1 /* bnx2x_cmn.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/etherdevice.h> 23 #include <linux/if_vlan.h> 24 #include <linux/interrupt.h> 25 #include <linux/ip.h> 26 #include <linux/crash_dump.h> 27 #include <net/tcp.h> 28 #include <net/gro.h> 29 #include <net/ipv6.h> 30 #include <net/ip6_checksum.h> 31 #include <linux/prefetch.h> 32 #include "bnx2x_cmn.h" 33 #include "bnx2x_init.h" 34 #include "bnx2x_sp.h" 35 36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 39 static int bnx2x_poll(struct napi_struct *napi, int budget); 40 41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 42 { 43 int i; 44 45 /* Add NAPI objects */ 46 for_each_rx_queue_cnic(bp, i) { 47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll); 48 } 49 } 50 51 static void bnx2x_add_all_napi(struct bnx2x *bp) 52 { 53 int i; 54 55 /* Add NAPI objects */ 56 for_each_eth_queue(bp, i) { 57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll); 58 } 59 } 60 61 static int bnx2x_calc_num_queues(struct bnx2x *bp) 62 { 63 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues(); 64 65 /* Reduce memory usage in kdump environment by using only one queue */ 66 if (is_kdump_kernel()) 67 nq = 1; 68 69 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp)); 70 return nq; 71 } 72 73 /** 74 * bnx2x_move_fp - move content of the fastpath structure. 75 * 76 * @bp: driver handle 77 * @from: source FP index 78 * @to: destination FP index 79 * 80 * Makes sure the contents of the bp->fp[to].napi is kept 81 * intact. This is done by first copying the napi struct from 82 * the target to the source, and then mem copying the entire 83 * source onto the target. Update txdata pointers and related 84 * content. 85 */ 86 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 87 { 88 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 89 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 90 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 91 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 92 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 93 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 94 int old_max_eth_txqs, new_max_eth_txqs; 95 int old_txdata_index = 0, new_txdata_index = 0; 96 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 97 98 /* Copy the NAPI object as it has been already initialized */ 99 from_fp->napi = to_fp->napi; 100 101 /* Move bnx2x_fastpath contents */ 102 memcpy(to_fp, from_fp, sizeof(*to_fp)); 103 to_fp->index = to; 104 105 /* Retain the tpa_info of the original `to' version as we don't want 106 * 2 FPs to contain the same tpa_info pointer. 107 */ 108 to_fp->tpa_info = old_tpa_info; 109 110 /* move sp_objs contents as well, as their indices match fp ones */ 111 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 112 113 /* move fp_stats contents as well, as their indices match fp ones */ 114 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 115 116 /* Update txdata pointers in fp and move txdata content accordingly: 117 * Each fp consumes 'max_cos' txdata structures, so the index should be 118 * decremented by max_cos x delta. 119 */ 120 121 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 122 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 123 (bp)->max_cos; 124 if (from == FCOE_IDX(bp)) { 125 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 126 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 127 } 128 129 memcpy(&bp->bnx2x_txq[new_txdata_index], 130 &bp->bnx2x_txq[old_txdata_index], 131 sizeof(struct bnx2x_fp_txdata)); 132 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 133 } 134 135 /** 136 * bnx2x_fill_fw_str - Fill buffer with FW version string. 137 * 138 * @bp: driver handle 139 * @buf: character buffer to fill with the fw name 140 * @buf_len: length of the above buffer 141 * 142 */ 143 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 144 { 145 if (IS_PF(bp)) { 146 u8 phy_fw_ver[PHY_FW_VER_LEN]; 147 148 phy_fw_ver[0] = '\0'; 149 bnx2x_get_ext_phy_fw_version(&bp->link_params, 150 phy_fw_ver, PHY_FW_VER_LEN); 151 strscpy(buf, bp->fw_ver, buf_len); 152 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 153 "bc %d.%d.%d%s%s", 154 (bp->common.bc_ver & 0xff0000) >> 16, 155 (bp->common.bc_ver & 0xff00) >> 8, 156 (bp->common.bc_ver & 0xff), 157 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 158 } else { 159 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 160 } 161 } 162 163 /** 164 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 165 * 166 * @bp: driver handle 167 * @delta: number of eth queues which were not allocated 168 */ 169 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 170 { 171 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 172 173 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 174 * backward along the array could cause memory to be overridden 175 */ 176 for (cos = 1; cos < bp->max_cos; cos++) { 177 for (i = 0; i < old_eth_num - delta; i++) { 178 struct bnx2x_fastpath *fp = &bp->fp[i]; 179 int new_idx = cos * (old_eth_num - delta) + i; 180 181 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 182 sizeof(struct bnx2x_fp_txdata)); 183 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 184 } 185 } 186 } 187 188 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 189 190 /* free skb in the packet ring at pos idx 191 * return idx of last bd freed 192 */ 193 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 194 u16 idx, unsigned int *pkts_compl, 195 unsigned int *bytes_compl) 196 { 197 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 198 struct eth_tx_start_bd *tx_start_bd; 199 struct eth_tx_bd *tx_data_bd; 200 struct sk_buff *skb = tx_buf->skb; 201 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 202 int nbd; 203 u16 split_bd_len = 0; 204 205 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 206 prefetch(&skb->end); 207 208 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 209 txdata->txq_index, idx, tx_buf, skb); 210 211 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 212 213 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 214 #ifdef BNX2X_STOP_ON_ERROR 215 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 216 BNX2X_ERR("BAD nbd!\n"); 217 bnx2x_panic(); 218 } 219 #endif 220 new_cons = nbd + tx_buf->first_bd; 221 222 /* Get the next bd */ 223 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 224 225 /* Skip a parse bd... */ 226 --nbd; 227 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 228 229 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { 230 /* Skip second parse bd... */ 231 --nbd; 232 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 233 } 234 235 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 236 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 237 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 238 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 239 --nbd; 240 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 241 } 242 243 /* unmap first bd */ 244 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 245 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 246 DMA_TO_DEVICE); 247 248 /* now free frags */ 249 while (nbd > 0) { 250 251 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 252 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 253 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 254 if (--nbd) 255 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 256 } 257 258 /* release skb */ 259 WARN_ON(!skb); 260 if (likely(skb)) { 261 (*pkts_compl)++; 262 (*bytes_compl) += skb->len; 263 dev_kfree_skb_any(skb); 264 } 265 266 tx_buf->first_bd = 0; 267 tx_buf->skb = NULL; 268 269 return new_cons; 270 } 271 272 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 273 { 274 struct netdev_queue *txq; 275 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 276 unsigned int pkts_compl = 0, bytes_compl = 0; 277 278 #ifdef BNX2X_STOP_ON_ERROR 279 if (unlikely(bp->panic)) 280 return -1; 281 #endif 282 283 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 284 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 285 sw_cons = txdata->tx_pkt_cons; 286 287 /* Ensure subsequent loads occur after hw_cons */ 288 smp_rmb(); 289 290 while (sw_cons != hw_cons) { 291 u16 pkt_cons; 292 293 pkt_cons = TX_BD(sw_cons); 294 295 DP(NETIF_MSG_TX_DONE, 296 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 297 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 298 299 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 300 &pkts_compl, &bytes_compl); 301 302 sw_cons++; 303 } 304 305 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 306 307 txdata->tx_pkt_cons = sw_cons; 308 txdata->tx_bd_cons = bd_cons; 309 310 /* Need to make the tx_bd_cons update visible to start_xmit() 311 * before checking for netif_tx_queue_stopped(). Without the 312 * memory barrier, there is a small possibility that 313 * start_xmit() will miss it and cause the queue to be stopped 314 * forever. 315 * On the other hand we need an rmb() here to ensure the proper 316 * ordering of bit testing in the following 317 * netif_tx_queue_stopped(txq) call. 318 */ 319 smp_mb(); 320 321 if (unlikely(netif_tx_queue_stopped(txq))) { 322 /* Taking tx_lock() is needed to prevent re-enabling the queue 323 * while it's empty. This could have happen if rx_action() gets 324 * suspended in bnx2x_tx_int() after the condition before 325 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 326 * 327 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 328 * sends some packets consuming the whole queue again-> 329 * stops the queue 330 */ 331 332 __netif_tx_lock(txq, smp_processor_id()); 333 334 if ((netif_tx_queue_stopped(txq)) && 335 (bp->state == BNX2X_STATE_OPEN) && 336 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 337 netif_tx_wake_queue(txq); 338 339 __netif_tx_unlock(txq); 340 } 341 return 0; 342 } 343 344 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 345 u16 idx) 346 { 347 u16 last_max = fp->last_max_sge; 348 349 if (SUB_S16(idx, last_max) > 0) 350 fp->last_max_sge = idx; 351 } 352 353 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 354 u16 sge_len, 355 struct eth_end_agg_rx_cqe *cqe) 356 { 357 struct bnx2x *bp = fp->bp; 358 u16 last_max, last_elem, first_elem; 359 u16 delta = 0; 360 u16 i; 361 362 if (!sge_len) 363 return; 364 365 /* First mark all used pages */ 366 for (i = 0; i < sge_len; i++) 367 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 368 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 369 370 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 371 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 372 373 /* Here we assume that the last SGE index is the biggest */ 374 prefetch((void *)(fp->sge_mask)); 375 bnx2x_update_last_max_sge(fp, 376 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 377 378 last_max = RX_SGE(fp->last_max_sge); 379 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 380 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 381 382 /* If ring is not full */ 383 if (last_elem + 1 != first_elem) 384 last_elem++; 385 386 /* Now update the prod */ 387 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 388 if (likely(fp->sge_mask[i])) 389 break; 390 391 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 392 delta += BIT_VEC64_ELEM_SZ; 393 } 394 395 if (delta > 0) { 396 fp->rx_sge_prod += delta; 397 /* clear page-end entries */ 398 bnx2x_clear_sge_mask_next_elems(fp); 399 } 400 401 DP(NETIF_MSG_RX_STATUS, 402 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 403 fp->last_max_sge, fp->rx_sge_prod); 404 } 405 406 /* Get Toeplitz hash value in the skb using the value from the 407 * CQE (calculated by HW). 408 */ 409 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 410 const struct eth_fast_path_rx_cqe *cqe, 411 enum pkt_hash_types *rxhash_type) 412 { 413 /* Get Toeplitz hash from CQE */ 414 if ((bp->dev->features & NETIF_F_RXHASH) && 415 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 416 enum eth_rss_hash_type htype; 417 418 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 419 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 420 (htype == TCP_IPV6_HASH_TYPE)) ? 421 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 422 423 return le32_to_cpu(cqe->rss_hash_result); 424 } 425 *rxhash_type = PKT_HASH_TYPE_NONE; 426 return 0; 427 } 428 429 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 430 u16 cons, u16 prod, 431 struct eth_fast_path_rx_cqe *cqe) 432 { 433 struct bnx2x *bp = fp->bp; 434 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 435 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 436 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 437 dma_addr_t mapping; 438 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 439 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 440 441 /* print error if current state != stop */ 442 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 443 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 444 445 /* Try to map an empty data buffer from the aggregation info */ 446 mapping = dma_map_single(&bp->pdev->dev, 447 first_buf->data + NET_SKB_PAD, 448 fp->rx_buf_size, DMA_FROM_DEVICE); 449 /* 450 * ...if it fails - move the skb from the consumer to the producer 451 * and set the current aggregation state as ERROR to drop it 452 * when TPA_STOP arrives. 453 */ 454 455 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 456 /* Move the BD from the consumer to the producer */ 457 bnx2x_reuse_rx_data(fp, cons, prod); 458 tpa_info->tpa_state = BNX2X_TPA_ERROR; 459 return; 460 } 461 462 /* move empty data from pool to prod */ 463 prod_rx_buf->data = first_buf->data; 464 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 465 /* point prod_bd to new data */ 466 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 467 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 468 469 /* move partial skb from cons to pool (don't unmap yet) */ 470 *first_buf = *cons_rx_buf; 471 472 /* mark bin state as START */ 473 tpa_info->parsing_flags = 474 le16_to_cpu(cqe->pars_flags.flags); 475 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 476 tpa_info->tpa_state = BNX2X_TPA_START; 477 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 478 tpa_info->placement_offset = cqe->placement_offset; 479 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 480 if (fp->mode == TPA_MODE_GRO) { 481 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 482 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 483 tpa_info->gro_size = gro_size; 484 } 485 486 #ifdef BNX2X_STOP_ON_ERROR 487 fp->tpa_queue_used |= (1 << queue); 488 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 489 fp->tpa_queue_used); 490 #endif 491 } 492 493 /* Timestamp option length allowed for TPA aggregation: 494 * 495 * nop nop kind length echo val 496 */ 497 #define TPA_TSTAMP_OPT_LEN 12 498 /** 499 * bnx2x_set_gro_params - compute GRO values 500 * 501 * @skb: packet skb 502 * @parsing_flags: parsing flags from the START CQE 503 * @len_on_bd: total length of the first packet for the 504 * aggregation. 505 * @pkt_len: length of all segments 506 * @num_of_coalesced_segs: count of segments 507 * 508 * Approximate value of the MSS for this aggregation calculated using 509 * the first packet of it. 510 * Compute number of aggregated segments, and gso_type. 511 */ 512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 513 u16 len_on_bd, unsigned int pkt_len, 514 u16 num_of_coalesced_segs) 515 { 516 /* TPA aggregation won't have either IP options or TCP options 517 * other than timestamp or IPv6 extension headers. 518 */ 519 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 520 521 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 522 PRS_FLAG_OVERETH_IPV6) { 523 hdrs_len += sizeof(struct ipv6hdr); 524 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 525 } else { 526 hdrs_len += sizeof(struct iphdr); 527 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 528 } 529 530 /* Check if there was a TCP timestamp, if there is it's will 531 * always be 12 bytes length: nop nop kind length echo val. 532 * 533 * Otherwise FW would close the aggregation. 534 */ 535 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 536 hdrs_len += TPA_TSTAMP_OPT_LEN; 537 538 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 539 540 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 541 * to skb_shinfo(skb)->gso_segs 542 */ 543 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 544 } 545 546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 547 u16 index, gfp_t gfp_mask) 548 { 549 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 550 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 551 struct bnx2x_alloc_pool *pool = &fp->page_pool; 552 dma_addr_t mapping; 553 554 if (!pool->page) { 555 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 556 if (unlikely(!pool->page)) 557 return -ENOMEM; 558 559 pool->offset = 0; 560 } 561 562 mapping = dma_map_page(&bp->pdev->dev, pool->page, 563 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE); 564 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 565 BNX2X_ERR("Can't map sge\n"); 566 return -ENOMEM; 567 } 568 569 sw_buf->page = pool->page; 570 sw_buf->offset = pool->offset; 571 572 dma_unmap_addr_set(sw_buf, mapping, mapping); 573 574 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 575 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 576 577 pool->offset += SGE_PAGE_SIZE; 578 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE) 579 get_page(pool->page); 580 else 581 pool->page = NULL; 582 return 0; 583 } 584 585 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 586 struct bnx2x_agg_info *tpa_info, 587 u16 pages, 588 struct sk_buff *skb, 589 struct eth_end_agg_rx_cqe *cqe, 590 u16 cqe_idx) 591 { 592 struct sw_rx_page *rx_pg, old_rx_pg; 593 u32 i, frag_len, frag_size; 594 int err, j, frag_id = 0; 595 u16 len_on_bd = tpa_info->len_on_bd; 596 u16 full_page = 0, gro_size = 0; 597 598 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 599 600 if (fp->mode == TPA_MODE_GRO) { 601 gro_size = tpa_info->gro_size; 602 full_page = tpa_info->full_page; 603 } 604 605 /* This is needed in order to enable forwarding support */ 606 if (frag_size) 607 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 608 le16_to_cpu(cqe->pkt_len), 609 le16_to_cpu(cqe->num_of_coalesced_segs)); 610 611 #ifdef BNX2X_STOP_ON_ERROR 612 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 613 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 614 pages, cqe_idx); 615 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 616 bnx2x_panic(); 617 return -EINVAL; 618 } 619 #endif 620 621 /* Run through the SGL and compose the fragmented skb */ 622 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 623 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 624 625 /* FW gives the indices of the SGE as if the ring is an array 626 (meaning that "next" element will consume 2 indices) */ 627 if (fp->mode == TPA_MODE_GRO) 628 frag_len = min_t(u32, frag_size, (u32)full_page); 629 else /* LRO */ 630 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 631 632 rx_pg = &fp->rx_page_ring[sge_idx]; 633 old_rx_pg = *rx_pg; 634 635 /* If we fail to allocate