1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <net/busy_poll.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35 
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40 
41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 	int i;
44 
45 	/* Add NAPI objects */
46 	for_each_rx_queue_cnic(bp, i) {
47 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
48 			       bnx2x_poll, NAPI_POLL_WEIGHT);
49 	}
50 }
51 
52 static void bnx2x_add_all_napi(struct bnx2x *bp)
53 {
54 	int i;
55 
56 	/* Add NAPI objects */
57 	for_each_eth_queue(bp, i) {
58 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
59 			       bnx2x_poll, NAPI_POLL_WEIGHT);
60 	}
61 }
62 
63 static int bnx2x_calc_num_queues(struct bnx2x *bp)
64 {
65 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
66 
67 	/* Reduce memory usage in kdump environment by using only one queue */
68 	if (is_kdump_kernel())
69 		nq = 1;
70 
71 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
72 	return nq;
73 }
74 
75 /**
76  * bnx2x_move_fp - move content of the fastpath structure.
77  *
78  * @bp:		driver handle
79  * @from:	source FP index
80  * @to:		destination FP index
81  *
82  * Makes sure the contents of the bp->fp[to].napi is kept
83  * intact. This is done by first copying the napi struct from
84  * the target to the source, and then mem copying the entire
85  * source onto the target. Update txdata pointers and related
86  * content.
87  */
88 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
89 {
90 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
91 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
92 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
93 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
94 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
95 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
96 	int old_max_eth_txqs, new_max_eth_txqs;
97 	int old_txdata_index = 0, new_txdata_index = 0;
98 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
99 
100 	/* Copy the NAPI object as it has been already initialized */
101 	from_fp->napi = to_fp->napi;
102 
103 	/* Move bnx2x_fastpath contents */
104 	memcpy(to_fp, from_fp, sizeof(*to_fp));
105 	to_fp->index = to;
106 
107 	/* Retain the tpa_info of the original `to' version as we don't want
108 	 * 2 FPs to contain the same tpa_info pointer.
109 	 */
110 	to_fp->tpa_info = old_tpa_info;
111 
112 	/* move sp_objs contents as well, as their indices match fp ones */
113 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
114 
115 	/* move fp_stats contents as well, as their indices match fp ones */
116 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
117 
118 	/* Update txdata pointers in fp and move txdata content accordingly:
119 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
120 	 * decremented by max_cos x delta.
121 	 */
122 
123 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
124 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
125 				(bp)->max_cos;
126 	if (from == FCOE_IDX(bp)) {
127 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
129 	}
130 
131 	memcpy(&bp->bnx2x_txq[new_txdata_index],
132 	       &bp->bnx2x_txq[old_txdata_index],
133 	       sizeof(struct bnx2x_fp_txdata));
134 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
135 }
136 
137 /**
138  * bnx2x_fill_fw_str - Fill buffer with FW version string.
139  *
140  * @bp:        driver handle
141  * @buf:       character buffer to fill with the fw name
142  * @buf_len:   length of the above buffer
143  *
144  */
145 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
146 {
147 	if (IS_PF(bp)) {
148 		u8 phy_fw_ver[PHY_FW_VER_LEN];
149 
150 		phy_fw_ver[0] = '\0';
151 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
152 					     phy_fw_ver, PHY_FW_VER_LEN);
153 		strlcpy(buf, bp->fw_ver, buf_len);
154 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
155 			 "bc %d.%d.%d%s%s",
156 			 (bp->common.bc_ver & 0xff0000) >> 16,
157 			 (bp->common.bc_ver & 0xff00) >> 8,
158 			 (bp->common.bc_ver & 0xff),
159 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
160 	} else {
161 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
162 	}
163 }
164 
165 /**
166  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
167  *
168  * @bp:	driver handle
169  * @delta:	number of eth queues which were not allocated
170  */
171 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
172 {
173 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
174 
175 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
176 	 * backward along the array could cause memory to be overridden
177 	 */
178 	for (cos = 1; cos < bp->max_cos; cos++) {
179 		for (i = 0; i < old_eth_num - delta; i++) {
180 			struct bnx2x_fastpath *fp = &bp->fp[i];
181 			int new_idx = cos * (old_eth_num - delta) + i;
182 
183 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
184 			       sizeof(struct bnx2x_fp_txdata));
185 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
186 		}
187 	}
188 }
189 
190 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
191 
192 /* free skb in the packet ring at pos idx
193  * return idx of last bd freed
194  */
195 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
196 			     u16 idx, unsigned int *pkts_compl,
197 			     unsigned int *bytes_compl)
198 {
199 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
200 	struct eth_tx_start_bd *tx_start_bd;
201 	struct eth_tx_bd *tx_data_bd;
202 	struct sk_buff *skb = tx_buf->skb;
203 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
204 	int nbd;
205 	u16 split_bd_len = 0;
206 
207 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
208 	prefetch(&skb->end);
209 
210 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
211 	   txdata->txq_index, idx, tx_buf, skb);
212 
213 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
214 
215 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
216 #ifdef BNX2X_STOP_ON_ERROR
217 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
218 		BNX2X_ERR("BAD nbd!\n");
219 		bnx2x_panic();
220 	}
221 #endif
222 	new_cons = nbd + tx_buf->first_bd;
223 
224 	/* Get the next bd */
225 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
226 
227 	/* Skip a parse bd... */
228 	--nbd;
229 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
230 
231 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
232 		/* Skip second parse bd... */
233 		--nbd;
234 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
235 	}
236 
237 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
238 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
239 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
240 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
241 		--nbd;
242 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
243 	}
244 
245 	/* unmap first bd */
246 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
247 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
248 			 DMA_TO_DEVICE);
249 
250 	/* now free frags */
251 	while (nbd > 0) {
252 
253 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
254 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
255 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
256 		if (--nbd)
257 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
258 	}
259 
260 	/* release skb */
261 	WARN_ON(!skb);
262 	if (likely(skb)) {
263 		(*pkts_compl)++;
264 		(*bytes_compl) += skb->len;
265 		dev_kfree_skb_any(skb);
266 	}
267 
268 	tx_buf->first_bd = 0;
269 	tx_buf->skb = NULL;
270 
271 	return new_cons;
272 }
273 
274 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
275 {
276 	struct netdev_queue *txq;
277 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
278 	unsigned int pkts_compl = 0, bytes_compl = 0;
279 
280 #ifdef BNX2X_STOP_ON_ERROR
281 	if (unlikely(bp->panic))
282 		return -1;
283 #endif
284 
285 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
286 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
287 	sw_cons = txdata->tx_pkt_cons;
288 
289 	while (sw_cons != hw_cons) {
290 		u16 pkt_cons;
291 
292 		pkt_cons = TX_BD(sw_cons);
293 
294 		DP(NETIF_MSG_TX_DONE,
295 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
296 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
297 
298 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
299 					    &pkts_compl, &bytes_compl);
300 
301 		sw_cons++;
302 	}
303 
304 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
305 
306 	txdata->tx_pkt_cons = sw_cons;
307 	txdata->tx_bd_cons = bd_cons;
308 
309 	/* Need to make the tx_bd_cons update visible to start_xmit()
310 	 * before checking for netif_tx_queue_stopped().  Without the
311 	 * memory barrier, there is a small possibility that
312 	 * start_xmit() will miss it and cause the queue to be stopped
313 	 * forever.
314 	 * On the other hand we need an rmb() here to ensure the proper
315 	 * ordering of bit testing in the following
316 	 * netif_tx_queue_stopped(txq) call.
317 	 */
318 	smp_mb();
319 
320 	if (unlikely(netif_tx_queue_stopped(txq))) {
321 		/* Taking tx_lock() is needed to prevent re-enabling the queue
322 		 * while it's empty. This could have happen if rx_action() gets
323 		 * suspended in bnx2x_tx_int() after the condition before
324 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
325 		 *
326 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
327 		 * sends some packets consuming the whole queue again->
328 		 * stops the queue
329 		 */
330 
331 		__netif_tx_lock(txq, smp_processor_id());
332 
333 		if ((netif_tx_queue_stopped(txq)) &&
334 		    (bp->state == BNX2X_STATE_OPEN) &&
335 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
336 			netif_tx_wake_queue(txq);
337 
338 		__netif_tx_unlock(txq);
339 	}
340 	return 0;
341 }
342 
343 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
344 					     u16 idx)
345 {
346 	u16 last_max = fp->last_max_sge;
347 
348 	if (SUB_S16(idx, last_max) > 0)
349 		fp->last_max_sge = idx;
350 }
351 
352 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
353 					 u16 sge_len,
354 					 struct eth_end_agg_rx_cqe *cqe)
355 {
356 	struct bnx2x *bp = fp->bp;
357 	u16 last_max, last_elem, first_elem;
358 	u16 delta = 0;
359 	u16 i;
360 
361 	if (!sge_len)
362 		return;
363 
364 	/* First mark all used pages */
365 	for (i = 0; i < sge_len; i++)
366 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
367 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
368 
369 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
370 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
371 
372 	/* Here we assume that the last SGE index is the biggest */
373 	prefetch((void *)(fp->sge_mask));
374 	bnx2x_update_last_max_sge(fp,
375 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
376 
377 	last_max = RX_SGE(fp->last_max_sge);
378 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
379 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
380 
381 	/* If ring is not full */
382 	if (last_elem + 1 != first_elem)
383 		last_elem++;
384 
385 	/* Now update the prod */
386 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
387 		if (likely(fp->sge_mask[i]))
388 			break;
389 
390 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
391 		delta += BIT_VEC64_ELEM_SZ;
392 	}
393 
394 	if (delta > 0) {
395 		fp->rx_sge_prod += delta;
396 		/* clear page-end entries */
397 		bnx2x_clear_sge_mask_next_elems(fp);
398 	}
399 
400 	DP(NETIF_MSG_RX_STATUS,
401 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
402 	   fp->last_max_sge, fp->rx_sge_prod);
403 }
404 
405 /* Get Toeplitz hash value in the skb using the value from the
406  * CQE (calculated by HW).
407  */
408 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
409 			    const struct eth_fast_path_rx_cqe *cqe,
410 			    enum pkt_hash_types *rxhash_type)
411 {
412 	/* Get Toeplitz hash from CQE */
413 	if ((bp->dev->features & NETIF_F_RXHASH) &&
414 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
415 		enum eth_rss_hash_type htype;
416 
417 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
418 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
419 				(htype == TCP_IPV6_HASH_TYPE)) ?
420 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
421 
422 		return le32_to_cpu(cqe->rss_hash_result);
423 	}
424 	*rxhash_type = PKT_HASH_TYPE_NONE;
425 	return 0;
426 }
427 
428 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
429 			    u16 cons, u16 prod,
430 			    struct eth_fast_path_rx_cqe *cqe)
431 {
432 	struct bnx2x *bp = fp->bp;
433 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
434 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
435 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
436 	dma_addr_t mapping;
437 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
438 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
439 
440 	/* print error if current state != stop */
441 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
442 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
443 
444 	/* Try to map an empty data buffer from the aggregation info  */
445 	mapping = dma_map_single(&bp->pdev->dev,
446 				 first_buf->data + NET_SKB_PAD,
447 				 fp->rx_buf_size, DMA_FROM_DEVICE);
448 	/*
449 	 *  ...if it fails - move the skb from the consumer to the producer
450 	 *  and set the current aggregation state as ERROR to drop it
451 	 *  when TPA_STOP arrives.
452 	 */
453 
454 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
455 		/* Move the BD from the consumer to the producer */
456 		bnx2x_reuse_rx_data(fp, cons, prod);
457 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
458 		return;
459 	}
460 
461 	/* move empty data from pool to prod */
462 	prod_rx_buf->data = first_buf->data;
463 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
464 	/* point prod_bd to new data */
465 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
466 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
467 
468 	/* move partial skb from cons to pool (don't unmap yet) */
469 	*first_buf = *cons_rx_buf;
470 
471 	/* mark bin state as START */
472 	tpa_info->parsing_flags =
473 		le16_to_cpu(cqe->pars_flags.flags);
474 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
475 	tpa_info->tpa_state = BNX2X_TPA_START;
476 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
477 	tpa_info->placement_offset = cqe->placement_offset;
478 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
479 	if (fp->mode == TPA_MODE_GRO) {
480 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
481 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
482 		tpa_info->gro_size = gro_size;
483 	}
484 
485 #ifdef BNX2X_STOP_ON_ERROR
486 	fp->tpa_queue_used |= (1 << queue);
487 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
488 	   fp->tpa_queue_used);
489 #endif
490 }
491 
492 /* Timestamp option length allowed for TPA aggregation:
493  *
494  *		nop nop kind length echo val
495  */
496 #define TPA_TSTAMP_OPT_LEN	12
497 /**
498  * bnx2x_set_gro_params - compute GRO values
499  *
500  * @skb:		packet skb
501  * @parsing_flags:	parsing flags from the START CQE
502  * @len_on_bd:		total length of the first packet for the
503  *			aggregation.
504  * @pkt_len:		length of all segments
505  *
506  * Approximate value of the MSS for this aggregation calculated using
507  * the first packet of it.
508  * Compute number of aggregated segments, and gso_type.
509  */
510 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
511 				 u16 len_on_bd, unsigned int pkt_len,
512 				 u16 num_of_coalesced_segs)
513 {
514 	/* TPA aggregation won't have either IP options or TCP options
515 	 * other than timestamp or IPv6 extension headers.
516 	 */
517 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
518 
519 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
520 	    PRS_FLAG_OVERETH_IPV6) {
521 		hdrs_len += sizeof(struct ipv6hdr);
522 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
523 	} else {
524 		hdrs_len += sizeof(struct iphdr);
525 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
526 	}
527 
528 	/* Check if there was a TCP timestamp, if there is it's will
529 	 * always be 12 bytes length: nop nop kind length echo val.
530 	 *
531 	 * Otherwise FW would close the aggregation.
532 	 */
533 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
534 		hdrs_len += TPA_TSTAMP_OPT_LEN;
535 
536 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
537 
538 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
539 	 * to skb_shinfo(skb)->gso_segs
540 	 */
541 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
542 }
543 
544 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
545 			      u16 index, gfp_t gfp_mask)
546 {
547 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
548 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
549 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
550 	dma_addr_t mapping;
551 
552 	if (!pool->page || (PAGE_SIZE - pool->offset) < SGE_PAGE_SIZE) {
553 
554 		/* put page reference used by the memory pool, since we
555 		 * won't be using this page as the mempool anymore.
556 		 */
557 		if (pool->page)
558 			put_page(pool->page);
559 
560 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
561 		if (unlikely(!pool->page))
562 			return -ENOMEM;
563 
564 		pool->offset = 0;
565 	}
566 
567 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
568 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
569 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
570 		BNX2X_ERR("Can't map sge\n");
571 		return -ENOMEM;
572 	}
573 
574 	get_page(pool->page);
575 	sw_buf->page = pool->page;
576 	sw_buf->offset = pool->offset;
577 
578 	dma_unmap_addr_set(sw_buf, mapping, mapping);
579 
580 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
581 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
582 
583 	pool->offset += SGE_PAGE_SIZE;
584 
585 	return 0;
586 }
587 
588 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
589 			       struct bnx2x_agg_info *tpa_info,
590 			       u16 pages,
591 			       struct sk_buff *skb,
592 			       struct eth_end_agg_rx_cqe *cqe,
593 			       u16 cqe_idx)
594 {
595 	struct sw_rx_page *rx_pg, old_rx_pg;
596 	u32 i, frag_len, frag_size;
597 	int err, j, frag_id = 0;
598 	u16 len_on_bd = tpa_info->len_on_bd;
599 	u16 full_page = 0, gro_size = 0;
600 
601 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
602 
603 	if (fp->mode == TPA_MODE_GRO) {
604 		gro_size = tpa_info->gro_size;
605 		full_page = tpa_info->full_page;
606 	}
607 
608 	/* This is needed in order to enable forwarding support */
609 	if (frag_size)
610 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
611 				     le16_to_cpu(cqe->pkt_len),
612 				     le16_to_cpu(cqe->num_of_coalesced_segs));
613 
614 #ifdef BNX2X_STOP_ON_ERROR
615 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
616 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
617 			  pages, cqe_idx);
618 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
619 		bnx2x_panic();
620 		return -EINVAL;
621 	}
622 #endif
623 
624 	/* Run through the SGL and compose the fragmented skb */
625 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
626 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
627 
628 		/* FW gives the indices of the SGE as if the ring is an array
629 		   (meaning that "next" element will consume 2 indices) */
630 		if (fp->mode == TPA_MODE_GRO)
631 			frag_len = min_t(u32, frag_size, (u32)full_page);
632 		else /* LRO */
633 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
634 
635 		rx_pg = &fp->rx_page_ring[sge_idx];
636 		old_rx_pg = *rx_pg;
637 
638 		/* If we fail to allocate a substitute page, we simply stop
639 		   where we are and drop the whole packet */
640 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
641 		if (unlikely(err)) {
642 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
643 			return err;
644 		}
645 
646 		dma_unmap_page(&bp->pdev->dev,
647 			       dma_unmap_addr(&old_rx_pg, mapping),
648 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
649 		/* Add one frag and update the appropriate fields in the skb */
650 		if (fp->mode == TPA_MODE_LRO)
651 			skb_fill_page_desc(skb, j, old_rx_pg.page,
652 					   old_rx_pg.offset, frag_len);
653 		else { /* GRO */
654 			int rem;
655 			int offset = 0;
656 			for (rem = frag_len; rem > 0; rem -= gro_size) {
657 				int len = rem > gro_size ? gro_size : rem;
658 				skb_fill_page_desc(skb, frag_id++,
659 						   old_rx_pg.page,
660 						   old_rx_pg.offset + offset,
661 						   len);
662 				if (offset)
663 					get_page(old_rx_pg.page);
664 				offset += len;
665 			}
666 		}
667 
668 		skb->data_len += frag_len;
669 		skb->truesize += SGE_PAGES;
670 		skb->len += frag_len;
671 
672 		frag_size -= frag_len;
673 	}
674 
675 	return 0;
676 }
677 
678 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
679 {
680 	if (fp->rx_frag_size)
681 		skb_free_frag(data);
682 	else
683 		kfree(data);
684 }
685 
686 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
687 {
688 	if (fp->rx_frag_size) {
689 		/* GFP_KERNEL allocations are used only during initialization */
690 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
691 			return (void *)__get_free_page(gfp_mask);
692 
693 		return netdev_alloc_frag(fp->rx_frag_size);
694 	}
695 
696 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
697 }
698 
699 #ifdef CONFIG_INET
700 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
701 {
702 	const struct iphdr *iph = ip_hdr(skb);
703 	struct tcphdr *th;
704 
705 	skb_set_transport_header(skb, sizeof(struct iphdr));
706 	th = tcp_hdr(skb);
707 
708 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
709 				  iph->saddr, iph->daddr, 0);
710 }
711 
712 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
713 {
714 	struct ipv6hdr *iph = ipv6_hdr(skb);
715 	struct tcphdr *th;
716 
717 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
718 	th = tcp_hdr(skb);
719 
720 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
721 				  &iph->saddr, &iph->daddr, 0);
722 }
723 
724 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
725 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
726 {
727 	skb_reset_network_header(skb);
728 	gro_func(bp, skb);
729 	tcp_gro_complete(skb);
730 }
731 #endif
732 
733 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
734 			       struct sk_buff *skb)
735 {
736 #ifdef CONFIG_INET
737 	if (skb_shinfo(skb)->gso_size) {
738 		switch (be16_to_cpu(skb->protocol)) {
739 		case ETH_P_IP:
740 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
741 			break;
742 		case ETH_P_IPV6:
743 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
744 			break;
745 		default:
746 			WARN_ONCE(1, "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
747 				  be16_to_cpu(skb->protocol));
748 		}
749 	}
750 #endif
751 	skb_record_rx_queue(skb, fp->rx_queue);
752 	napi_gro_receive(&fp->napi, skb);
753 }
754 
755 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
756 			   struct bnx2x_agg_info *tpa_info,
757 			   u16 pages,
758 			   struct eth_end_agg_rx_cqe *cqe,
759 			   u16 cqe_idx)
760 {
761 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
762 	u8 pad = tpa_info->placement_offset;
763 	u16 len = tpa_info->len_on_bd;
764 	struct sk_buff *skb = NULL;
765 	u8 *new_data, *data = rx_buf->data;
766 	u8 old_tpa_state = tpa_info->tpa_state;
767 
768 	tpa_info->tpa_state = BNX2X_TPA_STOP;
769 
770 	/* If we there was an error during the handling of the TPA_START -
771 	 * drop this aggregation.
