1 /* bnx2x_cmn.c: Broadcom Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 * 9 * Maintained by: Eilon Greenstein <eilong@broadcom.com> 10 * Written by: Eliezer Tamir 11 * Based on code from Michael Chan's bnx2 driver 12 * UDP CSUM errata workaround by Arik Gendelman 13 * Slowpath and fastpath rework by Vladislav Zolotarov 14 * Statistics and Link management by Yitchak Gertner 15 * 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/etherdevice.h> 21 #include <linux/if_vlan.h> 22 #include <linux/interrupt.h> 23 #include <linux/ip.h> 24 #include <net/tcp.h> 25 #include <net/ipv6.h> 26 #include <net/ip6_checksum.h> 27 #include <net/busy_poll.h> 28 #include <linux/prefetch.h> 29 #include "bnx2x_cmn.h" 30 #include "bnx2x_init.h" 31 #include "bnx2x_sp.h" 32 33 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 34 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 35 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 36 static int bnx2x_poll(struct napi_struct *napi, int budget); 37 38 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 39 { 40 int i; 41 42 /* Add NAPI objects */ 43 for_each_rx_queue_cnic(bp, i) { 44 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 45 bnx2x_poll, NAPI_POLL_WEIGHT); 46 napi_hash_add(&bnx2x_fp(bp, i, napi)); 47 } 48 } 49 50 static void bnx2x_add_all_napi(struct bnx2x *bp) 51 { 52 int i; 53 54 /* Add NAPI objects */ 55 for_each_eth_queue(bp, i) { 56 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 57 bnx2x_poll, NAPI_POLL_WEIGHT); 58 napi_hash_add(&bnx2x_fp(bp, i, napi)); 59 } 60 } 61 62 static int bnx2x_calc_num_queues(struct bnx2x *bp) 63 { 64 return bnx2x_num_queues ? 65 min_t(int, bnx2x_num_queues, BNX2X_MAX_QUEUES(bp)) : 66 min_t(int, netif_get_num_default_rss_queues(), 67 BNX2X_MAX_QUEUES(bp)); 68 } 69 70 /** 71 * bnx2x_move_fp - move content of the fastpath structure. 72 * 73 * @bp: driver handle 74 * @from: source FP index 75 * @to: destination FP index 76 * 77 * Makes sure the contents of the bp->fp[to].napi is kept 78 * intact. This is done by first copying the napi struct from 79 * the target to the source, and then mem copying the entire 80 * source onto the target. Update txdata pointers and related 81 * content. 82 */ 83 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 84 { 85 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 86 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 87 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 88 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 89 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 90 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 91 int old_max_eth_txqs, new_max_eth_txqs; 92 int old_txdata_index = 0, new_txdata_index = 0; 93 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 94 95 /* Copy the NAPI object as it has been already initialized */ 96 from_fp->napi = to_fp->napi; 97 98 /* Move bnx2x_fastpath contents */ 99 memcpy(to_fp, from_fp, sizeof(*to_fp)); 100 to_fp->index = to; 101 102 /* Retain the tpa_info of the original `to' version as we don't want 103 * 2 FPs to contain the same tpa_info pointer. 104 */ 105 to_fp->tpa_info = old_tpa_info; 106 107 /* move sp_objs contents as well, as their indices match fp ones */ 108 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 109 110 /* move fp_stats contents as well, as their indices match fp ones */ 111 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 112 113 /* Update txdata pointers in fp and move txdata content accordingly: 114 * Each fp consumes 'max_cos' txdata structures, so the index should be 115 * decremented by max_cos x delta. 116 */ 117 118 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 119 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 120 (bp)->max_cos; 121 if (from == FCOE_IDX(bp)) { 122 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 123 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 124 } 125 126 memcpy(&bp->bnx2x_txq[new_txdata_index], 127 &bp->bnx2x_txq[old_txdata_index], 128 sizeof(struct bnx2x_fp_txdata)); 129 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 130 } 131 132 /** 133 * bnx2x_fill_fw_str - Fill buffer with FW version string. 134 * 135 * @bp: driver handle 136 * @buf: character buffer to fill with the fw name 137 * @buf_len: length of the above buffer 138 * 139 */ 140 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 141 { 142 if (IS_PF(bp)) { 143 u8 phy_fw_ver[PHY_FW_VER_LEN]; 144 145 phy_fw_ver[0] = '\0'; 146 bnx2x_get_ext_phy_fw_version(&bp->link_params, 147 phy_fw_ver, PHY_FW_VER_LEN); 148 strlcpy(buf, bp->fw_ver, buf_len); 149 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 150 "bc %d.%d.%d%s%s", 151 (bp->common.bc_ver & 0xff0000) >> 16, 152 (bp->common.bc_ver & 0xff00) >> 8, 153 (bp->common.bc_ver & 0xff), 154 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 155 } else { 156 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 157 } 158 } 159 160 /** 161 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 162 * 163 * @bp: driver handle 164 * @delta: number of eth queues which were not allocated 165 */ 166 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 167 { 168 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 169 170 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 171 * backward along the array could cause memory to be overridden 172 */ 173 for (cos = 1; cos < bp->max_cos; cos++) { 174 for (i = 0; i < old_eth_num - delta; i++) { 175 struct bnx2x_fastpath *fp = &bp->fp[i]; 176 int new_idx = cos * (old_eth_num - delta) + i; 177 178 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 179 sizeof(struct bnx2x_fp_txdata)); 180 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 181 } 182 } 183 } 184 185 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 186 187 /* free skb in the packet ring at pos idx 188 * return idx of last bd freed 189 */ 190 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 191 u16 idx, unsigned int *pkts_compl, 192 unsigned int *bytes_compl) 193 { 194 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 195 struct eth_tx_start_bd *tx_start_bd; 196 struct eth_tx_bd *tx_data_bd; 197 struct sk_buff *skb = tx_buf->skb; 198 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 199 int nbd; 200 u16 split_bd_len = 0; 201 202 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 203 prefetch(&skb->end); 204 205 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 206 txdata->txq_index, idx, tx_buf, skb); 207 208 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 209 210 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 211 #ifdef BNX2X_STOP_ON_ERROR 212 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 213 BNX2X_ERR("BAD nbd!\n"); 214 bnx2x_panic(); 215 } 216 #endif 217 new_cons = nbd + tx_buf->first_bd; 218 219 /* Get the next bd */ 220 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 221 222 /* Skip a parse bd... */ 223 --nbd; 224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 225 226 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 227 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 228 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 229 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 230 --nbd; 231 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 232 } 233 234 /* unmap first bd */ 235 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 236 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 237 DMA_TO_DEVICE); 238 239 /* now free frags */ 240 while (nbd > 0) { 241 242 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 243 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 244 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 245 if (--nbd) 246 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 247 } 248 249 /* release skb */ 250 WARN_ON(!skb); 251 if (likely(skb)) { 252 (*pkts_compl)++; 253 (*bytes_compl) += skb->len; 254 } 255 256 dev_kfree_skb_any(skb); 257 tx_buf->first_bd = 0; 258 tx_buf->skb = NULL; 259 260 return new_cons; 261 } 262 263 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 264 { 265 struct netdev_queue *txq; 266 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 267 unsigned int pkts_compl = 0, bytes_compl = 0; 268 269 #ifdef BNX2X_STOP_ON_ERROR 270 if (unlikely(bp->panic)) 271 return -1; 272 #endif 273 274 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 275 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 276 sw_cons = txdata->tx_pkt_cons; 277 278 while (sw_cons != hw_cons) { 279 u16 pkt_cons; 280 281 pkt_cons = TX_BD(sw_cons); 282 283 DP(NETIF_MSG_TX_DONE, 284 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 285 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 286 287 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 288 &pkts_compl, &bytes_compl); 289 290 sw_cons++; 291 } 292 293 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 294 295 txdata->tx_pkt_cons = sw_cons; 296 txdata->tx_bd_cons = bd_cons; 297 298 /* Need to make the tx_bd_cons update visible to start_xmit() 299 * before checking for netif_tx_queue_stopped(). Without the 300 * memory barrier, there is a small possibility that 301 * start_xmit() will miss it and cause the queue to be stopped 302 * forever. 303 * On the other hand we need an rmb() here to ensure the proper 304 * ordering of bit testing in the following 305 * netif_tx_queue_stopped(txq) call. 306 */ 307 smp_mb(); 308 309 if (unlikely(netif_tx_queue_stopped(txq))) { 310 /* Taking tx_lock() is needed to prevent re-enabling the queue 311 * while it's empty. This could have happen if rx_action() gets 312 * suspended in bnx2x_tx_int() after the condition before 313 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 314 * 315 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 316 * sends some packets consuming the whole queue again-> 317 * stops the queue 318 */ 319 320 __netif_tx_lock(txq, smp_processor_id()); 321 322 if ((netif_tx_queue_stopped(txq)) && 323 (bp->state == BNX2X_STATE_OPEN) && 324 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 325 netif_tx_wake_queue(txq); 326 327 __netif_tx_unlock(txq); 328 } 329 return 0; 330 } 331 332 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 333 u16 idx) 334 { 335 u16 last_max = fp->last_max_sge; 336 337 if (SUB_S16(idx, last_max) > 0) 338 fp->last_max_sge = idx; 339 } 340 341 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 342 u16 sge_len, 343 struct eth_end_agg_rx_cqe *cqe) 344 { 345 struct bnx2x *bp = fp->bp; 346 u16 last_max, last_elem, first_elem; 347 u16 delta = 0; 348 u16 i; 349 350 if (!sge_len) 351 return; 352 353 /* First mark all used pages */ 354 for (i = 0; i < sge_len; i++) 355 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 356 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 357 358 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 359 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 360 361 /* Here we assume that the last SGE index is the biggest */ 362 prefetch((void *)(fp->sge_mask)); 363 bnx2x_update_last_max_sge(fp, 364 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 365 366 last_max = RX_SGE(fp->last_max_sge); 367 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 368 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 369 370 /* If ring is not full */ 371 if (last_elem + 1 != first_elem) 372 last_elem++; 373 374 /* Now update the prod */ 375 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 376 if (likely(fp->sge_mask[i])) 377 break; 378 379 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 380 delta += BIT_VEC64_ELEM_SZ; 381 } 382 383 if (delta > 0) { 384 fp->rx_sge_prod += delta; 385 /* clear page-end entries */ 386 bnx2x_clear_sge_mask_next_elems(fp); 387 } 388 389 DP(NETIF_MSG_RX_STATUS, 390 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 391 fp->last_max_sge, fp->rx_sge_prod); 392 } 393 394 /* Get Toeplitz hash value in the skb using the value from the 395 * CQE (calculated by HW). 396 */ 397 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 398 const struct eth_fast_path_rx_cqe *cqe, 399 enum pkt_hash_types *rxhash_type) 400 { 401 /* Get Toeplitz hash from CQE */ 402 if ((bp->dev->features & NETIF_F_RXHASH) && 403 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 404 enum eth_rss_hash_type htype; 405 406 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 407 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 408 (htype == TCP_IPV6_HASH_TYPE)) ? 409 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 410 411 return le32_to_cpu(cqe->rss_hash_result); 412 } 413 *rxhash_type = PKT_HASH_TYPE_NONE; 414 return 0; 415 } 416 417 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 418 u16 cons, u16 prod, 419 struct eth_fast_path_rx_cqe *cqe) 420 { 421 struct bnx2x *bp = fp->bp; 422 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 423 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 424 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 425 dma_addr_t mapping; 426 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 427 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 428 429 /* print error if current state != stop */ 430 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 431 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 432 433 /* Try to map an empty data buffer from the aggregation info */ 434 mapping = dma_map_single(&bp->pdev->dev, 435 first_buf->data + NET_SKB_PAD, 436 fp->rx_buf_size, DMA_FROM_DEVICE); 437 /* 438 * ...if it fails - move the skb from the consumer to the producer 439 * and set the current aggregation state as ERROR to drop it 440 * when TPA_STOP arrives. 441 */ 442 443 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 444 /* Move the BD from the consumer to the producer */ 445 bnx2x_reuse_rx_data(fp, cons, prod); 446 tpa_info->tpa_state = BNX2X_TPA_ERROR; 447 return; 448 } 449 450 /* move empty data from pool to prod */ 451 prod_rx_buf->data = first_buf->data; 452 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 453 /* point prod_bd to new data */ 454 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 455 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 456 457 /* move partial skb from cons to pool (don't unmap yet) */ 458 *first_buf = *cons_rx_buf; 459 460 /* mark bin state as START */ 461 tpa_info->parsing_flags = 462 le16_to_cpu(cqe->pars_flags.flags); 463 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 464 tpa_info->tpa_state = BNX2X_TPA_START; 465 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 466 tpa_info->placement_offset = cqe->placement_offset; 467 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 468 if (fp->mode == TPA_MODE_GRO) { 469 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 470 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 471 tpa_info->gro_size = gro_size; 472 } 473 474 #ifdef BNX2X_STOP_ON_ERROR 475 fp->tpa_queue_used |= (1 << queue); 476 #ifdef _ASM_GENERIC_INT_L64_H 477 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n", 478 #else 479 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 480 #endif 481 fp->tpa_queue_used); 482 #endif 483 } 484 485 /* Timestamp option length allowed for TPA aggregation: 486 * 487 * nop nop kind length echo val 488 */ 489 #define TPA_TSTAMP_OPT_LEN 12 490 /** 491 * bnx2x_set_gro_params - compute GRO values 492 * 493 * @skb: packet skb 494 * @parsing_flags: parsing flags from the START CQE 495 * @len_on_bd: total length of the first packet for the 496 * aggregation. 497 * @pkt_len: length of all segments 498 * 499 * Approximate value of the MSS for this aggregation calculated using 500 * the first packet of it. 501 * Compute number of aggregated segments, and gso_type. 502 */ 503 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 504 u16 len_on_bd, unsigned int pkt_len, 505 u16 num_of_coalesced_segs) 506 { 507 /* TPA aggregation won't have either IP options or TCP options 508 * other than timestamp or IPv6 extension headers. 509 */ 510 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 511 512 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 513 PRS_FLAG_OVERETH_IPV6) { 514 hdrs_len += sizeof(struct ipv6hdr); 515 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 516 } else { 517 hdrs_len += sizeof(struct iphdr); 518 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 519 } 520 521 /* Check if there was a TCP timestamp, if there is it's will 522 * always be 12 bytes length: nop nop kind length echo val. 523 * 524 * Otherwise FW would close the aggregation. 