1 /* bnx2x_cmn.c: Broadcom Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 * 9 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 10 * Written by: Eliezer Tamir 11 * Based on code from Michael Chan's bnx2 driver 12 * UDP CSUM errata workaround by Arik Gendelman 13 * Slowpath and fastpath rework by Vladislav Zolotarov 14 * Statistics and Link management by Yitchak Gertner 15 * 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/etherdevice.h> 21 #include <linux/if_vlan.h> 22 #include <linux/interrupt.h> 23 #include <linux/ip.h> 24 #include <linux/crash_dump.h> 25 #include <net/tcp.h> 26 #include <net/ipv6.h> 27 #include <net/ip6_checksum.h> 28 #include <net/busy_poll.h> 29 #include <linux/prefetch.h> 30 #include "bnx2x_cmn.h" 31 #include "bnx2x_init.h" 32 #include "bnx2x_sp.h" 33 34 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 35 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 36 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 37 static int bnx2x_poll(struct napi_struct *napi, int budget); 38 39 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 40 { 41 int i; 42 43 /* Add NAPI objects */ 44 for_each_rx_queue_cnic(bp, i) { 45 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 46 bnx2x_poll, NAPI_POLL_WEIGHT); 47 napi_hash_add(&bnx2x_fp(bp, i, napi)); 48 } 49 } 50 51 static void bnx2x_add_all_napi(struct bnx2x *bp) 52 { 53 int i; 54 55 /* Add NAPI objects */ 56 for_each_eth_queue(bp, i) { 57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 58 bnx2x_poll, NAPI_POLL_WEIGHT); 59 napi_hash_add(&bnx2x_fp(bp, i, napi)); 60 } 61 } 62 63 static int bnx2x_calc_num_queues(struct bnx2x *bp) 64 { 65 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues(); 66 67 /* Reduce memory usage in kdump environment by using only one queue */ 68 if (is_kdump_kernel()) 69 nq = 1; 70 71 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp)); 72 return nq; 73 } 74 75 /** 76 * bnx2x_move_fp - move content of the fastpath structure. 77 * 78 * @bp: driver handle 79 * @from: source FP index 80 * @to: destination FP index 81 * 82 * Makes sure the contents of the bp->fp[to].napi is kept 83 * intact. This is done by first copying the napi struct from 84 * the target to the source, and then mem copying the entire 85 * source onto the target. Update txdata pointers and related 86 * content. 87 */ 88 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 89 { 90 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 91 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 92 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 93 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 94 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 95 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 96 int old_max_eth_txqs, new_max_eth_txqs; 97 int old_txdata_index = 0, new_txdata_index = 0; 98 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 99 100 /* Copy the NAPI object as it has been already initialized */ 101 from_fp->napi = to_fp->napi; 102 103 /* Move bnx2x_fastpath contents */ 104 memcpy(to_fp, from_fp, sizeof(*to_fp)); 105 to_fp->index = to; 106 107 /* Retain the tpa_info of the original `to' version as we don't want 108 * 2 FPs to contain the same tpa_info pointer. 109 */ 110 to_fp->tpa_info = old_tpa_info; 111 112 /* move sp_objs contents as well, as their indices match fp ones */ 113 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 114 115 /* move fp_stats contents as well, as their indices match fp ones */ 116 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 117 118 /* Update txdata pointers in fp and move txdata content accordingly: 119 * Each fp consumes 'max_cos' txdata structures, so the index should be 120 * decremented by max_cos x delta. 121 */ 122 123 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 124 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 125 (bp)->max_cos; 126 if (from == FCOE_IDX(bp)) { 127 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 128 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 129 } 130 131 memcpy(&bp->bnx2x_txq[new_txdata_index], 132 &bp->bnx2x_txq[old_txdata_index], 133 sizeof(struct bnx2x_fp_txdata)); 134 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 135 } 136 137 /** 138 * bnx2x_fill_fw_str - Fill buffer with FW version string. 139 * 140 * @bp: driver handle 141 * @buf: character buffer to fill with the fw name 142 * @buf_len: length of the above buffer 143 * 144 */ 145 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 146 { 147 if (IS_PF(bp)) { 148 u8 phy_fw_ver[PHY_FW_VER_LEN]; 149 150 phy_fw_ver[0] = '\0'; 151 bnx2x_get_ext_phy_fw_version(&bp->link_params, 152 phy_fw_ver, PHY_FW_VER_LEN); 153 strlcpy(buf, bp->fw_ver, buf_len); 154 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 155 "bc %d.%d.%d%s%s", 156 (bp->common.bc_ver & 0xff0000) >> 16, 157 (bp->common.bc_ver & 0xff00) >> 8, 158 (bp->common.bc_ver & 0xff), 159 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 160 } else { 161 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 162 } 163 } 164 165 /** 166 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 167 * 168 * @bp: driver handle 169 * @delta: number of eth queues which were not allocated 170 */ 171 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 172 { 173 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 174 175 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 176 * backward along the array could cause memory to be overridden 177 */ 178 for (cos = 1; cos < bp->max_cos; cos++) { 179 for (i = 0; i < old_eth_num - delta; i++) { 180 struct bnx2x_fastpath *fp = &bp->fp[i]; 181 int new_idx = cos * (old_eth_num - delta) + i; 182 183 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 184 sizeof(struct bnx2x_fp_txdata)); 185 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 186 } 187 } 188 } 189 190 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 191 192 /* free skb in the packet ring at pos idx 193 * return idx of last bd freed 194 */ 195 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 196 u16 idx, unsigned int *pkts_compl, 197 unsigned int *bytes_compl) 198 { 199 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 200 struct eth_tx_start_bd *tx_start_bd; 201 struct eth_tx_bd *tx_data_bd; 202 struct sk_buff *skb = tx_buf->skb; 203 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 204 int nbd; 205 u16 split_bd_len = 0; 206 207 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 208 prefetch(&skb->end); 209 210 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 211 txdata->txq_index, idx, tx_buf, skb); 212 213 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 214 215 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 216 #ifdef BNX2X_STOP_ON_ERROR 217 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 218 BNX2X_ERR("BAD nbd!\n"); 219 bnx2x_panic(); 220 } 221 #endif 222 new_cons = nbd + tx_buf->first_bd; 223 224 /* Get the next bd */ 225 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 226 227 /* Skip a parse bd... */ 228 --nbd; 229 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 230 231 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { 232 /* Skip second parse bd... */ 233 --nbd; 234 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 235 } 236 237 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 238 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 239 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 240 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 241 --nbd; 242 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 243 } 244 245 /* unmap first bd */ 246 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 247 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 248 DMA_TO_DEVICE); 249 250 /* now free frags */ 251 while (nbd > 0) { 252 253 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 254 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 255 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 256 if (--nbd) 257 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 258 } 259 260 /* release skb */ 261 WARN_ON(!skb); 262 if (likely(skb)) { 263 (*pkts_compl)++; 264 (*bytes_compl) += skb->len; 265 } 266 267 dev_kfree_skb_any(skb); 268 tx_buf->first_bd = 0; 269 tx_buf->skb = NULL; 270 271 return new_cons; 272 } 273 274 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 275 { 276 struct netdev_queue *txq; 277 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 278 unsigned int pkts_compl = 0, bytes_compl = 0; 279 280 #ifdef BNX2X_STOP_ON_ERROR 281 if (unlikely(bp->panic)) 282 return -1; 283 #endif 284 285 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 286 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 287 sw_cons = txdata->tx_pkt_cons; 288 289 while (sw_cons != hw_cons) { 290 u16 pkt_cons; 291 292 pkt_cons = TX_BD(sw_cons); 293 294 DP(NETIF_MSG_TX_DONE, 295 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 296 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 297 298 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 299 &pkts_compl, &bytes_compl); 300 301 sw_cons++; 302 } 303 304 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 305 306 txdata->tx_pkt_cons = sw_cons; 307 txdata->tx_bd_cons = bd_cons; 308 309 /* Need to make the tx_bd_cons update visible to start_xmit() 310 * before checking for netif_tx_queue_stopped(). Without the 311 * memory barrier, there is a small possibility that 312 * start_xmit() will miss it and cause the queue to be stopped 313 * forever. 314 * On the other hand we need an rmb() here to ensure the proper 315 * ordering of bit testing in the following 316 * netif_tx_queue_stopped(txq) call. 317 */ 318 smp_mb(); 319 320 if (unlikely(netif_tx_queue_stopped(txq))) { 321 /* Taking tx_lock() is needed to prevent re-enabling the queue 322 * while it's empty. This could have happen if rx_action() gets 323 * suspended in bnx2x_tx_int() after the condition before 324 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 325 * 326 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 327 * sends some packets consuming the whole queue again-> 328 * stops the queue 329 */ 330 331 __netif_tx_lock(txq, smp_processor_id()); 332 333 if ((netif_tx_queue_stopped(txq)) && 334 (bp->state == BNX2X_STATE_OPEN) && 335 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 336 netif_tx_wake_queue(txq); 337 338 __netif_tx_unlock(txq); 339 } 340 return 0; 341 } 342 343 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 344 u16 idx) 345 { 346 u16 last_max = fp->last_max_sge; 347 348 if (SUB_S16(idx, last_max) > 0) 349 fp->last_max_sge = idx; 350 } 351 352 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 353 u16 sge_len, 354 struct eth_end_agg_rx_cqe *cqe) 355 { 356 struct bnx2x *bp = fp->bp; 357 u16 last_max, last_elem, first_elem; 358 u16 delta = 0; 359 u16 i; 360 361 if (!sge_len) 362 return; 363 364 /* First mark all used pages */ 365 for (i = 0; i < sge_len; i++) 366 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 367 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 368 369 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 370 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 371 372 /* Here we assume that the last SGE index is the biggest */ 373 prefetch((void *)(fp->sge_mask)); 374 bnx2x_update_last_max_sge(fp, 375 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 376 377 last_max = RX_SGE(fp->last_max_sge); 378 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 379 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 380 381 /* If ring is not full */ 382 if (last_elem + 1 != first_elem) 383 last_elem++; 384 385 /* Now update the prod */ 386 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 387 if (likely(fp->sge_mask[i])) 388 break; 389 390 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 391 delta += BIT_VEC64_ELEM_SZ; 392 } 393 394 if (delta > 0) { 395 fp->rx_sge_prod += delta; 396 /* clear page-end entries */ 397 bnx2x_clear_sge_mask_next_elems(fp); 398 } 399 400 DP(NETIF_MSG_RX_STATUS, 401 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 402 fp->last_max_sge, fp->rx_sge_prod); 403 } 404 405 /* Get Toeplitz hash value in the skb using the value from the 406 * CQE (calculated by HW). 407 */ 408 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 409 const struct eth_fast_path_rx_cqe *cqe, 410 enum pkt_hash_types *rxhash_type) 411 { 412 /* Get Toeplitz hash from CQE */ 413 if ((bp->dev->features & NETIF_F_RXHASH) && 414 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 415 enum eth_rss_hash_type htype; 416 417 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 418 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 419 (htype == TCP_IPV6_HASH_TYPE)) ? 420 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 421 422 return le32_to_cpu(cqe->rss_hash_result); 423 } 424 *rxhash_type = PKT_HASH_TYPE_NONE; 425 return 0; 426 } 427 428 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 429 u16 cons, u16 prod, 430 struct eth_fast_path_rx_cqe *cqe) 431 { 432 struct bnx2x *bp = fp->bp; 433 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 434 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 435 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 436 dma_addr_t mapping; 437 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 438 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 439 440 /* print error if current state != stop */ 441 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 442 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 443 444 /* Try to map an empty data buffer from the aggregation info */ 445 mapping = dma_map_single(&bp->pdev->dev, 446 first_buf->data + NET_SKB_PAD, 447 fp->rx_buf_size, DMA_FROM_DEVICE); 448 /* 449 * ...if it fails - move the skb from the consumer to the producer 450 * and set the current aggregation state as ERROR to drop it 451 * when TPA_STOP arrives. 452 */ 453 454 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 455 /* Move the BD from the consumer to the producer */ 456 bnx2x_reuse_rx_data(fp, cons, prod); 457 tpa_info->tpa_state = BNX2X_TPA_ERROR; 458 return; 459 } 460 461 /* move empty data from pool to prod */ 462 prod_rx_buf->data = first_buf->data; 463 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 464 /* point prod_bd to new data */ 465 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 466 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 467 468 /* move partial skb from cons to pool (don't unmap yet) */ 469 *first_buf = *cons_rx_buf; 470 471 /* mark bin state as START */ 472 tpa_info->parsing_flags = 473 le16_to_cpu(cqe->pars_flags.flags); 474 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 475 tpa_info->tpa_state = BNX2X_TPA_START; 476 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 477 tpa_info->placement_offset = cqe->placement_offset; 478 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 479 if (fp->mode == TPA_MODE_GRO) { 480 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 481 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 482 tpa_info->gro_size = gro_size; 483 } 484 485 #ifdef BNX2X_STOP_ON_ERROR 486 fp->tpa_queue_used |= (1 << queue); 487 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 488 fp->tpa_queue_used); 489 #endif 490 } 491 492 /* Timestamp option length allowed for TPA aggregation: 493 * 494 * nop nop kind length echo val 495 */ 496 #define TPA_TSTAMP_OPT_LEN 12 497 /** 498 * bnx2x_set_gro_params - compute GRO values 499 * 500 * @skb: packet skb 501 * @parsing_flags: parsing flags from the START CQE 502 * @len_on_bd: total length of the first packet for the 503 * aggregation. 504 * @pkt_len: length of all segments 505 * 506 * Approximate value of the MSS for this aggregation calculated using 507 * the first packet of it. 508 * Compute number of aggregated segments, and gso_type. 509 */ 510 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 511 u16 len_on_bd, unsigned int pkt_len, 512 u16 num_of_coalesced_segs) 513 { 514 /* TPA aggregation won't have either IP options or TCP options 515 * other than timestamp or IPv6 extension headers. 516 */ 517 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 518 519 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 520 PRS_FLAG_OVERETH_IPV6) { 521 hdrs_len += sizeof(struct ipv6hdr); 522 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 523 } else { 524 hdrs_len += sizeof(struct iphdr); 525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 526 } 527 528 /* Check if there was a TCP timestamp, if there is it's will 529 * always be 12 bytes length: nop nop kind length echo val. 530 * 531 * Otherwise FW would close the aggregation. 