 
3932 			BNX2X_FREE(txdata->tx_buf_ring);
3933 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
3934 				txdata->tx_desc_mapping,
3935 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
3936 		}
3937 	}
3938 	/* end of fastpath */
3939 }
3940 
3941 void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
3942 {
3943 	int i;
3944 	for_each_cnic_queue(bp, i)
3945 		bnx2x_free_fp_mem_at(bp, i);
3946 }
3947 
3948 void bnx2x_free_fp_mem(struct bnx2x *bp)
3949 {
3950 	int i;
3951 	for_each_eth_queue(bp, i)
3952 		bnx2x_free_fp_mem_at(bp, i);
3953 }
3954 
3955 static void set_sb_shortcuts(struct bnx2x *bp, int index)
3956 {
3957 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
3958 	if (!CHIP_IS_E1x(bp)) {
3959 		bnx2x_fp(bp, index, sb_index_values) =
3960 			(__le16 *)status_blk.e2_sb->sb.index_values;
3961 		bnx2x_fp(bp, index, sb_running_index) =
3962 			(__le16 *)status_blk.e2_sb->sb.running_index;
3963 	} else {
3964 		bnx2x_fp(bp, index, sb_index_values) =
3965 			(__le16 *)status_blk.e1x_sb->sb.index_values;
3966 		bnx2x_fp(bp, index, sb_running_index) =
3967 			(__le16 *)status_blk.e1x_sb->sb.running_index;
3968 	}
3969 }
3970 
3971 /* Returns the number of actually allocated BDs */
3972 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
3973 			      int rx_ring_size)
3974 {
3975 	struct bnx2x *bp = fp->bp;
3976 	u16 ring_prod, cqe_ring_prod;
3977 	int i, failure_cnt = 0;
3978 
3979 	fp->rx_comp_cons = 0;
3980 	cqe_ring_prod = ring_prod = 0;
3981 
3982 	/* This routine is called only during fo init so
3983 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
3984 	 */
3985 	for (i = 0; i < rx_ring_size; i++) {
3986 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod) < 0) {
3987 			failure_cnt++;
3988 			continue;
3989 		}
3990 		ring_prod = NEXT_RX_IDX(ring_prod);
3991 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
3992 		WARN_ON(ring_prod <= (i - failure_cnt));
3993 	}
3994 
3995 	if (failure_cnt)
3996 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
3997 			  i - failure_cnt, fp->index);
3998 
3999 	fp->rx_bd_prod = ring_prod;
4000 	/* Limit the CQE producer by the CQE ring size */
4001 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4002 			       cqe_ring_prod);
4003 	fp->rx_pkt = fp->rx_calls = 0;
4004 
4005 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4006 
4007 	return i - failure_cnt;
4008 }
4009 
4010 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4011 {
4012 	int i;
4013 
4014 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4015 		struct eth_rx_cqe_next_page *nextpg;
4016 
4017 		nextpg = (struct eth_rx_cqe_next_page *)
4018 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4019 		nextpg->addr_hi =
4020 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4021 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4022 		nextpg->addr_lo =
4023 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4024 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4025 	}
4026 }
4027 
4028 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4029 {
4030 	union host_hc_status_block *sb;
4031 	struct bnx2x_fastpath *fp = &bp->fp[index];
4032 	int ring_size = 0;
4033 	u8 cos;
4034 	int rx_ring_size = 0;
4035 
4036 	if (!bp->rx_ring_size &&
4037 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
4038 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4039 		bp->rx_ring_size = rx_ring_size;
4040 	} else if (!bp->rx_ring_size) {
4041 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4042 
4043 		if (CHIP_IS_E3(bp)) {
4044 			u32 cfg = SHMEM_RD(bp,
4045 					   dev_info.port_hw_config[BP_PORT(bp)].
