1 /* bnx2x_cmn.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/etherdevice.h> 23 #include <linux/if_vlan.h> 24 #include <linux/interrupt.h> 25 #include <linux/ip.h> 26 #include <linux/crash_dump.h> 27 #include <net/tcp.h> 28 #include <net/ipv6.h> 29 #include <net/ip6_checksum.h> 30 #include <net/busy_poll.h> 31 #include <linux/prefetch.h> 32 #include "bnx2x_cmn.h" 33 #include "bnx2x_init.h" 34 #include "bnx2x_sp.h" 35 36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 39 static int bnx2x_poll(struct napi_struct *napi, int budget); 40 41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 42 { 43 int i; 44 45 /* Add NAPI objects */ 46 for_each_rx_queue_cnic(bp, i) { 47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 48 bnx2x_poll, NAPI_POLL_WEIGHT); 49 napi_hash_add(&bnx2x_fp(bp, i, napi)); 50 } 51 } 52 53 static void bnx2x_add_all_napi(struct bnx2x *bp) 54 { 55 int i; 56 57 /* Add NAPI objects */ 58 for_each_eth_queue(bp, i) { 59 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 60 bnx2x_poll, NAPI_POLL_WEIGHT); 61 napi_hash_add(&bnx2x_fp(bp, i, napi)); 62 } 63 } 64 65 static int bnx2x_calc_num_queues(struct bnx2x *bp) 66 { 67 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues(); 68 69 /* Reduce memory usage in kdump environment by using only one queue */ 70 if (is_kdump_kernel()) 71 nq = 1; 72 73 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp)); 74 return nq; 75 } 76 77 /** 78 * bnx2x_move_fp - move content of the fastpath structure. 79 * 80 * @bp: driver handle 81 * @from: source FP index 82 * @to: destination FP index 83 * 84 * Makes sure the contents of the bp->fp[to].napi is kept 85 * intact. This is done by first copying the napi struct from 86 * the target to the source, and then mem copying the entire 87 * source onto the target. Update txdata pointers and related 88 * content. 89 */ 90 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 91 { 92 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 93 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 94 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 95 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 96 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 97 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 98 int old_max_eth_txqs, new_max_eth_txqs; 99 int old_txdata_index = 0, new_txdata_index = 0; 100 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 101 102 /* Copy the NAPI object as it has been already initialized */ 103 from_fp->napi = to_fp->napi; 104 105 /* Move bnx2x_fastpath contents */ 106 memcpy(to_fp, from_fp, sizeof(*to_fp)); 107 to_fp->index = to; 108 109 /* Retain the tpa_info of the original `to' version as we don't want 110 * 2 FPs to contain the same tpa_info pointer. 111 */ 112 to_fp->tpa_info = old_tpa_info; 113 114 /* move sp_objs contents as well, as their indices match fp ones */ 115 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 116 117 /* move fp_stats contents as well, as their indices match fp ones */ 118 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 119 120 /* Update txdata pointers in fp and move txdata content accordingly: 121 * Each fp consumes 'max_cos' txdata structures, so the index should be 122 * decremented by max_cos x delta. 123 */ 124 125 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 126 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 127 (bp)->max_cos; 128 if (from == FCOE_IDX(bp)) { 129 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 130 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 131 } 132 133 memcpy(&bp->bnx2x_txq[new_txdata_index], 134 &bp->bnx2x_txq[old_txdata_index], 135 sizeof(struct bnx2x_fp_txdata)); 136 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 137 } 138 139 /** 140 * bnx2x_fill_fw_str - Fill buffer with FW version string. 141 * 142 * @bp: driver handle 143 * @buf: character buffer to fill with the fw name 144 * @buf_len: length of the above buffer 145 * 146 */ 147 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 148 { 149 if (IS_PF(bp)) { 150 u8 phy_fw_ver[PHY_FW_VER_LEN]; 151 152 phy_fw_ver[0] = '\0'; 153 bnx2x_get_ext_phy_fw_version(&bp->link_params, 154 phy_fw_ver, PHY_FW_VER_LEN); 155 strlcpy(buf, bp->fw_ver, buf_len); 156 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 157 "bc %d.%d.%d%s%s", 158 (bp->common.bc_ver & 0xff0000) >> 16, 159 (bp->common.bc_ver & 0xff00) >> 8, 160 (bp->common.bc_ver & 0xff), 161 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 162 } else { 163 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 164 } 165 } 166 167 /** 168 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 169 * 170 * @bp: driver handle 171 * @delta: number of eth queues which were not allocated 172 */ 173 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 174 { 175 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 176 177 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 178 * backward along the array could cause memory to be overridden 179 */ 180 for (cos = 1; cos < bp->max_cos; cos++) { 181 for (i = 0; i < old_eth_num - delta; i++) { 182 struct bnx2x_fastpath *fp = &bp->fp[i]; 183 int new_idx = cos * (old_eth_num - delta) + i; 184 185 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 186 sizeof(struct bnx2x_fp_txdata)); 187 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 188 } 189 } 190 } 191 192 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 193 194 /* free skb in the packet ring at pos idx 195 * return idx of last bd freed 196 */ 197 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 198 u16 idx, unsigned int *pkts_compl, 199 unsigned int *bytes_compl) 200 { 201 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 202 struct eth_tx_start_bd *tx_start_bd; 203 struct eth_tx_bd *tx_data_bd; 204 struct sk_buff *skb = tx_buf->skb; 205 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 206 int nbd; 207 u16 split_bd_len = 0; 208 209 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 210 prefetch(&skb->end); 211 212 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 213 txdata->txq_index, idx, tx_buf, skb); 214 215 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 216 217 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 218 #ifdef BNX2X_STOP_ON_ERROR 219 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 220 BNX2X_ERR("BAD nbd!\n"); 221 bnx2x_panic(); 222 } 223 #endif 224 new_cons = nbd + tx_buf->first_bd; 225 226 /* Get the next bd */ 227 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 228 229 /* Skip a parse bd... */ 230 --nbd; 231 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 232 233 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { 234 /* Skip second parse bd... */ 235 --nbd; 236 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 237 } 238 239 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 240 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 241 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 242 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 243 --nbd; 244 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 245 } 246 247 /* unmap first bd */ 248 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 249 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 250 DMA_TO_DEVICE); 251 252 /* now free frags */ 253 while (nbd > 0) { 254 255 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 256 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 257 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 258 if (--nbd) 259 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 260 } 261 262 /* release skb */ 263 WARN_ON(!skb); 264 if (likely(skb)) { 265 (*pkts_compl)++; 266 (*bytes_compl) += skb->len; 267 dev_kfree_skb_any(skb); 268 } 269 270 tx_buf->first_bd = 0; 271 tx_buf->skb = NULL; 272 273 return new_cons; 274 } 275 276 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 277 { 278 struct netdev_queue *txq; 279 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 280 unsigned int pkts_compl = 0, bytes_compl = 0; 281 282 #ifdef BNX2X_STOP_ON_ERROR 283 if (unlikely(bp->panic)) 284 return -1; 285 #endif 286 287 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 288 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 289 sw_cons = txdata->tx_pkt_cons; 290 291 while (sw_cons != hw_cons) { 292 u16 pkt_cons; 293 294 pkt_cons = TX_BD(sw_cons); 295 296 DP(NETIF_MSG_TX_DONE, 297 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 298 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 299 300 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 301 &pkts_compl, &bytes_compl); 302 303 sw_cons++; 304 } 305 306 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 307 308 txdata->tx_pkt_cons = sw_cons; 309 txdata->tx_bd_cons = bd_cons; 310 311 /* Need to make the tx_bd_cons update visible to start_xmit() 312 * before checking for netif_tx_queue_stopped(). Without the 313 * memory barrier, there is a small possibility that 314 * start_xmit() will miss it and cause the queue to be stopped 315 * forever. 316 * On the other hand we need an rmb() here to ensure the proper 317 * ordering of bit testing in the following 318 * netif_tx_queue_stopped(txq) call. 319 */ 320 smp_mb(); 321 322 if (unlikely(netif_tx_queue_stopped(txq))) { 323 /* Taking tx_lock() is needed to prevent re-enabling the queue 324 * while it's empty. This could have happen if rx_action() gets 325 * suspended in bnx2x_tx_int() after the condition before 326 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 327 * 328 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 329 * sends some packets consuming the whole queue again-> 330 * stops the queue 331 */ 332 333 __netif_tx_lock(txq, smp_processor_id()); 334 335 if ((netif_tx_queue_stopped(txq)) && 336 (bp->state == BNX2X_STATE_OPEN) && 337 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 338 netif_tx_wake_queue(txq); 339 340 __netif_tx_unlock(txq); 341 } 342 return 0; 343 } 344 345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 346 u16 idx) 347 { 348 u16 last_max = fp->last_max_sge; 349 350 if (SUB_S16(idx, last_max) > 0) 351 fp->last_max_sge = idx; 352 } 353 354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 355 u16 sge_len, 356 struct eth_end_agg_rx_cqe *cqe) 357 { 358 struct bnx2x *bp = fp->bp; 359 u16 last_max, last_elem, first_elem; 360 u16 delta = 0; 361 u16 i; 362 363 if (!sge_len) 364 return; 365 366 /* First mark all used pages */ 367 for (i = 0; i < sge_len; i++) 368 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 369 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 370 371 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 372 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 373 374 /* Here we assume that the last SGE index is the biggest */ 375 prefetch((void *)(fp->sge_mask)); 376 bnx2x_update_last_max_sge(fp, 377 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 378 379 last_max = RX_SGE(fp->last_max_sge); 380 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 381 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 382 383 /* If ring is not full */ 384 if (last_elem + 1 != first_elem) 385 last_elem++; 386 387 /* Now update the prod */ 388 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 389 if (likely(fp->sge_mask[i])) 390 break; 391 392 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 393 delta += BIT_VEC64_ELEM_SZ; 394 } 395 396 if (delta > 0) { 397 fp->rx_sge_prod += delta; 398 /* clear page-end entries */ 399 bnx2x_clear_sge_mask_next_elems(fp); 400 } 401 402 DP(NETIF_MSG_RX_STATUS, 403 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 404 fp->last_max_sge, fp->rx_sge_prod); 405 } 406 407 /* Get Toeplitz hash value in the skb using the value from the 408 * CQE (calculated by HW). 409 */ 410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 411 const struct eth_fast_path_rx_cqe *cqe, 412 enum pkt_hash_types *rxhash_type) 413 { 414 /* Get Toeplitz hash from CQE */ 415 if ((bp->dev->features & NETIF_F_RXHASH) && 416 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 417 enum eth_rss_hash_type htype; 418 419 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 420 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 421 (htype == TCP_IPV6_HASH_TYPE)) ? 422 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 423 424 return le32_to_cpu(cqe->rss_hash_result); 425 } 426 *rxhash_type = PKT_HASH_TYPE_NONE; 427 return 0; 428 } 429 430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 431 u16 cons, u16 prod, 432 struct eth_fast_path_rx_cqe *cqe) 433 { 434 struct bnx2x *bp = fp->bp; 435 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 436 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 437 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 438 dma_addr_t mapping; 439 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 440 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 441 442 /* print error if current state != stop */ 443 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 444 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 445 446 /* Try to map an empty data buffer from the aggregation info */ 447 mapping = dma_map_single(&bp->pdev->dev, 448 first_buf->data + NET_SKB_PAD, 449 fp->rx_buf_size, DMA_FROM_DEVICE); 450 /* 451 * ...if it fails - move the skb from the consumer to the producer 452 * and set the current aggregation state as ERROR to drop it 453 * when TPA_STOP arrives. 454 */ 455 456 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 457 /* Move the BD from the consumer to the producer */ 458 bnx2x_reuse_rx_data(fp, cons, prod); 459 tpa_info->tpa_state = BNX2X_TPA_ERROR; 460 return; 461 } 462 463 /* move empty data from pool to prod */ 464 prod_rx_buf->data = first_buf->data; 465 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 466 /* point prod_bd to new data */ 467 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 468 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 469 470 /* move partial skb from cons to pool (don't unmap yet) */ 471 *first_buf = *cons_rx_buf; 472 473 /* mark bin state as START */ 474 tpa_info->parsing_flags = 475 le16_to_cpu(cqe->pars_flags.flags); 476 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 477 tpa_info->tpa_state = BNX2X_TPA_START; 478 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 479 tpa_info->placement_offset = cqe->placement_offset; 480 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 481 if (fp->mode == TPA_MODE_GRO) { 482 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 483 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 484 tpa_info->gro_size = gro_size; 485 } 486 487 #ifdef BNX2X_STOP_ON_ERROR 488 fp->tpa_queue_used |= (1 << queue); 489 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 490 fp->tpa_queue_used); 491 #endif 492 } 493 494 /* Timestamp option length allowed for TPA aggregation: 495 * 496 * nop nop kind length echo val 497 */ 498 #define TPA_TSTAMP_OPT_LEN 12 499 /** 500 * bnx2x_set_gro_params - compute GRO values 501 * 502 * @skb: packet skb 503 * @parsing_flags: parsing flags from the START CQE 504 * @len_on_bd: total length of the first packet for the 505 * aggregation. 506 * @pkt_len: length of all segments 507 * 508 * Approximate value of the MSS for this aggregation calculated using 509 * the first packet of it. 510 * Compute number of aggregated segments, and gso_type. 511 */ 512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 513 u16 len_on_bd, unsigned int pkt_len, 514 u16 num_of_coalesced_segs) 515 { 516 /* TPA aggregation won't have either IP options or TCP options 517 * other than timestamp or IPv6 extension headers. 518 */ 519 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 520 521 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 522 PRS_FLAG_OVERETH_IPV6) { 523 hdrs_len += sizeof(struct ipv6hdr); 524 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 525 } else { 526 hdrs_len += sizeof(struct iphdr); 527 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 528 } 529 530 /* Check if there was a TCP timestamp, if there is it's will 531 * always be 12 bytes length: nop nop kind length echo val. 532 * 533 * Otherwise FW would close the aggregation. 534 */ 535 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 536 hdrs_len += TPA_TSTAMP_OPT_LEN; 537 538 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 539 540 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 541 * to skb_shinfo(skb)->gso_segs 542 */ 543 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 544 } 545 546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 547 u16 index, gfp_t gfp_mask) 548 { 549 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 550 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 551 struct bnx2x_alloc_pool *pool = &fp->page_pool; 552 dma_addr_t mapping; 553 554 if (!pool->page || (PAGE_SIZE - pool->offset) < SGE_PAGE_SIZE) { 555 556 /* put page reference used by the memory pool, since we 557 * won't be using this page as the mempool anymore. 