a substitute page, we simply stop 636 where we are and drop the whole packet */ 637 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 638 if (unlikely(err)) { 639 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 640 return err; 641 } 642 643 dma_unmap_page(&bp->pdev->dev, 644 dma_unmap_addr(&old_rx_pg, mapping), 645 SGE_PAGE_SIZE, DMA_FROM_DEVICE); 646 /* Add one frag and update the appropriate fields in the skb */ 647 if (fp->mode == TPA_MODE_LRO) 648 skb_fill_page_desc(skb, j, old_rx_pg.page, 649 old_rx_pg.offset, frag_len); 650 else { /* GRO */ 651 int rem; 652 int offset = 0; 653 for (rem = frag_len; rem > 0; rem -= gro_size) { 654 int len = rem > gro_size ? gro_size : rem; 655 skb_fill_page_desc(skb, frag_id++, 656 old_rx_pg.page, 657 old_rx_pg.offset + offset, 658 len); 659 if (offset) 660 get_page(old_rx_pg.page); 661 offset += len; 662 } 663 } 664 665 skb->data_len += frag_len; 666 skb->truesize += SGE_PAGES; 667 skb->len += frag_len; 668 669 frag_size -= frag_len; 670 } 671 672 return 0; 673 } 674 675 static struct sk_buff * 676 bnx2x_build_skb(const struct bnx2x_fastpath *fp, void *data) 677 { 678 struct sk_buff *skb; 679 680 if (fp->rx_frag_size) 681 skb = build_skb(data, fp->rx_frag_size); 682 else 683 skb = slab_build_skb(data); 684 return skb; 685 } 686 687 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 688 { 689 if (fp->rx_frag_size) 690 skb_free_frag(data); 691 else 692 kfree(data); 693 } 694 695 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 696 { 697 if (fp->rx_frag_size) { 698 /* GFP_KERNEL allocations are used only during initialization */ 699 if (unlikely(gfpflags_allow_blocking(gfp_mask))) 700 return (void *)__get_free_page(gfp_mask); 701 702 return napi_alloc_frag(fp->rx_frag_size); 703 } 704 705 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 706 } 707 708 #ifdef CONFIG_INET 709 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 710 { 711 const struct iphdr *iph = ip_hdr(skb); 712 struct tcphdr *th; 713 714 skb_set_transport_header(skb, sizeof(struct iphdr)); 715 th = tcp_hdr(skb); 716 717 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 718 iph->saddr, iph->daddr, 0); 719 } 720 721 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 722 { 723 struct ipv6hdr *iph = ipv6_hdr(skb); 724 struct tcphdr *th; 725 726 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 727 th = tcp_hdr(skb); 728 729 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 730 &iph->saddr, &iph->daddr, 0); 731 } 732 733 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 734 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 735 { 736 skb_reset_network_header(skb); 737 gro_func(bp, skb); 738 tcp_gro_complete(skb); 739 } 740 #endif 741 742 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 743 struct sk_buff *skb) 744 { 745 #ifdef CONFIG_INET 746 if (skb_shinfo(skb)->gso_size) { 747 switch (be16_to_cpu(skb->protocol)) { 748 case ETH_P_IP: 749 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 750 break; 751 case ETH_P_IPV6: 752 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 753 break; 754 default: 755 netdev_WARN_ONCE(bp->dev, 756 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 757 be16_to_cpu(skb->protocol)); 758 } 759 } 760 #endif 761 skb_record_rx_queue(skb, fp->rx_queue); 762 napi_gro_receive(&fp->napi, skb); 763 } 764 765 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 766 struct bnx2x_agg_info *tpa_info, 767 u16 pages, 768 struct eth_end_agg_rx_cqe *cqe, 769 u16 cqe_idx) 770 { 771 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 772 u8 pad = tpa_info->placement_offset; 773 u16 len = tpa_info->len_on_bd; 774 struct sk_buff *skb = NULL; 775 u8 *new_data, *data = rx_buf->data; 776 u8 old_tpa_state = tpa_info->tpa_state; 777 778 tpa_info->tpa_state = BNX2X_TPA_STOP; 779 780 /* If we there was an error during the handling of the TPA_START - 781 * drop this aggregation. 782 */ 783 if (old_tpa_state == BNX2X_TPA_ERROR) 784 goto drop; 785 786 /* Try to allocate the new data */ 787 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 788 /* Unmap skb in the pool anyway, as we are going to change 789 pool entry status to BNX2X_TPA_STOP even if new skb allocation 790 fails. */ 791 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 792 fp->rx_buf_size, DMA_FROM_DEVICE); 793 if (likely(new_data)) 794 skb = bnx2x_build_skb(fp, data); 795 796 if (likely(skb)) { 797 #ifdef BNX2X_STOP_ON_ERROR 798 if (pad + len > fp->rx_buf_size) { 799 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 800 pad, len, fp->rx_buf_size); 801 bnx2x_panic(); 802 bnx2x_frag_free(fp, new_data); 803 return; 804 } 805 #endif 806 807 skb_reserve(skb, pad + NET_SKB_PAD); 808 skb_put(skb, len); 809 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 810 811 skb->protocol = eth_type_trans(skb, bp->dev); 812 skb->ip_summed = CHECKSUM_UNNECESSARY; 813 814 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 815 skb, cqe, cqe_idx)) { 816 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 817 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 818 bnx2x_gro_receive(bp, fp, skb); 819 } else { 820 DP(NETIF_MSG_RX_STATUS, 821 "Failed to allocate new pages - dropping packet!\n"); 822 dev_kfree_skb_any(skb); 823 } 824 825 /* put new data in bin */ 826 rx_buf->data = new_data; 827 828 return; 829 } 830 if (new_data) 831 bnx2x_frag_free(fp, new_data); 832 drop: 833 /* drop the packet and keep the buffer in the bin */ 834 DP(NETIF_MSG_RX_STATUS, 835 "Failed to allocate or map a new skb - dropping packet!\n"); 836 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 837 } 838 839 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 840 u16 index, gfp_t gfp_mask) 841 { 842 u8 *data; 843 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 844 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 845 dma_addr_t mapping; 846 847 data = bnx2x_frag_alloc(fp, gfp_mask); 848 if (unlikely(data == NULL)) 849 return -ENOMEM; 850 851 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 852 fp->rx_buf_size, 853 DMA_FROM_DEVICE); 854 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 855 bnx2x_frag_free(fp, data); 856 BNX2X_ERR("Can't map rx data\n"); 857 return -ENOMEM; 858 } 859 860 rx_buf->data = data; 861 dma_unmap_addr_set(rx_buf, mapping, mapping); 862 863 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 864 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 865 866 return 0; 867 } 868 869 static 870 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 871 struct bnx2x_fastpath *fp, 872 struct bnx2x_eth_q_stats *qstats) 873 { 874 /* Do nothing if no L4 csum validation was done. 875 * We do not check whether IP csum was validated. For IPv4 we assume 876 * that if the card got as far as validating the L4 csum, it also 877 * validated the IP csum. IPv6 has no IP csum. 878 */ 879 if (cqe->fast_path_cqe.status_flags & 880 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 881 return; 882 883 /* If L4 validation was done, check if an error was found. */ 884 885 if (cqe->fast_path_cqe.type_error_flags & 886 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 887 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 888 qstats->hw_csum_err++; 889 else 890 skb->ip_summed = CHECKSUM_UNNECESSARY; 891 } 892 893 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 894 { 895 struct bnx2x *bp = fp->bp; 896 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 897 u16 sw_comp_cons, sw_comp_prod; 898 int rx_pkt = 0; 899 union eth_rx_cqe *cqe; 900 struct eth_fast_path_rx_cqe *cqe_fp; 901 902 #ifdef BNX2X_STOP_ON_ERROR 903 if (unlikely(bp->panic)) 904 return 0; 905 #endif 906 if (budget <= 0) 907 return rx_pkt; 908 909 bd_cons = fp->rx_bd_cons; 910 bd_prod = fp->rx_bd_prod; 911 bd_prod_fw = bd_prod; 912 sw_comp_cons = fp->rx_comp_cons; 913 sw_comp_prod = fp->rx_comp_prod; 914 915 comp_ring_cons = RCQ_BD(sw_comp_cons); 916 cqe = &fp->rx_comp_ring[comp_ring_cons]; 917 cqe_fp = &cqe->fast_path_cqe; 918 919 DP(NETIF_MSG_RX_STATUS, 920 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 921 922 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 923 struct sw_rx_bd *rx_buf = NULL; 924 struct sk_buff *skb; 925 u8 cqe_fp_flags; 926 enum eth_rx_cqe_type cqe_fp_type; 927 u16 len, pad, queue; 928 u8 *data; 929 u32 rxhash; 930 enum pkt_hash_types rxhash_type; 931 932 #ifdef BNX2X_STOP_ON_ERROR 933 if (unlikely(bp->panic)) 934 return 0; 935 #endif 936 937 bd_prod = RX_BD(bd_prod); 938 bd_cons = RX_BD(bd_cons); 939 940 /* A rmb() is required to ensure that the CQE is not read 941 * before it is written by the adapter DMA. PCI ordering 942 * rules will make sure the other fields are written before 943 * the marker at the end of struct eth_fast_path_rx_cqe 944 * but without rmb() a weakly ordered processor can process 945 * stale data. Without the barrier TPA state-machine might 946 * enter inconsistent state and kernel stack might be 947 * provided with incorrect packet description - these lead 948 * to various kernel crashed. 949 */ 950 rmb(); 951 952 cqe_fp_flags = cqe_fp->type_error_flags; 953 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 954 955 DP(NETIF_MSG_RX_STATUS, 956 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 957 CQE_TYPE(cqe_fp_flags), 958 cqe_fp_flags, cqe_fp->status_flags, 959 le32_to_cpu(cqe_fp->rss_hash_result), 960 le16_to_cpu(cqe_fp->vlan_tag), 961 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 962 963 /* is this a slowpath msg? */ 964 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 965 bnx2x_sp_event(fp, cqe); 966 goto next_cqe; 967 } 968 969 rx_buf = &fp->rx_buf_ring[bd_cons]; 970 data = rx_buf->data; 971 972 if (!CQE_TYPE_FAST(cqe_fp_type)) { 973 struct bnx2x_agg_info *tpa_info; 974 u16 frag_size, pages; 975 #ifdef BNX2X_STOP_ON_ERROR 976 /* sanity check */ 977 if (fp->mode == TPA_MODE_DISABLED && 978 (CQE_TYPE_START(cqe_fp_type) || 979 CQE_TYPE_STOP(cqe_fp_type))) 980 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n", 981 CQE_TYPE(cqe_fp_type)); 982 #endif 983 984 if (CQE_TYPE_START(cqe_fp_type)) { 985 u16 queue = cqe_fp->queue_index; 986 DP(NETIF_MSG_RX_STATUS, 987 "calling tpa_start on queue %d\n", 988 queue); 989 990 bnx2x_tpa_start(fp, queue, 991 bd_cons, bd_prod, 992 cqe_fp); 993 994 goto next_rx; 995 } 996 queue = cqe->end_agg_cqe.queue_index; 997 tpa_info = &fp->tpa_info[queue]; 998 DP(NETIF_MSG_RX_STATUS, 999 "calling tpa_stop on queue %d\n", 1000 queue); 1001 1002 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 1003 tpa_info->len_on_bd; 1004 1005 if (fp->mode == TPA_MODE_GRO) 1006 pages = (frag_size + tpa_info->full_page - 1) / 1007 tpa_info->full_page; 1008 else 1009 pages = SGE_PAGE_ALIGN(frag_size) >> 1010 SGE_PAGE_SHIFT; 1011 1012 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 1013 &cqe->end_agg_cqe, comp_ring_cons); 1014 #ifdef BNX2X_STOP_ON_ERROR 1015 if (bp->panic) 1016 return 0; 1017 #endif 1018 1019 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 1020 goto next_cqe; 1021 } 1022 /* non TPA */ 1023 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 1024 pad = cqe_fp->placement_offset; 1025 dma_sync_single_for_cpu(&bp->pdev->dev, 1026 dma_unmap_addr(rx_buf, mapping), 1027 pad + RX_COPY_THRESH, 1028 DMA_FROM_DEVICE); 1029 pad += NET_SKB_PAD; 1030 prefetch(data + pad); /* speedup eth_type_trans() */ 1031 /* is this an error packet? */ 1032 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 1033 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1034 "ERROR flags %x rx packet %u\n", 1035 cqe_fp_flags, sw_comp_cons); 1036 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 1037 goto reuse_rx; 1038 } 1039 1040 /* Since we don't have a jumbo ring 1041 * copy small packets if mtu > 1500 1042 */ 1043 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 1044 (len <= RX_COPY_THRESH)) { 1045 skb = napi_alloc_skb(&fp->napi, len); 1046 if (skb == NULL) { 1047 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1048 "ERROR packet dropped because of alloc failure\n"); 1049 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1050 goto reuse_rx; 1051 } 1052 memcpy(skb->data, data + pad, len); 1053 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1054 } else { 1055 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1056 GFP_ATOMIC) == 0)) { 1057 dma_unmap_single(&bp->pdev->dev, 1058 dma_unmap_addr(rx_buf, mapping), 1059 fp->rx_buf_size, 1060 DMA_FROM_DEVICE); 1061 skb = bnx2x_build_skb(fp, data); 1062 if (unlikely(!skb)) { 1063 bnx2x_frag_free(fp, data); 1064 bnx2x_fp_qstats(bp, fp)-> 1065 rx_skb_alloc_failed++; 1066 goto next_rx; 1067 } 1068 skb_reserve(skb, pad); 1069 } else { 1070 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1071 "ERROR packet dropped because of alloc failure\n"); 1072 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1073 reuse_rx: 1074 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1075 goto next_rx; 1076 } 1077 } 1078 1079 skb_put(skb, len); 1080 skb->protocol = eth_type_trans(skb, bp->dev); 1081 1082 /* Set Toeplitz hash for a none-LRO skb */ 1083 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1084 skb_set_hash(skb, rxhash, rxhash_type); 1085 1086 skb_checksum_none_assert(skb); 1087 1088 if (bp->dev->features & NETIF_F_RXCSUM) 1089 bnx2x_csum_validate(skb, cqe, fp, 1090 bnx2x_fp_qstats(bp, fp)); 1091 1092 skb_record_rx_queue(skb, fp->rx_queue); 1093 1094 /* Check if this packet was timestamped */ 1095 if (unlikely(cqe->fast_path_cqe.type_error_flags & 1096 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT))) 1097 bnx2x_set_rx_ts(bp, skb); 1098 1099 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1100 PARSING_FLAGS_VLAN) 1101 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1102 le16_to_cpu(cqe_fp->vlan_tag)); 1103 1104 napi_gro_receive(&fp->napi, skb); 1105 next_rx: 1106 rx_buf->data = NULL; 1107 1108 bd_cons = NEXT_RX_IDX(bd_cons); 1109 bd_prod = NEXT_RX_IDX(bd_prod); 1110 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1111 rx_pkt++; 1112 next_cqe: 1113 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1114 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1115 1116 /* mark CQE as free */ 1117 BNX2X_SEED_CQE(cqe_fp); 1118 1119 if (rx_pkt == budget) 1120 break; 1121 1122 comp_ring_cons = RCQ_BD(sw_comp_cons); 1123 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1124 cqe_fp = &cqe->fast_path_cqe; 1125 } /* while */ 1126 1127 fp->rx_bd_cons = bd_cons; 1128 fp->rx_bd_prod = bd_prod_fw; 1129 fp->rx_comp_cons = sw_comp_cons; 1130 fp->rx_comp_prod = sw_comp_prod; 1131 1132 /* Update producers */ 1133 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1134 fp->rx_sge_prod); 1135 1136 return rx_pkt; 1137 } 1138 1139 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1140 { 1141 struct bnx2x_fastpath *fp = fp_cookie; 1142 struct bnx2x *bp = fp->bp; 1143 u8 cos; 1144 1145 DP(NETIF_MSG_INTR, 1146 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1147 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1148 1149 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1150 1151 #ifdef BNX2X_STOP_ON_ERROR 1152 if (unlikely(bp->panic)) 1153 return IRQ_HANDLED; 1154 #endif 1155 1156 /* Handle Rx and Tx according to MSI-X vector */ 1157 for_each_cos_in_tx_queue(fp, cos) 1158 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1159 1160 prefetch(&fp->sb_running_index[SM_RX_ID]); 1161 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1162 1163 return IRQ_HANDLED; 1164 } 1165 1166 /* HW Lock for shared dual port PHYs */ 1167 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1168 { 1169 mutex_lock(&bp->port.phy_mutex); 1170 1171 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1172 } 1173 1174 void bnx2x_release_phy_lock(struct bnx2x *bp) 1175 { 1176 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1177 1178 mutex_unlock(&bp->port.phy_mutex); 1179 } 1180 1181 /* calculates MF speed according to current linespeed and MF configuration */ 1182 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1183 { 1184 u16 line_speed = bp->link_vars.line_speed; 1185 if (IS_MF(bp)) { 1186 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1187 bp->mf_config[BP_VN(bp)]); 1188 1189 /* Calculate the current MAX line speed limit for the MF 1190 * devices 1191 */ 1192 if (IS_MF_PERCENT_BW(bp)) 1193 line_speed = (line_speed * maxCfg) / 100; 1194 else { /* SD mode */ 1195 u16 vn_max_rate = maxCfg * 100; 1196 1197 if (vn_max_rate < line_speed) 1198 line_speed = vn_max_rate; 1199 } 1200 } 1201 1202 return line_speed; 1203 } 1204 1205 /** 1206 * bnx2x_fill_report_data - fill link report data to report 1207 * 1208 * @bp: driver handle 1209 * @data: link state to update 1210 * 1211 * It uses a none-atomic bit operations because is called under the mutex. 1212 */ 1213 static void bnx2x_fill_report_data(struct bnx2x *bp, 1214 struct bnx2x_link_report_data *data) 1215 { 1216 memset(data, 0, sizeof(*data)); 1217 1218 if (IS_PF(bp)) { 1219 /* Fill the report data: effective line speed */ 1220 data->line_speed = bnx2x_get_mf_speed(bp); 1221 1222 /* Link is down */ 1223 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1224 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1225 &data->link_report_flags); 1226 1227 if (!BNX2X_NUM_ETH_QUEUES(bp)) 1228 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1229 &data->link_report_flags); 1230 1231 /* Full DUPLEX */ 1232 if (bp->link_vars.duplex == DUPLEX_FULL) 1233 __set_bit(BNX2X_LINK_REPORT_FD, 1234 &data->link_report_flags); 1235 1236 /* Rx Flow Control is ON */ 1237 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1238 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1239 &data->link_report_flags); 1240 1241 /* Tx Flow Control is ON */ 1242 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1243 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1244 &data->link_report_flags); 1245 } else { /* VF */ 1246 *data = bp->vf_link_vars; 1247 } 1248 } 1249 1250 /** 1251 * bnx2x_link_report - report link status to OS. 1252 * 1253 * @bp: driver handle 1254 * 1255 * Calls the __bnx2x_link_report() under the same locking scheme 1256 * as a link/PHY state managing code to ensure a consistent link 1257 * reporting. 1258 */ 1259 1260 void bnx2x_link_report(struct bnx2x *bp) 1261 { 1262 bnx2x_acquire_phy_lock(bp); 1263 __bnx2x_link_report(bp); 1264 bnx2x_release_phy_lock(bp); 1265 } 1266 1267 /** 1268 * __bnx2x_link_report - report link status to OS. 1269 * 1270 * @bp: driver handle 1271 * 1272 * None atomic implementation. 