772 	 */
773 	if (old_tpa_state == BNX2X_TPA_ERROR)
774 		goto drop;
775 
776 	/* Try to allocate the new data */
777 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
778 	/* Unmap skb in the pool anyway, as we are going to change
779 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
780 	   fails. */
781 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
782 			 fp->rx_buf_size, DMA_FROM_DEVICE);
783 	if (likely(new_data))
784 		skb = build_skb(data, fp->rx_frag_size);
785 
786 	if (likely(skb)) {
787 #ifdef BNX2X_STOP_ON_ERROR
788 		if (pad + len > fp->rx_buf_size) {
789 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
790 				  pad, len, fp->rx_buf_size);
791 			bnx2x_panic();
792 			return;
793 		}
794 #endif
795 
796 		skb_reserve(skb, pad + NET_SKB_PAD);
797 		skb_put(skb, len);
798 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
799 
800 		skb->protocol = eth_type_trans(skb, bp->dev);
801 		skb->ip_summed = CHECKSUM_UNNECESSARY;
802 
803 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
804 					 skb, cqe, cqe_idx)) {
805 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
806 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
807 			bnx2x_gro_receive(bp, fp, skb);
808 		} else {
809 			DP(NETIF_MSG_RX_STATUS,
810 			   "Failed to allocate new pages - dropping packet!\n");
811 			dev_kfree_skb_any(skb);
812 		}
813 
814 		/* put new data in bin */
815 		rx_buf->data = new_data;
816 
817 		return;
818 	}
819 	if (new_data)
820 		bnx2x_frag_free(fp, new_data);
821 drop:
822 	/* drop the packet and keep the buffer in the bin */
823 	DP(NETIF_MSG_RX_STATUS,
824 	   "Failed to allocate or map a new skb - dropping packet!\n");
825 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
826 }
827 
828 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
829 			       u16 index, gfp_t gfp_mask)
830 {
831 	u8 *data;
832 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
833 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
834 	dma_addr_t mapping;
835 
836 	data = bnx2x_frag_alloc(fp, gfp_mask);
837 	if (unlikely(data == NULL))
838 		return -ENOMEM;
839 
840 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
841 				 fp->rx_buf_size,
842 				 DMA_FROM_DEVICE);
843 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
844 		bnx2x_frag_free(fp, data);
845 		BNX2X_ERR("Can't map rx data\n");
846 		return -ENOMEM;
847 	}
848 
849 	rx_buf->data = data;
850 	dma_unmap_addr_set(rx_buf, mapping, mapping);
851 
852 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
853 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
854 
855 	return 0;
856 }
857 
858 static
859 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
860 				 struct bnx2x_fastpath *fp,
861 				 struct bnx2x_eth_q_stats *qstats)
862 {
863 	/* Do nothing if no L4 csum validation was done.
864 	 * We do not check whether IP csum was validated. For IPv4 we assume
865 	 * that if the card got as far as validating the L4 csum, it also
866 	 * validated the IP csum. IPv6 has no IP csum.
867 	 */
868 	if (cqe->fast_path_cqe.status_flags &
869 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
870 		return;
871 
872 	/* If L4 validation was done, check if an error was found. */
873 
874 	if (cqe->fast_path_cqe.type_error_flags &
875 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
876 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
877 		qstats->hw_csum_err++;
878 	else
879 		skb->ip_summed = CHECKSUM_UNNECESSARY;
880 }
881 
882 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
883 {
884 	struct bnx2x *bp = fp->bp;
885 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
886 	u16 sw_comp_cons, sw_comp_prod;
887 	int rx_pkt = 0;
888 	union eth_rx_cqe *cqe;
889 	struct eth_fast_path_rx_cqe *cqe_fp;
890 
891 #ifdef BNX2X_STOP_ON_ERROR
892 	if (unlikely(bp->panic))
893 		return 0;
894 #endif
895 	if (budget <= 0)
896 		return rx_pkt;
897 
898 	bd_cons = fp->rx_bd_cons;
899 	bd_prod = fp->rx_bd_prod;
900 	bd_prod_fw = bd_prod;
901 	sw_comp_cons = fp->rx_comp_cons;
902 	sw_comp_prod = fp->rx_comp_prod;
903 
904 	comp_ring_cons = RCQ_BD(sw_comp_cons);
905 	cqe = &fp->rx_comp_ring[comp_ring_cons];
906 	cqe_fp = &cqe->fast_path_cqe;
907 
908 	DP(NETIF_MSG_RX_STATUS,
909 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
910 
911 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
912 		struct sw_rx_bd *rx_buf = NULL;
913 		struct sk_buff *skb;
914 		u8 cqe_fp_flags;
915 		enum eth_rx_cqe_type cqe_fp_type;
916 		u16 len, pad, queue;
917 		u8 *data;
918 		u32 rxhash;
919 		enum pkt_hash_types rxhash_type;
920 
921 #ifdef BNX2X_STOP_ON_ERROR
922 		if (unlikely(bp->panic))
923 			return 0;
924 #endif
925 
926 		bd_prod = RX_BD(bd_prod);
927 		bd_cons = RX_BD(bd_cons);
928 
929 		/* A rmb() is required to ensure that the CQE is not read
930 		 * before it is written by the adapter DMA.  PCI ordering
931 		 * rules will make sure the other fields are written before
932 		 * the marker at the end of struct eth_fast_path_rx_cqe
933 		 * but without rmb() a weakly ordered processor can process
934 		 * stale data.  Without the barrier TPA state-machine might
935 		 * enter inconsistent state and kernel stack might be
936 		 * provided with incorrect packet description - these lead
937 		 * to various kernel crashed.
938 		 */
939 		rmb();
940 
941 		cqe_fp_flags = cqe_fp->type_error_flags;
942 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
943 
944 		DP(NETIF_MSG_RX_STATUS,
945 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
946 		   CQE_TYPE(cqe_fp_flags),
947 		   cqe_fp_flags, cqe_fp->status_flags,
948 		   le32_to_cpu(cqe_fp->rss_hash_result),
949 		   le16_to_cpu(cqe_fp->vlan_tag),
950 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
951 
952 		/* is this a slowpath msg? */
953 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
954 			bnx2x_sp_event(fp, cqe);
955 			goto next_cqe;
956 		}
957 
958 		rx_buf = &fp->rx_buf_ring[bd_cons];
959 		data = rx_buf->data;
960 
961 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
962 			struct bnx2x_agg_info *tpa_info;
963 			u16 frag_size, pages;
964 #ifdef BNX2X_STOP_ON_ERROR
965 			/* sanity check */
966 			if (fp->mode == TPA_MODE_DISABLED &&
967 			    (CQE_TYPE_START(cqe_fp_type) ||
968 			     CQE_TYPE_STOP(cqe_fp_type)))
969 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
970 					  CQE_TYPE(cqe_fp_type));
971 #endif
972 
973 			if (CQE_TYPE_START(cqe_fp_type)) {
974 				u16 queue = cqe_fp->queue_index;
975 				DP(NETIF_MSG_RX_STATUS,
976 				   "calling tpa_start on queue %d\n",
977 				   queue);
978 
979 				bnx2x_tpa_start(fp, queue,
980 						bd_cons, bd_prod,
981 						cqe_fp);
982 
983 				goto next_rx;
984 			}
985 			queue = cqe->end_agg_cqe.queue_index;
986 			tpa_info = &fp->tpa_info[queue];
987 			DP(NETIF_MSG_RX_STATUS,
988 			   "calling tpa_stop on queue %d\n",
989 			   queue);
990 
991 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
992 				    tpa_info->len_on_bd;
993 
994 			if (fp->mode == TPA_MODE_GRO)
995 				pages = (frag_size + tpa_info->full_page - 1) /
996 					 tpa_info->full_page;
997 			else
998 				pages = SGE_PAGE_ALIGN(frag_size) >>
999 					SGE_PAGE_SHIFT;
1000 
1001 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1002 				       &cqe->end_agg_cqe, comp_ring_cons);
1003 #ifdef BNX2X_STOP_ON_ERROR
1004 			if (bp->panic)
1005 				return 0;
1006 #endif
1007 
1008 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1009 			goto next_cqe;
1010 		}
1011 		/* non TPA */
1012 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1013 		pad = cqe_fp->placement_offset;
1014 		dma_sync_single_for_cpu(&bp->pdev->dev,
1015 					dma_unmap_addr(rx_buf, mapping),
1016 					pad + RX_COPY_THRESH,
1017 					DMA_FROM_DEVICE);
1018 		pad += NET_SKB_PAD;
1019 		prefetch(data + pad); /* speedup eth_type_trans() */
1020 		/* is this an error packet? */
1021 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1022 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1023 			   "ERROR  flags %x  rx packet %u\n",
1024 			   cqe_fp_flags, sw_comp_cons);
1025 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1026 			goto reuse_rx;
1027 		}
1028 
1029 		/* Since we don't have a jumbo ring
1030 		 * copy small packets if mtu > 1500
1031 		 */
1032 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1033 		    (len <= RX_COPY_THRESH)) {
1034 			skb = napi_alloc_skb(&fp->napi, len);
1035 			if (skb == NULL) {
1036 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1037 				   "ERROR  packet dropped because of alloc failure\n");
1038 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1039 				goto reuse_rx;
1040 			}
1041 			memcpy(skb->data, data + pad, len);
1042 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1043 		} else {
1044 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1045 						       GFP_ATOMIC) == 0)) {
1046 				dma_unmap_single(&bp->pdev->dev,
1047 						 dma_unmap_addr(rx_buf, mapping),
1048 						 fp->rx_buf_size,
1049 						 DMA_FROM_DEVICE);
1050 				skb = build_skb(data, fp->rx_frag_size);
1051 				if (unlikely(!skb)) {
1052 					bnx2x_frag_free(fp, data);
1053 					bnx2x_fp_qstats(bp, fp)->
1054 							rx_skb_alloc_failed++;
1055 					goto next_rx;
1056 				}
1057 				skb_reserve(skb, pad);
1058 			} else {
1059 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1060 				   "ERROR  packet dropped because of alloc failure\n");
1061 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1062 reuse_rx:
1063 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1064 				goto next_rx;
1065 			}
1066 		}
1067 
1068 		skb_put(skb, len);
1069 		skb->protocol = eth_type_trans(skb, bp->dev);
1070 
1071 		/* Set Toeplitz hash for a none-LRO skb */
1072 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1073 		skb_set_hash(skb, rxhash, rxhash_type);
1074 
1075 		skb_checksum_none_assert(skb);
1076 
1077 		if (bp->dev->features & NETIF_F_RXCSUM)
1078 			bnx2x_csum_validate(skb, cqe, fp,
1079 					    bnx2x_fp_qstats(bp, fp));
1080 
1081 		skb_record_rx_queue(skb, fp->rx_queue);
1082 
1083 		/* Check if this packet was timestamped */
1084 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1085 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1086 			bnx2x_set_rx_ts(bp, skb);
1087 
1088 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1089 		    PARSING_FLAGS_VLAN)
1090 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1091 					       le16_to_cpu(cqe_fp->vlan_tag));
1092 
1093 		napi_gro_receive(&fp->napi, skb);
1094 next_rx:
1095 		rx_buf->data = NULL;
1096 
1097 		bd_cons = NEXT_RX_IDX(bd_cons);
1098 		bd_prod = NEXT_RX_IDX(bd_prod);
1099 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1100 		rx_pkt++;
1101 next_cqe:
1102 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1103 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1104 
1105 		/* mark CQE as free */
1106 		BNX2X_SEED_CQE(cqe_fp);
1107 
1108 		if (rx_pkt == budget)
1109 			break;
1110 
1111 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1112 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1113 		cqe_fp = &cqe->fast_path_cqe;
1114 	} /* while */
1115 
1116 	fp->rx_bd_cons = bd_cons;
1117 	fp->rx_bd_prod = bd_prod_fw;
1118 	fp->rx_comp_cons = sw_comp_cons;
1119 	fp->rx_comp_prod = sw_comp_prod;
1120 
1121 	/* Update producers */
1122 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1123 			     fp->rx_sge_prod);
1124 
1125 	return rx_pkt;
1126 }
1127 
1128 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1129 {
1130 	struct bnx2x_fastpath *fp = fp_cookie;
1131 	struct bnx2x *bp = fp->bp;
1132 	u8 cos;
1133 
1134 	DP(NETIF_MSG_INTR,
1135 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1136 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1137 
1138 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1139 
1140 #ifdef BNX2X_STOP_ON_ERROR
1141 	if (unlikely(bp->panic))
1142 		return IRQ_HANDLED;
1143 #endif
1144 
1145 	/* Handle Rx and Tx according to MSI-X vector */
1146 	for_each_cos_in_tx_queue(fp, cos)
1147 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1148 
1149 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1150 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1151 
1152 	return IRQ_HANDLED;
1153 }
1154 
1155 /* HW Lock for shared dual port PHYs */
1156 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1157 {
1158 	mutex_lock(&bp->port.phy_mutex);
1159 
1160 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1161 }
1162 
1163 void bnx2x_release_phy_lock(struct bnx2x *bp)
1164 {
1165 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1166 
1167 	mutex_unlock(&bp->port.phy_mutex);
1168 }
1169 
1170 /* calculates MF speed according to current linespeed and MF configuration */
1171 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1172 {
1173 	u16 line_speed = bp->link_vars.line_speed;
1174 	if (IS_MF(bp)) {
1175 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1176 						   bp->mf_config[BP_VN(bp)]);
1177 
1178 		/* Calculate the current MAX line speed limit for the MF
1179 		 * devices
1180 		 */
1181 		if (IS_MF_PERCENT_BW(bp))
1182 			line_speed = (line_speed * maxCfg) / 100;
1183 		else { /* SD mode */
1184 			u16 vn_max_rate = maxCfg * 100;
1185 
1186 			if (vn_max_rate < line_speed)
1187 				line_speed = vn_max_rate;
1188 		}
1189 	}
1190 
1191 	return line_speed;
1192 }
1193 
1194 /**
1195  * bnx2x_fill_report_data - fill link report data to report
1196  *
1197  * @bp:		driver handle
1198  * @data:	link state to update
1199  *
1200  * It uses a none-atomic bit operations because is called under the mutex.
1201  */
1202 static void bnx2x_fill_report_data(struct bnx2x *bp,
1203 				   struct bnx2x_link_report_data *data)
1204 {
1205 	memset(data, 0, sizeof(*data));
1206 
1207 	if (IS_PF(bp)) {
1208 		/* Fill the report data: effective line speed */
1209 		data->line_speed = bnx2x_get_mf_speed(bp);
1210 
1211 		/* Link is down */
1212 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1213 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1214 				  &data->link_report_flags);
1215 
1216 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1217 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1218 				  &data->link_report_flags);
1219 
1220 		/* Full DUPLEX */
1221 		if (bp->link_vars.duplex == DUPLEX_FULL)
1222 			__set_bit(BNX2X_LINK_REPORT_FD,
1223 				  &data->link_report_flags);
1224 
1225 		/* Rx Flow Control is ON */
1226 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1227 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1228 				  &data->link_report_flags);
1229 
1230 		/* Tx Flow Control is ON */
1231 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1232 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1233 				  &data->link_report_flags);
1234 	} else { /* VF */
1235 		*data = bp->vf_link_vars;
1236 	}
1237 }
1238 
1239 /**
1240  * bnx2x_link_report - report link status to OS.
1241  *
1242  * @bp:		driver handle
1243  *
1244  * Calls the __bnx2x_link_report() under the same locking scheme
1245  * as a link/PHY state managing code to ensure a consistent link
1246  * reporting.
1247  */
1248 
1249 void bnx2x_link_report(struct bnx2x *bp)
1250 {
1251 	bnx2x_acquire_phy_lock(bp);
1252 	__bnx2x_link_report(bp);
1253 	bnx2x_release_phy_lock(bp);
1254 }
1255 
1256 /**
1257  * __bnx2x_link_report - report link status to OS.
1258  *
1259  * @bp:		driver handle
1260  *
1261  * None atomic implementation.
1262  * Should be called under the phy_lock.
1263  */
1264 void __bnx2x_link_report(struct bnx2x *bp)
1265 {
1266 	struct bnx2x_link_report_data cur_data;
1267 
1268 	/* reread mf_cfg */
1269 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1270 		bnx2x_read_mf_cfg(bp);
1271 
1272 	/* Read the current link report info */
1273 	bnx2x_fill_report_data(bp, &cur_data);
1274 
1275 	/* Don't report link down or exactly the same link status twice */
1276 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1277 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1278 		      &bp->last_reported_link.link_report_flags) &&
1279 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1280 		      &cur_data.link_report_flags)))
1281 		return;
1282 
1283 	bp->link_cnt++;
1284 
1285 	/* We are going to report a new link parameters now -
1286 	 * remember the current data for the next time.
1287 	 */
1288 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1289 
1290 	/* propagate status to VFs */
1291 	if (IS_PF(bp))
1292 		bnx2x_iov_link_update(bp);
1293 
1294 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1295 		     &cur_data.link_report_flags)) {
1296 		netif_carrier_off(bp->dev);
1297 		netdev_err(bp->dev, "NIC Link is Down\n");
1298 		return;
1299 	} else {
1300 		const char *duplex;
1301 		const char *flow;
1302 
1303 		netif_carrier_on(bp->dev);
1304 
1305 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1306 				       &cur_data.link_report_flags))
1307 			duplex = "full";
1308 		else
1309 			duplex = "half";
1310 
1311 		/* Handle the FC at the end so that only these flags would be
1312 		 * possibly set. This way we may easily check if there is no FC
1313 		 * enabled.