558 */ 559 if (pool->page) 560 put_page(pool->page); 561 562 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 563 if (unlikely(!pool->page)) { 564 BNX2X_ERR("Can't alloc sge\n"); 565 return -ENOMEM; 566 } 567 568 pool->offset = 0; 569 } 570 571 mapping = dma_map_page(&bp->pdev->dev, pool->page, 572 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE); 573 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 574 BNX2X_ERR("Can't map sge\n"); 575 return -ENOMEM; 576 } 577 578 get_page(pool->page); 579 sw_buf->page = pool->page; 580 sw_buf->offset = pool->offset; 581 582 dma_unmap_addr_set(sw_buf, mapping, mapping); 583 584 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 585 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 586 587 pool->offset += SGE_PAGE_SIZE; 588 589 return 0; 590 } 591 592 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 593 struct bnx2x_agg_info *tpa_info, 594 u16 pages, 595 struct sk_buff *skb, 596 struct eth_end_agg_rx_cqe *cqe, 597 u16 cqe_idx) 598 { 599 struct sw_rx_page *rx_pg, old_rx_pg; 600 u32 i, frag_len, frag_size; 601 int err, j, frag_id = 0; 602 u16 len_on_bd = tpa_info->len_on_bd; 603 u16 full_page = 0, gro_size = 0; 604 605 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 606 607 if (fp->mode == TPA_MODE_GRO) { 608 gro_size = tpa_info->gro_size; 609 full_page = tpa_info->full_page; 610 } 611 612 /* This is needed in order to enable forwarding support */ 613 if (frag_size) 614 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 615 le16_to_cpu(cqe->pkt_len), 616 le16_to_cpu(cqe->num_of_coalesced_segs)); 617 618 #ifdef BNX2X_STOP_ON_ERROR 619 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 620 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 621 pages, cqe_idx); 622 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 623 bnx2x_panic(); 624 return -EINVAL; 625 } 626 #endif 627 628 /* Run through the SGL and compose the fragmented skb */ 629 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 630 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 631 632 /* FW gives the indices of the SGE as if the ring is an array 633 (meaning that "next" element will consume 2 indices) */ 634 if (fp->mode == TPA_MODE_GRO) 635 frag_len = min_t(u32, frag_size, (u32)full_page); 636 else /* LRO */ 637 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 638 639 rx_pg = &fp->rx_page_ring[sge_idx]; 640 old_rx_pg = *rx_pg; 641 642 /* If we fail to allocate a substitute page, we simply stop 643 where we are and drop the whole packet */ 644 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 645 if (unlikely(err)) { 646 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 647 return err; 648 } 649 650 dma_unmap_page(&bp->pdev->dev, 651 dma_unmap_addr(&old_rx_pg, mapping), 652 SGE_PAGE_SIZE, DMA_FROM_DEVICE); 653 /* Add one frag and update the appropriate fields in the skb */ 654 if (fp->mode == TPA_MODE_LRO) 655 skb_fill_page_desc(skb, j, old_rx_pg.page, 656 old_rx_pg.offset, frag_len); 657 else { /* GRO */ 658 int rem; 659 int offset = 0; 660 for (rem = frag_len; rem > 0; rem -= gro_size) { 661 int len = rem > gro_size ? gro_size : rem; 662 skb_fill_page_desc(skb, frag_id++, 663 old_rx_pg.page, 664 old_rx_pg.offset + offset, 665 len); 666 if (offset) 667 get_page(old_rx_pg.page); 668 offset += len; 669 } 670 } 671 672 skb->data_len += frag_len; 673 skb->truesize += SGE_PAGES; 674 skb->len += frag_len; 675 676 frag_size -= frag_len; 677 } 678 679 return 0; 680 } 681 682 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 683 { 684 if (fp->rx_frag_size) 685 skb_free_frag(data); 686 else 687 kfree(data); 688 } 689 690 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 691 { 692 if (fp->rx_frag_size) { 693 /* GFP_KERNEL allocations are used only during initialization */ 694 if (unlikely(gfpflags_allow_blocking(gfp_mask))) 695 return (void *)__get_free_page(gfp_mask); 696 697 return netdev_alloc_frag(fp->rx_frag_size); 698 } 699 700 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 701 } 702 703 #ifdef CONFIG_INET 704 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 705 { 706 const struct iphdr *iph = ip_hdr(skb); 707 struct tcphdr *th; 708 709 skb_set_transport_header(skb, sizeof(struct iphdr)); 710 th = tcp_hdr(skb); 711 712 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 713 iph->saddr, iph->daddr, 0); 714 } 715 716 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 717 { 718 struct ipv6hdr *iph = ipv6_hdr(skb); 719 struct tcphdr *th; 720 721 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 722 th = tcp_hdr(skb); 723 724 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 725 &iph->saddr, &iph->daddr, 0); 726 } 727 728 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 729 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 730 { 731 skb_set_network_header(skb, 0); 732 gro_func(bp, skb); 733 tcp_gro_complete(skb); 734 } 735 #endif 736 737 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 738 struct sk_buff *skb) 739 { 740 #ifdef CONFIG_INET 741 if (skb_shinfo(skb)->gso_size) { 742 switch (be16_to_cpu(skb->protocol)) { 743 case ETH_P_IP: 744 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 745 break; 746 case ETH_P_IPV6: 747 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 748 break; 749 default: 750 BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 751 be16_to_cpu(skb->protocol)); 752 } 753 } 754 #endif 755 skb_record_rx_queue(skb, fp->rx_queue); 756 napi_gro_receive(&fp->napi, skb); 757 } 758 759 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 760 struct bnx2x_agg_info *tpa_info, 761 u16 pages, 762 struct eth_end_agg_rx_cqe *cqe, 763 u16 cqe_idx) 764 { 765 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 766 u8 pad = tpa_info->placement_offset; 767 u16 len = tpa_info->len_on_bd; 768 struct sk_buff *skb = NULL; 769 u8 *new_data, *data = rx_buf->data; 770 u8 old_tpa_state = tpa_info->tpa_state; 771 772 tpa_info->tpa_state = BNX2X_TPA_STOP; 773 774 /* If we there was an error during the handling of the TPA_START - 775 * drop this aggregation. 776 */ 777 if (old_tpa_state == BNX2X_TPA_ERROR) 778 goto drop; 779 780 /* Try to allocate the new data */ 781 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 782 /* Unmap skb in the pool anyway, as we are going to change 783 pool entry status to BNX2X_TPA_STOP even if new skb allocation 784 fails. */ 785 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 786 fp->rx_buf_size, DMA_FROM_DEVICE); 787 if (likely(new_data)) 788 skb = build_skb(data, fp->rx_frag_size); 789 790 if (likely(skb)) { 791 #ifdef BNX2X_STOP_ON_ERROR 792 if (pad + len > fp->rx_buf_size) { 793 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 794 pad, len, fp->rx_buf_size); 795 bnx2x_panic(); 796 return; 797 } 798 #endif 799 800 skb_reserve(skb, pad + NET_SKB_PAD); 801 skb_put(skb, len); 802 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 803 804 skb->protocol = eth_type_trans(skb, bp->dev); 805 skb->ip_summed = CHECKSUM_UNNECESSARY; 806 807 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 808 skb, cqe, cqe_idx)) { 809 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 810 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 811 bnx2x_gro_receive(bp, fp, skb); 812 } else { 813 DP(NETIF_MSG_RX_STATUS, 814 "Failed to allocate new pages - dropping packet!\n"); 815 dev_kfree_skb_any(skb); 816 } 817 818 /* put new data in bin */ 819 rx_buf->data = new_data; 820 821 return; 822 } 823 if (new_data) 824 bnx2x_frag_free(fp, new_data); 825 drop: 826 /* drop the packet and keep the buffer in the bin */ 827 DP(NETIF_MSG_RX_STATUS, 828 "Failed to allocate or map a new skb - dropping packet!\n"); 829 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 830 } 831 832 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 833 u16 index, gfp_t gfp_mask) 834 { 835 u8 *data; 836 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 837 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 838 dma_addr_t mapping; 839 840 data = bnx2x_frag_alloc(fp, gfp_mask); 841 if (unlikely(data == NULL)) 842 return -ENOMEM; 843 844 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 845 fp->rx_buf_size, 846 DMA_FROM_DEVICE); 847 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 848 bnx2x_frag_free(fp, data); 849 BNX2X_ERR("Can't map rx data\n"); 850 return -ENOMEM; 851 } 852 853 rx_buf->data = data; 854 dma_unmap_addr_set(rx_buf, mapping, mapping); 855 856 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 857 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 858 859 return 0; 860 } 861 862 static 863 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 864 struct bnx2x_fastpath *fp, 865 struct bnx2x_eth_q_stats *qstats) 866 { 867 /* Do nothing if no L4 csum validation was done. 868 * We do not check whether IP csum was validated. For IPv4 we assume 869 * that if the card got as far as validating the L4 csum, it also 870 * validated the IP csum. IPv6 has no IP csum. 871 */ 872 if (cqe->fast_path_cqe.status_flags & 873 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 874 return; 875 876 /* If L4 validation was done, check if an error was found. */ 877 878 if (cqe->fast_path_cqe.type_error_flags & 879 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 880 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 881 qstats->hw_csum_err++; 882 else 883 skb->ip_summed = CHECKSUM_UNNECESSARY; 884 } 885 886 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 887 { 888 struct bnx2x *bp = fp->bp; 889 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 890 u16 sw_comp_cons, sw_comp_prod; 891 int rx_pkt = 0; 892 union eth_rx_cqe *cqe; 893 struct eth_fast_path_rx_cqe *cqe_fp; 894 895 #ifdef BNX2X_STOP_ON_ERROR 896 if (unlikely(bp->panic)) 897 return 0; 898 #endif 899 if (budget <= 0) 900 return rx_pkt; 901 902 bd_cons = fp->rx_bd_cons; 903 bd_prod = fp->rx_bd_prod; 904 bd_prod_fw = bd_prod; 905 sw_comp_cons = fp->rx_comp_cons; 906 sw_comp_prod = fp->rx_comp_prod; 907 908 comp_ring_cons = RCQ_BD(sw_comp_cons); 909 cqe = &fp->rx_comp_ring[comp_ring_cons]; 910 cqe_fp = &cqe->fast_path_cqe; 911 912 DP(NETIF_MSG_RX_STATUS, 913 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 914 915 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 916 struct sw_rx_bd *rx_buf = NULL; 917 struct sk_buff *skb; 918 u8 cqe_fp_flags; 919 enum eth_rx_cqe_type cqe_fp_type; 920 u16 len, pad, queue; 921 u8 *data; 922 u32 rxhash; 923 enum pkt_hash_types rxhash_type; 924 925 #ifdef BNX2X_STOP_ON_ERROR 926 if (unlikely(bp->panic)) 927 return 0; 928 #endif 929 930 bd_prod = RX_BD(bd_prod); 931 bd_cons = RX_BD(bd_cons); 932 933 /* A rmb() is required to ensure that the CQE is not read 934 * before it is written by the adapter DMA. PCI ordering 935 * rules will make sure the other fields are written before 936 * the marker at the end of struct eth_fast_path_rx_cqe 937 * but without rmb() a weakly ordered processor can process 938 * stale data. Without the barrier TPA state-machine might 939 * enter inconsistent state and kernel stack might be 940 * provided with incorrect packet description - these lead 941 * to various kernel crashed. 942 */ 943 rmb(); 944 945 cqe_fp_flags = cqe_fp->type_error_flags; 946 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 947 948 DP(NETIF_MSG_RX_STATUS, 949 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 950 CQE_TYPE(cqe_fp_flags), 951 cqe_fp_flags, cqe_fp->status_flags, 952 le32_to_cpu(cqe_fp->rss_hash_result), 953 le16_to_cpu(cqe_fp->vlan_tag), 954 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 955 956 /* is this a slowpath msg? */ 957 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 958 bnx2x_sp_event(fp, cqe); 959 goto next_cqe; 960 } 961 962 rx_buf = &fp->rx_buf_ring[bd_cons]; 963 data = rx_buf->data; 964 965 if (!CQE_TYPE_FAST(cqe_fp_type)) { 966 struct bnx2x_agg_info *tpa_info; 967 u16 frag_size, pages; 968 #ifdef BNX2X_STOP_ON_ERROR 969 /* sanity check */ 970 if (fp->mode == TPA_MODE_DISABLED && 971 (CQE_TYPE_START(cqe_fp_type) || 972 CQE_TYPE_STOP(cqe_fp_type))) 973 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n", 974 CQE_TYPE(cqe_fp_type)); 975 #endif 976 977 if (CQE_TYPE_START(cqe_fp_type)) { 978 u16 queue = cqe_fp->queue_index; 979 DP(NETIF_MSG_RX_STATUS, 980 "calling tpa_start on queue %d\n", 981 queue); 982 983 bnx2x_tpa_start(fp, queue, 984 bd_cons, bd_prod, 985 cqe_fp); 986 987 goto next_rx; 988 } 989 queue = cqe->end_agg_cqe.queue_index; 990 tpa_info = &fp->tpa_info[queue]; 991 DP(NETIF_MSG_RX_STATUS, 992 "calling tpa_stop on queue %d\n", 993 queue); 994 995 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 996 tpa_info->len_on_bd; 997 998 if (fp->mode == TPA_MODE_GRO) 999 pages = (frag_size + tpa_info->full_page - 1) / 1000 tpa_info->full_page; 1001 else 1002 pages = SGE_PAGE_ALIGN(frag_size) >> 1003 SGE_PAGE_SHIFT; 1004 1005 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 1006 &cqe->end_agg_cqe, comp_ring_cons); 1007 #ifdef BNX2X_STOP_ON_ERROR 1008 if (bp->panic) 1009 return 0; 1010 #endif 1011 1012 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 1013 goto next_cqe; 1014 } 1015 /* non TPA */ 1016 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 1017 pad = cqe_fp->placement_offset; 1018 dma_sync_single_for_cpu(&bp->pdev->dev, 1019 dma_unmap_addr(rx_buf, mapping), 1020 pad + RX_COPY_THRESH, 1021 DMA_FROM_DEVICE); 1022 pad += NET_SKB_PAD; 1023 prefetch(data + pad); /* speedup eth_type_trans() */ 1024 /* is this an error packet? */ 1025 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 1026 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1027 "ERROR flags %x rx packet %u\n", 1028 cqe_fp_flags, sw_comp_cons); 1029 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 1030 goto reuse_rx; 1031 } 1032 1033 /* Since we don't have a jumbo ring 1034 * copy small packets if mtu > 1500 1035 */ 1036 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 1037 (len <= RX_COPY_THRESH)) { 1038 skb = napi_alloc_skb(&fp->napi, len); 1039 if (skb == NULL) { 1040 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1041 "ERROR packet dropped because of alloc failure\n"); 1042 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1043 goto reuse_rx; 1044 } 1045 memcpy(skb->data, data + pad, len); 1046 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1047 } else { 1048 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1049 GFP_ATOMIC) == 0)) { 1050 dma_unmap_single(&bp->pdev->dev, 1051 dma_unmap_addr(rx_buf, mapping), 1052 fp->rx_buf_size, 1053 DMA_FROM_DEVICE); 1054 skb = build_skb(data, fp->rx_frag_size); 1055 if (unlikely(!skb)) { 1056 bnx2x_frag_free(fp, data); 1057 bnx2x_fp_qstats(bp, fp)-> 1058 rx_skb_alloc_failed++; 1059 goto next_rx; 1060 } 1061 skb_reserve(skb, pad); 1062 } else { 1063 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1064 "ERROR packet dropped because of alloc failure\n"); 1065 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1066 reuse_rx: 1067 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1068 goto next_rx; 1069 } 1070 } 1071 1072 skb_put(skb, len); 1073 skb->protocol = eth_type_trans(skb, bp->dev); 1074 1075 /* Set Toeplitz hash for a none-LRO skb */ 1076 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1077 skb_set_hash(skb, rxhash, rxhash_type); 1078 1079 skb_checksum_none_assert(skb); 1080 1081 if (bp->dev->features & NETIF_F_RXCSUM) 1082 bnx2x_csum_validate(skb, cqe, fp, 1083 bnx2x_fp_qstats(bp, fp)); 1084 1085 skb_record_rx_queue(skb, fp->rx_queue); 1086 1087 /* Check if this packet was timestamped */ 1088 if (unlikely(cqe->fast_path_cqe.type_error_flags & 1089 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT))) 1090 bnx2x_set_rx_ts(bp, skb); 1091 1092 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1093 PARSING_FLAGS_VLAN) 1094 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1095 le16_to_cpu(cqe_fp->vlan_tag)); 1096 1097 skb_mark_napi_id(skb, &fp->napi); 1098 1099 if (bnx2x_fp_ll_polling(fp)) 1100 netif_receive_skb(skb); 1101 else 1102 napi_gro_receive(&fp->napi, skb); 1103 next_rx: 1104 rx_buf->data = NULL; 1105 1106 bd_cons = NEXT_RX_IDX(bd_cons); 1107 bd_prod = NEXT_RX_IDX(bd_prod); 1108 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1109 rx_pkt++; 1110 next_cqe: 1111 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1112 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1113 1114 /* mark CQE as free */ 1115 BNX2X_SEED_CQE(cqe_fp); 1116 1117 if (rx_pkt == budget) 1118 break; 1119 1120 comp_ring_cons = RCQ_BD(sw_comp_cons); 1121 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1122 cqe_fp = &cqe->fast_path_cqe; 1123 } /* while */ 1124 1125 fp->rx_bd_cons = bd_cons; 1126 fp->rx_bd_prod = bd_prod_fw; 1127 fp->rx_comp_cons = sw_comp_cons; 1128 fp->rx_comp_prod = sw_comp_prod; 1129 1130 /* Update producers */ 1131 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1132 fp->rx_sge_prod); 1133 1134 fp->rx_pkt += rx_pkt; 1135 fp->rx_calls++; 1136 1137 return rx_pkt; 1138 } 1139 1140 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1141 { 1142 struct bnx2x_fastpath *fp = fp_cookie; 1143 struct bnx2x *bp = fp->bp; 1144 u8 cos; 1145 1146 DP(NETIF_MSG_INTR, 1147 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1148 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1149 1150 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1151 1152 #ifdef BNX2X_STOP_ON_ERROR 1153 if (unlikely(bp->panic)) 1154 return IRQ_HANDLED; 1155 #endif 1156 1157 /* Handle Rx and Tx according to MSI-X vector */ 1158 for_each_cos_in_tx_queue(fp, cos) 1159 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1160 1161 prefetch(&fp->sb_running_index[SM_RX_ID]); 1162 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1163 1164 return IRQ_HANDLED; 1165 } 1166 1167 /* HW Lock for shared dual port PHYs */ 1168 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1169 { 1170 mutex_lock(&bp->port.phy_mutex); 1171 1172 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1173 } 1174 1175 void bnx2x_release_phy_lock(struct bnx2x *bp) 1176 { 1177 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1178 1179 mutex_unlock(&bp->port.phy_mutex); 1180 } 1181 1182 /* calculates MF speed according to current linespeed and MF configuration */ 1183 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1184 { 1185 u16 line_speed = bp->link_vars.line_speed; 1186 if (IS_MF(bp)) { 1187 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1188 bp->mf_config[BP_VN(bp)]); 1189 1190 /* Calculate the current MAX line speed limit for the MF 1191 * devices 1192 */ 1193 if (IS_MF_PERCENT_BW(bp)) 1194 line_speed = (line_speed * maxCfg) / 100; 1195 else { /* SD mode */ 1196 u16 vn_max_rate = maxCfg * 100; 1197 1198 if (vn_max_rate < line_speed) 1199 line_speed = vn_max_rate; 1200 } 1201 } 1202 1203 return line_speed; 1204 } 1205 1206 /** 1207 * bnx2x_fill_report_data - fill link report data to report 1208 * 1209 * @bp: driver handle 1210 * @data: link state to update 1211 * 1212 * It uses a none-atomic bit operations because is called under the mutex. 1213 */ 1214 static void bnx2x_fill_report_data(struct bnx2x *bp, 1215 struct bnx2x_link_report_data *data) 1216 { 1217 memset(data, 0, sizeof(*data)); 1218 1219 if (IS_PF(bp)) { 1220 /* Fill the report data: effective line speed */ 1221 data->line_speed = bnx2x_get_mf_speed(bp); 1222 1223 /* Link is down */ 1224 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1225 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1226 &data->link_report_flags); 1227 1228 if (!BNX2X_NUM_ETH_QUEUES(bp)) 1229 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1230 &data->link_report_flags); 1231 1232 /* Full DUPLEX */ 1233 if (bp->link_vars.duplex == DUPLEX_FULL) 1234 __set_bit(BNX2X_LINK_REPORT_FD, 1235 &data->link_report_flags); 1236 1237 /* Rx Flow Control is ON */ 1238 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1239 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1240 &data->link_report_flags); 1241 1242 /* Tx Flow Control is ON */ 1243 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1244 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1245 &data->link_report_flags); 1246 } else { /* VF */ 1247 *data = bp->vf_link_vars; 1248 } 1249 } 1250 1251 /** 1252 * bnx2x_link_report - report link status to OS. 1253 * 1254 * @bp: driver handle 1255 * 1256 * Calls the __bnx2x_link_report() under the same locking scheme 1257 * as a link/PHY state managing code to ensure a consistent link 1258 * reporting. 1259 */ 1260 1261 void bnx2x_link_report(struct bnx2x *bp) 1262 { 1263 bnx2x_acquire_phy_lock(bp); 1264 __bnx2x_link_report(bp); 1265 bnx2x_release_phy_lock(bp); 1266 } 1267 1268 /** 1269 * __bnx2x_link_report - report link status to OS. 1270 * 1271 * @bp: driver handle 1272 * 1273 * None atomic implementation. 