525 */ 526 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 527 hdrs_len += TPA_TSTAMP_OPT_LEN; 528 529 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 530 531 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 532 * to skb_shinfo(skb)->gso_segs 533 */ 534 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 535 } 536 537 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 538 u16 index, gfp_t gfp_mask) 539 { 540 struct page *page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 541 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 542 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 543 dma_addr_t mapping; 544 545 if (unlikely(page == NULL)) { 546 BNX2X_ERR("Can't alloc sge\n"); 547 return -ENOMEM; 548 } 549 550 mapping = dma_map_page(&bp->pdev->dev, page, 0, 551 SGE_PAGES, DMA_FROM_DEVICE); 552 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 553 __free_pages(page, PAGES_PER_SGE_SHIFT); 554 BNX2X_ERR("Can't map sge\n"); 555 return -ENOMEM; 556 } 557 558 sw_buf->page = page; 559 dma_unmap_addr_set(sw_buf, mapping, mapping); 560 561 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 562 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 563 564 return 0; 565 } 566 567 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 568 struct bnx2x_agg_info *tpa_info, 569 u16 pages, 570 struct sk_buff *skb, 571 struct eth_end_agg_rx_cqe *cqe, 572 u16 cqe_idx) 573 { 574 struct sw_rx_page *rx_pg, old_rx_pg; 575 u32 i, frag_len, frag_size; 576 int err, j, frag_id = 0; 577 u16 len_on_bd = tpa_info->len_on_bd; 578 u16 full_page = 0, gro_size = 0; 579 580 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 581 582 if (fp->mode == TPA_MODE_GRO) { 583 gro_size = tpa_info->gro_size; 584 full_page = tpa_info->full_page; 585 } 586 587 /* This is needed in order to enable forwarding support */ 588 if (frag_size) 589 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 590 le16_to_cpu(cqe->pkt_len), 591 le16_to_cpu(cqe->num_of_coalesced_segs)); 592 593 #ifdef BNX2X_STOP_ON_ERROR 594 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 595 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 596 pages, cqe_idx); 597 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 598 bnx2x_panic(); 599 return -EINVAL; 600 } 601 #endif 602 603 /* Run through the SGL and compose the fragmented skb */ 604 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 605 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 606 607 /* FW gives the indices of the SGE as if the ring is an array 608 (meaning that "next" element will consume 2 indices) */ 609 if (fp->mode == TPA_MODE_GRO) 610 frag_len = min_t(u32, frag_size, (u32)full_page); 611 else /* LRO */ 612 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 613 614 rx_pg = &fp->rx_page_ring[sge_idx]; 615 old_rx_pg = *rx_pg; 616 617 /* If we fail to allocate a substitute page, we simply stop 618 where we are and drop the whole packet */ 619 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 620 if (unlikely(err)) { 621 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 622 return err; 623 } 624 625 /* Unmap the page as we're going to pass it to the stack */ 626 dma_unmap_page(&bp->pdev->dev, 627 dma_unmap_addr(&old_rx_pg, mapping), 628 SGE_PAGES, DMA_FROM_DEVICE); 629 /* Add one frag and update the appropriate fields in the skb */ 630 if (fp->mode == TPA_MODE_LRO) 631 skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len); 632 else { /* GRO */ 633 int rem; 634 int offset = 0; 635 for (rem = frag_len; rem > 0; rem -= gro_size) { 636 int len = rem > gro_size ? gro_size : rem; 637 skb_fill_page_desc(skb, frag_id++, 638 old_rx_pg.page, offset, len); 639 if (offset) 640 get_page(old_rx_pg.page); 641 offset += len; 642 } 643 } 644 645 skb->data_len += frag_len; 646 skb->truesize += SGE_PAGES; 647 skb->len += frag_len; 648 649 frag_size -= frag_len; 650 } 651 652 return 0; 653 } 654 655 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 656 { 657 if (fp->rx_frag_size) 658 put_page(virt_to_head_page(data)); 659 else 660 kfree(data); 661 } 662 663 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 664 { 665 if (fp->rx_frag_size) { 666 /* GFP_KERNEL allocations are used only during initialization */ 667 if (unlikely(gfp_mask & __GFP_WAIT)) 668 return (void *)__get_free_page(gfp_mask); 669 670 return netdev_alloc_frag(fp->rx_frag_size); 671 } 672 673 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 674 } 675 676 #ifdef CONFIG_INET 677 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 678 { 679 const struct iphdr *iph = ip_hdr(skb); 680 struct tcphdr *th; 681 682 skb_set_transport_header(skb, sizeof(struct iphdr)); 683 th = tcp_hdr(skb); 684 685 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 686 iph->saddr, iph->daddr, 0); 687 } 688 689 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 690 { 691 struct ipv6hdr *iph = ipv6_hdr(skb); 692 struct tcphdr *th; 693 694 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 695 th = tcp_hdr(skb); 696 697 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 698 &iph->saddr, &iph->daddr, 0); 699 } 700 701 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 702 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 703 { 704 skb_set_network_header(skb, 0); 705 gro_func(bp, skb); 706 tcp_gro_complete(skb); 707 } 708 #endif 709 710 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 711 struct sk_buff *skb) 712 { 713 #ifdef CONFIG_INET 714 if (skb_shinfo(skb)->gso_size) { 715 switch (be16_to_cpu(skb->protocol)) { 716 case ETH_P_IP: 717 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 718 break; 719 case ETH_P_IPV6: 720 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 721 break; 722 default: 723 BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 724 be16_to_cpu(skb->protocol)); 725 } 726 } 727 #endif 728 skb_record_rx_queue(skb, fp->rx_queue); 729 napi_gro_receive(&fp->napi, skb); 730 } 731 732 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 733 struct bnx2x_agg_info *tpa_info, 734 u16 pages, 735 struct eth_end_agg_rx_cqe *cqe, 736 u16 cqe_idx) 737 { 738 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 739 u8 pad = tpa_info->placement_offset; 740 u16 len = tpa_info->len_on_bd; 741 struct sk_buff *skb = NULL; 742 u8 *new_data, *data = rx_buf->data; 743 u8 old_tpa_state = tpa_info->tpa_state; 744 745 tpa_info->tpa_state = BNX2X_TPA_STOP; 746 747 /* If we there was an error during the handling of the TPA_START - 748 * drop this aggregation. 749 */ 750 if (old_tpa_state == BNX2X_TPA_ERROR) 751 goto drop; 752 753 /* Try to allocate the new data */ 754 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 755 /* Unmap skb in the pool anyway, as we are going to change 756 pool entry status to BNX2X_TPA_STOP even if new skb allocation 757 fails. */ 758 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 759 fp->rx_buf_size, DMA_FROM_DEVICE); 760 if (likely(new_data)) 761 skb = build_skb(data, fp->rx_frag_size); 762 763 if (likely(skb)) { 764 #ifdef BNX2X_STOP_ON_ERROR 765 if (pad + len > fp->rx_buf_size) { 766 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 767 pad, len, fp->rx_buf_size); 768 bnx2x_panic(); 769 return; 770 } 771 #endif 772 773 skb_reserve(skb, pad + NET_SKB_PAD); 774 skb_put(skb, len); 775 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 776 777 skb->protocol = eth_type_trans(skb, bp->dev); 778 skb->ip_summed = CHECKSUM_UNNECESSARY; 779 780 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 781 skb, cqe, cqe_idx)) { 782 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 783 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 784 bnx2x_gro_receive(bp, fp, skb); 785 } else { 786 DP(NETIF_MSG_RX_STATUS, 787 "Failed to allocate new pages - dropping packet!\n"); 788 dev_kfree_skb_any(skb); 789 } 790 791 /* put new data in bin */ 792 rx_buf->data = new_data; 793 794 return; 795 } 796 bnx2x_frag_free(fp, new_data); 797 drop: 798 /* drop the packet and keep the buffer in the bin */ 799 DP(NETIF_MSG_RX_STATUS, 800 "Failed to allocate or map a new skb - dropping packet!\n"); 801 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 802 } 803 804 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 805 u16 index, gfp_t gfp_mask) 806 { 807 u8 *data; 808 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 809 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 810 dma_addr_t mapping; 811 812 data = bnx2x_frag_alloc(fp, gfp_mask); 813 if (unlikely(data == NULL)) 814 return -ENOMEM; 815 816 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 817 fp->rx_buf_size, 818 DMA_FROM_DEVICE); 819 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 820 bnx2x_frag_free(fp, data); 821 BNX2X_ERR("Can't map rx data\n"); 822 return -ENOMEM; 823 } 824 825 rx_buf->data = data; 826 dma_unmap_addr_set(rx_buf, mapping, mapping); 827 828 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 829 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 830 831 return 0; 832 } 833 834 static 835 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 836 struct bnx2x_fastpath *fp, 837 struct bnx2x_eth_q_stats *qstats) 838 { 839 /* Do nothing if no L4 csum validation was done. 840 * We do not check whether IP csum was validated. For IPv4 we assume 841 * that if the card got as far as validating the L4 csum, it also 842 * validated the IP csum. IPv6 has no IP csum. 843 */ 844 if (cqe->fast_path_cqe.status_flags & 845 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 846 return; 847 848 /* If L4 validation was done, check if an error was found. */ 849 850 if (cqe->fast_path_cqe.type_error_flags & 851 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 852 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 853 qstats->hw_csum_err++; 854 else 855 skb->ip_summed = CHECKSUM_UNNECESSARY; 856 } 857 858 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 859 { 860 struct bnx2x *bp = fp->bp; 861 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 862 u16 sw_comp_cons, sw_comp_prod; 863 int rx_pkt = 0; 864 union eth_rx_cqe *cqe; 865 struct eth_fast_path_rx_cqe *cqe_fp; 866 867 #ifdef BNX2X_STOP_ON_ERROR 868 if (unlikely(bp->panic)) 869 return 0; 870 #endif 871 872 bd_cons = fp->rx_bd_cons; 873 bd_prod = fp->rx_bd_prod; 874 bd_prod_fw = bd_prod; 875 sw_comp_cons = fp->rx_comp_cons; 876 sw_comp_prod = fp->rx_comp_prod; 877 878 comp_ring_cons = RCQ_BD(sw_comp_cons); 879 cqe = &fp->rx_comp_ring[comp_ring_cons]; 880 cqe_fp = &cqe->fast_path_cqe; 881 882 DP(NETIF_MSG_RX_STATUS, 883 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 884 885 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 886 struct sw_rx_bd *rx_buf = NULL; 887 struct sk_buff *skb; 888 u8 cqe_fp_flags; 889 enum eth_rx_cqe_type cqe_fp_type; 890 u16 len, pad, queue; 891 u8 *data; 892 u32 rxhash; 893 enum pkt_hash_types rxhash_type; 894 895 #ifdef BNX2X_STOP_ON_ERROR 896 if (unlikely(bp->panic)) 897 return 0; 898 #endif 899 900 bd_prod = RX_BD(bd_prod); 901 bd_cons = RX_BD(bd_cons); 902 903 cqe_fp_flags = cqe_fp->type_error_flags; 904 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 905 906 DP(NETIF_MSG_RX_STATUS, 907 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 908 CQE_TYPE(cqe_fp_flags), 909 cqe_fp_flags, cqe_fp->status_flags, 910 le32_to_cpu(cqe_fp->rss_hash_result), 911 le16_to_cpu(cqe_fp->vlan_tag), 912 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 913 914 /* is this a slowpath msg? */ 915 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 916 bnx2x_sp_event(fp, cqe); 917 goto next_cqe; 918 } 919 920 rx_buf = &fp->rx_buf_ring[bd_cons]; 921 data = rx_buf->data; 922 923 if (!CQE_TYPE_FAST(cqe_fp_type)) { 924 struct bnx2x_agg_info *tpa_info; 925 u16 frag_size, pages; 926 #ifdef BNX2X_STOP_ON_ERROR 927 /* sanity check */ 928 if (fp->disable_tpa && 929 (CQE_TYPE_START(cqe_fp_type) || 930 CQE_TYPE_STOP(cqe_fp_type))) 931 BNX2X_ERR("START/STOP packet while disable_tpa type %x\n", 932 CQE_TYPE(cqe_fp_type)); 933 #endif 934 935 if (CQE_TYPE_START(cqe_fp_type)) { 936 u16 queue = cqe_fp->queue_index; 937 DP(NETIF_MSG_RX_STATUS, 938 "calling tpa_start on queue %d\n", 939 queue); 940 941 bnx2x_tpa_start(fp, queue, 942 bd_cons, bd_prod, 943 cqe_fp); 944 945 goto next_rx; 946 } 947 queue = cqe->end_agg_cqe.queue_index; 948 tpa_info = &fp->tpa_info[queue]; 949 DP(NETIF_MSG_RX_STATUS, 950 "calling tpa_stop on queue %d\n", 951 queue); 952 953 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 954 tpa_info->len_on_bd; 955 956 if (fp->mode == TPA_MODE_GRO) 957 pages = (frag_size + tpa_info->full_page - 1) / 958 tpa_info->full_page; 959 else 960 pages = SGE_PAGE_ALIGN(frag_size) >> 961 SGE_PAGE_SHIFT; 962 963 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 964 &cqe->end_agg_cqe, comp_ring_cons); 965 #ifdef BNX2X_STOP_ON_ERROR 966 if (bp->panic) 967 return 0; 968 #endif 969 970 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 971 goto next_cqe; 972 } 973 /* non TPA */ 974 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 975 pad = cqe_fp->placement_offset; 976 dma_sync_single_for_cpu(&bp->pdev->dev, 977 dma_unmap_addr(rx_buf, mapping), 978 pad + RX_COPY_THRESH, 979 DMA_FROM_DEVICE); 980 pad += NET_SKB_PAD; 981 prefetch(data + pad); /* speedup eth_type_trans() */ 982 /* is this an error packet? */ 983 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 984 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 985 "ERROR flags %x rx packet %u\n", 986 cqe_fp_flags, sw_comp_cons); 987 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 988 goto reuse_rx; 989 } 990 991 /* Since we don't have a jumbo ring 992 * copy small packets if mtu > 1500 993 */ 994 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 995 (len <= RX_COPY_THRESH)) { 996 skb = netdev_alloc_skb_ip_align(bp->dev, len); 997 if (skb == NULL) { 998 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 999 "ERROR packet dropped because of alloc failure\n"); 1000 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1001 goto reuse_rx; 1002 } 1003 memcpy(skb->data, data + pad, len); 1004 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1005 } else { 1006 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1007 GFP_ATOMIC) == 0)) { 1008 dma_unmap_single(&bp->pdev->dev, 1009 dma_unmap_addr(rx_buf, mapping), 1010 fp->rx_buf_size, 1011 DMA_FROM_DEVICE); 1012 skb = build_skb(data, fp->rx_frag_size); 1013 if (unlikely(!skb)) { 1014 bnx2x_frag_free(fp, data); 1015 bnx2x_fp_qstats(bp, fp)-> 1016 rx_skb_alloc_failed++; 1017 goto next_rx; 1018 } 1019 skb_reserve(skb, pad); 1020 } else { 1021 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1022 "ERROR packet dropped because of alloc failure\n"); 1023 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1024 reuse_rx: 1025 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1026 goto next_rx; 1027 } 1028 } 1029 1030 skb_put(skb, len); 1031 skb->protocol = eth_type_trans(skb, bp->dev); 1032 1033 /* Set Toeplitz hash for a none-LRO skb */ 1034 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1035 skb_set_hash(skb, rxhash, rxhash_type); 1036 1037 skb_checksum_none_assert(skb); 1038 1039 if (bp->dev->features & NETIF_F_RXCSUM) 1040 bnx2x_csum_validate(skb, cqe, fp, 1041 bnx2x_fp_qstats(bp, fp)); 1042 1043 skb_record_rx_queue(skb, fp->rx_queue); 1044 1045 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1046 PARSING_FLAGS_VLAN) 1047 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1048 le16_to_cpu(cqe_fp->vlan_tag)); 1049 1050 skb_mark_napi_id(skb, &fp->napi); 1051 1052 if (bnx2x_fp_ll_polling(fp)) 1053 netif_receive_skb(skb); 1054 else 1055 napi_gro_receive(&fp->napi, skb); 1056 next_rx: 1057 rx_buf->data = NULL; 1058 1059 bd_cons = NEXT_RX_IDX(bd_cons); 1060 bd_prod = NEXT_RX_IDX(bd_prod); 1061 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1062 rx_pkt++; 1063 next_cqe: 1064 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1065 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1066 1067 /* mark CQE as free */ 1068 BNX2X_SEED_CQE(cqe_fp); 1069 1070 if (rx_pkt == budget) 1071 break; 1072 1073 comp_ring_cons = RCQ_BD(sw_comp_cons); 1074 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1075 cqe_fp = &cqe->fast_path_cqe; 1076 } /* while */ 1077 1078 fp->rx_bd_cons = bd_cons; 1079 fp->rx_bd_prod = bd_prod_fw; 1080 fp->rx_comp_cons = sw_comp_cons; 1081 fp->rx_comp_prod = sw_comp_prod; 1082 1083 /* Update producers */ 1084 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1085 fp->rx_sge_prod); 1086 1087 fp->rx_pkt += rx_pkt; 1088 fp->rx_calls++; 1089 1090 return rx_pkt; 1091 } 1092 1093 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1094 { 1095 struct bnx2x_fastpath *fp = fp_cookie; 1096 struct bnx2x *bp = fp->bp; 1097 u8 cos; 1098 1099 DP(NETIF_MSG_INTR, 1100 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1101 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1102 1103 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1104 1105 #ifdef BNX2X_STOP_ON_ERROR 1106 if (unlikely(bp->panic)) 1107 return IRQ_HANDLED; 1108 #endif 1109 1110 /* Handle Rx and Tx according to MSI-X vector */ 1111 for_each_cos_in_tx_queue(fp, cos) 1112 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1113 1114 prefetch(&fp->sb_running_index[SM_RX_ID]); 1115 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 1116 1117 return IRQ_HANDLED; 1118 } 1119 1120 /* HW Lock for shared dual port PHYs */ 1121 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1122 { 1123 mutex_lock(&bp->port.phy_mutex); 1124 1125 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1126 } 1127 1128 void bnx2x_release_phy_lock(struct bnx2x *bp) 1129 { 1130 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1131 1132 mutex_unlock(&bp->port.phy_mutex); 1133 } 1134 1135 /* calculates MF speed according to current linespeed and MF configuration */ 1136 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1137 { 1138 u16 line_speed = bp->link_vars.line_speed; 1139 if (IS_MF(bp)) { 1140 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1141 bp->mf_config[BP_VN(bp)]); 1142 1143 /* Calculate the current MAX line speed limit for the MF 1144 * devices 1145 */ 1146 if (IS_MF_SI(bp)) 1147 line_speed = (line_speed * maxCfg) / 100; 1148 else { /* SD mode */ 1149 u16 vn_max_rate = maxCfg * 100; 1150 1151 if (vn_max_rate < line_speed) 1152 line_speed = vn_max_rate; 1153 } 1154 } 1155 1156 return line_speed; 1157 } 1158 1159 /** 1160 * bnx2x_fill_report_data - fill link report data to report 1161 * 1162 * @bp: driver handle 1163 * @data: link state to update 1164 * 1165 * It uses a none-atomic bit operations because is called under the mutex. 1166 */ 1167 static void bnx2x_fill_report_data(struct bnx2x *bp, 1168 struct bnx2x_link_report_data *data) 1169 { 1170 u16 line_speed = bnx2x_get_mf_speed(bp); 1171 1172 memset(data, 0, sizeof(*data)); 1173 1174 /* Fill the report data: effective line speed */ 1175 data->line_speed = line_speed; 1176 1177 /* Link is down */ 1178 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1179 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1180 &data->link_report_flags); 1181 1182 /* Full DUPLEX */ 1183 if (bp->link_vars.duplex == DUPLEX_FULL) 1184 __set_bit(BNX2X_LINK_REPORT_FD, &data->link_report_flags); 1185 1186 /* Rx Flow Control is ON */ 1187 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1188 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 1189 1190 /* Tx Flow Control is ON */ 1191 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1192 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 1193 } 1194 1195 /** 1196 * bnx2x_link_report - report link status to OS. 1197 * 1198 * @bp: driver handle 1199 * 1200 * Calls the __bnx2x_link_report() under the same locking scheme 1201 * as a link/PHY state managing code to ensure a consistent link 1202 * reporting. 1203 */ 1204 1205 void bnx2x_link_report(struct bnx2x *bp) 1206 { 1207 bnx2x_acquire_phy_lock(bp); 1208 __bnx2x_link_report(bp); 1209 bnx2x_release_phy_lock(bp); 1210 } 1211 1212 /** 1213 * __bnx2x_link_report - report link status to OS. 1214 * 1215 * @bp: driver handle 1216 * 1217 * None atomic implementation. 