532 */ 533 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 534 hdrs_len += TPA_TSTAMP_OPT_LEN; 535 536 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 537 538 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 539 * to skb_shinfo(skb)->gso_segs 540 */ 541 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 542 } 543 544 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 545 u16 index, gfp_t gfp_mask) 546 { 547 struct page *page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 548 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 549 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 550 dma_addr_t mapping; 551 552 if (unlikely(page == NULL)) { 553 BNX2X_ERR("Can't alloc sge\n"); 554 return -ENOMEM; 555 } 556 557 mapping = dma_map_page(&bp->pdev->dev, page, 0, 558 SGE_PAGES, DMA_FROM_DEVICE); 559 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 560 __free_pages(page, PAGES_PER_SGE_SHIFT); 561 BNX2X_ERR("Can't map sge\n"); 562 return -ENOMEM; 563 } 564 565 sw_buf->page = page; 566 dma_unmap_addr_set(sw_buf, mapping, mapping); 567 568 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 569 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 570 571 return 0; 572 } 573 574 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 575 struct bnx2x_agg_info *tpa_info, 576 u16 pages, 577 struct sk_buff *skb, 578 struct eth_end_agg_rx_cqe *cqe, 579 u16 cqe_idx) 580 { 581 struct sw_rx_page *rx_pg, old_rx_pg; 582 u32 i, frag_len, frag_size; 583 int err, j, frag_id = 0; 584 u16 len_on_bd = tpa_info->len_on_bd; 585 u16 full_page = 0, gro_size = 0; 586 587 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 588 589 if (fp->mode == TPA_MODE_GRO) { 590 gro_size = tpa_info->gro_size; 591 full_page = tpa_info->full_page; 592 } 593 594 /* This is needed in order to enable forwarding support */ 595 if (frag_size) 596 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 597 le16_to_cpu(cqe->pkt_len), 598 le16_to_cpu(cqe->num_of_coalesced_segs)); 599 600 #ifdef BNX2X_STOP_ON_ERROR 601 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 602 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 603 pages, cqe_idx); 604 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 605 bnx2x_panic(); 606 return -EINVAL; 607 } 608 #endif 609 610 /* Run through the SGL and compose the fragmented skb */ 611 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 612 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 613 614 /* FW gives the indices of the SGE as if the ring is an array 615 (meaning that "next" element will consume 2 indices) */ 616 if (fp->mode == TPA_MODE_GRO) 617 frag_len = min_t(u32, frag_size, (u32)full_page); 618 else /* LRO */ 619 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 620 621 rx_pg = &fp->rx_page_ring[sge_idx]; 622 old_rx_pg = *rx_pg; 623 624 /* If we fail to allocate a substitute page, we simply stop 625 where we are and drop the whole packet */ 626 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 627 if (unlikely(err)) { 628 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 629 return err; 630 } 631 632 /* Unmap the page as we're going to pass it to the stack */ 633 dma_unmap_page(&bp->pdev->dev, 634 dma_unmap_addr(&old_rx_pg, mapping), 635 SGE_PAGES, DMA_FROM_DEVICE); 636 /* Add one frag and update the appropriate fields in the skb */ 637 if (fp->mode == TPA_MODE_LRO) 638 skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len); 639 else { /* GRO */ 640 int rem; 641 int offset = 0; 642 for (rem = frag_len; rem > 0; rem -= gro_size) { 643 int len = rem > gro_size ? gro_size : rem; 644 skb_fill_page_desc(skb, frag_id++, 645 old_rx_pg.page, offset, len); 646 if (offset) 647 get_page(old_rx_pg.page); 648 offset += len; 649 } 650 } 651 652 skb->data_len += frag_len; 653 skb->truesize += SGE_PAGES; 654 skb->len += frag_len; 655 656 frag_size -= frag_len; 657 } 658 659 return 0; 660 } 661 662 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 663 { 664 if (fp->rx_frag_size) 665 put_page(virt_to_head_page(data)); 666 else 667 kfree(data); 668 } 669 670 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 671 { 672 if (fp->rx_frag_size) { 673 /* GFP_KERNEL allocations are used only during initialization */ 674 if (unlikely(gfp_mask & __GFP_WAIT)) 675 return (void *)__get_free_page(gfp_mask); 676 677 return netdev_alloc_frag(fp->rx_frag_size); 678 } 679 680 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 681 } 682 683 #ifdef CONFIG_INET 684 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 685 { 686 const struct iphdr *iph = ip_hdr(skb); 687 struct tcphdr *th; 688 689 skb_set_transport_header(skb, sizeof(struct iphdr)); 690 th = tcp_hdr(skb); 691 692 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 693 iph->saddr, iph->daddr, 0); 694 } 695 696 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 697 { 698 struct ipv6hdr *iph = ipv6_hdr(skb); 699 struct tcphdr *th; 700 701 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 702 th = tcp_hdr(skb); 703 704 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 705 &iph->saddr, &iph->daddr, 0); 706 } 707 708 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 709 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 710 { 711 skb_set_network_header(skb, 0); 712 gro_func(bp, skb); 713 tcp_gro_complete(skb); 714 } 715 #endif 716 717 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 718 struct sk_buff *skb) 719 { 720 #ifdef CONFIG_INET 721 if (skb_shinfo(skb)->gso_size) { 722 switch (be16_to_cpu(skb->protocol)) { 723 case ETH_P_IP: 724 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 725 break; 726 case ETH_P_IPV6: 727 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 728 break; 729 default: 730 BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 731 be16_to_cpu(skb->protocol)); 732 } 733 } 734 #endif 735 skb_record_rx_queue(skb, fp->rx_queue); 736 napi_gro_receive(&fp->napi, skb); 737 } 738 739 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 740 struct bnx2x_agg_info *tpa_info, 741 u16 pages, 742 struct eth_end_agg_rx_cqe *cqe, 743 u16 cqe_idx) 744 { 745 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 746 u8 pad = tpa_info->placement_offset; 747 u16 len = tpa_info->len_on_bd; 748 struct sk_buff *skb = NULL; 749 u8 *new_data, *data = rx_buf->data; 750 u8 old_tpa_state = tpa_info->tpa_state; 751 752 tpa_info->tpa_state = BNX2X_TPA_STOP; 753 754 /* If we there was an error during the handling of the TPA_START - 755 * drop this aggregation. 756 */ 757 if (old_tpa_state == BNX2X_TPA_ERROR) 758 goto drop; 759 760 /* Try to allocate the new data */ 761 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 762 /* Unmap skb in the pool anyway, as we are going to change 763 pool entry status to BNX2X_TPA_STOP even if new skb allocation 764 fails. */ 765 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 766 fp->rx_buf_size, DMA_FROM_DEVICE); 767 if (likely(new_data)) 768 skb = build_skb(data, fp->rx_frag_size); 769 770 if (likely(skb)) { 771 #ifdef BNX2X_STOP_ON_ERROR 772 if (pad + len > fp->rx_buf_size) { 773 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 774 pad, len, fp->rx_buf_size); 775 bnx2x_panic(); 776 return; 777 } 778 #endif 779 780 skb_reserve(skb, pad + NET_SKB_PAD); 781 skb_put(skb, len); 782 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 783 784 skb->protocol = eth_type_trans(skb, bp->dev); 785 skb->ip_summed = CHECKSUM_UNNECESSARY; 786 787 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 788 skb, cqe, cqe_idx)) { 789 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 790 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 791 bnx2x_gro_receive(bp, fp, skb); 792 } else { 793 DP(NETIF_MSG_RX_STATUS, 794 "Failed to allocate new pages - dropping packet!\n"); 795 dev_kfree_skb_any(skb); 796 } 797 798 /* put new data in bin */ 799 rx_buf->data = new_data; 800 801 return; 802 } 803 if (new_data) 804 bnx2x_frag_free(fp, new_data); 805 drop: 806 /* drop the packet and keep the buffer in the bin */ 807 DP(NETIF_MSG_RX_STATUS, 808 "Failed to allocate or map a new skb - dropping packet!\n"); 809 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 810 } 811 812 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 813 u16 index, gfp_t gfp_mask) 814 { 815 u8 *data; 816 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 817 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 818 dma_addr_t mapping; 819 820 data = bnx2x_frag_alloc(fp, gfp_mask); 821 if (unlikely(data == NULL)) 822 return -ENOMEM; 823 824 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 825 fp->rx_buf_size, 826 DMA_FROM_DEVICE); 827 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 828 bnx2x_frag_free(fp, data); 829 BNX2X_ERR("Can't map rx data\n"); 830 return -ENOMEM; 831 } 832 833 rx_buf->data = data; 834 dma_unmap_addr_set(rx_buf, mapping, mapping); 835 836 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 837 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 838 839 return 0; 840 } 841 842 static 843 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 844 struct bnx2x_fastpath *fp, 845 struct bnx2x_eth_q_stats *qstats) 846 { 847 /* Do nothing if no L4 csum validation was done. 848 * We do not check whether IP csum was validated. For IPv4 we assume 849 * that if the card got as far as validating the L4 csum, it also 850 * validated the IP csum. IPv6 has no IP csum. 851 */ 852 if (cqe->fast_path_cqe.status_flags & 853 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 854 return; 855 856 /* If L4 validation was done, check if an error was found. */ 857 858 if (cqe->fast_path_cqe.type_error_flags & 859 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 860 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 861 qstats->hw_csum_err++; 862 else 863 skb->ip_summed = CHECKSUM_UNNECESSARY; 864 } 865 866 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 867 { 868 struct bnx2x *bp = fp->bp; 869 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 870 u16 sw_comp_cons, sw_comp_prod; 871 int rx_pkt = 0; 872 union eth_rx_cqe *cqe; 873 struct eth_fast_path_rx_cqe *cqe_fp; 874 875 #ifdef BNX2X_STOP_ON_ERROR 876 if (unlikely(bp->panic)) 877 return 0; 878 #endif 879 if (budget <= 0) 880 return rx_pkt; 881 882 bd_cons = fp->rx_bd_cons; 883 bd_prod = fp->rx_bd_prod; 884 bd_prod_fw = bd_prod; 885 sw_comp_cons = fp->rx_comp_cons; 886 sw_comp_prod = fp->rx_comp_prod; 887 888 comp_ring_cons = RCQ_BD(sw_comp_cons); 889 cqe = &fp->rx_comp_ring[comp_ring_cons]; 890 cqe_fp = &cqe->fast_path_cqe; 891 892 DP(NETIF_MSG_RX_STATUS, 893 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 894 895 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 896 struct sw_rx_bd *rx_buf = NULL; 897 struct sk_buff *skb; 898 u8 cqe_fp_flags; 899 enum eth_rx_cqe_type cqe_fp_type; 900 u16 len, pad, queue; 901 u8 *data; 902 u32 rxhash; 903 enum pkt_hash_types rxhash_type; 904 905 #ifdef BNX2X_STOP_ON_ERROR 906 if (unlikely(bp->panic)) 907 return 0; 908 #endif 909 910 bd_prod = RX_BD(bd_prod); 911 bd_cons = RX_BD(bd_cons); 912 913 /* A rmb() is required to ensure that the CQE is not read 914 * before it is written by the adapter DMA. PCI ordering 915 * rules will make sure the other fields are written before 916 * the marker at the end of struct eth_fast_path_rx_cqe 917 * but without rmb() a weakly ordered processor can process 918 * stale data. Without the barrier TPA state-machine might 919 * enter inconsistent state and kernel stack might be 920 * provided with incorrect packet description - these lead 921 * to various kernel crashed. 922 */ 923 rmb(); 924 925 cqe_fp_flags = cqe_fp->type_error_flags; 926 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 927 928 DP(NETIF_MSG_RX_STATUS, 929 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 930 CQE_TYPE(cqe_fp_flags), 931 cqe_fp_flags, cqe_fp->status_flags, 932 le32_to_cpu(cqe_fp->rss_hash_result), 933 le16_to_cpu(cqe_fp->vlan_tag), 934 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 935 936 /* is this a slowpath msg? */ 937 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 938 bnx2x_sp_event(fp, cqe); 939 goto next_cqe; 940 } 941 942 rx_buf = &fp->rx_buf_ring[bd_cons]; 943 data = rx_buf->data; 944 945 if (!CQE_TYPE_FAST(cqe_fp_type)) { 946 struct bnx2x_agg_info *tpa_info; 947 u16 frag_size, pages; 948 #ifdef BNX2X_STOP_ON_ERROR 949 /* sanity check */ 950 if (fp->disable_tpa && 951 (CQE_TYPE_START(cqe_fp_type) || 952 CQE_TYPE_STOP(cqe_fp_type))) 953 BNX2X_ERR("START/STOP packet while disable_tpa type %x\n", 954 CQE_TYPE(cqe_fp_type)); 955 #endif 956 957 if (CQE_TYPE_START(cqe_fp_type)) { 958 u16 queue = cqe_fp->queue_index; 959 DP(NETIF_MSG_RX_STATUS, 960 "calling tpa_start on queue %d\n", 961 queue); 962 963 bnx2x_tpa_start(fp, queue, 964 bd_cons, bd_prod, 965 cqe_fp); 966 967 goto next_rx; 968 } 969 queue = cqe->end_agg_cqe.queue_index; 970 tpa_info = &fp->tpa_info[queue]; 971 DP(NETIF_MSG_RX_STATUS, 972 "calling tpa_stop on queue %d\n", 973 queue); 974 975 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 976 tpa_info->len_on_bd; 977 978 if (fp->mode == TPA_MODE_GRO) 979 pages = (frag_size + tpa_info->full_page - 1) / 980 tpa_info->full_page; 981 else 982 pages = SGE_PAGE_ALIGN(frag_size) >> 983 SGE_PAGE_SHIFT; 984 985 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 986 &cqe->end_agg_cqe, comp_ring_cons); 987 #ifdef BNX2X_STOP_ON_ERROR 988 if (bp->panic) 989 return 0; 990 #endif 991 992 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 993 goto next_cqe; 994 } 995 /* non TPA */ 996 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 997 pad = cqe_fp->placement_offset; 998 dma_sync_single_for_cpu(&bp->pdev->dev, 999 dma_unmap_addr(rx_buf, mapping), 1000 pad + RX_COPY_THRESH, 1001 DMA_FROM_DEVICE); 1002 pad += NET_SKB_PAD; 1003 prefetch(data + pad); /* speedup eth_type_trans() */ 1004 /* is this an error packet? */ 1005 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 1006 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1007 "ERROR flags %x rx packet %u\n", 1008 cqe_fp_flags, sw_comp_cons); 1009 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 1010 goto reuse_rx; 1011 } 1012 1013 /* Since we don't have a jumbo ring 1014 * copy small packets if mtu > 1500 1015 */ 1016 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 1017 (len <= RX_COPY_THRESH)) { 1018 skb = netdev_alloc_skb_ip_align(bp->dev, len); 1019 if (skb == NULL) { 1020 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1021 "ERROR packet dropped because of alloc failure\n"); 1022 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1023 goto reuse_rx; 1024 } 1025 memcpy(skb->data, data + pad, len); 1026 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1027 } else { 1028 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1029 GFP_ATOMIC) == 0)) { 1030 dma_unmap_single(&bp->pdev->dev, 1031 dma_unmap_addr(rx_buf, mapping), 1032 fp->rx_buf_size, 1033 DMA_FROM_DEVICE); 1034 skb = build_skb(data, fp->rx_frag_size); 1035 if (unlikely(!skb)) { 1036 bnx2x_frag_free(fp, data); 1037 bnx2x_fp_qstats(bp, fp)-> 1038 rx_skb_alloc_failed++; 1039 goto next_rx; 1040 } 1041 skb_reserve(skb, pad); 1042 } else { 1043 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1044 "ERROR packet dropped because of alloc failure\n"); 1045 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1046 reuse_rx: 1047 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1048 goto next_rx; 1049 } 1050 } 1051 1052 skb_put(skb, len); 1053 skb->protocol = eth_type_trans(skb, bp->dev); 1054 1055 /* Set Toeplitz hash for a none-LRO skb */ 1056 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1057 skb_set_hash(skb, rxhash, rxhash_type); 1058 1059 skb_checksum_none_assert(skb); 1060 1061 if (bp->dev->features & NETIF_F_RXCSUM) 1062 bnx2x_csum_validate(skb, cqe, fp, 1063 bnx2x_fp_qstats(bp, fp)); 1064 1065 skb_record_rx_queue(skb, fp->rx_queue); 1066 1067 /* Check if this packet was timestamped */ 1068 if (unlikely(cqe->fast_path_cqe.type_error_flags & 1069 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT))) 1070 bnx2x_set_rx_ts(bp, skb); 1071 1072 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1073 PARSING_FLAGS_VLAN) 1074 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1075 le16_to_cpu(cqe_fp->vlan_tag)); 1076 1077 skb_mark_napi_id(skb, &fp->napi); 1078 1079 if (bnx2x_fp_ll_polling(fp)) 1080 netif_receive_skb(skb); 1081 else 1082 napi_gro_receive(&fp->napi, skb); 1083 next_rx: 