1274 * Should be called under the phy_lock. 1275 */ 1276 void __bnx2x_link_report(struct bnx2x *bp) 1277 { 1278 struct bnx2x_link_report_data cur_data; 1279 1280 /* reread mf_cfg */ 1281 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1282 bnx2x_read_mf_cfg(bp); 1283 1284 /* Read the current link report info */ 1285 bnx2x_fill_report_data(bp, &cur_data); 1286 1287 /* Don't report link down or exactly the same link status twice */ 1288 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1289 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1290 &bp->last_reported_link.link_report_flags) && 1291 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1292 &cur_data.link_report_flags))) 1293 return; 1294 1295 bp->link_cnt++; 1296 1297 /* We are going to report a new link parameters now - 1298 * remember the current data for the next time. 1299 */ 1300 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1301 1302 /* propagate status to VFs */ 1303 if (IS_PF(bp)) 1304 bnx2x_iov_link_update(bp); 1305 1306 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1307 &cur_data.link_report_flags)) { 1308 netif_carrier_off(bp->dev); 1309 netdev_err(bp->dev, "NIC Link is Down\n"); 1310 return; 1311 } else { 1312 const char *duplex; 1313 const char *flow; 1314 1315 netif_carrier_on(bp->dev); 1316 1317 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1318 &cur_data.link_report_flags)) 1319 duplex = "full"; 1320 else 1321 duplex = "half"; 1322 1323 /* Handle the FC at the end so that only these flags would be 1324 * possibly set. This way we may easily check if there is no FC 1325 * enabled. 1326 */ 1327 if (cur_data.link_report_flags) { 1328 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1329 &cur_data.link_report_flags)) { 1330 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1331 &cur_data.link_report_flags)) 1332 flow = "ON - receive & transmit"; 1333 else 1334 flow = "ON - receive"; 1335 } else { 1336 flow = "ON - transmit"; 1337 } 1338 } else { 1339 flow = "none"; 1340 } 1341 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1342 cur_data.line_speed, duplex, flow); 1343 } 1344 } 1345 1346 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1347 { 1348 int i; 1349 1350 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1351 struct eth_rx_sge *sge; 1352 1353 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1354 sge->addr_hi = 1355 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1356 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1357 1358 sge->addr_lo = 1359 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1360 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1361 } 1362 } 1363 1364 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1365 struct bnx2x_fastpath *fp, int last) 1366 { 1367 int i; 1368 1369 for (i = 0; i < last; i++) { 1370 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1371 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1372 u8 *data = first_buf->data; 1373 1374 if (data == NULL) { 1375 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1376 continue; 1377 } 1378 if (tpa_info->tpa_state == BNX2X_TPA_START) 1379 dma_unmap_single(&bp->pdev->dev, 1380 dma_unmap_addr(first_buf, mapping), 1381 fp->rx_buf_size, DMA_FROM_DEVICE); 1382 bnx2x_frag_free(fp, data); 1383 first_buf->data = NULL; 1384 } 1385 } 1386 1387 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1388 { 1389 int j; 1390 1391 for_each_rx_queue_cnic(bp, j) { 1392 struct bnx2x_fastpath *fp = &bp->fp[j]; 1393 1394 fp->rx_bd_cons = 0; 1395 1396 /* Activate BD ring */ 1397 /* Warning! 1398 * this will generate an interrupt (to the TSTORM) 1399 * must only be done after chip is initialized 1400 */ 1401 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1402 fp->rx_sge_prod); 1403 } 1404 } 1405 1406 void bnx2x_init_rx_rings(struct bnx2x *bp) 1407 { 1408 int func = BP_FUNC(bp); 1409 u16 ring_prod; 1410 int i, j; 1411 1412 /* Allocate TPA resources */ 1413 for_each_eth_queue(bp, j) { 1414 struct bnx2x_fastpath *fp = &bp->fp[j]; 1415 1416 DP(NETIF_MSG_IFUP, 1417 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1418 1419 if (fp->mode != TPA_MODE_DISABLED) { 1420 /* Fill the per-aggregation pool */ 1421 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1422 struct bnx2x_agg_info *tpa_info = 1423 &fp->tpa_info[i]; 1424 struct sw_rx_bd *first_buf = 1425 &tpa_info->first_buf; 1426 1427 first_buf->data = 1428 bnx2x_frag_alloc(fp, GFP_KERNEL); 1429 if (!first_buf->data) { 1430 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1431 j); 1432 bnx2x_free_tpa_pool(bp, fp, i); 1433 fp->mode = TPA_MODE_DISABLED; 1434 break; 1435 } 1436 dma_unmap_addr_set(first_buf, mapping, 0); 1437 tpa_info->tpa_state = BNX2X_TPA_STOP; 1438 } 1439 1440 /* "next page" elements initialization */ 1441 bnx2x_set_next_page_sgl(fp); 1442 1443 /* set SGEs bit mask */ 1444 bnx2x_init_sge_ring_bit_mask(fp); 1445 1446 /* Allocate SGEs and initialize the ring elements */ 1447 for (i = 0, ring_prod = 0; 1448 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1449 1450 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1451 GFP_KERNEL) < 0) { 1452 BNX2X_ERR("was only able to allocate %d rx sges\n", 1453 i); 1454 BNX2X_ERR("disabling TPA for queue[%d]\n", 1455 j); 1456 /* Cleanup already allocated elements */ 1457 bnx2x_free_rx_sge_range(bp, fp, 1458 ring_prod); 1459 bnx2x_free_tpa_pool(bp, fp, 1460 MAX_AGG_QS(bp)); 1461 fp->mode = TPA_MODE_DISABLED; 1462 ring_prod = 0; 1463 break; 1464 } 1465 ring_prod = NEXT_SGE_IDX(ring_prod); 1466 } 1467 1468 fp->rx_sge_prod = ring_prod; 1469 } 1470 } 1471 1472 for_each_eth_queue(bp, j) { 1473 struct bnx2x_fastpath *fp = &bp->fp[j]; 1474 1475 fp->rx_bd_cons = 0; 1476 1477 /* Activate BD ring */ 1478 /* Warning! 1479 * this will generate an interrupt (to the TSTORM) 1480 * must only be done after chip is initialized 1481 */ 1482 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1483 fp->rx_sge_prod); 1484 1485 if (j != 0) 1486 continue; 1487 1488 if (CHIP_IS_E1(bp)) { 1489 REG_WR(bp, BAR_USTRORM_INTMEM + 1490 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1491 U64_LO(fp->rx_comp_mapping)); 1492 REG_WR(bp, BAR_USTRORM_INTMEM + 1493 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1494 U64_HI(fp->rx_comp_mapping)); 1495 } 1496 } 1497 } 1498 1499 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1500 { 1501 u8 cos; 1502 struct bnx2x *bp = fp->bp; 1503 1504 for_each_cos_in_tx_queue(fp, cos) { 1505 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1506 unsigned pkts_compl = 0, bytes_compl = 0; 1507 1508 u16 sw_prod = txdata->tx_pkt_prod; 1509 u16 sw_cons = txdata->tx_pkt_cons; 1510 1511 while (sw_cons != sw_prod) { 1512 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1513 &pkts_compl, &bytes_compl); 1514 sw_cons++; 1515 } 1516 1517 netdev_tx_reset_queue( 1518 netdev_get_tx_queue(bp->dev, 1519 txdata->txq_index)); 1520 } 1521 } 1522 1523 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1524 { 1525 int i; 1526 1527 for_each_tx_queue_cnic(bp, i) { 1528 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1529 } 1530 } 1531 1532 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1533 { 1534 int i; 1535 1536 for_each_eth_queue(bp, i) { 1537 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1538 } 1539 } 1540 1541 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1542 { 1543 struct bnx2x *bp = fp->bp; 1544 int i; 1545 1546 /* ring wasn't allocated */ 1547 if (fp->rx_buf_ring == NULL) 1548 return; 1549 1550 for (i = 0; i < NUM_RX_BD; i++) { 1551 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1552 u8 *data = rx_buf->data; 1553 1554 if (data == NULL) 1555 continue; 1556 dma_unmap_single(&bp->pdev->dev, 1557 dma_unmap_addr(rx_buf, mapping), 1558 fp->rx_buf_size, DMA_FROM_DEVICE); 1559 1560 rx_buf->data = NULL; 1561 bnx2x_frag_free(fp, data); 1562 } 1563 } 1564 1565 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1566 { 1567 int j; 1568 1569 for_each_rx_queue_cnic(bp, j) { 1570 bnx2x_free_rx_bds(&bp->fp[j]); 1571 } 1572 } 1573 1574 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1575 { 1576 int j; 1577 1578 for_each_eth_queue(bp, j) { 1579 struct bnx2x_fastpath *fp = &bp->fp[j]; 1580 1581 bnx2x_free_rx_bds(fp); 1582 1583 if (fp->mode != TPA_MODE_DISABLED) 1584 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1585 } 1586 } 1587 1588 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1589 { 1590 bnx2x_free_tx_skbs_cnic(bp); 1591 bnx2x_free_rx_skbs_cnic(bp); 1592 } 1593 1594 void bnx2x_free_skbs(struct bnx2x *bp) 1595 { 1596 bnx2x_free_tx_skbs(bp); 1597 bnx2x_free_rx_skbs(bp); 1598 } 1599 1600 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1601 { 1602 /* load old values */ 1603 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1604 1605 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1606 /* leave all but MAX value */ 1607 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1608 1609 /* set new MAX value */ 1610 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1611 & FUNC_MF_CFG_MAX_BW_MASK; 1612 1613 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1614 } 1615 } 1616 1617 /** 1618 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1619 * 1620 * @bp: driver handle 1621 * @nvecs: number of vectors to be released 1622 */ 1623 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1624 { 1625 int i, offset = 0; 1626 1627 if (nvecs == offset) 1628 return; 1629 1630 /* VFs don't have a default SB */ 1631 if (IS_PF(bp)) { 1632 free_irq(bp->msix_table[offset].vector, bp->dev); 1633 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1634 bp->msix_table[offset].vector); 1635 offset++; 1636 } 1637 1638 if (CNIC_SUPPORT(bp)) { 1639 if (nvecs == offset) 1640 return; 1641 offset++; 1642 } 1643 1644 for_each_eth_queue(bp, i) { 1645 if (nvecs == offset) 1646 return; 1647 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1648 i, bp->msix_table[offset].vector); 1649 1650 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1651 } 1652 } 1653 1654 void bnx2x_free_irq(struct bnx2x *bp) 1655 { 1656 if (bp->flags & USING_MSIX_FLAG && 1657 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1658 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1659 1660 /* vfs don't have a default status block */ 1661 if (IS_PF(bp)) 1662 nvecs++; 1663 1664 bnx2x_free_msix_irqs(bp, nvecs); 1665 } else { 1666 free_irq(bp->dev->irq, bp->dev); 1667 } 1668 } 1669 1670 int bnx2x_enable_msix(struct bnx2x *bp) 1671 { 1672 int msix_vec = 0, i, rc; 1673 1674 /* VFs don't have a default status block */ 1675 if (IS_PF(bp)) { 1676 bp->msix_table[msix_vec].entry = msix_vec; 1677 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1678 bp->msix_table[0].entry); 1679 msix_vec++; 1680 } 1681 1682 /* Cnic requires an msix vector for itself */ 1683 if (CNIC_SUPPORT(bp)) { 1684 bp->msix_table[msix_vec].entry = msix_vec; 1685 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1686 msix_vec, bp->msix_table[msix_vec].entry); 1687 msix_vec++; 1688 } 1689 1690 /* We need separate vectors for ETH queues only (not FCoE) */ 1691 for_each_eth_queue(bp, i) { 1692 bp->msix_table[msix_vec].entry = msix_vec; 1693 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1694 msix_vec, msix_vec, i); 1695 msix_vec++; 1696 } 1697 1698 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1699 msix_vec); 1700 1701 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1702 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); 1703 /* 1704 * reconfigure number of tx/rx queues according to available 1705 * MSI-X vectors 1706 */ 1707 if (rc == -ENOSPC) { 1708 /* Get by with single vector */ 1709 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); 1710 if (rc < 0) { 1711 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1712 rc); 1713 goto no_msix; 1714 } 1715 1716 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1717 bp->flags |= USING_SINGLE_MSIX_FLAG; 1718 1719 BNX2X_DEV_INFO("set number of queues to 1\n"); 1720 bp->num_ethernet_queues = 1; 1721 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1722 } else if (rc < 0) { 1723 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1724 goto no_msix; 1725 } else if (rc < msix_vec) { 1726 /* how less vectors we will have? */ 1727 int diff = msix_vec - rc; 1728 1729 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1730 1731 /* 1732 * decrease number of queues by number of unallocated entries 1733 */ 1734 bp->num_ethernet_queues -= diff; 1735 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1736 1737 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1738 bp->num_queues); 1739 } 1740 1741 bp->flags |= USING_MSIX_FLAG; 1742 1743 return 0; 1744 1745 no_msix: 1746 /* fall to INTx if not enough memory */ 1747 if (rc == -ENOMEM) 1748 bp->flags |= DISABLE_MSI_FLAG; 1749 1750 return rc; 1751 } 1752 1753 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1754 { 1755 int i, rc, offset = 0; 1756 1757 /* no default status block for vf */ 1758 if (IS_PF(bp)) { 1759 rc = request_irq(bp->msix_table[offset++].vector, 1760 bnx2x_msix_sp_int, 0, 1761 bp->dev->name, bp->dev); 1762 if (rc) { 1763 BNX2X_ERR("request sp irq failed\n"); 1764 return -EBUSY; 1765 } 1766 } 1767 1768 if (CNIC_SUPPORT(bp)) 1769 offset++; 1770 1771 for_each_eth_queue(bp, i) { 1772 struct bnx2x_fastpath *fp = &bp->fp[i]; 1773 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1774 bp->dev->name, i); 1775 1776 rc = request_irq(bp->msix_table[offset].vector, 1777 bnx2x_msix_fp_int, 0, fp->name, fp); 1778 if (rc) { 1779 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1780 bp->msix_table[offset].vector, rc); 1781 bnx2x_free_msix_irqs(bp, offset); 1782 return -EBUSY; 1783 } 1784 1785 offset++; 1786 } 1787 1788 i = BNX2X_NUM_ETH_QUEUES(bp); 1789 if (IS_PF(bp)) { 1790 offset = 1 + CNIC_SUPPORT(bp); 1791 netdev_info(bp->dev, 1792 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1793 bp->msix_table[0].vector, 1794 0, bp->msix_table[offset].vector, 1795 i - 1, bp->msix_table[offset + i - 1].vector); 1796 } else { 1797 offset = CNIC_SUPPORT(bp); 1798 netdev_info(bp->dev, 1799 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1800 0, bp->msix_table[offset].vector, 1801 i - 1, bp->msix_table[offset + i - 1].vector); 1802 } 1803 return 0; 1804 } 1805 1806 int bnx2x_enable_msi(struct bnx2x *bp) 1807 { 1808 int rc; 1809 1810 rc = pci_enable_msi(bp->pdev); 1811 if (rc) { 1812 BNX2X_DEV_INFO("MSI is not attainable\n"); 1813 return -1; 1814 } 1815 bp->flags |= USING_MSI_FLAG; 1816 1817 return 0; 1818 } 1819 1820 static int bnx2x_req_irq(struct bnx2x *bp) 1821 { 1822 unsigned long flags; 1823 unsigned int irq; 1824 1825 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1826 flags = 0; 1827 else 1828 flags = IRQF_SHARED; 1829 1830 if (bp->flags & USING_MSIX_FLAG) 1831 irq = bp->msix_table[0].vector; 1832 else 1833 irq = bp->pdev->irq; 1834 1835 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1836 } 1837 1838 static int bnx2x_setup_irqs(struct bnx2x *bp) 1839 { 1840 int rc = 0; 1841 if (bp->flags & USING_MSIX_FLAG && 1842 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1843 rc = bnx2x_req_msix_irqs(bp); 1844 if (rc) 1845 return rc; 1846 } else { 1847 rc = bnx2x_req_irq(bp); 1848 if (rc) { 1849 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1850 return rc; 1851 } 1852 if (bp->flags & USING_MSI_FLAG) { 1853 bp->dev->irq = bp->pdev->irq; 1854 netdev_info(bp->dev, "using MSI IRQ %d\n", 1855 bp->dev->irq); 1856 } 1857 if (bp->flags & USING_MSIX_FLAG) { 1858 bp->dev->irq = bp->msix_table[0].vector; 1859 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1860 bp->dev->irq); 1861 } 1862 } 1863 1864 return 0; 1865 } 1866 1867 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1868 { 1869 int i; 1870 1871 for_each_rx_queue_cnic(bp, i) { 1872 bnx2x_fp_busy_poll_init(&bp->fp[i]); 1873 napi_enable(&bnx2x_fp(bp, i, napi)); 1874 } 1875 } 1876 1877 static void bnx2x_napi_enable(struct bnx2x *bp) 1878 { 1879 int i; 1880 1881 for_each_eth_queue(bp, i) { 1882 bnx2x_fp_busy_poll_init(&bp->fp[i]); 1883 napi_enable(&bnx2x_fp(bp, i, napi)); 1884 } 1885 } 1886 1887 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1888 { 1889 int i; 1890 1891 for_each_rx_queue_cnic(bp, i) { 1892 napi_disable(&bnx2x_fp(bp, i, napi)); 1893 while (!bnx2x_fp_ll_disable(&bp->fp[i])) 1894 usleep_range(1000, 2000); 1895 } 1896 } 1897 1898 static void bnx2x_napi_disable(struct bnx2x *bp) 1899 { 1900 int i; 1901 1902 for_each_eth_queue(bp, i) { 1903 napi_disable(&bnx2x_fp(bp, i, napi)); 1904 while (!bnx2x_fp_ll_disable(&bp->fp[i])) 1905 usleep_range(1000, 2000); 1906 } 1907 } 1908 1909 void bnx2x_netif_start(struct bnx2x *bp) 1910 { 1911 if (netif_running(bp->dev)) { 1912 bnx2x_napi_enable(bp); 1913 if (CNIC_LOADED(bp)) 1914 bnx2x_napi_enable_cnic(bp); 1915 bnx2x_int_enable(bp); 1916 if (bp->state == BNX2X_STATE_OPEN) 1917 netif_tx_wake_all_queues(bp->dev); 1918 } 1919 } 1920 1921 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1922 { 1923 bnx2x_int_disable_sync(bp, disable_hw); 1924 bnx2x_napi_disable(bp); 1925 if (CNIC_LOADED(bp)) 1926 bnx2x_napi_disable_cnic(bp); 1927 } 1928 1929 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1930 void *accel_priv, select_queue_fallback_t fallback) 1931 { 1932 struct bnx2x *bp = netdev_priv(dev); 1933 1934 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1935 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1936 u16 ether_type = ntohs(hdr->h_proto); 1937 1938 /* Skip VLAN tag if present */ 1939 if (ether_type == ETH_P_8021Q) { 1940 struct vlan_ethhdr *vhdr = 1941 (struct vlan_ethhdr *)skb->data; 1942 1943 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1944 } 1945 1946 /* If ethertype is FCoE or FIP - use FCoE ring */ 1947 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1948 return bnx2x_fcoe_tx(bp, txq_index); 1949 } 1950 1951 /* select a non-FCoE queue */ 1952 return fallback(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp); 1953 } 1954 1955 void bnx2x_set_num_queues(struct bnx2x *bp) 1956 { 1957 /* RSS queues */ 1958 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1959 1960 /* override in STORAGE SD modes */ 1961 if (IS_MF_STORAGE_ONLY(bp)) 1962 bp->num_ethernet_queues = 1; 1963 1964 /* Add special queues */ 1965 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1966 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1967 1968 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1969 } 1970 1971 /** 1972 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1973 * 1974 * @bp: Driver handle 1975 * 1976 * We currently support for at most 16 Tx queues for each CoS thus we will 1977 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1978 * bp->max_cos. 1979 * 1980 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1981 * index after all ETH L2 indices. 1982 * 1983 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1984 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1985 * 16..31,...) with indices that are not coupled with any real Tx queue. 1986 * 1987 * The proper configuration of skb->queue_mapping is handled by 1988 * bnx2x_select_queue() and __skb_tx_hash(). 1989 * 1990 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1991 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1992 */ 1993 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1994 { 1995 int rc, tx, rx; 1996 1997 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1998 rx = BNX2X_NUM_ETH_QUEUES(bp); 1999 2000 /* account for fcoe queue */ 2001 if (include_cnic && !NO_FCOE(bp)) { 2002 rx++; 2003 tx++; 2004 } 2005 2006 rc = netif_set_real_num_tx_queues(bp->dev, tx); 2007 if (rc) { 2008 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 2009 return rc; 2010 } 2011 rc = netif_set_real_num_rx_queues(bp->dev, rx); 2012 if (rc) { 2013 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 2014 return rc; 2015 } 2016 2017 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 2018 tx, rx); 2019 2020 return rc; 2021 } 2022 2023 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 2024 { 2025 int i; 2026 2027 for_each_queue(bp, i) { 2028 struct bnx2x_fastpath *fp = &bp->fp[i]; 2029 u32 mtu; 2030 2031 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 2032 if (IS_FCOE_IDX(i)) 2033 /* 2034 * Although there are no IP frames expected to arrive to 2035 * this ring we still want to add an 2036 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 2037 * overrun attack. 