1314 		 */
1315 		if (cur_data.link_report_flags) {
1316 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1317 				     &cur_data.link_report_flags)) {
1318 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1319 				     &cur_data.link_report_flags))
1320 					flow = "ON - receive & transmit";
1321 				else
1322 					flow = "ON - receive";
1323 			} else {
1324 				flow = "ON - transmit";
1325 			}
1326 		} else {
1327 			flow = "none";
1328 		}
1329 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1330 			    cur_data.line_speed, duplex, flow);
1331 	}
1332 }
1333 
1334 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1335 {
1336 	int i;
1337 
1338 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1339 		struct eth_rx_sge *sge;
1340 
1341 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1342 		sge->addr_hi =
1343 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1344 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1345 
1346 		sge->addr_lo =
1347 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1348 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1349 	}
1350 }
1351 
1352 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1353 				struct bnx2x_fastpath *fp, int last)
1354 {
1355 	int i;
1356 
1357 	for (i = 0; i < last; i++) {
1358 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1359 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1360 		u8 *data = first_buf->data;
1361 
1362 		if (data == NULL) {
1363 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1364 			continue;
1365 		}
1366 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1367 			dma_unmap_single(&bp->pdev->dev,
1368 					 dma_unmap_addr(first_buf, mapping),
1369 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1370 		bnx2x_frag_free(fp, data);
1371 		first_buf->data = NULL;
1372 	}
1373 }
1374 
1375 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1376 {
1377 	int j;
1378 
1379 	for_each_rx_queue_cnic(bp, j) {
1380 		struct bnx2x_fastpath *fp = &bp->fp[j];
1381 
1382 		fp->rx_bd_cons = 0;
1383 
1384 		/* Activate BD ring */
1385 		/* Warning!
1386 		 * this will generate an interrupt (to the TSTORM)
1387 		 * must only be done after chip is initialized
1388 		 */
1389 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1390 				     fp->rx_sge_prod);
1391 	}
1392 }
1393 
1394 void bnx2x_init_rx_rings(struct bnx2x *bp)
1395 {
1396 	int func = BP_FUNC(bp);
1397 	u16 ring_prod;
1398 	int i, j;
1399 
1400 	/* Allocate TPA resources */
1401 	for_each_eth_queue(bp, j) {
1402 		struct bnx2x_fastpath *fp = &bp->fp[j];
1403 
1404 		DP(NETIF_MSG_IFUP,
1405 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1406 
1407 		if (fp->mode != TPA_MODE_DISABLED) {
1408 			/* Fill the per-aggregation pool */
1409 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1410 				struct bnx2x_agg_info *tpa_info =
1411 					&fp->tpa_info[i];
1412 				struct sw_rx_bd *first_buf =
1413 					&tpa_info->first_buf;
1414 
1415 				first_buf->data =
1416 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1417 				if (!first_buf->data) {
1418 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1419 						  j);
1420 					bnx2x_free_tpa_pool(bp, fp, i);
1421 					fp->mode = TPA_MODE_DISABLED;
1422 					break;
1423 				}
1424 				dma_unmap_addr_set(first_buf, mapping, 0);
1425 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1426 			}
1427 
1428 			/* "next page" elements initialization */
1429 			bnx2x_set_next_page_sgl(fp);
1430 
1431 			/* set SGEs bit mask */
1432 			bnx2x_init_sge_ring_bit_mask(fp);
1433 
1434 			/* Allocate SGEs and initialize the ring elements */
1435 			for (i = 0, ring_prod = 0;
1436 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1437 
1438 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1439 						       GFP_KERNEL) < 0) {
1440 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1441 						  i);
1442 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1443 						  j);
1444 					/* Cleanup already allocated elements */
1445 					bnx2x_free_rx_sge_range(bp, fp,
1446 								ring_prod);
1447 					bnx2x_free_tpa_pool(bp, fp,
1448 							    MAX_AGG_QS(bp));
1449 					fp->mode = TPA_MODE_DISABLED;
1450 					ring_prod = 0;
1451 					break;
1452 				}
1453 				ring_prod = NEXT_SGE_IDX(ring_prod);
1454 			}
1455 
1456 			fp->rx_sge_prod = ring_prod;
1457 		}
1458 	}
1459 
1460 	for_each_eth_queue(bp, j) {
1461 		struct bnx2x_fastpath *fp = &bp->fp[j];
1462 
1463 		fp->rx_bd_cons = 0;
1464 
1465 		/* Activate BD ring */
1466 		/* Warning!
1467 		 * this will generate an interrupt (to the TSTORM)
1468 		 * must only be done after chip is initialized
1469 		 */
1470 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1471 				     fp->rx_sge_prod);
1472 
1473 		if (j != 0)
1474 			continue;
1475 
1476 		if (CHIP_IS_E1(bp)) {
1477 			REG_WR(bp, BAR_USTRORM_INTMEM +
1478 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1479 			       U64_LO(fp->rx_comp_mapping));
1480 			REG_WR(bp, BAR_USTRORM_INTMEM +
1481 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1482 			       U64_HI(fp->rx_comp_mapping));
1483 		}
1484 	}
1485 }
1486 
1487 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1488 {
1489 	u8 cos;
1490 	struct bnx2x *bp = fp->bp;
1491 
1492 	for_each_cos_in_tx_queue(fp, cos) {
1493 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1494 		unsigned pkts_compl = 0, bytes_compl = 0;
1495 
1496 		u16 sw_prod = txdata->tx_pkt_prod;
1497 		u16 sw_cons = txdata->tx_pkt_cons;
1498 
1499 		while (sw_cons != sw_prod) {
1500 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1501 					  &pkts_compl, &bytes_compl);
1502 			sw_cons++;
1503 		}
1504 
1505 		netdev_tx_reset_queue(
1506 			netdev_get_tx_queue(bp->dev,
1507 					    txdata->txq_index));
1508 	}
1509 }
1510 
1511 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1512 {
1513 	int i;
1514 
1515 	for_each_tx_queue_cnic(bp, i) {
1516 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1517 	}
1518 }
1519 
1520 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1521 {
1522 	int i;
1523 
1524 	for_each_eth_queue(bp, i) {
1525 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1526 	}
1527 }
1528 
1529 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1530 {
1531 	struct bnx2x *bp = fp->bp;
1532 	int i;
1533 
1534 	/* ring wasn't allocated */
1535 	if (fp->rx_buf_ring == NULL)
1536 		return;
1537 
1538 	for (i = 0; i < NUM_RX_BD; i++) {
1539 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1540 		u8 *data = rx_buf->data;
1541 
1542 		if (data == NULL)
1543 			continue;
1544 		dma_unmap_single(&bp->pdev->dev,
1545 				 dma_unmap_addr(rx_buf, mapping),
1546 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1547 
1548 		rx_buf->data = NULL;
1549 		bnx2x_frag_free(fp, data);
1550 	}
1551 }
1552 
1553 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1554 {
1555 	int j;
1556 
1557 	for_each_rx_queue_cnic(bp, j) {
1558 		bnx2x_free_rx_bds(&bp->fp[j]);
1559 	}
1560 }
1561 
1562 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1563 {
1564 	int j;
1565 
1566 	for_each_eth_queue(bp, j) {
1567 		struct bnx2x_fastpath *fp = &bp->fp[j];
1568 
1569 		bnx2x_free_rx_bds(fp);
1570 
1571 		if (fp->mode != TPA_MODE_DISABLED)
1572 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1573 	}
1574 }
1575 
1576 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1577 {
1578 	bnx2x_free_tx_skbs_cnic(bp);
1579 	bnx2x_free_rx_skbs_cnic(bp);
1580 }
1581 
1582 void bnx2x_free_skbs(struct bnx2x *bp)
1583 {
1584 	bnx2x_free_tx_skbs(bp);
1585 	bnx2x_free_rx_skbs(bp);
1586 }
1587 
1588 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1589 {
1590 	/* load old values */
1591 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1592 
1593 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1594 		/* leave all but MAX value */
1595 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1596 
1597 		/* set new MAX value */
1598 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1599 				& FUNC_MF_CFG_MAX_BW_MASK;
1600 
1601 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1602 	}
1603 }
1604 
1605 /**
1606  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1607  *
1608  * @bp:		driver handle
1609  * @nvecs:	number of vectors to be released
1610  */
1611 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1612 {
1613 	int i, offset = 0;
1614 
1615 	if (nvecs == offset)
1616 		return;
1617 
1618 	/* VFs don't have a default SB */
1619 	if (IS_PF(bp)) {
1620 		free_irq(bp->msix_table[offset].vector, bp->dev);
1621 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1622 		   bp->msix_table[offset].vector);
1623 		offset++;
1624 	}
1625 
1626 	if (CNIC_SUPPORT(bp)) {
1627 		if (nvecs == offset)
1628 			return;
1629 		offset++;
1630 	}
1631 
1632 	for_each_eth_queue(bp, i) {
1633 		if (nvecs == offset)
1634 			return;
1635 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1636 		   i, bp->msix_table[offset].vector);
1637 
1638 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1639 	}
1640 }
1641 
1642 void bnx2x_free_irq(struct bnx2x *bp)
1643 {
1644 	if (bp->flags & USING_MSIX_FLAG &&
1645 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1646 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1647 
1648 		/* vfs don't have a default status block */
1649 		if (IS_PF(bp))
1650 			nvecs++;
1651 
1652 		bnx2x_free_msix_irqs(bp, nvecs);
1653 	} else {
1654 		free_irq(bp->dev->irq, bp->dev);
1655 	}
1656 }
1657 
1658 int bnx2x_enable_msix(struct bnx2x *bp)
1659 {
1660 	int msix_vec = 0, i, rc;
1661 
1662 	/* VFs don't have a default status block */
1663 	if (IS_PF(bp)) {
1664 		bp->msix_table[msix_vec].entry = msix_vec;
1665 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1666 			       bp->msix_table[0].entry);
1667 		msix_vec++;
1668 	}
1669 
1670 	/* Cnic requires an msix vector for itself */
1671 	if (CNIC_SUPPORT(bp)) {
1672 		bp->msix_table[msix_vec].entry = msix_vec;
1673 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1674 			       msix_vec, bp->msix_table[msix_vec].entry);
1675 		msix_vec++;
1676 	}
1677 
1678 	/* We need separate vectors for ETH queues only (not FCoE) */
1679 	for_each_eth_queue(bp, i) {
1680 		bp->msix_table[msix_vec].entry = msix_vec;
1681 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1682 			       msix_vec, msix_vec, i);
1683 		msix_vec++;
1684 	}
1685 
1686 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1687 	   msix_vec);
1688 
1689 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1690 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1691 	/*
1692 	 * reconfigure number of tx/rx queues according to available
1693 	 * MSI-X vectors
1694 	 */
1695 	if (rc == -ENOSPC) {
1696 		/* Get by with single vector */
1697 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1698 		if (rc < 0) {
1699 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1700 				       rc);
1701 			goto no_msix;
1702 		}
1703 
1704 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1705 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1706 
1707 		BNX2X_DEV_INFO("set number of queues to 1\n");
1708 		bp->num_ethernet_queues = 1;
1709 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1710 	} else if (rc < 0) {
1711 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1712 		goto no_msix;
1713 	} else if (rc < msix_vec) {
1714 		/* how less vectors we will have? */
1715 		int diff = msix_vec - rc;
1716 
1717 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1718 
1719 		/*
1720 		 * decrease number of queues by number of unallocated entries
1721 		 */
1722 		bp->num_ethernet_queues -= diff;
1723 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1724 
1725 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1726 			       bp->num_queues);
1727 	}
1728 
1729 	bp->flags |= USING_MSIX_FLAG;
1730 
1731 	return 0;
1732 
1733 no_msix:
1734 	/* fall to INTx if not enough memory */
1735 	if (rc == -ENOMEM)
1736 		bp->flags |= DISABLE_MSI_FLAG;
1737 
1738 	return rc;
1739 }
1740 
1741 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1742 {
1743 	int i, rc, offset = 0;
1744 
1745 	/* no default status block for vf */
1746 	if (IS_PF(bp)) {
1747 		rc = request_irq(bp->msix_table[offset++].vector,
1748 				 bnx2x_msix_sp_int, 0,
1749 				 bp->dev->name, bp->dev);
1750 		if (rc) {
1751 			BNX2X_ERR("request sp irq failed\n");
1752 			return -EBUSY;
1753 		}
1754 	}
1755 
1756 	if (CNIC_SUPPORT(bp))
1757 		offset++;
1758 
1759 	for_each_eth_queue(bp, i) {
1760 		struct bnx2x_fastpath *fp = &bp->fp[i];
1761 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1762 			 bp->dev->name, i);
1763 
1764 		rc = request_irq(bp->msix_table[offset].vector,
1765 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1766 		if (rc) {
1767 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1768 			      bp->msix_table[offset].vector, rc);
1769 			bnx2x_free_msix_irqs(bp, offset);
1770 			return -EBUSY;
1771 		}
1772 
1773 		offset++;
1774 	}
1775 
1776 	i = BNX2X_NUM_ETH_QUEUES(bp);
1777 	if (IS_PF(bp)) {
1778 		offset = 1 + CNIC_SUPPORT(bp);
1779 		netdev_info(bp->dev,
1780 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1781 			    bp->msix_table[0].vector,
1782 			    0, bp->msix_table[offset].vector,
1783 			    i - 1, bp->msix_table[offset + i - 1].vector);
1784 	} else {
1785 		offset = CNIC_SUPPORT(bp);
1786 		netdev_info(bp->dev,
1787 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1788 			    0, bp->msix_table[offset].vector,
1789 			    i - 1, bp->msix_table[offset + i - 1].vector);
1790 	}
1791 	return 0;
1792 }
1793 
1794 int bnx2x_enable_msi(struct bnx2x *bp)
1795 {
1796 	int rc;
1797 
1798 	rc = pci_enable_msi(bp->pdev);
1799 	if (rc) {
1800 		BNX2X_DEV_INFO("MSI is not attainable\n");
1801 		return -1;
1802 	}
1803 	bp->flags |= USING_MSI_FLAG;
1804 
1805 	return 0;
1806 }
1807 
1808 static int bnx2x_req_irq(struct bnx2x *bp)
1809 {
1810 	unsigned long flags;
1811 	unsigned int irq;
1812 
1813 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1814 		flags = 0;
1815 	else
1816 		flags = IRQF_SHARED;
1817 
1818 	if (bp->flags & USING_MSIX_FLAG)
1819 		irq = bp->msix_table[0].vector;
1820 	else
1821 		irq = bp->pdev->irq;
1822 
1823 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1824 }
1825 
1826 static int bnx2x_setup_irqs(struct bnx2x *bp)
1827 {
1828 	int rc = 0;
1829 	if (bp->flags & USING_MSIX_FLAG &&
1830 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1831 		rc = bnx2x_req_msix_irqs(bp);
1832 		if (rc)
1833 			return rc;
1834 	} else {
1835 		rc = bnx2x_req_irq(bp);
1836 		if (rc) {
1837 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1838 			return rc;
1839 		}
1840 		if (bp->flags & USING_MSI_FLAG) {
1841 			bp->dev->irq = bp->pdev->irq;
1842 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1843 				    bp->dev->irq);
1844 		}
1845 		if (bp->flags & USING_MSIX_FLAG) {
1846 			bp->dev->irq = bp->msix_table[0].vector;
1847 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1848 				    bp->dev->irq);
1849 		}
1850 	}
1851 
1852 	return 0;
1853 }
1854 
1855 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1856 {
1857 	int i;
1858 
1859 	for_each_rx_queue_cnic(bp, i) {
1860 		napi_enable(&bnx2x_fp(bp, i, napi));
1861 	}
1862 }
1863 
1864 static void bnx2x_napi_enable(struct bnx2x *bp)
1865 {
1866 	int i;
1867 
1868 	for_each_eth_queue(bp, i) {
1869 		napi_enable(&bnx2x_fp(bp, i, napi));
1870 	}
1871 }
1872 
1873 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1874 {
1875 	int i;
1876 
1877 	for_each_rx_queue_cnic(bp, i) {
1878 		napi_disable(&bnx2x_fp(bp, i, napi));
1879 	}
1880 }
1881 
1882 static void bnx2x_napi_disable(struct bnx2x *bp)
1883 {
1884 	int i;
1885 
1886 	for_each_eth_queue(bp, i) {
1887 		napi_disable(&bnx2x_fp(bp, i, napi));
1888 	}
1889 }
1890 
1891 void bnx2x_netif_start(struct bnx2x *bp)
1892 {
1893 	if (netif_running(bp->dev)) {
1894 		bnx2x_napi_enable(bp);
1895 		if (CNIC_LOADED(bp))
1896 			bnx2x_napi_enable_cnic(bp);
1897 		bnx2x_int_enable(bp);
1898 		if (bp->state == BNX2X_STATE_OPEN)
1899 			netif_tx_wake_all_queues(bp->dev);
1900 	}
1901 }
1902 
1903 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1904 {
1905 	bnx2x_int_disable_sync(bp, disable_hw);
1906 	bnx2x_napi_disable(bp);
1907 	if (CNIC_LOADED(bp))
1908 		bnx2x_napi_disable_cnic(bp);
1909 }
1910 
1911 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1912 		       void *accel_priv, select_queue_fallback_t fallback)
1913 {
1914 	struct bnx2x *bp = netdev_priv(dev);
1915 
1916 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1917 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1918 		u16 ether_type = ntohs(hdr->h_proto);
1919 
1920 		/* Skip VLAN tag if present */
1921 		if (ether_type == ETH_P_8021Q) {
1922 			struct vlan_ethhdr *vhdr =
1923 				(struct vlan_ethhdr *)skb->data;
1924 
1925 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1926 		}
1927 
1928 		/* If ethertype is FCoE or FIP - use FCoE ring */
1929 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1930 			return bnx2x_fcoe_tx(bp, txq_index);
1931 	}
1932 
1933 	/* select a non-FCoE queue */
1934 	return fallback(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp);
1935 }
1936 
1937 void bnx2x_set_num_queues(struct bnx2x *bp)
1938 {
1939 	/* RSS queues */
1940 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1941 
1942 	/* override in STORAGE SD modes */
1943 	if (IS_MF_STORAGE_ONLY(bp))
1944 		bp->num_ethernet_queues = 1;
1945 
1946 	/* Add special queues */
1947 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1948 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1949 
1950 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1951 }
1952 
1953 /**
1954  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1955  *
1956  * @bp:		Driver handle
1957  *
1958  * We currently support for at most 16 Tx queues for each CoS thus we will
1959  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1960  * bp->max_cos.