1084 rx_buf->data = NULL; 1085 1086 bd_cons = NEXT_RX_IDX(bd_cons); 1087 bd_prod = NEXT_RX_IDX(bd_prod); 1088 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1089 rx_pkt++; 1090 next_cqe: 1091 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1092 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1093 1094 /* mark CQE as free */ 1095 BNX2X_SEED_CQE(cqe_fp); 1096 1097 if (rx_pkt == budget) 1098 break; 1099 1100 comp_ring_cons = RCQ_BD(sw_comp_cons); 1101 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1102 cqe_fp = &cqe->fast_path_cqe; 1103 } /* while */ 1104 1105 fp->rx_bd_cons = bd_cons; 1106 fp->rx_bd_prod = bd_prod_fw; 1107 fp->rx_comp_cons = sw_comp_cons; 1108 fp->rx_comp_prod = sw_comp_prod; 1109 1110 /* Update producers */ 1111 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1112 fp->rx_sge_prod); 1113 1114 fp->rx_pkt += rx_pkt; 1115 fp->rx_calls++; 1116 1117 return rx_pkt; 1118 } 1119 1120 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1121 { 1122 struct bnx2x_fastpath *fp = fp_cookie; 1123 struct bnx2x *bp = fp->bp; 1124 u8 cos; 1125 1126 DP(NETIF_MSG_INTR, 1127 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1128 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1129 1130 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1131 1132 #ifdef BNX2X_STOP_ON_ERROR 1133 if (unlikely(bp->panic)) 1134 return IRQ_HANDLED; 1135 #endif 1136 1137 /* Handle Rx and Tx according to MSI-X vector */ 1138 for_each_cos_in_tx_queue(fp, cos) 1139 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1140 1141 prefetch(&fp->sb_running_index[SM_RX_ID]); 1142 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 1143 1144 return IRQ_HANDLED; 1145 } 1146 1147 /* HW Lock for shared dual port PHYs */ 1148 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1149 { 1150 mutex_lock(&bp->port.phy_mutex); 1151 1152 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1153 } 1154 1155 void bnx2x_release_phy_lock(struct bnx2x *bp) 1156 { 1157 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1158 1159 mutex_unlock(&bp->port.phy_mutex); 1160 } 1161 1162 /* calculates MF speed according to current linespeed and MF configuration */ 1163 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1164 { 1165 u16 line_speed = bp->link_vars.line_speed; 1166 if (IS_MF(bp)) { 1167 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1168 bp->mf_config[BP_VN(bp)]); 1169 1170 /* Calculate the current MAX line speed limit for the MF 1171 * devices 1172 */ 1173 if (IS_MF_SI(bp)) 1174 line_speed = (line_speed * maxCfg) / 100; 1175 else { /* SD mode */ 1176 u16 vn_max_rate = maxCfg * 100; 1177 1178 if (vn_max_rate < line_speed) 1179 line_speed = vn_max_rate; 1180 } 1181 } 1182 1183 return line_speed; 1184 } 1185 1186 /** 1187 * bnx2x_fill_report_data - fill link report data to report 1188 * 1189 * @bp: driver handle 1190 * @data: link state to update 1191 * 1192 * It uses a none-atomic bit operations because is called under the mutex. 1193 */ 1194 static void bnx2x_fill_report_data(struct bnx2x *bp, 1195 struct bnx2x_link_report_data *data) 1196 { 1197 memset(data, 0, sizeof(*data)); 1198 1199 if (IS_PF(bp)) { 1200 /* Fill the report data: effective line speed */ 1201 data->line_speed = bnx2x_get_mf_speed(bp); 1202 1203 /* Link is down */ 1204 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1205 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1206 &data->link_report_flags); 1207 1208 if (!BNX2X_NUM_ETH_QUEUES(bp)) 1209 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1210 &data->link_report_flags); 1211 1212 /* Full DUPLEX */ 1213 if (bp->link_vars.duplex == DUPLEX_FULL) 1214 __set_bit(BNX2X_LINK_REPORT_FD, 1215 &data->link_report_flags); 1216 1217 /* Rx Flow Control is ON */ 1218 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1219 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1220 &data->link_report_flags); 1221 1222 /* Tx Flow Control is ON */ 1223 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1224 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1225 &data->link_report_flags); 1226 } else { /* VF */ 1227 *data = bp->vf_link_vars; 1228 } 1229 } 1230 1231 /** 1232 * bnx2x_link_report - report link status to OS. 1233 * 1234 * @bp: driver handle 1235 * 1236 * Calls the __bnx2x_link_report() under the same locking scheme 1237 * as a link/PHY state managing code to ensure a consistent link 1238 * reporting. 1239 */ 1240 1241 void bnx2x_link_report(struct bnx2x *bp) 1242 { 1243 bnx2x_acquire_phy_lock(bp); 1244 __bnx2x_link_report(bp); 1245 bnx2x_release_phy_lock(bp); 1246 } 1247 1248 /** 1249 * __bnx2x_link_report - report link status to OS. 1250 * 1251 * @bp: driver handle 1252 * 1253 * None atomic implementation. 1254 * Should be called under the phy_lock. 1255 */ 1256 void __bnx2x_link_report(struct bnx2x *bp) 1257 { 1258 struct bnx2x_link_report_data cur_data; 1259 1260 /* reread mf_cfg */ 1261 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1262 bnx2x_read_mf_cfg(bp); 1263 1264 /* Read the current link report info */ 1265 bnx2x_fill_report_data(bp, &cur_data); 1266 1267 /* Don't report link down or exactly the same link status twice */ 1268 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1269 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1270 &bp->last_reported_link.link_report_flags) && 1271 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1272 &cur_data.link_report_flags))) 1273 return; 1274 1275 bp->link_cnt++; 1276 1277 /* We are going to report a new link parameters now - 1278 * remember the current data for the next time. 1279 */ 1280 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1281 1282 /* propagate status to VFs */ 1283 if (IS_PF(bp)) 1284 bnx2x_iov_link_update(bp); 1285 1286 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1287 &cur_data.link_report_flags)) { 1288 netif_carrier_off(bp->dev); 1289 netdev_err(bp->dev, "NIC Link is Down\n"); 1290 return; 1291 } else { 1292 const char *duplex; 1293 const char *flow; 1294 1295 netif_carrier_on(bp->dev); 1296 1297 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1298 &cur_data.link_report_flags)) 1299 duplex = "full"; 1300 else 1301 duplex = "half"; 1302 1303 /* Handle the FC at the end so that only these flags would be 1304 * possibly set. This way we may easily check if there is no FC 1305 * enabled. 1306 */ 1307 if (cur_data.link_report_flags) { 1308 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1309 &cur_data.link_report_flags)) { 1310 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1311 &cur_data.link_report_flags)) 1312 flow = "ON - receive & transmit"; 1313 else 1314 flow = "ON - receive"; 1315 } else { 1316 flow = "ON - transmit"; 1317 } 1318 } else { 1319 flow = "none"; 1320 } 1321 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1322 cur_data.line_speed, duplex, flow); 1323 } 1324 } 1325 1326 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1327 { 1328 int i; 1329 1330 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1331 struct eth_rx_sge *sge; 1332 1333 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1334 sge->addr_hi = 1335 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1336 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1337 1338 sge->addr_lo = 1339 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1340 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1341 } 1342 } 1343 1344 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1345 struct bnx2x_fastpath *fp, int last) 1346 { 1347 int i; 1348 1349 for (i = 0; i < last; i++) { 1350 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1351 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1352 u8 *data = first_buf->data; 1353 1354 if (data == NULL) { 1355 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1356 continue; 1357 } 1358 if (tpa_info->tpa_state == BNX2X_TPA_START) 1359 dma_unmap_single(&bp->pdev->dev, 1360 dma_unmap_addr(first_buf, mapping), 1361 fp->rx_buf_size, DMA_FROM_DEVICE); 1362 bnx2x_frag_free(fp, data); 1363 first_buf->data = NULL; 1364 } 1365 } 1366 1367 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1368 { 1369 int j; 1370 1371 for_each_rx_queue_cnic(bp, j) { 1372 struct bnx2x_fastpath *fp = &bp->fp[j]; 1373 1374 fp->rx_bd_cons = 0; 1375 1376 /* Activate BD ring */ 1377 /* Warning! 1378 * this will generate an interrupt (to the TSTORM) 1379 * must only be done after chip is initialized 1380 */ 1381 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1382 fp->rx_sge_prod); 1383 } 1384 } 1385 1386 void bnx2x_init_rx_rings(struct bnx2x *bp) 1387 { 1388 int func = BP_FUNC(bp); 1389 u16 ring_prod; 1390 int i, j; 1391 1392 /* Allocate TPA resources */ 1393 for_each_eth_queue(bp, j) { 1394 struct bnx2x_fastpath *fp = &bp->fp[j]; 1395 1396 DP(NETIF_MSG_IFUP, 1397 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1398 1399 if (!fp->disable_tpa) { 1400 /* Fill the per-aggregation pool */ 1401 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1402 struct bnx2x_agg_info *tpa_info = 1403 &fp->tpa_info[i]; 1404 struct sw_rx_bd *first_buf = 1405 &tpa_info->first_buf; 1406 1407 first_buf->data = 1408 bnx2x_frag_alloc(fp, GFP_KERNEL); 1409 if (!first_buf->data) { 1410 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1411 j); 1412 bnx2x_free_tpa_pool(bp, fp, i); 1413 fp->disable_tpa = 1; 1414 break; 1415 } 1416 dma_unmap_addr_set(first_buf, mapping, 0); 1417 tpa_info->tpa_state = BNX2X_TPA_STOP; 1418 } 1419 1420 /* "next page" elements initialization */ 1421 bnx2x_set_next_page_sgl(fp); 1422 1423 /* set SGEs bit mask */ 1424 bnx2x_init_sge_ring_bit_mask(fp); 1425 1426 /* Allocate SGEs and initialize the ring elements */ 1427 for (i = 0, ring_prod = 0; 1428 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1429 1430 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1431 GFP_KERNEL) < 0) { 1432 BNX2X_ERR("was only able to allocate %d rx sges\n", 1433 i); 1434 BNX2X_ERR("disabling TPA for queue[%d]\n", 1435 j); 1436 /* Cleanup already allocated elements */ 1437 bnx2x_free_rx_sge_range(bp, fp, 1438 ring_prod); 1439 bnx2x_free_tpa_pool(bp, fp, 1440 MAX_AGG_QS(bp)); 1441 fp->disable_tpa = 1; 1442 ring_prod = 0; 1443 break; 1444 } 1445 ring_prod = NEXT_SGE_IDX(ring_prod); 1446 } 1447 1448 fp->rx_sge_prod = ring_prod; 1449 } 1450 } 1451 1452 for_each_eth_queue(bp, j) { 1453 struct bnx2x_fastpath *fp = &bp->fp[j]; 1454 1455 fp->rx_bd_cons = 0; 1456 1457 /* Activate BD ring */ 1458 /* Warning! 1459 * this will generate an interrupt (to the TSTORM) 1460 * must only be done after chip is initialized 1461 */ 1462 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1463 fp->rx_sge_prod); 1464 1465 if (j != 0) 1466 continue; 1467 1468 if (CHIP_IS_E1(bp)) { 1469 REG_WR(bp, BAR_USTRORM_INTMEM + 1470 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1471 U64_LO(fp->rx_comp_mapping)); 1472 REG_WR(bp, BAR_USTRORM_INTMEM + 1473 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1474 U64_HI(fp->rx_comp_mapping)); 1475 } 1476 } 1477 } 1478 1479 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1480 { 1481 u8 cos; 1482 struct bnx2x *bp = fp->bp; 1483 1484 for_each_cos_in_tx_queue(fp, cos) { 1485 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1486 unsigned pkts_compl = 0, bytes_compl = 0; 1487 1488 u16 sw_prod = txdata->tx_pkt_prod; 1489 u16 sw_cons = txdata->tx_pkt_cons; 1490 1491 while (sw_cons != sw_prod) { 1492 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1493 &pkts_compl, &bytes_compl); 1494 sw_cons++; 1495 } 1496 1497 netdev_tx_reset_queue( 1498 netdev_get_tx_queue(bp->dev, 1499 txdata->txq_index)); 1500 } 1501 } 1502 1503 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1504 { 1505 int i; 1506 1507 for_each_tx_queue_cnic(bp, i) { 1508 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1509 } 1510 } 1511 1512 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1513 { 1514 int i; 1515 1516 for_each_eth_queue(bp, i) { 1517 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1518 } 1519 } 1520 1521 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1522 { 1523 struct bnx2x *bp = fp->bp; 1524 int i; 1525 1526 /* ring wasn't allocated */ 1527 if (fp->rx_buf_ring == NULL) 1528 return; 1529 1530 for (i = 0; i < NUM_RX_BD; i++) { 1531 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1532 u8 *data = rx_buf->data; 1533 1534 if (data == NULL) 1535 continue; 1536 dma_unmap_single(&bp->pdev->dev, 1537 dma_unmap_addr(rx_buf, mapping), 1538 fp->rx_buf_size, DMA_FROM_DEVICE); 1539 1540 rx_buf->data = NULL; 1541 bnx2x_frag_free(fp, data); 1542 } 1543 } 1544 1545 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1546 { 1547 int j; 1548 1549 for_each_rx_queue_cnic(bp, j) { 1550 bnx2x_free_rx_bds(&bp->fp[j]); 1551 } 1552 } 1553 1554 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1555 { 1556 int j; 1557 1558 for_each_eth_queue(bp, j) { 1559 struct bnx2x_fastpath *fp = &bp->fp[j]; 1560 1561 bnx2x_free_rx_bds(fp); 1562 1563 if (!fp->disable_tpa) 1564 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1565 } 1566 } 1567 1568 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1569 { 1570 bnx2x_free_tx_skbs_cnic(bp); 1571 bnx2x_free_rx_skbs_cnic(bp); 1572 } 1573 1574 void bnx2x_free_skbs(struct bnx2x *bp) 1575 { 1576 bnx2x_free_tx_skbs(bp); 1577 bnx2x_free_rx_skbs(bp); 1578 } 1579 1580 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1581 { 1582 /* load old values */ 1583 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1584 1585 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1586 /* leave all but MAX value */ 1587 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1588 1589 /* set new MAX value */ 1590 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1591 & FUNC_MF_CFG_MAX_BW_MASK; 1592 1593 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1594 } 1595 } 1596 1597 /** 1598 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1599 * 1600 * @bp: driver handle 1601 * @nvecs: number of vectors to be released 1602 */ 1603 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1604 { 1605 int i, offset = 0; 1606 1607 if (nvecs == offset) 1608 return; 1609 1610 /* VFs don't have a default SB */ 1611 if (IS_PF(bp)) { 1612 free_irq(bp->msix_table[offset].vector, bp->dev); 1613 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1614 bp->msix_table[offset].vector); 1615 offset++; 1616 } 1617 1618 if (CNIC_SUPPORT(bp)) { 1619 if (nvecs == offset) 1620 return; 1621 offset++; 1622 } 1623 1624 for_each_eth_queue(bp, i) { 1625 if (nvecs == offset) 1626 return; 1627 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1628 i, bp->msix_table[offset].vector); 1629 1630 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1631 } 1632 } 1633 1634 void bnx2x_free_irq(struct bnx2x *bp) 1635 { 1636 if (bp->flags & USING_MSIX_FLAG && 1637 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1638 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1639 1640 /* vfs don't have a default status block */ 1641 if (IS_PF(bp)) 1642 nvecs++; 1643 1644 bnx2x_free_msix_irqs(bp, nvecs); 1645 } else { 1646 free_irq(bp->dev->irq, bp->dev); 1647 } 1648 } 1649 1650 int bnx2x_enable_msix(struct bnx2x *bp) 1651 { 1652 int msix_vec = 0, i, rc; 1653 1654 /* VFs don't have a default status block */ 1655 if (IS_PF(bp)) { 1656 bp->msix_table[msix_vec].entry = msix_vec; 1657 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1658 bp->msix_table[0].entry); 1659 msix_vec++; 1660 } 1661 1662 /* Cnic requires an msix vector for itself */ 1663 if (CNIC_SUPPORT(bp)) { 1664 bp->msix_table[msix_vec].entry = msix_vec; 1665 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1666 msix_vec, bp->msix_table[msix_vec].entry); 1667 msix_vec++; 1668 } 1669 1670 /* We need separate vectors for ETH queues only (not FCoE) */ 1671 for_each_eth_queue(bp, i) { 1672 bp->msix_table[msix_vec].entry = msix_vec; 1673 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1674 msix_vec, msix_vec, i); 1675 msix_vec++; 1676 } 1677 1678 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1679 msix_vec); 1680 1681 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1682 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); 1683 /* 1684 * reconfigure number of tx/rx queues according to available 1685 * MSI-X vectors 1686 */ 1687 if (rc == -ENOSPC) { 1688 /* Get by with single vector */ 1689 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); 1690 if (rc < 0) { 1691 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1692 rc); 1693 goto no_msix; 1694 } 1695 1696 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1697 