2038 */ 2039 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 2040 else 2041 mtu = bp->dev->mtu; 2042 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 2043 IP_HEADER_ALIGNMENT_PADDING + 2044 ETH_OVREHEAD + 2045 mtu + 2046 BNX2X_FW_RX_ALIGN_END; 2047 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 2048 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 2049 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 2050 else 2051 fp->rx_frag_size = 0; 2052 } 2053 } 2054 2055 static int bnx2x_init_rss(struct bnx2x *bp) 2056 { 2057 int i; 2058 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2059 2060 /* Prepare the initial contents for the indirection table if RSS is 2061 * enabled 2062 */ 2063 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2064 bp->rss_conf_obj.ind_table[i] = 2065 bp->fp->cl_id + 2066 ethtool_rxfh_indir_default(i, num_eth_queues); 2067 2068 /* 2069 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2070 * per-port, so if explicit configuration is needed , do it only 2071 * for a PMF. 2072 * 2073 * For 57712 and newer on the other hand it's a per-function 2074 * configuration. 2075 */ 2076 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2077 } 2078 2079 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2080 bool config_hash, bool enable) 2081 { 2082 struct bnx2x_config_rss_params params = {NULL}; 2083 2084 /* Although RSS is meaningless when there is a single HW queue we 2085 * still need it enabled in order to have HW Rx hash generated. 2086 * 2087 * if (!is_eth_multi(bp)) 2088 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2089 */ 2090 2091 params.rss_obj = rss_obj; 2092 2093 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2094 2095 if (enable) { 2096 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2097 2098 /* RSS configuration */ 2099 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2100 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2101 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2102 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2103 if (rss_obj->udp_rss_v4) 2104 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2105 if (rss_obj->udp_rss_v6) 2106 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2107 2108 if (!CHIP_IS_E1x(bp)) { 2109 /* valid only for TUNN_MODE_VXLAN tunnel mode */ 2110 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags); 2111 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags); 2112 2113 /* valid only for TUNN_MODE_GRE tunnel mode */ 2114 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags); 2115 } 2116 } else { 2117 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2118 } 2119 2120 /* Hash bits */ 2121 params.rss_result_mask = MULTI_MASK; 2122 2123 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2124 2125 if (config_hash) { 2126 /* RSS keys */ 2127 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4); 2128 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2129 } 2130 2131 if (IS_PF(bp)) 2132 return bnx2x_config_rss(bp, ¶ms); 2133 else 2134 return bnx2x_vfpf_config_rss(bp, ¶ms); 2135 } 2136 2137 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2138 { 2139 struct bnx2x_func_state_params func_params = {NULL}; 2140 2141 /* Prepare parameters for function state transitions */ 2142 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2143 2144 func_params.f_obj = &bp->func_obj; 2145 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2146 2147 func_params.params.hw_init.load_phase = load_code; 2148 2149 return bnx2x_func_state_change(bp, &func_params); 2150 } 2151 2152 /* 2153 * Cleans the object that have internal lists without sending 2154 * ramrods. Should be run when interrupts are disabled. 2155 */ 2156 void bnx2x_squeeze_objects(struct bnx2x *bp) 2157 { 2158 int rc; 2159 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2160 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2161 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2162 2163 /***************** Cleanup MACs' object first *************************/ 2164 2165 /* Wait for completion of requested */ 2166 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2167 /* Perform a dry cleanup */ 2168 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2169 2170 /* Clean ETH primary MAC */ 2171 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2172 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2173 &ramrod_flags); 2174 if (rc != 0) 2175 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2176 2177 /* Cleanup UC list */ 2178 vlan_mac_flags = 0; 2179 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2180 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2181 &ramrod_flags); 2182 if (rc != 0) 2183 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2184 2185 /***************** Now clean mcast object *****************************/ 2186 rparam.mcast_obj = &bp->mcast_obj; 2187 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2188 2189 /* Add a DEL command... - Since we're doing a driver cleanup only, 2190 * we take a lock surrounding both the initial send and the CONTs, 2191 * as we don't want a true completion to disrupt us in the middle. 2192 */ 2193 netif_addr_lock_bh(bp->dev); 2194 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2195 if (rc < 0) 2196 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2197 rc); 2198 2199 /* ...and wait until all pending commands are cleared */ 2200 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2201 while (rc != 0) { 2202 if (rc < 0) { 2203 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2204 rc); 2205 netif_addr_unlock_bh(bp->dev); 2206 return; 2207 } 2208 2209 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2210 } 2211 netif_addr_unlock_bh(bp->dev); 2212 } 2213 2214 #ifndef BNX2X_STOP_ON_ERROR 2215 #define LOAD_ERROR_EXIT(bp, label) \ 2216 do { \ 2217 (bp)->state = BNX2X_STATE_ERROR; \ 2218 goto label; \ 2219 } while (0) 2220 2221 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2222 do { \ 2223 bp->cnic_loaded = false; \ 2224 goto label; \ 2225 } while (0) 2226 #else /*BNX2X_STOP_ON_ERROR*/ 2227 #define LOAD_ERROR_EXIT(bp, label) \ 2228 do { \ 2229 (bp)->state = BNX2X_STATE_ERROR; \ 2230 (bp)->panic = 1; \ 2231 return -EBUSY; \ 2232 } while (0) 2233 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2234 do { \ 2235 bp->cnic_loaded = false; \ 2236 (bp)->panic = 1; \ 2237 return -EBUSY; \ 2238 } while (0) 2239 #endif /*BNX2X_STOP_ON_ERROR*/ 2240 2241 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2242 { 2243 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2244 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2245 return; 2246 } 2247 2248 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2249 { 2250 int num_groups, vf_headroom = 0; 2251 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2252 2253 /* number of queues for statistics is number of eth queues + FCoE */ 2254 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2255 2256 /* Total number of FW statistics requests = 2257 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2258 * and fcoe l2 queue) stats + num of queues (which includes another 1 2259 * for fcoe l2 queue if applicable) 2260 */ 2261 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2262 2263 /* vf stats appear in the request list, but their data is allocated by 2264 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2265 * it is used to determine where to place the vf stats queries in the 2266 * request struct 2267 */ 2268 if (IS_SRIOV(bp)) 2269 vf_headroom = bnx2x_vf_headroom(bp); 2270 2271 /* Request is built from stats_query_header and an array of 2272 * stats_query_cmd_group each of which contains 2273 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2274 * configured in the stats_query_header. 2275 */ 2276 num_groups = 2277 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2278 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2279 1 : 0)); 2280 2281 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2282 bp->fw_stats_num, vf_headroom, num_groups); 2283 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2284 num_groups * sizeof(struct stats_query_cmd_group); 2285 2286 /* Data for statistics requests + stats_counter 2287 * stats_counter holds per-STORM counters that are incremented 2288 * when STORM has finished with the current request. 2289 * memory for FCoE offloaded statistics are counted anyway, 2290 * even if they will not be sent. 2291 * VF stats are not accounted for here as the data of VF stats is stored 2292 * in memory allocated by the VF, not here. 2293 */ 2294 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2295 sizeof(struct per_pf_stats) + 2296 sizeof(struct fcoe_statistics_params) + 2297 sizeof(struct per_queue_stats) * num_queue_stats + 2298 sizeof(struct stats_counter); 2299 2300 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, 2301 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2302 if (!bp->fw_stats) 2303 goto alloc_mem_err; 2304 2305 /* Set shortcuts */ 2306 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2307 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2308 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2309 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2310 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2311 bp->fw_stats_req_sz; 2312 2313 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2314 U64_HI(bp->fw_stats_req_mapping), 2315 U64_LO(bp->fw_stats_req_mapping)); 2316 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2317 U64_HI(bp->fw_stats_data_mapping), 2318 U64_LO(bp->fw_stats_data_mapping)); 2319 return 0; 2320 2321 alloc_mem_err: 2322 bnx2x_free_fw_stats_mem(bp); 2323 BNX2X_ERR("Can't allocate FW stats memory\n"); 2324 return -ENOMEM; 2325 } 2326 2327 /* send load request to mcp and analyze response */ 2328 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2329 { 2330 u32 param; 2331 2332 /* init fw_seq */ 2333 bp->fw_seq = 2334 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2335 DRV_MSG_SEQ_NUMBER_MASK); 2336 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2337 2338 /* Get current FW pulse sequence */ 2339 bp->fw_drv_pulse_wr_seq = 2340 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2341 DRV_PULSE_SEQ_MASK); 2342 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2343 2344 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2345 2346 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2347 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2348 2349 /* load request */ 2350 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2351 2352 /* if mcp fails to respond we must abort */ 2353 if (!(*load_code)) { 2354 BNX2X_ERR("MCP response failure, aborting\n"); 2355 return -EBUSY; 2356 } 2357 2358 /* If mcp refused (e.g. other port is in diagnostic mode) we 2359 * must abort 2360 */ 2361 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2362 BNX2X_ERR("MCP refused load request, aborting\n"); 2363 return -EBUSY; 2364 } 2365 return 0; 2366 } 2367 2368 /* check whether another PF has already loaded FW to chip. In 2369 * virtualized environments a pf from another VM may have already 2370 * initialized the device including loading FW 2371 */ 2372 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2373 { 2374 /* is another pf loaded on this engine? */ 2375 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2376 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2377 /* build my FW version dword */ 2378 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) + 2379 (BCM_5710_FW_MINOR_VERSION << 8) + 2380 (BCM_5710_FW_REVISION_VERSION << 16) + 2381 (BCM_5710_FW_ENGINEERING_VERSION << 24); 2382 2383 /* read loaded FW from chip */ 2384 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2385 2386 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", 2387 loaded_fw, my_fw); 2388 2389 /* abort nic load if version mismatch */ 2390 if (my_fw != loaded_fw) { 2391 if (print_err) 2392 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", 2393 loaded_fw, my_fw); 2394 else 2395 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n", 2396 loaded_fw, my_fw); 2397 return -EBUSY; 2398 } 2399 } 2400 return 0; 2401 } 2402 2403 /* returns the "mcp load_code" according to global load_count array */ 2404 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2405 { 2406 int path = BP_PATH(bp); 2407 2408 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2409 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2410 bnx2x_load_count[path][2]); 2411 bnx2x_load_count[path][0]++; 2412 bnx2x_load_count[path][1 + port]++; 2413 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2414 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2415 bnx2x_load_count[path][2]); 2416 if (bnx2x_load_count[path][0] == 1) 2417 return FW_MSG_CODE_DRV_LOAD_COMMON; 2418 else if (bnx2x_load_count[path][1 + port] == 1) 2419 return FW_MSG_CODE_DRV_LOAD_PORT; 2420 else 2421 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2422 } 2423 2424 /* mark PMF if applicable */ 2425 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2426 { 2427 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2428 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2429 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2430 bp->port.pmf = 1; 2431 /* We need the barrier to ensure the ordering between the 2432 * writing to bp->port.pmf here and reading it from the 2433 * bnx2x_periodic_task(). 2434 */ 2435 smp_mb(); 2436 } else { 2437 bp->port.pmf = 0; 2438 } 2439 2440 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2441 } 2442 2443 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2444 { 2445 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2446 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2447 (bp->common.shmem2_base)) { 2448 if (SHMEM2_HAS(bp, dcc_support)) 2449 SHMEM2_WR(bp, dcc_support, 2450 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2451 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2452 if (SHMEM2_HAS(bp, afex_driver_support)) 2453 SHMEM2_WR(bp, afex_driver_support, 2454 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2455 } 2456 2457 /* Set AFEX default VLAN tag to an invalid value */ 2458 bp->afex_def_vlan_tag = -1; 2459 } 2460 2461 /** 2462 * bnx2x_bz_fp - zero content of the fastpath structure. 2463 * 2464 * @bp: driver handle 2465 * @index: fastpath index to be zeroed 2466 * 2467 * Makes sure the contents of the bp->fp[index].napi is kept 2468 * intact. 2469 */ 2470 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2471 { 2472 struct bnx2x_fastpath *fp = &bp->fp[index]; 2473 int cos; 2474 struct napi_struct orig_napi = fp->napi; 2475 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2476 2477 /* bzero bnx2x_fastpath contents */ 2478 if (fp->tpa_info) 2479 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2480 sizeof(struct bnx2x_agg_info)); 2481 memset(fp, 0, sizeof(*fp)); 2482 2483 /* Restore the NAPI object as it has been already initialized */ 2484 fp->napi = orig_napi; 2485 fp->tpa_info = orig_tpa_info; 2486 fp->bp = bp; 2487 fp->index = index; 2488 if (IS_ETH_FP(fp)) 2489 fp->max_cos = bp->max_cos; 2490 else 2491 /* Special queues support only one CoS */ 2492 fp->max_cos = 1; 2493 2494 /* Init txdata pointers */ 2495 if (IS_FCOE_FP(fp)) 2496 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2497 if (IS_ETH_FP(fp)) 2498 for_each_cos_in_tx_queue(fp, cos) 2499 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2500 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2501 2502 /* set the tpa flag for each queue. The tpa flag determines the queue 2503 * minimal size so it must be set prior to queue memory allocation 2504 */ 2505 if (bp->dev->features & NETIF_F_LRO) 2506 fp->mode = TPA_MODE_LRO; 2507 else if (bp->dev->features & NETIF_F_GRO && 2508 bnx2x_mtu_allows_gro(bp->dev->mtu)) 2509 fp->mode = TPA_MODE_GRO; 2510 else 2511 fp->mode = TPA_MODE_DISABLED; 2512 2513 /* We don't want TPA if it's disabled in bp 2514 * or if this is an FCoE L2 ring. 2515 */ 2516 if (bp->disable_tpa || IS_FCOE_FP(fp)) 2517 fp->mode = TPA_MODE_DISABLED; 2518 } 2519 2520 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state) 2521 { 2522 u32 cur; 2523 2524 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp)) 2525 return; 2526 2527 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]); 2528 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n", 2529 cur, state); 2530 2531 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state); 2532 } 2533 2534 int bnx2x_load_cnic(struct bnx2x *bp) 2535 { 2536 int i, rc, port = BP_PORT(bp); 2537 2538 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2539 2540 mutex_init(&bp->cnic_mutex); 2541 2542 if (IS_PF(bp)) { 2543 rc = bnx2x_alloc_mem_cnic(bp); 2544 if (rc) { 2545 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2546 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2547 } 2548 } 2549 2550 rc = bnx2x_alloc_fp_mem_cnic(bp); 2551 if (rc) { 2552 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2553 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2554 } 2555 2556 /* Update the number of queues with the cnic queues */ 2557 rc = bnx2x_set_real_num_queues(bp, 1); 2558 if (rc) { 2559 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2560 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2561 } 2562 2563 /* Add all CNIC NAPI objects */ 2564 bnx2x_add_all_napi_cnic(bp); 2565 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2566 bnx2x_napi_enable_cnic(bp); 2567 2568 rc = bnx2x_init_hw_func_cnic(bp); 2569 if (rc) 2570 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2571 2572 bnx2x_nic_init_cnic(bp); 2573 2574 if (IS_PF(bp)) { 2575 /* Enable Timer scan */ 2576 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2577 2578 /* setup cnic queues */ 2579 for_each_cnic_queue(bp, i) { 2580 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2581 if (rc) { 2582 BNX2X_ERR("Queue setup failed\n"); 2583 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2584 } 2585 } 2586 } 2587 2588 /* Initialize Rx filter. */ 2589 bnx2x_set_rx_mode_inner(bp); 2590 2591 /* re-read iscsi info */ 2592 bnx2x_get_iscsi_info(bp); 2593 bnx2x_setup_cnic_irq_info(bp); 2594 bnx2x_setup_cnic_info(bp); 2595 bp->cnic_loaded = true; 2596 if (bp->state == BNX2X_STATE_OPEN) 2597 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2598 2599 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2600 2601 return 0; 2602 2603 #ifndef BNX2X_STOP_ON_ERROR 2604 load_error_cnic2: 2605 /* Disable Timer scan */ 2606 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2607 2608 load_error_cnic1: 2609 bnx2x_napi_disable_cnic(bp); 2610 /* Update the number of queues without the cnic queues */ 2611 if (bnx2x_set_real_num_queues(bp, 0)) 2612 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2613 load_error_cnic0: 2614 BNX2X_ERR("CNIC-related load failed\n"); 2615 bnx2x_free_fp_mem_cnic(bp); 2616 bnx2x_free_mem_cnic(bp); 2617 return rc; 2618 #endif /* ! BNX2X_STOP_ON_ERROR */ 2619 } 2620 2621 /* must be called with rtnl_lock */ 2622 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2623 { 2624 int port = BP_PORT(bp); 2625 int i, rc = 0, load_code = 0; 2626 2627 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2628 DP(NETIF_MSG_IFUP, 2629 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2630 2631 #ifdef BNX2X_STOP_ON_ERROR 2632 if (unlikely(bp->panic)) { 2633 BNX2X_ERR("Can't load NIC when there is panic\n"); 2634 return -EPERM; 2635 } 2636 #endif 2637 2638 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2639 2640 /* zero the structure w/o any lock, before SP handler is initialized */ 2641 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2642 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2643 &bp->last_reported_link.link_report_flags); 2644 2645 if (IS_PF(bp)) 2646 /* must be called before memory allocation and HW init */ 2647 bnx2x_ilt_set_info(bp); 2648 2649 /* 2650 * Zero fastpath structures preserving invariants like napi, which are 2651 * allocated only once, fp index, max_cos, bp pointer. 