1961  *
1962  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1963  * index after all ETH L2 indices.
1964  *
1965  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1966  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1967  * 16..31,...) with indices that are not coupled with any real Tx queue.
1968  *
1969  * The proper configuration of skb->queue_mapping is handled by
1970  * bnx2x_select_queue() and __skb_tx_hash().
1971  *
1972  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1973  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1974  */
1975 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1976 {
1977 	int rc, tx, rx;
1978 
1979 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1980 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1981 
1982 /* account for fcoe queue */
1983 	if (include_cnic && !NO_FCOE(bp)) {
1984 		rx++;
1985 		tx++;
1986 	}
1987 
1988 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
1989 	if (rc) {
1990 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1991 		return rc;
1992 	}
1993 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
1994 	if (rc) {
1995 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1996 		return rc;
1997 	}
1998 
1999 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2000 			  tx, rx);
2001 
2002 	return rc;
2003 }
2004 
2005 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2006 {
2007 	int i;
2008 
2009 	for_each_queue(bp, i) {
2010 		struct bnx2x_fastpath *fp = &bp->fp[i];
2011 		u32 mtu;
2012 
2013 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2014 		if (IS_FCOE_IDX(i))
2015 			/*
2016 			 * Although there are no IP frames expected to arrive to
2017 			 * this ring we still want to add an
2018 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2019 			 * overrun attack.
2020 			 */
2021 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2022 		else
2023 			mtu = bp->dev->mtu;
2024 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2025 				  IP_HEADER_ALIGNMENT_PADDING +
2026 				  ETH_OVERHEAD +
2027 				  mtu +
2028 				  BNX2X_FW_RX_ALIGN_END;
2029 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2030 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2031 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2032 		else
2033 			fp->rx_frag_size = 0;
2034 	}
2035 }
2036 
2037 static int bnx2x_init_rss(struct bnx2x *bp)
2038 {
2039 	int i;
2040 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2041 
2042 	/* Prepare the initial contents for the indirection table if RSS is
2043 	 * enabled
2044 	 */
2045 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2046 		bp->rss_conf_obj.ind_table[i] =
2047 			bp->fp->cl_id +
2048 			ethtool_rxfh_indir_default(i, num_eth_queues);
2049 
2050 	/*
2051 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2052 	 * per-port, so if explicit configuration is needed , do it only
2053 	 * for a PMF.
2054 	 *
2055 	 * For 57712 and newer on the other hand it's a per-function
2056 	 * configuration.
2057 	 */
2058 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2059 }
2060 
2061 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2062 	      bool config_hash, bool enable)
2063 {
2064 	struct bnx2x_config_rss_params params = {NULL};
2065 
2066 	/* Although RSS is meaningless when there is a single HW queue we
2067 	 * still need it enabled in order to have HW Rx hash generated.
2068 	 *
2069 	 * if (!is_eth_multi(bp))
2070 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2071 	 */
2072 
2073 	params.rss_obj = rss_obj;
2074 
2075 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2076 
2077 	if (enable) {
2078 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2079 
2080 		/* RSS configuration */
2081 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2082 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2083 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2084 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2085 		if (rss_obj->udp_rss_v4)
2086 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2087 		if (rss_obj->udp_rss_v6)
2088 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2089 
2090 		if (!CHIP_IS_E1x(bp)) {
2091 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2092 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2093 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2094 
2095 			/* valid only for TUNN_MODE_GRE tunnel mode */
2096 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2097 		}
2098 	} else {
2099 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2100 	}
2101 
2102 	/* Hash bits */
2103 	params.rss_result_mask = MULTI_MASK;
2104 
2105 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2106 
2107 	if (config_hash) {
2108 		/* RSS keys */
2109 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2110 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2111 	}
2112 
2113 	if (IS_PF(bp))
2114 		return bnx2x_config_rss(bp, &params);
2115 	else
2116 		return bnx2x_vfpf_config_rss(bp, &params);
2117 }
2118 
2119 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2120 {
2121 	struct bnx2x_func_state_params func_params = {NULL};
2122 
2123 	/* Prepare parameters for function state transitions */
2124 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2125 
2126 	func_params.f_obj = &bp->func_obj;
2127 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2128 
2129 	func_params.params.hw_init.load_phase = load_code;
2130 
2131 	return bnx2x_func_state_change(bp, &func_params);
2132 }
2133 
2134 /*
2135  * Cleans the object that have internal lists without sending
2136  * ramrods. Should be run when interrupts are disabled.
2137  */
2138 void bnx2x_squeeze_objects(struct bnx2x *bp)
2139 {
2140 	int rc;
2141 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2142 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2143 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2144 
2145 	/***************** Cleanup MACs' object first *************************/
2146 
2147 	/* Wait for completion of requested */
2148 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2149 	/* Perform a dry cleanup */
2150 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2151 
2152 	/* Clean ETH primary MAC */
2153 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2154 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2155 				 &ramrod_flags);
2156 	if (rc != 0)
2157 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2158 
2159 	/* Cleanup UC list */
2160 	vlan_mac_flags = 0;
2161 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2162 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2163 				 &ramrod_flags);
2164 	if (rc != 0)
2165 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2166 
2167 	/***************** Now clean mcast object *****************************/
2168 	rparam.mcast_obj = &bp->mcast_obj;
2169 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2170 
2171 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2172 	 * we take a lock surrounding both the initial send and the CONTs,
2173 	 * as we don't want a true completion to disrupt us in the middle.
2174 	 */
2175 	netif_addr_lock_bh(bp->dev);
2176 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2177 	if (rc < 0)
2178 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2179 			  rc);
2180 
2181 	/* ...and wait until all pending commands are cleared */
2182 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2183 	while (rc != 0) {
2184 		if (rc < 0) {
2185 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2186 				  rc);
2187 			netif_addr_unlock_bh(bp->dev);
2188 			return;
2189 		}
2190 
2191 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2192 	}
2193 	netif_addr_unlock_bh(bp->dev);
2194 }
2195 
2196 #ifndef BNX2X_STOP_ON_ERROR
2197 #define LOAD_ERROR_EXIT(bp, label) \
2198 	do { \
2199 		(bp)->state = BNX2X_STATE_ERROR; \
2200 		goto label; \
2201 	} while (0)
2202 
2203 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2204 	do { \
2205 		bp->cnic_loaded = false; \
2206 		goto label; \
2207 	} while (0)
2208 #else /*BNX2X_STOP_ON_ERROR*/
2209 #define LOAD_ERROR_EXIT(bp, label) \
2210 	do { \
2211 		(bp)->state = BNX2X_STATE_ERROR; \
2212 		(bp)->panic = 1; \
2213 		return -EBUSY; \
2214 	} while (0)
2215 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2216 	do { \
2217 		bp->cnic_loaded = false; \
2218 		(bp)->panic = 1; \
2219 		return -EBUSY; \
2220 	} while (0)
2221 #endif /*BNX2X_STOP_ON_ERROR*/
2222 
2223 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2224 {
2225 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2226 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2227 	return;
2228 }
2229 
2230 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2231 {
2232 	int num_groups, vf_headroom = 0;
2233 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2234 
2235 	/* number of queues for statistics is number of eth queues + FCoE */
2236 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2237 
2238 	/* Total number of FW statistics requests =
2239 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2240 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2241 	 * for fcoe l2 queue if applicable)
2242 	 */
2243 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2244 
2245 	/* vf stats appear in the request list, but their data is allocated by
2246 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2247 	 * it is used to determine where to place the vf stats queries in the
2248 	 * request struct
2249 	 */
2250 	if (IS_SRIOV(bp))
2251 		vf_headroom = bnx2x_vf_headroom(bp);
2252 
2253 	/* Request is built from stats_query_header and an array of
2254 	 * stats_query_cmd_group each of which contains
2255 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2256 	 * configured in the stats_query_header.
2257 	 */
2258 	num_groups =
2259 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2260 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2261 		 1 : 0));
2262 
2263 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2264 	   bp->fw_stats_num, vf_headroom, num_groups);
2265 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2266 		num_groups * sizeof(struct stats_query_cmd_group);
2267 
2268 	/* Data for statistics requests + stats_counter
2269 	 * stats_counter holds per-STORM counters that are incremented
2270 	 * when STORM has finished with the current request.
2271 	 * memory for FCoE offloaded statistics are counted anyway,
2272 	 * even if they will not be sent.
2273 	 * VF stats are not accounted for here as the data of VF stats is stored
2274 	 * in memory allocated by the VF, not here.
2275 	 */
2276 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2277 		sizeof(struct per_pf_stats) +
2278 		sizeof(struct fcoe_statistics_params) +
2279 		sizeof(struct per_queue_stats) * num_queue_stats +
2280 		sizeof(struct stats_counter);
2281 
2282 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2283 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2284 	if (!bp->fw_stats)
2285 		goto alloc_mem_err;
2286 
2287 	/* Set shortcuts */
2288 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2289 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2290 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2291 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2292 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2293 		bp->fw_stats_req_sz;
2294 
2295 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2296 	   U64_HI(bp->fw_stats_req_mapping),
2297 	   U64_LO(bp->fw_stats_req_mapping));
2298 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2299 	   U64_HI(bp->fw_stats_data_mapping),
2300 	   U64_LO(bp->fw_stats_data_mapping));
2301 	return 0;
2302 
2303 alloc_mem_err:
2304 	bnx2x_free_fw_stats_mem(bp);
2305 	BNX2X_ERR("Can't allocate FW stats memory\n");
2306 	return -ENOMEM;
2307 }
2308 
2309 /* send load request to mcp and analyze response */
2310 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2311 {
2312 	u32 param;
2313 
2314 	/* init fw_seq */
2315 	bp->fw_seq =
2316 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2317 		 DRV_MSG_SEQ_NUMBER_MASK);
2318 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2319 
2320 	/* Get current FW pulse sequence */
2321 	bp->fw_drv_pulse_wr_seq =
2322 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2323 		 DRV_PULSE_SEQ_MASK);
2324 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2325 
2326 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2327 
2328 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2329 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2330 
2331 	/* load request */
2332 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2333 
2334 	/* if mcp fails to respond we must abort */
2335 	if (!(*load_code)) {
2336 		BNX2X_ERR("MCP response failure, aborting\n");
2337 		return -EBUSY;
2338 	}
2339 
2340 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2341 	 * must abort
2342 	 */
2343 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2344 		BNX2X_ERR("MCP refused load request, aborting\n");
2345 		return -EBUSY;
2346 	}
2347 	return 0;
2348 }
2349 
2350 /* check whether another PF has already loaded FW to chip. In
2351  * virtualized environments a pf from another VM may have already
2352  * initialized the device including loading FW
2353  */
2354 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2355 {
2356 	/* is another pf loaded on this engine? */
2357 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2358 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2359 		/* build my FW version dword */
2360 		u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2361 			(BCM_5710_FW_MINOR_VERSION << 8) +
2362 			(BCM_5710_FW_REVISION_VERSION << 16) +
2363 			(BCM_5710_FW_ENGINEERING_VERSION << 24);
2364 
2365 		/* read loaded FW from chip */
2366 		u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2367 
2368 		DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2369 		   loaded_fw, my_fw);
2370 
2371 		/* abort nic load if version mismatch */
2372 		if (my_fw != loaded_fw) {
2373 			if (print_err)
2374 				BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2375 					  loaded_fw, my_fw);
2376 			else
2377 				BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2378 					       loaded_fw, my_fw);
2379 			return -EBUSY;
2380 		}
2381 	}
2382 	return 0;
2383 }
2384 
2385 /* returns the "mcp load_code" according to global load_count array */
2386 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2387 {
2388 	int path = BP_PATH(bp);
2389 
2390 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2391 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2392 	   bnx2x_load_count[path][2]);
2393 	bnx2x_load_count[path][0]++;
2394 	bnx2x_load_count[path][1 + port]++;
2395 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2396 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2397 	   bnx2x_load_count[path][2]);
2398 	if (bnx2x_load_count[path][0] == 1)
2399 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2400 	else if (bnx2x_load_count[path][1 + port] == 1)
2401 		return FW_MSG_CODE_DRV_LOAD_PORT;
2402 	else
2403 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2404 }
2405 
2406 /* mark PMF if applicable */
2407 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2408 {
2409 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2410 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2411 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2412 		bp->port.pmf = 1;
2413 		/* We need the barrier to ensure the ordering between the
2414 		 * writing to bp->port.pmf here and reading it from the
2415 		 * bnx2x_periodic_task().
2416 		 */
2417 		smp_mb();
2418 	} else {
2419 		bp->port.pmf = 0;
2420 	}
2421 
2422 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2423 }
2424 
2425 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2426 {
2427 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2428 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2429 	    (bp->common.shmem2_base)) {
2430 		if (SHMEM2_HAS(bp, dcc_support))
2431 			SHMEM2_WR(bp, dcc_support,
2432 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2433 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2434 		if (SHMEM2_HAS(bp, afex_driver_support))
2435 			SHMEM2_WR(bp, afex_driver_support,
2436 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2437 	}
2438 
2439 	/* Set AFEX default VLAN tag to an invalid value */
2440 	bp->afex_def_vlan_tag = -1;
2441 }
2442 
2443 /**
2444  * bnx2x_bz_fp - zero content of the fastpath structure.
2445  *
2446  * @bp:		driver handle
2447  * @index:	fastpath index to be zeroed
2448  *
2449  * Makes sure the contents of the bp->fp[index].napi is kept
2450  * intact.
2451  */
2452 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2453 {
2454 	struct bnx2x_fastpath *fp = &bp->fp[index];
2455 	int cos;
2456 	struct napi_struct orig_napi = fp->napi;
2457 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2458 
2459 	/* bzero bnx2x_fastpath contents */
2460 	if (fp->tpa_info)
2461 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2462 		       sizeof(struct bnx2x_agg_info));
2463 	memset(fp, 0, sizeof(*fp));
2464 
2465 	/* Restore the NAPI object as it has been already initialized */
2466 	fp->napi = orig_napi;
2467 	fp->tpa_info = orig_tpa_info;
2468 	fp->bp = bp;
2469 	fp->index = index;
2470 	if (IS_ETH_FP(fp))
2471 		fp->max_cos = bp->max_cos;
2472 	else
2473 		/* Special queues support only one CoS */
2474 		fp->max_cos = 1;
2475 
2476 	/* Init txdata pointers */
2477 	if (IS_FCOE_FP(fp))
2478 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2479 	if (IS_ETH_FP(fp))
2480 		for_each_cos_in_tx_queue(fp, cos)
2481 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2482 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2483 
2484 	/* set the tpa flag for each queue. The tpa flag determines the queue
2485 	 * minimal size so it must be set prior to queue memory allocation
2486 	 */
2487 	if (bp->dev->features & NETIF_F_LRO)
2488 		fp->mode = TPA_MODE_LRO;
2489 	else if (bp->dev->features & NETIF_F_GRO &&
2490 		 bnx2x_mtu_allows_gro(bp->dev->mtu))
2491 		fp->mode = TPA_MODE_GRO;
2492 	else
2493 		fp->mode = TPA_MODE_DISABLED;
2494 
2495 	/* We don't want TPA if it's disabled in bp
2496 	 * or if this is an FCoE L2 ring.
2497 	 */
2498 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2499 		fp->mode = TPA_MODE_DISABLED;
2500 }
2501 
2502 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2503 {
2504 	u32 cur;
2505 
2506 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2507 		return;
2508 
2509 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2510 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2511 	   cur, state);
2512 
2513 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2514 }
2515 
2516 int bnx2x_load_cnic(struct bnx2x *bp)
2517 {
2518 	int i, rc, port = BP_PORT(bp);
2519 
2520 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2521 
2522 	mutex_init(&bp->cnic_mutex);
2523 
2524 	if (IS_PF(bp)) {
2525 		rc = bnx2x_alloc_mem_cnic(bp);
2526 		if (rc) {
2527 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2528 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2529 		}
2530 	}
2531 
2532 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2533 	if (rc) {
2534 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2535 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2536 	}
2537 
2538 	/* Update the number of queues with the cnic queues */
2539 	rc = bnx2x_set_real_num_queues(bp, 1);
2540 	if (rc) {
2541 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2542 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2543 	}
2544 
2545 	/* Add all CNIC NAPI objects */
2546 	bnx2x_add_all_napi_cnic(bp);
2547 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2548 	bnx2x_napi_enable_cnic(bp);
2549 
2550 	rc = bnx2x_init_hw_func_cnic(bp);
2551 	if (rc)
2552 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2553 
2554 	bnx2x_nic_init_cnic(bp);
2555 
2556 	if (IS_PF(bp)) {
2557 		/* Enable Timer scan */
2558 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2559 
2560 		/* setup cnic queues */
2561 		for_each_cnic_queue(bp, i) {
2562 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2563 			if (rc) {
2564 				BNX2X_ERR("Queue setup failed\n");
2565 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2566 			}
2567 		}
2568 	}
2569 
2570 	/* Initialize Rx filter. */
2571 	bnx2x_set_rx_mode_inner(bp);
2572 
2573 	/* re-read iscsi info */
2574 	bnx2x_get_iscsi_info(bp);
2575 	bnx2x_setup_cnic_irq_info(bp);
2576 	bnx2x_setup_cnic_info(bp);
2577 	bp->cnic_loaded = true;
2578 	if (bp->state == BNX2X_STATE_OPEN)
2579 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2580 
2581 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2582 
2583 	return 0;
2584 
2585 #ifndef BNX2X_STOP_ON_ERROR
2586 load_error_cnic2:
2587 	/* Disable Timer scan */
2588 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2589 
2590 load_error_cnic1:
2591 	bnx2x_napi_disable_cnic(bp);
2592 	/* Update the number of queues without the cnic queues */
2593 	if (bnx2x_set_real_num_queues(bp, 0))
2594 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2595 load_error_cnic0:
2596 	BNX2X_ERR("CNIC-related load failed\n");
2597 	bnx2x_free_fp_mem_cnic(bp);
2598 	bnx2x_free_mem_cnic(bp);
2599 	return rc;
2600 #endif /* ! BNX2X_STOP_ON_ERROR */
2601 }
2602 
2603 /* must be called with rtnl_lock */
2604 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2605 {
2606 	int port = BP_PORT(bp);
2607 	int i, rc = 0, load_code = 0;
2608 
2609 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2610 	DP(NETIF_MSG_IFUP,
2611 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2612 
2613 #ifdef BNX2X_STOP_ON_ERROR
2614 	if (unlikely(bp->panic)) {
2615 		BNX2X_ERR("Can't load NIC when there is panic\n");
2616 		return -EPERM;
2617 	}
2618 #endif
2619 
2620 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2621 
2622 	/* zero the structure w/o any lock, before SP handler is initialized */
2623 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2624 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2625 		&bp->last_reported_link.link_report_flags);
2626 
2627 	if (IS_PF(bp))
2628 		/* must be called before memory allocation and HW init */
2629 		bnx2x_ilt_set_info(bp);
2630 
2631 	/*
2632 	 * Zero fastpath structures preserving invariants like napi, which are
2633 	 * allocated only once, fp index, max_cos, bp pointer.