1218 * Should be called under the phy_lock. 1219 */ 1220 void __bnx2x_link_report(struct bnx2x *bp) 1221 { 1222 struct bnx2x_link_report_data cur_data; 1223 1224 /* reread mf_cfg */ 1225 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1226 bnx2x_read_mf_cfg(bp); 1227 1228 /* Read the current link report info */ 1229 bnx2x_fill_report_data(bp, &cur_data); 1230 1231 /* Don't report link down or exactly the same link status twice */ 1232 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1233 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1234 &bp->last_reported_link.link_report_flags) && 1235 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1236 &cur_data.link_report_flags))) 1237 return; 1238 1239 bp->link_cnt++; 1240 1241 /* We are going to report a new link parameters now - 1242 * remember the current data for the next time. 1243 */ 1244 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1245 1246 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1247 &cur_data.link_report_flags)) { 1248 netif_carrier_off(bp->dev); 1249 netdev_err(bp->dev, "NIC Link is Down\n"); 1250 return; 1251 } else { 1252 const char *duplex; 1253 const char *flow; 1254 1255 netif_carrier_on(bp->dev); 1256 1257 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1258 &cur_data.link_report_flags)) 1259 duplex = "full"; 1260 else 1261 duplex = "half"; 1262 1263 /* Handle the FC at the end so that only these flags would be 1264 * possibly set. This way we may easily check if there is no FC 1265 * enabled. 1266 */ 1267 if (cur_data.link_report_flags) { 1268 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1269 &cur_data.link_report_flags)) { 1270 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1271 &cur_data.link_report_flags)) 1272 flow = "ON - receive & transmit"; 1273 else 1274 flow = "ON - receive"; 1275 } else { 1276 flow = "ON - transmit"; 1277 } 1278 } else { 1279 flow = "none"; 1280 } 1281 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1282 cur_data.line_speed, duplex, flow); 1283 } 1284 } 1285 1286 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1287 { 1288 int i; 1289 1290 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1291 struct eth_rx_sge *sge; 1292 1293 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1294 sge->addr_hi = 1295 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1296 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1297 1298 sge->addr_lo = 1299 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1300 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1301 } 1302 } 1303 1304 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1305 struct bnx2x_fastpath *fp, int last) 1306 { 1307 int i; 1308 1309 for (i = 0; i < last; i++) { 1310 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1311 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1312 u8 *data = first_buf->data; 1313 1314 if (data == NULL) { 1315 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1316 continue; 1317 } 1318 if (tpa_info->tpa_state == BNX2X_TPA_START) 1319 dma_unmap_single(&bp->pdev->dev, 1320 dma_unmap_addr(first_buf, mapping), 1321 fp->rx_buf_size, DMA_FROM_DEVICE); 1322 bnx2x_frag_free(fp, data); 1323 first_buf->data = NULL; 1324 } 1325 } 1326 1327 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1328 { 1329 int j; 1330 1331 for_each_rx_queue_cnic(bp, j) { 1332 struct bnx2x_fastpath *fp = &bp->fp[j]; 1333 1334 fp->rx_bd_cons = 0; 1335 1336 /* Activate BD ring */ 1337 /* Warning! 1338 * this will generate an interrupt (to the TSTORM) 1339 * must only be done after chip is initialized 1340 */ 1341 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1342 fp->rx_sge_prod); 1343 } 1344 } 1345 1346 void bnx2x_init_rx_rings(struct bnx2x *bp) 1347 { 1348 int func = BP_FUNC(bp); 1349 u16 ring_prod; 1350 int i, j; 1351 1352 /* Allocate TPA resources */ 1353 for_each_eth_queue(bp, j) { 1354 struct bnx2x_fastpath *fp = &bp->fp[j]; 1355 1356 DP(NETIF_MSG_IFUP, 1357 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1358 1359 if (!fp->disable_tpa) { 1360 /* Fill the per-aggregation pool */ 1361 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1362 struct bnx2x_agg_info *tpa_info = 1363 &fp->tpa_info[i]; 1364 struct sw_rx_bd *first_buf = 1365 &tpa_info->first_buf; 1366 1367 first_buf->data = 1368 bnx2x_frag_alloc(fp, GFP_KERNEL); 1369 if (!first_buf->data) { 1370 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1371 j); 1372 bnx2x_free_tpa_pool(bp, fp, i); 1373 fp->disable_tpa = 1; 1374 break; 1375 } 1376 dma_unmap_addr_set(first_buf, mapping, 0); 1377 tpa_info->tpa_state = BNX2X_TPA_STOP; 1378 } 1379 1380 /* "next page" elements initialization */ 1381 bnx2x_set_next_page_sgl(fp); 1382 1383 /* set SGEs bit mask */ 1384 bnx2x_init_sge_ring_bit_mask(fp); 1385 1386 /* Allocate SGEs and initialize the ring elements */ 1387 for (i = 0, ring_prod = 0; 1388 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1389 1390 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1391 GFP_KERNEL) < 0) { 1392 BNX2X_ERR("was only able to allocate %d rx sges\n", 1393 i); 1394 BNX2X_ERR("disabling TPA for queue[%d]\n", 1395 j); 1396 /* Cleanup already allocated elements */ 1397 bnx2x_free_rx_sge_range(bp, fp, 1398 ring_prod); 1399 bnx2x_free_tpa_pool(bp, fp, 1400 MAX_AGG_QS(bp)); 1401 fp->disable_tpa = 1; 1402 ring_prod = 0; 1403 break; 1404 } 1405 ring_prod = NEXT_SGE_IDX(ring_prod); 1406 } 1407 1408 fp->rx_sge_prod = ring_prod; 1409 } 1410 } 1411 1412 for_each_eth_queue(bp, j) { 1413 struct bnx2x_fastpath *fp = &bp->fp[j]; 1414 1415 fp->rx_bd_cons = 0; 1416 1417 /* Activate BD ring */ 1418 /* Warning! 1419 * this will generate an interrupt (to the TSTORM) 1420 * must only be done after chip is initialized 1421 */ 1422 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1423 fp->rx_sge_prod); 1424 1425 if (j != 0) 1426 continue; 1427 1428 if (CHIP_IS_E1(bp)) { 1429 REG_WR(bp, BAR_USTRORM_INTMEM + 1430 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1431 U64_LO(fp->rx_comp_mapping)); 1432 REG_WR(bp, BAR_USTRORM_INTMEM + 1433 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1434 U64_HI(fp->rx_comp_mapping)); 1435 } 1436 } 1437 } 1438 1439 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1440 { 1441 u8 cos; 1442 struct bnx2x *bp = fp->bp; 1443 1444 for_each_cos_in_tx_queue(fp, cos) { 1445 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1446 unsigned pkts_compl = 0, bytes_compl = 0; 1447 1448 u16 sw_prod = txdata->tx_pkt_prod; 1449 u16 sw_cons = txdata->tx_pkt_cons; 1450 1451 while (sw_cons != sw_prod) { 1452 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1453 &pkts_compl, &bytes_compl); 1454 sw_cons++; 1455 } 1456 1457 netdev_tx_reset_queue( 1458 netdev_get_tx_queue(bp->dev, 1459 txdata->txq_index)); 1460 } 1461 } 1462 1463 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1464 { 1465 int i; 1466 1467 for_each_tx_queue_cnic(bp, i) { 1468 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1469 } 1470 } 1471 1472 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1473 { 1474 int i; 1475 1476 for_each_eth_queue(bp, i) { 1477 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1478 } 1479 } 1480 1481 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1482 { 1483 struct bnx2x *bp = fp->bp; 1484 int i; 1485 1486 /* ring wasn't allocated */ 1487 if (fp->rx_buf_ring == NULL) 1488 return; 1489 1490 for (i = 0; i < NUM_RX_BD; i++) { 1491 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1492 u8 *data = rx_buf->data; 1493 1494 if (data == NULL) 1495 continue; 1496 dma_unmap_single(&bp->pdev->dev, 1497 dma_unmap_addr(rx_buf, mapping), 1498 fp->rx_buf_size, DMA_FROM_DEVICE); 1499 1500 rx_buf->data = NULL; 1501 bnx2x_frag_free(fp, data); 1502 } 1503 } 1504 1505 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1506 { 1507 int j; 1508 1509 for_each_rx_queue_cnic(bp, j) { 1510 bnx2x_free_rx_bds(&bp->fp[j]); 1511 } 1512 } 1513 1514 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1515 { 1516 int j; 1517 1518 for_each_eth_queue(bp, j) { 1519 struct bnx2x_fastpath *fp = &bp->fp[j]; 1520 1521 bnx2x_free_rx_bds(fp); 1522 1523 if (!fp->disable_tpa) 1524 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1525 } 1526 } 1527 1528 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1529 { 1530 bnx2x_free_tx_skbs_cnic(bp); 1531 bnx2x_free_rx_skbs_cnic(bp); 1532 } 1533 1534 void bnx2x_free_skbs(struct bnx2x *bp) 1535 { 1536 bnx2x_free_tx_skbs(bp); 1537 bnx2x_free_rx_skbs(bp); 1538 } 1539 1540 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1541 { 1542 /* load old values */ 1543 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1544 1545 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1546 /* leave all but MAX value */ 1547 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1548 1549 /* set new MAX value */ 1550 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1551 & FUNC_MF_CFG_MAX_BW_MASK; 1552 1553 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1554 } 1555 } 1556 1557 /** 1558 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1559 * 1560 * @bp: driver handle 1561 * @nvecs: number of vectors to be released 1562 */ 1563 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1564 { 1565 int i, offset = 0; 1566 1567 if (nvecs == offset) 1568 return; 1569 1570 /* VFs don't have a default SB */ 1571 if (IS_PF(bp)) { 1572 free_irq(bp->msix_table[offset].vector, bp->dev); 1573 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1574 bp->msix_table[offset].vector); 1575 offset++; 1576 } 1577 1578 if (CNIC_SUPPORT(bp)) { 1579 if (nvecs == offset) 1580 return; 1581 offset++; 1582 } 1583 1584 for_each_eth_queue(bp, i) { 1585 if (nvecs == offset) 1586 return; 1587 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1588 i, bp->msix_table[offset].vector); 1589 1590 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1591 } 1592 } 1593 1594 void bnx2x_free_irq(struct bnx2x *bp) 1595 { 1596 if (bp->flags & USING_MSIX_FLAG && 1597 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1598 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1599 1600 /* vfs don't have a default status block */ 1601 if (IS_PF(bp)) 1602 nvecs++; 1603 1604 bnx2x_free_msix_irqs(bp, nvecs); 1605 } else { 1606 free_irq(bp->dev->irq, bp->dev); 1607 } 1608 } 1609 1610 int bnx2x_enable_msix(struct bnx2x *bp) 1611 { 1612 int msix_vec = 0, i, rc; 1613 1614 /* VFs don't have a default status block */ 1615 if (IS_PF(bp)) { 1616 bp->msix_table[msix_vec].entry = msix_vec; 1617 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1618 bp->msix_table[0].entry); 1619 msix_vec++; 1620 } 1621 1622 /* Cnic requires an msix vector for itself */ 1623 if (CNIC_SUPPORT(bp)) { 1624 bp->msix_table[msix_vec].entry = msix_vec; 1625 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1626 msix_vec, bp->msix_table[msix_vec].entry); 1627 msix_vec++; 1628 } 1629 1630 /* We need separate vectors for ETH queues only (not FCoE) */ 1631 for_each_eth_queue(bp, i) { 1632 bp->msix_table[msix_vec].entry = msix_vec; 1633 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1634 msix_vec, msix_vec, i); 1635 msix_vec++; 1636 } 1637 1638 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1639 msix_vec); 1640 1641 rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], msix_vec); 1642 1643 /* 1644 * reconfigure number of tx/rx queues according to available 1645 * MSI-X vectors 1646 */ 1647 if (rc >= BNX2X_MIN_MSIX_VEC_CNT(bp)) { 1648 /* how less vectors we will have? */ 1649 int diff = msix_vec - rc; 1650 1651 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1652 1653 rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc); 1654 1655 if (rc) { 1656 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1657 goto no_msix; 1658 } 1659 /* 1660 * decrease number of queues by number of unallocated entries 1661 */ 1662 bp->num_ethernet_queues -= diff; 1663 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1664 1665 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1666 bp->num_queues); 1667 } else if (rc > 0) { 1668 /* Get by with single vector */ 1669 rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], 1); 1670 if (rc) { 1671 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1672 rc); 1673 goto no_msix; 1674 } 1675 1676 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1677 bp->flags |= USING_SINGLE_MSIX_FLAG; 1678 1679 BNX2X_DEV_INFO("set number of queues to 1\n"); 1680 bp->num_ethernet_queues = 1; 1681 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1682 } else if (rc < 0) { 1683 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1684 goto no_msix; 1685 } 1686 1687 bp->flags |= USING_MSIX_FLAG; 1688 1689 return 0; 1690 1691 no_msix: 1692 /* fall to INTx if not enough memory */ 1693 if (rc == -ENOMEM) 1694 bp->flags |= DISABLE_MSI_FLAG; 1695 1696 return rc; 1697 } 1698 1699 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1700 { 1701 int i, rc, offset = 0; 1702 1703 /* no default status block for vf */ 1704 if (IS_PF(bp)) { 1705 rc = request_irq(bp->msix_table[offset++].vector, 1706 bnx2x_msix_sp_int, 0, 1707 bp->dev->name, bp->dev); 1708 if (rc) { 1709 BNX2X_ERR("request sp irq failed\n"); 1710 return -EBUSY; 1711 } 1712 } 1713 1714 if (CNIC_SUPPORT(bp)) 1715 offset++; 1716 1717 for_each_eth_queue(bp, i) { 1718 struct bnx2x_fastpath *fp = &bp->fp[i]; 1719 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1720 bp->dev->name, i); 1721 1722 rc = request_irq(bp->msix_table[offset].vector, 1723 bnx2x_msix_fp_int, 0, fp->name, fp); 1724 if (rc) { 1725 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1726 bp->msix_table[offset].vector, rc); 1727 bnx2x_free_msix_irqs(bp, offset); 1728 return -EBUSY; 1729 } 1730 1731 offset++; 1732 } 1733 1734 i = BNX2X_NUM_ETH_QUEUES(bp); 1735 if (IS_PF(bp)) { 1736 offset = 1 + CNIC_SUPPORT(bp); 1737 netdev_info(bp->dev, 1738 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1739 bp->msix_table[0].vector, 1740 0, bp->msix_table[offset].vector, 1741 i - 1, bp->msix_table[offset + i - 1].vector); 1742 } else { 1743 offset = CNIC_SUPPORT(bp); 1744 netdev_info(bp->dev, 1745 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1746 0, bp->msix_table[offset].vector, 1747 i - 1, bp->msix_table[offset + i - 1].vector); 1748 } 1749 return 0; 1750 } 1751 1752 int bnx2x_enable_msi(struct bnx2x *bp) 1753 { 1754 int rc; 1755 1756 rc = pci_enable_msi(bp->pdev); 1757 if (rc) { 1758 BNX2X_DEV_INFO("MSI is not attainable\n"); 1759 return -1; 1760 } 1761 bp->flags |= USING_MSI_FLAG; 1762 1763 return 0; 1764 } 1765 1766 static int bnx2x_req_irq(struct bnx2x *bp) 1767 { 1768 unsigned long flags; 1769 unsigned int irq; 1770 1771 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1772 flags = 0; 1773 else 1774 flags = IRQF_SHARED; 1775 1776 if (bp->flags & USING_MSIX_FLAG) 1777 irq = bp->msix_table[0].vector; 1778 else 1779 irq = bp->pdev->irq; 1780 1781 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1782 } 1783 1784 static int bnx2x_setup_irqs(struct bnx2x *bp) 1785 { 1786 int rc = 0; 1787 if (bp->flags & USING_MSIX_FLAG && 1788 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1789 rc = bnx2x_req_msix_irqs(bp); 1790 if (rc) 1791 return rc; 1792 } else { 1793 rc = bnx2x_req_irq(bp); 1794 if (rc) { 1795 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1796 return rc; 1797 } 1798 if (bp->flags & USING_MSI_FLAG) { 1799 bp->dev->irq = bp->pdev->irq; 1800 netdev_info(bp->dev, "using MSI IRQ %d\n", 1801 bp->dev->irq); 1802 } 1803 if (bp->flags & USING_MSIX_FLAG) { 1804 bp->dev->irq = bp->msix_table[0].vector; 1805 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1806 bp->dev->irq); 1807 } 1808 } 1809 1810 return 0; 1811 } 1812 1813 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1814 { 1815 int i; 1816 1817 for_each_rx_queue_cnic(bp, i) { 1818 bnx2x_fp_init_lock(&bp->fp[i]); 1819 napi_enable(&bnx2x_fp(bp, i, napi)); 1820 } 1821 } 1822 1823 static void bnx2x_napi_enable(struct bnx2x *bp) 1824 { 1825 int i; 1826 1827 for_each_eth_queue(bp, i) { 1828 bnx2x_fp_init_lock(&bp->fp[i]); 1829 napi_enable(&bnx2x_fp(bp, i, napi)); 1830 } 1831 } 1832 1833 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1834 { 1835 int i; 1836 1837 for_each_rx_queue_cnic(bp, i) { 1838 napi_disable(&bnx2x_fp(bp, i, napi)); 1839 while (!bnx2x_fp_ll_disable(&bp->fp[i])) 1840 usleep_range(1000, 2000); 1841 } 1842 } 1843 1844 static void bnx2x_napi_disable(struct bnx2x *bp) 1845 { 1846 int i; 1847 1848 for_each_eth_queue(bp, i) { 1849 napi_disable(&bnx2x_fp(bp, i, napi)); 1850 while (!bnx2x_fp_ll_disable(&bp->fp[i])) 1851 usleep_range(1000, 2000); 1852 } 1853 } 1854 1855 void bnx2x_netif_start(struct bnx2x *bp) 1856 { 1857 if (netif_running(bp->dev)) { 1858 bnx2x_napi_enable(bp); 1859 if (CNIC_LOADED(bp)) 1860 bnx2x_napi_enable_cnic(bp); 1861 bnx2x_int_enable(bp); 1862 if (bp->state == BNX2X_STATE_OPEN) 1863 netif_tx_wake_all_queues(bp->dev); 1864 } 1865 } 1866 1867 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1868 { 1869 bnx2x_int_disable_sync(bp, disable_hw); 1870 bnx2x_napi_disable(bp); 1871 if (CNIC_LOADED(bp)) 1872 bnx2x_napi_disable_cnic(bp); 1873 } 1874 1875 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1876 void *accel_priv) 1877 { 1878 struct bnx2x *bp = netdev_priv(dev); 1879 1880 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1881 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1882 u16 ether_type = ntohs(hdr->h_proto); 1883 1884 /* Skip VLAN tag if present */ 1885 if (ether_type == ETH_P_8021Q) { 1886 struct vlan_ethhdr *vhdr = 1887 (struct vlan_ethhdr *)skb->data; 1888 1889 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1890 } 1891 1892 /* If ethertype is FCoE or FIP - use FCoE ring */ 1893 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1894 return bnx2x_fcoe_tx(bp, txq_index); 1895 } 1896 1897 /* select a non-FCoE queue */ 1898 return __netdev_pick_tx(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp); 1899 } 1900 1901 void bnx2x_set_num_queues(struct bnx2x *bp) 1902 { 1903 /* RSS queues */ 1904 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1905 1906 /* override in STORAGE SD modes */ 1907 if (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) 1908 bp->num_ethernet_queues = 1; 1909 1910 /* Add special queues */ 1911 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1912 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1913 1914 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1915 } 1916 1917 /** 1918 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1919 * 1920 * @bp: Driver handle 1921 * 1922 * We currently support for at most 16 Tx queues for each CoS thus we will 1923 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1924 * bp->max_cos. 1925 * 1926 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1927 * index after all ETH L2 indices. 