1273 * Should be called under the phy_lock. 1274 */ 1275 void __bnx2x_link_report(struct bnx2x *bp) 1276 { 1277 struct bnx2x_link_report_data cur_data; 1278 1279 if (bp->force_link_down) { 1280 bp->link_vars.link_up = 0; 1281 return; 1282 } 1283 1284 /* reread mf_cfg */ 1285 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1286 bnx2x_read_mf_cfg(bp); 1287 1288 /* Read the current link report info */ 1289 bnx2x_fill_report_data(bp, &cur_data); 1290 1291 /* Don't report link down or exactly the same link status twice */ 1292 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1293 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1294 &bp->last_reported_link.link_report_flags) && 1295 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1296 &cur_data.link_report_flags))) 1297 return; 1298 1299 bp->link_cnt++; 1300 1301 /* We are going to report a new link parameters now - 1302 * remember the current data for the next time. 1303 */ 1304 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1305 1306 /* propagate status to VFs */ 1307 if (IS_PF(bp)) 1308 bnx2x_iov_link_update(bp); 1309 1310 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1311 &cur_data.link_report_flags)) { 1312 netif_carrier_off(bp->dev); 1313 netdev_err(bp->dev, "NIC Link is Down\n"); 1314 return; 1315 } else { 1316 const char *duplex; 1317 const char *flow; 1318 1319 netif_carrier_on(bp->dev); 1320 1321 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1322 &cur_data.link_report_flags)) 1323 duplex = "full"; 1324 else 1325 duplex = "half"; 1326 1327 /* Handle the FC at the end so that only these flags would be 1328 * possibly set. This way we may easily check if there is no FC 1329 * enabled. 1330 */ 1331 if (cur_data.link_report_flags) { 1332 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1333 &cur_data.link_report_flags)) { 1334 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1335 &cur_data.link_report_flags)) 1336 flow = "ON - receive & transmit"; 1337 else 1338 flow = "ON - receive"; 1339 } else { 1340 flow = "ON - transmit"; 1341 } 1342 } else { 1343 flow = "none"; 1344 } 1345 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1346 cur_data.line_speed, duplex, flow); 1347 } 1348 } 1349 1350 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1351 { 1352 int i; 1353 1354 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1355 struct eth_rx_sge *sge; 1356 1357 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1358 sge->addr_hi = 1359 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1360 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1361 1362 sge->addr_lo = 1363 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1364 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1365 } 1366 } 1367 1368 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1369 struct bnx2x_fastpath *fp, int last) 1370 { 1371 int i; 1372 1373 for (i = 0; i < last; i++) { 1374 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1375 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1376 u8 *data = first_buf->data; 1377 1378 if (data == NULL) { 1379 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1380 continue; 1381 } 1382 if (tpa_info->tpa_state == BNX2X_TPA_START) 1383 dma_unmap_single(&bp->pdev->dev, 1384 dma_unmap_addr(first_buf, mapping), 1385 fp->rx_buf_size, DMA_FROM_DEVICE); 1386 bnx2x_frag_free(fp, data); 1387 first_buf->data = NULL; 1388 } 1389 } 1390 1391 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1392 { 1393 int j; 1394 1395 for_each_rx_queue_cnic(bp, j) { 1396 struct bnx2x_fastpath *fp = &bp->fp[j]; 1397 1398 fp->rx_bd_cons = 0; 1399 1400 /* Activate BD ring */ 1401 /* Warning! 1402 * this will generate an interrupt (to the TSTORM) 1403 * must only be done after chip is initialized 1404 */ 1405 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1406 fp->rx_sge_prod); 1407 } 1408 } 1409 1410 void bnx2x_init_rx_rings(struct bnx2x *bp) 1411 { 1412 int func = BP_FUNC(bp); 1413 u16 ring_prod; 1414 int i, j; 1415 1416 /* Allocate TPA resources */ 1417 for_each_eth_queue(bp, j) { 1418 struct bnx2x_fastpath *fp = &bp->fp[j]; 1419 1420 DP(NETIF_MSG_IFUP, 1421 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1422 1423 if (fp->mode != TPA_MODE_DISABLED) { 1424 /* Fill the per-aggregation pool */ 1425 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1426 struct bnx2x_agg_info *tpa_info = 1427 &fp->tpa_info[i]; 1428 struct sw_rx_bd *first_buf = 1429 &tpa_info->first_buf; 1430 1431 first_buf->data = 1432 bnx2x_frag_alloc(fp, GFP_KERNEL); 1433 if (!first_buf->data) { 1434 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1435 j); 1436 bnx2x_free_tpa_pool(bp, fp, i); 1437 fp->mode = TPA_MODE_DISABLED; 1438 break; 1439 } 1440 dma_unmap_addr_set(first_buf, mapping, 0); 1441 tpa_info->tpa_state = BNX2X_TPA_STOP; 1442 } 1443 1444 /* "next page" elements initialization */ 1445 bnx2x_set_next_page_sgl(fp); 1446 1447 /* set SGEs bit mask */ 1448 bnx2x_init_sge_ring_bit_mask(fp); 1449 1450 /* Allocate SGEs and initialize the ring elements */ 1451 for (i = 0, ring_prod = 0; 1452 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1453 1454 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1455 GFP_KERNEL) < 0) { 1456 BNX2X_ERR("was only able to allocate %d rx sges\n", 1457 i); 1458 BNX2X_ERR("disabling TPA for queue[%d]\n", 1459 j); 1460 /* Cleanup already allocated elements */ 1461 bnx2x_free_rx_sge_range(bp, fp, 1462 ring_prod); 1463 bnx2x_free_tpa_pool(bp, fp, 1464 MAX_AGG_QS(bp)); 1465 fp->mode = TPA_MODE_DISABLED; 1466 ring_prod = 0; 1467 break; 1468 } 1469 ring_prod = NEXT_SGE_IDX(ring_prod); 1470 } 1471 1472 fp->rx_sge_prod = ring_prod; 1473 } 1474 } 1475 1476 for_each_eth_queue(bp, j) { 1477 struct bnx2x_fastpath *fp = &bp->fp[j]; 1478 1479 fp->rx_bd_cons = 0; 1480 1481 /* Activate BD ring */ 1482 /* Warning! 1483 * this will generate an interrupt (to the TSTORM) 1484 * must only be done after chip is initialized 1485 */ 1486 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1487 fp->rx_sge_prod); 1488 1489 if (j != 0) 1490 continue; 1491 1492 if (CHIP_IS_E1(bp)) { 1493 REG_WR(bp, BAR_USTRORM_INTMEM + 1494 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1495 U64_LO(fp->rx_comp_mapping)); 1496 REG_WR(bp, BAR_USTRORM_INTMEM + 1497 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1498 U64_HI(fp->rx_comp_mapping)); 1499 } 1500 } 1501 } 1502 1503 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1504 { 1505 u8 cos; 1506 struct bnx2x *bp = fp->bp; 1507 1508 for_each_cos_in_tx_queue(fp, cos) { 1509 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1510 unsigned pkts_compl = 0, bytes_compl = 0; 1511 1512 u16 sw_prod = txdata->tx_pkt_prod; 1513 u16 sw_cons = txdata->tx_pkt_cons; 1514 1515 while (sw_cons != sw_prod) { 1516 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1517 &pkts_compl, &bytes_compl); 1518 sw_cons++; 1519 } 1520 1521 netdev_tx_reset_queue( 1522 netdev_get_tx_queue(bp->dev, 1523 txdata->txq_index)); 1524 } 1525 } 1526 1527 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1528 { 1529 int i; 1530 1531 for_each_tx_queue_cnic(bp, i) { 1532 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1533 } 1534 } 1535 1536 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1537 { 1538 int i; 1539 1540 for_each_eth_queue(bp, i) { 1541 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1542 } 1543 } 1544 1545 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1546 { 1547 struct bnx2x *bp = fp->bp; 1548 int i; 1549 1550 /* ring wasn't allocated */ 1551 if (fp->rx_buf_ring == NULL) 1552 return; 1553 1554 for (i = 0; i < NUM_RX_BD; i++) { 1555 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1556 u8 *data = rx_buf->data; 1557 1558 if (data == NULL) 1559 continue; 1560 dma_unmap_single(&bp->pdev->dev, 1561 dma_unmap_addr(rx_buf, mapping), 1562 fp->rx_buf_size, DMA_FROM_DEVICE); 1563 1564 rx_buf->data = NULL; 1565 bnx2x_frag_free(fp, data); 1566 } 1567 } 1568 1569 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1570 { 1571 int j; 1572 1573 for_each_rx_queue_cnic(bp, j) { 1574 bnx2x_free_rx_bds(&bp->fp[j]); 1575 } 1576 } 1577 1578 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1579 { 1580 int j; 1581 1582 for_each_eth_queue(bp, j) { 1583 struct bnx2x_fastpath *fp = &bp->fp[j]; 1584 1585 bnx2x_free_rx_bds(fp); 1586 1587 if (fp->mode != TPA_MODE_DISABLED) 1588 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1589 } 1590 } 1591 1592 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1593 { 1594 bnx2x_free_tx_skbs_cnic(bp); 1595 bnx2x_free_rx_skbs_cnic(bp); 1596 } 1597 1598 void bnx2x_free_skbs(struct bnx2x *bp) 1599 { 1600 bnx2x_free_tx_skbs(bp); 1601 bnx2x_free_rx_skbs(bp); 1602 } 1603 1604 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1605 { 1606 /* load old values */ 1607 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1608 1609 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1610 /* leave all but MAX value */ 1611 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1612 1613 /* set new MAX value */ 1614 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1615 & FUNC_MF_CFG_MAX_BW_MASK; 1616 1617 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1618 } 1619 } 1620 1621 /** 1622 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1623 * 1624 * @bp: driver handle 1625 * @nvecs: number of vectors to be released 1626 */ 1627 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1628 { 1629 int i, offset = 0; 1630 1631 if (nvecs == offset) 1632 return; 1633 1634 /* VFs don't have a default SB */ 1635 if (IS_PF(bp)) { 1636 free_irq(bp->msix_table[offset].vector, bp->dev); 1637 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1638 bp->msix_table[offset].vector); 1639 offset++; 1640 } 1641 1642 if (CNIC_SUPPORT(bp)) { 1643 if (nvecs == offset) 1644 return; 1645 offset++; 1646 } 1647 1648 for_each_eth_queue(bp, i) { 1649 if (nvecs == offset) 1650 return; 1651 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1652 i, bp->msix_table[offset].vector); 1653 1654 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1655 } 1656 } 1657 1658 void bnx2x_free_irq(struct bnx2x *bp) 1659 { 1660 if (bp->flags & USING_MSIX_FLAG && 1661 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1662 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1663 1664 /* vfs don't have a default status block */ 1665 if (IS_PF(bp)) 1666 nvecs++; 1667 1668 bnx2x_free_msix_irqs(bp, nvecs); 1669 } else { 1670 free_irq(bp->dev->irq, bp->dev); 1671 } 1672 } 1673 1674 int bnx2x_enable_msix(struct bnx2x *bp) 1675 { 1676 int msix_vec = 0, i, rc; 1677 1678 /* VFs don't have a default status block */ 1679 if (IS_PF(bp)) { 1680 bp->msix_table[msix_vec].entry = msix_vec; 1681 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1682 bp->msix_table[0].entry); 1683 msix_vec++; 1684 } 1685 1686 /* Cnic requires an msix vector for itself */ 1687 if (CNIC_SUPPORT(bp)) { 1688 bp->msix_table[msix_vec].entry = msix_vec; 1689 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1690 msix_vec, bp->msix_table[msix_vec].entry); 1691 msix_vec++; 1692 } 1693 1694 /* We need separate vectors for ETH queues only (not FCoE) */ 1695 for_each_eth_queue(bp, i) { 1696 bp->msix_table[msix_vec].entry = msix_vec; 1697 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1698 msix_vec, msix_vec, i); 1699 msix_vec++; 1700 } 1701 1702 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1703 msix_vec); 1704 1705 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1706 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); 1707 /* 1708 * reconfigure number of tx/rx queues according to available 1709 * MSI-X vectors 1710 */ 1711 if (rc == -ENOSPC) { 1712 /* Get by with single vector */ 1713 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); 1714 if (rc < 0) { 1715 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1716 rc); 1717 goto no_msix; 1718 } 1719 1720 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1721 bp->flags |= USING_SINGLE_MSIX_FLAG; 1722 1723 BNX2X_DEV_INFO("set number of queues to 1\n"); 1724 bp->num_ethernet_queues = 1; 1725 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1726 } else if (rc < 0) { 1727 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1728 goto no_msix; 1729 } else if (rc < msix_vec) { 1730 /* how less vectors we will have? */ 1731 int diff = msix_vec - rc; 1732 1733 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1734 1735 /* 1736 * decrease number of queues by number of unallocated entries 1737 */ 1738 bp->num_ethernet_queues -= diff; 1739 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1740 1741 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1742 bp->num_queues); 1743 } 1744 1745 bp->flags |= USING_MSIX_FLAG; 1746 1747 return 0; 1748 1749 no_msix: 1750 /* fall to INTx if not enough memory */ 1751 if (rc == -ENOMEM) 1752 bp->flags |= DISABLE_MSI_FLAG; 1753 1754 return rc; 1755 } 1756 1757 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1758 { 1759 int i, rc, offset = 0; 1760 1761 /* no default status block for vf */ 1762 if (IS_PF(bp)) { 1763 rc = request_irq(bp->msix_table[offset++].vector, 1764 bnx2x_msix_sp_int, 0, 1765 bp->dev->name, bp->dev); 1766 if (rc) { 1767 BNX2X_ERR("request sp irq failed\n"); 1768 return -EBUSY; 1769 } 1770 } 1771 1772 if (CNIC_SUPPORT(bp)) 1773 offset++; 1774 1775 for_each_eth_queue(bp, i) { 1776 struct bnx2x_fastpath *fp = &bp->fp[i]; 1777 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1778 bp->dev->name, i); 1779 1780 rc = request_irq(bp->msix_table[offset].vector, 1781 bnx2x_msix_fp_int, 0, fp->name, fp); 1782 if (rc) { 1783 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1784 bp->msix_table[offset].vector, rc); 1785 bnx2x_free_msix_irqs(bp, offset); 1786 return -EBUSY; 1787 } 1788 1789 offset++; 1790 } 1791 1792 i = BNX2X_NUM_ETH_QUEUES(bp); 1793 if (IS_PF(bp)) { 1794 offset = 1 + CNIC_SUPPORT(bp); 1795 netdev_info(bp->dev, 1796 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1797 bp->msix_table[0].vector, 1798 0, bp->msix_table[offset].vector, 1799 i - 1, bp->msix_table[offset + i - 1].vector); 1800 } else { 1801 offset = CNIC_SUPPORT(bp); 1802 netdev_info(bp->dev, 1803 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1804 0, bp->msix_table[offset].vector, 1805 i - 1, bp->msix_table[offset + i - 1].vector); 1806 } 1807 return 0; 1808 } 1809 1810 int bnx2x_enable_msi(struct bnx2x *bp) 1811 { 1812 int rc; 1813 1814 rc = pci_enable_msi(bp->pdev); 1815 if (rc) { 1816 BNX2X_DEV_INFO("MSI is not attainable\n"); 1817 return -1; 1818 } 1819 bp->flags |= USING_MSI_FLAG; 1820 1821 return 0; 1822 } 1823 1824 static int bnx2x_req_irq(struct bnx2x *bp) 1825 { 1826 unsigned long flags; 1827 unsigned int irq; 1828 1829 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1830 flags = 0; 1831 else 1832 flags = IRQF_SHARED; 1833 1834 if (bp->flags & USING_MSIX_FLAG) 1835 irq = bp->msix_table[0].vector; 1836 else 1837 irq = bp->pdev->irq; 1838 1839 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1840 } 1841 1842 static int bnx2x_setup_irqs(struct bnx2x *bp) 1843 { 1844 int rc = 0; 1845 if (bp->flags & USING_MSIX_FLAG && 1846 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1847 rc = bnx2x_req_msix_irqs(bp); 1848 if (rc) 1849 return rc; 1850 } else { 1851 rc = bnx2x_req_irq(bp); 1852 if (rc) { 1853 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1854 return rc; 1855 } 1856 if (bp->flags & USING_MSI_FLAG) { 1857 bp->dev->irq = bp->pdev->irq; 1858 netdev_info(bp->dev, "using MSI IRQ %d\n", 1859 bp->dev->irq); 1860 } 1861 if (bp->flags & USING_MSIX_FLAG) { 1862 bp->dev->irq = bp->msix_table[0].vector; 1863 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1864 bp->dev->irq); 1865 } 1866 } 1867 1868 return 0; 1869 } 1870 1871 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1872 { 1873 int i; 1874 1875 for_each_rx_queue_cnic(bp, i) { 1876 napi_enable(&bnx2x_fp(bp, i, napi)); 1877 } 1878 } 1879 1880 static void bnx2x_napi_enable(struct bnx2x *bp) 1881 { 1882 int i; 1883 1884 for_each_eth_queue(bp, i) { 1885 napi_enable(&bnx2x_fp(bp, i, napi)); 1886 } 1887 } 1888 1889 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1890 { 1891 int i; 1892 1893 for_each_rx_queue_cnic(bp, i) { 1894 napi_disable(&bnx2x_fp(bp, i, napi)); 1895 } 1896 } 1897 1898 static void bnx2x_napi_disable(struct bnx2x *bp) 1899 { 1900 int i; 1901 1902 for_each_eth_queue(bp, i) { 1903 napi_disable(&bnx2x_fp(bp, i, napi)); 1904 } 1905 } 1906 1907 void bnx2x_netif_start(struct bnx2x *bp) 1908 { 1909 if (netif_running(bp->dev)) { 1910 bnx2x_napi_enable(bp); 1911 if (CNIC_LOADED(bp)) 1912 bnx2x_napi_enable_cnic(bp); 1913 bnx2x_int_enable(bp); 1914 if (bp->state == BNX2X_STATE_OPEN) 1915 netif_tx_wake_all_queues(bp->dev); 1916 } 1917 } 1918 1919 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1920 { 1921 bnx2x_int_disable_sync(bp, disable_hw); 1922 bnx2x_napi_disable(bp); 1923 if (CNIC_LOADED(bp)) 1924 bnx2x_napi_disable_cnic(bp); 1925 } 1926 1927 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1928 struct net_device *sb_dev) 1929 { 1930 struct bnx2x *bp = netdev_priv(dev); 1931 1932 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1933 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1934 u16 ether_type = ntohs(hdr->h_proto); 1935 1936 /* Skip VLAN tag if present */ 1937 if (ether_type == ETH_P_8021Q) { 1938 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb); 1939 1940 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1941 } 1942 1943 /* If ethertype is FCoE or FIP - use FCoE ring */ 1944 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1945 return bnx2x_fcoe_tx(bp, txq_index); 1946 } 1947 1948 /* select a non-FCoE queue */ 1949 return netdev_pick_tx(dev, skb, NULL) % 1950 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos); 1951 } 1952 1953 void bnx2x_set_num_queues(struct bnx2x *bp) 1954 { 1955 /* RSS queues */ 1956 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1957 1958 /* override in STORAGE SD modes */ 1959 if (IS_MF_STORAGE_ONLY(bp)) 1960 bp->num_ethernet_queues = 1; 1961 1962 /* Add special queues */ 1963 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1964 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1965 1966 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1967 } 1968 1969 /** 1970 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1971 * 1972 * @bp: Driver handle 1973 * @include_cnic: handle cnic case 1974 * 1975 * We currently support for at most 16 Tx queues for each CoS thus we will 1976 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1977 * bp->max_cos. 1978 * 1979 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1980 * index after all ETH L2 indices. 1981 * 1982 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1983 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1984 * 16..31,...) with indices that are not coupled with any real Tx queue. 1985 * 1986 * The proper configuration of skb->queue_mapping is handled by 1987 * bnx2x_select_queue() and __skb_tx_hash(). 1988 * 1989 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1990 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1991 */ 1992 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1993 { 1994 int rc, tx, rx; 1995 1996 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1997 rx = BNX2X_NUM_ETH_QUEUES(bp); 1998 1999 /* account for fcoe queue */ 2000 if (include_cnic && !NO_FCOE(bp)) { 2001 rx++; 2002 tx++; 2003 } 2004 2005 rc = netif_set_real_num_tx_queues(bp->dev, tx); 2006 if (rc) { 2007 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 2008 return rc; 2009 } 2010 rc = netif_set_real_num_rx_queues(bp->dev, rx); 2011 if (rc) { 2012 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 2013 return rc; 2014 } 2015 2016 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 2017 tx, rx); 2018 2019 return rc; 2020 } 2021 2022 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 2023 { 2024 int i; 2025 2026 for_each_queue(bp, i) { 2027 struct bnx2x_fastpath *fp = &bp->fp[i]; 2028 u32 mtu; 2029 2030 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 2031 if (IS_FCOE_IDX(i)) 2032 /* 2033 * Although there are no IP frames expected to arrive to 2034 * this ring we still want to add an 2035 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 2036 * overrun attack. 