4046 					   default_cfg);
4047 
4048 			/* Decrease ring size for 1G functions */
4049 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4050 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4051 				rx_ring_size /= 10;
4052 		}
4053 
4054 		/* allocate at least number of buffers required by FW */
4055 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4056 				     MIN_RX_SIZE_TPA, rx_ring_size);
4057 
4058 		bp->rx_ring_size = rx_ring_size;
4059 	} else /* if rx_ring_size specified - use it */
4060 		rx_ring_size = bp->rx_ring_size;
4061 
4062 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4063 
4064 	/* Common */
4065 	sb = &bnx2x_fp(bp, index, status_blk);
4066 
4067 	if (!IS_FCOE_IDX(index)) {
4068 		/* status blocks */
4069 		if (!CHIP_IS_E1x(bp))
4070 			BNX2X_PCI_ALLOC(sb->e2_sb,
4071 				&bnx2x_fp(bp, index, status_blk_mapping),
4072 				sizeof(struct host_hc_status_block_e2));
4073 		else
4074 			BNX2X_PCI_ALLOC(sb->e1x_sb,
4075 				&bnx2x_fp(bp, index, status_blk_mapping),
4076 			    sizeof(struct host_hc_status_block_e1x));
4077 	}
4078 
4079 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4080 	 * set shortcuts for it.
4081 	 */
4082 	if (!IS_FCOE_IDX(index))
4083 		set_sb_shortcuts(bp, index);
4084 
4085 	/* Tx */
4086 	if (!skip_tx_queue(bp, index)) {
4087 		/* fastpath tx rings: tx_buf tx_desc */
4088 		for_each_cos_in_tx_queue(fp, cos) {
4089 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4090 
4091 			DP(NETIF_MSG_IFUP,
4092 			   "allocating tx memory of fp %d cos %d\n",
4093 			   index, cos);
4094 
4095 			BNX2X_ALLOC(txdata->tx_buf_ring,
4096 				sizeof(struct sw_tx_bd) * NUM_TX_BD);
4097 			BNX2X_PCI_ALLOC(txdata->tx_desc_ring,
4098 				&txdata->tx_desc_mapping,
4099 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4100 		}
4101 	}
4102 
4103 	/* Rx */
4104 	if (!skip_rx_queue(bp, index)) {
4105 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4106 		BNX2X_ALLOC(bnx2x_fp(bp, index, rx_buf_ring),
4107 				sizeof(struct sw_rx_bd) * NUM_RX_BD);
4108 		BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_desc_ring),
4109 				&bnx2x_fp(bp, index, rx_desc_mapping),
4110 				sizeof(struct eth_rx_bd) * NUM_RX_BD);
4111 
4112 		BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_comp_ring),
4113 				&bnx2x_fp(bp, index, rx_comp_mapping),
4114 				sizeof(struct eth_fast_path_rx_cqe) *
4115 				NUM_RCQ_BD);
4116 
4117 		/* SGE ring */
4118 		BNX2X_ALLOC(bnx2x_fp(bp, index, rx_page_ring),
4119 				sizeof(struct sw_rx_page) * NUM_RX_SGE);
4120 		BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_sge_ring),
4121 				&bnx2x_fp(bp, index, rx_sge_mapping),
4122 				BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4123 		/* RX BD ring */
4124 		bnx2x_set_next_page_rx_bd(fp);
4125 
4126 		/* CQ ring */
4127 		bnx2x_set_next_page_rx_cq(fp);
4128 
4129 		/* BDs */
4130 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4131 		if (ring_size < rx_ring_size)
4132 			goto alloc_mem_err;
4133 	}
4134 
4135 	return 0;
4136 
4137 /* handles low memory cases */
4138 alloc_mem_err:
4139 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4140 						index, ring_size);
4141 	/* FW will drop all packets if queue is not big enough,
4142 	 * In these cases we disable the queue
4143 	 * Min size is different for OOO, TPA and non-TPA queues
4144 	 */
4145 	if (ring_size < (fp->disable_tpa ?