bp->flags |= USING_SINGLE_MSIX_FLAG; 1698 1699 BNX2X_DEV_INFO("set number of queues to 1\n"); 1700 bp->num_ethernet_queues = 1; 1701 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1702 } else if (rc < 0) { 1703 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1704 goto no_msix; 1705 } else if (rc < msix_vec) { 1706 /* how less vectors we will have? */ 1707 int diff = msix_vec - rc; 1708 1709 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1710 1711 /* 1712 * decrease number of queues by number of unallocated entries 1713 */ 1714 bp->num_ethernet_queues -= diff; 1715 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1716 1717 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1718 bp->num_queues); 1719 } 1720 1721 bp->flags |= USING_MSIX_FLAG; 1722 1723 return 0; 1724 1725 no_msix: 1726 /* fall to INTx if not enough memory */ 1727 if (rc == -ENOMEM) 1728 bp->flags |= DISABLE_MSI_FLAG; 1729 1730 return rc; 1731 } 1732 1733 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1734 { 1735 int i, rc, offset = 0; 1736 1737 /* no default status block for vf */ 1738 if (IS_PF(bp)) { 1739 rc = request_irq(bp->msix_table[offset++].vector, 1740 bnx2x_msix_sp_int, 0, 1741 bp->dev->name, bp->dev); 1742 if (rc) { 1743 BNX2X_ERR("request sp irq failed\n"); 1744 return -EBUSY; 1745 } 1746 } 1747 1748 if (CNIC_SUPPORT(bp)) 1749 offset++; 1750 1751 for_each_eth_queue(bp, i) { 1752 struct bnx2x_fastpath *fp = &bp->fp[i]; 1753 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1754 bp->dev->name, i); 1755 1756 rc = request_irq(bp->msix_table[offset].vector, 1757 bnx2x_msix_fp_int, 0, fp->name, fp); 1758 if (rc) { 1759 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1760 bp->msix_table[offset].vector, rc); 1761 bnx2x_free_msix_irqs(bp, offset); 1762 return -EBUSY; 1763 } 1764 1765 offset++; 1766 } 1767 1768 i = BNX2X_NUM_ETH_QUEUES(bp); 1769 if (IS_PF(bp)) { 1770 offset = 1 + CNIC_SUPPORT(bp); 1771 netdev_info(bp->dev, 1772 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1773 bp->msix_table[0].vector, 1774 0, bp->msix_table[offset].vector, 1775 i - 1, bp->msix_table[offset + i - 1].vector); 1776 } else { 1777 offset = CNIC_SUPPORT(bp); 1778 netdev_info(bp->dev, 1779 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1780 0, bp->msix_table[offset].vector, 1781 i - 1, bp->msix_table[offset + i - 1].vector); 1782 } 1783 return 0; 1784 } 1785 1786 int bnx2x_enable_msi(struct bnx2x *bp) 1787 { 1788 int rc; 1789 1790 rc = pci_enable_msi(bp->pdev); 1791 if (rc) { 1792 BNX2X_DEV_INFO("MSI is not attainable\n"); 1793 return -1; 1794 } 1795 bp->flags |= USING_MSI_FLAG; 1796 1797 return 0; 1798 } 1799 1800 static int bnx2x_req_irq(struct bnx2x *bp) 1801 { 1802 unsigned long flags; 1803 unsigned int irq; 1804 1805 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1806 flags = 0; 1807 else 1808 flags = IRQF_SHARED; 1809 1810 if (bp->flags & USING_MSIX_FLAG) 1811 irq = bp->msix_table[0].vector; 1812 else 1813 irq = bp->pdev->irq; 1814 1815 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1816 } 1817 1818 static int bnx2x_setup_irqs(struct bnx2x *bp) 1819 { 1820 int rc = 0; 1821 if (bp->flags & USING_MSIX_FLAG && 1822 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1823 rc = bnx2x_req_msix_irqs(bp); 1824 if (rc) 1825 return rc; 1826 } else { 1827 rc = bnx2x_req_irq(bp); 1828 if (rc) { 1829 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1830 return rc; 1831 } 1832 if (bp->flags & USING_MSI_FLAG) { 1833 bp->dev->irq = bp->pdev->irq; 1834 netdev_info(bp->dev, "using MSI IRQ %d\n", 1835 bp->dev->irq); 1836 } 1837 if (bp->flags & USING_MSIX_FLAG) { 1838 bp->dev->irq = bp->msix_table[0].vector; 1839 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1840 bp->dev->irq); 1841 } 1842 } 1843 1844 return 0; 1845 } 1846 1847 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1848 { 1849 int i; 1850 1851 for_each_rx_queue_cnic(bp, i) { 1852 bnx2x_fp_init_lock(&bp->fp[i]); 1853 napi_enable(&bnx2x_fp(bp, i, napi)); 1854 } 1855 } 1856 1857 static void bnx2x_napi_enable(struct bnx2x *bp) 1858 { 1859 int i; 1860 1861 for_each_eth_queue(bp, i) { 1862 bnx2x_fp_init_lock(&bp->fp[i]); 1863 napi_enable(&bnx2x_fp(bp, i, napi)); 1864 } 1865 } 1866 1867 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1868 { 1869 int i; 1870 1871 for_each_rx_queue_cnic(bp, i) { 1872 napi_disable(&bnx2x_fp(bp, i, napi)); 1873 while (!bnx2x_fp_ll_disable(&bp->fp[i])) 1874 usleep_range(1000, 2000); 1875 } 1876 } 1877 1878 static void bnx2x_napi_disable(struct bnx2x *bp) 1879 { 1880 int i; 1881 1882 for_each_eth_queue(bp, i) { 1883 napi_disable(&bnx2x_fp(bp, i, napi)); 1884 while (!bnx2x_fp_ll_disable(&bp->fp[i])) 1885 usleep_range(1000, 2000); 1886 } 1887 } 1888 1889 void bnx2x_netif_start(struct bnx2x *bp) 1890 { 1891 if (netif_running(bp->dev)) { 1892 bnx2x_napi_enable(bp); 1893 if (CNIC_LOADED(bp)) 1894 bnx2x_napi_enable_cnic(bp); 1895 bnx2x_int_enable(bp); 1896 if (bp->state == BNX2X_STATE_OPEN) 1897 netif_tx_wake_all_queues(bp->dev); 1898 } 1899 } 1900 1901 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1902 { 1903 bnx2x_int_disable_sync(bp, disable_hw); 1904 bnx2x_napi_disable(bp); 1905 if (CNIC_LOADED(bp)) 1906 bnx2x_napi_disable_cnic(bp); 1907 } 1908 1909 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1910 void *accel_priv, select_queue_fallback_t fallback) 1911 { 1912 struct bnx2x *bp = netdev_priv(dev); 1913 1914 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1915 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1916 u16 ether_type = ntohs(hdr->h_proto); 1917 1918 /* Skip VLAN tag if present */ 1919 if (ether_type == ETH_P_8021Q) { 1920 struct vlan_ethhdr *vhdr = 1921 (struct vlan_ethhdr *)skb->data; 1922 1923 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1924 } 1925 1926 /* If ethertype is FCoE or FIP - use FCoE ring */ 1927 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1928 return bnx2x_fcoe_tx(bp, txq_index); 1929 } 1930 1931 /* select a non-FCoE queue */ 1932 return fallback(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp); 1933 } 1934 1935 void bnx2x_set_num_queues(struct bnx2x *bp) 1936 { 1937 /* RSS queues */ 1938 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1939 1940 /* override in STORAGE SD modes */ 1941 if (IS_MF_STORAGE_ONLY(bp)) 1942 bp->num_ethernet_queues = 1; 1943 1944 /* Add special queues */ 1945 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1946 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1947 1948 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1949 } 1950 1951 /** 1952 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1953 * 1954 * @bp: Driver handle 1955 * 1956 * We currently support for at most 16 Tx queues for each CoS thus we will 1957 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1958 * bp->max_cos. 1959 * 1960 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1961 * index after all ETH L2 indices. 1962 * 1963 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1964 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1965 * 16..31,...) with indices that are not coupled with any real Tx queue. 1966 * 1967 * The proper configuration of skb->queue_mapping is handled by 1968 * bnx2x_select_queue() and __skb_tx_hash(). 1969 * 1970 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1971 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1972 */ 1973 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1974 { 1975 int rc, tx, rx; 1976 1977 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1978 rx = BNX2X_NUM_ETH_QUEUES(bp); 1979 1980 /* account for fcoe queue */ 1981 if (include_cnic && !NO_FCOE(bp)) { 1982 rx++; 1983 tx++; 1984 } 1985 1986 rc = netif_set_real_num_tx_queues(bp->dev, tx); 1987 if (rc) { 1988 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 1989 return rc; 1990 } 1991 rc = netif_set_real_num_rx_queues(bp->dev, rx); 1992 if (rc) { 1993 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 1994 return rc; 1995 } 1996 1997 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 1998 tx, rx); 1999 2000 return rc; 2001 } 2002 2003 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 2004 { 2005 int i; 2006 2007 for_each_queue(bp, i) { 2008 struct bnx2x_fastpath *fp = &bp->fp[i]; 2009 u32 mtu; 2010 2011 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 2012 if (IS_FCOE_IDX(i)) 2013 /* 2014 * Although there are no IP frames expected to arrive to 2015 * this ring we still want to add an 2016 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 2017 * overrun attack. 2018 */ 2019 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 2020 else 2021 mtu = bp->dev->mtu; 2022 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 2023 IP_HEADER_ALIGNMENT_PADDING + 2024 ETH_OVREHEAD + 2025 mtu + 2026 BNX2X_FW_RX_ALIGN_END; 2027 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 2028 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 2029 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 2030 else 2031 fp->rx_frag_size = 0; 2032 } 2033 } 2034 2035 static int bnx2x_init_rss(struct bnx2x *bp) 2036 { 2037 int i; 2038 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2039 2040 /* Prepare the initial contents for the indirection table if RSS is 2041 * enabled 2042 */ 2043 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2044 bp->rss_conf_obj.ind_table[i] = 2045 bp->fp->cl_id + 2046 ethtool_rxfh_indir_default(i, num_eth_queues); 2047 2048 /* 2049 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2050 * per-port, so if explicit configuration is needed , do it only 2051 * for a PMF. 2052 * 2053 * For 57712 and newer on the other hand it's a per-function 2054 * configuration. 2055 */ 2056 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2057 } 2058 2059 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2060 bool config_hash, bool enable) 2061 { 2062 struct bnx2x_config_rss_params params = {NULL}; 2063 2064 /* Although RSS is meaningless when there is a single HW queue we 2065 * still need it enabled in order to have HW Rx hash generated. 2066 * 2067 * if (!is_eth_multi(bp)) 2068 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2069 */ 2070 2071 params.rss_obj = rss_obj; 2072 2073 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2074 2075 if (enable) { 2076 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2077 2078 /* RSS configuration */ 2079 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2080 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2081 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2082 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2083 if (rss_obj->udp_rss_v4) 2084 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2085 if (rss_obj->udp_rss_v6) 2086 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2087 2088 if (!CHIP_IS_E1x(bp)) 2089 /* valid only for TUNN_MODE_GRE tunnel mode */ 2090 __set_bit(BNX2X_RSS_GRE_INNER_HDRS, ¶ms.rss_flags); 2091 } else { 2092 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2093 } 2094 2095 /* Hash bits */ 2096 params.rss_result_mask = MULTI_MASK; 2097 2098 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2099 2100 if (config_hash) { 2101 /* RSS keys */ 2102 prandom_bytes(params.rss_key, T_ETH_RSS_KEY * 4); 2103 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2104 } 2105 2106 if (IS_PF(bp)) 2107 return bnx2x_config_rss(bp, ¶ms); 2108 else 2109 return bnx2x_vfpf_config_rss(bp, ¶ms); 2110 } 2111 2112 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2113 { 2114 struct bnx2x_func_state_params func_params = {NULL}; 2115 2116 /* Prepare parameters for function state transitions */ 2117 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2118 2119 func_params.f_obj = &bp->func_obj; 2120 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2121 2122 func_params.params.hw_init.load_phase = load_code; 2123 2124 return bnx2x_func_state_change(bp, &func_params); 2125 } 2126 2127 /* 2128 * Cleans the object that have internal lists without sending 2129 * ramrods. Should be run when interrupts are disabled. 2130 */ 2131 void bnx2x_squeeze_objects(struct bnx2x *bp) 2132 { 2133 int rc; 2134 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2135 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2136 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2137 2138 /***************** Cleanup MACs' object first *************************/ 2139 2140 /* Wait for completion of requested */ 2141 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2142 /* Perform a dry cleanup */ 2143 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2144 2145 /* Clean ETH primary MAC */ 2146 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2147 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2148 &ramrod_flags); 2149 if (rc != 0) 2150 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2151 2152 /* Cleanup UC list */ 2153 vlan_mac_flags = 0; 2154 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2155 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2156 &ramrod_flags); 2157 if (rc != 0) 2158 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2159 2160 /***************** Now clean mcast object *****************************/ 2161 rparam.mcast_obj = &bp->mcast_obj; 2162 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2163 2164 /* Add a DEL command... - Since we're doing a driver cleanup only, 2165 * we take a lock surrounding both the initial send and the CONTs, 2166 * as we don't want a true completion to disrupt us in the middle. 2167 */ 2168 netif_addr_lock_bh(bp->dev); 2169 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2170 if (rc < 0) 2171 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2172 rc); 2173 2174 /* ...and wait until all pending commands are cleared */ 2175 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2176 while (rc != 0) { 2177 if (rc < 0) { 2178 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2179 rc); 2180 netif_addr_unlock_bh(bp->dev); 2181 return; 2182 } 2183 2184 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2185 } 2186 netif_addr_unlock_bh(bp->dev); 2187 } 2188 2189 #ifndef BNX2X_STOP_ON_ERROR 2190 #define LOAD_ERROR_EXIT(bp, label) \ 2191 do { \ 2192 (bp)->state = BNX2X_STATE_ERROR; \ 2193 goto label; \ 2194 } while (0) 2195 2196 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2197 do { \ 2198 bp->cnic_loaded = false; \ 2199 goto label; \ 2200 } while (0) 2201 #else /*BNX2X_STOP_ON_ERROR*/ 2202 #define LOAD_ERROR_EXIT(bp, label) \ 2203 do { \ 2204 (bp)->state = BNX2X_STATE_ERROR; \ 2205 (bp)->panic = 1; \ 2206 return -EBUSY; \ 2207 } while (0) 2208 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2209 do { \ 2210 bp->cnic_loaded = false; \ 2211 (bp)->panic = 1; \ 2212 return -EBUSY; \ 2213 } while (0) 2214 #endif /*BNX2X_STOP_ON_ERROR*/ 2215 2216 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2217 { 2218 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2219 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2220 return; 2221 } 2222 2223 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2224 { 2225 int num_groups, vf_headroom = 0; 2226 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2227 2228 /* number of queues for statistics is number of eth queues + FCoE */ 2229 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2230 2231 /* Total number of FW statistics requests = 2232 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2233 * and fcoe l2 queue) stats + num of queues (which includes another 1 2234 * for fcoe l2 queue if applicable) 2235 */ 2236 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2237 2238 /* vf stats appear in the request list, but their data is allocated by 2239 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2240 * it is used to determine where to place the vf stats queries in the 2241 * request struct 2242 */ 2243 if (IS_SRIOV(bp)) 2244 vf_headroom = bnx2x_vf_headroom(bp); 2245 2246 /* Request is built from stats_query_header and an array of 2247 * stats_query_cmd_group each of which contains 2248 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2249 * configured in the stats_query_header. 2250 */ 2251 num_groups = 2252 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2253 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2254 1 : 0)); 2255 2256 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2257 bp->fw_stats_num, vf_headroom, num_groups); 2258 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2259 num_groups * sizeof(struct stats_query_cmd_group); 2260 2261 /* Data for statistics requests + stats_counter 2262 * stats_counter holds per-STORM counters that are incremented 2263 * when STORM has finished with the current request. 