2037 */ 2038 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 2039 else 2040 mtu = bp->dev->mtu; 2041 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 2042 IP_HEADER_ALIGNMENT_PADDING + 2043 ETH_OVERHEAD + 2044 mtu + 2045 BNX2X_FW_RX_ALIGN_END; 2046 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size); 2047 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 2048 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 2049 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 2050 else 2051 fp->rx_frag_size = 0; 2052 } 2053 } 2054 2055 static int bnx2x_init_rss(struct bnx2x *bp) 2056 { 2057 int i; 2058 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2059 2060 /* Prepare the initial contents for the indirection table if RSS is 2061 * enabled 2062 */ 2063 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2064 bp->rss_conf_obj.ind_table[i] = 2065 bp->fp->cl_id + 2066 ethtool_rxfh_indir_default(i, num_eth_queues); 2067 2068 /* 2069 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2070 * per-port, so if explicit configuration is needed , do it only 2071 * for a PMF. 2072 * 2073 * For 57712 and newer on the other hand it's a per-function 2074 * configuration. 2075 */ 2076 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2077 } 2078 2079 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2080 bool config_hash, bool enable) 2081 { 2082 struct bnx2x_config_rss_params params = {NULL}; 2083 2084 /* Although RSS is meaningless when there is a single HW queue we 2085 * still need it enabled in order to have HW Rx hash generated. 2086 * 2087 * if (!is_eth_multi(bp)) 2088 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2089 */ 2090 2091 params.rss_obj = rss_obj; 2092 2093 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2094 2095 if (enable) { 2096 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2097 2098 /* RSS configuration */ 2099 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2100 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2101 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2102 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2103 if (rss_obj->udp_rss_v4) 2104 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2105 if (rss_obj->udp_rss_v6) 2106 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2107 2108 if (!CHIP_IS_E1x(bp)) { 2109 /* valid only for TUNN_MODE_VXLAN tunnel mode */ 2110 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags); 2111 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags); 2112 2113 /* valid only for TUNN_MODE_GRE tunnel mode */ 2114 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags); 2115 } 2116 } else { 2117 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2118 } 2119 2120 /* Hash bits */ 2121 params.rss_result_mask = MULTI_MASK; 2122 2123 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2124 2125 if (config_hash) { 2126 /* RSS keys */ 2127 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4); 2128 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2129 } 2130 2131 if (IS_PF(bp)) 2132 return bnx2x_config_rss(bp, ¶ms); 2133 else 2134 return bnx2x_vfpf_config_rss(bp, ¶ms); 2135 } 2136 2137 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2138 { 2139 struct bnx2x_func_state_params func_params = {NULL}; 2140 2141 /* Prepare parameters for function state transitions */ 2142 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2143 2144 func_params.f_obj = &bp->func_obj; 2145 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2146 2147 func_params.params.hw_init.load_phase = load_code; 2148 2149 return bnx2x_func_state_change(bp, &func_params); 2150 } 2151 2152 /* 2153 * Cleans the object that have internal lists without sending 2154 * ramrods. Should be run when interrupts are disabled. 2155 */ 2156 void bnx2x_squeeze_objects(struct bnx2x *bp) 2157 { 2158 int rc; 2159 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2160 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2161 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2162 2163 /***************** Cleanup MACs' object first *************************/ 2164 2165 /* Wait for completion of requested */ 2166 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2167 /* Perform a dry cleanup */ 2168 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2169 2170 /* Clean ETH primary MAC */ 2171 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2172 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2173 &ramrod_flags); 2174 if (rc != 0) 2175 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2176 2177 /* Cleanup UC list */ 2178 vlan_mac_flags = 0; 2179 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2180 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2181 &ramrod_flags); 2182 if (rc != 0) 2183 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2184 2185 /***************** Now clean mcast object *****************************/ 2186 rparam.mcast_obj = &bp->mcast_obj; 2187 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2188 2189 /* Add a DEL command... - Since we're doing a driver cleanup only, 2190 * we take a lock surrounding both the initial send and the CONTs, 2191 * as we don't want a true completion to disrupt us in the middle. 2192 */ 2193 netif_addr_lock_bh(bp->dev); 2194 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2195 if (rc < 0) 2196 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2197 rc); 2198 2199 /* ...and wait until all pending commands are cleared */ 2200 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2201 while (rc != 0) { 2202 if (rc < 0) { 2203 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2204 rc); 2205 netif_addr_unlock_bh(bp->dev); 2206 return; 2207 } 2208 2209 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2210 } 2211 netif_addr_unlock_bh(bp->dev); 2212 } 2213 2214 #ifndef BNX2X_STOP_ON_ERROR 2215 #define LOAD_ERROR_EXIT(bp, label) \ 2216 do { \ 2217 (bp)->state = BNX2X_STATE_ERROR; \ 2218 goto label; \ 2219 } while (0) 2220 2221 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2222 do { \ 2223 bp->cnic_loaded = false; \ 2224 goto label; \ 2225 } while (0) 2226 #else /*BNX2X_STOP_ON_ERROR*/ 2227 #define LOAD_ERROR_EXIT(bp, label) \ 2228 do { \ 2229 (bp)->state = BNX2X_STATE_ERROR; \ 2230 (bp)->panic = 1; \ 2231 return -EBUSY; \ 2232 } while (0) 2233 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2234 do { \ 2235 bp->cnic_loaded = false; \ 2236 (bp)->panic = 1; \ 2237 return -EBUSY; \ 2238 } while (0) 2239 #endif /*BNX2X_STOP_ON_ERROR*/ 2240 2241 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2242 { 2243 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2244 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2245 return; 2246 } 2247 2248 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2249 { 2250 int num_groups, vf_headroom = 0; 2251 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2252 2253 /* number of queues for statistics is number of eth queues + FCoE */ 2254 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2255 2256 /* Total number of FW statistics requests = 2257 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2258 * and fcoe l2 queue) stats + num of queues (which includes another 1 2259 * for fcoe l2 queue if applicable) 2260 */ 2261 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2262 2263 /* vf stats appear in the request list, but their data is allocated by 2264 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2265 * it is used to determine where to place the vf stats queries in the 2266 * request struct 2267 */ 2268 if (IS_SRIOV(bp)) 2269 vf_headroom = bnx2x_vf_headroom(bp); 2270 2271 /* Request is built from stats_query_header and an array of 2272 * stats_query_cmd_group each of which contains 2273 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2274 * configured in the stats_query_header. 2275 */ 2276 num_groups = 2277 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2278 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2279 1 : 0)); 2280 2281 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2282 bp->fw_stats_num, vf_headroom, num_groups); 2283 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2284 num_groups * sizeof(struct stats_query_cmd_group); 2285 2286 /* Data for statistics requests + stats_counter 2287 * stats_counter holds per-STORM counters that are incremented 2288 * when STORM has finished with the current request. 2289 * memory for FCoE offloaded statistics are counted anyway, 2290 * even if they will not be sent. 2291 * VF stats are not accounted for here as the data of VF stats is stored 2292 * in memory allocated by the VF, not here. 2293 */ 2294 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2295 sizeof(struct per_pf_stats) + 2296 sizeof(struct fcoe_statistics_params) + 2297 sizeof(struct per_queue_stats) * num_queue_stats + 2298 sizeof(struct stats_counter); 2299 2300 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, 2301 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2302 if (!bp->fw_stats) 2303 goto alloc_mem_err; 2304 2305 /* Set shortcuts */ 2306 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2307 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2308 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2309 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2310 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2311 bp->fw_stats_req_sz; 2312 2313 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2314 U64_HI(bp->fw_stats_req_mapping), 2315 U64_LO(bp->fw_stats_req_mapping)); 2316 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2317 U64_HI(bp->fw_stats_data_mapping), 2318 U64_LO(bp->fw_stats_data_mapping)); 2319 return 0; 2320 2321 alloc_mem_err: 2322 bnx2x_free_fw_stats_mem(bp); 2323 BNX2X_ERR("Can't allocate FW stats memory\n"); 2324 return -ENOMEM; 2325 } 2326 2327 /* send load request to mcp and analyze response */ 2328 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2329 { 2330 u32 param; 2331 2332 /* init fw_seq */ 2333 bp->fw_seq = 2334 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2335 DRV_MSG_SEQ_NUMBER_MASK); 2336 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2337 2338 /* Get current FW pulse sequence */ 2339 bp->fw_drv_pulse_wr_seq = 2340 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2341 DRV_PULSE_SEQ_MASK); 2342 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2343 2344 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2345 2346 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2347 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2348 2349 /* load request */ 2350 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2351 2352 /* if mcp fails to respond we must abort */ 2353 if (!(*load_code)) { 2354 BNX2X_ERR("MCP response failure, aborting\n"); 2355 return -EBUSY; 2356 } 2357 2358 /* If mcp refused (e.g. other port is in diagnostic mode) we 2359 * must abort 2360 */ 2361 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2362 BNX2X_ERR("MCP refused load request, aborting\n"); 2363 return -EBUSY; 2364 } 2365 return 0; 2366 } 2367 2368 /* check whether another PF has already loaded FW to chip. In 2369 * virtualized environments a pf from another VM may have already 2370 * initialized the device including loading FW 2371 */ 2372 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2373 { 2374 /* is another pf loaded on this engine? */ 2375 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2376 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2377 u8 loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng; 2378 u32 loaded_fw; 2379 2380 /* read loaded FW from chip */ 2381 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2382 2383 loaded_fw_major = loaded_fw & 0xff; 2384 loaded_fw_minor = (loaded_fw >> 8) & 0xff; 2385 loaded_fw_rev = (loaded_fw >> 16) & 0xff; 2386 loaded_fw_eng = (loaded_fw >> 24) & 0xff; 2387 2388 DP(BNX2X_MSG_SP, "loaded fw 0x%x major 0x%x minor 0x%x rev 0x%x eng 0x%x\n", 2389 loaded_fw, loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng); 2390 2391 /* abort nic load if version mismatch */ 2392 if (loaded_fw_major != BCM_5710_FW_MAJOR_VERSION || 2393 loaded_fw_minor != BCM_5710_FW_MINOR_VERSION || 2394 loaded_fw_eng != BCM_5710_FW_ENGINEERING_VERSION || 2395 loaded_fw_rev < BCM_5710_FW_REVISION_VERSION_V15) { 2396 if (print_err) 2397 BNX2X_ERR("loaded FW incompatible. Aborting\n"); 2398 else 2399 BNX2X_DEV_INFO("loaded FW incompatible, possibly due to MF UNDI\n"); 2400 2401 return -EBUSY; 2402 } 2403 } 2404 return 0; 2405 } 2406 2407 /* returns the "mcp load_code" according to global load_count array */ 2408 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2409 { 2410 int path = BP_PATH(bp); 2411 2412 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2413 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2414 bnx2x_load_count[path][2]); 2415 bnx2x_load_count[path][0]++; 2416 bnx2x_load_count[path][1 + port]++; 2417 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2418 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2419 bnx2x_load_count[path][2]); 2420 if (bnx2x_load_count[path][0] == 1) 2421 return FW_MSG_CODE_DRV_LOAD_COMMON; 2422 else if (bnx2x_load_count[path][1 + port] == 1) 2423 return FW_MSG_CODE_DRV_LOAD_PORT; 2424 else 2425 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2426 } 2427 2428 /* mark PMF if applicable */ 2429 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2430 { 2431 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2432 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2433 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2434 bp->port.pmf = 1; 2435 /* We need the barrier to ensure the ordering between the 2436 * writing to bp->port.pmf here and reading it from the 2437 * bnx2x_periodic_task(). 2438 */ 2439 smp_mb(); 2440 } else { 2441 bp->port.pmf = 0; 2442 } 2443 2444 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2445 } 2446 2447 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2448 { 2449 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2450 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2451 (bp->common.shmem2_base)) { 2452 if (SHMEM2_HAS(bp, dcc_support)) 2453 SHMEM2_WR(bp, dcc_support, 2454 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2455 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2456 if (SHMEM2_HAS(bp, afex_driver_support)) 2457 SHMEM2_WR(bp, afex_driver_support, 2458 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2459 } 2460 2461 /* Set AFEX default VLAN tag to an invalid value */ 2462 bp->afex_def_vlan_tag = -1; 2463 } 2464 2465 /** 2466 * bnx2x_bz_fp - zero content of the fastpath structure. 2467 * 2468 * @bp: driver handle 2469 * @index: fastpath index to be zeroed 2470 * 2471 * Makes sure the contents of the bp->fp[index].napi is kept 2472 * intact. 2473 */ 2474 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2475 { 2476 struct bnx2x_fastpath *fp = &bp->fp[index]; 2477 int cos; 2478 struct napi_struct orig_napi = fp->napi; 2479 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2480 2481 /* bzero bnx2x_fastpath contents */ 2482 if (fp->tpa_info) 2483 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2484 sizeof(struct bnx2x_agg_info)); 2485 memset(fp, 0, sizeof(*fp)); 2486 2487 /* Restore the NAPI object as it has been already initialized */ 2488 fp->napi = orig_napi; 2489 fp->tpa_info = orig_tpa_info; 2490 fp->bp = bp; 2491 fp->index = index; 2492 if (IS_ETH_FP(fp)) 2493 fp->max_cos = bp->max_cos; 2494 else 2495 /* Special queues support only one CoS */ 2496 fp->max_cos = 1; 2497 2498 /* Init txdata pointers */ 2499 if (IS_FCOE_FP(fp)) 2500 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2501 if (IS_ETH_FP(fp)) 2502 for_each_cos_in_tx_queue(fp, cos) 2503 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2504 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2505 2506 /* set the tpa flag for each queue. The tpa flag determines the queue 2507 * minimal size so it must be set prior to queue memory allocation 2508 */ 2509 if (bp->dev->features & NETIF_F_LRO) 2510 fp->mode = TPA_MODE_LRO; 2511 else if (bp->dev->features & NETIF_F_GRO_HW) 2512 fp->mode = TPA_MODE_GRO; 2513 else 2514 fp->mode = TPA_MODE_DISABLED; 2515 2516 /* We don't want TPA if it's disabled in bp 2517 * or if this is an FCoE L2 ring. 2518 */ 2519 if (bp->disable_tpa || IS_FCOE_FP(fp)) 2520 fp->mode = TPA_MODE_DISABLED; 2521 } 2522 2523 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state) 2524 { 2525 u32 cur; 2526 2527 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp)) 2528 return; 2529 2530 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]); 2531 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n", 2532 cur, state); 2533 2534 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state); 2535 } 2536 2537 int bnx2x_load_cnic(struct bnx2x *bp) 2538 { 2539 int i, rc, port = BP_PORT(bp); 2540 2541 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2542 2543 mutex_init(&bp->cnic_mutex); 2544 2545 if (IS_PF(bp)) { 2546 rc = bnx2x_alloc_mem_cnic(bp); 2547 if (rc) { 2548 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2549 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2550 } 2551 } 2552 2553 rc = bnx2x_alloc_fp_mem_cnic(bp); 2554 if (rc) { 2555 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2556 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2557 } 2558 2559 /* Update the number of queues with the cnic queues */ 2560 rc = bnx2x_set_real_num_queues(bp, 1); 2561 if (rc) { 2562 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2563 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2564 } 2565 2566 /* Add all CNIC NAPI objects */ 2567 bnx2x_add_all_napi_cnic(bp); 2568 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2569 bnx2x_napi_enable_cnic(bp); 2570 2571 rc = bnx2x_init_hw_func_cnic(bp); 2572 if (rc) 2573 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2574 2575 bnx2x_nic_init_cnic(bp); 2576 2577 if (IS_PF(bp)) { 2578 /* Enable Timer scan */ 2579 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2580 2581 /* setup cnic queues */ 2582 for_each_cnic_queue(bp, i) { 2583 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2584 if (rc) { 2585 BNX2X_ERR("Queue setup failed\n"); 2586 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2587 } 2588 } 2589 } 2590 2591 /* Initialize Rx filter. */ 2592 bnx2x_set_rx_mode_inner(bp); 2593 2594 /* re-read iscsi info */ 2595 bnx2x_get_iscsi_info(bp); 2596 bnx2x_setup_cnic_irq_info(bp); 2597 bnx2x_setup_cnic_info(bp); 2598 bp->cnic_loaded = true; 2599 if (bp->state == BNX2X_STATE_OPEN) 2600 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2601 2602 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2603 2604 return 0; 2605 2606 #ifndef BNX2X_STOP_ON_ERROR 2607 load_error_cnic2: 2608 /* Disable Timer scan */ 2609 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2610 2611 load_error_cnic1: 2612 bnx2x_napi_disable_cnic(bp); 2613 /* Update the number of queues without the cnic queues */ 2614 if (bnx2x_set_real_num_queues(bp, 0)) 2615 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2616 load_error_cnic0: 2617 BNX2X_ERR("CNIC-related load failed\n"); 2618 bnx2x_free_fp_mem_cnic(bp); 2619 bnx2x_free_mem_cnic(bp); 2620 return rc; 2621 #endif /* ! BNX2X_STOP_ON_ERROR */ 2622 } 2623 2624 /* must be called with rtnl_lock */ 2625 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2626 { 2627 int port = BP_PORT(bp); 2628 int i, rc = 0, load_code = 0; 2629 2630 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2631 DP(NETIF_MSG_IFUP, 2632 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2633 2634 #ifdef BNX2X_STOP_ON_ERROR 2635 if (unlikely(bp->panic)) { 2636 BNX2X_ERR("Can't load NIC when there is panic\n"); 2637 return -EPERM; 2638 } 2639 #endif 2640 2641 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2642 2643 /* zero the structure w/o any lock, before SP handler is initialized */ 2644 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2645 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2646 &bp->last_reported_link.link_report_flags); 2647 2648 if (IS_PF(bp)) 2649 /* must be called before memory allocation and HW init */ 2650 bnx2x_ilt_set_info(bp); 2651 2652 /* 2653 * Zero fastpath structures preserving invariants like napi, which are 2654 * allocated only once, fp index, max_cos, bp pointer. 