1928 * 1929 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1930 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1931 * 16..31,...) with indices that are not coupled with any real Tx queue. 1932 * 1933 * The proper configuration of skb->queue_mapping is handled by 1934 * bnx2x_select_queue() and __skb_tx_hash(). 1935 * 1936 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1937 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1938 */ 1939 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1940 { 1941 int rc, tx, rx; 1942 1943 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1944 rx = BNX2X_NUM_ETH_QUEUES(bp); 1945 1946 /* account for fcoe queue */ 1947 if (include_cnic && !NO_FCOE(bp)) { 1948 rx++; 1949 tx++; 1950 } 1951 1952 rc = netif_set_real_num_tx_queues(bp->dev, tx); 1953 if (rc) { 1954 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 1955 return rc; 1956 } 1957 rc = netif_set_real_num_rx_queues(bp->dev, rx); 1958 if (rc) { 1959 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 1960 return rc; 1961 } 1962 1963 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 1964 tx, rx); 1965 1966 return rc; 1967 } 1968 1969 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 1970 { 1971 int i; 1972 1973 for_each_queue(bp, i) { 1974 struct bnx2x_fastpath *fp = &bp->fp[i]; 1975 u32 mtu; 1976 1977 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 1978 if (IS_FCOE_IDX(i)) 1979 /* 1980 * Although there are no IP frames expected to arrive to 1981 * this ring we still want to add an 1982 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 1983 * overrun attack. 1984 */ 1985 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 1986 else 1987 mtu = bp->dev->mtu; 1988 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 1989 IP_HEADER_ALIGNMENT_PADDING + 1990 ETH_OVREHEAD + 1991 mtu + 1992 BNX2X_FW_RX_ALIGN_END; 1993 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 1994 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 1995 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 1996 else 1997 fp->rx_frag_size = 0; 1998 } 1999 } 2000 2001 static int bnx2x_init_rss(struct bnx2x *bp) 2002 { 2003 int i; 2004 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2005 2006 /* Prepare the initial contents for the indirection table if RSS is 2007 * enabled 2008 */ 2009 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2010 bp->rss_conf_obj.ind_table[i] = 2011 bp->fp->cl_id + 2012 ethtool_rxfh_indir_default(i, num_eth_queues); 2013 2014 /* 2015 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2016 * per-port, so if explicit configuration is needed , do it only 2017 * for a PMF. 2018 * 2019 * For 57712 and newer on the other hand it's a per-function 2020 * configuration. 2021 */ 2022 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2023 } 2024 2025 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2026 bool config_hash, bool enable) 2027 { 2028 struct bnx2x_config_rss_params params = {NULL}; 2029 2030 /* Although RSS is meaningless when there is a single HW queue we 2031 * still need it enabled in order to have HW Rx hash generated. 2032 * 2033 * if (!is_eth_multi(bp)) 2034 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2035 */ 2036 2037 params.rss_obj = rss_obj; 2038 2039 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2040 2041 if (enable) { 2042 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2043 2044 /* RSS configuration */ 2045 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2046 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2047 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2048 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2049 if (rss_obj->udp_rss_v4) 2050 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2051 if (rss_obj->udp_rss_v6) 2052 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2053 } else { 2054 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2055 } 2056 2057 /* Hash bits */ 2058 params.rss_result_mask = MULTI_MASK; 2059 2060 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2061 2062 if (config_hash) { 2063 /* RSS keys */ 2064 prandom_bytes(params.rss_key, T_ETH_RSS_KEY * 4); 2065 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2066 } 2067 2068 if (IS_PF(bp)) 2069 return bnx2x_config_rss(bp, ¶ms); 2070 else 2071 return bnx2x_vfpf_config_rss(bp, ¶ms); 2072 } 2073 2074 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2075 { 2076 struct bnx2x_func_state_params func_params = {NULL}; 2077 2078 /* Prepare parameters for function state transitions */ 2079 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2080 2081 func_params.f_obj = &bp->func_obj; 2082 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2083 2084 func_params.params.hw_init.load_phase = load_code; 2085 2086 return bnx2x_func_state_change(bp, &func_params); 2087 } 2088 2089 /* 2090 * Cleans the object that have internal lists without sending 2091 * ramrods. Should be run when interrupts are disabled. 2092 */ 2093 void bnx2x_squeeze_objects(struct bnx2x *bp) 2094 { 2095 int rc; 2096 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2097 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2098 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2099 2100 /***************** Cleanup MACs' object first *************************/ 2101 2102 /* Wait for completion of requested */ 2103 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2104 /* Perform a dry cleanup */ 2105 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2106 2107 /* Clean ETH primary MAC */ 2108 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2109 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2110 &ramrod_flags); 2111 if (rc != 0) 2112 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2113 2114 /* Cleanup UC list */ 2115 vlan_mac_flags = 0; 2116 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2117 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2118 &ramrod_flags); 2119 if (rc != 0) 2120 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2121 2122 /***************** Now clean mcast object *****************************/ 2123 rparam.mcast_obj = &bp->mcast_obj; 2124 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2125 2126 /* Add a DEL command... - Since we're doing a driver cleanup only, 2127 * we take a lock surrounding both the initial send and the CONTs, 2128 * as we don't want a true completion to disrupt us in the middle. 2129 */ 2130 netif_addr_lock_bh(bp->dev); 2131 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2132 if (rc < 0) 2133 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2134 rc); 2135 2136 /* ...and wait until all pending commands are cleared */ 2137 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2138 while (rc != 0) { 2139 if (rc < 0) { 2140 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2141 rc); 2142 netif_addr_unlock_bh(bp->dev); 2143 return; 2144 } 2145 2146 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2147 } 2148 netif_addr_unlock_bh(bp->dev); 2149 } 2150 2151 #ifndef BNX2X_STOP_ON_ERROR 2152 #define LOAD_ERROR_EXIT(bp, label) \ 2153 do { \ 2154 (bp)->state = BNX2X_STATE_ERROR; \ 2155 goto label; \ 2156 } while (0) 2157 2158 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2159 do { \ 2160 bp->cnic_loaded = false; \ 2161 goto label; \ 2162 } while (0) 2163 #else /*BNX2X_STOP_ON_ERROR*/ 2164 #define LOAD_ERROR_EXIT(bp, label) \ 2165 do { \ 2166 (bp)->state = BNX2X_STATE_ERROR; \ 2167 (bp)->panic = 1; \ 2168 return -EBUSY; \ 2169 } while (0) 2170 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2171 do { \ 2172 bp->cnic_loaded = false; \ 2173 (bp)->panic = 1; \ 2174 return -EBUSY; \ 2175 } while (0) 2176 #endif /*BNX2X_STOP_ON_ERROR*/ 2177 2178 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2179 { 2180 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2181 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2182 return; 2183 } 2184 2185 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2186 { 2187 int num_groups, vf_headroom = 0; 2188 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2189 2190 /* number of queues for statistics is number of eth queues + FCoE */ 2191 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2192 2193 /* Total number of FW statistics requests = 2194 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2195 * and fcoe l2 queue) stats + num of queues (which includes another 1 2196 * for fcoe l2 queue if applicable) 2197 */ 2198 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2199 2200 /* vf stats appear in the request list, but their data is allocated by 2201 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2202 * it is used to determine where to place the vf stats queries in the 2203 * request struct 2204 */ 2205 if (IS_SRIOV(bp)) 2206 vf_headroom = bnx2x_vf_headroom(bp); 2207 2208 /* Request is built from stats_query_header and an array of 2209 * stats_query_cmd_group each of which contains 2210 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2211 * configured in the stats_query_header. 2212 */ 2213 num_groups = 2214 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2215 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2216 1 : 0)); 2217 2218 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2219 bp->fw_stats_num, vf_headroom, num_groups); 2220 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2221 num_groups * sizeof(struct stats_query_cmd_group); 2222 2223 /* Data for statistics requests + stats_counter 2224 * stats_counter holds per-STORM counters that are incremented 2225 * when STORM has finished with the current request. 2226 * memory for FCoE offloaded statistics are counted anyway, 2227 * even if they will not be sent. 2228 * VF stats are not accounted for here as the data of VF stats is stored 2229 * in memory allocated by the VF, not here. 2230 */ 2231 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2232 sizeof(struct per_pf_stats) + 2233 sizeof(struct fcoe_statistics_params) + 2234 sizeof(struct per_queue_stats) * num_queue_stats + 2235 sizeof(struct stats_counter); 2236 2237 BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping, 2238 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2239 2240 /* Set shortcuts */ 2241 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2242 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2243 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2244 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2245 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2246 bp->fw_stats_req_sz; 2247 2248 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2249 U64_HI(bp->fw_stats_req_mapping), 2250 U64_LO(bp->fw_stats_req_mapping)); 2251 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2252 U64_HI(bp->fw_stats_data_mapping), 2253 U64_LO(bp->fw_stats_data_mapping)); 2254 return 0; 2255 2256 alloc_mem_err: 2257 bnx2x_free_fw_stats_mem(bp); 2258 BNX2X_ERR("Can't allocate FW stats memory\n"); 2259 return -ENOMEM; 2260 } 2261 2262 /* send load request to mcp and analyze response */ 2263 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2264 { 2265 u32 param; 2266 2267 /* init fw_seq */ 2268 bp->fw_seq = 2269 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2270 DRV_MSG_SEQ_NUMBER_MASK); 2271 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2272 2273 /* Get current FW pulse sequence */ 2274 bp->fw_drv_pulse_wr_seq = 2275 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2276 DRV_PULSE_SEQ_MASK); 2277 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2278 2279 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2280 2281 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2282 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2283 2284 /* load request */ 2285 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2286 2287 /* if mcp fails to respond we must abort */ 2288 if (!(*load_code)) { 2289 BNX2X_ERR("MCP response failure, aborting\n"); 2290 return -EBUSY; 2291 } 2292 2293 /* If mcp refused (e.g. other port is in diagnostic mode) we 2294 * must abort 2295 */ 2296 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2297 BNX2X_ERR("MCP refused load request, aborting\n"); 2298 return -EBUSY; 2299 } 2300 return 0; 2301 } 2302 2303 /* check whether another PF has already loaded FW to chip. In 2304 * virtualized environments a pf from another VM may have already 2305 * initialized the device including loading FW 2306 */ 2307 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2308 { 2309 /* is another pf loaded on this engine? */ 2310 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2311 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2312 /* build my FW version dword */ 2313 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) + 2314 (BCM_5710_FW_MINOR_VERSION << 8) + 2315 (BCM_5710_FW_REVISION_VERSION << 16) + 2316 (BCM_5710_FW_ENGINEERING_VERSION << 24); 2317 2318 /* read loaded FW from chip */ 2319 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2320 2321 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", 2322 loaded_fw, my_fw); 2323 2324 /* abort nic load if version mismatch */ 2325 if (my_fw != loaded_fw) { 2326 if (print_err) 2327 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", 2328 loaded_fw, my_fw); 2329 else 2330 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n", 2331 loaded_fw, my_fw); 2332 return -EBUSY; 2333 } 2334 } 2335 return 0; 2336 } 2337 2338 /* returns the "mcp load_code" according to global load_count array */ 2339 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2340 { 2341 int path = BP_PATH(bp); 2342 2343 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2344 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2345 bnx2x_load_count[path][2]); 2346 bnx2x_load_count[path][0]++; 2347 bnx2x_load_count[path][1 + port]++; 2348 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2349 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2350 bnx2x_load_count[path][2]); 2351 if (bnx2x_load_count[path][0] == 1) 2352 return FW_MSG_CODE_DRV_LOAD_COMMON; 2353 else if (bnx2x_load_count[path][1 + port] == 1) 2354 return FW_MSG_CODE_DRV_LOAD_PORT; 2355 else 2356 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2357 } 2358 2359 /* mark PMF if applicable */ 2360 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2361 { 2362 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2363 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2364 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2365 bp->port.pmf = 1; 2366 /* We need the barrier to ensure the ordering between the 2367 * writing to bp->port.pmf here and reading it from the 2368 * bnx2x_periodic_task(). 2369 */ 2370 smp_mb(); 2371 } else { 2372 bp->port.pmf = 0; 2373 } 2374 2375 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2376 } 2377 2378 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2379 { 2380 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2381 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2382 (bp->common.shmem2_base)) { 2383 if (SHMEM2_HAS(bp, dcc_support)) 2384 SHMEM2_WR(bp, dcc_support, 2385 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2386 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2387 if (SHMEM2_HAS(bp, afex_driver_support)) 2388 SHMEM2_WR(bp, afex_driver_support, 2389 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2390 } 2391 2392 /* Set AFEX default VLAN tag to an invalid value */ 2393 bp->afex_def_vlan_tag = -1; 2394 } 2395 2396 /** 2397 * bnx2x_bz_fp - zero content of the fastpath structure. 2398 * 2399 * @bp: driver handle 2400 * @index: fastpath index to be zeroed 2401 * 2402 * Makes sure the contents of the bp->fp[index].napi is kept 2403 * intact. 