2634 	 * Also set fp->mode and txdata_ptr.
2635 	 */
2636 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2637 	for_each_queue(bp, i)
2638 		bnx2x_bz_fp(bp, i);
2639 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2640 				  bp->num_cnic_queues) *
2641 				  sizeof(struct bnx2x_fp_txdata));
2642 
2643 	bp->fcoe_init = false;
2644 
2645 	/* Set the receive queues buffer size */
2646 	bnx2x_set_rx_buf_size(bp);
2647 
2648 	if (IS_PF(bp)) {
2649 		rc = bnx2x_alloc_mem(bp);
2650 		if (rc) {
2651 			BNX2X_ERR("Unable to allocate bp memory\n");
2652 			return rc;
2653 		}
2654 	}
2655 
2656 	/* need to be done after alloc mem, since it's self adjusting to amount
2657 	 * of memory available for RSS queues
2658 	 */
2659 	rc = bnx2x_alloc_fp_mem(bp);
2660 	if (rc) {
2661 		BNX2X_ERR("Unable to allocate memory for fps\n");
2662 		LOAD_ERROR_EXIT(bp, load_error0);
2663 	}
2664 
2665 	/* Allocated memory for FW statistics  */
2666 	if (bnx2x_alloc_fw_stats_mem(bp))
2667 		LOAD_ERROR_EXIT(bp, load_error0);
2668 
2669 	/* request pf to initialize status blocks */
2670 	if (IS_VF(bp)) {
2671 		rc = bnx2x_vfpf_init(bp);
2672 		if (rc)
2673 			LOAD_ERROR_EXIT(bp, load_error0);
2674 	}
2675 
2676 	/* As long as bnx2x_alloc_mem() may possibly update
2677 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2678 	 * come after it. At this stage cnic queues are not counted.
2679 	 */
2680 	rc = bnx2x_set_real_num_queues(bp, 0);
2681 	if (rc) {
2682 		BNX2X_ERR("Unable to set real_num_queues\n");
2683 		LOAD_ERROR_EXIT(bp, load_error0);
2684 	}
2685 
2686 	/* configure multi cos mappings in kernel.
2687 	 * this configuration may be overridden by a multi class queue
2688 	 * discipline or by a dcbx negotiation result.
2689 	 */
2690 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2691 
2692 	/* Add all NAPI objects */
2693 	bnx2x_add_all_napi(bp);
2694 	DP(NETIF_MSG_IFUP, "napi added\n");
2695 	bnx2x_napi_enable(bp);
2696 
2697 	if (IS_PF(bp)) {
2698 		/* set pf load just before approaching the MCP */
2699 		bnx2x_set_pf_load(bp);
2700 
2701 		/* if mcp exists send load request and analyze response */
2702 		if (!BP_NOMCP(bp)) {
2703 			/* attempt to load pf */
2704 			rc = bnx2x_nic_load_request(bp, &load_code);
2705 			if (rc)
2706 				LOAD_ERROR_EXIT(bp, load_error1);
2707 
2708 			/* what did mcp say? */
2709 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2710 			if (rc) {
2711 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2712 				LOAD_ERROR_EXIT(bp, load_error2);
2713 			}
2714 		} else {
2715 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2716 		}
2717 
2718 		/* mark pmf if applicable */
2719 		bnx2x_nic_load_pmf(bp, load_code);
2720 
2721 		/* Init Function state controlling object */
2722 		bnx2x__init_func_obj(bp);
2723 
2724 		/* Initialize HW */
2725 		rc = bnx2x_init_hw(bp, load_code);
2726 		if (rc) {
2727 			BNX2X_ERR("HW init failed, aborting\n");
2728 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2729 			LOAD_ERROR_EXIT(bp, load_error2);
2730 		}
2731 	}
2732 
2733 	bnx2x_pre_irq_nic_init(bp);
2734 
2735 	/* Connect to IRQs */
2736 	rc = bnx2x_setup_irqs(bp);
2737 	if (rc) {
2738 		BNX2X_ERR("setup irqs failed\n");
2739 		if (IS_PF(bp))
2740 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2741 		LOAD_ERROR_EXIT(bp, load_error2);
2742 	}
2743 
2744 	/* Init per-function objects */
2745 	if (IS_PF(bp)) {
2746 		/* Setup NIC internals and enable interrupts */
2747 		bnx2x_post_irq_nic_init(bp, load_code);
2748 
2749 		bnx2x_init_bp_objs(bp);
2750 		bnx2x_iov_nic_init(bp);
2751 
2752 		/* Set AFEX default VLAN tag to an invalid value */
2753 		bp->afex_def_vlan_tag = -1;
2754 		bnx2x_nic_load_afex_dcc(bp, load_code);
2755 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2756 		rc = bnx2x_func_start(bp);
2757 		if (rc) {
2758 			BNX2X_ERR("Function start failed!\n");
2759 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2760 
2761 			LOAD_ERROR_EXIT(bp, load_error3);
2762 		}
2763 
2764 		/* Send LOAD_DONE command to MCP */
2765 		if (!BP_NOMCP(bp)) {
2766 			load_code = bnx2x_fw_command(bp,
2767 						     DRV_MSG_CODE_LOAD_DONE, 0);
2768 			if (!load_code) {
2769 				BNX2X_ERR("MCP response failure, aborting\n");
2770 				rc = -EBUSY;
2771 				LOAD_ERROR_EXIT(bp, load_error3);
2772 			}
2773 		}
2774 
2775 		/* initialize FW coalescing state machines in RAM */
2776 		bnx2x_update_coalesce(bp);
2777 	}
2778 
2779 	/* setup the leading queue */
2780 	rc = bnx2x_setup_leading(bp);
2781 	if (rc) {
2782 		BNX2X_ERR("Setup leading failed!\n");
2783 		LOAD_ERROR_EXIT(bp, load_error3);
2784 	}
2785 
2786 	/* set up the rest of the queues */
2787 	for_each_nondefault_eth_queue(bp, i) {
2788 		if (IS_PF(bp))
2789 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2790 		else /* VF */
2791 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2792 		if (rc) {
2793 			BNX2X_ERR("Queue %d setup failed\n", i);
2794 			LOAD_ERROR_EXIT(bp, load_error3);
2795 		}
2796 	}
2797 
2798 	/* setup rss */
2799 	rc = bnx2x_init_rss(bp);
2800 	if (rc) {
2801 		BNX2X_ERR("PF RSS init failed\n");
2802 		LOAD_ERROR_EXIT(bp, load_error3);
2803 	}
2804 
2805 	/* Now when Clients are configured we are ready to work */
2806 	bp->state = BNX2X_STATE_OPEN;
2807 
2808 	/* Configure a ucast MAC */
2809 	if (IS_PF(bp))
2810 		rc = bnx2x_set_eth_mac(bp, true);
2811 	else /* vf */
2812 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2813 					   true);
2814 	if (rc) {
2815 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2816 		LOAD_ERROR_EXIT(bp, load_error3);
2817 	}
2818 
2819 	if (IS_PF(bp) && bp->pending_max) {
2820 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2821 		bp->pending_max = 0;
2822 	}
2823 
2824 	if (bp->port.pmf) {
2825 		rc = bnx2x_initial_phy_init(bp, load_mode);
2826 		if (rc)
2827 			LOAD_ERROR_EXIT(bp, load_error3);
2828 	}
2829 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2830 
2831 	/* Start fast path */
2832 
2833 	/* Re-configure vlan filters */
2834 	rc = bnx2x_vlan_reconfigure_vid(bp);
2835 	if (rc)
2836 		LOAD_ERROR_EXIT(bp, load_error3);
2837 
2838 	/* Initialize Rx filter. */
2839 	bnx2x_set_rx_mode_inner(bp);
2840 
2841 	if (bp->flags & PTP_SUPPORTED) {
2842 		bnx2x_init_ptp(bp);
2843 		bnx2x_configure_ptp_filters(bp);
2844 	}
2845 	/* Start Tx */
2846 	switch (load_mode) {
2847 	case LOAD_NORMAL:
2848 		/* Tx queue should be only re-enabled */
2849 		netif_tx_wake_all_queues(bp->dev);
2850 		break;
2851 
2852 	case LOAD_OPEN:
2853 		netif_tx_start_all_queues(bp->dev);
2854 		smp_mb__after_atomic();
2855 		break;
2856 
2857 	case LOAD_DIAG:
2858 	case LOAD_LOOPBACK_EXT:
2859 		bp->state = BNX2X_STATE_DIAG;
2860 		break;
2861 
2862 	default:
2863 		break;
2864 	}
2865 
2866 	if (bp->port.pmf)
2867 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2868 	else
2869 		bnx2x__link_status_update(bp);
2870 
2871 	/* start the timer */
2872 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2873 
2874 	if (CNIC_ENABLED(bp))
2875 		bnx2x_load_cnic(bp);
2876 
2877 	if (IS_PF(bp))
2878 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2879 
2880 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2881 		/* mark driver is loaded in shmem2 */
2882 		u32 val;
2883 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2884 		val &= ~DRV_FLAGS_MTU_MASK;
2885 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2886 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2887 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2888 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2889 	}
2890 
2891 	/* Wait for all pending SP commands to complete */
2892 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2893 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2894 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2895 		return -EBUSY;
2896 	}
2897 
2898 	/* Update driver data for On-Chip MFW dump. */
2899 	if (IS_PF(bp))
2900 		bnx2x_update_mfw_dump(bp);
2901 
2902 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2903 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2904 		bnx2x_dcbx_init(bp, false);
2905 
2906 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2907 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2908 
2909 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2910 
2911 	return 0;
2912 
2913 #ifndef BNX2X_STOP_ON_ERROR
2914 load_error3:
2915 	if (IS_PF(bp)) {
2916 		bnx2x_int_disable_sync(bp, 1);
2917 
2918 		/* Clean queueable objects */
2919 		bnx2x_squeeze_objects(bp);
2920 	}
2921 
2922 	/* Free SKBs, SGEs, TPA pool and driver internals */
2923 	bnx2x_free_skbs(bp);
2924 	for_each_rx_queue(bp, i)
2925 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2926 
2927 	/* Release IRQs */
2928 	bnx2x_free_irq(bp);
2929 load_error2:
2930 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2931 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2932 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2933 	}
2934 
2935 	bp->port.pmf = 0;
2936 load_error1:
2937 	bnx2x_napi_disable(bp);
2938 	bnx2x_del_all_napi(bp);
2939 
2940 	/* clear pf_load status, as it was already set */
2941 	if (IS_PF(bp))
2942 		bnx2x_clear_pf_load(bp);
2943 load_error0:
2944 	bnx2x_free_fw_stats_mem(bp);
2945 	bnx2x_free_fp_mem(bp);
2946 	bnx2x_free_mem(bp);
2947 
2948 	return rc;
2949 #endif /* ! BNX2X_STOP_ON_ERROR */
2950 }
2951 
2952 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2953 {
2954 	u8 rc = 0, cos, i;
2955 
2956 	/* Wait until tx fastpath tasks complete */
2957 	for_each_tx_queue(bp, i) {
2958 		struct bnx2x_fastpath *fp = &bp->fp[i];
2959 
2960 		for_each_cos_in_tx_queue(fp, cos)
2961 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2962 		if (rc)
2963 			return rc;
2964 	}
2965 	return 0;
2966 }
2967 
2968 /* must be called with rtnl_lock */
2969 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2970 {
2971 	int i;
2972 	bool global = false;
2973 
2974 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2975 
2976 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2977 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2978 
2979 	/* mark driver is unloaded in shmem2 */
2980 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2981 		u32 val;
2982 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2983 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2984 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2985 	}
2986 
2987 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2988 	    (bp->state == BNX2X_STATE_CLOSED ||
2989 	     bp->state == BNX2X_STATE_ERROR)) {
2990 		/* We can get here if the driver has been unloaded
2991 		 * during parity error recovery and is either waiting for a
2992 		 * leader to complete or for other functions to unload and
2993 		 * then ifdown has been issued. In this case we want to
2994 		 * unload and let other functions to complete a recovery
2995 		 * process.
2996 		 */
2997 		bp->recovery_state = BNX2X_RECOVERY_DONE;
2998 		bp->is_leader = 0;
2999 		bnx2x_release_leader_lock(bp);
3000 		smp_mb();
3001 
3002 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3003 		BNX2X_ERR("Can't unload in closed or error state\n");
3004 		return -EINVAL;
3005 	}
3006 
3007 	/* Nothing to do during unload if previous bnx2x_nic_load()
3008 	 * have not completed successfully - all resources are released.
3009 	 *
3010 	 * we can get here only after unsuccessful ndo_* callback, during which
3011 	 * dev->IFF_UP flag is still on.
3012 	 */
3013 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3014 		return 0;
3015 
3016 	/* It's important to set the bp->state to the value different from
3017 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3018 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3019 	 */
3020 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3021 	smp_mb();
3022 
3023 	/* indicate to VFs that the PF is going down */
3024 	bnx2x_iov_channel_down(bp);
3025 
3026 	if (CNIC_LOADED(bp))
3027 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3028 
3029 	/* Stop Tx */
3030 	bnx2x_tx_disable(bp);
3031 	netdev_reset_tc(bp->dev);
3032 
3033 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3034 
3035 	del_timer_sync(&bp->timer);
3036 
3037 	if (IS_PF(bp)) {
3038 		/* Set ALWAYS_ALIVE bit in shmem */
3039 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3040 		bnx2x_drv_pulse(bp);
3041 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3042 		bnx2x_save_statistics(bp);
3043 	}
3044 
3045 	/* wait till consumers catch up with producers in all queues.
3046 	 * If we're recovering, FW can't write to host so no reason
3047 	 * to wait for the queues to complete all Tx.
3048 	 */
3049 	if (unload_mode != UNLOAD_RECOVERY)
3050 		bnx2x_drain_tx_queues(bp);
3051 
3052 	/* if VF indicate to PF this function is going down (PF will delete sp
3053 	 * elements and clear initializations
3054 	 */
3055 	if (IS_VF(bp))
3056 		bnx2x_vfpf_close_vf(bp);
3057 	else if (unload_mode != UNLOAD_RECOVERY)
3058 		/* if this is a normal/close unload need to clean up chip*/
3059 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3060 	else {
3061 		/* Send the UNLOAD_REQUEST to the MCP */
3062 		bnx2x_send_unload_req(bp, unload_mode);
3063 
3064 		/* Prevent transactions to host from the functions on the
3065 		 * engine that doesn't reset global blocks in case of global
3066 		 * attention once global blocks are reset and gates are opened
3067 		 * (the engine which leader will perform the recovery
3068 		 * last).
3069 		 */
3070 		if (!CHIP_IS_E1x(bp))
3071 			bnx2x_pf_disable(bp);
3072 
3073 		/* Disable HW interrupts, NAPI */
3074 		bnx2x_netif_stop(bp, 1);
3075 		/* Delete all NAPI objects */
3076 		bnx2x_del_all_napi(bp);
3077 		if (CNIC_LOADED(bp))
3078 			bnx2x_del_all_napi_cnic(bp);
3079 		/* Release IRQs */
3080 		bnx2x_free_irq(bp);
3081 
3082 		/* Report UNLOAD_DONE to MCP */
3083 		bnx2x_send_unload_done(bp, false);
3084 	}
3085 
3086 	/*
3087 	 * At this stage no more interrupts will arrive so we may safely clean
3088 	 * the queueable objects here in case they failed to get cleaned so far.
3089 	 */
3090 	if (IS_PF(bp))
3091 		bnx2x_squeeze_objects(bp);
3092 
3093 	/* There should be no more pending SP commands at this stage */
3094 	bp->sp_state = 0;
3095 
3096 	bp->port.pmf = 0;
3097 
3098 	/* clear pending work in rtnl task */
3099 	bp->sp_rtnl_state = 0;
3100 	smp_mb();
3101 
3102 	/* Free SKBs, SGEs, TPA pool and driver internals */
3103 	bnx2x_free_skbs(bp);
3104 	if (CNIC_LOADED(bp))
3105 		bnx2x_free_skbs_cnic(bp);
3106 	for_each_rx_queue(bp, i)
3107 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3108 
3109 	bnx2x_free_fp_mem(bp);
3110 	if (CNIC_LOADED(bp))
3111 		bnx2x_free_fp_mem_cnic(bp);
3112 
3113 	if (IS_PF(bp)) {
3114 		if (CNIC_LOADED(bp))
3115 			bnx2x_free_mem_cnic(bp);
3116 	}
3117 	bnx2x_free_mem(bp);
3118 
3119 	bp->state = BNX2X_STATE_CLOSED;
3120 	bp->cnic_loaded = false;
3121 
3122 	/* Clear driver version indication in shmem */
3123 	if (IS_PF(bp))
3124 		bnx2x_update_mng_version(bp);
3125 
3126 	/* Check if there are pending parity attentions. If there are - set
3127 	 * RECOVERY_IN_PROGRESS.
3128 	 */
3129 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3130 		bnx2x_set_reset_in_progress(bp);
3131 
3132 		/* Set RESET_IS_GLOBAL if needed */
3133 		if (global)
3134 			bnx2x_set_reset_global(bp);
3135 	}
3136 
3137 	/* The last driver must disable a "close the gate" if there is no
3138 	 * parity attention or "process kill" pending.
3139 	 */
3140 	if (IS_PF(bp) &&
3141 	    !bnx2x_clear_pf_load(bp) &&
3142 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3143 		bnx2x_disable_close_the_gate(bp);
3144 
3145 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3146 
3147 	return 0;
3148 }
3149 
3150 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3151 {
3152 	u16 pmcsr;
3153 
3154 	/* If there is no power capability, silently succeed */
3155 	if (!bp->pdev->pm_cap) {
3156 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3157 		return 0;
3158 	}
3159 
3160 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3161 
3162 	switch (state) {
3163 	case PCI_D0:
3164 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3165 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3166 				       PCI_PM_CTRL_PME_STATUS));
3167 
3168 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3169 			/* delay required during transition out of D3hot */
3170 			msleep(20);
3171 		break;
3172 
3173 	case PCI_D3hot:
3174 		/* If there are other clients above don't
3175 		   shut down the power */
3176 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3177 			return 0;
3178 		/* Don't shut down the power for emulation and FPGA */
3179 		if (CHIP_REV_IS_SLOW(bp))
3180 			return 0;
3181 
3182 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3183 		pmcsr |= 3;
3184 
3185 		if (bp->wol)
3186 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3187 
3188 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3189 				      pmcsr);
3190 
3191 		/* No more memory access after this point until
3192 		* device is brought back to D0.