2264 * memory for FCoE offloaded statistics are counted anyway, 2265 * even if they will not be sent. 2266 * VF stats are not accounted for here as the data of VF stats is stored 2267 * in memory allocated by the VF, not here. 2268 */ 2269 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2270 sizeof(struct per_pf_stats) + 2271 sizeof(struct fcoe_statistics_params) + 2272 sizeof(struct per_queue_stats) * num_queue_stats + 2273 sizeof(struct stats_counter); 2274 2275 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, 2276 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2277 if (!bp->fw_stats) 2278 goto alloc_mem_err; 2279 2280 /* Set shortcuts */ 2281 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2282 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2283 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2284 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2285 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2286 bp->fw_stats_req_sz; 2287 2288 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2289 U64_HI(bp->fw_stats_req_mapping), 2290 U64_LO(bp->fw_stats_req_mapping)); 2291 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2292 U64_HI(bp->fw_stats_data_mapping), 2293 U64_LO(bp->fw_stats_data_mapping)); 2294 return 0; 2295 2296 alloc_mem_err: 2297 bnx2x_free_fw_stats_mem(bp); 2298 BNX2X_ERR("Can't allocate FW stats memory\n"); 2299 return -ENOMEM; 2300 } 2301 2302 /* send load request to mcp and analyze response */ 2303 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2304 { 2305 u32 param; 2306 2307 /* init fw_seq */ 2308 bp->fw_seq = 2309 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2310 DRV_MSG_SEQ_NUMBER_MASK); 2311 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2312 2313 /* Get current FW pulse sequence */ 2314 bp->fw_drv_pulse_wr_seq = 2315 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2316 DRV_PULSE_SEQ_MASK); 2317 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2318 2319 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2320 2321 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2322 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2323 2324 /* load request */ 2325 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2326 2327 /* if mcp fails to respond we must abort */ 2328 if (!(*load_code)) { 2329 BNX2X_ERR("MCP response failure, aborting\n"); 2330 return -EBUSY; 2331 } 2332 2333 /* If mcp refused (e.g. other port is in diagnostic mode) we 2334 * must abort 2335 */ 2336 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2337 BNX2X_ERR("MCP refused load request, aborting\n"); 2338 return -EBUSY; 2339 } 2340 return 0; 2341 } 2342 2343 /* check whether another PF has already loaded FW to chip. In 2344 * virtualized environments a pf from another VM may have already 2345 * initialized the device including loading FW 2346 */ 2347 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2348 { 2349 /* is another pf loaded on this engine? */ 2350 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2351 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2352 /* build my FW version dword */ 2353 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) + 2354 (BCM_5710_FW_MINOR_VERSION << 8) + 2355 (BCM_5710_FW_REVISION_VERSION << 16) + 2356 (BCM_5710_FW_ENGINEERING_VERSION << 24); 2357 2358 /* read loaded FW from chip */ 2359 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2360 2361 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", 2362 loaded_fw, my_fw); 2363 2364 /* abort nic load if version mismatch */ 2365 if (my_fw != loaded_fw) { 2366 if (print_err) 2367 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", 2368 loaded_fw, my_fw); 2369 else 2370 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n", 2371 loaded_fw, my_fw); 2372 return -EBUSY; 2373 } 2374 } 2375 return 0; 2376 } 2377 2378 /* returns the "mcp load_code" according to global load_count array */ 2379 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2380 { 2381 int path = BP_PATH(bp); 2382 2383 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2384 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2385 bnx2x_load_count[path][2]); 2386 bnx2x_load_count[path][0]++; 2387 bnx2x_load_count[path][1 + port]++; 2388 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2389 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2390 bnx2x_load_count[path][2]); 2391 if (bnx2x_load_count[path][0] == 1) 2392 return FW_MSG_CODE_DRV_LOAD_COMMON; 2393 else if (bnx2x_load_count[path][1 + port] == 1) 2394 return FW_MSG_CODE_DRV_LOAD_PORT; 2395 else 2396 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2397 } 2398 2399 /* mark PMF if applicable */ 2400 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2401 { 2402 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2403 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2404 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2405 bp->port.pmf = 1; 2406 /* We need the barrier to ensure the ordering between the 2407 * writing to bp->port.pmf here and reading it from the 2408 * bnx2x_periodic_task(). 2409 */ 2410 smp_mb(); 2411 } else { 2412 bp->port.pmf = 0; 2413 } 2414 2415 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2416 } 2417 2418 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2419 { 2420 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2421 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2422 (bp->common.shmem2_base)) { 2423 if (SHMEM2_HAS(bp, dcc_support)) 2424 SHMEM2_WR(bp, dcc_support, 2425 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2426 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2427 if (SHMEM2_HAS(bp, afex_driver_support)) 2428 SHMEM2_WR(bp, afex_driver_support, 2429 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2430 } 2431 2432 /* Set AFEX default VLAN tag to an invalid value */ 2433 bp->afex_def_vlan_tag = -1; 2434 } 2435 2436 /** 2437 * bnx2x_bz_fp - zero content of the fastpath structure. 2438 * 2439 * @bp: driver handle 2440 * @index: fastpath index to be zeroed 2441 * 2442 * Makes sure the contents of the bp->fp[index].napi is kept 2443 * intact. 2444 */ 2445 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2446 { 2447 struct bnx2x_fastpath *fp = &bp->fp[index]; 2448 int cos; 2449 struct napi_struct orig_napi = fp->napi; 2450 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2451 2452 /* bzero bnx2x_fastpath contents */ 2453 if (fp->tpa_info) 2454 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2455 sizeof(struct bnx2x_agg_info)); 2456 memset(fp, 0, sizeof(*fp)); 2457 2458 /* Restore the NAPI object as it has been already initialized */ 2459 fp->napi = orig_napi; 2460 fp->tpa_info = orig_tpa_info; 2461 fp->bp = bp; 2462 fp->index = index; 2463 if (IS_ETH_FP(fp)) 2464 fp->max_cos = bp->max_cos; 2465 else 2466 /* Special queues support only one CoS */ 2467 fp->max_cos = 1; 2468 2469 /* Init txdata pointers */ 2470 if (IS_FCOE_FP(fp)) 2471 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2472 if (IS_ETH_FP(fp)) 2473 for_each_cos_in_tx_queue(fp, cos) 2474 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2475 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2476 2477 /* set the tpa flag for each queue. The tpa flag determines the queue 2478 * minimal size so it must be set prior to queue memory allocation 2479 */ 2480 fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG || 2481 (bp->flags & GRO_ENABLE_FLAG && 2482 bnx2x_mtu_allows_gro(bp->dev->mtu))); 2483 if (bp->flags & TPA_ENABLE_FLAG) 2484 fp->mode = TPA_MODE_LRO; 2485 else if (bp->flags & GRO_ENABLE_FLAG) 2486 fp->mode = TPA_MODE_GRO; 2487 2488 /* We don't want TPA on an FCoE L2 ring */ 2489 if (IS_FCOE_FP(fp)) 2490 fp->disable_tpa = 1; 2491 } 2492 2493 int bnx2x_load_cnic(struct bnx2x *bp) 2494 { 2495 int i, rc, port = BP_PORT(bp); 2496 2497 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2498 2499 mutex_init(&bp->cnic_mutex); 2500 2501 if (IS_PF(bp)) { 2502 rc = bnx2x_alloc_mem_cnic(bp); 2503 if (rc) { 2504 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2505 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2506 } 2507 } 2508 2509 rc = bnx2x_alloc_fp_mem_cnic(bp); 2510 if (rc) { 2511 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2512 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2513 } 2514 2515 /* Update the number of queues with the cnic queues */ 2516 rc = bnx2x_set_real_num_queues(bp, 1); 2517 if (rc) { 2518 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2519 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2520 } 2521 2522 /* Add all CNIC NAPI objects */ 2523 bnx2x_add_all_napi_cnic(bp); 2524 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2525 bnx2x_napi_enable_cnic(bp); 2526 2527 rc = bnx2x_init_hw_func_cnic(bp); 2528 if (rc) 2529 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2530 2531 bnx2x_nic_init_cnic(bp); 2532 2533 if (IS_PF(bp)) { 2534 /* Enable Timer scan */ 2535 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2536 2537 /* setup cnic queues */ 2538 for_each_cnic_queue(bp, i) { 2539 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2540 if (rc) { 2541 BNX2X_ERR("Queue setup failed\n"); 2542 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2543 } 2544 } 2545 } 2546 2547 /* Initialize Rx filter. */ 2548 bnx2x_set_rx_mode_inner(bp); 2549 2550 /* re-read iscsi info */ 2551 bnx2x_get_iscsi_info(bp); 2552 bnx2x_setup_cnic_irq_info(bp); 2553 bnx2x_setup_cnic_info(bp); 2554 bp->cnic_loaded = true; 2555 if (bp->state == BNX2X_STATE_OPEN) 2556 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2557 2558 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2559 2560 return 0; 2561 2562 #ifndef BNX2X_STOP_ON_ERROR 2563 load_error_cnic2: 2564 /* Disable Timer scan */ 2565 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2566 2567 load_error_cnic1: 2568 bnx2x_napi_disable_cnic(bp); 2569 /* Update the number of queues without the cnic queues */ 2570 if (bnx2x_set_real_num_queues(bp, 0)) 2571 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2572 load_error_cnic0: 2573 BNX2X_ERR("CNIC-related load failed\n"); 2574 bnx2x_free_fp_mem_cnic(bp); 2575 bnx2x_free_mem_cnic(bp); 2576 return rc; 2577 #endif /* ! BNX2X_STOP_ON_ERROR */ 2578 } 2579 2580 /* must be called with rtnl_lock */ 2581 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2582 { 2583 int port = BP_PORT(bp); 2584 int i, rc = 0, load_code = 0; 2585 2586 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2587 DP(NETIF_MSG_IFUP, 2588 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2589 2590 #ifdef BNX2X_STOP_ON_ERROR 2591 if (unlikely(bp->panic)) { 2592 BNX2X_ERR("Can't load NIC when there is panic\n"); 2593 return -EPERM; 2594 } 2595 #endif 2596 2597 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2598 2599 /* zero the structure w/o any lock, before SP handler is initialized */ 2600 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2601 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2602 &bp->last_reported_link.link_report_flags); 2603 2604 if (IS_PF(bp)) 2605 /* must be called before memory allocation and HW init */ 2606 bnx2x_ilt_set_info(bp); 2607 2608 /* 2609 * Zero fastpath structures preserving invariants like napi, which are 2610 * allocated only once, fp index, max_cos, bp pointer. 2611 * Also set fp->disable_tpa and txdata_ptr. 2612 */ 2613 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2614 for_each_queue(bp, i) 2615 bnx2x_bz_fp(bp, i); 2616 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2617 bp->num_cnic_queues) * 2618 sizeof(struct bnx2x_fp_txdata)); 2619 2620 bp->fcoe_init = false; 2621 2622 /* Set the receive queues buffer size */ 2623 bnx2x_set_rx_buf_size(bp); 2624 2625 if (IS_PF(bp)) { 2626 rc = bnx2x_alloc_mem(bp); 2627 if (rc) { 2628 BNX2X_ERR("Unable to allocate bp memory\n"); 2629 return rc; 2630 } 2631 } 2632 2633 /* need to be done after alloc mem, since it's self adjusting to amount 2634 * of memory available for RSS queues 2635 */ 2636 rc = bnx2x_alloc_fp_mem(bp); 2637 if (rc) { 2638 BNX2X_ERR("Unable to allocate memory for fps\n"); 2639 LOAD_ERROR_EXIT(bp, load_error0); 2640 } 2641 2642 /* Allocated memory for FW statistics */ 2643 if (bnx2x_alloc_fw_stats_mem(bp)) 2644 LOAD_ERROR_EXIT(bp, load_error0); 2645 2646 /* request pf to initialize status blocks */ 2647 if (IS_VF(bp)) { 2648 rc = bnx2x_vfpf_init(bp); 2649 if (rc) 2650 LOAD_ERROR_EXIT(bp, load_error0); 2651 } 2652 2653 /* As long as bnx2x_alloc_mem() may possibly update 2654 * bp->num_queues, bnx2x_set_real_num_queues() should always 2655 * come after it. At this stage cnic queues are not counted. 2656 */ 2657 rc = bnx2x_set_real_num_queues(bp, 0); 2658 if (rc) { 2659 BNX2X_ERR("Unable to set real_num_queues\n"); 2660 LOAD_ERROR_EXIT(bp, load_error0); 2661 } 2662 2663 /* configure multi cos mappings in kernel. 2664 * this configuration may be overridden by a multi class queue 2665 * discipline or by a dcbx negotiation result. 2666 */ 2667 bnx2x_setup_tc(bp->dev, bp->max_cos); 2668 2669 /* Add all NAPI objects */ 2670 bnx2x_add_all_napi(bp); 2671 DP(NETIF_MSG_IFUP, "napi added\n"); 2672 bnx2x_napi_enable(bp); 2673 2674 if (IS_PF(bp)) { 2675 /* set pf load just before approaching the MCP */ 2676 bnx2x_set_pf_load(bp); 2677 2678 /* if mcp exists send load request and analyze response */ 2679 if (!BP_NOMCP(bp)) { 2680 /* attempt to load pf */ 2681 rc = bnx2x_nic_load_request(bp, &load_code); 2682 if (rc) 2683 LOAD_ERROR_EXIT(bp, load_error1); 2684 2685 /* what did mcp say? */ 2686 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2687 if (rc) { 2688 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2689 LOAD_ERROR_EXIT(bp, load_error2); 2690 } 2691 } else { 2692 load_code = bnx2x_nic_load_no_mcp(bp, port); 2693 } 2694 2695 /* mark pmf if applicable */ 2696 bnx2x_nic_load_pmf(bp, load_code); 2697 2698 /* Init Function state controlling object */ 2699 bnx2x__init_func_obj(bp); 2700 2701 /* Initialize HW */ 2702 rc = bnx2x_init_hw(bp, load_code); 2703 if (rc) { 2704 BNX2X_ERR("HW init failed, aborting\n"); 2705 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2706 LOAD_ERROR_EXIT(bp, load_error2); 2707 } 2708 } 2709 2710 bnx2x_pre_irq_nic_init(bp); 2711 2712 /* Connect to IRQs */ 2713 rc = bnx2x_setup_irqs(bp); 2714 if (rc) { 2715 BNX2X_ERR("setup irqs failed\n"); 2716 if (IS_PF(bp)) 2717 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2718 LOAD_ERROR_EXIT(bp, load_error2); 2719 } 2720 2721 /* Init per-function objects */ 2722 if (IS_PF(bp)) { 2723 /* Setup NIC internals and enable interrupts */ 2724 bnx2x_post_irq_nic_init(bp, load_code); 2725 2726 bnx2x_init_bp_objs(bp); 2727 bnx2x_iov_nic_init(bp); 2728 2729 /* Set AFEX default VLAN tag to an invalid value */ 2730 bp->afex_def_vlan_tag = -1; 2731 bnx2x_nic_load_afex_dcc(bp, load_code); 2732 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2733 rc = bnx2x_func_start(bp); 2734 if (rc) { 2735 BNX2X_ERR("Function start failed!\n"); 2736 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2737 2738 LOAD_ERROR_EXIT(bp, load_error3); 2739 } 2740 2741 /* Send LOAD_DONE command to MCP */ 2742 if (!BP_NOMCP(bp)) { 2743 load_code = bnx2x_fw_command(bp, 2744 DRV_MSG_CODE_LOAD_DONE, 0); 2745 if (!load_code) { 2746 BNX2X_ERR("MCP response failure, aborting\n"); 2747 rc = -EBUSY; 2748 LOAD_ERROR_EXIT(bp, load_error3); 2749 } 2750 } 2751 2752 /* initialize FW coalescing state machines in RAM */ 2753 bnx2x_update_coalesce(bp); 2754 } 2755 2756 /* setup the leading queue */ 2757 rc = bnx2x_setup_leading(bp); 2758 if (rc) { 2759 BNX2X_ERR("Setup leading failed!