2404 */ 2405 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2406 { 2407 struct bnx2x_fastpath *fp = &bp->fp[index]; 2408 int cos; 2409 struct napi_struct orig_napi = fp->napi; 2410 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2411 2412 /* bzero bnx2x_fastpath contents */ 2413 if (fp->tpa_info) 2414 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2415 sizeof(struct bnx2x_agg_info)); 2416 memset(fp, 0, sizeof(*fp)); 2417 2418 /* Restore the NAPI object as it has been already initialized */ 2419 fp->napi = orig_napi; 2420 fp->tpa_info = orig_tpa_info; 2421 fp->bp = bp; 2422 fp->index = index; 2423 if (IS_ETH_FP(fp)) 2424 fp->max_cos = bp->max_cos; 2425 else 2426 /* Special queues support only one CoS */ 2427 fp->max_cos = 1; 2428 2429 /* Init txdata pointers */ 2430 if (IS_FCOE_FP(fp)) 2431 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2432 if (IS_ETH_FP(fp)) 2433 for_each_cos_in_tx_queue(fp, cos) 2434 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2435 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2436 2437 /* set the tpa flag for each queue. The tpa flag determines the queue 2438 * minimal size so it must be set prior to queue memory allocation 2439 */ 2440 fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG || 2441 (bp->flags & GRO_ENABLE_FLAG && 2442 bnx2x_mtu_allows_gro(bp->dev->mtu))); 2443 if (bp->flags & TPA_ENABLE_FLAG) 2444 fp->mode = TPA_MODE_LRO; 2445 else if (bp->flags & GRO_ENABLE_FLAG) 2446 fp->mode = TPA_MODE_GRO; 2447 2448 /* We don't want TPA on an FCoE L2 ring */ 2449 if (IS_FCOE_FP(fp)) 2450 fp->disable_tpa = 1; 2451 } 2452 2453 int bnx2x_load_cnic(struct bnx2x *bp) 2454 { 2455 int i, rc, port = BP_PORT(bp); 2456 2457 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2458 2459 mutex_init(&bp->cnic_mutex); 2460 2461 if (IS_PF(bp)) { 2462 rc = bnx2x_alloc_mem_cnic(bp); 2463 if (rc) { 2464 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2465 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2466 } 2467 } 2468 2469 rc = bnx2x_alloc_fp_mem_cnic(bp); 2470 if (rc) { 2471 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2472 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2473 } 2474 2475 /* Update the number of queues with the cnic queues */ 2476 rc = bnx2x_set_real_num_queues(bp, 1); 2477 if (rc) { 2478 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2479 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2480 } 2481 2482 /* Add all CNIC NAPI objects */ 2483 bnx2x_add_all_napi_cnic(bp); 2484 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2485 bnx2x_napi_enable_cnic(bp); 2486 2487 rc = bnx2x_init_hw_func_cnic(bp); 2488 if (rc) 2489 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2490 2491 bnx2x_nic_init_cnic(bp); 2492 2493 if (IS_PF(bp)) { 2494 /* Enable Timer scan */ 2495 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2496 2497 /* setup cnic queues */ 2498 for_each_cnic_queue(bp, i) { 2499 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2500 if (rc) { 2501 BNX2X_ERR("Queue setup failed\n"); 2502 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2503 } 2504 } 2505 } 2506 2507 /* Initialize Rx filter. */ 2508 bnx2x_set_rx_mode_inner(bp); 2509 2510 /* re-read iscsi info */ 2511 bnx2x_get_iscsi_info(bp); 2512 bnx2x_setup_cnic_irq_info(bp); 2513 bnx2x_setup_cnic_info(bp); 2514 bp->cnic_loaded = true; 2515 if (bp->state == BNX2X_STATE_OPEN) 2516 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2517 2518 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2519 2520 return 0; 2521 2522 #ifndef BNX2X_STOP_ON_ERROR 2523 load_error_cnic2: 2524 /* Disable Timer scan */ 2525 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2526 2527 load_error_cnic1: 2528 bnx2x_napi_disable_cnic(bp); 2529 /* Update the number of queues without the cnic queues */ 2530 if (bnx2x_set_real_num_queues(bp, 0)) 2531 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2532 load_error_cnic0: 2533 BNX2X_ERR("CNIC-related load failed\n"); 2534 bnx2x_free_fp_mem_cnic(bp); 2535 bnx2x_free_mem_cnic(bp); 2536 return rc; 2537 #endif /* ! BNX2X_STOP_ON_ERROR */ 2538 } 2539 2540 /* must be called with rtnl_lock */ 2541 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2542 { 2543 int port = BP_PORT(bp); 2544 int i, rc = 0, load_code = 0; 2545 2546 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2547 DP(NETIF_MSG_IFUP, 2548 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2549 2550 #ifdef BNX2X_STOP_ON_ERROR 2551 if (unlikely(bp->panic)) { 2552 BNX2X_ERR("Can't load NIC when there is panic\n"); 2553 return -EPERM; 2554 } 2555 #endif 2556 2557 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2558 2559 /* zero the structure w/o any lock, before SP handler is initialized */ 2560 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2561 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2562 &bp->last_reported_link.link_report_flags); 2563 2564 if (IS_PF(bp)) 2565 /* must be called before memory allocation and HW init */ 2566 bnx2x_ilt_set_info(bp); 2567 2568 /* 2569 * Zero fastpath structures preserving invariants like napi, which are 2570 * allocated only once, fp index, max_cos, bp pointer. 2571 * Also set fp->disable_tpa and txdata_ptr. 2572 */ 2573 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2574 for_each_queue(bp, i) 2575 bnx2x_bz_fp(bp, i); 2576 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2577 bp->num_cnic_queues) * 2578 sizeof(struct bnx2x_fp_txdata)); 2579 2580 bp->fcoe_init = false; 2581 2582 /* Set the receive queues buffer size */ 2583 bnx2x_set_rx_buf_size(bp); 2584 2585 if (IS_PF(bp)) { 2586 rc = bnx2x_alloc_mem(bp); 2587 if (rc) { 2588 BNX2X_ERR("Unable to allocate bp memory\n"); 2589 return rc; 2590 } 2591 } 2592 2593 /* need to be done after alloc mem, since it's self adjusting to amount 2594 * of memory available for RSS queues 2595 */ 2596 rc = bnx2x_alloc_fp_mem(bp); 2597 if (rc) { 2598 BNX2X_ERR("Unable to allocate memory for fps\n"); 2599 LOAD_ERROR_EXIT(bp, load_error0); 2600 } 2601 2602 /* Allocated memory for FW statistics */ 2603 if (bnx2x_alloc_fw_stats_mem(bp)) 2604 LOAD_ERROR_EXIT(bp, load_error0); 2605 2606 /* request pf to initialize status blocks */ 2607 if (IS_VF(bp)) { 2608 rc = bnx2x_vfpf_init(bp); 2609 if (rc) 2610 LOAD_ERROR_EXIT(bp, load_error0); 2611 } 2612 2613 /* As long as bnx2x_alloc_mem() may possibly update 2614 * bp->num_queues, bnx2x_set_real_num_queues() should always 2615 * come after it. At this stage cnic queues are not counted. 2616 */ 2617 rc = bnx2x_set_real_num_queues(bp, 0); 2618 if (rc) { 2619 BNX2X_ERR("Unable to set real_num_queues\n"); 2620 LOAD_ERROR_EXIT(bp, load_error0); 2621 } 2622 2623 /* configure multi cos mappings in kernel. 2624 * this configuration may be overridden by a multi class queue 2625 * discipline or by a dcbx negotiation result. 2626 */ 2627 bnx2x_setup_tc(bp->dev, bp->max_cos); 2628 2629 /* Add all NAPI objects */ 2630 bnx2x_add_all_napi(bp); 2631 DP(NETIF_MSG_IFUP, "napi added\n"); 2632 bnx2x_napi_enable(bp); 2633 2634 if (IS_PF(bp)) { 2635 /* set pf load just before approaching the MCP */ 2636 bnx2x_set_pf_load(bp); 2637 2638 /* if mcp exists send load request and analyze response */ 2639 if (!BP_NOMCP(bp)) { 2640 /* attempt to load pf */ 2641 rc = bnx2x_nic_load_request(bp, &load_code); 2642 if (rc) 2643 LOAD_ERROR_EXIT(bp, load_error1); 2644 2645 /* what did mcp say? */ 2646 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2647 if (rc) { 2648 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2649 LOAD_ERROR_EXIT(bp, load_error2); 2650 } 2651 } else { 2652 load_code = bnx2x_nic_load_no_mcp(bp, port); 2653 } 2654 2655 /* mark pmf if applicable */ 2656 bnx2x_nic_load_pmf(bp, load_code); 2657 2658 /* Init Function state controlling object */ 2659 bnx2x__init_func_obj(bp); 2660 2661 /* Initialize HW */ 2662 rc = bnx2x_init_hw(bp, load_code); 2663 if (rc) { 2664 BNX2X_ERR("HW init failed, aborting\n"); 2665 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2666 LOAD_ERROR_EXIT(bp, load_error2); 2667 } 2668 } 2669 2670 bnx2x_pre_irq_nic_init(bp); 2671 2672 /* Connect to IRQs */ 2673 rc = bnx2x_setup_irqs(bp); 2674 if (rc) { 2675 BNX2X_ERR("setup irqs failed\n"); 2676 if (IS_PF(bp)) 2677 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2678 LOAD_ERROR_EXIT(bp, load_error2); 2679 } 2680 2681 /* Init per-function objects */ 2682 if (IS_PF(bp)) { 2683 /* Setup NIC internals and enable interrupts */ 2684 bnx2x_post_irq_nic_init(bp, load_code); 2685 2686 bnx2x_init_bp_objs(bp); 2687 bnx2x_iov_nic_init(bp); 2688 2689 /* Set AFEX default VLAN tag to an invalid value */ 2690 bp->afex_def_vlan_tag = -1; 2691 bnx2x_nic_load_afex_dcc(bp, load_code); 2692 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2693 rc = bnx2x_func_start(bp); 2694 if (rc) { 2695 BNX2X_ERR("Function start failed!\n"); 2696 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2697 2698 LOAD_ERROR_EXIT(bp, load_error3); 2699 } 2700 2701 /* Send LOAD_DONE command to MCP */ 2702 if (!BP_NOMCP(bp)) { 2703 load_code = bnx2x_fw_command(bp, 2704 DRV_MSG_CODE_LOAD_DONE, 0); 2705 if (!load_code) { 2706 BNX2X_ERR("MCP response failure, aborting\n"); 2707 rc = -EBUSY; 2708 LOAD_ERROR_EXIT(bp, load_error3); 2709 } 2710 } 2711 2712 /* initialize FW coalescing state machines in RAM */ 2713 bnx2x_update_coalesce(bp); 2714 } 2715 2716 /* setup the leading queue */ 2717 rc = bnx2x_setup_leading(bp); 2718 if (rc) { 2719 BNX2X_ERR("Setup leading failed!\n"); 2720 LOAD_ERROR_EXIT(bp, load_error3); 2721 } 2722 2723 /* set up the rest of the queues */ 2724 for_each_nondefault_eth_queue(bp, i) { 2725 if (IS_PF(bp)) 2726 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2727 else /* VF */ 2728 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2729 if (rc) { 2730 BNX2X_ERR("Queue %d setup failed\n", i); 2731 LOAD_ERROR_EXIT(bp, load_error3); 2732 } 2733 } 2734 2735 /* setup rss */ 2736 rc = bnx2x_init_rss(bp); 2737 if (rc) { 2738 BNX2X_ERR("PF RSS init failed\n"); 2739 LOAD_ERROR_EXIT(bp, load_error3); 2740 } 2741 2742 /* Now when Clients are configured we are ready to work */ 2743 bp->state = BNX2X_STATE_OPEN; 2744 2745 /* Configure a ucast MAC */ 2746 if (IS_PF(bp)) 2747 rc = bnx2x_set_eth_mac(bp, true); 2748 else /* vf */ 2749 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2750 true); 2751 if (rc) { 2752 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2753 LOAD_ERROR_EXIT(bp, load_error3); 2754 } 2755 2756 if (IS_PF(bp) && bp->pending_max) { 2757 bnx2x_update_max_mf_config(bp, bp->pending_max); 2758 bp->pending_max = 0; 2759 } 2760 2761 if (bp->port.pmf) { 2762 rc = bnx2x_initial_phy_init(bp, load_mode); 2763 if (rc) 2764 LOAD_ERROR_EXIT(bp, load_error3); 2765 } 2766 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2767 2768 /* Start fast path */ 2769 2770 /* Initialize Rx filter. */ 2771 bnx2x_set_rx_mode_inner(bp); 2772 2773 /* Start the Tx */ 2774 switch (load_mode) { 2775 case LOAD_NORMAL: 2776 /* Tx queue should be only re-enabled */ 2777 netif_tx_wake_all_queues(bp->dev); 2778 break; 2779 2780 case LOAD_OPEN: 2781 netif_tx_start_all_queues(bp->dev); 2782 smp_mb__after_clear_bit(); 2783 break; 2784 2785 case LOAD_DIAG: 2786 case LOAD_LOOPBACK_EXT: 2787 bp->state = BNX2X_STATE_DIAG; 2788 break; 2789 2790 default: 2791 break; 2792 } 2793 2794 if (bp->port.pmf) 2795 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2796 else 2797 bnx2x__link_status_update(bp); 2798 2799 /* start the timer */ 2800 mod_timer(&bp->timer, jiffies + bp->current_interval); 2801 2802 if (CNIC_ENABLED(bp)) 2803 bnx2x_load_cnic(bp); 2804 2805 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2806 /* mark driver is loaded in shmem2 */ 2807 u32 val; 2808 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2809 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2810 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2811 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2812 } 2813 2814 /* Wait for all pending SP commands to complete */ 2815 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2816 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2817 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2818 return -EBUSY; 2819 } 2820 2821 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2822 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2823 bnx2x_dcbx_init(bp, false); 2824 2825 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2826 2827 return 0; 2828 2829 #ifndef BNX2X_STOP_ON_ERROR 2830 load_error3: 2831 if (IS_PF(bp)) { 2832 bnx2x_int_disable_sync(bp, 1); 2833 2834 /* Clean queueable objects */ 2835 bnx2x_squeeze_objects(bp); 2836 } 2837 2838 /* Free SKBs, SGEs, TPA pool and driver internals */ 2839 bnx2x_free_skbs(bp); 2840 for_each_rx_queue(bp, i) 2841 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2842 2843 /* Release IRQs */ 2844 bnx2x_free_irq(bp); 2845 load_error2: 2846 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2847 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2848 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2849 } 2850 2851 bp->port.pmf = 0; 2852 load_error1: 2853 bnx2x_napi_disable(bp); 2854 bnx2x_del_all_napi(bp); 2855 2856 /* clear pf_load status, as it was already set */ 2857 if (IS_PF(bp)) 2858 bnx2x_clear_pf_load(bp); 2859 load_error0: 2860 bnx2x_free_fw_stats_mem(bp); 2861 bnx2x_free_fp_mem(bp); 2862 bnx2x_free_mem(bp); 2863 2864 return rc; 2865 #endif /* ! BNX2X_STOP_ON_ERROR */ 2866 } 2867 2868 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2869 { 2870 u8 rc = 0, cos, i; 2871 2872 /* Wait until tx fastpath tasks complete */ 2873 for_each_tx_queue(bp, i) { 2874 struct bnx2x_fastpath *fp = &bp->fp[i]; 2875 2876 for_each_cos_in_tx_queue(fp, cos) 2877 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2878 if (rc) 2879 return rc; 2880 } 2881 return 0; 2882 } 2883 2884 /* must be called with rtnl_lock */ 2885 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2886 { 2887 int i; 2888 bool global = false; 2889 2890 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 2891 2892 /* mark driver is unloaded in shmem2 */ 2893 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2894 u32 val; 2895 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2896 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2897 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 2898 } 2899 2900 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 2901 (bp->state == BNX2X_STATE_CLOSED || 2902 bp->state == BNX2X_STATE_ERROR)) { 2903 /* We can get here if the driver has been unloaded 2904 * during parity error recovery and is either waiting for a 2905 * leader to complete or for other functions to unload and 2906 * then ifdown has been issued. In this case we want to 2907 * unload and let other functions to complete a recovery 2908 * process. 2909 */ 2910 bp->recovery_state = BNX2X_RECOVERY_DONE; 2911 bp->is_leader = 0; 2912 bnx2x_release_leader_lock(bp); 2913 smp_mb(); 2914 2915 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 2916 BNX2X_ERR("Can't unload in closed or error state\n"); 2917 return -EINVAL; 2918 } 2919 2920 /* Nothing to do during unload if previous bnx2x_nic_load() 2921 * have not completed successfully - all resources are released. 2922 * 2923 * we can get here only after unsuccessful ndo_* callback, during which 2924 * dev->IFF_UP flag is still on. 2925 */ 2926 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 2927 return 0; 2928 2929 /* It's important to set the bp->state to the value different from 2930 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 2931 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 2932 */ 2933 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 2934 smp_mb(); 2935 2936 /* indicate to VFs that the PF is going down */ 2937 bnx2x_iov_channel_down(bp); 2938 2939 if (CNIC_LOADED(bp)) 2940 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 2941 2942 /* Stop Tx */ 2943 bnx2x_tx_disable(bp); 2944 netdev_reset_tc(bp->dev); 2945 2946 bp->rx_mode = BNX2X_RX_MODE_NONE; 2947 2948 del_timer_sync(&bp->timer); 2949 2950 if (IS_PF(bp)) { 2951 /* Set ALWAYS_ALIVE bit in shmem */ 2952 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 2953 bnx2x_drv_pulse(bp); 2954 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2955 bnx2x_save_statistics(bp); 2956 } 2957 2958 /* wait till consumers catch up with producers in all queues */ 2959 bnx2x_drain_tx_queues(bp); 2960 2961 /* if VF indicate to PF this function is going down (PF will delete sp 2962 * elements and clear initializations 2963 */ 2964 if (IS_VF(bp)) 2965 bnx2x_vfpf_close_vf(bp); 2966 else if (unload_mode != UNLOAD_RECOVERY) 2967 /* if this is a normal/close unload need to clean up chip*/ 2968 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 2969 else { 2970 /* Send the UNLOAD_REQUEST to the MCP */ 2971 bnx2x_send_unload_req(bp, unload_mode); 2972 2973 /* Prevent transactions to host from the functions on the 2974 * engine that doesn't reset global blocks in case of global 2975 * attention once global blocks are reset and gates are opened 2976 * (the engine which leader will perform the recovery 2977 * last). 2978 */ 2979 if (!CHIP_IS_E1x(bp)) 2980 bnx2x_pf_disable(bp); 2981 2982 /* Disable HW interrupts, NAPI */ 2983 bnx2x_netif_stop(bp, 1); 2984 /* Delete all NAPI objects */ 2985 bnx2x_del_all_napi(bp); 2986 if (CNIC_LOADED(bp)) 2987 bnx2x_del_all_napi_cnic(bp); 2988 /* Release IRQs */ 2989 bnx2x_free_irq(bp); 2990 2991 /* Report UNLOAD_DONE to MCP */ 2992 bnx2x_send_unload_done(bp, false); 2993 } 2994 2995 /* 2996 * At this stage no more interrupts will arrive so we may safely clean 2997 * the queueable objects here in case they failed to get cleaned so far. 2998 */ 2999 if (IS_PF(bp)) 3000 bnx2x_squeeze_objects(bp); 3001 3002 /* There should be no more pending SP commands at this stage */ 3003 bp->sp_state = 0; 3004 3005 bp->port.pmf = 0; 3006 3007 /* clear pending work in rtnl task */ 3008 bp->sp_rtnl_state = 0; 3009 smp_mb(); 3010 3011 /* Free SKBs, SGEs, TPA pool and driver internals */ 3012 bnx2x_free_skbs(bp); 3013 if (CNIC_LOADED(bp)) 3014 bnx2x_free_skbs_cnic(bp); 3015 for_each_rx_queue(bp, i) 3016 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3017 3018 bnx2x_free_fp_mem(bp); 3019 if (CNIC_LOADED(bp)) 3020 bnx2x_free_fp_mem_cnic(bp); 3021 3022 if (IS_PF(bp)) { 3023 if (CNIC_LOADED(bp)) 3024 bnx2x_free_mem_cnic(bp); 3025 } 3026 bnx2x_free_mem(bp); 3027 3028 bp->state = BNX2X_STATE_CLOSED; 3029 bp->cnic_loaded = false; 3030 3031 /* Check if there are pending parity attentions. If there are - set 3032 * RECOVERY_IN_PROGRESS. 3033 */ 3034 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3035 bnx2x_set_reset_in_progress(bp); 3036 3037 /* Set RESET_IS_GLOBAL if needed */ 3038 if (global) 3039 bnx2x_set_reset_global(bp); 3040 } 3041 3042 /* The last driver must disable a "close the gate" if there is no 3043 * parity attention or "process kill" pending. 3044 */ 3045 if (IS_PF(bp) && 3046 !bnx2x_clear_pf_load(bp) && 3047 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3048 bnx2x_disable_close_the_gate(bp); 3049 3050 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3051 3052 return 0; 3053 } 3054 3055 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3056 { 3057 u16 pmcsr; 3058 3059 /* If there is no power capability, silently succeed */ 3060 if (!bp->pdev->pm_cap) { 3061 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3062 return 0; 3063 } 3064 3065 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3066 3067 switch (state) { 3068 case PCI_D0: 3069 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3070 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3071 PCI_PM_CTRL_PME_STATUS)); 3072 3073 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3074 /* delay required during transition out of D3hot */ 3075 msleep(20); 3076 break; 3077 3078 case PCI_D3hot: 3079 /* If there are other clients above don't 3080 shut down the power */ 3081 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3082 return 0; 3083 /* Don't shut down the power for emulation and FPGA */ 3084 if (CHIP_REV_IS_SLOW(bp)) 3085 return 0; 3086 3087 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3088 pmcsr |= 3; 3089 3090 if (bp->wol) 3091 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3092 3093 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3094 pmcsr); 3095 3096 /* No more memory access after this point until 3097 * device is brought back to D0. 