4146 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4147 			/* release memory allocated for this queue */
4148 			bnx2x_free_fp_mem_at(bp, index);
4149 			return -ENOMEM;
4150 	}
4151 	return 0;
4152 }
4153 
4154 int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4155 {
4156 	if (!NO_FCOE(bp))
4157 		/* FCoE */
4158 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4159 			/* we will fail load process instead of mark
4160 			 * NO_FCOE_FLAG
4161 			 */
4162 			return -ENOMEM;
4163 
4164 	return 0;
4165 }
4166 
4167 int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4168 {
4169 	int i;
4170 
4171 	/* 1. Allocate FP for leading - fatal if error
4172 	 * 2. Allocate RSS - fix number of queues if error
4173 	 */
4174 
4175 	/* leading */
4176 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4177 		return -ENOMEM;
4178 
4179 	/* RSS */
4180 	for_each_nondefault_eth_queue(bp, i)
4181 		if (bnx2x_alloc_fp_mem_at(bp, i))
4182 			break;
4183 
4184 	/* handle memory failures */
4185 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4186 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4187 
4188 		WARN_ON(delta < 0);
4189 		bnx2x_shrink_eth_fp(bp, delta);
4190 		if (CNIC_SUPPORT(bp))
4191 			/* move non eth FPs next to last eth FP
4192 			 * must be done in that order
4193 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4194 			 */
4195 
4196 			/* move FCoE fp even NO_FCOE_FLAG is on */
4197 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4198 		bp->num_ethernet_queues -= delta;
4199 		bp->num_queues = bp->num_ethernet_queues +
4200 				 bp->num_cnic_queues;
4201 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4202 			  bp->num_queues + delta, bp->num_queues);
4203 	}
4204 
4205 	return 0;
4206 }
4207 
4208 void bnx2x_free_mem_bp(struct bnx2x *bp)
4209 {
4210 	int i;
4211 
4212 	for (i = 0; i < bp->fp_array_size; i++)
4213 		kfree(bp->fp[i].tpa_info);
4214 	kfree(bp->fp);
4215 	kfree(bp->sp_objs);
4216 	kfree(bp->fp_stats);
4217 	kfree(bp->bnx2x_txq);
4218 	kfree(bp->msix_table);
4219 	kfree(bp->ilt);
4220 }
4221 
4222 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4223 {
4224 	struct bnx2x_fastpath *fp;
4225 	struct msix_entry *tbl;
4226 	struct bnx2x_ilt *ilt;
4227 	int msix_table_size = 0;
4228 	int fp_array_size, txq_array_size;
4229 	int i;
4230 
4231 	/*
4232 	 * The biggest MSI-X table we might need is as a maximum number of fast
4233 	 * path IGU SBs plus default SB (for PF only).
4234 	 */
4235 	msix_table_size = bp->igu_sb_cnt;
4236 	if (IS_PF(bp))
4237 		msix_table_size++;
4238 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4239 
4240 	/* fp array: RSS plus CNIC related L2 queues */
4241 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4242 	bp->fp_array_size = fp_array_size;
4243 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4244 
4245 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4246 	if (!fp)
4247 		goto alloc_err;
4248 	for (i = 0; i < bp->fp_array_size; i++) {
4249 		fp[i].tpa_info =
4250 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4251 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4252 		if (!(fp[i].tpa_info))
4253 			goto alloc_err;
4254 	}
4255 
4256 	bp->fp = fp;
4257 
4258 	/* allocate sp objs */
4259 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4260 			      GFP_KERNEL);
4261 	if (!bp->sp_objs)
4262 		goto alloc_err;
4263 
4264 	/* allocate fp_stats */
4265 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4266 			       GFP_KERNEL);
4267 	if (!bp->fp_stats)
4268 		goto alloc_err;
4269 
4270 	/* Allocate memory for the transmission queues array */
4271 	txq_array_size =
4272 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4273 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4274 
4275 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4276 				GFP_KERNEL);
4277 	if (!bp->bnx2x_txq)
4278 		goto alloc_err;
4279 
4280 	/* msix table */
4281 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4282 	if (!tbl)
4283 		goto alloc_err;
4284 	bp->msix_table = tbl;
4285 
4286 	/* ilt */
4287 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4288 	if (!ilt)
4289 		goto alloc_err;
4290 	bp->ilt = ilt;
4291 
4292 	return 0;
4293 alloc_err:
4294 	bnx2x_free_mem_bp(bp);
4295 	return -ENOMEM;
4296 
4297 }
4298 