3193 		*/
3194 		break;
3195 
3196 	default:
3197 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3198 		return -EINVAL;
3199 	}
3200 	return 0;
3201 }
3202 
3203 /*
3204  * net_device service functions
3205  */
3206 static int bnx2x_poll(struct napi_struct *napi, int budget)
3207 {
3208 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3209 						 napi);
3210 	struct bnx2x *bp = fp->bp;
3211 	int rx_work_done;
3212 	u8 cos;
3213 
3214 #ifdef BNX2X_STOP_ON_ERROR
3215 	if (unlikely(bp->panic)) {
3216 		napi_complete(napi);
3217 		return 0;
3218 	}
3219 #endif
3220 	for_each_cos_in_tx_queue(fp, cos)
3221 		if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3222 			bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3223 
3224 	rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3225 
3226 	if (rx_work_done < budget) {
3227 		/* No need to update SB for FCoE L2 ring as long as
3228 		 * it's connected to the default SB and the SB
3229 		 * has been updated when NAPI was scheduled.
3230 		 */
3231 		if (IS_FCOE_FP(fp)) {
3232 			napi_complete(napi);
3233 		} else {
3234 			bnx2x_update_fpsb_idx(fp);
3235 			/* bnx2x_has_rx_work() reads the status block,
3236 			 * thus we need to ensure that status block indices
3237 			 * have been actually read (bnx2x_update_fpsb_idx)
3238 			 * prior to this check (bnx2x_has_rx_work) so that
3239 			 * we won't write the "newer" value of the status block
3240 			 * to IGU (if there was a DMA right after
3241 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3242 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3243 			 * to right before bnx2x_ack_sb). In this case there
3244 			 * will never be another interrupt until there is
3245 			 * another update of the status block, while there
3246 			 * is still unhandled work.
3247 			 */
3248 			rmb();
3249 
3250 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3251 				if (napi_complete_done(napi, rx_work_done)) {
3252 					/* Re-enable interrupts */
3253 					DP(NETIF_MSG_RX_STATUS,
3254 					   "Update index to %d\n", fp->fp_hc_idx);
3255 					bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3256 						     le16_to_cpu(fp->fp_hc_idx),
3257 						     IGU_INT_ENABLE, 1);
3258 				}
3259 			} else {
3260 				rx_work_done = budget;
3261 			}
3262 		}
3263 	}
3264 
3265 	return rx_work_done;
3266 }
3267 
3268 /* we split the first BD into headers and data BDs
3269  * to ease the pain of our fellow microcode engineers
3270  * we use one mapping for both BDs
3271  */
3272 static u16 bnx2x_tx_split(struct bnx2x *bp,
3273 			  struct bnx2x_fp_txdata *txdata,
3274 			  struct sw_tx_bd *tx_buf,
3275 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3276 			  u16 bd_prod)
3277 {
3278 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3279 	struct eth_tx_bd *d_tx_bd;
3280 	dma_addr_t mapping;
3281 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3282 
3283 	/* first fix first BD */
3284 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3285 
3286 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3287 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3288 
3289 	/* now get a new data BD
3290 	 * (after the pbd) and fill it */
3291 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3292 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3293 
3294 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3295 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3296 
3297 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3298 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3299 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3300 
3301 	/* this marks the BD as one that has no individual mapping */
3302 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3303 
3304 	DP(NETIF_MSG_TX_QUEUED,
3305 	   "TSO split data size is %d (%x:%x)\n",
3306 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3307 
3308 	/* update tx_bd */
3309 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3310 
3311 	return bd_prod;
3312 }
3313 
3314 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3315 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3316 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3317 {
3318 	__sum16 tsum = (__force __sum16) csum;
3319 
3320 	if (fix > 0)
3321 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3322 				  csum_partial(t_header - fix, fix, 0)));
3323 
3324 	else if (fix < 0)
3325 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3326 				  csum_partial(t_header, -fix, 0)));
3327 
3328 	return bswab16(tsum);
3329 }
3330 
3331 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3332 {
3333 	u32 rc;
3334 	__u8 prot = 0;
3335 	__be16 protocol;
3336 
3337 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3338 		return XMIT_PLAIN;
3339 
3340 	protocol = vlan_get_protocol(skb);
3341 	if (protocol == htons(ETH_P_IPV6)) {
3342 		rc = XMIT_CSUM_V6;
3343 		prot = ipv6_hdr(skb)->nexthdr;
3344 	} else {
3345 		rc = XMIT_CSUM_V4;
3346 		prot = ip_hdr(skb)->protocol;
3347 	}
3348 
3349 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3350 		if (inner_ip_hdr(skb)->version == 6) {
3351 			rc |= XMIT_CSUM_ENC_V6;
3352 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3353 				rc |= XMIT_CSUM_TCP;
3354 		} else {
3355 			rc |= XMIT_CSUM_ENC_V4;
3356 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3357 				rc |= XMIT_CSUM_TCP;
3358 		}
3359 	}
3360 	if (prot == IPPROTO_TCP)
3361 		rc |= XMIT_CSUM_TCP;
3362 
3363 	if (skb_is_gso(skb)) {
3364 		if (skb_is_gso_v6(skb)) {
3365 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3366 			if (rc & XMIT_CSUM_ENC)
3367 				rc |= XMIT_GSO_ENC_V6;
3368 		} else {
3369 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3370 			if (rc & XMIT_CSUM_ENC)
3371 				rc |= XMIT_GSO_ENC_V4;
3372 		}
3373 	}
3374 
3375 	return rc;
3376 }
3377 
3378 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3379 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS         4
3380 
3381 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3382 #define BNX2X_NUM_TSO_WIN_SUB_BDS               3
3383 
3384 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3385 /* check if packet requires linearization (packet is too fragmented)
3386    no need to check fragmentation if page size > 8K (there will be no
3387    violation to FW restrictions) */
3388 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3389 			     u32 xmit_type)
3390 {
3391 	int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3392 	int to_copy = 0, hlen = 0;
3393 
3394 	if (xmit_type & XMIT_GSO_ENC)
3395 		num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3396 
3397 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3398 		if (xmit_type & XMIT_GSO) {
3399 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3400 			int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3401 			/* Number of windows to check */
3402 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3403 			int wnd_idx = 0;
3404 			int frag_idx = 0;
3405 			u32 wnd_sum = 0;
3406 
3407 			/* Headers length */
3408 			if (xmit_type & XMIT_GSO_ENC)
3409 				hlen = (int)(skb_inner_transport_header(skb) -
3410 					     skb->data) +
3411 					     inner_tcp_hdrlen(skb);
3412 			else
3413 				hlen = (int)(skb_transport_header(skb) -
3414 					     skb->data) + tcp_hdrlen(skb);
3415 
3416 			/* Amount of data (w/o headers) on linear part of SKB*/
3417 			first_bd_sz = skb_headlen(skb) - hlen;
3418 
3419 			wnd_sum  = first_bd_sz;
3420 
3421 			/* Calculate the first sum - it's special */
3422 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3423 				wnd_sum +=
3424 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3425 
3426 			/* If there was data on linear skb data - check it */
3427 			if (first_bd_sz > 0) {
3428 				if (unlikely(wnd_sum < lso_mss)) {
3429 					to_copy = 1;
3430 					goto exit_lbl;
3431 				}
3432 
3433 				wnd_sum -= first_bd_sz;
3434 			}
3435 
3436 			/* Others are easier: run through the frag list and
3437 			   check all windows */
3438 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3439 				wnd_sum +=
3440 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3441 
3442 				if (unlikely(wnd_sum < lso_mss)) {
3443 					to_copy = 1;
3444 					break;
3445 				}
3446 				wnd_sum -=
3447 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3448 			}
3449 		} else {
3450 			/* in non-LSO too fragmented packet should always
3451 			   be linearized */
3452 			to_copy = 1;
3453 		}
3454 	}
3455 
3456 exit_lbl:
3457 	if (unlikely(to_copy))
3458 		DP(NETIF_MSG_TX_QUEUED,
3459 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3460 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3461 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3462 
3463 	return to_copy;
3464 }
3465 #endif
3466 
3467 /**
3468  * bnx2x_set_pbd_gso - update PBD in GSO case.
3469  *
3470  * @skb:	packet skb
3471  * @pbd:	parse BD
3472  * @xmit_type:	xmit flags
3473  */
3474 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3475 			      struct eth_tx_parse_bd_e1x *pbd,
3476 			      u32 xmit_type)
3477 {
3478 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3479 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3480 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3481 
3482 	if (xmit_type & XMIT_GSO_V4) {
3483 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3484 		pbd->tcp_pseudo_csum =
3485 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3486 						   ip_hdr(skb)->daddr,
3487 						   0, IPPROTO_TCP, 0));
3488 	} else {
3489 		pbd->tcp_pseudo_csum =
3490 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3491 						 &ipv6_hdr(skb)->daddr,
3492 						 0, IPPROTO_TCP, 0));
3493 	}
3494 
3495 	pbd->global_data |=
3496 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3497 }
3498 
3499 /**
3500  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3501  *
3502  * @bp:			driver handle
3503  * @skb:		packet skb
3504  * @parsing_data:	data to be updated
3505  * @xmit_type:		xmit flags
3506  *
3507  * 57712/578xx related, when skb has encapsulation
3508  */
3509 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3510 				 u32 *parsing_data, u32 xmit_type)
3511 {
3512 	*parsing_data |=
3513 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3514 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3515 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3516 
3517 	if (xmit_type & XMIT_CSUM_TCP) {
3518 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3519 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3520 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3521 
3522 		return skb_inner_transport_header(skb) +
3523 			inner_tcp_hdrlen(skb) - skb->data;
3524 	}
3525 
3526 	/* We support checksum offload for TCP and UDP only.
3527 	 * No need to pass the UDP header length - it's a constant.
3528 	 */
3529 	return skb_inner_transport_header(skb) +
3530 		sizeof(struct udphdr) - skb->data;
3531 }
3532 
3533 /**
3534  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3535  *
3536  * @bp:			driver handle
3537  * @skb:		packet skb
3538  * @parsing_data:	data to be updated
3539  * @xmit_type:		xmit flags
3540  *
3541  * 57712/578xx related
3542  */
3543 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3544 				u32 *parsing_data, u32 xmit_type)
3545 {
3546 	*parsing_data |=
3547 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3548 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3549 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3550 
3551 	if (xmit_type & XMIT_CSUM_TCP) {
3552 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3553 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3554 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3555 
3556 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3557 	}
3558 	/* We support checksum offload for TCP and UDP only.
3559 	 * No need to pass the UDP header length - it's a constant.
3560 	 */
3561 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3562 }
3563 
3564 /* set FW indication according to inner or outer protocols if tunneled */
3565 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3566 			       struct eth_tx_start_bd *tx_start_bd,
3567 			       u32 xmit_type)
3568 {
3569 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3570 
3571 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3572 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3573 
3574 	if (!(xmit_type & XMIT_CSUM_TCP))
3575 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3576 }
3577 
3578 /**
3579  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3580  *
3581  * @bp:		driver handle
3582  * @skb:	packet skb
3583  * @pbd:	parse BD to be updated
3584  * @xmit_type:	xmit flags
3585  */
3586 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3587 			     struct eth_tx_parse_bd_e1x *pbd,
3588 			     u32 xmit_type)
3589 {
3590 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3591 
3592 	/* for now NS flag is not used in Linux */
3593 	pbd->global_data =
3594 		cpu_to_le16(hlen |
3595 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3596 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3597 
3598 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3599 			skb_network_header(skb)) >> 1;
3600 
3601 	hlen += pbd->ip_hlen_w;
3602 
3603 	/* We support checksum offload for TCP and UDP only */
3604 	if (xmit_type & XMIT_CSUM_TCP)
3605 		hlen += tcp_hdrlen(skb) / 2;
3606 	else
3607 		hlen += sizeof(struct udphdr) / 2;
3608 
3609 	pbd->total_hlen_w = cpu_to_le16(hlen);
3610 	hlen = hlen*2;
3611 
3612 	if (xmit_type & XMIT_CSUM_TCP) {
3613 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3614 
3615 	} else {
3616 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3617 
3618 		DP(NETIF_MSG_TX_QUEUED,
3619 		   "hlen %d  fix %d  csum before fix %x\n",
3620 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3621 
3622 		/* HW bug: fixup the CSUM */
3623 		pbd->tcp_pseudo_csum =
3624 			bnx2x_csum_fix(skb_transport_header(skb),
3625 				       SKB_CS(skb), fix);
3626 
3627 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3628 		   pbd->tcp_pseudo_csum);
3629 	}
3630 
3631 	return hlen;
3632 }
3633 
3634 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3635 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3636 				      struct eth_tx_parse_2nd_bd *pbd2,
3637 				      u16 *global_data,
3638 				      u32 xmit_type)
3639 {
3640 	u16 hlen_w = 0;
3641 	u8 outerip_off, outerip_len = 0;
3642 
3643 	/* from outer IP to transport */
3644 	hlen_w = (skb_inner_transport_header(skb) -
3645 		  skb_network_header(skb)) >> 1;
3646 
3647 	/* transport len */
3648 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3649 
3650 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3651 
3652 	/* outer IP header info */
3653 	if (xmit_type & XMIT_CSUM_V4) {
3654 		struct iphdr *iph = ip_hdr(skb);
3655 		u32 csum = (__force u32)(~iph->check) -
3656 			   (__force u32)iph->tot_len -
3657 			   (__force u32)iph->frag_off;
3658 
3659 		outerip_len = iph->ihl << 1;
3660 
3661 		pbd2->fw_ip_csum_wo_len_flags_frag =
3662 			bswab16(csum_fold((__force __wsum)csum));
3663 	} else {
3664 		pbd2->fw_ip_hdr_to_payload_w =
3665 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3666 		pbd_e2->data.tunnel_data.flags |=
3667 			ETH_TUNNEL_DATA_IPV6_OUTER;
3668 	}
3669 
3670 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3671 
3672 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3673 
3674 	/* inner IP header info */
3675 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3676 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3677 
3678 		pbd_e2->data.tunnel_data.pseudo_csum =
3679 			bswab16(~csum_tcpudp_magic(
3680 					inner_ip_hdr(skb)->saddr,
3681 					inner_ip_hdr(skb)->daddr,
3682 					0, IPPROTO_TCP, 0));
3683 	} else {
3684 		pbd_e2->data.tunnel_data.pseudo_csum =
3685 			bswab16(~csum_ipv6_magic(
3686 					&inner_ipv6_hdr(skb)->saddr,
3687 					&inner_ipv6_hdr(skb)->daddr,
3688 					0, IPPROTO_TCP, 0));
3689 	}
3690 
3691 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3692 
3693 	*global_data |=
3694 		outerip_off |
3695 		(outerip_len <<
3696 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3697 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3698 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3699 
3700 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3701 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3702 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3703 	}
3704 }
3705 
3706 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3707 					 u32 xmit_type)
3708 {
3709 	struct ipv6hdr *ipv6;
3710 
3711 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3712 		return;
3713 
3714 	if (xmit_type & XMIT_GSO_ENC_V6)
3715 		ipv6 = inner_ipv6_hdr(skb);
3716 	else /* XMIT_GSO_V6 */
3717 		ipv6 = ipv6_hdr(skb);
3718 
3719 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3720 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3721 }
3722 
3723 /* called with netif_tx_lock
3724  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3725  * netif_wake_queue()
3726  */
3727 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3728 {
3729 	struct bnx2x *bp = netdev_priv(dev);
3730 
3731 	struct netdev_queue *txq;
3732 	struct bnx2x_fp_txdata *txdata;
3733 	struct sw_tx_bd *tx_buf;
3734 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3735 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3736 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3737 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3738 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3739 	u32 pbd_e2_parsing_data = 0;
3740 	u16 pkt_prod, bd_prod;
3741 	int nbd, txq_index;
3742 	dma_addr_t mapping;
3743 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3744 	int i;
3745 	u8 hlen = 0;
3746 	__le16 pkt_size = 0;
3747 	struct ethhdr *eth;
3748 	u8 mac_type = UNICAST_ADDRESS;
3749 
3750 #ifdef BNX2X_STOP_ON_ERROR
3751 	if (unlikely(bp->panic))
3752 		return NETDEV_TX_BUSY;
3753 #endif
3754 
3755 	txq_index = skb_get_queue_mapping(skb);
3756 	txq = netdev_get_tx_queue(dev, txq_index);
3757 
3758 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3759 
3760 	txdata = &bp->bnx2x_txq[txq_index];
3761 
3762 	/* enable this debug print to view the transmission queue being used
3763 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3764 	   txq_index, fp_index, txdata_index); */
3765 
3766 	/* enable this debug print to view the transmission details
3767 	DP(NETIF_MSG_TX_QUEUED,
3768 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3769 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3770 
3771 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3772 			skb_shinfo(skb)->nr_frags +
3773 			BDS_PER_TX_PKT +
3774 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3775 		/* Handle special storage cases separately */
3776 		if (txdata->tx_ring_size == 0) {
3777 			struct bnx2x_eth_q_stats *q_stats =
3778 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3779 			q_stats->driver_filtered_tx_pkt++;
3780 			dev_kfree_skb(skb);
3781 			return NETDEV_TX_OK;
3782 		}
3783 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3784 		netif_tx_stop_queue(txq);
3785 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3786 
3787 		return NETDEV_TX_BUSY;
3788 	}
3789 
3790 	DP(NETIF_MSG_TX_QUEUED,
3791 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3792 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3793 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3794 	   skb->len);
3795 
3796 	eth = (struct ethhdr *)skb->data;
3797 
3798 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3799 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3800 		if (is_broadcast_ether_addr(eth->h_dest))
3801 			mac_type = BROADCAST_ADDRESS;
3802 		else
3803 			mac_type = MULTICAST_ADDRESS;
3804 	}
3805 
3806 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3807 	/* First, check if we need to linearize the skb (due to FW
3808 	   restrictions). No need to check fragmentation if page size > 8K
3809 	   (there will be no violation to FW restrictions) */
3810 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3811 		/* Statistics of linearization */
3812 		bp->lin_cnt++;
3813 		if (skb_linearize(skb) != 0) {
3814 			DP(NETIF_MSG_TX_QUEUED,
3815 			   "SKB linearization failed - silently dropping this SKB\n");
3816 			dev_kfree_skb_any(skb);
3817 			return NETDEV_TX_OK;
3818 		}
3819 	}
3820 #endif
3821 	/* Map skb linear data for DMA */
3822 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3823 				 skb_headlen(skb), DMA_TO_DEVICE);
3824 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3825 		DP(NETIF_MSG_TX_QUEUED,
3826 		   "SKB mapping failed - silently dropping this SKB\n");
3827 		dev_kfree_skb_any(skb);
3828 		return NETDEV_TX_OK;
3829 	}
3830 	/*
3831 	Please read carefully. First we use one BD which we mark as start,
3832 	then we have a parsing info BD (used for TSO or xsum),
3833 	and only then we have the rest of the TSO BDs.
3834 	(don't forget to mark the last one as last,
3835 	and to unmap only AFTER you write to the BD ...)