2655 * Also set fp->mode and txdata_ptr. 2656 */ 2657 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2658 for_each_queue(bp, i) 2659 bnx2x_bz_fp(bp, i); 2660 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2661 bp->num_cnic_queues) * 2662 sizeof(struct bnx2x_fp_txdata)); 2663 2664 bp->fcoe_init = false; 2665 2666 /* Set the receive queues buffer size */ 2667 bnx2x_set_rx_buf_size(bp); 2668 2669 if (IS_PF(bp)) { 2670 rc = bnx2x_alloc_mem(bp); 2671 if (rc) { 2672 BNX2X_ERR("Unable to allocate bp memory\n"); 2673 return rc; 2674 } 2675 } 2676 2677 /* need to be done after alloc mem, since it's self adjusting to amount 2678 * of memory available for RSS queues 2679 */ 2680 rc = bnx2x_alloc_fp_mem(bp); 2681 if (rc) { 2682 BNX2X_ERR("Unable to allocate memory for fps\n"); 2683 LOAD_ERROR_EXIT(bp, load_error0); 2684 } 2685 2686 /* Allocated memory for FW statistics */ 2687 rc = bnx2x_alloc_fw_stats_mem(bp); 2688 if (rc) 2689 LOAD_ERROR_EXIT(bp, load_error0); 2690 2691 /* request pf to initialize status blocks */ 2692 if (IS_VF(bp)) { 2693 rc = bnx2x_vfpf_init(bp); 2694 if (rc) 2695 LOAD_ERROR_EXIT(bp, load_error0); 2696 } 2697 2698 /* As long as bnx2x_alloc_mem() may possibly update 2699 * bp->num_queues, bnx2x_set_real_num_queues() should always 2700 * come after it. At this stage cnic queues are not counted. 2701 */ 2702 rc = bnx2x_set_real_num_queues(bp, 0); 2703 if (rc) { 2704 BNX2X_ERR("Unable to set real_num_queues\n"); 2705 LOAD_ERROR_EXIT(bp, load_error0); 2706 } 2707 2708 /* configure multi cos mappings in kernel. 2709 * this configuration may be overridden by a multi class queue 2710 * discipline or by a dcbx negotiation result. 2711 */ 2712 bnx2x_setup_tc(bp->dev, bp->max_cos); 2713 2714 /* Add all NAPI objects */ 2715 bnx2x_add_all_napi(bp); 2716 DP(NETIF_MSG_IFUP, "napi added\n"); 2717 bnx2x_napi_enable(bp); 2718 bp->nic_stopped = false; 2719 2720 if (IS_PF(bp)) { 2721 /* set pf load just before approaching the MCP */ 2722 bnx2x_set_pf_load(bp); 2723 2724 /* if mcp exists send load request and analyze response */ 2725 if (!BP_NOMCP(bp)) { 2726 /* attempt to load pf */ 2727 rc = bnx2x_nic_load_request(bp, &load_code); 2728 if (rc) 2729 LOAD_ERROR_EXIT(bp, load_error1); 2730 2731 /* what did mcp say? */ 2732 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2733 if (rc) { 2734 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2735 LOAD_ERROR_EXIT(bp, load_error2); 2736 } 2737 } else { 2738 load_code = bnx2x_nic_load_no_mcp(bp, port); 2739 } 2740 2741 /* mark pmf if applicable */ 2742 bnx2x_nic_load_pmf(bp, load_code); 2743 2744 /* Init Function state controlling object */ 2745 bnx2x__init_func_obj(bp); 2746 2747 /* Initialize HW */ 2748 rc = bnx2x_init_hw(bp, load_code); 2749 if (rc) { 2750 BNX2X_ERR("HW init failed, aborting\n"); 2751 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2752 LOAD_ERROR_EXIT(bp, load_error2); 2753 } 2754 } 2755 2756 bnx2x_pre_irq_nic_init(bp); 2757 2758 /* Connect to IRQs */ 2759 rc = bnx2x_setup_irqs(bp); 2760 if (rc) { 2761 BNX2X_ERR("setup irqs failed\n"); 2762 if (IS_PF(bp)) 2763 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2764 LOAD_ERROR_EXIT(bp, load_error2); 2765 } 2766 2767 /* Init per-function objects */ 2768 if (IS_PF(bp)) { 2769 /* Setup NIC internals and enable interrupts */ 2770 bnx2x_post_irq_nic_init(bp, load_code); 2771 2772 bnx2x_init_bp_objs(bp); 2773 bnx2x_iov_nic_init(bp); 2774 2775 /* Set AFEX default VLAN tag to an invalid value */ 2776 bp->afex_def_vlan_tag = -1; 2777 bnx2x_nic_load_afex_dcc(bp, load_code); 2778 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2779 rc = bnx2x_func_start(bp); 2780 if (rc) { 2781 BNX2X_ERR("Function start failed!\n"); 2782 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2783 2784 LOAD_ERROR_EXIT(bp, load_error3); 2785 } 2786 2787 /* Send LOAD_DONE command to MCP */ 2788 if (!BP_NOMCP(bp)) { 2789 load_code = bnx2x_fw_command(bp, 2790 DRV_MSG_CODE_LOAD_DONE, 0); 2791 if (!load_code) { 2792 BNX2X_ERR("MCP response failure, aborting\n"); 2793 rc = -EBUSY; 2794 LOAD_ERROR_EXIT(bp, load_error3); 2795 } 2796 } 2797 2798 /* initialize FW coalescing state machines in RAM */ 2799 bnx2x_update_coalesce(bp); 2800 } 2801 2802 /* setup the leading queue */ 2803 rc = bnx2x_setup_leading(bp); 2804 if (rc) { 2805 BNX2X_ERR("Setup leading failed!\n"); 2806 LOAD_ERROR_EXIT(bp, load_error3); 2807 } 2808 2809 /* set up the rest of the queues */ 2810 for_each_nondefault_eth_queue(bp, i) { 2811 if (IS_PF(bp)) 2812 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2813 else /* VF */ 2814 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2815 if (rc) { 2816 BNX2X_ERR("Queue %d setup failed\n", i); 2817 LOAD_ERROR_EXIT(bp, load_error3); 2818 } 2819 } 2820 2821 /* setup rss */ 2822 rc = bnx2x_init_rss(bp); 2823 if (rc) { 2824 BNX2X_ERR("PF RSS init failed\n"); 2825 LOAD_ERROR_EXIT(bp, load_error3); 2826 } 2827 2828 /* Now when Clients are configured we are ready to work */ 2829 bp->state = BNX2X_STATE_OPEN; 2830 2831 /* Configure a ucast MAC */ 2832 if (IS_PF(bp)) 2833 rc = bnx2x_set_eth_mac(bp, true); 2834 else /* vf */ 2835 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2836 true); 2837 if (rc) { 2838 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2839 LOAD_ERROR_EXIT(bp, load_error3); 2840 } 2841 2842 if (IS_PF(bp) && bp->pending_max) { 2843 bnx2x_update_max_mf_config(bp, bp->pending_max); 2844 bp->pending_max = 0; 2845 } 2846 2847 bp->force_link_down = false; 2848 if (bp->port.pmf) { 2849 rc = bnx2x_initial_phy_init(bp, load_mode); 2850 if (rc) 2851 LOAD_ERROR_EXIT(bp, load_error3); 2852 } 2853 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2854 2855 /* Start fast path */ 2856 2857 /* Re-configure vlan filters */ 2858 rc = bnx2x_vlan_reconfigure_vid(bp); 2859 if (rc) 2860 LOAD_ERROR_EXIT(bp, load_error3); 2861 2862 /* Initialize Rx filter. */ 2863 bnx2x_set_rx_mode_inner(bp); 2864 2865 if (bp->flags & PTP_SUPPORTED) { 2866 bnx2x_register_phc(bp); 2867 bnx2x_init_ptp(bp); 2868 bnx2x_configure_ptp_filters(bp); 2869 } 2870 /* Start Tx */ 2871 switch (load_mode) { 2872 case LOAD_NORMAL: 2873 /* Tx queue should be only re-enabled */ 2874 netif_tx_wake_all_queues(bp->dev); 2875 break; 2876 2877 case LOAD_OPEN: 2878 netif_tx_start_all_queues(bp->dev); 2879 smp_mb__after_atomic(); 2880 break; 2881 2882 case LOAD_DIAG: 2883 case LOAD_LOOPBACK_EXT: 2884 bp->state = BNX2X_STATE_DIAG; 2885 break; 2886 2887 default: 2888 break; 2889 } 2890 2891 if (bp->port.pmf) 2892 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2893 else 2894 bnx2x__link_status_update(bp); 2895 2896 /* start the timer */ 2897 mod_timer(&bp->timer, jiffies + bp->current_interval); 2898 2899 if (CNIC_ENABLED(bp)) 2900 bnx2x_load_cnic(bp); 2901 2902 if (IS_PF(bp)) 2903 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 2904 2905 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2906 /* mark driver is loaded in shmem2 */ 2907 u32 val; 2908 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2909 val &= ~DRV_FLAGS_MTU_MASK; 2910 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT); 2911 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2912 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2913 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2914 } 2915 2916 /* Wait for all pending SP commands to complete */ 2917 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2918 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2919 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2920 return -EBUSY; 2921 } 2922 2923 /* Update driver data for On-Chip MFW dump. */ 2924 if (IS_PF(bp)) 2925 bnx2x_update_mfw_dump(bp); 2926 2927 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2928 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2929 bnx2x_dcbx_init(bp, false); 2930 2931 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2932 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE); 2933 2934 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2935 2936 return 0; 2937 2938 #ifndef BNX2X_STOP_ON_ERROR 2939 load_error3: 2940 if (IS_PF(bp)) { 2941 bnx2x_int_disable_sync(bp, 1); 2942 2943 /* Clean queueable objects */ 2944 bnx2x_squeeze_objects(bp); 2945 } 2946 2947 /* Free SKBs, SGEs, TPA pool and driver internals */ 2948 bnx2x_free_skbs(bp); 2949 for_each_rx_queue(bp, i) 2950 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2951 2952 /* Release IRQs */ 2953 bnx2x_free_irq(bp); 2954 load_error2: 2955 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2956 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2957 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2958 } 2959 2960 bp->port.pmf = 0; 2961 load_error1: 2962 bnx2x_napi_disable(bp); 2963 bnx2x_del_all_napi(bp); 2964 bp->nic_stopped = true; 2965 2966 /* clear pf_load status, as it was already set */ 2967 if (IS_PF(bp)) 2968 bnx2x_clear_pf_load(bp); 2969 load_error0: 2970 bnx2x_free_fw_stats_mem(bp); 2971 bnx2x_free_fp_mem(bp); 2972 bnx2x_free_mem(bp); 2973 2974 return rc; 2975 #endif /* ! BNX2X_STOP_ON_ERROR */ 2976 } 2977 2978 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2979 { 2980 u8 rc = 0, cos, i; 2981 2982 /* Wait until tx fastpath tasks complete */ 2983 for_each_tx_queue(bp, i) { 2984 struct bnx2x_fastpath *fp = &bp->fp[i]; 2985 2986 for_each_cos_in_tx_queue(fp, cos) 2987 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2988 if (rc) 2989 return rc; 2990 } 2991 return 0; 2992 } 2993 2994 /* must be called with rtnl_lock */ 2995 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2996 { 2997 int i; 2998 bool global = false; 2999 3000 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 3001 3002 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 3003 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 3004 3005 /* mark driver is unloaded in shmem2 */ 3006 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 3007 u32 val; 3008 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 3009 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 3010 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 3011 } 3012 3013 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 3014 (bp->state == BNX2X_STATE_CLOSED || 3015 bp->state == BNX2X_STATE_ERROR)) { 3016 /* We can get here if the driver has been unloaded 3017 * during parity error recovery and is either waiting for a 3018 * leader to complete or for other functions to unload and 3019 * then ifdown has been issued. In this case we want to 3020 * unload and let other functions to complete a recovery 3021 * process. 3022 */ 3023 bp->recovery_state = BNX2X_RECOVERY_DONE; 3024 bp->is_leader = 0; 3025 bnx2x_release_leader_lock(bp); 3026 smp_mb(); 3027 3028 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 3029 BNX2X_ERR("Can't unload in closed or error state\n"); 3030 return -EINVAL; 3031 } 3032 3033 /* Nothing to do during unload if previous bnx2x_nic_load() 3034 * have not completed successfully - all resources are released. 3035 * 3036 * we can get here only after unsuccessful ndo_* callback, during which 3037 * dev->IFF_UP flag is still on. 3038 */ 3039 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 3040 return 0; 3041 3042 /* It's important to set the bp->state to the value different from 3043 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 3044 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 3045 */ 3046 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 3047 smp_mb(); 3048 3049 /* indicate to VFs that the PF is going down */ 3050 bnx2x_iov_channel_down(bp); 3051 3052 if (CNIC_LOADED(bp)) 3053 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 3054 3055 /* Stop Tx */ 3056 bnx2x_tx_disable(bp); 3057 netdev_reset_tc(bp->dev); 3058 3059 bp->rx_mode = BNX2X_RX_MODE_NONE; 3060 3061 del_timer_sync(&bp->timer); 3062 3063 if (IS_PF(bp) && !BP_NOMCP(bp)) { 3064 /* Set ALWAYS_ALIVE bit in shmem */ 3065 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 3066 bnx2x_drv_pulse(bp); 3067 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 3068 bnx2x_save_statistics(bp); 3069 } 3070 3071 /* wait till consumers catch up with producers in all queues. 3072 * If we're recovering, FW can't write to host so no reason 3073 * to wait for the queues to complete all Tx. 3074 */ 3075 if (unload_mode != UNLOAD_RECOVERY) 3076 bnx2x_drain_tx_queues(bp); 3077 3078 /* if VF indicate to PF this function is going down (PF will delete sp 3079 * elements and clear initializations 3080 */ 3081 if (IS_VF(bp)) { 3082 bnx2x_clear_vlan_info(bp); 3083 bnx2x_vfpf_close_vf(bp); 3084 } else if (unload_mode != UNLOAD_RECOVERY) { 3085 /* if this is a normal/close unload need to clean up chip*/ 3086 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 3087 } else { 3088 /* Send the UNLOAD_REQUEST to the MCP */ 3089 bnx2x_send_unload_req(bp, unload_mode); 3090 3091 /* Prevent transactions to host from the functions on the 3092 * engine that doesn't reset global blocks in case of global 3093 * attention once global blocks are reset and gates are opened 3094 * (the engine which leader will perform the recovery 3095 * last). 3096 */ 3097 if (!CHIP_IS_E1x(bp)) 3098 bnx2x_pf_disable(bp); 3099 3100 if (!bp->nic_stopped) { 3101 /* Disable HW interrupts, NAPI */ 3102 bnx2x_netif_stop(bp, 1); 3103 /* Delete all NAPI objects */ 3104 bnx2x_del_all_napi(bp); 3105 if (CNIC_LOADED(bp)) 3106 bnx2x_del_all_napi_cnic(bp); 3107 /* Release IRQs */ 3108 bnx2x_free_irq(bp); 3109 bp->nic_stopped = true; 3110 } 3111 3112 /* Report UNLOAD_DONE to MCP */ 3113 bnx2x_send_unload_done(bp, false); 3114 } 3115 3116 /* 3117 * At this stage no more interrupts will arrive so we may safely clean 3118 * the queueable objects here in case they failed to get cleaned so far. 3119 */ 3120 if (IS_PF(bp)) 3121 bnx2x_squeeze_objects(bp); 3122 3123 /* There should be no more pending SP commands at this stage */ 3124 bp->sp_state = 0; 3125 3126 bp->port.pmf = 0; 3127 3128 /* clear pending work in rtnl task */ 3129 bp->sp_rtnl_state = 0; 3130 smp_mb(); 3131 3132 /* Free SKBs, SGEs, TPA pool and driver internals */ 3133 bnx2x_free_skbs(bp); 3134 if (CNIC_LOADED(bp)) 3135 bnx2x_free_skbs_cnic(bp); 3136 for_each_rx_queue(bp, i) 3137 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3138 3139 bnx2x_free_fp_mem(bp); 3140 if (CNIC_LOADED(bp)) 3141 bnx2x_free_fp_mem_cnic(bp); 3142 3143 if (IS_PF(bp)) { 3144 if (CNIC_LOADED(bp)) 3145 bnx2x_free_mem_cnic(bp); 3146 } 3147 bnx2x_free_mem(bp); 3148 3149 bp->state = BNX2X_STATE_CLOSED; 3150 bp->cnic_loaded = false; 3151 3152 /* Clear driver version indication in shmem */ 3153 if (IS_PF(bp) && !BP_NOMCP(bp)) 3154 bnx2x_update_mng_version(bp); 3155 3156 /* Check if there are pending parity attentions. If there are - set 3157 * RECOVERY_IN_PROGRESS. 3158 */ 3159 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3160 bnx2x_set_reset_in_progress(bp); 3161 3162 /* Set RESET_IS_GLOBAL if needed */ 3163 if (global) 3164 bnx2x_set_reset_global(bp); 3165 } 3166 3167 /* The last driver must disable a "close the gate" if there is no 3168 * parity attention or "process kill" pending. 3169 */ 3170 if (IS_PF(bp) && 3171 !bnx2x_clear_pf_load(bp) && 3172 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3173 bnx2x_disable_close_the_gate(bp); 3174 3175 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3176 3177 return 0; 3178 } 3179 3180 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3181 { 3182 u16 pmcsr; 3183 3184 /* If there is no power capability, silently succeed */ 3185 if (!bp->pdev->pm_cap) { 3186 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3187 return 0; 3188 } 3189 3190 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3191 3192 switch (state) { 3193 case PCI_D0: 3194 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3195 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3196 PCI_PM_CTRL_PME_STATUS)); 3197 3198 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3199 /* delay required during transition out of D3hot */ 3200 msleep(20); 3201 break; 3202 3203 case PCI_D3hot: 3204 /* If there are other clients above don't 3205 shut down the power */ 3206 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3207 return 0; 3208 /* Don't shut down the power for emulation and FPGA */ 3209 if (CHIP_REV_IS_SLOW(bp)) 3210 return 0; 3211 3212 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3213 pmcsr |= 3; 3214 3215 if (bp->wol) 3216 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3217 3218 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3219 pmcsr); 3220 3221 /* No more memory access after this point until 3222 * device is brought back to D0. 3223 */ 3224 break; 3225 3226 default: 3227 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3228 return -EINVAL; 3229 } 3230 return 0; 3231 } 3232 3233 /* 3234 * net_device service functions 3235 */ 3236 static int bnx2x_poll(struct napi_struct *napi, int budget) 3237 { 3238 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3239 napi); 3240 struct bnx2x *bp = fp->bp; 3241 int rx_work_done; 3242 u8 cos; 3243 3244 #ifdef BNX2X_STOP_ON_ERROR 3245 if (unlikely(bp->panic)) { 3246 napi_complete(napi); 3247 return 0; 3248 } 3249 #endif 3250 for_each_cos_in_tx_queue(fp, cos) 3251 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3252 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3253 3254 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0; 3255 3256 if (rx_work_done < budget) { 3257 /* No need to update SB for FCoE L2 ring as long as 3258 * it's connected to the default SB and the SB 3259 * has been updated when NAPI was scheduled. 