2652 * Also set fp->mode and txdata_ptr. 2653 */ 2654 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2655 for_each_queue(bp, i) 2656 bnx2x_bz_fp(bp, i); 2657 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2658 bp->num_cnic_queues) * 2659 sizeof(struct bnx2x_fp_txdata)); 2660 2661 bp->fcoe_init = false; 2662 2663 /* Set the receive queues buffer size */ 2664 bnx2x_set_rx_buf_size(bp); 2665 2666 if (IS_PF(bp)) { 2667 rc = bnx2x_alloc_mem(bp); 2668 if (rc) { 2669 BNX2X_ERR("Unable to allocate bp memory\n"); 2670 return rc; 2671 } 2672 } 2673 2674 /* need to be done after alloc mem, since it's self adjusting to amount 2675 * of memory available for RSS queues 2676 */ 2677 rc = bnx2x_alloc_fp_mem(bp); 2678 if (rc) { 2679 BNX2X_ERR("Unable to allocate memory for fps\n"); 2680 LOAD_ERROR_EXIT(bp, load_error0); 2681 } 2682 2683 /* Allocated memory for FW statistics */ 2684 if (bnx2x_alloc_fw_stats_mem(bp)) 2685 LOAD_ERROR_EXIT(bp, load_error0); 2686 2687 /* request pf to initialize status blocks */ 2688 if (IS_VF(bp)) { 2689 rc = bnx2x_vfpf_init(bp); 2690 if (rc) 2691 LOAD_ERROR_EXIT(bp, load_error0); 2692 } 2693 2694 /* As long as bnx2x_alloc_mem() may possibly update 2695 * bp->num_queues, bnx2x_set_real_num_queues() should always 2696 * come after it. At this stage cnic queues are not counted. 2697 */ 2698 rc = bnx2x_set_real_num_queues(bp, 0); 2699 if (rc) { 2700 BNX2X_ERR("Unable to set real_num_queues\n"); 2701 LOAD_ERROR_EXIT(bp, load_error0); 2702 } 2703 2704 /* configure multi cos mappings in kernel. 2705 * this configuration may be overridden by a multi class queue 2706 * discipline or by a dcbx negotiation result. 2707 */ 2708 bnx2x_setup_tc(bp->dev, bp->max_cos); 2709 2710 /* Add all NAPI objects */ 2711 bnx2x_add_all_napi(bp); 2712 DP(NETIF_MSG_IFUP, "napi added\n"); 2713 bnx2x_napi_enable(bp); 2714 2715 if (IS_PF(bp)) { 2716 /* set pf load just before approaching the MCP */ 2717 bnx2x_set_pf_load(bp); 2718 2719 /* if mcp exists send load request and analyze response */ 2720 if (!BP_NOMCP(bp)) { 2721 /* attempt to load pf */ 2722 rc = bnx2x_nic_load_request(bp, &load_code); 2723 if (rc) 2724 LOAD_ERROR_EXIT(bp, load_error1); 2725 2726 /* what did mcp say? */ 2727 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2728 if (rc) { 2729 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2730 LOAD_ERROR_EXIT(bp, load_error2); 2731 } 2732 } else { 2733 load_code = bnx2x_nic_load_no_mcp(bp, port); 2734 } 2735 2736 /* mark pmf if applicable */ 2737 bnx2x_nic_load_pmf(bp, load_code); 2738 2739 /* Init Function state controlling object */ 2740 bnx2x__init_func_obj(bp); 2741 2742 /* Initialize HW */ 2743 rc = bnx2x_init_hw(bp, load_code); 2744 if (rc) { 2745 BNX2X_ERR("HW init failed, aborting\n"); 2746 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2747 LOAD_ERROR_EXIT(bp, load_error2); 2748 } 2749 } 2750 2751 bnx2x_pre_irq_nic_init(bp); 2752 2753 /* Connect to IRQs */ 2754 rc = bnx2x_setup_irqs(bp); 2755 if (rc) { 2756 BNX2X_ERR("setup irqs failed\n"); 2757 if (IS_PF(bp)) 2758 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2759 LOAD_ERROR_EXIT(bp, load_error2); 2760 } 2761 2762 /* Init per-function objects */ 2763 if (IS_PF(bp)) { 2764 /* Setup NIC internals and enable interrupts */ 2765 bnx2x_post_irq_nic_init(bp, load_code); 2766 2767 bnx2x_init_bp_objs(bp); 2768 bnx2x_iov_nic_init(bp); 2769 2770 /* Set AFEX default VLAN tag to an invalid value */ 2771 bp->afex_def_vlan_tag = -1; 2772 bnx2x_nic_load_afex_dcc(bp, load_code); 2773 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2774 rc = bnx2x_func_start(bp); 2775 if (rc) { 2776 BNX2X_ERR("Function start failed!\n"); 2777 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2778 2779 LOAD_ERROR_EXIT(bp, load_error3); 2780 } 2781 2782 /* Send LOAD_DONE command to MCP */ 2783 if (!BP_NOMCP(bp)) { 2784 load_code = bnx2x_fw_command(bp, 2785 DRV_MSG_CODE_LOAD_DONE, 0); 2786 if (!load_code) { 2787 BNX2X_ERR("MCP response failure, aborting\n"); 2788 rc = -EBUSY; 2789 LOAD_ERROR_EXIT(bp, load_error3); 2790 } 2791 } 2792 2793 /* initialize FW coalescing state machines in RAM */ 2794 bnx2x_update_coalesce(bp); 2795 } 2796 2797 /* setup the leading queue */ 2798 rc = bnx2x_setup_leading(bp); 2799 if (rc) { 2800 BNX2X_ERR("Setup leading failed!\n"); 2801 LOAD_ERROR_EXIT(bp, load_error3); 2802 } 2803 2804 /* set up the rest of the queues */ 2805 for_each_nondefault_eth_queue(bp, i) { 2806 if (IS_PF(bp)) 2807 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2808 else /* VF */ 2809 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2810 if (rc) { 2811 BNX2X_ERR("Queue %d setup failed\n", i); 2812 LOAD_ERROR_EXIT(bp, load_error3); 2813 } 2814 } 2815 2816 /* setup rss */ 2817 rc = bnx2x_init_rss(bp); 2818 if (rc) { 2819 BNX2X_ERR("PF RSS init failed\n"); 2820 LOAD_ERROR_EXIT(bp, load_error3); 2821 } 2822 2823 /* Now when Clients are configured we are ready to work */ 2824 bp->state = BNX2X_STATE_OPEN; 2825 2826 /* Configure a ucast MAC */ 2827 if (IS_PF(bp)) 2828 rc = bnx2x_set_eth_mac(bp, true); 2829 else /* vf */ 2830 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2831 true); 2832 if (rc) { 2833 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2834 LOAD_ERROR_EXIT(bp, load_error3); 2835 } 2836 2837 if (IS_PF(bp) && bp->pending_max) { 2838 bnx2x_update_max_mf_config(bp, bp->pending_max); 2839 bp->pending_max = 0; 2840 } 2841 2842 if (bp->port.pmf) { 2843 rc = bnx2x_initial_phy_init(bp, load_mode); 2844 if (rc) 2845 LOAD_ERROR_EXIT(bp, load_error3); 2846 } 2847 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2848 2849 /* Start fast path */ 2850 2851 /* Re-configure vlan filters */ 2852 rc = bnx2x_vlan_reconfigure_vid(bp); 2853 if (rc) 2854 LOAD_ERROR_EXIT(bp, load_error3); 2855 2856 /* Initialize Rx filter. */ 2857 bnx2x_set_rx_mode_inner(bp); 2858 2859 if (bp->flags & PTP_SUPPORTED) { 2860 bnx2x_init_ptp(bp); 2861 bnx2x_configure_ptp_filters(bp); 2862 } 2863 /* Start Tx */ 2864 switch (load_mode) { 2865 case LOAD_NORMAL: 2866 /* Tx queue should be only re-enabled */ 2867 netif_tx_wake_all_queues(bp->dev); 2868 break; 2869 2870 case LOAD_OPEN: 2871 netif_tx_start_all_queues(bp->dev); 2872 smp_mb__after_atomic(); 2873 break; 2874 2875 case LOAD_DIAG: 2876 case LOAD_LOOPBACK_EXT: 2877 bp->state = BNX2X_STATE_DIAG; 2878 break; 2879 2880 default: 2881 break; 2882 } 2883 2884 if (bp->port.pmf) 2885 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2886 else 2887 bnx2x__link_status_update(bp); 2888 2889 /* start the timer */ 2890 mod_timer(&bp->timer, jiffies + bp->current_interval); 2891 2892 if (CNIC_ENABLED(bp)) 2893 bnx2x_load_cnic(bp); 2894 2895 if (IS_PF(bp)) 2896 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 2897 2898 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2899 /* mark driver is loaded in shmem2 */ 2900 u32 val; 2901 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2902 val &= ~DRV_FLAGS_MTU_MASK; 2903 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT); 2904 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2905 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2906 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2907 } 2908 2909 /* Wait for all pending SP commands to complete */ 2910 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2911 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2912 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2913 return -EBUSY; 2914 } 2915 2916 /* Update driver data for On-Chip MFW dump. */ 2917 if (IS_PF(bp)) 2918 bnx2x_update_mfw_dump(bp); 2919 2920 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2921 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2922 bnx2x_dcbx_init(bp, false); 2923 2924 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2925 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE); 2926 2927 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2928 2929 return 0; 2930 2931 #ifndef BNX2X_STOP_ON_ERROR 2932 load_error3: 2933 if (IS_PF(bp)) { 2934 bnx2x_int_disable_sync(bp, 1); 2935 2936 /* Clean queueable objects */ 2937 bnx2x_squeeze_objects(bp); 2938 } 2939 2940 /* Free SKBs, SGEs, TPA pool and driver internals */ 2941 bnx2x_free_skbs(bp); 2942 for_each_rx_queue(bp, i) 2943 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2944 2945 /* Release IRQs */ 2946 bnx2x_free_irq(bp); 2947 load_error2: 2948 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2949 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2950 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2951 } 2952 2953 bp->port.pmf = 0; 2954 load_error1: 2955 bnx2x_napi_disable(bp); 2956 bnx2x_del_all_napi(bp); 2957 2958 /* clear pf_load status, as it was already set */ 2959 if (IS_PF(bp)) 2960 bnx2x_clear_pf_load(bp); 2961 load_error0: 2962 bnx2x_free_fw_stats_mem(bp); 2963 bnx2x_free_fp_mem(bp); 2964 bnx2x_free_mem(bp); 2965 2966 return rc; 2967 #endif /* ! BNX2X_STOP_ON_ERROR */ 2968 } 2969 2970 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2971 { 2972 u8 rc = 0, cos, i; 2973 2974 /* Wait until tx fastpath tasks complete */ 2975 for_each_tx_queue(bp, i) { 2976 struct bnx2x_fastpath *fp = &bp->fp[i]; 2977 2978 for_each_cos_in_tx_queue(fp, cos) 2979 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2980 if (rc) 2981 return rc; 2982 } 2983 return 0; 2984 } 2985 2986 /* must be called with rtnl_lock */ 2987 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2988 { 2989 int i; 2990 bool global = false; 2991 2992 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 2993 2994 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2995 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 2996 2997 /* mark driver is unloaded in shmem2 */ 2998 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2999 u32 val; 3000 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 3001 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 3002 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 3003 } 3004 3005 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 3006 (bp->state == BNX2X_STATE_CLOSED || 3007 bp->state == BNX2X_STATE_ERROR)) { 3008 /* We can get here if the driver has been unloaded 3009 * during parity error recovery and is either waiting for a 3010 * leader to complete or for other functions to unload and 3011 * then ifdown has been issued. In this case we want to 3012 * unload and let other functions to complete a recovery 3013 * process. 3014 */ 3015 bp->recovery_state = BNX2X_RECOVERY_DONE; 3016 bp->is_leader = 0; 3017 bnx2x_release_leader_lock(bp); 3018 smp_mb(); 3019 3020 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 3021 BNX2X_ERR("Can't unload in closed or error state\n"); 3022 return -EINVAL; 3023 } 3024 3025 /* Nothing to do during unload if previous bnx2x_nic_load() 3026 * have not completed successfully - all resources are released. 3027 * 3028 * we can get here only after unsuccessful ndo_* callback, during which 3029 * dev->IFF_UP flag is still on. 3030 */ 3031 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 3032 return 0; 3033 3034 /* It's important to set the bp->state to the value different from 3035 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 3036 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 3037 */ 3038 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 3039 smp_mb(); 3040 3041 /* indicate to VFs that the PF is going down */ 3042 bnx2x_iov_channel_down(bp); 3043 3044 if (CNIC_LOADED(bp)) 3045 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 3046 3047 /* Stop Tx */ 3048 bnx2x_tx_disable(bp); 3049 netdev_reset_tc(bp->dev); 3050 3051 bp->rx_mode = BNX2X_RX_MODE_NONE; 3052 3053 del_timer_sync(&bp->timer); 3054 3055 if (IS_PF(bp)) { 3056 /* Set ALWAYS_ALIVE bit in shmem */ 3057 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 3058 bnx2x_drv_pulse(bp); 3059 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 3060 bnx2x_save_statistics(bp); 3061 } 3062 3063 /* wait till consumers catch up with producers in all queues */ 3064 bnx2x_drain_tx_queues(bp); 3065 3066 /* if VF indicate to PF this function is going down (PF will delete sp 3067 * elements and clear initializations 3068 */ 3069 if (IS_VF(bp)) 3070 bnx2x_vfpf_close_vf(bp); 3071 else if (unload_mode != UNLOAD_RECOVERY) 3072 /* if this is a normal/close unload need to clean up chip*/ 3073 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 3074 else { 3075 /* Send the UNLOAD_REQUEST to the MCP */ 3076 bnx2x_send_unload_req(bp, unload_mode); 3077 3078 /* Prevent transactions to host from the functions on the 3079 * engine that doesn't reset global blocks in case of global 3080 * attention once global blocks are reset and gates are opened 3081 * (the engine which leader will perform the recovery 3082 * last). 3083 */ 3084 if (!CHIP_IS_E1x(bp)) 3085 bnx2x_pf_disable(bp); 3086 3087 /* Disable HW interrupts, NAPI */ 3088 bnx2x_netif_stop(bp, 1); 3089 /* Delete all NAPI objects */ 3090 bnx2x_del_all_napi(bp); 3091 if (CNIC_LOADED(bp)) 3092 bnx2x_del_all_napi_cnic(bp); 3093 /* Release IRQs */ 3094 bnx2x_free_irq(bp); 3095 3096 /* Report UNLOAD_DONE to MCP */ 3097 bnx2x_send_unload_done(bp, false); 3098 } 3099 3100 /* 3101 * At this stage no more interrupts will arrive so we may safely clean 3102 * the queueable objects here in case they failed to get cleaned so far. 3103 */ 3104 if (IS_PF(bp)) 3105 bnx2x_squeeze_objects(bp); 3106 3107 /* There should be no more pending SP commands at this stage */ 3108 bp->sp_state = 0; 3109 3110 bp->port.pmf = 0; 3111 3112 /* clear pending work in rtnl task */ 3113 bp->sp_rtnl_state = 0; 3114 smp_mb(); 3115 3116 /* Free SKBs, SGEs, TPA pool and driver internals */ 3117 bnx2x_free_skbs(bp); 3118 if (CNIC_LOADED(bp)) 3119 bnx2x_free_skbs_cnic(bp); 3120 for_each_rx_queue(bp, i) 3121 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3122 3123 bnx2x_free_fp_mem(bp); 3124 if (CNIC_LOADED(bp)) 3125 bnx2x_free_fp_mem_cnic(bp); 3126 3127 if (IS_PF(bp)) { 3128 if (CNIC_LOADED(bp)) 3129 bnx2x_free_mem_cnic(bp); 3130 } 3131 bnx2x_free_mem(bp); 3132 3133 bp->state = BNX2X_STATE_CLOSED; 3134 bp->cnic_loaded = false; 3135 3136 /* Clear driver version indication in shmem */ 3137 if (IS_PF(bp)) 3138 bnx2x_update_mng_version(bp); 3139 3140 /* Check if there are pending parity attentions. If there are - set 3141 * RECOVERY_IN_PROGRESS. 3142 */ 3143 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3144 bnx2x_set_reset_in_progress(bp); 3145 3146 /* Set RESET_IS_GLOBAL if needed */ 3147 if (global) 3148 bnx2x_set_reset_global(bp); 3149 } 3150 3151 /* The last driver must disable a "close the gate" if there is no 3152 * parity attention or "process kill" pending. 3153 */ 3154 if (IS_PF(bp) && 3155 !bnx2x_clear_pf_load(bp) && 3156 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3157 bnx2x_disable_close_the_gate(bp); 3158 3159 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3160 3161 return 0; 3162 } 3163 3164 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3165 { 3166 u16 pmcsr; 3167 3168 /* If there is no power capability, silently succeed */ 3169 if (!bp->pdev->pm_cap) { 3170 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3171 return 0; 3172 } 3173 3174 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3175 3176 switch (state) { 3177 case PCI_D0: 3178 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3179 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3180 PCI_PM_CTRL_PME_STATUS)); 3181 3182 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3183 /* delay required during transition out of D3hot */ 3184 msleep(20); 3185 break; 3186 3187 case PCI_D3hot: 3188 /* If there are other clients above don't 3189 shut down the power */ 3190 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3191 return 0; 3192 /* Don't shut down the power for emulation and FPGA */ 3193 if (CHIP_REV_IS_SLOW(bp)) 3194 return 0; 3195 3196 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3197 pmcsr |= 3; 3198 3199 if (bp->wol) 3200 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3201 3202 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3203 pmcsr); 3204 3205 /* No more memory access after this point until 3206 * device is brought back to D0. 3207 */ 3208 break; 3209 3210 default: 3211 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3212 return -EINVAL; 3213 } 3214 return 0; 3215 } 3216 3217 /* 3218 * net_device service functions 3219 */ 3220 static int bnx2x_poll(struct napi_struct *napi, int budget) 3221 { 3222 int work_done = 0; 3223 u8 cos; 3224 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3225 napi); 3226 struct bnx2x *bp = fp->bp; 3227 3228 while (1) { 3229 #ifdef BNX2X_STOP_ON_ERROR 3230 if (unlikely(bp->panic)) { 3231 napi_complete(napi); 3232 return 0; 3233 } 3234 #endif 3235 if (!bnx2x_fp_lock_napi(fp)) 3236 return budget; 3237 3238 for_each_cos_in_tx_queue(fp, cos) 3239 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3240 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3241 3242 if (bnx2x_has_rx_work(fp)) { 3243 work_done += bnx2x_rx_int(fp, budget - work_done); 3244 3245 /* must not complete if we consumed full budget */ 3246 if (work_done >= budget) { 3247 bnx2x_fp_unlock_napi(fp); 3248 break; 3249 } 3250 } 3251 3252 bnx2x_fp_unlock_napi(fp); 3253 3254 /* Fall out from the NAPI loop if needed */ 3255 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3256 3257 /* No need to update SB for FCoE L2 ring as long as 3258 * it's connected to the default SB and the SB 3259 * has been updated when NAPI was scheduled. 