3098 */ 3099 break; 3100 3101 default: 3102 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3103 return -EINVAL; 3104 } 3105 return 0; 3106 } 3107 3108 /* 3109 * net_device service functions 3110 */ 3111 static int bnx2x_poll(struct napi_struct *napi, int budget) 3112 { 3113 int work_done = 0; 3114 u8 cos; 3115 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3116 napi); 3117 struct bnx2x *bp = fp->bp; 3118 3119 while (1) { 3120 #ifdef BNX2X_STOP_ON_ERROR 3121 if (unlikely(bp->panic)) { 3122 napi_complete(napi); 3123 return 0; 3124 } 3125 #endif 3126 if (!bnx2x_fp_lock_napi(fp)) 3127 return work_done; 3128 3129 for_each_cos_in_tx_queue(fp, cos) 3130 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3131 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3132 3133 if (bnx2x_has_rx_work(fp)) { 3134 work_done += bnx2x_rx_int(fp, budget - work_done); 3135 3136 /* must not complete if we consumed full budget */ 3137 if (work_done >= budget) { 3138 bnx2x_fp_unlock_napi(fp); 3139 break; 3140 } 3141 } 3142 3143 /* Fall out from the NAPI loop if needed */ 3144 if (!bnx2x_fp_unlock_napi(fp) && 3145 !(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3146 3147 /* No need to update SB for FCoE L2 ring as long as 3148 * it's connected to the default SB and the SB 3149 * has been updated when NAPI was scheduled. 3150 */ 3151 if (IS_FCOE_FP(fp)) { 3152 napi_complete(napi); 3153 break; 3154 } 3155 bnx2x_update_fpsb_idx(fp); 3156 /* bnx2x_has_rx_work() reads the status block, 3157 * thus we need to ensure that status block indices 3158 * have been actually read (bnx2x_update_fpsb_idx) 3159 * prior to this check (bnx2x_has_rx_work) so that 3160 * we won't write the "newer" value of the status block 3161 * to IGU (if there was a DMA right after 3162 * bnx2x_has_rx_work and if there is no rmb, the memory 3163 * reading (bnx2x_update_fpsb_idx) may be postponed 3164 * to right before bnx2x_ack_sb). In this case there 3165 * will never be another interrupt until there is 3166 * another update of the status block, while there 3167 * is still unhandled work. 3168 */ 3169 rmb(); 3170 3171 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3172 napi_complete(napi); 3173 /* Re-enable interrupts */ 3174 DP(NETIF_MSG_RX_STATUS, 3175 "Update index to %d\n", fp->fp_hc_idx); 3176 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3177 le16_to_cpu(fp->fp_hc_idx), 3178 IGU_INT_ENABLE, 1); 3179 break; 3180 } 3181 } 3182 } 3183 3184 return work_done; 3185 } 3186 3187 #ifdef CONFIG_NET_RX_BUSY_POLL 3188 /* must be called with local_bh_disable()d */ 3189 int bnx2x_low_latency_recv(struct napi_struct *napi) 3190 { 3191 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3192 napi); 3193 struct bnx2x *bp = fp->bp; 3194 int found = 0; 3195 3196 if ((bp->state == BNX2X_STATE_CLOSED) || 3197 (bp->state == BNX2X_STATE_ERROR) || 3198 (bp->flags & (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG))) 3199 return LL_FLUSH_FAILED; 3200 3201 if (!bnx2x_fp_lock_poll(fp)) 3202 return LL_FLUSH_BUSY; 3203 3204 if (bnx2x_has_rx_work(fp)) 3205 found = bnx2x_rx_int(fp, 4); 3206 3207 bnx2x_fp_unlock_poll(fp); 3208 3209 return found; 3210 } 3211 #endif 3212 3213 /* we split the first BD into headers and data BDs 3214 * to ease the pain of our fellow microcode engineers 3215 * we use one mapping for both BDs 3216 */ 3217 static u16 bnx2x_tx_split(struct bnx2x *bp, 3218 struct bnx2x_fp_txdata *txdata, 3219 struct sw_tx_bd *tx_buf, 3220 struct eth_tx_start_bd **tx_bd, u16 hlen, 3221 u16 bd_prod) 3222 { 3223 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3224 struct eth_tx_bd *d_tx_bd; 3225 dma_addr_t mapping; 3226 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3227 3228 /* first fix first BD */ 3229 h_tx_bd->nbytes = cpu_to_le16(hlen); 3230 3231 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3232 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3233 3234 /* now get a new data BD 3235 * (after the pbd) and fill it */ 3236 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3237 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3238 3239 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3240 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3241 3242 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3243 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3244 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3245 3246 /* this marks the BD as one that has no individual mapping */ 3247 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3248 3249 DP(NETIF_MSG_TX_QUEUED, 3250 "TSO split data size is %d (%x:%x)\n", 3251 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3252 3253 /* update tx_bd */ 3254 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3255 3256 return bd_prod; 3257 } 3258 3259 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3260 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3261 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3262 { 3263 __sum16 tsum = (__force __sum16) csum; 3264 3265 if (fix > 0) 3266 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3267 csum_partial(t_header - fix, fix, 0))); 3268 3269 else if (fix < 0) 3270 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3271 csum_partial(t_header, -fix, 0))); 3272 3273 return bswab16(tsum); 3274 } 3275 3276 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3277 { 3278 u32 rc; 3279 __u8 prot = 0; 3280 __be16 protocol; 3281 3282 if (skb->ip_summed != CHECKSUM_PARTIAL) 3283 return XMIT_PLAIN; 3284 3285 protocol = vlan_get_protocol(skb); 3286 if (protocol == htons(ETH_P_IPV6)) { 3287 rc = XMIT_CSUM_V6; 3288 prot = ipv6_hdr(skb)->nexthdr; 3289 } else { 3290 rc = XMIT_CSUM_V4; 3291 prot = ip_hdr(skb)->protocol; 3292 } 3293 3294 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3295 if (inner_ip_hdr(skb)->version == 6) { 3296 rc |= XMIT_CSUM_ENC_V6; 3297 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3298 rc |= XMIT_CSUM_TCP; 3299 } else { 3300 rc |= XMIT_CSUM_ENC_V4; 3301 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3302 rc |= XMIT_CSUM_TCP; 3303 } 3304 } 3305 if (prot == IPPROTO_TCP) 3306 rc |= XMIT_CSUM_TCP; 3307 3308 if (skb_is_gso(skb)) { 3309 if (skb_is_gso_v6(skb)) { 3310 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3311 if (rc & XMIT_CSUM_ENC) 3312 rc |= XMIT_GSO_ENC_V6; 3313 } else { 3314 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3315 if (rc & XMIT_CSUM_ENC) 3316 rc |= XMIT_GSO_ENC_V4; 3317 } 3318 } 3319 3320 return rc; 3321 } 3322 3323 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) 3324 /* check if packet requires linearization (packet is too fragmented) 3325 no need to check fragmentation if page size > 8K (there will be no 3326 violation to FW restrictions) */ 3327 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3328 u32 xmit_type) 3329 { 3330 int to_copy = 0; 3331 int hlen = 0; 3332 int first_bd_sz = 0; 3333 3334 /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3335 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) { 3336 3337 if (xmit_type & XMIT_GSO) { 3338 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3339 /* Check if LSO packet needs to be copied: 3340 3 = 1 (for headers BD) + 2 (for PBD and last BD) */ 3341 int wnd_size = MAX_FETCH_BD - 3; 3342 /* Number of windows to check */ 3343 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3344 int wnd_idx = 0; 3345 int frag_idx = 0; 3346 u32 wnd_sum = 0; 3347 3348 /* Headers length */ 3349 hlen = (int)(skb_transport_header(skb) - skb->data) + 3350 tcp_hdrlen(skb); 3351 3352 /* Amount of data (w/o headers) on linear part of SKB*/ 3353 first_bd_sz = skb_headlen(skb) - hlen; 3354 3355 wnd_sum = first_bd_sz; 3356 3357 /* Calculate the first sum - it's special */ 3358 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3359 wnd_sum += 3360 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3361 3362 /* If there was data on linear skb data - check it */ 3363 if (first_bd_sz > 0) { 3364 if (unlikely(wnd_sum < lso_mss)) { 3365 to_copy = 1; 3366 goto exit_lbl; 3367 } 3368 3369 wnd_sum -= first_bd_sz; 3370 } 3371 3372 /* Others are easier: run through the frag list and 3373 check all windows */ 3374 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3375 wnd_sum += 3376 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3377 3378 if (unlikely(wnd_sum < lso_mss)) { 3379 to_copy = 1; 3380 break; 3381 } 3382 wnd_sum -= 3383 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3384 } 3385 } else { 3386 /* in non-LSO too fragmented packet should always 3387 be linearized */ 3388 to_copy = 1; 3389 } 3390 } 3391 3392 exit_lbl: 3393 if (unlikely(to_copy)) 3394 DP(NETIF_MSG_TX_QUEUED, 3395 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3396 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3397 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3398 3399 return to_copy; 3400 } 3401 #endif 3402 3403 static void bnx2x_set_pbd_gso_e2(struct sk_buff *skb, u32 *parsing_data, 3404 u32 xmit_type) 3405 { 3406 struct ipv6hdr *ipv6; 3407 3408 *parsing_data |= (skb_shinfo(skb)->gso_size << 3409 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 3410 ETH_TX_PARSE_BD_E2_LSO_MSS; 3411 3412 if (xmit_type & XMIT_GSO_ENC_V6) 3413 ipv6 = inner_ipv6_hdr(skb); 3414 else if (xmit_type & XMIT_GSO_V6) 3415 ipv6 = ipv6_hdr(skb); 3416 else 3417 ipv6 = NULL; 3418 3419 if (ipv6 && ipv6->nexthdr == NEXTHDR_IPV6) 3420 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3421 } 3422 3423 /** 3424 * bnx2x_set_pbd_gso - update PBD in GSO case. 3425 * 3426 * @skb: packet skb 3427 * @pbd: parse BD 3428 * @xmit_type: xmit flags 3429 */ 3430 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3431 struct eth_tx_parse_bd_e1x *pbd, 3432 struct eth_tx_start_bd *tx_start_bd, 3433 u32 xmit_type) 3434 { 3435 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3436 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3437 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3438 3439 if (xmit_type & XMIT_GSO_V4) { 3440 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3441 pbd->tcp_pseudo_csum = 3442 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3443 ip_hdr(skb)->daddr, 3444 0, IPPROTO_TCP, 0)); 3445 3446 /* GSO on 57710/57711 needs FW to calculate IP checksum */ 3447 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 3448 } else { 3449 pbd->tcp_pseudo_csum = 3450 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3451 &ipv6_hdr(skb)->daddr, 3452 0, IPPROTO_TCP, 0)); 3453 } 3454 3455 pbd->global_data |= 3456 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3457 } 3458 3459 /** 3460 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3461 * 3462 * @bp: driver handle 3463 * @skb: packet skb 3464 * @parsing_data: data to be updated 3465 * @xmit_type: xmit flags 3466 * 3467 * 57712/578xx related, when skb has encapsulation 3468 */ 3469 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3470 u32 *parsing_data, u32 xmit_type) 3471 { 3472 *parsing_data |= 3473 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3474 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3475 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3476 3477 if (xmit_type & XMIT_CSUM_TCP) { 3478 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3479 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3480 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3481 3482 return skb_inner_transport_header(skb) + 3483 inner_tcp_hdrlen(skb) - skb->data; 3484 } 3485 3486 /* We support checksum offload for TCP and UDP only. 3487 * No need to pass the UDP header length - it's a constant. 3488 */ 3489 return skb_inner_transport_header(skb) + 3490 sizeof(struct udphdr) - skb->data; 3491 } 3492 3493 /** 3494 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3495 * 3496 * @bp: driver handle 3497 * @skb: packet skb 3498 * @parsing_data: data to be updated 3499 * @xmit_type: xmit flags 3500 * 3501 * 57712/578xx related 3502 */ 3503 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3504 u32 *parsing_data, u32 xmit_type) 3505 { 3506 *parsing_data |= 3507 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3508 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3509 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3510 3511 if (xmit_type & XMIT_CSUM_TCP) { 3512 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3513 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3514 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3515 3516 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; 3517 } 3518 /* We support checksum offload for TCP and UDP only. 3519 * No need to pass the UDP header length - it's a constant. 3520 */ 3521 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; 3522 } 3523 3524 /* set FW indication according to inner or outer protocols if tunneled */ 3525 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3526 struct eth_tx_start_bd *tx_start_bd, 3527 u32 xmit_type) 3528 { 3529 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3530 3531 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3532 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3533 3534 if (!(xmit_type & XMIT_CSUM_TCP)) 3535 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3536 } 3537 3538 /** 3539 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3540 * 3541 * @bp: driver handle 3542 * @skb: packet skb 3543 * @pbd: parse BD to be updated 3544 * @xmit_type: xmit flags 3545 */ 3546 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3547 struct eth_tx_parse_bd_e1x *pbd, 3548 u32 xmit_type) 3549 { 3550 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3551 3552 /* for now NS flag is not used in Linux */ 3553 pbd->global_data = 3554 cpu_to_le16(hlen | 3555 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3556 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3557 3558 pbd->ip_hlen_w = (skb_transport_header(skb) - 3559 skb_network_header(skb)) >> 1; 3560 3561 hlen += pbd->ip_hlen_w; 3562 3563 /* We support checksum offload for TCP and UDP only */ 3564 if (xmit_type & XMIT_CSUM_TCP) 3565 hlen += tcp_hdrlen(skb) / 2; 3566 else 3567 hlen += sizeof(struct udphdr) / 2; 3568 3569 pbd->total_hlen_w = cpu_to_le16(hlen); 3570 hlen = hlen*2; 3571 3572 if (xmit_type & XMIT_CSUM_TCP) { 3573 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3574 3575 } else { 3576 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3577 3578 DP(NETIF_MSG_TX_QUEUED, 3579 "hlen %d fix %d csum before fix %x\n", 3580 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3581 3582 /* HW bug: fixup the CSUM */ 3583 pbd->tcp_pseudo_csum = 3584 bnx2x_csum_fix(skb_transport_header(skb), 3585 SKB_CS(skb), fix); 3586 3587 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3588 pbd->tcp_pseudo_csum); 3589 } 3590 3591 return hlen; 3592 } 3593 3594 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3595 struct eth_tx_parse_bd_e2 *pbd_e2, 3596 struct eth_tx_parse_2nd_bd *pbd2, 3597 u16 *global_data, 3598 u32 xmit_type) 3599 { 3600 u16 hlen_w = 0; 3601 u8 outerip_off, outerip_len = 0; 3602 3603 /* from outer IP to transport */ 3604 hlen_w = (skb_inner_transport_header(skb) - 3605 skb_network_header(skb)) >> 1; 3606 3607 /* transport len */ 3608 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3609 3610 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3611 3612 /* outer IP header info */ 3613 if (xmit_type & XMIT_CSUM_V4) { 3614 struct iphdr *iph = ip_hdr(skb); 3615 u32 csum = (__force u32)(~iph->check) - 3616 (__force u32)iph->tot_len - 3617 (__force u32)iph->frag_off; 3618 3619 pbd2->fw_ip_csum_wo_len_flags_frag = 3620 bswab16(csum_fold((__force __wsum)csum)); 3621 } else { 3622 pbd2->fw_ip_hdr_to_payload_w = 3623 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3624 } 3625 3626 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3627 3628 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3629 3630 if (xmit_type & XMIT_GSO_V4) { 3631 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3632 3633 pbd_e2->data.tunnel_data.pseudo_csum = 3634 bswab16(~csum_tcpudp_magic( 3635 inner_ip_hdr(skb)->saddr, 3636 inner_ip_hdr(skb)->daddr, 3637 0, IPPROTO_TCP, 0)); 3638 3639 outerip_len = ip_hdr(skb)->ihl << 1; 3640 } else { 3641 pbd_e2->data.tunnel_data.pseudo_csum = 3642 bswab16(~csum_ipv6_magic( 3643 &inner_ipv6_hdr(skb)->saddr, 3644 &inner_ipv6_hdr(skb)->daddr, 3645 0, IPPROTO_TCP, 0)); 3646 } 3647 3648 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3649 3650 *global_data |= 3651 outerip_off | 3652 (!!