3260 */ 3261 if (IS_FCOE_FP(fp)) { 3262 napi_complete_done(napi, rx_work_done); 3263 } else { 3264 bnx2x_update_fpsb_idx(fp); 3265 /* bnx2x_has_rx_work() reads the status block, 3266 * thus we need to ensure that status block indices 3267 * have been actually read (bnx2x_update_fpsb_idx) 3268 * prior to this check (bnx2x_has_rx_work) so that 3269 * we won't write the "newer" value of the status block 3270 * to IGU (if there was a DMA right after 3271 * bnx2x_has_rx_work and if there is no rmb, the memory 3272 * reading (bnx2x_update_fpsb_idx) may be postponed 3273 * to right before bnx2x_ack_sb). In this case there 3274 * will never be another interrupt until there is 3275 * another update of the status block, while there 3276 * is still unhandled work. 3277 */ 3278 rmb(); 3279 3280 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3281 if (napi_complete_done(napi, rx_work_done)) { 3282 /* Re-enable interrupts */ 3283 DP(NETIF_MSG_RX_STATUS, 3284 "Update index to %d\n", fp->fp_hc_idx); 3285 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3286 le16_to_cpu(fp->fp_hc_idx), 3287 IGU_INT_ENABLE, 1); 3288 } 3289 } else { 3290 rx_work_done = budget; 3291 } 3292 } 3293 } 3294 3295 return rx_work_done; 3296 } 3297 3298 /* we split the first BD into headers and data BDs 3299 * to ease the pain of our fellow microcode engineers 3300 * we use one mapping for both BDs 3301 */ 3302 static u16 bnx2x_tx_split(struct bnx2x *bp, 3303 struct bnx2x_fp_txdata *txdata, 3304 struct sw_tx_bd *tx_buf, 3305 struct eth_tx_start_bd **tx_bd, u16 hlen, 3306 u16 bd_prod) 3307 { 3308 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3309 struct eth_tx_bd *d_tx_bd; 3310 dma_addr_t mapping; 3311 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3312 3313 /* first fix first BD */ 3314 h_tx_bd->nbytes = cpu_to_le16(hlen); 3315 3316 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3317 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3318 3319 /* now get a new data BD 3320 * (after the pbd) and fill it */ 3321 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3322 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3323 3324 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3325 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3326 3327 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3328 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3329 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3330 3331 /* this marks the BD as one that has no individual mapping */ 3332 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3333 3334 DP(NETIF_MSG_TX_QUEUED, 3335 "TSO split data size is %d (%x:%x)\n", 3336 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3337 3338 /* update tx_bd */ 3339 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3340 3341 return bd_prod; 3342 } 3343 3344 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3345 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3346 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3347 { 3348 __sum16 tsum = (__force __sum16) csum; 3349 3350 if (fix > 0) 3351 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3352 csum_partial(t_header - fix, fix, 0))); 3353 3354 else if (fix < 0) 3355 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3356 csum_partial(t_header, -fix, 0))); 3357 3358 return bswab16(tsum); 3359 } 3360 3361 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3362 { 3363 u32 rc; 3364 __u8 prot = 0; 3365 __be16 protocol; 3366 3367 if (skb->ip_summed != CHECKSUM_PARTIAL) 3368 return XMIT_PLAIN; 3369 3370 protocol = vlan_get_protocol(skb); 3371 if (protocol == htons(ETH_P_IPV6)) { 3372 rc = XMIT_CSUM_V6; 3373 prot = ipv6_hdr(skb)->nexthdr; 3374 } else { 3375 rc = XMIT_CSUM_V4; 3376 prot = ip_hdr(skb)->protocol; 3377 } 3378 3379 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3380 if (inner_ip_hdr(skb)->version == 6) { 3381 rc |= XMIT_CSUM_ENC_V6; 3382 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3383 rc |= XMIT_CSUM_TCP; 3384 } else { 3385 rc |= XMIT_CSUM_ENC_V4; 3386 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3387 rc |= XMIT_CSUM_TCP; 3388 } 3389 } 3390 if (prot == IPPROTO_TCP) 3391 rc |= XMIT_CSUM_TCP; 3392 3393 if (skb_is_gso(skb)) { 3394 if (skb_is_gso_v6(skb)) { 3395 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3396 if (rc & XMIT_CSUM_ENC) 3397 rc |= XMIT_GSO_ENC_V6; 3398 } else { 3399 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3400 if (rc & XMIT_CSUM_ENC) 3401 rc |= XMIT_GSO_ENC_V4; 3402 } 3403 } 3404 3405 return rc; 3406 } 3407 3408 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */ 3409 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4 3410 3411 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3412 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3 3413 3414 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3415 /* check if packet requires linearization (packet is too fragmented) 3416 no need to check fragmentation if page size > 8K (there will be no 3417 violation to FW restrictions) */ 3418 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3419 u32 xmit_type) 3420 { 3421 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS; 3422 int to_copy = 0, hlen = 0; 3423 3424 if (xmit_type & XMIT_GSO_ENC) 3425 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS; 3426 3427 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) { 3428 if (xmit_type & XMIT_GSO) { 3429 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3430 int wnd_size = MAX_FETCH_BD - num_tso_win_sub; 3431 /* Number of windows to check */ 3432 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3433 int wnd_idx = 0; 3434 int frag_idx = 0; 3435 u32 wnd_sum = 0; 3436 3437 /* Headers length */ 3438 if (xmit_type & XMIT_GSO_ENC) 3439 hlen = skb_inner_tcp_all_headers(skb); 3440 else 3441 hlen = skb_tcp_all_headers(skb); 3442 3443 /* Amount of data (w/o headers) on linear part of SKB*/ 3444 first_bd_sz = skb_headlen(skb) - hlen; 3445 3446 wnd_sum = first_bd_sz; 3447 3448 /* Calculate the first sum - it's special */ 3449 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3450 wnd_sum += 3451 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3452 3453 /* If there was data on linear skb data - check it */ 3454 if (first_bd_sz > 0) { 3455 if (unlikely(wnd_sum < lso_mss)) { 3456 to_copy = 1; 3457 goto exit_lbl; 3458 } 3459 3460 wnd_sum -= first_bd_sz; 3461 } 3462 3463 /* Others are easier: run through the frag list and 3464 check all windows */ 3465 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3466 wnd_sum += 3467 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3468 3469 if (unlikely(wnd_sum < lso_mss)) { 3470 to_copy = 1; 3471 break; 3472 } 3473 wnd_sum -= 3474 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3475 } 3476 } else { 3477 /* in non-LSO too fragmented packet should always 3478 be linearized */ 3479 to_copy = 1; 3480 } 3481 } 3482 3483 exit_lbl: 3484 if (unlikely(to_copy)) 3485 DP(NETIF_MSG_TX_QUEUED, 3486 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3487 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3488 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3489 3490 return to_copy; 3491 } 3492 #endif 3493 3494 /** 3495 * bnx2x_set_pbd_gso - update PBD in GSO case. 3496 * 3497 * @skb: packet skb 3498 * @pbd: parse BD 3499 * @xmit_type: xmit flags 3500 */ 3501 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3502 struct eth_tx_parse_bd_e1x *pbd, 3503 u32 xmit_type) 3504 { 3505 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3506 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3507 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3508 3509 if (xmit_type & XMIT_GSO_V4) { 3510 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3511 pbd->tcp_pseudo_csum = 3512 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3513 ip_hdr(skb)->daddr, 3514 0, IPPROTO_TCP, 0)); 3515 } else { 3516 pbd->tcp_pseudo_csum = 3517 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3518 &ipv6_hdr(skb)->daddr, 3519 0, IPPROTO_TCP, 0)); 3520 } 3521 3522 pbd->global_data |= 3523 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3524 } 3525 3526 /** 3527 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3528 * 3529 * @bp: driver handle 3530 * @skb: packet skb 3531 * @parsing_data: data to be updated 3532 * @xmit_type: xmit flags 3533 * 3534 * 57712/578xx related, when skb has encapsulation 3535 */ 3536 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3537 u32 *parsing_data, u32 xmit_type) 3538 { 3539 *parsing_data |= 3540 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3541 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3542 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3543 3544 if (xmit_type & XMIT_CSUM_TCP) { 3545 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3546 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3547 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3548 3549 return skb_inner_tcp_all_headers(skb); 3550 } 3551 3552 /* We support checksum offload for TCP and UDP only. 3553 * No need to pass the UDP header length - it's a constant. 3554 */ 3555 return skb_inner_transport_offset(skb) + sizeof(struct udphdr); 3556 } 3557 3558 /** 3559 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3560 * 3561 * @bp: driver handle 3562 * @skb: packet skb 3563 * @parsing_data: data to be updated 3564 * @xmit_type: xmit flags 3565 * 3566 * 57712/578xx related 3567 */ 3568 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3569 u32 *parsing_data, u32 xmit_type) 3570 { 3571 *parsing_data |= 3572 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3573 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3574 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3575 3576 if (xmit_type & XMIT_CSUM_TCP) { 3577 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3578 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3579 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3580 3581 return skb_tcp_all_headers(skb); 3582 } 3583 /* We support checksum offload for TCP and UDP only. 3584 * No need to pass the UDP header length - it's a constant. 3585 */ 3586 return skb_transport_offset(skb) + sizeof(struct udphdr); 3587 } 3588 3589 /* set FW indication according to inner or outer protocols if tunneled */ 3590 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3591 struct eth_tx_start_bd *tx_start_bd, 3592 u32 xmit_type) 3593 { 3594 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3595 3596 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3597 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3598 3599 if (!(xmit_type & XMIT_CSUM_TCP)) 3600 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3601 } 3602 3603 /** 3604 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3605 * 3606 * @bp: driver handle 3607 * @skb: packet skb 3608 * @pbd: parse BD to be updated 3609 * @xmit_type: xmit flags 3610 */ 3611 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3612 struct eth_tx_parse_bd_e1x *pbd, 3613 u32 xmit_type) 3614 { 3615 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3616 3617 /* for now NS flag is not used in Linux */ 3618 pbd->global_data = 3619 cpu_to_le16(hlen | 3620 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3621 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3622 3623 pbd->ip_hlen_w = (skb_transport_header(skb) - 3624 skb_network_header(skb)) >> 1; 3625 3626 hlen += pbd->ip_hlen_w; 3627 3628 /* We support checksum offload for TCP and UDP only */ 3629 if (xmit_type & XMIT_CSUM_TCP) 3630 hlen += tcp_hdrlen(skb) / 2; 3631 else 3632 hlen += sizeof(struct udphdr) / 2; 3633 3634 pbd->total_hlen_w = cpu_to_le16(hlen); 3635 hlen = hlen*2; 3636 3637 if (xmit_type & XMIT_CSUM_TCP) { 3638 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3639 3640 } else { 3641 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3642 3643 DP(NETIF_MSG_TX_QUEUED, 3644 "hlen %d fix %d csum before fix %x\n", 3645 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3646 3647 /* HW bug: fixup the CSUM */ 3648 pbd->tcp_pseudo_csum = 3649 bnx2x_csum_fix(skb_transport_header(skb), 3650 SKB_CS(skb), fix); 3651 3652 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3653 pbd->tcp_pseudo_csum); 3654 } 3655 3656 return hlen; 3657 } 3658 3659 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3660 struct eth_tx_parse_bd_e2 *pbd_e2, 3661 struct eth_tx_parse_2nd_bd *pbd2, 3662 u16 *global_data, 3663 u32 xmit_type) 3664 { 3665 u16 hlen_w = 0; 3666 u8 outerip_off, outerip_len = 0; 3667 3668 /* from outer IP to transport */ 3669 hlen_w = (skb_inner_transport_header(skb) - 3670 skb_network_header(skb)) >> 1; 3671 3672 /* transport len */ 3673 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3674 3675 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3676 3677 /* outer IP header info */ 3678 if (xmit_type & XMIT_CSUM_V4) { 3679 struct iphdr *iph = ip_hdr(skb); 3680 u32 csum = (__force u32)(~iph->check) - 3681 (__force u32)iph->tot_len - 3682 (__force u32)iph->frag_off; 3683 3684 outerip_len = iph->ihl << 1; 3685 3686 pbd2->fw_ip_csum_wo_len_flags_frag = 3687 bswab16(csum_fold((__force __wsum)csum)); 3688 } else { 3689 pbd2->fw_ip_hdr_to_payload_w = 3690 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3691 pbd_e2->data.tunnel_data.flags |= 3692 ETH_TUNNEL_DATA_IPV6_OUTER; 3693 } 3694 3695 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3696 3697 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3698 3699 /* inner IP header info */ 3700 if (xmit_type & XMIT_CSUM_ENC_V4) { 3701 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3702 3703 pbd_e2->data.tunnel_data.pseudo_csum = 3704 bswab16(~csum_tcpudp_magic( 3705 inner_ip_hdr(skb)->saddr, 3706 inner_ip_hdr(skb)->daddr, 3707 0, IPPROTO_TCP, 0)); 3708 } else { 3709 pbd_e2->data.tunnel_data.pseudo_csum = 3710 bswab16(~csum_ipv6_magic( 3711 &inner_ipv6_hdr(skb)->saddr, 3712 &inner_ipv6_hdr(skb)->daddr, 3713 0, IPPROTO_TCP, 0)); 3714 } 3715 3716 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3717 3718 *global_data |= 3719 outerip_off | 3720 (outerip_len << 3721 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3722 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3723 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3724 3725 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3726 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3727 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3728 } 3729 } 3730 3731 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data, 3732 u32 xmit_type) 3733 { 3734 struct ipv6hdr *ipv6; 3735 3736 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6))) 3737 return; 3738 3739 if (xmit_type & XMIT_GSO_ENC_V6) 3740 ipv6 = inner_ipv6_hdr(skb); 3741 else /* XMIT_GSO_V6 */ 3742 ipv6 = ipv6_hdr(skb); 3743 3744 if (ipv6->nexthdr == NEXTHDR_IPV6) 3745 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3746 } 3747 3748 /* called with netif_tx_lock 3749 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3750 * netif_wake_queue() 3751 */ 3752 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3753 { 3754 struct bnx2x *bp = netdev_priv(dev); 3755 3756 struct netdev_queue *txq; 3757 struct bnx2x_fp_txdata *txdata; 3758 struct sw_tx_bd *tx_buf; 3759 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3760 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3761 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3762 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3763 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3764 u32 pbd_e2_parsing_data = 0; 3765 u16 pkt_prod, bd_prod; 3766 int nbd, txq_index; 3767 dma_addr_t mapping; 3768 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3769 int i; 3770 u8 hlen = 0; 3771 __le16 pkt_size = 0; 3772 struct ethhdr *eth; 3773 u8 mac_type = UNICAST_ADDRESS; 3774 3775 #ifdef BNX2X_STOP_ON_ERROR 3776 if (unlikely(bp->panic)) 3777 return NETDEV_TX_BUSY; 3778 #endif 3779 3780 txq_index = skb_get_queue_mapping(skb); 3781 txq = netdev_get_tx_queue(dev, txq_index); 3782 3783 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3784 3785 txdata = &bp->bnx2x_txq[txq_index]; 3786 3787 /* enable this debug print to view the transmission queue being used 3788 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3789 txq_index, fp_index, txdata_index); */ 3790 3791 /* enable this debug print to view the transmission details 3792 DP(NETIF_MSG_TX_QUEUED, 3793 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3794 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3795 3796 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3797 skb_shinfo(skb)->nr_frags + 3798 BDS_PER_TX_PKT + 3799 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3800 /* Handle special storage cases separately */ 3801 if (txdata->tx_ring_size == 0) { 3802 struct bnx2x_eth_q_stats *q_stats = 3803 bnx2x_fp_qstats(bp, txdata->parent_fp); 3804 q_stats->driver_filtered_tx_pkt++; 3805 dev_kfree_skb(skb); 3806 return NETDEV_TX_OK; 3807 } 3808 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3809 netif_tx_stop_queue(txq); 3810 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3811 3812 return NETDEV_TX_BUSY; 3813 } 3814 3815 DP(NETIF_MSG_TX_QUEUED, 3816 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3817 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3818 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3819 skb->len); 3820 3821 eth = (struct ethhdr *)skb->data; 3822 3823 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3824 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3825 if (is_broadcast_ether_addr(eth->h_dest)) 3826 mac_type = BROADCAST_ADDRESS; 3827 else 3828 mac_type = MULTICAST_ADDRESS; 3829 } 3830 3831 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3832 /* First, check if we need to linearize the skb (due to FW 3833 restrictions). No need to check fragmentation if page size > 8K 3834 (there will be no violation to FW restrictions) */ 3835 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3836 /* Statistics of linearization */ 3837 bp->lin_cnt++; 3838 if (skb_linearize(skb) != 0) { 3839 DP(NETIF_MSG_TX_QUEUED, 3840 "SKB linearization failed - silently dropping this SKB\n"); 3841 dev_kfree_skb_any(skb); 3842 return NETDEV_TX_OK; 3843 } 3844 } 3845 #endif 3846 /* Map skb linear data for DMA */ 3847 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3848 skb_headlen(skb), DMA_TO_DEVICE); 3849 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3850 DP(NETIF_MSG_TX_QUEUED, 3851 "SKB mapping failed - silently dropping this SKB\n"); 3852 dev_kfree_skb_any(skb); 3853 return NETDEV_TX_OK; 3854 } 3855 /* 3856 Please read carefully. First we use one BD which we mark as start, 3857 then we have a parsing info BD (used for TSO or xsum), 3858 and only then we have the rest of the TSO BDs. 3859 (don't forget to mark the last one as last, 3860 and to unmap only AFTER you write to the BD ...) 3861 And above all, all pdb sizes are in words - NOT DWORDS! 3862 */ 3863 3864 /* get current pkt produced now - advance it just before sending packet 3865 * since mapping of pages may fail and cause packet to be dropped 3866 */ 3867 pkt_prod = txdata->tx_pkt_prod; 3868 bd_prod = TX_BD(txdata->tx_bd_prod); 3869 3870 /* get a tx_buf and first BD 3871 * tx_start_bd may be changed during SPLIT, 3872 * but first_bd will always stay first 3873 */ 3874 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3875 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3876 first_bd = tx_start_bd; 3877 3878 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3879 3880 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3881 if (!