3260 */ 3261 if (IS_FCOE_FP(fp)) { 3262 napi_complete(napi); 3263 break; 3264 } 3265 bnx2x_update_fpsb_idx(fp); 3266 /* bnx2x_has_rx_work() reads the status block, 3267 * thus we need to ensure that status block indices 3268 * have been actually read (bnx2x_update_fpsb_idx) 3269 * prior to this check (bnx2x_has_rx_work) so that 3270 * we won't write the "newer" value of the status block 3271 * to IGU (if there was a DMA right after 3272 * bnx2x_has_rx_work and if there is no rmb, the memory 3273 * reading (bnx2x_update_fpsb_idx) may be postponed 3274 * to right before bnx2x_ack_sb). In this case there 3275 * will never be another interrupt until there is 3276 * another update of the status block, while there 3277 * is still unhandled work. 3278 */ 3279 rmb(); 3280 3281 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3282 napi_complete(napi); 3283 /* Re-enable interrupts */ 3284 DP(NETIF_MSG_RX_STATUS, 3285 "Update index to %d\n", fp->fp_hc_idx); 3286 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3287 le16_to_cpu(fp->fp_hc_idx), 3288 IGU_INT_ENABLE, 1); 3289 break; 3290 } 3291 } 3292 } 3293 3294 return work_done; 3295 } 3296 3297 #ifdef CONFIG_NET_RX_BUSY_POLL 3298 /* must be called with local_bh_disable()d */ 3299 int bnx2x_low_latency_recv(struct napi_struct *napi) 3300 { 3301 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3302 napi); 3303 struct bnx2x *bp = fp->bp; 3304 int found = 0; 3305 3306 if ((bp->state == BNX2X_STATE_CLOSED) || 3307 (bp->state == BNX2X_STATE_ERROR) || 3308 (bp->dev->features & (NETIF_F_LRO | NETIF_F_GRO))) 3309 return LL_FLUSH_FAILED; 3310 3311 if (!bnx2x_fp_lock_poll(fp)) 3312 return LL_FLUSH_BUSY; 3313 3314 if (bnx2x_has_rx_work(fp)) 3315 found = bnx2x_rx_int(fp, 4); 3316 3317 bnx2x_fp_unlock_poll(fp); 3318 3319 return found; 3320 } 3321 #endif 3322 3323 /* we split the first BD into headers and data BDs 3324 * to ease the pain of our fellow microcode engineers 3325 * we use one mapping for both BDs 3326 */ 3327 static u16 bnx2x_tx_split(struct bnx2x *bp, 3328 struct bnx2x_fp_txdata *txdata, 3329 struct sw_tx_bd *tx_buf, 3330 struct eth_tx_start_bd **tx_bd, u16 hlen, 3331 u16 bd_prod) 3332 { 3333 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3334 struct eth_tx_bd *d_tx_bd; 3335 dma_addr_t mapping; 3336 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3337 3338 /* first fix first BD */ 3339 h_tx_bd->nbytes = cpu_to_le16(hlen); 3340 3341 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3342 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3343 3344 /* now get a new data BD 3345 * (after the pbd) and fill it */ 3346 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3347 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3348 3349 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3350 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3351 3352 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3353 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3354 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3355 3356 /* this marks the BD as one that has no individual mapping */ 3357 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3358 3359 DP(NETIF_MSG_TX_QUEUED, 3360 "TSO split data size is %d (%x:%x)\n", 3361 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3362 3363 /* update tx_bd */ 3364 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3365 3366 return bd_prod; 3367 } 3368 3369 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3370 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3371 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3372 { 3373 __sum16 tsum = (__force __sum16) csum; 3374 3375 if (fix > 0) 3376 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3377 csum_partial(t_header - fix, fix, 0))); 3378 3379 else if (fix < 0) 3380 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3381 csum_partial(t_header, -fix, 0))); 3382 3383 return bswab16(tsum); 3384 } 3385 3386 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3387 { 3388 u32 rc; 3389 __u8 prot = 0; 3390 __be16 protocol; 3391 3392 if (skb->ip_summed != CHECKSUM_PARTIAL) 3393 return XMIT_PLAIN; 3394 3395 protocol = vlan_get_protocol(skb); 3396 if (protocol == htons(ETH_P_IPV6)) { 3397 rc = XMIT_CSUM_V6; 3398 prot = ipv6_hdr(skb)->nexthdr; 3399 } else { 3400 rc = XMIT_CSUM_V4; 3401 prot = ip_hdr(skb)->protocol; 3402 } 3403 3404 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3405 if (inner_ip_hdr(skb)->version == 6) { 3406 rc |= XMIT_CSUM_ENC_V6; 3407 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3408 rc |= XMIT_CSUM_TCP; 3409 } else { 3410 rc |= XMIT_CSUM_ENC_V4; 3411 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3412 rc |= XMIT_CSUM_TCP; 3413 } 3414 } 3415 if (prot == IPPROTO_TCP) 3416 rc |= XMIT_CSUM_TCP; 3417 3418 if (skb_is_gso(skb)) { 3419 if (skb_is_gso_v6(skb)) { 3420 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3421 if (rc & XMIT_CSUM_ENC) 3422 rc |= XMIT_GSO_ENC_V6; 3423 } else { 3424 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3425 if (rc & XMIT_CSUM_ENC) 3426 rc |= XMIT_GSO_ENC_V4; 3427 } 3428 } 3429 3430 return rc; 3431 } 3432 3433 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */ 3434 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4 3435 3436 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3437 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3 3438 3439 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3440 /* check if packet requires linearization (packet is too fragmented) 3441 no need to check fragmentation if page size > 8K (there will be no 3442 violation to FW restrictions) */ 3443 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3444 u32 xmit_type) 3445 { 3446 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS; 3447 int to_copy = 0, hlen = 0; 3448 3449 if (xmit_type & XMIT_GSO_ENC) 3450 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS; 3451 3452 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) { 3453 if (xmit_type & XMIT_GSO) { 3454 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3455 int wnd_size = MAX_FETCH_BD - num_tso_win_sub; 3456 /* Number of windows to check */ 3457 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3458 int wnd_idx = 0; 3459 int frag_idx = 0; 3460 u32 wnd_sum = 0; 3461 3462 /* Headers length */ 3463 if (xmit_type & XMIT_GSO_ENC) 3464 hlen = (int)(skb_inner_transport_header(skb) - 3465 skb->data) + 3466 inner_tcp_hdrlen(skb); 3467 else 3468 hlen = (int)(skb_transport_header(skb) - 3469 skb->data) + tcp_hdrlen(skb); 3470 3471 /* Amount of data (w/o headers) on linear part of SKB*/ 3472 first_bd_sz = skb_headlen(skb) - hlen; 3473 3474 wnd_sum = first_bd_sz; 3475 3476 /* Calculate the first sum - it's special */ 3477 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3478 wnd_sum += 3479 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3480 3481 /* If there was data on linear skb data - check it */ 3482 if (first_bd_sz > 0) { 3483 if (unlikely(wnd_sum < lso_mss)) { 3484 to_copy = 1; 3485 goto exit_lbl; 3486 } 3487 3488 wnd_sum -= first_bd_sz; 3489 } 3490 3491 /* Others are easier: run through the frag list and 3492 check all windows */ 3493 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3494 wnd_sum += 3495 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3496 3497 if (unlikely(wnd_sum < lso_mss)) { 3498 to_copy = 1; 3499 break; 3500 } 3501 wnd_sum -= 3502 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3503 } 3504 } else { 3505 /* in non-LSO too fragmented packet should always 3506 be linearized */ 3507 to_copy = 1; 3508 } 3509 } 3510 3511 exit_lbl: 3512 if (unlikely(to_copy)) 3513 DP(NETIF_MSG_TX_QUEUED, 3514 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3515 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3516 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3517 3518 return to_copy; 3519 } 3520 #endif 3521 3522 /** 3523 * bnx2x_set_pbd_gso - update PBD in GSO case. 3524 * 3525 * @skb: packet skb 3526 * @pbd: parse BD 3527 * @xmit_type: xmit flags 3528 */ 3529 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3530 struct eth_tx_parse_bd_e1x *pbd, 3531 u32 xmit_type) 3532 { 3533 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3534 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3535 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3536 3537 if (xmit_type & XMIT_GSO_V4) { 3538 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3539 pbd->tcp_pseudo_csum = 3540 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3541 ip_hdr(skb)->daddr, 3542 0, IPPROTO_TCP, 0)); 3543 } else { 3544 pbd->tcp_pseudo_csum = 3545 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3546 &ipv6_hdr(skb)->daddr, 3547 0, IPPROTO_TCP, 0)); 3548 } 3549 3550 pbd->global_data |= 3551 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3552 } 3553 3554 /** 3555 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3556 * 3557 * @bp: driver handle 3558 * @skb: packet skb 3559 * @parsing_data: data to be updated 3560 * @xmit_type: xmit flags 3561 * 3562 * 57712/578xx related, when skb has encapsulation 3563 */ 3564 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3565 u32 *parsing_data, u32 xmit_type) 3566 { 3567 *parsing_data |= 3568 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3569 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3570 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3571 3572 if (xmit_type & XMIT_CSUM_TCP) { 3573 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3574 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3575 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3576 3577 return skb_inner_transport_header(skb) + 3578 inner_tcp_hdrlen(skb) - skb->data; 3579 } 3580 3581 /* We support checksum offload for TCP and UDP only. 3582 * No need to pass the UDP header length - it's a constant. 3583 */ 3584 return skb_inner_transport_header(skb) + 3585 sizeof(struct udphdr) - skb->data; 3586 } 3587 3588 /** 3589 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3590 * 3591 * @bp: driver handle 3592 * @skb: packet skb 3593 * @parsing_data: data to be updated 3594 * @xmit_type: xmit flags 3595 * 3596 * 57712/578xx related 3597 */ 3598 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3599 u32 *parsing_data, u32 xmit_type) 3600 { 3601 *parsing_data |= 3602 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3603 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3604 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3605 3606 if (xmit_type & XMIT_CSUM_TCP) { 3607 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3608 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3609 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3610 3611 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; 3612 } 3613 /* We support checksum offload for TCP and UDP only. 3614 * No need to pass the UDP header length - it's a constant. 3615 */ 3616 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; 3617 } 3618 3619 /* set FW indication according to inner or outer protocols if tunneled */ 3620 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3621 struct eth_tx_start_bd *tx_start_bd, 3622 u32 xmit_type) 3623 { 3624 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3625 3626 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3627 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3628 3629 if (!(xmit_type & XMIT_CSUM_TCP)) 3630 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3631 } 3632 3633 /** 3634 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3635 * 3636 * @bp: driver handle 3637 * @skb: packet skb 3638 * @pbd: parse BD to be updated 3639 * @xmit_type: xmit flags 3640 */ 3641 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3642 struct eth_tx_parse_bd_e1x *pbd, 3643 u32 xmit_type) 3644 { 3645 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3646 3647 /* for now NS flag is not used in Linux */ 3648 pbd->global_data = 3649 cpu_to_le16(hlen | 3650 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3651 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3652 3653 pbd->ip_hlen_w = (skb_transport_header(skb) - 3654 skb_network_header(skb)) >> 1; 3655 3656 hlen += pbd->ip_hlen_w; 3657 3658 /* We support checksum offload for TCP and UDP only */ 3659 if (xmit_type & XMIT_CSUM_TCP) 3660 hlen += tcp_hdrlen(skb) / 2; 3661 else 3662 hlen += sizeof(struct udphdr) / 2; 3663 3664 pbd->total_hlen_w = cpu_to_le16(hlen); 3665 hlen = hlen*2; 3666 3667 if (xmit_type & XMIT_CSUM_TCP) { 3668 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3669 3670 } else { 3671 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3672 3673 DP(NETIF_MSG_TX_QUEUED, 3674 "hlen %d fix %d csum before fix %x\n", 3675 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3676 3677 /* HW bug: fixup the CSUM */ 3678 pbd->tcp_pseudo_csum = 3679 bnx2x_csum_fix(skb_transport_header(skb), 3680 SKB_CS(skb), fix); 3681 3682 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3683 pbd->tcp_pseudo_csum); 3684 } 3685 3686 return hlen; 3687 } 3688 3689 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3690 struct eth_tx_parse_bd_e2 *pbd_e2, 3691 struct eth_tx_parse_2nd_bd *pbd2, 3692 u16 *global_data, 3693 u32 xmit_type) 3694 { 3695 u16 hlen_w = 0; 3696 u8 outerip_off, outerip_len = 0; 3697 3698 /* from outer IP to transport */ 3699 hlen_w = (skb_inner_transport_header(skb) - 3700 skb_network_header(skb)) >> 1; 3701 3702 /* transport len */ 3703 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3704 3705 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3706 3707 /* outer IP header info */ 3708 if (xmit_type & XMIT_CSUM_V4) { 3709 struct iphdr *iph = ip_hdr(skb); 3710 u32 csum = (__force u32)(~iph->check) - 3711 (__force u32)iph->tot_len - 3712 (__force u32)iph->frag_off; 3713 3714 outerip_len = iph->ihl << 1; 3715 3716 pbd2->fw_ip_csum_wo_len_flags_frag = 3717 bswab16(csum_fold((__force __wsum)csum)); 3718 } else { 3719 pbd2->fw_ip_hdr_to_payload_w = 3720 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3721 pbd_e2->data.tunnel_data.flags |= 3722 ETH_TUNNEL_DATA_IPV6_OUTER; 3723 } 3724 3725 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3726 3727 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3728 3729 /* inner IP header info */ 3730 if (xmit_type & XMIT_CSUM_ENC_V4) { 3731 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3732 3733 pbd_e2->data.tunnel_data.pseudo_csum = 3734 bswab16(~csum_tcpudp_magic( 3735 inner_ip_hdr(skb)->saddr, 3736 inner_ip_hdr(skb)->daddr, 3737 0, IPPROTO_TCP, 0)); 3738 } else { 3739 pbd_e2->data.tunnel_data.pseudo_csum = 3740 bswab16(~csum_ipv6_magic( 3741 &inner_ipv6_hdr(skb)->saddr, 3742 &inner_ipv6_hdr(skb)->daddr, 3743 0, IPPROTO_TCP, 0)); 3744 } 3745 3746 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3747 3748 *global_data |= 3749 outerip_off | 3750 (outerip_len << 3751 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3752 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3753 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3754 3755 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3756 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3757 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3758 } 3759 } 3760 3761 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data, 3762 u32 xmit_type) 3763 { 3764 struct ipv6hdr *ipv6; 3765 3766 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6))) 3767 return; 3768 3769 if (xmit_type & XMIT_GSO_ENC_V6) 3770 ipv6 = inner_ipv6_hdr(skb); 3771 else /* XMIT_GSO_V6 */ 3772 ipv6 = ipv6_hdr(skb); 3773 3774 if (ipv6->nexthdr == NEXTHDR_IPV6) 3775 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3776 } 3777 3778 /* called with netif_tx_lock 3779 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3780 * netif_wake_queue() 3781 */ 3782 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3783 { 3784 struct bnx2x *bp = netdev_priv(dev); 3785 3786 struct netdev_queue *txq; 3787 struct bnx2x_fp_txdata *txdata; 3788 struct sw_tx_bd *tx_buf; 3789 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3790 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3791 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3792 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3793 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3794 u32 pbd_e2_parsing_data = 0; 3795 u16 pkt_prod, bd_prod; 3796 int nbd, txq_index; 3797 dma_addr_t mapping; 3798 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3799 int i; 3800 u8 hlen = 0; 3801 __le16 pkt_size = 0; 3802 struct ethhdr *eth; 3803 u8 mac_type = UNICAST_ADDRESS; 3804 3805 #ifdef BNX2X_STOP_ON_ERROR 3806 if (unlikely(bp->panic)) 3807 return NETDEV_TX_BUSY; 3808 #endif 3809 3810 txq_index = skb_get_queue_mapping(skb); 3811 txq = netdev_get_tx_queue(dev, txq_index); 3812 3813 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3814 3815 txdata = &bp->bnx2x_txq[txq_index]; 3816 3817 /* enable this debug print to view the transmission queue being used 3818 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3819 txq_index, fp_index, txdata_index); */ 3820 3821 /* enable this debug print to view the transmission details 3822 DP(NETIF_MSG_TX_QUEUED, 3823 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3824 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3825 3826 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3827 skb_shinfo(skb)->nr_frags + 3828 BDS_PER_TX_PKT + 3829 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3830 /* Handle special storage cases separately */ 3831 if (txdata->tx_ring_size == 0) { 3832 struct bnx2x_eth_q_stats *q_stats = 3833 bnx2x_fp_qstats(bp, txdata->parent_fp); 3834 q_stats->driver_filtered_tx_pkt++; 3835 dev_kfree_skb(skb); 3836 return NETDEV_TX_OK; 3837 } 3838 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3839 netif_tx_stop_queue(txq); 3840 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3841 3842 return NETDEV_TX_BUSY; 3843 } 3844 3845 DP(NETIF_MSG_TX_QUEUED, 3846 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3847 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3848 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3849 skb->len); 3850 3851 eth = (struct ethhdr *)skb->data; 3852 3853 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3854 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3855 if (is_broadcast_ether_addr(eth->h_dest)) 3856 mac_type = BROADCAST_ADDRESS; 3857 else 3858 mac_type = MULTICAST_ADDRESS; 3859 } 3860 3861 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3862 /* First, check if we need to linearize the skb (due to FW 3863 restrictions). No need to check fragmentation if page size > 8K 3864 (there will be no violation to FW restrictions) */ 3865 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3866 /* Statistics of linearization */ 3867 bp->lin_cnt++; 3868 if (skb_linearize(skb) != 0) { 3869 DP(NETIF_MSG_TX_QUEUED, 3870 "SKB linearization failed - silently dropping this SKB\n"); 3871 dev_kfree_skb_any(skb); 3872 return NETDEV_TX_OK; 3873 } 3874 } 3875 #endif 3876 /* Map skb linear data for DMA */ 3877 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3878 skb_headlen(skb), DMA_TO_DEVICE); 3879 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3880 DP(NETIF_MSG_TX_QUEUED, 3881 "SKB mapping failed - silently dropping this SKB\n"); 3882 dev_kfree_skb_any(skb); 3883 return NETDEV_TX_OK; 3884 } 3885 /* 3886 Please read carefully. First we use one BD which we mark as start, 3887 then we have a parsing info BD (used for TSO or xsum), 3888 and only then we have the rest of the TSO BDs. 3889 (don't forget to mark the last one as last, 3890 and to unmap only AFTER you write to the BD ...) 