(xmit_type & XMIT_CSUM_V6) << 3653 ETH_TX_PARSE_2ND_BD_IP_HDR_TYPE_OUTER_SHIFT) | 3654 (outerip_len << 3655 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3656 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3657 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3658 3659 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3660 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3661 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3662 } 3663 } 3664 3665 /* called with netif_tx_lock 3666 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3667 * netif_wake_queue() 3668 */ 3669 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3670 { 3671 struct bnx2x *bp = netdev_priv(dev); 3672 3673 struct netdev_queue *txq; 3674 struct bnx2x_fp_txdata *txdata; 3675 struct sw_tx_bd *tx_buf; 3676 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3677 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3678 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3679 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3680 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3681 u32 pbd_e2_parsing_data = 0; 3682 u16 pkt_prod, bd_prod; 3683 int nbd, txq_index; 3684 dma_addr_t mapping; 3685 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3686 int i; 3687 u8 hlen = 0; 3688 __le16 pkt_size = 0; 3689 struct ethhdr *eth; 3690 u8 mac_type = UNICAST_ADDRESS; 3691 3692 #ifdef BNX2X_STOP_ON_ERROR 3693 if (unlikely(bp->panic)) 3694 return NETDEV_TX_BUSY; 3695 #endif 3696 3697 txq_index = skb_get_queue_mapping(skb); 3698 txq = netdev_get_tx_queue(dev, txq_index); 3699 3700 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3701 3702 txdata = &bp->bnx2x_txq[txq_index]; 3703 3704 /* enable this debug print to view the transmission queue being used 3705 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3706 txq_index, fp_index, txdata_index); */ 3707 3708 /* enable this debug print to view the transmission details 3709 DP(NETIF_MSG_TX_QUEUED, 3710 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3711 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3712 3713 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3714 skb_shinfo(skb)->nr_frags + 3715 BDS_PER_TX_PKT + 3716 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3717 /* Handle special storage cases separately */ 3718 if (txdata->tx_ring_size == 0) { 3719 struct bnx2x_eth_q_stats *q_stats = 3720 bnx2x_fp_qstats(bp, txdata->parent_fp); 3721 q_stats->driver_filtered_tx_pkt++; 3722 dev_kfree_skb(skb); 3723 return NETDEV_TX_OK; 3724 } 3725 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3726 netif_tx_stop_queue(txq); 3727 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3728 3729 return NETDEV_TX_BUSY; 3730 } 3731 3732 DP(NETIF_MSG_TX_QUEUED, 3733 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3734 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3735 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3736 skb->len); 3737 3738 eth = (struct ethhdr *)skb->data; 3739 3740 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3741 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3742 if (is_broadcast_ether_addr(eth->h_dest)) 3743 mac_type = BROADCAST_ADDRESS; 3744 else 3745 mac_type = MULTICAST_ADDRESS; 3746 } 3747 3748 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3749 /* First, check if we need to linearize the skb (due to FW 3750 restrictions). No need to check fragmentation if page size > 8K 3751 (there will be no violation to FW restrictions) */ 3752 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3753 /* Statistics of linearization */ 3754 bp->lin_cnt++; 3755 if (skb_linearize(skb) != 0) { 3756 DP(NETIF_MSG_TX_QUEUED, 3757 "SKB linearization failed - silently dropping this SKB\n"); 3758 dev_kfree_skb_any(skb); 3759 return NETDEV_TX_OK; 3760 } 3761 } 3762 #endif 3763 /* Map skb linear data for DMA */ 3764 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3765 skb_headlen(skb), DMA_TO_DEVICE); 3766 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3767 DP(NETIF_MSG_TX_QUEUED, 3768 "SKB mapping failed - silently dropping this SKB\n"); 3769 dev_kfree_skb_any(skb); 3770 return NETDEV_TX_OK; 3771 } 3772 /* 3773 Please read carefully. First we use one BD which we mark as start, 3774 then we have a parsing info BD (used for TSO or xsum), 3775 and only then we have the rest of the TSO BDs. 3776 (don't forget to mark the last one as last, 3777 and to unmap only AFTER you write to the BD ...) 3778 And above all, all pdb sizes are in words - NOT DWORDS! 3779 */ 3780 3781 /* get current pkt produced now - advance it just before sending packet 3782 * since mapping of pages may fail and cause packet to be dropped 3783 */ 3784 pkt_prod = txdata->tx_pkt_prod; 3785 bd_prod = TX_BD(txdata->tx_bd_prod); 3786 3787 /* get a tx_buf and first BD 3788 * tx_start_bd may be changed during SPLIT, 3789 * but first_bd will always stay first 3790 */ 3791 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3792 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3793 first_bd = tx_start_bd; 3794 3795 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3796 3797 /* header nbd: indirectly zero other flags! */ 3798 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3799 3800 /* remember the first BD of the packet */ 3801 tx_buf->first_bd = txdata->tx_bd_prod; 3802 tx_buf->skb = skb; 3803 tx_buf->flags = 0; 3804 3805 DP(NETIF_MSG_TX_QUEUED, 3806 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3807 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3808 3809 if (vlan_tx_tag_present(skb)) { 3810 tx_start_bd->vlan_or_ethertype = 3811 cpu_to_le16(vlan_tx_tag_get(skb)); 3812 tx_start_bd->bd_flags.as_bitfield |= 3813 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3814 } else { 3815 /* when transmitting in a vf, start bd must hold the ethertype 3816 * for fw to enforce it 3817 */ 3818 if (IS_VF(bp)) 3819 tx_start_bd->vlan_or_ethertype = 3820 cpu_to_le16(ntohs(eth->h_proto)); 3821 else 3822 /* used by FW for packet accounting */ 3823 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3824 } 3825 3826 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3827 3828 /* turn on parsing and get a BD */ 3829 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3830 3831 if (xmit_type & XMIT_CSUM) 3832 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3833 3834 if (!CHIP_IS_E1x(bp)) { 3835 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3836 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3837 3838 if (xmit_type & XMIT_CSUM_ENC) { 3839 u16 global_data = 0; 3840 3841 /* Set PBD in enc checksum offload case */ 3842 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3843 &pbd_e2_parsing_data, 3844 xmit_type); 3845 3846 /* turn on 2nd parsing and get a BD */ 3847 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3848 3849 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3850 3851 memset(pbd2, 0, sizeof(*pbd2)); 3852 3853 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3854 (skb_inner_network_header(skb) - 3855 skb->data) >> 1; 3856 3857 if (xmit_type & XMIT_GSO_ENC) 3858 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3859 &global_data, 3860 xmit_type); 3861 3862 pbd2->global_data = cpu_to_le16(global_data); 3863 3864 /* add addition parse BD indication to start BD */ 3865 SET_FLAG(tx_start_bd->general_data, 3866 ETH_TX_START_BD_PARSE_NBDS, 1); 3867 /* set encapsulation flag in start BD */ 3868 SET_FLAG(tx_start_bd->general_data, 3869 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3870 nbd++; 3871 } else if (xmit_type & XMIT_CSUM) { 3872 /* Set PBD in checksum offload case w/o encapsulation */ 3873 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3874 &pbd_e2_parsing_data, 3875 xmit_type); 3876 } 3877 3878 /* Add the macs to the parsing BD this is a vf */ 3879 if (IS_VF(bp)) { 3880 /* override GRE parameters in BD */ 3881 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3882 &pbd_e2->data.mac_addr.src_mid, 3883 &pbd_e2->data.mac_addr.src_lo, 3884 eth->h_source); 3885 3886 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 3887 &pbd_e2->data.mac_addr.dst_mid, 3888 &pbd_e2->data.mac_addr.dst_lo, 3889 eth->h_dest); 3890 } 3891 3892 SET_FLAG(pbd_e2_parsing_data, 3893 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 3894 } else { 3895 u16 global_data = 0; 3896 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 3897 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 3898 /* Set PBD in checksum offload case */ 3899 if (xmit_type & XMIT_CSUM) 3900 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 3901 3902 SET_FLAG(global_data, 3903 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 3904 pbd_e1x->global_data |= cpu_to_le16(global_data); 3905 } 3906 3907 /* Setup the data pointer of the first BD of the packet */ 3908 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3909 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3910 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 3911 pkt_size = tx_start_bd->nbytes; 3912 3913 DP(NETIF_MSG_TX_QUEUED, 3914 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 3915 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 3916 le16_to_cpu(tx_start_bd->nbytes), 3917 tx_start_bd->bd_flags.as_bitfield, 3918 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 3919 3920 if (xmit_type & XMIT_GSO) { 3921 3922 DP(NETIF_MSG_TX_QUEUED, 3923 "TSO packet len %d hlen %d total len %d tso size %d\n", 3924 skb->len, hlen, skb_headlen(skb), 3925 skb_shinfo(skb)->gso_size); 3926 3927 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 3928 3929 if (unlikely(skb_headlen(skb) > hlen)) { 3930 nbd++; 3931 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 3932 &tx_start_bd, hlen, 3933 bd_prod); 3934 } 3935 if (!CHIP_IS_E1x(bp)) 3936 bnx2x_set_pbd_gso_e2(skb, &pbd_e2_parsing_data, 3937 xmit_type); 3938 else 3939 bnx2x_set_pbd_gso(skb, pbd_e1x, first_bd, xmit_type); 3940 } 3941 3942 /* Set the PBD's parsing_data field if not zero 3943 * (for the chips newer than 57711). 3944 */ 3945 if (pbd_e2_parsing_data) 3946 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 3947 3948 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 3949 3950 /* Handle fragmented skb */ 3951 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3952 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3953 3954 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 3955 skb_frag_size(frag), DMA_TO_DEVICE); 3956 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3957 unsigned int pkts_compl = 0, bytes_compl = 0; 3958 3959 DP(NETIF_MSG_TX_QUEUED, 3960 "Unable to map page - dropping packet...\n"); 3961 3962 /* we need unmap all buffers already mapped 3963 * for this SKB; 3964 * first_bd->nbd need to be properly updated 3965 * before call to bnx2x_free_tx_pkt 3966 */ 3967 first_bd->nbd = cpu_to_le16(nbd); 3968 bnx2x_free_tx_pkt(bp, txdata, 3969 TX_BD(txdata->tx_pkt_prod), 3970 &pkts_compl, &bytes_compl); 3971 return NETDEV_TX_OK; 3972 } 3973 3974 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3975 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3976 if (total_pkt_bd == NULL) 3977 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3978 3979 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3980 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3981 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 3982 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 3983 nbd++; 3984 3985 DP(NETIF_MSG_TX_QUEUED, 3986 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 3987 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 3988 le16_to_cpu(tx_data_bd->nbytes)); 3989 } 3990 3991 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 3992 3993 /* update with actual num BDs */ 3994 first_bd->nbd = cpu_to_le16(nbd); 3995 3996 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3997 3998 /* now send a tx doorbell, counting the next BD 3999 * if the packet contains or ends with it 4000 */ 4001 if (TX_BD_POFF(bd_prod) < nbd) 4002 nbd++; 4003 4004 /* total_pkt_bytes should be set on the first data BD if 4005 * it's not an LSO packet and there is more than one 4006 * data BD. In this case pkt_size is limited by an MTU value. 4007 * However we prefer to set it for an LSO packet (while we don't 4008 * have to) in order to save some CPU cycles in a none-LSO 4009 * case, when we much more care about them. 4010 */ 4011 if (total_pkt_bd != NULL) 4012 total_pkt_bd->total_pkt_bytes = pkt_size; 4013 4014 if (pbd_e1x) 4015 DP(NETIF_MSG_TX_QUEUED, 4016 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4017 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4018 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4019 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4020 le16_to_cpu(pbd_e1x->total_hlen_w)); 4021 if (pbd_e2) 4022 DP(NETIF_MSG_TX_QUEUED, 4023 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4024 pbd_e2, 4025 pbd_e2->data.mac_addr.dst_hi, 4026 pbd_e2->data.mac_addr.dst_mid, 4027 pbd_e2->data.mac_addr.dst_lo, 4028 pbd_e2->data.mac_addr.src_hi, 4029 pbd_e2->data.mac_addr.src_mid, 4030 pbd_e2->data.mac_addr.src_lo, 4031 pbd_e2->parsing_data); 4032 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4033 4034 netdev_tx_sent_queue(txq, skb->len); 4035 4036 skb_tx_timestamp(skb); 4037 4038 txdata->tx_pkt_prod++; 4039 /* 4040 * Make sure that the BD data is updated before updating the producer 4041 * since FW might read the BD right after the producer is updated. 4042 * This is only applicable for weak-ordered memory model archs such 4043 * as IA-64. The following barrier is also mandatory since FW will 4044 * assumes packets must have BDs. 4045 */ 4046 wmb(); 4047 4048 txdata->tx_db.data.prod += nbd; 4049 barrier(); 4050 4051 DOORBELL(bp, txdata->cid, txdata->tx_db.raw); 4052 4053 mmiowb(); 4054 4055 txdata->tx_bd_prod += nbd; 4056 4057 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4058 netif_tx_stop_queue(txq); 4059 4060 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4061 * ordering of set_bit() in netif_tx_stop_queue() and read of 4062 * fp->bd_tx_cons */ 4063 smp_mb(); 4064 4065 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4066 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4067 netif_tx_wake_queue(txq); 4068 } 4069 txdata->tx_pkt++; 4070 4071 return NETDEV_TX_OK; 4072 } 4073 4074 /** 4075 * bnx2x_setup_tc - routine to configure net_device for multi tc 4076 * 4077 * @netdev: net device to configure 4078 * @tc: number of traffic classes to enable 4079 * 4080 * callback connected to the ndo_setup_tc function pointer 4081 */ 4082 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4083 { 4084 int cos, prio, count, offset; 4085 struct bnx2x *bp = netdev_priv(dev); 4086 4087 /* setup tc must be called under rtnl lock */ 4088 ASSERT_RTNL(); 4089 4090 /* no traffic classes requested. Aborting */ 4091 if (!num_tc) { 4092 netdev_reset_tc(dev); 4093 return 0; 4094 } 4095 4096 /* requested to support too many traffic classes */ 4097 if (num_tc > bp->max_cos) { 4098 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4099 num_tc, bp->max_cos); 4100 return -EINVAL; 4101 } 4102 4103 /* declare amount of supported traffic classes */ 4104 if (netdev_set_num_tc(dev, num_tc)) { 4105 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4106 return -EINVAL; 4107 } 4108 4109 /* configure priority to traffic class mapping */ 4110 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4111 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[prio]); 4112 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4113 "mapping priority %d to tc %d\n", 4114 prio, bp->prio_to_cos[prio]); 4115 } 4116 4117 /* Use this configuration to differentiate tc0 from other COSes 4118 This can be used for ets or pfc, and save the effort of setting 4119 up a multio class queue disc or negotiating DCBX with a switch 4120 netdev_set_prio_tc_map(dev, 0, 0); 4121 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4122 for (prio = 1; prio < 16; prio++) { 4123 netdev_set_prio_tc_map(dev, prio, 1); 4124 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4125 } */ 4126 4127 /* configure traffic class to transmission queue mapping */ 4128 for (cos = 0; cos < bp->max_cos; cos++) { 4129 count = BNX2X_NUM_ETH_QUEUES(bp); 4130 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4131 netdev_set_tc_queue(dev, cos, count, offset); 4132 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4133 "mapping tc %d to offset %d count %d\n", 4134 cos, offset, count); 4135 } 4136 4137 return 0; 4138 } 4139 4140 /* called with rtnl_lock */ 4141 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4142 { 4143 struct sockaddr *addr = p; 4144 struct bnx2x *bp = netdev_priv(dev); 4145 int rc = 0; 4146 4147 if (!bnx2x_is_valid_ether_addr(bp, addr->sa_data)) { 4148 BNX2X_ERR("Requested MAC address is not valid\n"); 4149 return -EINVAL; 4150 } 4151 4152 if ((IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) && 4153 !is_zero_ether_addr(addr->sa_data)) { 4154 BNX2X_ERR("Can't configure non-zero address on iSCSI or FCoE functions in MF-SD mode\n"); 4155 return -EINVAL; 4156 } 4157 4158 if (netif_running(dev)) { 4159 rc = bnx2x_set_eth_mac(bp, false); 4160 if (rc) 4161 return rc; 4162 } 4163 4164 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4165 4166 if (netif_running(dev)) 4167 rc = bnx2x_set_eth_mac(bp, true); 4168 4169 return rc; 4170 } 4171 4172 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4173 { 4174 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4175 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4176 u8 cos; 4177 4178 /* Common */ 4179 4180 if (IS_FCOE_IDX(fp_index)) { 4181 memset(sb, 0, sizeof(union host_hc_status_block)); 4182 fp->status_blk_mapping = 0; 4183 } else { 4184 /* status blocks */ 4185 if (!CHIP_IS_E1x(bp)) 4186 BNX2X_PCI_FREE(sb->e2_sb, 4187 bnx2x_fp(bp, fp_index, 4188 status_blk_mapping), 4189 sizeof(struct host_hc_status_block_e2)); 4190 else 4191 BNX2X_PCI_FREE(sb->e1x_sb, 4192 bnx2x_fp(bp, fp_index, 4193 status_blk_mapping), 4194 sizeof(struct host_hc_status_block_e1x)); 4195 } 4196 4197 /* Rx */ 4198 if (!skip_rx_queue(bp, fp_index)) { 4199 bnx2x_free_rx_bds(fp); 4200 4201 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4202 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4203 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4204 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4205 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4206 4207 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4208 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4209 sizeof(struct eth_fast_path_rx_cqe) * 4210 NUM_RCQ_BD); 4211 4212 /* SGE ring */ 4213 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4214 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4215 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4216 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4217 } 4218 4219 /* Tx */ 4220 if (!skip_tx_queue(bp, fp_index)) { 4221 /* fastpath tx rings: tx_buf tx_desc */ 4222 for_each_cos_in_tx_queue(fp, cos) { 4223 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4224 4225 DP(NETIF_MSG_IFDOWN, 4226 "freeing tx memory of fp %d cos %d cid %d\n", 4227 fp_index, cos, txdata->cid); 4228 4229 BNX2X_FREE(txdata->tx_buf_ring); 4230 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4231 txdata->tx_desc_mapping, 4232 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4233 } 4234 } 4235 /* end of fastpath */ 4236 } 4237 4238 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4239 { 4240 int i; 4241 for_each_cnic_queue(bp, i) 4242 bnx2x_free_fp_mem_at(bp, i); 4243 } 4244 4245 void bnx2x_free_fp_mem(struct bnx2x *bp) 4246 { 4247 int i; 4248 for_each_eth_queue(bp, i) 4249 bnx2x_free_fp_mem_at(bp, i); 4250 } 4251 4252 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4253 { 4254 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4255 if (!CHIP_IS_E1x(bp)) { 4256 bnx2x_fp(bp, index, sb_index_values) = 4257 (__le16 *)status_blk.e2_sb->sb.index_values; 4258 bnx2x_fp(bp, index, sb_running_index) = 4259 (__le16 *)status_blk.e2_sb->sb.running_index; 4260 } else { 4261 bnx2x_fp(bp, index, sb_index_values) = 4262 (__le16 *)status_blk.e1x_sb->sb.index_values; 4263 bnx2x_fp(bp, index, sb_running_index) = 4264 (__le16 *)status_blk.e1x_sb->sb.running_index; 4265 } 4266 } 4267 4268 /* Returns the number of actually allocated BDs */ 4269 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4270 int rx_ring_size) 4271 { 4272 struct bnx2x *bp = fp->bp; 4273 u16 ring_prod, cqe_ring_prod; 4274 int i, failure_cnt = 0; 4275 4276 fp->rx_comp_cons = 0; 4277 cqe_ring_prod = ring_prod = 0; 4278 4279 /* This routine is called only during fo init so 4280 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4281 */ 4282 for (i = 0; i < rx_ring_size; i++) { 4283 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4284 failure_cnt++; 4285 continue; 4286 } 4287 ring_prod = NEXT_RX_IDX(ring_prod); 4288 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4289 WARN_ON(ring_prod <= (i - failure_cnt)); 4290 } 4291 4292 if (failure_cnt) 4293 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4294 i - failure_cnt, fp->index); 4295 4296 fp->rx_bd_prod = ring_prod; 4297 /* Limit the CQE producer by the CQE ring size */ 4298 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4299 cqe_ring_prod); 4300 fp->rx_pkt = fp->rx_calls = 0; 4301 4302 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4303 4304 return i - failure_cnt; 4305 } 4306 4307 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4308 { 4309 int i; 4310 4311 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4312 struct eth_rx_cqe_next_page *nextpg; 4313 4314 nextpg = (struct eth_rx_cqe_next_page *) 4315 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4316 nextpg->addr_hi = 4317 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4318 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4319 nextpg->addr_lo = 4320 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4321 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4322 } 4323 } 4324 4325 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4326 { 4327 union host_hc_status_block *sb; 4328 struct bnx2x_fastpath *fp = &bp->fp[index]; 4329 int ring_size = 0; 4330 u8 cos; 4331 int rx_ring_size = 0; 4332 4333 if (!bp->rx_ring_size && 4334 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) { 4335 rx_ring_size = MIN_RX_SIZE_NONTPA; 4336 bp->rx_ring_size = rx_ring_size; 4337 } else if (!bp->rx_ring_size) { 4338 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4339 4340 if (CHIP_IS_E3(bp)) { 4341 u32 cfg = SHMEM_RD(bp, 4342 dev_info.port_hw_config[BP_PORT(bp)]. 