(bp->flags & TX_TIMESTAMPING_EN)) { 3882 bp->eth_stats.ptp_skip_tx_ts++; 3883 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n"); 3884 } else if (bp->ptp_tx_skb) { 3885 bp->eth_stats.ptp_skip_tx_ts++; 3886 netdev_err_once(bp->dev, 3887 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n"); 3888 } else { 3889 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3890 /* schedule check for Tx timestamp */ 3891 bp->ptp_tx_skb = skb_get(skb); 3892 bp->ptp_tx_start = jiffies; 3893 schedule_work(&bp->ptp_task); 3894 } 3895 } 3896 3897 /* header nbd: indirectly zero other flags! */ 3898 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3899 3900 /* remember the first BD of the packet */ 3901 tx_buf->first_bd = txdata->tx_bd_prod; 3902 tx_buf->skb = skb; 3903 tx_buf->flags = 0; 3904 3905 DP(NETIF_MSG_TX_QUEUED, 3906 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3907 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3908 3909 if (skb_vlan_tag_present(skb)) { 3910 tx_start_bd->vlan_or_ethertype = 3911 cpu_to_le16(skb_vlan_tag_get(skb)); 3912 tx_start_bd->bd_flags.as_bitfield |= 3913 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3914 } else { 3915 /* when transmitting in a vf, start bd must hold the ethertype 3916 * for fw to enforce it 3917 */ 3918 u16 vlan_tci = 0; 3919 #ifndef BNX2X_STOP_ON_ERROR 3920 if (IS_VF(bp)) { 3921 #endif 3922 /* Still need to consider inband vlan for enforced */ 3923 if (__vlan_get_tag(skb, &vlan_tci)) { 3924 tx_start_bd->vlan_or_ethertype = 3925 cpu_to_le16(ntohs(eth->h_proto)); 3926 } else { 3927 tx_start_bd->bd_flags.as_bitfield |= 3928 (X_ETH_INBAND_VLAN << 3929 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3930 tx_start_bd->vlan_or_ethertype = 3931 cpu_to_le16(vlan_tci); 3932 } 3933 #ifndef BNX2X_STOP_ON_ERROR 3934 } else { 3935 /* used by FW for packet accounting */ 3936 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3937 } 3938 #endif 3939 } 3940 3941 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3942 3943 /* turn on parsing and get a BD */ 3944 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3945 3946 if (xmit_type & XMIT_CSUM) 3947 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3948 3949 if (!CHIP_IS_E1x(bp)) { 3950 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3951 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3952 3953 if (xmit_type & XMIT_CSUM_ENC) { 3954 u16 global_data = 0; 3955 3956 /* Set PBD in enc checksum offload case */ 3957 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3958 &pbd_e2_parsing_data, 3959 xmit_type); 3960 3961 /* turn on 2nd parsing and get a BD */ 3962 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3963 3964 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3965 3966 memset(pbd2, 0, sizeof(*pbd2)); 3967 3968 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3969 (skb_inner_network_header(skb) - 3970 skb->data) >> 1; 3971 3972 if (xmit_type & XMIT_GSO_ENC) 3973 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3974 &global_data, 3975 xmit_type); 3976 3977 pbd2->global_data = cpu_to_le16(global_data); 3978 3979 /* add addition parse BD indication to start BD */ 3980 SET_FLAG(tx_start_bd->general_data, 3981 ETH_TX_START_BD_PARSE_NBDS, 1); 3982 /* set encapsulation flag in start BD */ 3983 SET_FLAG(tx_start_bd->general_data, 3984 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3985 3986 tx_buf->flags |= BNX2X_HAS_SECOND_PBD; 3987 3988 nbd++; 3989 } else if (xmit_type & XMIT_CSUM) { 3990 /* Set PBD in checksum offload case w/o encapsulation */ 3991 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3992 &pbd_e2_parsing_data, 3993 xmit_type); 3994 } 3995 3996 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type); 3997 /* Add the macs to the parsing BD if this is a vf or if 3998 * Tx Switching is enabled. 3999 */ 4000 if (IS_VF(bp)) { 4001 /* override GRE parameters in BD */ 4002 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 4003 &pbd_e2->data.mac_addr.src_mid, 4004 &pbd_e2->data.mac_addr.src_lo, 4005 eth->h_source); 4006 4007 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 4008 &pbd_e2->data.mac_addr.dst_mid, 4009 &pbd_e2->data.mac_addr.dst_lo, 4010 eth->h_dest); 4011 } else { 4012 if (bp->flags & TX_SWITCHING) 4013 bnx2x_set_fw_mac_addr( 4014 &pbd_e2->data.mac_addr.dst_hi, 4015 &pbd_e2->data.mac_addr.dst_mid, 4016 &pbd_e2->data.mac_addr.dst_lo, 4017 eth->h_dest); 4018 #ifdef BNX2X_STOP_ON_ERROR 4019 /* Enforce security is always set in Stop on Error - 4020 * source mac should be present in the parsing BD 4021 */ 4022 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 4023 &pbd_e2->data.mac_addr.src_mid, 4024 &pbd_e2->data.mac_addr.src_lo, 4025 eth->h_source); 4026 #endif 4027 } 4028 4029 SET_FLAG(pbd_e2_parsing_data, 4030 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 4031 } else { 4032 u16 global_data = 0; 4033 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 4034 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 4035 /* Set PBD in checksum offload case */ 4036 if (xmit_type & XMIT_CSUM) 4037 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 4038 4039 SET_FLAG(global_data, 4040 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 4041 pbd_e1x->global_data |= cpu_to_le16(global_data); 4042 } 4043 4044 /* Setup the data pointer of the first BD of the packet */ 4045 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4046 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4047 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 4048 pkt_size = tx_start_bd->nbytes; 4049 4050 DP(NETIF_MSG_TX_QUEUED, 4051 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 4052 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 4053 le16_to_cpu(tx_start_bd->nbytes), 4054 tx_start_bd->bd_flags.as_bitfield, 4055 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 4056 4057 if (xmit_type & XMIT_GSO) { 4058 4059 DP(NETIF_MSG_TX_QUEUED, 4060 "TSO packet len %d hlen %d total len %d tso size %d\n", 4061 skb->len, hlen, skb_headlen(skb), 4062 skb_shinfo(skb)->gso_size); 4063 4064 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 4065 4066 if (unlikely(skb_headlen(skb) > hlen)) { 4067 nbd++; 4068 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 4069 &tx_start_bd, hlen, 4070 bd_prod); 4071 } 4072 if (!CHIP_IS_E1x(bp)) 4073 pbd_e2_parsing_data |= 4074 (skb_shinfo(skb)->gso_size << 4075 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 4076 ETH_TX_PARSE_BD_E2_LSO_MSS; 4077 else 4078 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); 4079 } 4080 4081 /* Set the PBD's parsing_data field if not zero 4082 * (for the chips newer than 57711). 4083 */ 4084 if (pbd_e2_parsing_data) 4085 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 4086 4087 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 4088 4089 /* Handle fragmented skb */ 4090 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4091 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4092 4093 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 4094 skb_frag_size(frag), DMA_TO_DEVICE); 4095 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 4096 unsigned int pkts_compl = 0, bytes_compl = 0; 4097 4098 DP(NETIF_MSG_TX_QUEUED, 4099 "Unable to map page - dropping packet...\n"); 4100 4101 /* we need unmap all buffers already mapped 4102 * for this SKB; 4103 * first_bd->nbd need to be properly updated 4104 * before call to bnx2x_free_tx_pkt 4105 */ 4106 first_bd->nbd = cpu_to_le16(nbd); 4107 bnx2x_free_tx_pkt(bp, txdata, 4108 TX_BD(txdata->tx_pkt_prod), 4109 &pkts_compl, &bytes_compl); 4110 return NETDEV_TX_OK; 4111 } 4112 4113 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4114 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4115 if (total_pkt_bd == NULL) 4116 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4117 4118 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4119 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4120 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 4121 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 4122 nbd++; 4123 4124 DP(NETIF_MSG_TX_QUEUED, 4125 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 4126 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 4127 le16_to_cpu(tx_data_bd->nbytes)); 4128 } 4129 4130 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 4131 4132 /* update with actual num BDs */ 4133 first_bd->nbd = cpu_to_le16(nbd); 4134 4135 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4136 4137 /* now send a tx doorbell, counting the next BD 4138 * if the packet contains or ends with it 4139 */ 4140 if (TX_BD_POFF(bd_prod) < nbd) 4141 nbd++; 4142 4143 /* total_pkt_bytes should be set on the first data BD if 4144 * it's not an LSO packet and there is more than one 4145 * data BD. In this case pkt_size is limited by an MTU value. 4146 * However we prefer to set it for an LSO packet (while we don't 4147 * have to) in order to save some CPU cycles in a none-LSO 4148 * case, when we much more care about them. 4149 */ 4150 if (total_pkt_bd != NULL) 4151 total_pkt_bd->total_pkt_bytes = pkt_size; 4152 4153 if (pbd_e1x) 4154 DP(NETIF_MSG_TX_QUEUED, 4155 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4156 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4157 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4158 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4159 le16_to_cpu(pbd_e1x->total_hlen_w)); 4160 if (pbd_e2) 4161 DP(NETIF_MSG_TX_QUEUED, 4162 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4163 pbd_e2, 4164 pbd_e2->data.mac_addr.dst_hi, 4165 pbd_e2->data.mac_addr.dst_mid, 4166 pbd_e2->data.mac_addr.dst_lo, 4167 pbd_e2->data.mac_addr.src_hi, 4168 pbd_e2->data.mac_addr.src_mid, 4169 pbd_e2->data.mac_addr.src_lo, 4170 pbd_e2->parsing_data); 4171 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4172 4173 netdev_tx_sent_queue(txq, skb->len); 4174 4175 skb_tx_timestamp(skb); 4176 4177 txdata->tx_pkt_prod++; 4178 /* 4179 * Make sure that the BD data is updated before updating the producer 4180 * since FW might read the BD right after the producer is updated. 4181 * This is only applicable for weak-ordered memory model archs such 4182 * as IA-64. The following barrier is also mandatory since FW will 4183 * assumes packets must have BDs. 4184 */ 4185 wmb(); 4186 4187 txdata->tx_db.data.prod += nbd; 4188 /* make sure descriptor update is observed by HW */ 4189 wmb(); 4190 4191 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw); 4192 4193 txdata->tx_bd_prod += nbd; 4194 4195 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4196 netif_tx_stop_queue(txq); 4197 4198 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4199 * ordering of set_bit() in netif_tx_stop_queue() and read of 4200 * fp->bd_tx_cons */ 4201 smp_mb(); 4202 4203 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4204 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4205 netif_tx_wake_queue(txq); 4206 } 4207 txdata->tx_pkt++; 4208 4209 return NETDEV_TX_OK; 4210 } 4211 4212 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default) 4213 { 4214 int mfw_vn = BP_FW_MB_IDX(bp); 4215 u32 tmp; 4216 4217 /* If the shmem shouldn't affect configuration, reflect */ 4218 if (!IS_MF_BD(bp)) { 4219 int i; 4220 4221 for (i = 0; i < BNX2X_MAX_PRIORITY; i++) 4222 c2s_map[i] = i; 4223 *c2s_default = 0; 4224 4225 return; 4226 } 4227 4228 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]); 4229 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4230 c2s_map[0] = tmp & 0xff; 4231 c2s_map[1] = (tmp >> 8) & 0xff; 4232 c2s_map[2] = (tmp >> 16) & 0xff; 4233 c2s_map[3] = (tmp >> 24) & 0xff; 4234 4235 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]); 4236 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4237 c2s_map[4] = tmp & 0xff; 4238 c2s_map[5] = (tmp >> 8) & 0xff; 4239 c2s_map[6] = (tmp >> 16) & 0xff; 4240 c2s_map[7] = (tmp >> 24) & 0xff; 4241 4242 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]); 4243 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4244 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff; 4245 } 4246 4247 /** 4248 * bnx2x_setup_tc - routine to configure net_device for multi tc 4249 * 4250 * @dev: net device to configure 4251 * @num_tc: number of traffic classes to enable 4252 * 4253 * callback connected to the ndo_setup_tc function pointer 4254 */ 4255 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4256 { 4257 struct bnx2x *bp = netdev_priv(dev); 4258 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def; 4259 int cos, prio, count, offset; 4260 4261 /* setup tc must be called under rtnl lock */ 4262 ASSERT_RTNL(); 4263 4264 /* no traffic classes requested. Aborting */ 4265 if (!num_tc) { 4266 netdev_reset_tc(dev); 4267 return 0; 4268 } 4269 4270 /* requested to support too many traffic classes */ 4271 if (num_tc > bp->max_cos) { 4272 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4273 num_tc, bp->max_cos); 4274 return -EINVAL; 4275 } 4276 4277 /* declare amount of supported traffic classes */ 4278 if (netdev_set_num_tc(dev, num_tc)) { 4279 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4280 return -EINVAL; 4281 } 4282 4283 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def); 4284 4285 /* configure priority to traffic class mapping */ 4286 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4287 int outer_prio = c2s_map[prio]; 4288 4289 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]); 4290 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4291 "mapping priority %d to tc %d\n", 4292 outer_prio, bp->prio_to_cos[outer_prio]); 4293 } 4294 4295 /* Use this configuration to differentiate tc0 from other COSes 4296 This can be used for ets or pfc, and save the effort of setting 4297 up a multio class queue disc or negotiating DCBX with a switch 4298 netdev_set_prio_tc_map(dev, 0, 0); 4299 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4300 for (prio = 1; prio < 16; prio++) { 4301 netdev_set_prio_tc_map(dev, prio, 1); 4302 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4303 } */ 4304 4305 /* configure traffic class to transmission queue mapping */ 4306 for (cos = 0; cos < bp->max_cos; cos++) { 4307 count = BNX2X_NUM_ETH_QUEUES(bp); 4308 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4309 netdev_set_tc_queue(dev, cos, count, offset); 4310 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4311 "mapping tc %d to offset %d count %d\n", 4312 cos, offset, count); 4313 } 4314 4315 return 0; 4316 } 4317 4318 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type, 4319 void *type_data) 4320 { 4321 struct tc_mqprio_qopt *mqprio = type_data; 4322 4323 if (type != TC_SETUP_QDISC_MQPRIO) 4324 return -EOPNOTSUPP; 4325 4326 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 4327 4328 return bnx2x_setup_tc(dev, mqprio->num_tc); 4329 } 4330 4331 /* called with rtnl_lock */ 4332 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4333 { 4334 struct sockaddr *addr = p; 4335 struct bnx2x *bp = netdev_priv(dev); 4336 int rc = 0; 4337 4338 if (!is_valid_ether_addr(addr->sa_data)) { 4339 BNX2X_ERR("Requested MAC address is not valid\n"); 4340 return -EINVAL; 4341 } 4342 4343 if (IS_MF_STORAGE_ONLY(bp)) { 4344 BNX2X_ERR("Can't change address on STORAGE ONLY function\n"); 4345 return -EINVAL; 4346 } 4347 4348 if (netif_running(dev)) { 4349 rc = bnx2x_set_eth_mac(bp, false); 4350 if (rc) 4351 return rc; 4352 } 4353 4354 eth_hw_addr_set(dev, addr->sa_data); 4355 4356 if (netif_running(dev)) 4357 rc = bnx2x_set_eth_mac(bp, true); 4358 4359 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4360 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4361 4362 return rc; 4363 } 4364 4365 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4366 { 4367 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4368 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4369 u8 cos; 4370 4371 /* Common */ 4372 4373 if (IS_FCOE_IDX(fp_index)) { 4374 memset(sb, 0, sizeof(union host_hc_status_block)); 4375 fp->status_blk_mapping = 0; 4376 } else { 4377 /* status blocks */ 4378 if (!CHIP_IS_E1x(bp)) 4379 BNX2X_PCI_FREE(sb->e2_sb, 4380 bnx2x_fp(bp, fp_index, 4381 status_blk_mapping), 4382 sizeof(struct host_hc_status_block_e2)); 4383 else 4384 BNX2X_PCI_FREE(sb->e1x_sb, 4385 bnx2x_fp(bp, fp_index, 4386 status_blk_mapping), 4387 sizeof(struct host_hc_status_block_e1x)); 4388 } 4389 4390 /* Rx */ 4391 if (!skip_rx_queue(bp, fp_index)) { 4392 bnx2x_free_rx_bds(fp); 4393 4394 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4395 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4396 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4397 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4398 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4399 4400 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4401 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4402 sizeof(struct eth_fast_path_rx_cqe) * 4403 NUM_RCQ_BD); 4404 4405 /* SGE ring */ 4406 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4407 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4408 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4409 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4410 } 4411 4412 /* Tx */ 4413 if (!skip_tx_queue(bp, fp_index)) { 4414 /* fastpath tx rings: tx_buf tx_desc */ 4415 for_each_cos_in_tx_queue(fp, cos) { 4416 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4417 4418 DP(NETIF_MSG_IFDOWN, 4419 "freeing tx memory of fp %d cos %d cid %d\n", 4420 fp_index, cos, txdata->cid); 4421 4422 BNX2X_FREE(txdata->tx_buf_ring); 4423 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4424 txdata->tx_desc_mapping, 4425 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4426 } 4427 } 4428 /* end of fastpath */ 4429 } 4430 4431 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4432 { 4433 int i; 4434 for_each_cnic_queue(bp, i) 4435 bnx2x_free_fp_mem_at(bp, i); 4436 } 4437 4438 void bnx2x_free_fp_mem(struct bnx2x *bp) 4439 { 4440 int i; 4441 for_each_eth_queue(bp, i) 4442 bnx2x_free_fp_mem_at(bp, i); 4443 } 4444 4445 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4446 { 4447 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4448 if (!CHIP_IS_E1x(bp)) { 4449 bnx2x_fp(bp, index, sb_index_values) = 4450 (__le16 *)status_blk.e2_sb->sb.index_values; 4451 bnx2x_fp(bp, index, sb_running_index) = 4452 (__le16 *)status_blk.e2_sb->sb.running_index; 4453 } else { 4454 bnx2x_fp(bp, index, sb_index_values) = 4455 (__le16 *)status_blk.e1x_sb->sb.index_values; 4456 bnx2x_fp(bp, index, sb_running_index) = 4457 (__le16 *)status_blk.e1x_sb->sb.running_index; 4458 } 4459 } 4460 4461 /* Returns the number of actually allocated BDs */ 4462 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4463 int rx_ring_size) 4464 { 4465 struct bnx2x *bp = fp->bp; 4466 u16 ring_prod, cqe_ring_prod; 4467 int i, failure_cnt = 0; 4468 4469 fp->rx_comp_cons = 0; 4470 cqe_ring_prod = ring_prod = 0; 4471 4472 /* This routine is called only during fo init so 4473 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4474 */ 4475 for (i = 0; i < rx_ring_size; i++) { 4476 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4477 failure_cnt++; 4478 continue; 4479 } 4480 ring_prod = NEXT_RX_IDX(ring_prod); 4481 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4482 WARN_ON(ring_prod <= (i - failure_cnt)); 4483 } 4484 4485 if (failure_cnt) 4486 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4487 i - failure_cnt, fp->index); 4488 4489 fp->rx_bd_prod = ring_prod; 4490 /* Limit the CQE producer by the CQE ring size */ 4491 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4492 cqe_ring_prod); 4493 4494 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4495 4496 return i - failure_cnt; 4497 } 4498 4499 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4500 { 4501 int i; 4502 4503 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4504 struct eth_rx_cqe_next_page *nextpg; 4505 4506 nextpg = (struct eth_rx_cqe_next_page *) 4507 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4508 nextpg->addr_hi = 4509 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4510 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4511 nextpg->addr_lo = 4512 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4513 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4514 } 4515 } 4516 4517 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4518 { 4519 union host_hc_status_block *sb; 4520 struct bnx2x_fastpath *fp = &bp->fp[index]; 4521 int ring_size = 0; 4522 u8 cos; 4523 int rx_ring_size = 0; 4524 4525 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) { 4526 rx_ring_size = MIN_RX_SIZE_NONTPA; 4527 bp->rx_ring_size = rx_ring_size; 4528 } else if (!bp->rx_ring_size) { 4529 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4530 4531 if (CHIP_IS_E3(bp)) { 4532 u32 cfg = SHMEM_RD(bp, 4533 dev_info.port_hw_config[BP_PORT(bp)]. 