3891 And above all, all pdb sizes are in words - NOT DWORDS! 3892 */ 3893 3894 /* get current pkt produced now - advance it just before sending packet 3895 * since mapping of pages may fail and cause packet to be dropped 3896 */ 3897 pkt_prod = txdata->tx_pkt_prod; 3898 bd_prod = TX_BD(txdata->tx_bd_prod); 3899 3900 /* get a tx_buf and first BD 3901 * tx_start_bd may be changed during SPLIT, 3902 * but first_bd will always stay first 3903 */ 3904 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3905 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3906 first_bd = tx_start_bd; 3907 3908 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3909 3910 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3911 if (!(bp->flags & TX_TIMESTAMPING_EN)) { 3912 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n"); 3913 } else if (bp->ptp_tx_skb) { 3914 BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n"); 3915 } else { 3916 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3917 /* schedule check for Tx timestamp */ 3918 bp->ptp_tx_skb = skb_get(skb); 3919 bp->ptp_tx_start = jiffies; 3920 schedule_work(&bp->ptp_task); 3921 } 3922 } 3923 3924 /* header nbd: indirectly zero other flags! */ 3925 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3926 3927 /* remember the first BD of the packet */ 3928 tx_buf->first_bd = txdata->tx_bd_prod; 3929 tx_buf->skb = skb; 3930 tx_buf->flags = 0; 3931 3932 DP(NETIF_MSG_TX_QUEUED, 3933 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3934 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3935 3936 if (skb_vlan_tag_present(skb)) { 3937 tx_start_bd->vlan_or_ethertype = 3938 cpu_to_le16(skb_vlan_tag_get(skb)); 3939 tx_start_bd->bd_flags.as_bitfield |= 3940 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3941 } else { 3942 /* when transmitting in a vf, start bd must hold the ethertype 3943 * for fw to enforce it 3944 */ 3945 #ifndef BNX2X_STOP_ON_ERROR 3946 if (IS_VF(bp)) 3947 #endif 3948 tx_start_bd->vlan_or_ethertype = 3949 cpu_to_le16(ntohs(eth->h_proto)); 3950 #ifndef BNX2X_STOP_ON_ERROR 3951 else 3952 /* used by FW for packet accounting */ 3953 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3954 #endif 3955 } 3956 3957 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3958 3959 /* turn on parsing and get a BD */ 3960 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3961 3962 if (xmit_type & XMIT_CSUM) 3963 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3964 3965 if (!CHIP_IS_E1x(bp)) { 3966 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3967 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3968 3969 if (xmit_type & XMIT_CSUM_ENC) { 3970 u16 global_data = 0; 3971 3972 /* Set PBD in enc checksum offload case */ 3973 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3974 &pbd_e2_parsing_data, 3975 xmit_type); 3976 3977 /* turn on 2nd parsing and get a BD */ 3978 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3979 3980 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3981 3982 memset(pbd2, 0, sizeof(*pbd2)); 3983 3984 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3985 (skb_inner_network_header(skb) - 3986 skb->data) >> 1; 3987 3988 if (xmit_type & XMIT_GSO_ENC) 3989 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3990 &global_data, 3991 xmit_type); 3992 3993 pbd2->global_data = cpu_to_le16(global_data); 3994 3995 /* add addition parse BD indication to start BD */ 3996 SET_FLAG(tx_start_bd->general_data, 3997 ETH_TX_START_BD_PARSE_NBDS, 1); 3998 /* set encapsulation flag in start BD */ 3999 SET_FLAG(tx_start_bd->general_data, 4000 ETH_TX_START_BD_TUNNEL_EXIST, 1); 4001 4002 tx_buf->flags |= BNX2X_HAS_SECOND_PBD; 4003 4004 nbd++; 4005 } else if (xmit_type & XMIT_CSUM) { 4006 /* Set PBD in checksum offload case w/o encapsulation */ 4007 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 4008 &pbd_e2_parsing_data, 4009 xmit_type); 4010 } 4011 4012 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type); 4013 /* Add the macs to the parsing BD if this is a vf or if 4014 * Tx Switching is enabled. 4015 */ 4016 if (IS_VF(bp)) { 4017 /* override GRE parameters in BD */ 4018 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 4019 &pbd_e2->data.mac_addr.src_mid, 4020 &pbd_e2->data.mac_addr.src_lo, 4021 eth->h_source); 4022 4023 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 4024 &pbd_e2->data.mac_addr.dst_mid, 4025 &pbd_e2->data.mac_addr.dst_lo, 4026 eth->h_dest); 4027 } else { 4028 if (bp->flags & TX_SWITCHING) 4029 bnx2x_set_fw_mac_addr( 4030 &pbd_e2->data.mac_addr.dst_hi, 4031 &pbd_e2->data.mac_addr.dst_mid, 4032 &pbd_e2->data.mac_addr.dst_lo, 4033 eth->h_dest); 4034 #ifdef BNX2X_STOP_ON_ERROR 4035 /* Enforce security is always set in Stop on Error - 4036 * source mac should be present in the parsing BD 4037 */ 4038 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 4039 &pbd_e2->data.mac_addr.src_mid, 4040 &pbd_e2->data.mac_addr.src_lo, 4041 eth->h_source); 4042 #endif 4043 } 4044 4045 SET_FLAG(pbd_e2_parsing_data, 4046 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 4047 } else { 4048 u16 global_data = 0; 4049 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 4050 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 4051 /* Set PBD in checksum offload case */ 4052 if (xmit_type & XMIT_CSUM) 4053 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 4054 4055 SET_FLAG(global_data, 4056 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 4057 pbd_e1x->global_data |= cpu_to_le16(global_data); 4058 } 4059 4060 /* Setup the data pointer of the first BD of the packet */ 4061 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4062 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4063 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 4064 pkt_size = tx_start_bd->nbytes; 4065 4066 DP(NETIF_MSG_TX_QUEUED, 4067 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 4068 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 4069 le16_to_cpu(tx_start_bd->nbytes), 4070 tx_start_bd->bd_flags.as_bitfield, 4071 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 4072 4073 if (xmit_type & XMIT_GSO) { 4074 4075 DP(NETIF_MSG_TX_QUEUED, 4076 "TSO packet len %d hlen %d total len %d tso size %d\n", 4077 skb->len, hlen, skb_headlen(skb), 4078 skb_shinfo(skb)->gso_size); 4079 4080 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 4081 4082 if (unlikely(skb_headlen(skb) > hlen)) { 4083 nbd++; 4084 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 4085 &tx_start_bd, hlen, 4086 bd_prod); 4087 } 4088 if (!CHIP_IS_E1x(bp)) 4089 pbd_e2_parsing_data |= 4090 (skb_shinfo(skb)->gso_size << 4091 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 4092 ETH_TX_PARSE_BD_E2_LSO_MSS; 4093 else 4094 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); 4095 } 4096 4097 /* Set the PBD's parsing_data field if not zero 4098 * (for the chips newer than 57711). 4099 */ 4100 if (pbd_e2_parsing_data) 4101 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 4102 4103 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 4104 4105 /* Handle fragmented skb */ 4106 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4107 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4108 4109 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 4110 skb_frag_size(frag), DMA_TO_DEVICE); 4111 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 4112 unsigned int pkts_compl = 0, bytes_compl = 0; 4113 4114 DP(NETIF_MSG_TX_QUEUED, 4115 "Unable to map page - dropping packet...\n"); 4116 4117 /* we need unmap all buffers already mapped 4118 * for this SKB; 4119 * first_bd->nbd need to be properly updated 4120 * before call to bnx2x_free_tx_pkt 4121 */ 4122 first_bd->nbd = cpu_to_le16(nbd); 4123 bnx2x_free_tx_pkt(bp, txdata, 4124 TX_BD(txdata->tx_pkt_prod), 4125 &pkts_compl, &bytes_compl); 4126 return NETDEV_TX_OK; 4127 } 4128 4129 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4130 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4131 if (total_pkt_bd == NULL) 4132 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4133 4134 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4135 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4136 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 4137 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 4138 nbd++; 4139 4140 DP(NETIF_MSG_TX_QUEUED, 4141 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 4142 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 4143 le16_to_cpu(tx_data_bd->nbytes)); 4144 } 4145 4146 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 4147 4148 /* update with actual num BDs */ 4149 first_bd->nbd = cpu_to_le16(nbd); 4150 4151 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4152 4153 /* now send a tx doorbell, counting the next BD 4154 * if the packet contains or ends with it 4155 */ 4156 if (TX_BD_POFF(bd_prod) < nbd) 4157 nbd++; 4158 4159 /* total_pkt_bytes should be set on the first data BD if 4160 * it's not an LSO packet and there is more than one 4161 * data BD. In this case pkt_size is limited by an MTU value. 4162 * However we prefer to set it for an LSO packet (while we don't 4163 * have to) in order to save some CPU cycles in a none-LSO 4164 * case, when we much more care about them. 4165 */ 4166 if (total_pkt_bd != NULL) 4167 total_pkt_bd->total_pkt_bytes = pkt_size; 4168 4169 if (pbd_e1x) 4170 DP(NETIF_MSG_TX_QUEUED, 4171 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4172 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4173 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4174 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4175 le16_to_cpu(pbd_e1x->total_hlen_w)); 4176 if (pbd_e2) 4177 DP(NETIF_MSG_TX_QUEUED, 4178 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4179 pbd_e2, 4180 pbd_e2->data.mac_addr.dst_hi, 4181 pbd_e2->data.mac_addr.dst_mid, 4182 pbd_e2->data.mac_addr.dst_lo, 4183 pbd_e2->data.mac_addr.src_hi, 4184 pbd_e2->data.mac_addr.src_mid, 4185 pbd_e2->data.mac_addr.src_lo, 4186 pbd_e2->parsing_data); 4187 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4188 4189 netdev_tx_sent_queue(txq, skb->len); 4190 4191 skb_tx_timestamp(skb); 4192 4193 txdata->tx_pkt_prod++; 4194 /* 4195 * Make sure that the BD data is updated before updating the producer 4196 * since FW might read the BD right after the producer is updated. 4197 * This is only applicable for weak-ordered memory model archs such 4198 * as IA-64. The following barrier is also mandatory since FW will 4199 * assumes packets must have BDs. 4200 */ 4201 wmb(); 4202 4203 txdata->tx_db.data.prod += nbd; 4204 barrier(); 4205 4206 DOORBELL(bp, txdata->cid, txdata->tx_db.raw); 4207 4208 mmiowb(); 4209 4210 txdata->tx_bd_prod += nbd; 4211 4212 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4213 netif_tx_stop_queue(txq); 4214 4215 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4216 * ordering of set_bit() in netif_tx_stop_queue() and read of 4217 * fp->bd_tx_cons */ 4218 smp_mb(); 4219 4220 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4221 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4222 netif_tx_wake_queue(txq); 4223 } 4224 txdata->tx_pkt++; 4225 4226 return NETDEV_TX_OK; 4227 } 4228 4229 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default) 4230 { 4231 int mfw_vn = BP_FW_MB_IDX(bp); 4232 u32 tmp; 4233 4234 /* If the shmem shouldn't affect configuration, reflect */ 4235 if (!IS_MF_BD(bp)) { 4236 int i; 4237 4238 for (i = 0; i < BNX2X_MAX_PRIORITY; i++) 4239 c2s_map[i] = i; 4240 *c2s_default = 0; 4241 4242 return; 4243 } 4244 4245 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]); 4246 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4247 c2s_map[0] = tmp & 0xff; 4248 c2s_map[1] = (tmp >> 8) & 0xff; 4249 c2s_map[2] = (tmp >> 16) & 0xff; 4250 c2s_map[3] = (tmp >> 24) & 0xff; 4251 4252 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]); 4253 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4254 c2s_map[4] = tmp & 0xff; 4255 c2s_map[5] = (tmp >> 8) & 0xff; 4256 c2s_map[6] = (tmp >> 16) & 0xff; 4257 c2s_map[7] = (tmp >> 24) & 0xff; 4258 4259 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]); 4260 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4261 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff; 4262 } 4263 4264 /** 4265 * bnx2x_setup_tc - routine to configure net_device for multi tc 4266 * 4267 * @netdev: net device to configure 4268 * @tc: number of traffic classes to enable 4269 * 4270 * callback connected to the ndo_setup_tc function pointer 4271 */ 4272 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4273 { 4274 struct bnx2x *bp = netdev_priv(dev); 4275 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def; 4276 int cos, prio, count, offset; 4277 4278 /* setup tc must be called under rtnl lock */ 4279 ASSERT_RTNL(); 4280 4281 /* no traffic classes requested. Aborting */ 4282 if (!num_tc) { 4283 netdev_reset_tc(dev); 4284 return 0; 4285 } 4286 4287 /* requested to support too many traffic classes */ 4288 if (num_tc > bp->max_cos) { 4289 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4290 num_tc, bp->max_cos); 4291 return -EINVAL; 4292 } 4293 4294 /* declare amount of supported traffic classes */ 4295 if (netdev_set_num_tc(dev, num_tc)) { 4296 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4297 return -EINVAL; 4298 } 4299 4300 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def); 4301 4302 /* configure priority to traffic class mapping */ 4303 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4304 int outer_prio = c2s_map[prio]; 4305 4306 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]); 4307 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4308 "mapping priority %d to tc %d\n", 4309 outer_prio, bp->prio_to_cos[outer_prio]); 4310 } 4311 4312 /* Use this configuration to differentiate tc0 from other COSes 4313 This can be used for ets or pfc, and save the effort of setting 4314 up a multio class queue disc or negotiating DCBX with a switch 4315 netdev_set_prio_tc_map(dev, 0, 0); 4316 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4317 for (prio = 1; prio < 16; prio++) { 4318 netdev_set_prio_tc_map(dev, prio, 1); 4319 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4320 } */ 4321 4322 /* configure traffic class to transmission queue mapping */ 4323 for (cos = 0; cos < bp->max_cos; cos++) { 4324 count = BNX2X_NUM_ETH_QUEUES(bp); 4325 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4326 netdev_set_tc_queue(dev, cos, count, offset); 4327 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4328 "mapping tc %d to offset %d count %d\n", 4329 cos, offset, count); 4330 } 4331 4332 return 0; 4333 } 4334 4335 /* called with rtnl_lock */ 4336 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4337 { 4338 struct sockaddr *addr = p; 4339 struct bnx2x *bp = netdev_priv(dev); 4340 int rc = 0; 4341 4342 if (!is_valid_ether_addr(addr->sa_data)) { 4343 BNX2X_ERR("Requested MAC address is not valid\n"); 4344 return -EINVAL; 4345 } 4346 4347 if (IS_MF_STORAGE_ONLY(bp)) { 4348 BNX2X_ERR("Can't change address on STORAGE ONLY function\n"); 4349 return -EINVAL; 4350 } 4351 4352 if (netif_running(dev)) { 4353 rc = bnx2x_set_eth_mac(bp, false); 4354 if (rc) 4355 return rc; 4356 } 4357 4358 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4359 4360 if (netif_running(dev)) 4361 rc = bnx2x_set_eth_mac(bp, true); 4362 4363 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4364 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4365 4366 return rc; 4367 } 4368 4369 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4370 { 4371 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4372 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4373 u8 cos; 4374 4375 /* Common */ 4376 4377 if (IS_FCOE_IDX(fp_index)) { 4378 memset(sb, 0, sizeof(union host_hc_status_block)); 4379 fp->status_blk_mapping = 0; 4380 } else { 4381 /* status blocks */ 4382 if (!CHIP_IS_E1x(bp)) 4383 BNX2X_PCI_FREE(sb->e2_sb, 4384 bnx2x_fp(bp, fp_index, 4385 status_blk_mapping), 4386 sizeof(struct host_hc_status_block_e2)); 4387 else 4388 BNX2X_PCI_FREE(sb->e1x_sb, 4389 bnx2x_fp(bp, fp_index, 4390 status_blk_mapping), 4391 sizeof(struct host_hc_status_block_e1x)); 4392 } 4393 4394 /* Rx */ 4395 if (!skip_rx_queue(bp, fp_index)) { 4396 bnx2x_free_rx_bds(fp); 4397 4398 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4399 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4400 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4401 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4402 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4403 4404 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4405 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4406 sizeof(struct eth_fast_path_rx_cqe) * 4407 NUM_RCQ_BD); 4408 4409 /* SGE ring */ 4410 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4411 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4412 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4413 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4414 } 4415 4416 /* Tx */ 4417 if (!skip_tx_queue(bp, fp_index)) { 4418 /* fastpath tx rings: tx_buf tx_desc */ 4419 for_each_cos_in_tx_queue(fp, cos) { 4420 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4421 4422 DP(NETIF_MSG_IFDOWN, 4423 "freeing tx memory of fp %d cos %d cid %d\n", 4424 fp_index, cos, txdata->cid); 4425 4426 BNX2X_FREE(txdata->tx_buf_ring); 4427 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4428 txdata->tx_desc_mapping, 4429 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4430 } 4431 } 4432 /* end of fastpath */ 4433 } 4434 4435 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4436 { 4437 int i; 4438 for_each_cnic_queue(bp, i) 4439 bnx2x_free_fp_mem_at(bp, i); 4440 } 4441 4442 void bnx2x_free_fp_mem(struct bnx2x *bp) 4443 { 4444 int i; 4445 for_each_eth_queue(bp, i) 4446 bnx2x_free_fp_mem_at(bp, i); 4447 } 4448 4449 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4450 { 4451 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4452 if (!CHIP_IS_E1x(bp)) { 4453 bnx2x_fp(bp, index, sb_index_values) = 4454 (__le16 *)status_blk.e2_sb->sb.index_values; 4455 bnx2x_fp(bp, index, sb_running_index) = 4456 (__le16 *)status_blk.e2_sb->sb.running_index; 4457 } else { 4458 bnx2x_fp(bp, index, sb_index_values) = 4459 (__le16 *)status_blk.e1x_sb->sb.index_values; 4460 bnx2x_fp(bp, index, sb_running_index) = 4461 (__le16 *)status_blk.e1x_sb->sb.running_index; 4462 } 4463 } 4464 4465 /* Returns the number of actually allocated BDs */ 4466 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4467 int rx_ring_size) 4468 { 4469 struct bnx2x *bp = fp->bp; 4470 u16 ring_prod, cqe_ring_prod; 4471 int i, failure_cnt = 0; 4472 4473 fp->rx_comp_cons = 0; 4474 cqe_ring_prod = ring_prod = 0; 4475 4476 /* This routine is called only during fo init so 4477 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4478 */ 4479 for (i = 0; i < rx_ring_size; i++) { 4480 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4481 failure_cnt++; 4482 continue; 4483 } 4484 ring_prod = NEXT_RX_IDX(ring_prod); 4485 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4486 WARN_ON(ring_prod <= (i - failure_cnt)); 4487 } 4488 4489 if (failure_cnt) 4490 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4491 i - failure_cnt, fp->index); 4492 4493 fp->rx_bd_prod = ring_prod; 4494 /* Limit the CQE producer by the CQE ring size */ 4495 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4496 cqe_ring_prod); 4497 fp->rx_pkt = fp->rx_calls = 0; 4498 4499 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4500 4501 return i - failure_cnt; 4502 } 4503 4504 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4505 { 4506 int i; 4507 4508 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4509 struct eth_rx_cqe_next_page *nextpg; 4510 4511 nextpg = (struct eth_rx_cqe_next_page *) 4512 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4513 nextpg->addr_hi = 4514 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4515 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4516 nextpg->addr_lo = 4517 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4518 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4519 } 4520 } 4521 4522 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4523 { 4524 union host_hc_status_block *sb; 4525 struct bnx2x_fastpath *fp = &bp->fp[index]; 4526 int ring_size = 0; 4527 u8 cos; 4528 int rx_ring_size = 0; 4529 4530 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) { 4531 rx_ring_size = MIN_RX_SIZE_NONTPA; 4532 bp->rx_ring_size = rx_ring_size; 4533 } else if (!bp->rx_ring_size) { 4534 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4535 4536 if (CHIP_IS_E3(bp)) { 4537 u32 cfg = SHMEM_RD(bp, 4538 dev_info.port_hw_config[BP_PORT(bp)]. 