\n"); 2760 LOAD_ERROR_EXIT(bp, load_error3); 2761 } 2762 2763 /* set up the rest of the queues */ 2764 for_each_nondefault_eth_queue(bp, i) { 2765 if (IS_PF(bp)) 2766 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2767 else /* VF */ 2768 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2769 if (rc) { 2770 BNX2X_ERR("Queue %d setup failed\n", i); 2771 LOAD_ERROR_EXIT(bp, load_error3); 2772 } 2773 } 2774 2775 /* setup rss */ 2776 rc = bnx2x_init_rss(bp); 2777 if (rc) { 2778 BNX2X_ERR("PF RSS init failed\n"); 2779 LOAD_ERROR_EXIT(bp, load_error3); 2780 } 2781 2782 /* Now when Clients are configured we are ready to work */ 2783 bp->state = BNX2X_STATE_OPEN; 2784 2785 /* Configure a ucast MAC */ 2786 if (IS_PF(bp)) 2787 rc = bnx2x_set_eth_mac(bp, true); 2788 else /* vf */ 2789 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2790 true); 2791 if (rc) { 2792 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2793 LOAD_ERROR_EXIT(bp, load_error3); 2794 } 2795 2796 if (IS_PF(bp) && bp->pending_max) { 2797 bnx2x_update_max_mf_config(bp, bp->pending_max); 2798 bp->pending_max = 0; 2799 } 2800 2801 if (bp->port.pmf) { 2802 rc = bnx2x_initial_phy_init(bp, load_mode); 2803 if (rc) 2804 LOAD_ERROR_EXIT(bp, load_error3); 2805 } 2806 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2807 2808 /* Start fast path */ 2809 2810 /* Initialize Rx filter. */ 2811 bnx2x_set_rx_mode_inner(bp); 2812 2813 if (bp->flags & PTP_SUPPORTED) { 2814 bnx2x_init_ptp(bp); 2815 bnx2x_configure_ptp_filters(bp); 2816 } 2817 /* Start Tx */ 2818 switch (load_mode) { 2819 case LOAD_NORMAL: 2820 /* Tx queue should be only re-enabled */ 2821 netif_tx_wake_all_queues(bp->dev); 2822 break; 2823 2824 case LOAD_OPEN: 2825 netif_tx_start_all_queues(bp->dev); 2826 smp_mb__after_atomic(); 2827 break; 2828 2829 case LOAD_DIAG: 2830 case LOAD_LOOPBACK_EXT: 2831 bp->state = BNX2X_STATE_DIAG; 2832 break; 2833 2834 default: 2835 break; 2836 } 2837 2838 if (bp->port.pmf) 2839 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2840 else 2841 bnx2x__link_status_update(bp); 2842 2843 /* start the timer */ 2844 mod_timer(&bp->timer, jiffies + bp->current_interval); 2845 2846 if (CNIC_ENABLED(bp)) 2847 bnx2x_load_cnic(bp); 2848 2849 if (IS_PF(bp)) 2850 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 2851 2852 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2853 /* mark driver is loaded in shmem2 */ 2854 u32 val; 2855 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2856 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2857 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2858 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2859 } 2860 2861 /* Wait for all pending SP commands to complete */ 2862 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2863 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2864 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2865 return -EBUSY; 2866 } 2867 2868 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2869 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2870 bnx2x_dcbx_init(bp, false); 2871 2872 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2873 2874 return 0; 2875 2876 #ifndef BNX2X_STOP_ON_ERROR 2877 load_error3: 2878 if (IS_PF(bp)) { 2879 bnx2x_int_disable_sync(bp, 1); 2880 2881 /* Clean queueable objects */ 2882 bnx2x_squeeze_objects(bp); 2883 } 2884 2885 /* Free SKBs, SGEs, TPA pool and driver internals */ 2886 bnx2x_free_skbs(bp); 2887 for_each_rx_queue(bp, i) 2888 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2889 2890 /* Release IRQs */ 2891 bnx2x_free_irq(bp); 2892 load_error2: 2893 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2894 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2895 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2896 } 2897 2898 bp->port.pmf = 0; 2899 load_error1: 2900 bnx2x_napi_disable(bp); 2901 bnx2x_del_all_napi(bp); 2902 2903 /* clear pf_load status, as it was already set */ 2904 if (IS_PF(bp)) 2905 bnx2x_clear_pf_load(bp); 2906 load_error0: 2907 bnx2x_free_fw_stats_mem(bp); 2908 bnx2x_free_fp_mem(bp); 2909 bnx2x_free_mem(bp); 2910 2911 return rc; 2912 #endif /* ! BNX2X_STOP_ON_ERROR */ 2913 } 2914 2915 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2916 { 2917 u8 rc = 0, cos, i; 2918 2919 /* Wait until tx fastpath tasks complete */ 2920 for_each_tx_queue(bp, i) { 2921 struct bnx2x_fastpath *fp = &bp->fp[i]; 2922 2923 for_each_cos_in_tx_queue(fp, cos) 2924 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2925 if (rc) 2926 return rc; 2927 } 2928 return 0; 2929 } 2930 2931 /* must be called with rtnl_lock */ 2932 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2933 { 2934 int i; 2935 bool global = false; 2936 2937 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 2938 2939 /* mark driver is unloaded in shmem2 */ 2940 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2941 u32 val; 2942 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2943 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2944 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 2945 } 2946 2947 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 2948 (bp->state == BNX2X_STATE_CLOSED || 2949 bp->state == BNX2X_STATE_ERROR)) { 2950 /* We can get here if the driver has been unloaded 2951 * during parity error recovery and is either waiting for a 2952 * leader to complete or for other functions to unload and 2953 * then ifdown has been issued. In this case we want to 2954 * unload and let other functions to complete a recovery 2955 * process. 2956 */ 2957 bp->recovery_state = BNX2X_RECOVERY_DONE; 2958 bp->is_leader = 0; 2959 bnx2x_release_leader_lock(bp); 2960 smp_mb(); 2961 2962 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 2963 BNX2X_ERR("Can't unload in closed or error state\n"); 2964 return -EINVAL; 2965 } 2966 2967 /* Nothing to do during unload if previous bnx2x_nic_load() 2968 * have not completed successfully - all resources are released. 2969 * 2970 * we can get here only after unsuccessful ndo_* callback, during which 2971 * dev->IFF_UP flag is still on. 2972 */ 2973 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 2974 return 0; 2975 2976 /* It's important to set the bp->state to the value different from 2977 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 2978 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 2979 */ 2980 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 2981 smp_mb(); 2982 2983 /* indicate to VFs that the PF is going down */ 2984 bnx2x_iov_channel_down(bp); 2985 2986 if (CNIC_LOADED(bp)) 2987 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 2988 2989 /* Stop Tx */ 2990 bnx2x_tx_disable(bp); 2991 netdev_reset_tc(bp->dev); 2992 2993 bp->rx_mode = BNX2X_RX_MODE_NONE; 2994 2995 del_timer_sync(&bp->timer); 2996 2997 if (IS_PF(bp)) { 2998 /* Set ALWAYS_ALIVE bit in shmem */ 2999 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 3000 bnx2x_drv_pulse(bp); 3001 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 3002 bnx2x_save_statistics(bp); 3003 } 3004 3005 /* wait till consumers catch up with producers in all queues */ 3006 bnx2x_drain_tx_queues(bp); 3007 3008 /* if VF indicate to PF this function is going down (PF will delete sp 3009 * elements and clear initializations 3010 */ 3011 if (IS_VF(bp)) 3012 bnx2x_vfpf_close_vf(bp); 3013 else if (unload_mode != UNLOAD_RECOVERY) 3014 /* if this is a normal/close unload need to clean up chip*/ 3015 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 3016 else { 3017 /* Send the UNLOAD_REQUEST to the MCP */ 3018 bnx2x_send_unload_req(bp, unload_mode); 3019 3020 /* Prevent transactions to host from the functions on the 3021 * engine that doesn't reset global blocks in case of global 3022 * attention once global blocks are reset and gates are opened 3023 * (the engine which leader will perform the recovery 3024 * last). 3025 */ 3026 if (!CHIP_IS_E1x(bp)) 3027 bnx2x_pf_disable(bp); 3028 3029 /* Disable HW interrupts, NAPI */ 3030 bnx2x_netif_stop(bp, 1); 3031 /* Delete all NAPI objects */ 3032 bnx2x_del_all_napi(bp); 3033 if (CNIC_LOADED(bp)) 3034 bnx2x_del_all_napi_cnic(bp); 3035 /* Release IRQs */ 3036 bnx2x_free_irq(bp); 3037 3038 /* Report UNLOAD_DONE to MCP */ 3039 bnx2x_send_unload_done(bp, false); 3040 } 3041 3042 /* 3043 * At this stage no more interrupts will arrive so we may safely clean 3044 * the queueable objects here in case they failed to get cleaned so far. 3045 */ 3046 if (IS_PF(bp)) 3047 bnx2x_squeeze_objects(bp); 3048 3049 /* There should be no more pending SP commands at this stage */ 3050 bp->sp_state = 0; 3051 3052 bp->port.pmf = 0; 3053 3054 /* clear pending work in rtnl task */ 3055 bp->sp_rtnl_state = 0; 3056 smp_mb(); 3057 3058 /* Free SKBs, SGEs, TPA pool and driver internals */ 3059 bnx2x_free_skbs(bp); 3060 if (CNIC_LOADED(bp)) 3061 bnx2x_free_skbs_cnic(bp); 3062 for_each_rx_queue(bp, i) 3063 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3064 3065 bnx2x_free_fp_mem(bp); 3066 if (CNIC_LOADED(bp)) 3067 bnx2x_free_fp_mem_cnic(bp); 3068 3069 if (IS_PF(bp)) { 3070 if (CNIC_LOADED(bp)) 3071 bnx2x_free_mem_cnic(bp); 3072 } 3073 bnx2x_free_mem(bp); 3074 3075 bp->state = BNX2X_STATE_CLOSED; 3076 bp->cnic_loaded = false; 3077 3078 /* Clear driver version indication in shmem */ 3079 if (IS_PF(bp)) 3080 bnx2x_update_mng_version(bp); 3081 3082 /* Check if there are pending parity attentions. If there are - set 3083 * RECOVERY_IN_PROGRESS. 3084 */ 3085 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3086 bnx2x_set_reset_in_progress(bp); 3087 3088 /* Set RESET_IS_GLOBAL if needed */ 3089 if (global) 3090 bnx2x_set_reset_global(bp); 3091 } 3092 3093 /* The last driver must disable a "close the gate" if there is no 3094 * parity attention or "process kill" pending. 3095 */ 3096 if (IS_PF(bp) && 3097 !bnx2x_clear_pf_load(bp) && 3098 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3099 bnx2x_disable_close_the_gate(bp); 3100 3101 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3102 3103 return 0; 3104 } 3105 3106 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3107 { 3108 u16 pmcsr; 3109 3110 /* If there is no power capability, silently succeed */ 3111 if (!bp->pdev->pm_cap) { 3112 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3113 return 0; 3114 } 3115 3116 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3117 3118 switch (state) { 3119 case PCI_D0: 3120 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3121 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3122 PCI_PM_CTRL_PME_STATUS)); 3123 3124 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3125 /* delay required during transition out of D3hot */ 3126 msleep(20); 3127 break; 3128 3129 case PCI_D3hot: 3130 /* If there are other clients above don't 3131 shut down the power */ 3132 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3133 return 0; 3134 /* Don't shut down the power for emulation and FPGA */ 3135 if (CHIP_REV_IS_SLOW(bp)) 3136 return 0; 3137 3138 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3139 pmcsr |= 3; 3140 3141 if (bp->wol) 3142 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3143 3144 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3145 pmcsr); 3146 3147 /* No more memory access after this point until 3148 * device is brought back to D0. 3149 */ 3150 break; 3151 3152 default: 3153 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3154 return -EINVAL; 3155 } 3156 return 0; 3157 } 3158 3159 /* 3160 * net_device service functions 3161 */ 3162 static int bnx2x_poll(struct napi_struct *napi, int budget) 3163 { 3164 int work_done = 0; 3165 u8 cos; 3166 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3167 napi); 3168 struct bnx2x *bp = fp->bp; 3169 3170 while (1) { 3171 #ifdef BNX2X_STOP_ON_ERROR 3172 if (unlikely(bp->panic)) { 3173 napi_complete(napi); 3174 return 0; 3175 } 3176 #endif 3177 if (!bnx2x_fp_lock_napi(fp)) 3178 return work_done; 3179 3180 for_each_cos_in_tx_queue(fp, cos) 3181 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3182 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3183 3184 if (bnx2x_has_rx_work(fp)) { 3185 work_done += bnx2x_rx_int(fp, budget - work_done); 3186 3187 /* must not complete if we consumed full budget */ 3188 if (work_done >= budget) { 3189 bnx2x_fp_unlock_napi(fp); 3190 break; 3191 } 3192 } 3193 3194 /* Fall out from the NAPI loop if needed */ 3195 if (!bnx2x_fp_unlock_napi(fp) && 3196 !(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3197 3198 /* No need to update SB for FCoE L2 ring as long as 3199 * it's connected to the default SB and the SB 3200 * has been updated when NAPI was scheduled. 3201 */ 3202 if (IS_FCOE_FP(fp)) { 3203 napi_complete(napi); 3204 break; 3205 } 3206 bnx2x_update_fpsb_idx(fp); 3207 /* bnx2x_has_rx_work() reads the status block, 3208 * thus we need to ensure that status block indices 3209 * have been actually read (bnx2x_update_fpsb_idx) 3210 * prior to this check (bnx2x_has_rx_work) so that 3211 * we won't write the "newer" value of the status block 3212 * to IGU (if there was a DMA right after 3213 * bnx2x_has_rx_work and if there is no rmb, the memory 3214 * reading (bnx2x_update_fpsb_idx) may be postponed 3215 * to right before bnx2x_ack_sb). In this case there 3216 * will never be another interrupt until there is 3217 * another update of the status block, while there 3218 * is still unhandled work. 3219 */ 3220 rmb(); 3221 3222 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3223 napi_complete(napi); 3224 /* Re-enable interrupts */ 3225 DP(NETIF_MSG_RX_STATUS, 3226 "Update index to %d\n", fp->fp_hc_idx); 3227 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3228 le16_to_cpu(fp->fp_hc_idx), 3229 IGU_INT_ENABLE, 1); 3230 break; 3231 } 3232 } 3233 } 3234 3235 return work_done; 3236 } 3237 3238 #ifdef CONFIG_NET_RX_BUSY_POLL 3239 /* must be called with local_bh_disable()d */ 3240 int bnx2x_low_latency_recv(struct napi_struct *napi) 3241 { 3242 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3243 napi); 3244 struct bnx2x *bp = fp->bp; 3245 int found = 0; 3246 3247 if ((bp->state == BNX2X_STATE_CLOSED) || 3248 (bp->state == BNX2X_STATE_ERROR) || 3249 (bp->flags & (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG))) 3250 return LL_FLUSH_FAILED; 3251 3252 if (!bnx2x_fp_lock_poll(fp)) 3253 return LL_FLUSH_BUSY; 3254 3255 if (bnx2x_has_rx_work(fp)) 3256 found = bnx2x_rx_int(fp, 4); 3257 3258 bnx2x_fp_unlock_poll(fp); 3259 3260 return found; 3261 } 3262 #endif 3263 3264 /* we split the first BD into headers and data BDs 3265 * to ease the pain of our fellow microcode engineers 3266 * we use one mapping for both BDs 3267 */ 3268 static u16 bnx2x_tx_split(struct bnx2x *bp, 3269 struct bnx2x_fp_txdata *txdata, 3270 struct sw_tx_bd *tx_buf, 3271 struct eth_tx_start_bd **tx_bd, u16 hlen, 3272 u16 bd_prod) 3273 { 3274 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3275 struct eth_tx_bd *d_tx_bd; 3276 dma_addr_t mapping; 3277 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3278 3279 /* first fix first BD */ 3280 h_tx_bd->nbytes = cpu_to_le16(hlen); 3281 3282 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3283 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3284 3285 /* now get a new data BD 3286 * (after the pbd) and fill it */ 3287 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3288 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3289 3290 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3291 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3292 3293 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3294 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3295 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3296 3297 /* this marks the BD as one that has no individual mapping */ 3298 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3299 3300 DP(NETIF_MSG_TX_QUEUED, 3301 "TSO split data size is %d (%x:%x)\n", 3302 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3303 3304 /* update tx_bd */ 3305 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3306 3307 return bd_prod; 3308 } 3309 3310 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3311 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3312 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3313 { 3314 __sum16 tsum = (__force __sum16) csum; 3315 3316 if (fix > 0) 3317 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3318 csum_partial(t_header - fix, fix, 0))); 3319 3320 else if (fix < 0) 3321 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3322 csum_partial(t_header, -fix, 0))); 3323 3324 return bswab16(tsum); 3325 } 3326 3327 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3328 { 3329 u32 rc; 3330 __u8 prot = 0; 3331 __be16 protocol; 3332 3333 if (skb->ip_summed != CHECKSUM_PARTIAL) 3334 return XMIT_PLAIN; 3335 3336 protocol = vlan_get_protocol(skb); 3337 if (protocol == htons(ETH_P_IPV6)) { 3338 rc = XMIT_CSUM_V6; 3339 prot = ipv6_hdr(skb)->nexthdr; 3340 } else { 3341 rc = XMIT_CSUM_V4; 3342 prot = ip_hdr(skb)->protocol; 3343 } 3344 3345 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3346 if (inner_ip_hdr(skb)->version == 6) { 3347 rc |= XMIT_CSUM_ENC_V6; 3348 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3349 rc |= XMIT_CSUM_TCP; 3350 } else { 3351 rc |= XMIT_CSUM_ENC_V4; 3352 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3353 rc |= XMIT_CSUM_TCP; 