3836 	And above all, all pdb sizes are in words - NOT DWORDS!
3837 	*/
3838 
3839 	/* get current pkt produced now - advance it just before sending packet
3840 	 * since mapping of pages may fail and cause packet to be dropped
3841 	 */
3842 	pkt_prod = txdata->tx_pkt_prod;
3843 	bd_prod = TX_BD(txdata->tx_bd_prod);
3844 
3845 	/* get a tx_buf and first BD
3846 	 * tx_start_bd may be changed during SPLIT,
3847 	 * but first_bd will always stay first
3848 	 */
3849 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3850 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3851 	first_bd = tx_start_bd;
3852 
3853 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3854 
3855 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3856 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3857 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3858 		} else if (bp->ptp_tx_skb) {
3859 			BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n");
3860 		} else {
3861 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3862 			/* schedule check for Tx timestamp */
3863 			bp->ptp_tx_skb = skb_get(skb);
3864 			bp->ptp_tx_start = jiffies;
3865 			schedule_work(&bp->ptp_task);
3866 		}
3867 	}
3868 
3869 	/* header nbd: indirectly zero other flags! */
3870 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3871 
3872 	/* remember the first BD of the packet */
3873 	tx_buf->first_bd = txdata->tx_bd_prod;
3874 	tx_buf->skb = skb;
3875 	tx_buf->flags = 0;
3876 
3877 	DP(NETIF_MSG_TX_QUEUED,
3878 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3879 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3880 
3881 	if (skb_vlan_tag_present(skb)) {
3882 		tx_start_bd->vlan_or_ethertype =
3883 		    cpu_to_le16(skb_vlan_tag_get(skb));
3884 		tx_start_bd->bd_flags.as_bitfield |=
3885 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3886 	} else {
3887 		/* when transmitting in a vf, start bd must hold the ethertype
3888 		 * for fw to enforce it
3889 		 */
3890 #ifndef BNX2X_STOP_ON_ERROR
3891 		if (IS_VF(bp))
3892 #endif
3893 			tx_start_bd->vlan_or_ethertype =
3894 				cpu_to_le16(ntohs(eth->h_proto));
3895 #ifndef BNX2X_STOP_ON_ERROR
3896 		else
3897 			/* used by FW for packet accounting */
3898 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3899 #endif
3900 	}
3901 
3902 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3903 
3904 	/* turn on parsing and get a BD */
3905 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3906 
3907 	if (xmit_type & XMIT_CSUM)
3908 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3909 
3910 	if (!CHIP_IS_E1x(bp)) {
3911 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3912 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3913 
3914 		if (xmit_type & XMIT_CSUM_ENC) {
3915 			u16 global_data = 0;
3916 
3917 			/* Set PBD in enc checksum offload case */
3918 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3919 						      &pbd_e2_parsing_data,
3920 						      xmit_type);
3921 
3922 			/* turn on 2nd parsing and get a BD */
3923 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3924 
3925 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3926 
3927 			memset(pbd2, 0, sizeof(*pbd2));
3928 
3929 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3930 				(skb_inner_network_header(skb) -
3931 				 skb->data) >> 1;
3932 
3933 			if (xmit_type & XMIT_GSO_ENC)
3934 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3935 							  &global_data,
3936 							  xmit_type);
3937 
3938 			pbd2->global_data = cpu_to_le16(global_data);
3939 
3940 			/* add addition parse BD indication to start BD */
3941 			SET_FLAG(tx_start_bd->general_data,
3942 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3943 			/* set encapsulation flag in start BD */
3944 			SET_FLAG(tx_start_bd->general_data,
3945 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3946 
3947 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3948 
3949 			nbd++;
3950 		} else if (xmit_type & XMIT_CSUM) {
3951 			/* Set PBD in checksum offload case w/o encapsulation */
3952 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3953 						     &pbd_e2_parsing_data,
3954 						     xmit_type);
3955 		}
3956 
3957 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3958 		/* Add the macs to the parsing BD if this is a vf or if
3959 		 * Tx Switching is enabled.
3960 		 */
3961 		if (IS_VF(bp)) {
3962 			/* override GRE parameters in BD */
3963 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3964 					      &pbd_e2->data.mac_addr.src_mid,
3965 					      &pbd_e2->data.mac_addr.src_lo,
3966 					      eth->h_source);
3967 
3968 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3969 					      &pbd_e2->data.mac_addr.dst_mid,
3970 					      &pbd_e2->data.mac_addr.dst_lo,
3971 					      eth->h_dest);
3972 		} else {
3973 			if (bp->flags & TX_SWITCHING)
3974 				bnx2x_set_fw_mac_addr(
3975 						&pbd_e2->data.mac_addr.dst_hi,
3976 						&pbd_e2->data.mac_addr.dst_mid,
3977 						&pbd_e2->data.mac_addr.dst_lo,
3978 						eth->h_dest);
3979 #ifdef BNX2X_STOP_ON_ERROR
3980 			/* Enforce security is always set in Stop on Error -
3981 			 * source mac should be present in the parsing BD
3982 			 */
3983 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3984 					      &pbd_e2->data.mac_addr.src_mid,
3985 					      &pbd_e2->data.mac_addr.src_lo,
3986 					      eth->h_source);
3987 #endif
3988 		}
3989 
3990 		SET_FLAG(pbd_e2_parsing_data,
3991 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
3992 	} else {
3993 		u16 global_data = 0;
3994 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
3995 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
3996 		/* Set PBD in checksum offload case */
3997 		if (xmit_type & XMIT_CSUM)
3998 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
3999 
4000 		SET_FLAG(global_data,
4001 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4002 		pbd_e1x->global_data |= cpu_to_le16(global_data);
4003 	}
4004 
4005 	/* Setup the data pointer of the first BD of the packet */
4006 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4007 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4008 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4009 	pkt_size = tx_start_bd->nbytes;
4010 
4011 	DP(NETIF_MSG_TX_QUEUED,
4012 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4013 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4014 	   le16_to_cpu(tx_start_bd->nbytes),
4015 	   tx_start_bd->bd_flags.as_bitfield,
4016 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4017 
4018 	if (xmit_type & XMIT_GSO) {
4019 
4020 		DP(NETIF_MSG_TX_QUEUED,
4021 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4022 		   skb->len, hlen, skb_headlen(skb),
4023 		   skb_shinfo(skb)->gso_size);
4024 
4025 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4026 
4027 		if (unlikely(skb_headlen(skb) > hlen)) {
4028 			nbd++;
4029 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4030 						 &tx_start_bd, hlen,
4031 						 bd_prod);
4032 		}
4033 		if (!CHIP_IS_E1x(bp))
4034 			pbd_e2_parsing_data |=
4035 				(skb_shinfo(skb)->gso_size <<
4036 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4037 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4038 		else
4039 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4040 	}
4041 
4042 	/* Set the PBD's parsing_data field if not zero
4043 	 * (for the chips newer than 57711).
4044 	 */
4045 	if (pbd_e2_parsing_data)
4046 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4047 
4048 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4049 
4050 	/* Handle fragmented skb */
4051 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4052 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4053 
4054 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4055 					   skb_frag_size(frag), DMA_TO_DEVICE);
4056 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4057 			unsigned int pkts_compl = 0, bytes_compl = 0;
4058 
4059 			DP(NETIF_MSG_TX_QUEUED,
4060 			   "Unable to map page - dropping packet...\n");
4061 
4062 			/* we need unmap all buffers already mapped
4063 			 * for this SKB;
4064 			 * first_bd->nbd need to be properly updated
4065 			 * before call to bnx2x_free_tx_pkt
4066 			 */
4067 			first_bd->nbd = cpu_to_le16(nbd);
4068 			bnx2x_free_tx_pkt(bp, txdata,
4069 					  TX_BD(txdata->tx_pkt_prod),
4070 					  &pkts_compl, &bytes_compl);
4071 			return NETDEV_TX_OK;
4072 		}
4073 
4074 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4075 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4076 		if (total_pkt_bd == NULL)
4077 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4078 
4079 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4080 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4081 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4082 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4083 		nbd++;
4084 
4085 		DP(NETIF_MSG_TX_QUEUED,
4086 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4087 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4088 		   le16_to_cpu(tx_data_bd->nbytes));
4089 	}
4090 
4091 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4092 
4093 	/* update with actual num BDs */
4094 	first_bd->nbd = cpu_to_le16(nbd);
4095 
4096 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4097 
4098 	/* now send a tx doorbell, counting the next BD
4099 	 * if the packet contains or ends with it
4100 	 */
4101 	if (TX_BD_POFF(bd_prod) < nbd)
4102 		nbd++;
4103 
4104 	/* total_pkt_bytes should be set on the first data BD if
4105 	 * it's not an LSO packet and there is more than one
4106 	 * data BD. In this case pkt_size is limited by an MTU value.
4107 	 * However we prefer to set it for an LSO packet (while we don't
4108 	 * have to) in order to save some CPU cycles in a none-LSO
4109 	 * case, when we much more care about them.
4110 	 */
4111 	if (total_pkt_bd != NULL)
4112 		total_pkt_bd->total_pkt_bytes = pkt_size;
4113 
4114 	if (pbd_e1x)
4115 		DP(NETIF_MSG_TX_QUEUED,
4116 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4117 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4118 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4119 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4120 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4121 	if (pbd_e2)
4122 		DP(NETIF_MSG_TX_QUEUED,
4123 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4124 		   pbd_e2,
4125 		   pbd_e2->data.mac_addr.dst_hi,
4126 		   pbd_e2->data.mac_addr.dst_mid,
4127 		   pbd_e2->data.mac_addr.dst_lo,
4128 		   pbd_e2->data.mac_addr.src_hi,
4129 		   pbd_e2->data.mac_addr.src_mid,
4130 		   pbd_e2->data.mac_addr.src_lo,
4131 		   pbd_e2->parsing_data);
4132 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4133 
4134 	netdev_tx_sent_queue(txq, skb->len);
4135 
4136 	skb_tx_timestamp(skb);
4137 
4138 	txdata->tx_pkt_prod++;
4139 	/*
4140 	 * Make sure that the BD data is updated before updating the producer
4141 	 * since FW might read the BD right after the producer is updated.
4142 	 * This is only applicable for weak-ordered memory model archs such
4143 	 * as IA-64. The following barrier is also mandatory since FW will
4144 	 * assumes packets must have BDs.
4145 	 */
4146 	wmb();
4147 
4148 	txdata->tx_db.data.prod += nbd;
4149 	barrier();
4150 
4151 	DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
4152 
4153 	mmiowb();
4154 
4155 	txdata->tx_bd_prod += nbd;
4156 
4157 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4158 		netif_tx_stop_queue(txq);
4159 
4160 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4161 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4162 		 * fp->bd_tx_cons */
4163 		smp_mb();
4164 
4165 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4166 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4167 			netif_tx_wake_queue(txq);
4168 	}
4169 	txdata->tx_pkt++;
4170 
4171 	return NETDEV_TX_OK;
4172 }
4173 
4174 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4175 {
4176 	int mfw_vn = BP_FW_MB_IDX(bp);
4177 	u32 tmp;
4178 
4179 	/* If the shmem shouldn't affect configuration, reflect */
4180 	if (!IS_MF_BD(bp)) {
4181 		int i;
4182 
4183 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4184 			c2s_map[i] = i;
4185 		*c2s_default = 0;
4186 
4187 		return;
4188 	}
4189 
4190 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4191 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4192 	c2s_map[0] = tmp & 0xff;
4193 	c2s_map[1] = (tmp >> 8) & 0xff;
4194 	c2s_map[2] = (tmp >> 16) & 0xff;
4195 	c2s_map[3] = (tmp >> 24) & 0xff;
4196 
4197 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4198 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4199 	c2s_map[4] = tmp & 0xff;
4200 	c2s_map[5] = (tmp >> 8) & 0xff;
4201 	c2s_map[6] = (tmp >> 16) & 0xff;
4202 	c2s_map[7] = (tmp >> 24) & 0xff;
4203 
4204 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4205 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4206 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4207 }
4208 
4209 /**
4210  * bnx2x_setup_tc - routine to configure net_device for multi tc
4211  *
4212  * @netdev: net device to configure
4213  * @tc: number of traffic classes to enable
4214  *
4215  * callback connected to the ndo_setup_tc function pointer
4216  */
4217 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4218 {
4219 	struct bnx2x *bp = netdev_priv(dev);
4220 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4221 	int cos, prio, count, offset;
4222 
4223 	/* setup tc must be called under rtnl lock */
4224 	ASSERT_RTNL();
4225 
4226 	/* no traffic classes requested. Aborting */
4227 	if (!num_tc) {
4228 		netdev_reset_tc(dev);
4229 		return 0;
4230 	}
4231 
4232 	/* requested to support too many traffic classes */
4233 	if (num_tc > bp->max_cos) {
4234 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4235 			  num_tc, bp->max_cos);
4236 		return -EINVAL;
4237 	}
4238 
4239 	/* declare amount of supported traffic classes */
4240 	if (netdev_set_num_tc(dev, num_tc)) {
4241 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4242 		return -EINVAL;
4243 	}
4244 
4245 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4246 
4247 	/* configure priority to traffic class mapping */
4248 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4249 		int outer_prio = c2s_map[prio];
4250 
4251 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4252 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4253 		   "mapping priority %d to tc %d\n",
4254 		   outer_prio, bp->prio_to_cos[outer_prio]);
4255 	}
4256 
4257 	/* Use this configuration to differentiate tc0 from other COSes
4258 	   This can be used for ets or pfc, and save the effort of setting
4259 	   up a multio class queue disc or negotiating DCBX with a switch
4260 	netdev_set_prio_tc_map(dev, 0, 0);
4261 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4262 	for (prio = 1; prio < 16; prio++) {
4263 		netdev_set_prio_tc_map(dev, prio, 1);
4264 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4265 	} */
4266 
4267 	/* configure traffic class to transmission queue mapping */
4268 	for (cos = 0; cos < bp->max_cos; cos++) {
4269 		count = BNX2X_NUM_ETH_QUEUES(bp);
4270 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4271 		netdev_set_tc_queue(dev, cos, count, offset);
4272 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4273 		   "mapping tc %d to offset %d count %d\n",
4274 		   cos, offset, count);
4275 	}
4276 
4277 	return 0;
4278 }
4279 
4280 int __bnx2x_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
4281 		     struct tc_to_netdev *tc)
4282 {
4283 	if (tc->type != TC_SETUP_MQPRIO)
4284 		return -EINVAL;
4285 	return bnx2x_setup_tc(dev, tc->tc);
4286 }
4287 
4288 /* called with rtnl_lock */
4289 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4290 {
4291 	struct sockaddr *addr = p;
4292 	struct bnx2x *bp = netdev_priv(dev);
4293 	int rc = 0;
4294 
4295 	if (!is_valid_ether_addr(addr->sa_data)) {
4296 		BNX2X_ERR("Requested MAC address is not valid\n");
4297 		return -EINVAL;
4298 	}
4299 
4300 	if (IS_MF_STORAGE_ONLY(bp)) {
4301 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4302 		return -EINVAL;
4303 	}
4304 
4305 	if (netif_running(dev))  {
4306 		rc = bnx2x_set_eth_mac(bp, false);
4307 		if (rc)
4308 			return rc;
4309 	}
4310 
4311 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4312 
4313 	if (netif_running(dev))
4314 		rc = bnx2x_set_eth_mac(bp, true);
4315 
4316 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4317 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4318 
4319 	return rc;
4320 }
4321 
4322 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4323 {
4324 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4325 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4326 	u8 cos;
4327 
4328 	/* Common */
4329 
4330 	if (IS_FCOE_IDX(fp_index)) {
4331 		memset(sb, 0, sizeof(union host_hc_status_block));
4332 		fp->status_blk_mapping = 0;
4333 	} else {
4334 		/* status blocks */
4335 		if (!CHIP_IS_E1x(bp))
4336 			BNX2X_PCI_FREE(sb->e2_sb,
4337 				       bnx2x_fp(bp, fp_index,
4338 						status_blk_mapping),
4339 				       sizeof(struct host_hc_status_block_e2));
4340 		else
4341 			BNX2X_PCI_FREE(sb->e1x_sb,
4342 				       bnx2x_fp(bp, fp_index,
4343 						status_blk_mapping),
4344 				       sizeof(struct host_hc_status_block_e1x));
4345 	}
4346 
4347 	/* Rx */
4348 	if (!skip_rx_queue(bp, fp_index)) {
4349 		bnx2x_free_rx_bds(fp);
4350 
4351 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4352 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4353 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4354 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4355 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4356 
4357 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4358 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4359 			       sizeof(struct eth_fast_path_rx_cqe) *
4360 			       NUM_RCQ_BD);
4361 
4362 		/* SGE ring */
4363 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4364 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4365 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4366 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4367 	}
4368 
4369 	/* Tx */
4370 	if (!skip_tx_queue(bp, fp_index)) {
4371 		/* fastpath tx rings: tx_buf tx_desc */
4372 		for_each_cos_in_tx_queue(fp, cos) {
4373 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4374 
4375 			DP(NETIF_MSG_IFDOWN,
4376 			   "freeing tx memory of fp %d cos %d cid %d\n",
4377 			   fp_index, cos, txdata->cid);
4378 
4379 			BNX2X_FREE(txdata->tx_buf_ring);
4380 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4381 				txdata->tx_desc_mapping,
4382 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4383 		}
4384 	}
4385 	/* end of fastpath */
4386 }
4387 
4388 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4389 {
4390 	int i;
4391 	for_each_cnic_queue(bp, i)
4392 		bnx2x_free_fp_mem_at(bp, i);
4393 }
4394 
4395 void bnx2x_free_fp_mem(struct bnx2x *bp)
4396 {
4397 	int i;
4398 	for_each_eth_queue(bp, i)
4399 		bnx2x_free_fp_mem_at(bp, i);
4400 }
4401 
4402 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4403 {
4404 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4405 	if (!CHIP_IS_E1x(bp)) {
4406 		bnx2x_fp(bp, index, sb_index_values) =
4407 			(__le16 *)status_blk.e2_sb->sb.index_values;
4408 		bnx2x_fp(bp, index, sb_running_index) =
4409 			(__le16 *)status_blk.e2_sb->sb.running_index;
4410 	} else {
4411 		bnx2x_fp(bp, index, sb_index_values) =
4412 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4413 		bnx2x_fp(bp, index, sb_running_index) =
4414 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4415 	}
4416 }
4417 
4418 /* Returns the number of actually allocated BDs */
4419 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4420 			      int rx_ring_size)
4421 {
4422 	struct bnx2x *bp = fp->bp;
4423 	u16 ring_prod, cqe_ring_prod;
4424 	int i, failure_cnt = 0;
4425 
4426 	fp->rx_comp_cons = 0;
4427 	cqe_ring_prod = ring_prod = 0;
4428 
4429 	/* This routine is called only during fo init so
4430 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4431 	 */
4432 	for (i = 0; i < rx_ring_size; i++) {
4433 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4434 			failure_cnt++;
4435 			continue;
4436 		}
4437 		ring_prod = NEXT_RX_IDX(ring_prod);
4438 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4439 		WARN_ON(ring_prod <= (i - failure_cnt));
4440 	}
4441 
4442 	if (failure_cnt)
4443 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4444 			  i - failure_cnt, fp->index);
4445 
4446 	fp->rx_bd_prod = ring_prod;
4447 	/* Limit the CQE producer by the CQE ring size */
4448 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4449 			       cqe_ring_prod);
4450 
4451 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4452 
4453 	return i - failure_cnt;
4454 }
4455 
4456 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4457 {
4458 	int i;
4459 
4460 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4461 		struct eth_rx_cqe_next_page *nextpg;
4462 
4463 		nextpg = (struct eth_rx_cqe_next_page *)
4464 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4465 		nextpg->addr_hi =
4466 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4467 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4468 		nextpg->addr_lo =
4469 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4470 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4471 	}
4472 }
4473 
4474 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4475 {
4476 	union host_hc_status_block *sb;
4477 	struct bnx2x_fastpath *fp = &bp->fp[index];
4478 	int ring_size = 0;
4479 	u8 cos;
4480 	int rx_ring_size = 0;
4481 
4482 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4483 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4484 		bp->rx_ring_size = rx_ring_size;
4485 	} else if (!bp->rx_ring_size) {
4486 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4487 
4488 		if (CHIP_IS_E3(bp)) {
4489 			u32 cfg = SHMEM_RD(bp,
4490 					   dev_info.port_hw_config[BP_PORT(bp)].