4299 int bnx2x_reload_if_running(struct net_device *dev)
4300 {
4301 	struct bnx2x *bp = netdev_priv(dev);
4302 
4303 	if (unlikely(!netif_running(dev)))
4304 		return 0;
4305 
4306 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4307 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4308 }
4309 
4310 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4311 {
4312 	u32 sel_phy_idx = 0;
4313 	if (bp->link_params.num_phys <= 1)
4314 		return INT_PHY;
4315 
4316 	if (bp->link_vars.link_up) {
4317 		sel_phy_idx = EXT_PHY1;
4318 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4319 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4320 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4321 			sel_phy_idx = EXT_PHY2;
4322 	} else {
4323 
4324 		switch (bnx2x_phy_selection(&bp->link_params)) {
4325 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4326 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4327 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4328 		       sel_phy_idx = EXT_PHY1;
4329 		       break;
4330 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4331 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4332 		       sel_phy_idx = EXT_PHY2;
4333 		       break;
4334 		}
4335 	}
4336 
4337 	return sel_phy_idx;
4338 
4339 }
4340 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4341 {
4342 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4343 	/*
4344 	 * The selected activated PHY is always after swapping (in case PHY
4345 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4346 	 * the configuration
4347 	 */
4348 
4349 	if (bp->link_params.multi_phy_config &
4350 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4351 		if (sel_phy_idx == EXT_PHY1)
4352 			sel_phy_idx = EXT_PHY2;
4353 		else if (sel_phy_idx == EXT_PHY2)
4354 			sel_phy_idx = EXT_PHY1;
4355 	}
4356 	return LINK_CONFIG_IDX(sel_phy_idx);
4357 }
4358 
4359 #ifdef NETDEV_FCOE_WWNN
4360 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4361 {
4362 	struct bnx2x *bp = netdev_priv(dev);
4363 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4364 
4365 	switch (type) {
4366 	case NETDEV_FCOE_WWNN:
4367 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4368 				cp->fcoe_wwn_node_name_lo);
4369 		break;
4370 	case NETDEV_FCOE_WWPN:
4371 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4372 				cp->fcoe_wwn_port_name_lo);
4373 		break;
4374 	default:
4375 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4376 		return -EINVAL;
4377 	}
4378 
4379 	return 0;
4380 }
4381 #endif
4382 
4383 /* called with rtnl_lock */
4384 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4385 {
4386 	struct bnx2x *bp = netdev_priv(dev);
4387 
4388 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4389 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4390 		return -EAGAIN;
4391 	}
4392 
4393 	if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) ||
4394 	    ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) {
4395 		BNX2X_ERR("Can't support requested MTU size\n");
4396 		return -EINVAL;
4397 	}
4398 
4399 	/* This does not race with packet allocation
4400 	 * because the actual alloc size is
4401 	 * only updated as part of load
4402 	 */
4403 	dev->mtu = new_mtu;
4404 
4405 	return bnx2x_reload_if_running(dev);
4406 }
4407 
4408 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4409 				     netdev_features_t features)
4410 {
4411 	struct bnx2x *bp = netdev_priv(dev);
4412 
4413 	/* TPA requires Rx CSUM offloading */
4414 	if (!(features & NETIF_F_RXCSUM) || bp->disable_tpa) {
4415 		features &= ~NETIF_F_LRO;
4416 		features &= ~NETIF_F_GRO;
4417 	}
4418 
4419 	return features;
4420 }
4421 
4422 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4423 {
4424 	struct bnx2x *bp = netdev_priv(dev);
4425 	u32 flags = bp->flags;
4426 	bool bnx2x_reload = false;
4427 
4428 	if (features & NETIF_F_LRO)
4429 		flags |= TPA_ENABLE_FLAG;
4430 	else
4431 		flags &= ~TPA_ENABLE_FLAG;
4432 
4433 	if (features & NETIF_F_GRO)
4434 		flags |= GRO_ENABLE_FLAG;
4435 	else
4436 		flags &= ~GRO_ENABLE_FLAG;
4437 
4438 	if (features & NETIF_F_LOOPBACK) {
4439 		if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4440 			bp->link_params.loopback_mode = LOOPBACK_BMAC;
4441 			bnx2x_reload = true;
4442 		}
4443 	} else {