3354 } 3355 } 3356 if (prot == IPPROTO_TCP) 3357 rc |= XMIT_CSUM_TCP; 3358 3359 if (skb_is_gso(skb)) { 3360 if (skb_is_gso_v6(skb)) { 3361 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3362 if (rc & XMIT_CSUM_ENC) 3363 rc |= XMIT_GSO_ENC_V6; 3364 } else { 3365 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3366 if (rc & XMIT_CSUM_ENC) 3367 rc |= XMIT_GSO_ENC_V4; 3368 } 3369 } 3370 3371 return rc; 3372 } 3373 3374 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) 3375 /* check if packet requires linearization (packet is too fragmented) 3376 no need to check fragmentation if page size > 8K (there will be no 3377 violation to FW restrictions) */ 3378 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3379 u32 xmit_type) 3380 { 3381 int to_copy = 0; 3382 int hlen = 0; 3383 int first_bd_sz = 0; 3384 3385 /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3386 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) { 3387 3388 if (xmit_type & XMIT_GSO) { 3389 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3390 /* Check if LSO packet needs to be copied: 3391 3 = 1 (for headers BD) + 2 (for PBD and last BD) */ 3392 int wnd_size = MAX_FETCH_BD - 3; 3393 /* Number of windows to check */ 3394 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3395 int wnd_idx = 0; 3396 int frag_idx = 0; 3397 u32 wnd_sum = 0; 3398 3399 /* Headers length */ 3400 hlen = (int)(skb_transport_header(skb) - skb->data) + 3401 tcp_hdrlen(skb); 3402 3403 /* Amount of data (w/o headers) on linear part of SKB*/ 3404 first_bd_sz = skb_headlen(skb) - hlen; 3405 3406 wnd_sum = first_bd_sz; 3407 3408 /* Calculate the first sum - it's special */ 3409 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3410 wnd_sum += 3411 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3412 3413 /* If there was data on linear skb data - check it */ 3414 if (first_bd_sz > 0) { 3415 if (unlikely(wnd_sum < lso_mss)) { 3416 to_copy = 1; 3417 goto exit_lbl; 3418 } 3419 3420 wnd_sum -= first_bd_sz; 3421 } 3422 3423 /* Others are easier: run through the frag list and 3424 check all windows */ 3425 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3426 wnd_sum += 3427 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3428 3429 if (unlikely(wnd_sum < lso_mss)) { 3430 to_copy = 1; 3431 break; 3432 } 3433 wnd_sum -= 3434 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3435 } 3436 } else { 3437 /* in non-LSO too fragmented packet should always 3438 be linearized */ 3439 to_copy = 1; 3440 } 3441 } 3442 3443 exit_lbl: 3444 if (unlikely(to_copy)) 3445 DP(NETIF_MSG_TX_QUEUED, 3446 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3447 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3448 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3449 3450 return to_copy; 3451 } 3452 #endif 3453 3454 /** 3455 * bnx2x_set_pbd_gso - update PBD in GSO case. 3456 * 3457 * @skb: packet skb 3458 * @pbd: parse BD 3459 * @xmit_type: xmit flags 3460 */ 3461 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3462 struct eth_tx_parse_bd_e1x *pbd, 3463 u32 xmit_type) 3464 { 3465 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3466 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3467 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3468 3469 if (xmit_type & XMIT_GSO_V4) { 3470 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3471 pbd->tcp_pseudo_csum = 3472 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3473 ip_hdr(skb)->daddr, 3474 0, IPPROTO_TCP, 0)); 3475 } else { 3476 pbd->tcp_pseudo_csum = 3477 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3478 &ipv6_hdr(skb)->daddr, 3479 0, IPPROTO_TCP, 0)); 3480 } 3481 3482 pbd->global_data |= 3483 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3484 } 3485 3486 /** 3487 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3488 * 3489 * @bp: driver handle 3490 * @skb: packet skb 3491 * @parsing_data: data to be updated 3492 * @xmit_type: xmit flags 3493 * 3494 * 57712/578xx related, when skb has encapsulation 3495 */ 3496 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3497 u32 *parsing_data, u32 xmit_type) 3498 { 3499 *parsing_data |= 3500 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3501 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3502 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3503 3504 if (xmit_type & XMIT_CSUM_TCP) { 3505 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3506 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3507 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3508 3509 return skb_inner_transport_header(skb) + 3510 inner_tcp_hdrlen(skb) - skb->data; 3511 } 3512 3513 /* We support checksum offload for TCP and UDP only. 3514 * No need to pass the UDP header length - it's a constant. 3515 */ 3516 return skb_inner_transport_header(skb) + 3517 sizeof(struct udphdr) - skb->data; 3518 } 3519 3520 /** 3521 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3522 * 3523 * @bp: driver handle 3524 * @skb: packet skb 3525 * @parsing_data: data to be updated 3526 * @xmit_type: xmit flags 3527 * 3528 * 57712/578xx related 3529 */ 3530 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3531 u32 *parsing_data, u32 xmit_type) 3532 { 3533 *parsing_data |= 3534 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3535 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3536 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3537 3538 if (xmit_type & XMIT_CSUM_TCP) { 3539 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3540 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3541 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3542 3543 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; 3544 } 3545 /* We support checksum offload for TCP and UDP only. 3546 * No need to pass the UDP header length - it's a constant. 3547 */ 3548 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; 3549 } 3550 3551 /* set FW indication according to inner or outer protocols if tunneled */ 3552 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3553 struct eth_tx_start_bd *tx_start_bd, 3554 u32 xmit_type) 3555 { 3556 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3557 3558 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3559 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3560 3561 if (!(xmit_type & XMIT_CSUM_TCP)) 3562 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3563 } 3564 3565 /** 3566 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3567 * 3568 * @bp: driver handle 3569 * @skb: packet skb 3570 * @pbd: parse BD to be updated 3571 * @xmit_type: xmit flags 3572 */ 3573 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3574 struct eth_tx_parse_bd_e1x *pbd, 3575 u32 xmit_type) 3576 { 3577 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3578 3579 /* for now NS flag is not used in Linux */ 3580 pbd->global_data = 3581 cpu_to_le16(hlen | 3582 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3583 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3584 3585 pbd->ip_hlen_w = (skb_transport_header(skb) - 3586 skb_network_header(skb)) >> 1; 3587 3588 hlen += pbd->ip_hlen_w; 3589 3590 /* We support checksum offload for TCP and UDP only */ 3591 if (xmit_type & XMIT_CSUM_TCP) 3592 hlen += tcp_hdrlen(skb) / 2; 3593 else 3594 hlen += sizeof(struct udphdr) / 2; 3595 3596 pbd->total_hlen_w = cpu_to_le16(hlen); 3597 hlen = hlen*2; 3598 3599 if (xmit_type & XMIT_CSUM_TCP) { 3600 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3601 3602 } else { 3603 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3604 3605 DP(NETIF_MSG_TX_QUEUED, 3606 "hlen %d fix %d csum before fix %x\n", 3607 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3608 3609 /* HW bug: fixup the CSUM */ 3610 pbd->tcp_pseudo_csum = 3611 bnx2x_csum_fix(skb_transport_header(skb), 3612 SKB_CS(skb), fix); 3613 3614 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3615 pbd->tcp_pseudo_csum); 3616 } 3617 3618 return hlen; 3619 } 3620 3621 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3622 struct eth_tx_parse_bd_e2 *pbd_e2, 3623 struct eth_tx_parse_2nd_bd *pbd2, 3624 u16 *global_data, 3625 u32 xmit_type) 3626 { 3627 u16 hlen_w = 0; 3628 u8 outerip_off, outerip_len = 0; 3629 3630 /* from outer IP to transport */ 3631 hlen_w = (skb_inner_transport_header(skb) - 3632 skb_network_header(skb)) >> 1; 3633 3634 /* transport len */ 3635 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3636 3637 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3638 3639 /* outer IP header info */ 3640 if (xmit_type & XMIT_CSUM_V4) { 3641 struct iphdr *iph = ip_hdr(skb); 3642 u32 csum = (__force u32)(~iph->check) - 3643 (__force u32)iph->tot_len - 3644 (__force u32)iph->frag_off; 3645 3646 outerip_len = iph->ihl << 1; 3647 3648 pbd2->fw_ip_csum_wo_len_flags_frag = 3649 bswab16(csum_fold((__force __wsum)csum)); 3650 } else { 3651 pbd2->fw_ip_hdr_to_payload_w = 3652 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3653 pbd_e2->data.tunnel_data.flags |= 3654 ETH_TUNNEL_DATA_IP_HDR_TYPE_OUTER; 3655 } 3656 3657 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3658 3659 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3660 3661 /* inner IP header info */ 3662 if (xmit_type & XMIT_CSUM_ENC_V4) { 3663 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3664 3665 pbd_e2->data.tunnel_data.pseudo_csum = 3666 bswab16(~csum_tcpudp_magic( 3667 inner_ip_hdr(skb)->saddr, 3668 inner_ip_hdr(skb)->daddr, 3669 0, IPPROTO_TCP, 0)); 3670 } else { 3671 pbd_e2->data.tunnel_data.pseudo_csum = 3672 bswab16(~csum_ipv6_magic( 3673 &inner_ipv6_hdr(skb)->saddr, 3674 &inner_ipv6_hdr(skb)->daddr, 3675 0, IPPROTO_TCP, 0)); 3676 } 3677 3678 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3679 3680 *global_data |= 3681 outerip_off | 3682 (outerip_len << 3683 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3684 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3685 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3686 3687 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3688 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3689 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3690 } 3691 } 3692 3693 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data, 3694 u32 xmit_type) 3695 { 3696 struct ipv6hdr *ipv6; 3697 3698 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6))) 3699 return; 3700 3701 if (xmit_type & XMIT_GSO_ENC_V6) 3702 ipv6 = inner_ipv6_hdr(skb); 3703 else /* XMIT_GSO_V6 */ 3704 ipv6 = ipv6_hdr(skb); 3705 3706 if (ipv6->nexthdr == NEXTHDR_IPV6) 3707 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3708 } 3709 3710 /* called with netif_tx_lock 3711 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3712 * netif_wake_queue() 3713 */ 3714 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3715 { 3716 struct bnx2x *bp = netdev_priv(dev); 3717 3718 struct netdev_queue *txq; 3719 struct bnx2x_fp_txdata *txdata; 3720 struct sw_tx_bd *tx_buf; 3721 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3722 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3723 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3724 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3725 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3726 u32 pbd_e2_parsing_data = 0; 3727 u16 pkt_prod, bd_prod; 3728 int nbd, txq_index; 3729 dma_addr_t mapping; 3730 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3731 int i; 3732 u8 hlen = 0; 3733 __le16 pkt_size = 0; 3734 struct ethhdr *eth; 3735 u8 mac_type = UNICAST_ADDRESS; 3736 3737 #ifdef BNX2X_STOP_ON_ERROR 3738 if (unlikely(bp->panic)) 3739 return NETDEV_TX_BUSY; 3740 #endif 3741 3742 txq_index = skb_get_queue_mapping(skb); 3743 txq = netdev_get_tx_queue(dev, txq_index); 3744 3745 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3746 3747 txdata = &bp->bnx2x_txq[txq_index]; 3748 3749 /* enable this debug print to view the transmission queue being used 3750 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3751 txq_index, fp_index, txdata_index); */ 3752 3753 /* enable this debug print to view the transmission details 3754 DP(NETIF_MSG_TX_QUEUED, 3755 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3756 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3757 3758 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3759 skb_shinfo(skb)->nr_frags + 3760 BDS_PER_TX_PKT + 3761 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3762 /* Handle special storage cases separately */ 3763 if (txdata->tx_ring_size == 0) { 3764 struct bnx2x_eth_q_stats *q_stats = 3765 bnx2x_fp_qstats(bp, txdata->parent_fp); 3766 q_stats->driver_filtered_tx_pkt++; 3767 dev_kfree_skb(skb); 3768 return NETDEV_TX_OK; 3769 } 3770 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3771 netif_tx_stop_queue(txq); 3772 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3773 3774 return NETDEV_TX_BUSY; 3775 } 3776 3777 DP(NETIF_MSG_TX_QUEUED, 3778 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3779 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3780 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3781 skb->len); 3782 3783 eth = (struct ethhdr *)skb->data; 3784 3785 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3786 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3787 if (is_broadcast_ether_addr(eth->h_dest)) 3788 mac_type = BROADCAST_ADDRESS; 3789 else 3790 mac_type = MULTICAST_ADDRESS; 3791 } 3792 3793 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3794 /* First, check if we need to linearize the skb (due to FW 3795 restrictions). No need to check fragmentation if page size > 8K 3796 (there will be no violation to FW restrictions) */ 3797 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3798 /* Statistics of linearization */ 3799 bp->lin_cnt++; 3800 if (skb_linearize(skb) != 0) { 3801 DP(NETIF_MSG_TX_QUEUED, 3802 "SKB linearization failed - silently dropping this SKB\n"); 3803 dev_kfree_skb_any(skb); 3804 return NETDEV_TX_OK; 3805 } 3806 } 3807 #endif 3808 /* Map skb linear data for DMA */ 3809 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3810 skb_headlen(skb), DMA_TO_DEVICE); 3811 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3812 DP(NETIF_MSG_TX_QUEUED, 3813 "SKB mapping failed - silently dropping this SKB\n"); 3814 dev_kfree_skb_any(skb); 3815 return NETDEV_TX_OK; 3816 } 3817 /* 3818 Please read carefully. First we use one BD which we mark as start, 3819 then we have a parsing info BD (used for TSO or xsum), 3820 and only then we have the rest of the TSO BDs. 3821 (don't forget to mark the last one as last, 3822 and to unmap only AFTER you write to the BD ...) 3823 And above all, all pdb sizes are in words - NOT DWORDS! 3824 */ 3825 3826 /* get current pkt produced now - advance it just before sending packet 3827 * since mapping of pages may fail and cause packet to be dropped 3828 */ 3829 pkt_prod = txdata->tx_pkt_prod; 3830 bd_prod = TX_BD(txdata->tx_bd_prod); 3831 3832 /* get a tx_buf and first BD 3833 * tx_start_bd may be changed during SPLIT, 3834 * but first_bd will always stay first 3835 */ 3836 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3837 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3838 first_bd = tx_start_bd; 3839 3840 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3841 3842 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3843 if (!