4539 default_cfg); 4540 4541 /* Decrease ring size for 1G functions */ 4542 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4543 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4544 rx_ring_size /= 10; 4545 } 4546 4547 /* allocate at least number of buffers required by FW */ 4548 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4549 MIN_RX_SIZE_TPA, rx_ring_size); 4550 4551 bp->rx_ring_size = rx_ring_size; 4552 } else /* if rx_ring_size specified - use it */ 4553 rx_ring_size = bp->rx_ring_size; 4554 4555 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4556 4557 /* Common */ 4558 sb = &bnx2x_fp(bp, index, status_blk); 4559 4560 if (!IS_FCOE_IDX(index)) { 4561 /* status blocks */ 4562 if (!CHIP_IS_E1x(bp)) { 4563 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4564 sizeof(struct host_hc_status_block_e2)); 4565 if (!sb->e2_sb) 4566 goto alloc_mem_err; 4567 } else { 4568 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4569 sizeof(struct host_hc_status_block_e1x)); 4570 if (!sb->e1x_sb) 4571 goto alloc_mem_err; 4572 } 4573 } 4574 4575 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4576 * set shortcuts for it. 4577 */ 4578 if (!IS_FCOE_IDX(index)) 4579 set_sb_shortcuts(bp, index); 4580 4581 /* Tx */ 4582 if (!skip_tx_queue(bp, index)) { 4583 /* fastpath tx rings: tx_buf tx_desc */ 4584 for_each_cos_in_tx_queue(fp, cos) { 4585 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4586 4587 DP(NETIF_MSG_IFUP, 4588 "allocating tx memory of fp %d cos %d\n", 4589 index, cos); 4590 4591 txdata->tx_buf_ring = kcalloc(NUM_TX_BD, 4592 sizeof(struct sw_tx_bd), 4593 GFP_KERNEL); 4594 if (!txdata->tx_buf_ring) 4595 goto alloc_mem_err; 4596 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, 4597 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4598 if (!txdata->tx_desc_ring) 4599 goto alloc_mem_err; 4600 } 4601 } 4602 4603 /* Rx */ 4604 if (!skip_rx_queue(bp, index)) { 4605 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4606 bnx2x_fp(bp, index, rx_buf_ring) = 4607 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL); 4608 if (!bnx2x_fp(bp, index, rx_buf_ring)) 4609 goto alloc_mem_err; 4610 bnx2x_fp(bp, index, rx_desc_ring) = 4611 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), 4612 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4613 if (!bnx2x_fp(bp, index, rx_desc_ring)) 4614 goto alloc_mem_err; 4615 4616 /* Seed all CQEs by 1s */ 4617 bnx2x_fp(bp, index, rx_comp_ring) = 4618 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), 4619 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); 4620 if (!bnx2x_fp(bp, index, rx_comp_ring)) 4621 goto alloc_mem_err; 4622 4623 /* SGE ring */ 4624 bnx2x_fp(bp, index, rx_page_ring) = 4625 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page), 4626 GFP_KERNEL); 4627 if (!bnx2x_fp(bp, index, rx_page_ring)) 4628 goto alloc_mem_err; 4629 bnx2x_fp(bp, index, rx_sge_ring) = 4630 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), 4631 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4632 if (!bnx2x_fp(bp, index, rx_sge_ring)) 4633 goto alloc_mem_err; 4634 /* RX BD ring */ 4635 bnx2x_set_next_page_rx_bd(fp); 4636 4637 /* CQ ring */ 4638 bnx2x_set_next_page_rx_cq(fp); 4639 4640 /* BDs */ 4641 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4642 if (ring_size < rx_ring_size) 4643 goto alloc_mem_err; 4644 } 4645 4646 return 0; 4647 4648 /* handles low memory cases */ 4649 alloc_mem_err: 4650 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4651 index, ring_size); 4652 /* FW will drop all packets if queue is not big enough, 4653 * In these cases we disable the queue 4654 * Min size is different for OOO, TPA and non-TPA queues 4655 */ 4656 if (ring_size < (fp->mode == TPA_MODE_DISABLED ? 4657 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4658 /* release memory allocated for this queue */ 4659 bnx2x_free_fp_mem_at(bp, index); 4660 return -ENOMEM; 4661 } 4662 return 0; 4663 } 4664 4665 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4666 { 4667 if (!NO_FCOE(bp)) 4668 /* FCoE */ 4669 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4670 /* we will fail load process instead of mark 4671 * NO_FCOE_FLAG 4672 */ 4673 return -ENOMEM; 4674 4675 return 0; 4676 } 4677 4678 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4679 { 4680 int i; 4681 4682 /* 1. Allocate FP for leading - fatal if error 4683 * 2. Allocate RSS - fix number of queues if error 4684 */ 4685 4686 /* leading */ 4687 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4688 return -ENOMEM; 4689 4690 /* RSS */ 4691 for_each_nondefault_eth_queue(bp, i) 4692 if (bnx2x_alloc_fp_mem_at(bp, i)) 4693 break; 4694 4695 /* handle memory failures */ 4696 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4697 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4698 4699 WARN_ON(delta < 0); 4700 bnx2x_shrink_eth_fp(bp, delta); 4701 if (CNIC_SUPPORT(bp)) 4702 /* move non eth FPs next to last eth FP 4703 * must be done in that order 4704 * FCOE_IDX < FWD_IDX < OOO_IDX 4705 */ 4706 4707 /* move FCoE fp even NO_FCOE_FLAG is on */ 4708 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4709 bp->num_ethernet_queues -= delta; 4710 bp->num_queues = bp->num_ethernet_queues + 4711 bp->num_cnic_queues; 4712 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4713 bp->num_queues + delta, bp->num_queues); 4714 } 4715 4716 return 0; 4717 } 4718 4719 void bnx2x_free_mem_bp(struct bnx2x *bp) 4720 { 4721 int i; 4722 4723 for (i = 0; i < bp->fp_array_size; i++) 4724 kfree(bp->fp[i].tpa_info); 4725 kfree(bp->fp); 4726 kfree(bp->sp_objs); 4727 kfree(bp->fp_stats); 4728 kfree(bp->bnx2x_txq); 4729 kfree(bp->msix_table); 4730 kfree(bp->ilt); 4731 } 4732 4733 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4734 { 4735 struct bnx2x_fastpath *fp; 4736 struct msix_entry *tbl; 4737 struct bnx2x_ilt *ilt; 4738 int msix_table_size = 0; 4739 int fp_array_size, txq_array_size; 4740 int i; 4741 4742 /* 4743 * The biggest MSI-X table we might need is as a maximum number of fast 4744 * path IGU SBs plus default SB (for PF only). 4745 */ 4746 msix_table_size = bp->igu_sb_cnt; 4747 if (IS_PF(bp)) 4748 msix_table_size++; 4749 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4750 4751 /* fp array: RSS plus CNIC related L2 queues */ 4752 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4753 bp->fp_array_size = fp_array_size; 4754 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4755 4756 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4757 if (!fp) 4758 goto alloc_err; 4759 for (i = 0; i < bp->fp_array_size; i++) { 4760 fp[i].tpa_info = 4761 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4762 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4763 if (!(fp[i].tpa_info)) 4764 goto alloc_err; 4765 } 4766 4767 bp->fp = fp; 4768 4769 /* allocate sp objs */ 4770 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4771 GFP_KERNEL); 4772 if (!bp->sp_objs) 4773 goto alloc_err; 4774 4775 /* allocate fp_stats */ 4776 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4777 GFP_KERNEL); 4778 if (!bp->fp_stats) 4779 goto alloc_err; 4780 4781 /* Allocate memory for the transmission queues array */ 4782 txq_array_size = 4783 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4784 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4785 4786 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4787 GFP_KERNEL); 4788 if (!bp->bnx2x_txq) 4789 goto alloc_err; 4790 4791 /* msix table */ 4792 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4793 if (!tbl) 4794 goto alloc_err; 4795 bp->msix_table = tbl; 4796 4797 /* ilt */ 4798 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4799 if (!ilt) 4800 goto alloc_err; 4801 bp->ilt = ilt; 4802 4803 return 0; 4804 alloc_err: 4805 bnx2x_free_mem_bp(bp); 4806 return -ENOMEM; 4807 } 4808 4809 int bnx2x_reload_if_running(struct net_device *dev) 4810 { 4811 struct bnx2x *bp = netdev_priv(dev); 4812 4813 if (unlikely(!netif_running(dev))) 4814 return 0; 4815 4816 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4817 return bnx2x_nic_load(bp, LOAD_NORMAL); 4818 } 4819 4820 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4821 { 4822 u32 sel_phy_idx = 0; 4823 if (bp->link_params.num_phys <= 1) 4824 return INT_PHY; 4825 4826 if (bp->link_vars.link_up) { 4827 sel_phy_idx = EXT_PHY1; 4828 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4829 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4830 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4831 sel_phy_idx = EXT_PHY2; 4832 } else { 4833 4834 switch (bnx2x_phy_selection(&bp->link_params)) { 4835 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4836 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4837 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4838 sel_phy_idx = EXT_PHY1; 4839 break; 4840 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4841 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4842 sel_phy_idx = EXT_PHY2; 4843 break; 4844 } 4845 } 4846 4847 return sel_phy_idx; 4848 } 4849 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4850 { 4851 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4852 /* 4853 * The selected activated PHY is always after swapping (in case PHY 4854 * swapping is enabled). So when swapping is enabled, we need to reverse 4855 * the configuration 4856 */ 4857 4858 if (bp->link_params.multi_phy_config & 4859 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4860 if (sel_phy_idx == EXT_PHY1) 4861 sel_phy_idx = EXT_PHY2; 4862 else if (sel_phy_idx == EXT_PHY2) 4863 sel_phy_idx = EXT_PHY1; 4864 } 4865 return LINK_CONFIG_IDX(sel_phy_idx); 4866 } 4867 4868 #ifdef NETDEV_FCOE_WWNN 4869 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4870 { 4871 struct bnx2x *bp = netdev_priv(dev); 4872 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4873 4874 switch (type) { 4875 case NETDEV_FCOE_WWNN: 4876 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4877 cp->fcoe_wwn_node_name_lo); 4878 break; 4879 case NETDEV_FCOE_WWPN: 4880 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4881 cp->fcoe_wwn_port_name_lo); 4882 break; 4883 default: 4884 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4885 return -EINVAL; 4886 } 4887 4888 return 0; 4889 } 4890 #endif 4891 4892 /* called with rtnl_lock */ 4893 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4894 { 4895 struct bnx2x *bp = netdev_priv(dev); 4896 4897 if (pci_num_vf(bp->pdev)) { 4898 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n"); 4899 return -EPERM; 4900 } 4901 4902 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4903 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4904 return -EAGAIN; 4905 } 4906 4907 if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || 4908 ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) { 4909 BNX2X_ERR("Can't support requested MTU size\n"); 4910 return -EINVAL; 4911 } 4912 4913 /* This does not race with packet allocation 4914 * because the actual alloc size is 4915 * only updated as part of load 4916 */ 4917 dev->mtu = new_mtu; 4918 4919 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4920 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4921 4922 return bnx2x_reload_if_running(dev); 4923 } 4924 4925 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4926 netdev_features_t features) 4927 { 4928 struct bnx2x *bp = netdev_priv(dev); 4929 4930 if (pci_num_vf(bp->pdev)) { 4931 netdev_features_t changed = dev->features ^ features; 4932 4933 /* Revert the requested changes in features if they 4934 * would require internal reload of PF in bnx2x_set_features(). 4935 */ 4936 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) { 4937 features &= ~NETIF_F_RXCSUM; 4938 features |= dev->features & NETIF_F_RXCSUM; 4939 } 4940 4941 if (changed & NETIF_F_LOOPBACK) { 4942 features &= ~NETIF_F_LOOPBACK; 4943 features |= dev->features & NETIF_F_LOOPBACK; 4944 } 4945 } 4946 4947 /* TPA requires Rx CSUM offloading */ 4948 if (!(features & NETIF_F_RXCSUM)) { 4949 features &= ~NETIF_F_LRO; 4950 features &= ~NETIF_F_GRO; 4951 } 4952 4953 return features; 4954 } 4955 4956 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4957 { 4958 struct bnx2x *bp = netdev_priv(dev); 4959 netdev_features_t changes = features ^ dev->features; 4960 bool bnx2x_reload = false; 4961 int rc; 4962 4963 /* VFs or non SRIOV PFs should be able to change loopback feature */ 4964 if (!pci_num_vf(bp->pdev)) { 4965 if (features & NETIF_F_LOOPBACK) { 4966 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4967 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4968 bnx2x_reload = true; 4969 } 4970 } else { 4971 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4972 bp->link_params.loopback_mode = LOOPBACK_NONE; 4973 bnx2x_reload = true; 4974 } 4975 } 4976 } 4977 4978 /* if GRO is changed while LRO is enabled, don't force a reload */ 4979 if ((changes & NETIF_F_GRO) && (features & NETIF_F_LRO)) 4980 changes &= ~NETIF_F_GRO; 4981 4982 /* if GRO is changed while HW TPA is off, don't force a reload */ 4983 if ((changes & NETIF_F_GRO) && bp->disable_tpa) 4984 changes &= ~NETIF_F_GRO; 4985 4986 if (changes) 4987 bnx2x_reload = true; 4988 4989 if (bnx2x_reload) { 4990 if (bp->recovery_state == BNX2X_RECOVERY_DONE) { 4991 dev->features = features; 4992 rc = bnx2x_reload_if_running(dev); 4993 return rc ? rc : 1; 4994 } 4995 /* else: bnx2x_nic_load() will be called at end of recovery */ 4996 } 4997 4998 return 0; 4999 } 5000 5001 void bnx2x_tx_timeout(struct net_device *dev) 5002 { 5003 struct bnx2x *bp = netdev_priv(dev); 5004 5005 #ifdef BNX2X_STOP_ON_ERROR 5006 if (!bp->panic) 5007 bnx2x_panic(); 5008 #endif 5009 5010 /* This allows the netif to be shutdown gracefully before resetting */ 5011 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); 5012 } 5013 5014 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) 5015 { 5016 struct net_device *dev = pci_get_drvdata(pdev); 5017 struct bnx2x *bp; 5018 5019 if (!dev) { 5020 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5021 return -ENODEV; 5022 } 5023 bp = netdev_priv(dev); 5024 5025 rtnl_lock(); 5026 5027 pci_save_state(pdev); 5028 5029 if (!netif_running(dev)) { 5030 rtnl_unlock(); 5031 return 0; 5032 } 5033 5034 netif_device_detach(dev); 5035 5036 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 5037 5038 bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); 5039 5040 rtnl_unlock(); 5041 5042 return 0; 5043 } 5044 5045 int bnx2x_resume(struct pci_dev *pdev) 5046 { 5047 struct net_device *dev = pci_get_drvdata(pdev); 5048 struct bnx2x *bp; 5049 int rc; 5050 5051 if (!dev) { 5052 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5053 return -ENODEV; 5054 } 5055 bp = netdev_priv(dev); 5056 5057 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 5058 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 5059 return -EAGAIN; 5060 } 5061 5062 rtnl_lock(); 5063 5064 pci_restore_state(pdev); 5065 5066 if (!netif_running(dev)) { 5067 rtnl_unlock(); 5068 return 0; 5069 } 5070 5071 bnx2x_set_power_state(bp, PCI_D0); 5072 netif_device_attach(dev); 5073 5074 rc = bnx2x_nic_load(bp, LOAD_OPEN); 5075 5076 rtnl_unlock(); 5077 5078 return rc; 5079 } 5080 5081 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 5082 u32 cid) 5083 { 5084 if (!cxt) { 5085 BNX2X_ERR("bad context pointer %p\n", cxt); 5086 return; 5087 } 5088 5089 /* ustorm cxt validation */ 5090 cxt->ustorm_ag_context.cdu_usage = 5091 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5092 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 5093 /* xcontext validation */ 5094 cxt->xstorm_ag_context.cdu_reserved = 5095 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5096 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 5097 } 5098 5099 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 5100 u8 fw_sb_id, u8 sb_index, 5101 u8 ticks) 5102 { 5103 u32 addr = BAR_CSTRORM_INTMEM + 5104 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 5105 REG_WR8(bp, addr, ticks); 5106 DP(NETIF_MSG_IFUP, 5107 "port %x fw_sb_id %d sb_index %d ticks %d\n", 5108 port, fw_sb_id, sb_index, ticks); 5109 } 5110 5111 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 5112 u16 fw_sb_id, u8 sb_index, 5113 u8 disable) 5114 { 5115 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 5116 u32 addr = BAR_CSTRORM_INTMEM + 5117 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 5118 u8 flags = REG_RD8(bp, addr); 5119 /* clear and set */ 5120 flags &= ~HC_INDEX_DATA_HC_ENABLED; 5121 flags |= enable_flag; 5122 REG_WR8(bp, addr, flags); 5123 DP(NETIF_MSG_IFUP, 5124 "port %x fw_sb_id %d sb_index %d disable %d\n", 5125 port, fw_sb_id, sb_index, disable); 5126 } 5127 5128 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 5129 u8 sb_index, u8 disable, u16 usec) 5130 { 5131 int port = BP_PORT(bp); 5132 u8 ticks = usec / BNX2X_BTR; 5133 5134 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 5135 5136 disable = disable ? 1 : (usec ? 0 : 1); 5137 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 5138 } 5139 5140 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, 5141 u32 verbose) 5142 { 5143 smp_mb__before_atomic(); 5144 set_bit(flag, &bp->sp_rtnl_state); 5145 smp_mb__after_atomic(); 5146 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", 5147 flag); 5148 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5149 } 5150 EXPORT_SYMBOL(bnx2x_schedule_sp_rtnl); 5151