4491 					   default_cfg);
4492 
4493 			/* Decrease ring size for 1G functions */
4494 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4495 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4496 				rx_ring_size /= 10;
4497 		}
4498 
4499 		/* allocate at least number of buffers required by FW */
4500 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4501 				     MIN_RX_SIZE_TPA, rx_ring_size);
4502 
4503 		bp->rx_ring_size = rx_ring_size;
4504 	} else /* if rx_ring_size specified - use it */
4505 		rx_ring_size = bp->rx_ring_size;
4506 
4507 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4508 
4509 	/* Common */
4510 	sb = &bnx2x_fp(bp, index, status_blk);
4511 
4512 	if (!IS_FCOE_IDX(index)) {
4513 		/* status blocks */
4514 		if (!CHIP_IS_E1x(bp)) {
4515 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4516 						    sizeof(struct host_hc_status_block_e2));
4517 			if (!sb->e2_sb)
4518 				goto alloc_mem_err;
4519 		} else {
4520 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4521 						     sizeof(struct host_hc_status_block_e1x));
4522 			if (!sb->e1x_sb)
4523 				goto alloc_mem_err;
4524 		}
4525 	}
4526 
4527 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4528 	 * set shortcuts for it.
4529 	 */
4530 	if (!IS_FCOE_IDX(index))
4531 		set_sb_shortcuts(bp, index);
4532 
4533 	/* Tx */
4534 	if (!skip_tx_queue(bp, index)) {
4535 		/* fastpath tx rings: tx_buf tx_desc */
4536 		for_each_cos_in_tx_queue(fp, cos) {
4537 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4538 
4539 			DP(NETIF_MSG_IFUP,
4540 			   "allocating tx memory of fp %d cos %d\n",
4541 			   index, cos);
4542 
4543 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4544 						      sizeof(struct sw_tx_bd),
4545 						      GFP_KERNEL);
4546 			if (!txdata->tx_buf_ring)
4547 				goto alloc_mem_err;
4548 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4549 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4550 			if (!txdata->tx_desc_ring)
4551 				goto alloc_mem_err;
4552 		}
4553 	}
4554 
4555 	/* Rx */
4556 	if (!skip_rx_queue(bp, index)) {
4557 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4558 		bnx2x_fp(bp, index, rx_buf_ring) =
4559 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4560 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4561 			goto alloc_mem_err;
4562 		bnx2x_fp(bp, index, rx_desc_ring) =
4563 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4564 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4565 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4566 			goto alloc_mem_err;
4567 
4568 		/* Seed all CQEs by 1s */
4569 		bnx2x_fp(bp, index, rx_comp_ring) =
4570 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4571 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4572 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4573 			goto alloc_mem_err;
4574 
4575 		/* SGE ring */
4576 		bnx2x_fp(bp, index, rx_page_ring) =
4577 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4578 				GFP_KERNEL);
4579 		if (!bnx2x_fp(bp, index, rx_page_ring))
4580 			goto alloc_mem_err;
4581 		bnx2x_fp(bp, index, rx_sge_ring) =
4582 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4583 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4584 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4585 			goto alloc_mem_err;
4586 		/* RX BD ring */
4587 		bnx2x_set_next_page_rx_bd(fp);
4588 
4589 		/* CQ ring */
4590 		bnx2x_set_next_page_rx_cq(fp);
4591 
4592 		/* BDs */
4593 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4594 		if (ring_size < rx_ring_size)
4595 			goto alloc_mem_err;
4596 	}
4597 
4598 	return 0;
4599 
4600 /* handles low memory cases */
4601 alloc_mem_err:
4602 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4603 						index, ring_size);
4604 	/* FW will drop all packets if queue is not big enough,
4605 	 * In these cases we disable the queue
4606 	 * Min size is different for OOO, TPA and non-TPA queues
4607 	 */
4608 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4609 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4610 			/* release memory allocated for this queue */
4611 			bnx2x_free_fp_mem_at(bp, index);
4612 			return -ENOMEM;
4613 	}
4614 	return 0;
4615 }
4616 
4617 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4618 {
4619 	if (!NO_FCOE(bp))
4620 		/* FCoE */
4621 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4622 			/* we will fail load process instead of mark
4623 			 * NO_FCOE_FLAG
4624 			 */
4625 			return -ENOMEM;
4626 
4627 	return 0;
4628 }
4629 
4630 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4631 {
4632 	int i;
4633 
4634 	/* 1. Allocate FP for leading - fatal if error
4635 	 * 2. Allocate RSS - fix number of queues if error
4636 	 */
4637 
4638 	/* leading */
4639 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4640 		return -ENOMEM;
4641 
4642 	/* RSS */
4643 	for_each_nondefault_eth_queue(bp, i)
4644 		if (bnx2x_alloc_fp_mem_at(bp, i))
4645 			break;
4646 
4647 	/* handle memory failures */
4648 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4649 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4650 
4651 		WARN_ON(delta < 0);
4652 		bnx2x_shrink_eth_fp(bp, delta);
4653 		if (CNIC_SUPPORT(bp))
4654 			/* move non eth FPs next to last eth FP
4655 			 * must be done in that order
4656 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4657 			 */
4658 
4659 			/* move FCoE fp even NO_FCOE_FLAG is on */
4660 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4661 		bp->num_ethernet_queues -= delta;
4662 		bp->num_queues = bp->num_ethernet_queues +
4663 				 bp->num_cnic_queues;
4664 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4665 			  bp->num_queues + delta, bp->num_queues);
4666 	}
4667 
4668 	return 0;
4669 }
4670 
4671 void bnx2x_free_mem_bp(struct bnx2x *bp)
4672 {
4673 	int i;
4674 
4675 	for (i = 0; i < bp->fp_array_size; i++)
4676 		kfree(bp->fp[i].tpa_info);
4677 	kfree(bp->fp);
4678 	kfree(bp->sp_objs);
4679 	kfree(bp->fp_stats);
4680 	kfree(bp->bnx2x_txq);
4681 	kfree(bp->msix_table);
4682 	kfree(bp->ilt);
4683 }
4684 
4685 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4686 {
4687 	struct bnx2x_fastpath *fp;
4688 	struct msix_entry *tbl;
4689 	struct bnx2x_ilt *ilt;
4690 	int msix_table_size = 0;
4691 	int fp_array_size, txq_array_size;
4692 	int i;
4693 
4694 	/*
4695 	 * The biggest MSI-X table we might need is as a maximum number of fast
4696 	 * path IGU SBs plus default SB (for PF only).
4697 	 */
4698 	msix_table_size = bp->igu_sb_cnt;
4699 	if (IS_PF(bp))
4700 		msix_table_size++;
4701 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4702 
4703 	/* fp array: RSS plus CNIC related L2 queues */
4704 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4705 	bp->fp_array_size = fp_array_size;
4706 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4707 
4708 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4709 	if (!fp)
4710 		goto alloc_err;
4711 	for (i = 0; i < bp->fp_array_size; i++) {
4712 		fp[i].tpa_info =
4713 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4714 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4715 		if (!(fp[i].tpa_info))
4716 			goto alloc_err;
4717 	}
4718 
4719 	bp->fp = fp;
4720 
4721 	/* allocate sp objs */
4722 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4723 			      GFP_KERNEL);
4724 	if (!bp->sp_objs)
4725 		goto alloc_err;
4726 
4727 	/* allocate fp_stats */
4728 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4729 			       GFP_KERNEL);
4730 	if (!bp->fp_stats)
4731 		goto alloc_err;
4732 
4733 	/* Allocate memory for the transmission queues array */
4734 	txq_array_size =
4735 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4736 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4737 
4738 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4739 				GFP_KERNEL);
4740 	if (!bp->bnx2x_txq)
4741 		goto alloc_err;
4742 
4743 	/* msix table */
4744 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4745 	if (!tbl)
4746 		goto alloc_err;
4747 	bp->msix_table = tbl;
4748 
4749 	/* ilt */
4750 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4751 	if (!ilt)
4752 		goto alloc_err;
4753 	bp->ilt = ilt;
4754 
4755 	return 0;
4756 alloc_err:
4757 	bnx2x_free_mem_bp(bp);
4758 	return -ENOMEM;
4759 }
4760 
4761 int bnx2x_reload_if_running(struct net_device *dev)
4762 {
4763 	struct bnx2x *bp = netdev_priv(dev);
4764 
4765 	if (unlikely(!netif_running(dev)))
4766 		return 0;
4767 
4768 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4769 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4770 }
4771 
4772 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4773 {
4774 	u32 sel_phy_idx = 0;
4775 	if (bp->link_params.num_phys <= 1)
4776 		return INT_PHY;
4777 
4778 	if (bp->link_vars.link_up) {
4779 		sel_phy_idx = EXT_PHY1;
4780 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4781 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4782 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4783 			sel_phy_idx = EXT_PHY2;
4784 	} else {
4785 
4786 		switch (bnx2x_phy_selection(&bp->link_params)) {
4787 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4788 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4789 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4790 		       sel_phy_idx = EXT_PHY1;
4791 		       break;
4792 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4793 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4794 		       sel_phy_idx = EXT_PHY2;
4795 		       break;
4796 		}
4797 	}
4798 
4799 	return sel_phy_idx;
4800 }
4801 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4802 {
4803 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4804 	/*
4805 	 * The selected activated PHY is always after swapping (in case PHY
4806 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4807 	 * the configuration
4808 	 */
4809 
4810 	if (bp->link_params.multi_phy_config &
4811 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4812 		if (sel_phy_idx == EXT_PHY1)
4813 			sel_phy_idx = EXT_PHY2;
4814 		else if (sel_phy_idx == EXT_PHY2)
4815 			sel_phy_idx = EXT_PHY1;
4816 	}
4817 	return LINK_CONFIG_IDX(sel_phy_idx);
4818 }
4819 
4820 #ifdef NETDEV_FCOE_WWNN
4821 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4822 {
4823 	struct bnx2x *bp = netdev_priv(dev);
4824 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4825 
4826 	switch (type) {
4827 	case NETDEV_FCOE_WWNN:
4828 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4829 				cp->fcoe_wwn_node_name_lo);
4830 		break;
4831 	case NETDEV_FCOE_WWPN:
4832 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4833 				cp->fcoe_wwn_port_name_lo);
4834 		break;
4835 	default:
4836 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4837 		return -EINVAL;
4838 	}
4839 
4840 	return 0;
4841 }
4842 #endif
4843 
4844 /* called with rtnl_lock */
4845 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4846 {
4847 	struct bnx2x *bp = netdev_priv(dev);
4848 
4849 	if (pci_num_vf(bp->pdev)) {
4850 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4851 		return -EPERM;
4852 	}
4853 
4854 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4855 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4856 		return -EAGAIN;
4857 	}
4858 
4859 	/* This does not race with packet allocation
4860 	 * because the actual alloc size is
4861 	 * only updated as part of load
4862 	 */
4863 	dev->mtu = new_mtu;
4864 
4865 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4866 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4867 
4868 	return bnx2x_reload_if_running(dev);
4869 }
4870 
4871 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4872 				     netdev_features_t features)
4873 {
4874 	struct bnx2x *bp = netdev_priv(dev);
4875 
4876 	if (pci_num_vf(bp->pdev)) {
4877 		netdev_features_t changed = dev->features ^ features;
4878 
4879 		/* Revert the requested changes in features if they
4880 		 * would require internal reload of PF in bnx2x_set_features().
4881 		 */
4882 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4883 			features &= ~NETIF_F_RXCSUM;
4884 			features |= dev->features & NETIF_F_RXCSUM;
4885 		}
4886 
4887 		if (changed & NETIF_F_LOOPBACK) {
4888 			features &= ~NETIF_F_LOOPBACK;
4889 			features |= dev->features & NETIF_F_LOOPBACK;
4890 		}
4891 	}
4892 
4893 	/* TPA requires Rx CSUM offloading */
4894 	if (!(features & NETIF_F_RXCSUM)) {
4895 		features &= ~NETIF_F_LRO;
4896 		features &= ~NETIF_F_GRO;
4897 	}
4898 
4899 	return features;
4900 }
4901 
4902 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4903 {
4904 	struct bnx2x *bp = netdev_priv(dev);
4905 	netdev_features_t changes = features ^ dev->features;
4906 	bool bnx2x_reload = false;
4907 	int rc;
4908 
4909 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4910 	if (!pci_num_vf(bp->pdev)) {
4911 		if (features & NETIF_F_LOOPBACK) {
4912 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4913 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4914 				bnx2x_reload = true;
4915 			}
4916 		} else {
4917 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4918 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4919 				bnx2x_reload = true;
4920 			}
4921 		}
4922 	}
4923 
4924 	/* if GRO is changed while LRO is enabled, don't force a reload */
4925 	if ((changes & NETIF_F_GRO) && (features & NETIF_F_LRO))
4926 		changes &= ~NETIF_F_GRO;
4927 
4928 	/* if GRO is changed while HW TPA is off, don't force a reload */
4929 	if ((changes & NETIF_F_GRO) && bp->disable_tpa)
4930 		changes &= ~NETIF_F_GRO;
4931 
4932 	if (changes)
4933 		bnx2x_reload = true;
4934 
4935 	if (bnx2x_reload) {
4936 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4937 			dev->features = features;
4938 			rc = bnx2x_reload_if_running(dev);
4939 			return rc ? rc : 1;
4940 		}
4941 		/* else: bnx2x_nic_load() will be called at end of recovery */
4942 	}
4943 
4944 	return 0;
4945 }
4946 
4947 void bnx2x_tx_timeout(struct net_device *dev)
4948 {
4949 	struct bnx2x *bp = netdev_priv(dev);
4950 
4951 #ifdef BNX2X_STOP_ON_ERROR
4952 	if (!bp->panic)
4953 		bnx2x_panic();
4954 #endif
4955 
4956 	/* This allows the netif to be shutdown gracefully before resetting */
4957 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4958 }
4959 
4960 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4961 {
4962 	struct net_device *dev = pci_get_drvdata(pdev);
4963 	struct bnx2x *bp;
4964 
4965 	if (!dev) {
4966 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4967 		return -ENODEV;
4968 	}
4969 	bp = netdev_priv(dev);
4970 
4971 	rtnl_lock();
4972 
4973 	pci_save_state(pdev);
4974 
4975 	if (!netif_running(dev)) {
4976 		rtnl_unlock();
4977 		return 0;
4978 	}
4979 
4980 	netif_device_detach(dev);
4981 
4982 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
4983 
4984 	bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
4985 
4986 	rtnl_unlock();
4987 
4988 	return 0;
4989 }
4990 
4991 int bnx2x_resume(struct pci_dev *pdev)
4992 {
4993 	struct net_device *dev = pci_get_drvdata(pdev);
4994 	struct bnx2x *bp;
4995 	int rc;
4996 
4997 	if (!dev) {
4998 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4999 		return -ENODEV;
5000 	}
5001 	bp = netdev_priv(dev);
5002 
5003 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5004 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5005 		return -EAGAIN;
5006 	}
5007 
5008 	rtnl_lock();
5009 
5010 	pci_restore_state(pdev);
5011 
5012 	if (!netif_running(dev)) {
5013 		rtnl_unlock();
5014 		return 0;
5015 	}
5016 
5017 	bnx2x_set_power_state(bp, PCI_D0);
5018 	netif_device_attach(dev);
5019 
5020 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5021 
5022 	rtnl_unlock();
5023 
5024 	return rc;
5025 }
5026 
5027 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5028 			      u32 cid)
5029 {
5030 	if (!cxt) {
5031 		BNX2X_ERR("bad context pointer %p\n", cxt);
5032 		return;
5033 	}
5034 
5035 	/* ustorm cxt validation */
5036 	cxt->ustorm_ag_context.cdu_usage =
5037 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5038 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5039 	/* xcontext validation */
5040 	cxt->xstorm_ag_context.cdu_reserved =
5041 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5042 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5043 }
5044 
5045 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5046 				    u8 fw_sb_id, u8 sb_index,
5047 				    u8 ticks)
5048 {
5049 	u32 addr = BAR_CSTRORM_INTMEM +
5050 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5051 	REG_WR8(bp, addr, ticks);
5052 	DP(NETIF_MSG_IFUP,
5053 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5054 	   port, fw_sb_id, sb_index, ticks);
5055 }
5056 
5057 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5058 				    u16 fw_sb_id, u8 sb_index,
5059 				    u8 disable)
5060 {
5061 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5062 	u32 addr = BAR_CSTRORM_INTMEM +
5063 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5064 	u8 flags = REG_RD8(bp, addr);
5065 	/* clear and set */
5066 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5067 	flags |= enable_flag;
5068 	REG_WR8(bp, addr, flags);
5069 	DP(NETIF_MSG_IFUP,
5070 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5071 	   port, fw_sb_id, sb_index, disable);
5072 }
5073 
5074 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5075 				    u8 sb_index, u8 disable, u16 usec)
5076 {
5077 	int port = BP_PORT(bp);
5078 	u8 ticks = usec / BNX2X_BTR;
5079 
5080 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5081 
5082 	disable = disable ? 1 : (usec ? 0 : 1);
5083 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5084 }
5085 
5086 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5087 			    u32 verbose)
5088 {
5089 	smp_mb__before_atomic();
5090 	set_bit(flag, &bp->sp_rtnl_state);
5091 	smp_mb__after_atomic();
5092 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5093 	   flag);
5094 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5095 }
5096