4343 default_cfg); 4344 4345 /* Decrease ring size for 1G functions */ 4346 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4347 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4348 rx_ring_size /= 10; 4349 } 4350 4351 /* allocate at least number of buffers required by FW */ 4352 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4353 MIN_RX_SIZE_TPA, rx_ring_size); 4354 4355 bp->rx_ring_size = rx_ring_size; 4356 } else /* if rx_ring_size specified - use it */ 4357 rx_ring_size = bp->rx_ring_size; 4358 4359 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4360 4361 /* Common */ 4362 sb = &bnx2x_fp(bp, index, status_blk); 4363 4364 if (!IS_FCOE_IDX(index)) { 4365 /* status blocks */ 4366 if (!CHIP_IS_E1x(bp)) 4367 BNX2X_PCI_ALLOC(sb->e2_sb, 4368 &bnx2x_fp(bp, index, status_blk_mapping), 4369 sizeof(struct host_hc_status_block_e2)); 4370 else 4371 BNX2X_PCI_ALLOC(sb->e1x_sb, 4372 &bnx2x_fp(bp, index, status_blk_mapping), 4373 sizeof(struct host_hc_status_block_e1x)); 4374 } 4375 4376 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4377 * set shortcuts for it. 4378 */ 4379 if (!IS_FCOE_IDX(index)) 4380 set_sb_shortcuts(bp, index); 4381 4382 /* Tx */ 4383 if (!skip_tx_queue(bp, index)) { 4384 /* fastpath tx rings: tx_buf tx_desc */ 4385 for_each_cos_in_tx_queue(fp, cos) { 4386 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4387 4388 DP(NETIF_MSG_IFUP, 4389 "allocating tx memory of fp %d cos %d\n", 4390 index, cos); 4391 4392 BNX2X_ALLOC(txdata->tx_buf_ring, 4393 sizeof(struct sw_tx_bd) * NUM_TX_BD); 4394 BNX2X_PCI_ALLOC(txdata->tx_desc_ring, 4395 &txdata->tx_desc_mapping, 4396 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4397 } 4398 } 4399 4400 /* Rx */ 4401 if (!skip_rx_queue(bp, index)) { 4402 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4403 BNX2X_ALLOC(bnx2x_fp(bp, index, rx_buf_ring), 4404 sizeof(struct sw_rx_bd) * NUM_RX_BD); 4405 BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_desc_ring), 4406 &bnx2x_fp(bp, index, rx_desc_mapping), 4407 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4408 4409 /* Seed all CQEs by 1s */ 4410 BNX2X_PCI_FALLOC(bnx2x_fp(bp, index, rx_comp_ring), 4411 &bnx2x_fp(bp, index, rx_comp_mapping), 4412 sizeof(struct eth_fast_path_rx_cqe) * 4413 NUM_RCQ_BD); 4414 4415 /* SGE ring */ 4416 BNX2X_ALLOC(bnx2x_fp(bp, index, rx_page_ring), 4417 sizeof(struct sw_rx_page) * NUM_RX_SGE); 4418 BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_sge_ring), 4419 &bnx2x_fp(bp, index, rx_sge_mapping), 4420 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4421 /* RX BD ring */ 4422 bnx2x_set_next_page_rx_bd(fp); 4423 4424 /* CQ ring */ 4425 bnx2x_set_next_page_rx_cq(fp); 4426 4427 /* BDs */ 4428 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4429 if (ring_size < rx_ring_size) 4430 goto alloc_mem_err; 4431 } 4432 4433 return 0; 4434 4435 /* handles low memory cases */ 4436 alloc_mem_err: 4437 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4438 index, ring_size); 4439 /* FW will drop all packets if queue is not big enough, 4440 * In these cases we disable the queue 4441 * Min size is different for OOO, TPA and non-TPA queues 4442 */ 4443 if (ring_size < (fp->disable_tpa ? 4444 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4445 /* release memory allocated for this queue */ 4446 bnx2x_free_fp_mem_at(bp, index); 4447 return -ENOMEM; 4448 } 4449 return 0; 4450 } 4451 4452 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4453 { 4454 if (!NO_FCOE(bp)) 4455 /* FCoE */ 4456 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4457 /* we will fail load process instead of mark 4458 * NO_FCOE_FLAG 4459 */ 4460 return -ENOMEM; 4461 4462 return 0; 4463 } 4464 4465 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4466 { 4467 int i; 4468 4469 /* 1. Allocate FP for leading - fatal if error 4470 * 2. Allocate RSS - fix number of queues if error 4471 */ 4472 4473 /* leading */ 4474 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4475 return -ENOMEM; 4476 4477 /* RSS */ 4478 for_each_nondefault_eth_queue(bp, i) 4479 if (bnx2x_alloc_fp_mem_at(bp, i)) 4480 break; 4481 4482 /* handle memory failures */ 4483 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4484 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4485 4486 WARN_ON(delta < 0); 4487 bnx2x_shrink_eth_fp(bp, delta); 4488 if (CNIC_SUPPORT(bp)) 4489 /* move non eth FPs next to last eth FP 4490 * must be done in that order 4491 * FCOE_IDX < FWD_IDX < OOO_IDX 4492 */ 4493 4494 /* move FCoE fp even NO_FCOE_FLAG is on */ 4495 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4496 bp->num_ethernet_queues -= delta; 4497 bp->num_queues = bp->num_ethernet_queues + 4498 bp->num_cnic_queues; 4499 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4500 bp->num_queues + delta, bp->num_queues); 4501 } 4502 4503 return 0; 4504 } 4505 4506 void bnx2x_free_mem_bp(struct bnx2x *bp) 4507 { 4508 int i; 4509 4510 for (i = 0; i < bp->fp_array_size; i++) 4511 kfree(bp->fp[i].tpa_info); 4512 kfree(bp->fp); 4513 kfree(bp->sp_objs); 4514 kfree(bp->fp_stats); 4515 kfree(bp->bnx2x_txq); 4516 kfree(bp->msix_table); 4517 kfree(bp->ilt); 4518 } 4519 4520 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4521 { 4522 struct bnx2x_fastpath *fp; 4523 struct msix_entry *tbl; 4524 struct bnx2x_ilt *ilt; 4525 int msix_table_size = 0; 4526 int fp_array_size, txq_array_size; 4527 int i; 4528 4529 /* 4530 * The biggest MSI-X table we might need is as a maximum number of fast 4531 * path IGU SBs plus default SB (for PF only). 4532 */ 4533 msix_table_size = bp->igu_sb_cnt; 4534 if (IS_PF(bp)) 4535 msix_table_size++; 4536 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4537 4538 /* fp array: RSS plus CNIC related L2 queues */ 4539 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4540 bp->fp_array_size = fp_array_size; 4541 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4542 4543 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4544 if (!fp) 4545 goto alloc_err; 4546 for (i = 0; i < bp->fp_array_size; i++) { 4547 fp[i].tpa_info = 4548 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4549 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4550 if (!(fp[i].tpa_info)) 4551 goto alloc_err; 4552 } 4553 4554 bp->fp = fp; 4555 4556 /* allocate sp objs */ 4557 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4558 GFP_KERNEL); 4559 if (!bp->sp_objs) 4560 goto alloc_err; 4561 4562 /* allocate fp_stats */ 4563 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4564 GFP_KERNEL); 4565 if (!bp->fp_stats) 4566 goto alloc_err; 4567 4568 /* Allocate memory for the transmission queues array */ 4569 txq_array_size = 4570 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4571 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4572 4573 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4574 GFP_KERNEL); 4575 if (!bp->bnx2x_txq) 4576 goto alloc_err; 4577 4578 /* msix table */ 4579 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4580 if (!tbl) 4581 goto alloc_err; 4582 bp->msix_table = tbl; 4583 4584 /* ilt */ 4585 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4586 if (!ilt) 4587 goto alloc_err; 4588 bp->ilt = ilt; 4589 4590 return 0; 4591 alloc_err: 4592 bnx2x_free_mem_bp(bp); 4593 return -ENOMEM; 4594 } 4595 4596 int bnx2x_reload_if_running(struct net_device *dev) 4597 { 4598 struct bnx2x *bp = netdev_priv(dev); 4599 4600 if (unlikely(!netif_running(dev))) 4601 return 0; 4602 4603 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4604 return bnx2x_nic_load(bp, LOAD_NORMAL); 4605 } 4606 4607 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4608 { 4609 u32 sel_phy_idx = 0; 4610 if (bp->link_params.num_phys <= 1) 4611 return INT_PHY; 4612 4613 if (bp->link_vars.link_up) { 4614 sel_phy_idx = EXT_PHY1; 4615 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4616 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4617 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4618 sel_phy_idx = EXT_PHY2; 4619 } else { 4620 4621 switch (bnx2x_phy_selection(&bp->link_params)) { 4622 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4623 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4624 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4625 sel_phy_idx = EXT_PHY1; 4626 break; 4627 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4628 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4629 sel_phy_idx = EXT_PHY2; 4630 break; 4631 } 4632 } 4633 4634 return sel_phy_idx; 4635 } 4636 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4637 { 4638 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4639 /* 4640 * The selected activated PHY is always after swapping (in case PHY 4641 * swapping is enabled). So when swapping is enabled, we need to reverse 4642 * the configuration 4643 */ 4644 4645 if (bp->link_params.multi_phy_config & 4646 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4647 if (sel_phy_idx == EXT_PHY1) 4648 sel_phy_idx = EXT_PHY2; 4649 else if (sel_phy_idx == EXT_PHY2) 4650 sel_phy_idx = EXT_PHY1; 4651 } 4652 return LINK_CONFIG_IDX(sel_phy_idx); 4653 } 4654 4655 #ifdef NETDEV_FCOE_WWNN 4656 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4657 { 4658 struct bnx2x *bp = netdev_priv(dev); 4659 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4660 4661 switch (type) { 4662 case NETDEV_FCOE_WWNN: 4663 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4664 cp->fcoe_wwn_node_name_lo); 4665 break; 4666 case NETDEV_FCOE_WWPN: 4667 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4668 cp->fcoe_wwn_port_name_lo); 4669 break; 4670 default: 4671 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4672 return -EINVAL; 4673 } 4674 4675 return 0; 4676 } 4677 #endif 4678 4679 /* called with rtnl_lock */ 4680 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4681 { 4682 struct bnx2x *bp = netdev_priv(dev); 4683 4684 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4685 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4686 return -EAGAIN; 4687 } 4688 4689 if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || 4690 ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) { 4691 BNX2X_ERR("Can't support requested MTU size\n"); 4692 return -EINVAL; 4693 } 4694 4695 /* This does not race with packet allocation 4696 * because the actual alloc size is 4697 * only updated as part of load 4698 */ 4699 dev->mtu = new_mtu; 4700 4701 return bnx2x_reload_if_running(dev); 4702 } 4703 4704 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4705 netdev_features_t features) 4706 { 4707 struct bnx2x *bp = netdev_priv(dev); 4708 4709 /* TPA requires Rx CSUM offloading */ 4710 if (!(features & NETIF_F_RXCSUM) || bp->disable_tpa) { 4711 features &= ~NETIF_F_LRO; 4712 features &= ~NETIF_F_GRO; 4713 } 4714 4715 return features; 4716 } 4717 4718 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4719 { 4720 struct bnx2x *bp = netdev_priv(dev); 4721 u32 flags = bp->flags; 4722 u32 changes; 4723 bool bnx2x_reload = false; 4724 4725 if (features & NETIF_F_LRO) 4726 flags |= TPA_ENABLE_FLAG; 4727 else 4728 flags &= ~TPA_ENABLE_FLAG; 4729 4730 if (features & NETIF_F_GRO) 4731 flags |= GRO_ENABLE_FLAG; 4732 else 4733 flags &= ~GRO_ENABLE_FLAG; 4734 4735 if (features & NETIF_F_LOOPBACK) { 4736 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4737 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4738 bnx2x_reload = true; 4739 } 4740 } else { 4741 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4742 bp->link_params.loopback_mode = LOOPBACK_NONE; 4743 bnx2x_reload = true; 4744 } 4745 } 4746 4747 changes = flags ^ bp->flags; 4748 4749 /* if GRO is changed while LRO is enabled, don't force a reload */ 4750 if ((changes & GRO_ENABLE_FLAG) && (flags & TPA_ENABLE_FLAG)) 4751 changes &= ~GRO_ENABLE_FLAG; 4752 4753 if (changes) 4754 bnx2x_reload = true; 4755 4756 bp->flags = flags; 4757 4758 if (bnx2x_reload) { 4759 if (bp->recovery_state == BNX2X_RECOVERY_DONE) 4760 return bnx2x_reload_if_running(dev); 4761 /* else: bnx2x_nic_load() will be called at end of recovery */ 4762 } 4763 4764 return 0; 4765 } 4766 4767 void bnx2x_tx_timeout(struct net_device *dev) 4768 { 4769 struct bnx2x *bp = netdev_priv(dev); 4770 4771 #ifdef BNX2X_STOP_ON_ERROR 4772 if (!bp->panic) 4773 bnx2x_panic(); 4774 #endif 4775 4776 smp_mb__before_clear_bit(); 4777 set_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state); 4778 smp_mb__after_clear_bit(); 4779 4780 /* This allows the netif to be shutdown gracefully before resetting */ 4781 schedule_delayed_work(&bp->sp_rtnl_task, 0); 4782 } 4783 4784 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) 4785 { 4786 struct net_device *dev = pci_get_drvdata(pdev); 4787 struct bnx2x *bp; 4788 4789 if (!dev) { 4790 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4791 return -ENODEV; 4792 } 4793 bp = netdev_priv(dev); 4794 4795 rtnl_lock(); 4796 4797 pci_save_state(pdev); 4798 4799 if (!netif_running(dev)) { 4800 rtnl_unlock(); 4801 return 0; 4802 } 4803 4804 netif_device_detach(dev); 4805 4806 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 4807 4808 bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); 4809 4810 rtnl_unlock(); 4811 4812 return 0; 4813 } 4814 4815 int bnx2x_resume(struct pci_dev *pdev) 4816 { 4817 struct net_device *dev = pci_get_drvdata(pdev); 4818 struct bnx2x *bp; 4819 int rc; 4820 4821 if (!dev) { 4822 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4823 return -ENODEV; 4824 } 4825 bp = netdev_priv(dev); 4826 4827 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4828 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 4829 return -EAGAIN; 4830 } 4831 4832 rtnl_lock(); 4833 4834 pci_restore_state(pdev); 4835 4836 if (!netif_running(dev)) { 4837 rtnl_unlock(); 4838 return 0; 4839 } 4840 4841 bnx2x_set_power_state(bp, PCI_D0); 4842 netif_device_attach(dev); 4843 4844 rc = bnx2x_nic_load(bp, LOAD_OPEN); 4845 4846 rtnl_unlock(); 4847 4848 return rc; 4849 } 4850 4851 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 4852 u32 cid) 4853 { 4854 if (!cxt) { 4855 BNX2X_ERR("bad context pointer %p\n", cxt); 4856 return; 4857 } 4858 4859 /* ustorm cxt validation */ 4860 cxt->ustorm_ag_context.cdu_usage = 4861 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 4862 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 4863 /* xcontext validation */ 4864 cxt->xstorm_ag_context.cdu_reserved = 4865 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 4866 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 4867 } 4868 4869 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 4870 u8 fw_sb_id, u8 sb_index, 4871 u8 ticks) 4872 { 4873 u32 addr = BAR_CSTRORM_INTMEM + 4874 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 4875 REG_WR8(bp, addr, ticks); 4876 DP(NETIF_MSG_IFUP, 4877 "port %x fw_sb_id %d sb_index %d ticks %d\n", 4878 port, fw_sb_id, sb_index, ticks); 4879 } 4880 4881 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 4882 u16 fw_sb_id, u8 sb_index, 4883 u8 disable) 4884 { 4885 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 4886 u32 addr = BAR_CSTRORM_INTMEM + 4887 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 4888 u8 flags = REG_RD8(bp, addr); 4889 /* clear and set */ 4890 flags &= ~HC_INDEX_DATA_HC_ENABLED; 4891 flags |= enable_flag; 4892 REG_WR8(bp, addr, flags); 4893 DP(NETIF_MSG_IFUP, 4894 "port %x fw_sb_id %d sb_index %d disable %d\n", 4895 port, fw_sb_id, sb_index, disable); 4896 } 4897 4898 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 4899 u8 sb_index, u8 disable, u16 usec) 4900 { 4901 int port = BP_PORT(bp); 4902 u8 ticks = usec / BNX2X_BTR; 4903 4904 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 4905 4906 disable = disable ? 1 : (usec ? 0 : 1); 4907 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 4908 } 4909