4444 		if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4445 			bp->link_params.loopback_mode = LOOPBACK_NONE;
4446 			bnx2x_reload = true;
4447 		}
4448 	}
4449 
4450 	if (flags ^ bp->flags) {
4451 		bp->flags = flags;
4452 		bnx2x_reload = true;
4453 	}
4454 
4455 	if (bnx2x_reload) {
4456 		if (bp->recovery_state == BNX2X_RECOVERY_DONE)
4457 			return bnx2x_reload_if_running(dev);
4458 		/* else: bnx2x_nic_load() will be called at end of recovery */
4459 	}
4460 
4461 	return 0;
4462 }
4463 
4464 void bnx2x_tx_timeout(struct net_device *dev)
4465 {
4466 	struct bnx2x *bp = netdev_priv(dev);
4467 
4468 #ifdef BNX2X_STOP_ON_ERROR
4469 	if (!bp->panic)
4470 		bnx2x_panic();
4471 #endif
4472 
4473 	smp_mb__before_clear_bit();
4474 	set_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state);
4475 	smp_mb__after_clear_bit();
4476 
4477 	/* This allows the netif to be shutdown gracefully before resetting */
4478 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
4479 }
4480 
4481 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4482 {
4483 	struct net_device *dev = pci_get_drvdata(pdev);
4484 	struct bnx2x *bp;
4485 
4486 	if (!dev) {
4487 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4488 		return -ENODEV;
4489 	}
4490 	bp = netdev_priv(dev);
4491 
4492 	rtnl_lock();
4493 
4494 	pci_save_state(pdev);
4495 
4496 	if (!netif_running(dev)) {
4497 		rtnl_unlock();
4498 		return 0;
4499 	}
4500 
4501 	netif_device_detach(dev);
4502 
4503 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
4504 
4505 	bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
4506 
4507 	rtnl_unlock();
4508 
4509 	return 0;
4510 }
4511 
4512 int bnx2x_resume(struct pci_dev *pdev)
4513 {
4514 	struct net_device *dev = pci_get_drvdata(pdev);
4515 	struct bnx2x *bp;
4516 	int rc;
4517 
4518 	if (!dev) {
4519 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4520 		return -ENODEV;
4521 	}
4522 	bp = netdev_priv(dev);
4523 
4524 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4525 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
4526 		return -EAGAIN;
4527 	}
4528 
4529 	rtnl_lock();
4530 
4531 	pci_restore_state(pdev);
4532 
4533 	if (!netif_running(dev)) {
4534 		rtnl_unlock();
4535 		return 0;
4536 	}
4537 
4538 	bnx2x_set_power_state(bp, PCI_D0);
4539 	netif_device_attach(dev);
4540 
4541 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
4542 
4543 	rtnl_unlock();
4544 
4545 	return rc;
4546 }
4547 
4548 
4549 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
4550 			      u32 cid)
4551 {
4552 	/* ustorm cxt validation */
4553 	cxt->ustorm_ag_context.cdu_usage =
4554 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
4555 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
4556 	/* xcontext validation */
4557 	cxt->xstorm_ag_context.cdu_reserved =
4558 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
4559 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
4560 }
4561 
4562 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
4563 				    u8 fw_sb_id, u8 sb_index,
4564 				    u8 ticks)
4565 {
4566 
4567 	u32 addr = BAR_CSTRORM_INTMEM +
4568 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
4569 	REG_WR8(bp, addr, ticks);
4570 	DP(NETIF_MSG_IFUP,
4571 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
4572 	   port, fw_sb_id, sb_index, ticks);
4573 }
4574 
4575 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
4576 				    u16 fw_sb_id, u8 sb_index,
4577 				    u8 disable)
4578 {
4579 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
4580 	u32 addr = BAR_CSTRORM_INTMEM +
4581 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
4582 	u16 flags = REG_RD16(bp, addr);
4583 	/* clear and set */
4584 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
4585 	flags |= enable_flag;
4586 	REG_WR16(bp, addr, flags);
4587 	DP(NETIF_MSG_IFUP,
4588 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
4589 	   port, fw_sb_id, sb_index, disable);
4590 }
4591 
4592 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
4593 				    u8 sb_index, u8 disable, u16 usec)
4594 {
4595 	int port = BP_PORT(bp);
4596 	u8 ticks = usec / BNX2X_BTR;
4597 
4598 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
4599 
4600 	disable = disable ? 1 : (usec ? 0 : 1);
4601 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
4602 }
4603