4534 default_cfg); 4535 4536 /* Decrease ring size for 1G functions */ 4537 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4538 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4539 rx_ring_size /= 10; 4540 } 4541 4542 /* allocate at least number of buffers required by FW */ 4543 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4544 MIN_RX_SIZE_TPA, rx_ring_size); 4545 4546 bp->rx_ring_size = rx_ring_size; 4547 } else /* if rx_ring_size specified - use it */ 4548 rx_ring_size = bp->rx_ring_size; 4549 4550 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4551 4552 /* Common */ 4553 sb = &bnx2x_fp(bp, index, status_blk); 4554 4555 if (!IS_FCOE_IDX(index)) { 4556 /* status blocks */ 4557 if (!CHIP_IS_E1x(bp)) { 4558 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4559 sizeof(struct host_hc_status_block_e2)); 4560 if (!sb->e2_sb) 4561 goto alloc_mem_err; 4562 } else { 4563 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4564 sizeof(struct host_hc_status_block_e1x)); 4565 if (!sb->e1x_sb) 4566 goto alloc_mem_err; 4567 } 4568 } 4569 4570 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4571 * set shortcuts for it. 4572 */ 4573 if (!IS_FCOE_IDX(index)) 4574 set_sb_shortcuts(bp, index); 4575 4576 /* Tx */ 4577 if (!skip_tx_queue(bp, index)) { 4578 /* fastpath tx rings: tx_buf tx_desc */ 4579 for_each_cos_in_tx_queue(fp, cos) { 4580 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4581 4582 DP(NETIF_MSG_IFUP, 4583 "allocating tx memory of fp %d cos %d\n", 4584 index, cos); 4585 4586 txdata->tx_buf_ring = kcalloc(NUM_TX_BD, 4587 sizeof(struct sw_tx_bd), 4588 GFP_KERNEL); 4589 if (!txdata->tx_buf_ring) 4590 goto alloc_mem_err; 4591 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, 4592 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4593 if (!txdata->tx_desc_ring) 4594 goto alloc_mem_err; 4595 } 4596 } 4597 4598 /* Rx */ 4599 if (!skip_rx_queue(bp, index)) { 4600 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4601 bnx2x_fp(bp, index, rx_buf_ring) = 4602 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL); 4603 if (!bnx2x_fp(bp, index, rx_buf_ring)) 4604 goto alloc_mem_err; 4605 bnx2x_fp(bp, index, rx_desc_ring) = 4606 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), 4607 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4608 if (!bnx2x_fp(bp, index, rx_desc_ring)) 4609 goto alloc_mem_err; 4610 4611 /* Seed all CQEs by 1s */ 4612 bnx2x_fp(bp, index, rx_comp_ring) = 4613 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), 4614 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); 4615 if (!bnx2x_fp(bp, index, rx_comp_ring)) 4616 goto alloc_mem_err; 4617 4618 /* SGE ring */ 4619 bnx2x_fp(bp, index, rx_page_ring) = 4620 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page), 4621 GFP_KERNEL); 4622 if (!bnx2x_fp(bp, index, rx_page_ring)) 4623 goto alloc_mem_err; 4624 bnx2x_fp(bp, index, rx_sge_ring) = 4625 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), 4626 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4627 if (!bnx2x_fp(bp, index, rx_sge_ring)) 4628 goto alloc_mem_err; 4629 /* RX BD ring */ 4630 bnx2x_set_next_page_rx_bd(fp); 4631 4632 /* CQ ring */ 4633 bnx2x_set_next_page_rx_cq(fp); 4634 4635 /* BDs */ 4636 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4637 if (ring_size < rx_ring_size) 4638 goto alloc_mem_err; 4639 } 4640 4641 return 0; 4642 4643 /* handles low memory cases */ 4644 alloc_mem_err: 4645 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4646 index, ring_size); 4647 /* FW will drop all packets if queue is not big enough, 4648 * In these cases we disable the queue 4649 * Min size is different for OOO, TPA and non-TPA queues 4650 */ 4651 if (ring_size < (fp->mode == TPA_MODE_DISABLED ? 4652 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4653 /* release memory allocated for this queue */ 4654 bnx2x_free_fp_mem_at(bp, index); 4655 return -ENOMEM; 4656 } 4657 return 0; 4658 } 4659 4660 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4661 { 4662 if (!NO_FCOE(bp)) 4663 /* FCoE */ 4664 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4665 /* we will fail load process instead of mark 4666 * NO_FCOE_FLAG 4667 */ 4668 return -ENOMEM; 4669 4670 return 0; 4671 } 4672 4673 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4674 { 4675 int i; 4676 4677 /* 1. Allocate FP for leading - fatal if error 4678 * 2. Allocate RSS - fix number of queues if error 4679 */ 4680 4681 /* leading */ 4682 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4683 return -ENOMEM; 4684 4685 /* RSS */ 4686 for_each_nondefault_eth_queue(bp, i) 4687 if (bnx2x_alloc_fp_mem_at(bp, i)) 4688 break; 4689 4690 /* handle memory failures */ 4691 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4692 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4693 4694 WARN_ON(delta < 0); 4695 bnx2x_shrink_eth_fp(bp, delta); 4696 if (CNIC_SUPPORT(bp)) 4697 /* move non eth FPs next to last eth FP 4698 * must be done in that order 4699 * FCOE_IDX < FWD_IDX < OOO_IDX 4700 */ 4701 4702 /* move FCoE fp even NO_FCOE_FLAG is on */ 4703 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4704 bp->num_ethernet_queues -= delta; 4705 bp->num_queues = bp->num_ethernet_queues + 4706 bp->num_cnic_queues; 4707 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4708 bp->num_queues + delta, bp->num_queues); 4709 } 4710 4711 return 0; 4712 } 4713 4714 void bnx2x_free_mem_bp(struct bnx2x *bp) 4715 { 4716 int i; 4717 4718 for (i = 0; i < bp->fp_array_size; i++) 4719 kfree(bp->fp[i].tpa_info); 4720 kfree(bp->fp); 4721 kfree(bp->sp_objs); 4722 kfree(bp->fp_stats); 4723 kfree(bp->bnx2x_txq); 4724 kfree(bp->msix_table); 4725 kfree(bp->ilt); 4726 } 4727 4728 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4729 { 4730 struct bnx2x_fastpath *fp; 4731 struct msix_entry *tbl; 4732 struct bnx2x_ilt *ilt; 4733 int msix_table_size = 0; 4734 int fp_array_size, txq_array_size; 4735 int i; 4736 4737 /* 4738 * The biggest MSI-X table we might need is as a maximum number of fast 4739 * path IGU SBs plus default SB (for PF only). 4740 */ 4741 msix_table_size = bp->igu_sb_cnt; 4742 if (IS_PF(bp)) 4743 msix_table_size++; 4744 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4745 4746 /* fp array: RSS plus CNIC related L2 queues */ 4747 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4748 bp->fp_array_size = fp_array_size; 4749 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4750 4751 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4752 if (!fp) 4753 goto alloc_err; 4754 for (i = 0; i < bp->fp_array_size; i++) { 4755 fp[i].tpa_info = 4756 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4757 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4758 if (!(fp[i].tpa_info)) 4759 goto alloc_err; 4760 } 4761 4762 bp->fp = fp; 4763 4764 /* allocate sp objs */ 4765 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4766 GFP_KERNEL); 4767 if (!bp->sp_objs) 4768 goto alloc_err; 4769 4770 /* allocate fp_stats */ 4771 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4772 GFP_KERNEL); 4773 if (!bp->fp_stats) 4774 goto alloc_err; 4775 4776 /* Allocate memory for the transmission queues array */ 4777 txq_array_size = 4778 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4779 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4780 4781 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4782 GFP_KERNEL); 4783 if (!bp->bnx2x_txq) 4784 goto alloc_err; 4785 4786 /* msix table */ 4787 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4788 if (!tbl) 4789 goto alloc_err; 4790 bp->msix_table = tbl; 4791 4792 /* ilt */ 4793 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4794 if (!ilt) 4795 goto alloc_err; 4796 bp->ilt = ilt; 4797 4798 return 0; 4799 alloc_err: 4800 bnx2x_free_mem_bp(bp); 4801 return -ENOMEM; 4802 } 4803 4804 int bnx2x_reload_if_running(struct net_device *dev) 4805 { 4806 struct bnx2x *bp = netdev_priv(dev); 4807 4808 if (unlikely(!netif_running(dev))) 4809 return 0; 4810 4811 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4812 return bnx2x_nic_load(bp, LOAD_NORMAL); 4813 } 4814 4815 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4816 { 4817 u32 sel_phy_idx = 0; 4818 if (bp->link_params.num_phys <= 1) 4819 return INT_PHY; 4820 4821 if (bp->link_vars.link_up) { 4822 sel_phy_idx = EXT_PHY1; 4823 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4824 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4825 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4826 sel_phy_idx = EXT_PHY2; 4827 } else { 4828 4829 switch (bnx2x_phy_selection(&bp->link_params)) { 4830 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4831 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4832 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4833 sel_phy_idx = EXT_PHY1; 4834 break; 4835 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4836 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4837 sel_phy_idx = EXT_PHY2; 4838 break; 4839 } 4840 } 4841 4842 return sel_phy_idx; 4843 } 4844 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4845 { 4846 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4847 /* 4848 * The selected activated PHY is always after swapping (in case PHY 4849 * swapping is enabled). So when swapping is enabled, we need to reverse 4850 * the configuration 4851 */ 4852 4853 if (bp->link_params.multi_phy_config & 4854 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4855 if (sel_phy_idx == EXT_PHY1) 4856 sel_phy_idx = EXT_PHY2; 4857 else if (sel_phy_idx == EXT_PHY2) 4858 sel_phy_idx = EXT_PHY1; 4859 } 4860 return LINK_CONFIG_IDX(sel_phy_idx); 4861 } 4862 4863 #ifdef NETDEV_FCOE_WWNN 4864 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4865 { 4866 struct bnx2x *bp = netdev_priv(dev); 4867 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4868 4869 switch (type) { 4870 case NETDEV_FCOE_WWNN: 4871 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4872 cp->fcoe_wwn_node_name_lo); 4873 break; 4874 case NETDEV_FCOE_WWPN: 4875 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4876 cp->fcoe_wwn_port_name_lo); 4877 break; 4878 default: 4879 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4880 return -EINVAL; 4881 } 4882 4883 return 0; 4884 } 4885 #endif 4886 4887 /* called with rtnl_lock */ 4888 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4889 { 4890 struct bnx2x *bp = netdev_priv(dev); 4891 4892 if (pci_num_vf(bp->pdev)) { 4893 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n"); 4894 return -EPERM; 4895 } 4896 4897 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4898 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4899 return -EAGAIN; 4900 } 4901 4902 /* This does not race with packet allocation 4903 * because the actual alloc size is 4904 * only updated as part of load 4905 */ 4906 dev->mtu = new_mtu; 4907 4908 if (!bnx2x_mtu_allows_gro(new_mtu)) 4909 dev->features &= ~NETIF_F_GRO_HW; 4910 4911 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4912 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4913 4914 return bnx2x_reload_if_running(dev); 4915 } 4916 4917 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4918 netdev_features_t features) 4919 { 4920 struct bnx2x *bp = netdev_priv(dev); 4921 4922 if (pci_num_vf(bp->pdev)) { 4923 netdev_features_t changed = dev->features ^ features; 4924 4925 /* Revert the requested changes in features if they 4926 * would require internal reload of PF in bnx2x_set_features(). 4927 */ 4928 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) { 4929 features &= ~NETIF_F_RXCSUM; 4930 features |= dev->features & NETIF_F_RXCSUM; 4931 } 4932 4933 if (changed & NETIF_F_LOOPBACK) { 4934 features &= ~NETIF_F_LOOPBACK; 4935 features |= dev->features & NETIF_F_LOOPBACK; 4936 } 4937 } 4938 4939 /* TPA requires Rx CSUM offloading */ 4940 if (!(features & NETIF_F_RXCSUM)) 4941 features &= ~NETIF_F_LRO; 4942 4943 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu)) 4944 features &= ~NETIF_F_GRO_HW; 4945 if (features & NETIF_F_GRO_HW) 4946 features &= ~NETIF_F_LRO; 4947 4948 return features; 4949 } 4950 4951 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4952 { 4953 struct bnx2x *bp = netdev_priv(dev); 4954 netdev_features_t changes = features ^ dev->features; 4955 bool bnx2x_reload = false; 4956 int rc; 4957 4958 /* VFs or non SRIOV PFs should be able to change loopback feature */ 4959 if (!pci_num_vf(bp->pdev)) { 4960 if (features & NETIF_F_LOOPBACK) { 4961 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4962 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4963 bnx2x_reload = true; 4964 } 4965 } else { 4966 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4967 bp->link_params.loopback_mode = LOOPBACK_NONE; 4968 bnx2x_reload = true; 4969 } 4970 } 4971 } 4972 4973 /* Don't care about GRO changes */ 4974 changes &= ~NETIF_F_GRO; 4975 4976 if (changes) 4977 bnx2x_reload = true; 4978 4979 if (bnx2x_reload) { 4980 if (bp->recovery_state == BNX2X_RECOVERY_DONE) { 4981 dev->features = features; 4982 rc = bnx2x_reload_if_running(dev); 4983 return rc ? rc : 1; 4984 } 4985 /* else: bnx2x_nic_load() will be called at end of recovery */ 4986 } 4987 4988 return 0; 4989 } 4990 4991 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue) 4992 { 4993 struct bnx2x *bp = netdev_priv(dev); 4994 4995 /* We want the information of the dump logged, 4996 * but calling bnx2x_panic() would kill all chances of recovery. 4997 */ 4998 if (!bp->panic) 4999 #ifndef BNX2X_STOP_ON_ERROR 5000 bnx2x_panic_dump(bp, false); 5001 #else 5002 bnx2x_panic(); 5003 #endif 5004 5005 /* This allows the netif to be shutdown gracefully before resetting */ 5006 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); 5007 } 5008 5009 static int __maybe_unused bnx2x_suspend(struct device *dev_d) 5010 { 5011 struct pci_dev *pdev = to_pci_dev(dev_d); 5012 struct net_device *dev = pci_get_drvdata(pdev); 5013 struct bnx2x *bp; 5014 5015 if (!dev) { 5016 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5017 return -ENODEV; 5018 } 5019 bp = netdev_priv(dev); 5020 5021 rtnl_lock(); 5022 5023 if (!netif_running(dev)) { 5024 rtnl_unlock(); 5025 return 0; 5026 } 5027 5028 netif_device_detach(dev); 5029 5030 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 5031 5032 rtnl_unlock(); 5033 5034 return 0; 5035 } 5036 5037 static int __maybe_unused bnx2x_resume(struct device *dev_d) 5038 { 5039 struct pci_dev *pdev = to_pci_dev(dev_d); 5040 struct net_device *dev = pci_get_drvdata(pdev); 5041 struct bnx2x *bp; 5042 int rc; 5043 5044 if (!dev) { 5045 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5046 return -ENODEV; 5047 } 5048 bp = netdev_priv(dev); 5049 5050 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 5051 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 5052 return -EAGAIN; 5053 } 5054 5055 rtnl_lock(); 5056 5057 if (!netif_running(dev)) { 5058 rtnl_unlock(); 5059 return 0; 5060 } 5061 5062 netif_device_attach(dev); 5063 5064 rc = bnx2x_nic_load(bp, LOAD_OPEN); 5065 5066 rtnl_unlock(); 5067 5068 return rc; 5069 } 5070 5071 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume); 5072 5073 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 5074 u32 cid) 5075 { 5076 if (!cxt) { 5077 BNX2X_ERR("bad context pointer %p\n", cxt); 5078 return; 5079 } 5080 5081 /* ustorm cxt validation */ 5082 cxt->ustorm_ag_context.cdu_usage = 5083 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5084 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 5085 /* xcontext validation */ 5086 cxt->xstorm_ag_context.cdu_reserved = 5087 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5088 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 5089 } 5090 5091 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 5092 u8 fw_sb_id, u8 sb_index, 5093 u8 ticks) 5094 { 5095 u32 addr = BAR_CSTRORM_INTMEM + 5096 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 5097 REG_WR8(bp, addr, ticks); 5098 DP(NETIF_MSG_IFUP, 5099 "port %x fw_sb_id %d sb_index %d ticks %d\n", 5100 port, fw_sb_id, sb_index, ticks); 5101 } 5102 5103 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 5104 u16 fw_sb_id, u8 sb_index, 5105 u8 disable) 5106 { 5107 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 5108 u32 addr = BAR_CSTRORM_INTMEM + 5109 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 5110 u8 flags = REG_RD8(bp, addr); 5111 /* clear and set */ 5112 flags &= ~HC_INDEX_DATA_HC_ENABLED; 5113 flags |= enable_flag; 5114 REG_WR8(bp, addr, flags); 5115 DP(NETIF_MSG_IFUP, 5116 "port %x fw_sb_id %d sb_index %d disable %d\n", 5117 port, fw_sb_id, sb_index, disable); 5118 } 5119 5120 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 5121 u8 sb_index, u8 disable, u16 usec) 5122 { 5123 int port = BP_PORT(bp); 5124 u8 ticks = usec / BNX2X_BTR; 5125 5126 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 5127 5128 disable = disable ? 1 : (usec ? 0 : 1); 5129 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 5130 } 5131 5132 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, 5133 u32 verbose) 5134 { 5135 smp_mb__before_atomic(); 5136 set_bit(flag, &bp->sp_rtnl_state); 5137 smp_mb__after_atomic(); 5138 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", 5139 flag); 5140 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5141 } 5142