(bp->flags & TX_TIMESTAMPING_EN)) { 3844 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n"); 3845 } else if (bp->ptp_tx_skb) { 3846 BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n"); 3847 } else { 3848 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3849 /* schedule check for Tx timestamp */ 3850 bp->ptp_tx_skb = skb_get(skb); 3851 bp->ptp_tx_start = jiffies; 3852 schedule_work(&bp->ptp_task); 3853 } 3854 } 3855 3856 /* header nbd: indirectly zero other flags! */ 3857 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3858 3859 /* remember the first BD of the packet */ 3860 tx_buf->first_bd = txdata->tx_bd_prod; 3861 tx_buf->skb = skb; 3862 tx_buf->flags = 0; 3863 3864 DP(NETIF_MSG_TX_QUEUED, 3865 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3866 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3867 3868 if (vlan_tx_tag_present(skb)) { 3869 tx_start_bd->vlan_or_ethertype = 3870 cpu_to_le16(vlan_tx_tag_get(skb)); 3871 tx_start_bd->bd_flags.as_bitfield |= 3872 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3873 } else { 3874 /* when transmitting in a vf, start bd must hold the ethertype 3875 * for fw to enforce it 3876 */ 3877 #ifndef BNX2X_STOP_ON_ERROR 3878 if (IS_VF(bp)) 3879 #endif 3880 tx_start_bd->vlan_or_ethertype = 3881 cpu_to_le16(ntohs(eth->h_proto)); 3882 #ifndef BNX2X_STOP_ON_ERROR 3883 else 3884 /* used by FW for packet accounting */ 3885 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3886 #endif 3887 } 3888 3889 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3890 3891 /* turn on parsing and get a BD */ 3892 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3893 3894 if (xmit_type & XMIT_CSUM) 3895 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3896 3897 if (!CHIP_IS_E1x(bp)) { 3898 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3899 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3900 3901 if (xmit_type & XMIT_CSUM_ENC) { 3902 u16 global_data = 0; 3903 3904 /* Set PBD in enc checksum offload case */ 3905 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3906 &pbd_e2_parsing_data, 3907 xmit_type); 3908 3909 /* turn on 2nd parsing and get a BD */ 3910 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3911 3912 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3913 3914 memset(pbd2, 0, sizeof(*pbd2)); 3915 3916 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3917 (skb_inner_network_header(skb) - 3918 skb->data) >> 1; 3919 3920 if (xmit_type & XMIT_GSO_ENC) 3921 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3922 &global_data, 3923 xmit_type); 3924 3925 pbd2->global_data = cpu_to_le16(global_data); 3926 3927 /* add addition parse BD indication to start BD */ 3928 SET_FLAG(tx_start_bd->general_data, 3929 ETH_TX_START_BD_PARSE_NBDS, 1); 3930 /* set encapsulation flag in start BD */ 3931 SET_FLAG(tx_start_bd->general_data, 3932 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3933 3934 tx_buf->flags |= BNX2X_HAS_SECOND_PBD; 3935 3936 nbd++; 3937 } else if (xmit_type & XMIT_CSUM) { 3938 /* Set PBD in checksum offload case w/o encapsulation */ 3939 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3940 &pbd_e2_parsing_data, 3941 xmit_type); 3942 } 3943 3944 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type); 3945 /* Add the macs to the parsing BD if this is a vf or if 3946 * Tx Switching is enabled. 3947 */ 3948 if (IS_VF(bp)) { 3949 /* override GRE parameters in BD */ 3950 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3951 &pbd_e2->data.mac_addr.src_mid, 3952 &pbd_e2->data.mac_addr.src_lo, 3953 eth->h_source); 3954 3955 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 3956 &pbd_e2->data.mac_addr.dst_mid, 3957 &pbd_e2->data.mac_addr.dst_lo, 3958 eth->h_dest); 3959 } else { 3960 if (bp->flags & TX_SWITCHING) 3961 bnx2x_set_fw_mac_addr( 3962 &pbd_e2->data.mac_addr.dst_hi, 3963 &pbd_e2->data.mac_addr.dst_mid, 3964 &pbd_e2->data.mac_addr.dst_lo, 3965 eth->h_dest); 3966 #ifdef BNX2X_STOP_ON_ERROR 3967 /* Enforce security is always set in Stop on Error - 3968 * source mac should be present in the parsing BD 3969 */ 3970 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3971 &pbd_e2->data.mac_addr.src_mid, 3972 &pbd_e2->data.mac_addr.src_lo, 3973 eth->h_source); 3974 #endif 3975 } 3976 3977 SET_FLAG(pbd_e2_parsing_data, 3978 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 3979 } else { 3980 u16 global_data = 0; 3981 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 3982 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 3983 /* Set PBD in checksum offload case */ 3984 if (xmit_type & XMIT_CSUM) 3985 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 3986 3987 SET_FLAG(global_data, 3988 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 3989 pbd_e1x->global_data |= cpu_to_le16(global_data); 3990 } 3991 3992 /* Setup the data pointer of the first BD of the packet */ 3993 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3994 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3995 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 3996 pkt_size = tx_start_bd->nbytes; 3997 3998 DP(NETIF_MSG_TX_QUEUED, 3999 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 4000 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 4001 le16_to_cpu(tx_start_bd->nbytes), 4002 tx_start_bd->bd_flags.as_bitfield, 4003 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 4004 4005 if (xmit_type & XMIT_GSO) { 4006 4007 DP(NETIF_MSG_TX_QUEUED, 4008 "TSO packet len %d hlen %d total len %d tso size %d\n", 4009 skb->len, hlen, skb_headlen(skb), 4010 skb_shinfo(skb)->gso_size); 4011 4012 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 4013 4014 if (unlikely(skb_headlen(skb) > hlen)) { 4015 nbd++; 4016 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 4017 &tx_start_bd, hlen, 4018 bd_prod); 4019 } 4020 if (!CHIP_IS_E1x(bp)) 4021 pbd_e2_parsing_data |= 4022 (skb_shinfo(skb)->gso_size << 4023 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 4024 ETH_TX_PARSE_BD_E2_LSO_MSS; 4025 else 4026 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); 4027 } 4028 4029 /* Set the PBD's parsing_data field if not zero 4030 * (for the chips newer than 57711). 4031 */ 4032 if (pbd_e2_parsing_data) 4033 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 4034 4035 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 4036 4037 /* Handle fragmented skb */ 4038 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4039 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4040 4041 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 4042 skb_frag_size(frag), DMA_TO_DEVICE); 4043 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 4044 unsigned int pkts_compl = 0, bytes_compl = 0; 4045 4046 DP(NETIF_MSG_TX_QUEUED, 4047 "Unable to map page - dropping packet...\n"); 4048 4049 /* we need unmap all buffers already mapped 4050 * for this SKB; 4051 * first_bd->nbd need to be properly updated 4052 * before call to bnx2x_free_tx_pkt 4053 */ 4054 first_bd->nbd = cpu_to_le16(nbd); 4055 bnx2x_free_tx_pkt(bp, txdata, 4056 TX_BD(txdata->tx_pkt_prod), 4057 &pkts_compl, &bytes_compl); 4058 return NETDEV_TX_OK; 4059 } 4060 4061 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4062 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4063 if (total_pkt_bd == NULL) 4064 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4065 4066 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4067 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4068 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 4069 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 4070 nbd++; 4071 4072 DP(NETIF_MSG_TX_QUEUED, 4073 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 4074 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 4075 le16_to_cpu(tx_data_bd->nbytes)); 4076 } 4077 4078 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 4079 4080 /* update with actual num BDs */ 4081 first_bd->nbd = cpu_to_le16(nbd); 4082 4083 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4084 4085 /* now send a tx doorbell, counting the next BD 4086 * if the packet contains or ends with it 4087 */ 4088 if (TX_BD_POFF(bd_prod) < nbd) 4089 nbd++; 4090 4091 /* total_pkt_bytes should be set on the first data BD if 4092 * it's not an LSO packet and there is more than one 4093 * data BD. In this case pkt_size is limited by an MTU value. 4094 * However we prefer to set it for an LSO packet (while we don't 4095 * have to) in order to save some CPU cycles in a none-LSO 4096 * case, when we much more care about them. 4097 */ 4098 if (total_pkt_bd != NULL) 4099 total_pkt_bd->total_pkt_bytes = pkt_size; 4100 4101 if (pbd_e1x) 4102 DP(NETIF_MSG_TX_QUEUED, 4103 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4104 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4105 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4106 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4107 le16_to_cpu(pbd_e1x->total_hlen_w)); 4108 if (pbd_e2) 4109 DP(NETIF_MSG_TX_QUEUED, 4110 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4111 pbd_e2, 4112 pbd_e2->data.mac_addr.dst_hi, 4113 pbd_e2->data.mac_addr.dst_mid, 4114 pbd_e2->data.mac_addr.dst_lo, 4115 pbd_e2->data.mac_addr.src_hi, 4116 pbd_e2->data.mac_addr.src_mid, 4117 pbd_e2->data.mac_addr.src_lo, 4118 pbd_e2->parsing_data); 4119 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4120 4121 netdev_tx_sent_queue(txq, skb->len); 4122 4123 skb_tx_timestamp(skb); 4124 4125 txdata->tx_pkt_prod++; 4126 /* 4127 * Make sure that the BD data is updated before updating the producer 4128 * since FW might read the BD right after the producer is updated. 4129 * This is only applicable for weak-ordered memory model archs such 4130 * as IA-64. The following barrier is also mandatory since FW will 4131 * assumes packets must have BDs. 4132 */ 4133 wmb(); 4134 4135 txdata->tx_db.data.prod += nbd; 4136 barrier(); 4137 4138 DOORBELL(bp, txdata->cid, txdata->tx_db.raw); 4139 4140 mmiowb(); 4141 4142 txdata->tx_bd_prod += nbd; 4143 4144 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4145 netif_tx_stop_queue(txq); 4146 4147 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4148 * ordering of set_bit() in netif_tx_stop_queue() and read of 4149 * fp->bd_tx_cons */ 4150 smp_mb(); 4151 4152 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4153 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4154 netif_tx_wake_queue(txq); 4155 } 4156 txdata->tx_pkt++; 4157 4158 return NETDEV_TX_OK; 4159 } 4160 4161 /** 4162 * bnx2x_setup_tc - routine to configure net_device for multi tc 4163 * 4164 * @netdev: net device to configure 4165 * @tc: number of traffic classes to enable 4166 * 4167 * callback connected to the ndo_setup_tc function pointer 4168 */ 4169 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4170 { 4171 int cos, prio, count, offset; 4172 struct bnx2x *bp = netdev_priv(dev); 4173 4174 /* setup tc must be called under rtnl lock */ 4175 ASSERT_RTNL(); 4176 4177 /* no traffic classes requested. Aborting */ 4178 if (!num_tc) { 4179 netdev_reset_tc(dev); 4180 return 0; 4181 } 4182 4183 /* requested to support too many traffic classes */ 4184 if (num_tc > bp->max_cos) { 4185 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4186 num_tc, bp->max_cos); 4187 return -EINVAL; 4188 } 4189 4190 /* declare amount of supported traffic classes */ 4191 if (netdev_set_num_tc(dev, num_tc)) { 4192 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4193 return -EINVAL; 4194 } 4195 4196 /* configure priority to traffic class mapping */ 4197 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4198 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[prio]); 4199 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4200 "mapping priority %d to tc %d\n", 4201 prio, bp->prio_to_cos[prio]); 4202 } 4203 4204 /* Use this configuration to differentiate tc0 from other COSes 4205 This can be used for ets or pfc, and save the effort of setting 4206 up a multio class queue disc or negotiating DCBX with a switch 4207 netdev_set_prio_tc_map(dev, 0, 0); 4208 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4209 for (prio = 1; prio < 16; prio++) { 4210 netdev_set_prio_tc_map(dev, prio, 1); 4211 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4212 } */ 4213 4214 /* configure traffic class to transmission queue mapping */ 4215 for (cos = 0; cos < bp->max_cos; cos++) { 4216 count = BNX2X_NUM_ETH_QUEUES(bp); 4217 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4218 netdev_set_tc_queue(dev, cos, count, offset); 4219 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4220 "mapping tc %d to offset %d count %d\n", 4221 cos, offset, count); 4222 } 4223 4224 return 0; 4225 } 4226 4227 /* called with rtnl_lock */ 4228 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4229 { 4230 struct sockaddr *addr = p; 4231 struct bnx2x *bp = netdev_priv(dev); 4232 int rc = 0; 4233 4234 if (!is_valid_ether_addr(addr->sa_data)) { 4235 BNX2X_ERR("Requested MAC address is not valid\n"); 4236 return -EINVAL; 4237 } 4238 4239 if (IS_MF_STORAGE_ONLY(bp)) { 4240 BNX2X_ERR("Can't change address on STORAGE ONLY function\n"); 4241 return -EINVAL; 4242 } 4243 4244 if (netif_running(dev)) { 4245 rc = bnx2x_set_eth_mac(bp, false); 4246 if (rc) 4247 return rc; 4248 } 4249 4250 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4251 4252 if (netif_running(dev)) 4253 rc = bnx2x_set_eth_mac(bp, true); 4254 4255 return rc; 4256 } 4257 4258 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4259 { 4260 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4261 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4262 u8 cos; 4263 4264 /* Common */ 4265 4266 if (IS_FCOE_IDX(fp_index)) { 4267 memset(sb, 0, sizeof(union host_hc_status_block)); 4268 fp->status_blk_mapping = 0; 4269 } else { 4270 /* status blocks */ 4271 if (!CHIP_IS_E1x(bp)) 4272 BNX2X_PCI_FREE(sb->e2_sb, 4273 bnx2x_fp(bp, fp_index, 4274 status_blk_mapping), 4275 sizeof(struct host_hc_status_block_e2)); 4276 else 4277 BNX2X_PCI_FREE(sb->e1x_sb, 4278 bnx2x_fp(bp, fp_index, 4279 status_blk_mapping), 4280 sizeof(struct host_hc_status_block_e1x)); 4281 } 4282 4283 /* Rx */ 4284 if (!skip_rx_queue(bp, fp_index)) { 4285 bnx2x_free_rx_bds(fp); 4286 4287 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4288 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4289 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4290 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4291 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4292 4293 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4294 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4295 sizeof(struct eth_fast_path_rx_cqe) * 4296 NUM_RCQ_BD); 4297 4298 /* SGE ring */ 4299 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4300 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4301 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4302 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4303 } 4304 4305 /* Tx */ 4306 if (!skip_tx_queue(bp, fp_index)) { 4307 /* fastpath tx rings: tx_buf tx_desc */ 4308 for_each_cos_in_tx_queue(fp, cos) { 4309 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4310 4311 DP(NETIF_MSG_IFDOWN, 4312 "freeing tx memory of fp %d cos %d cid %d\n", 4313 fp_index, cos, txdata->cid); 4314 4315 BNX2X_FREE(txdata->tx_buf_ring); 4316 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4317 txdata->tx_desc_mapping, 4318 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4319 } 4320 } 4321 /* end of fastpath */ 4322 } 4323 4324 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4325 { 4326 int i; 4327 for_each_cnic_queue(bp, i) 4328 bnx2x_free_fp_mem_at(bp, i); 4329 } 4330 4331 void bnx2x_free_fp_mem(struct bnx2x *bp) 4332 { 4333 int i; 4334 for_each_eth_queue(bp, i) 4335 bnx2x_free_fp_mem_at(bp, i); 4336 } 4337 4338 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4339 { 4340 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4341 if (!CHIP_IS_E1x(bp)) { 4342 bnx2x_fp(bp, index, sb_index_values) = 4343 (__le16 *)status_blk.e2_sb->sb.index_values; 4344 bnx2x_fp(bp, index, sb_running_index) = 4345 (__le16 *)status_blk.e2_sb->sb.running_index; 4346 } else { 4347 bnx2x_fp(bp, index, sb_index_values) = 4348 (__le16 *)status_blk.e1x_sb->sb.index_values; 4349 bnx2x_fp(bp, index, sb_running_index) = 4350 (__le16 *)status_blk.e1x_sb->sb.running_index; 4351 } 4352 } 4353 4354 /* Returns the number of actually allocated BDs */ 4355 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4356 int rx_ring_size) 4357 { 4358 struct bnx2x *bp = fp->bp; 4359 u16 ring_prod, cqe_ring_prod; 4360 int i, failure_cnt = 0; 4361 4362 fp->rx_comp_cons = 0; 4363 cqe_ring_prod = ring_prod = 0; 4364 4365 /* This routine is called only during fo init so 4366 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4367 */ 4368 for (i = 0; i < rx_ring_size; i++) { 4369 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4370 failure_cnt++; 4371 continue; 4372 } 4373 ring_prod = NEXT_RX_IDX(ring_prod); 4374 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4375 WARN_ON(ring_prod <= (i - failure_cnt)); 4376 } 4377 4378 if (failure_cnt) 4379 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4380 i - failure_cnt, fp->index); 4381 4382 fp->rx_bd_prod = ring_prod; 4383 /* Limit the CQE producer by the CQE ring size */ 4384 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4385 cqe_ring_prod); 4386 fp->rx_pkt = fp->rx_calls = 0; 4387 4388 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4389 4390 return i - failure_cnt; 4391 } 4392 4393 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4394 { 4395 int i; 4396 4397 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4398 struct eth_rx_cqe_next_page *nextpg; 4399 4400 nextpg = (struct eth_rx_cqe_next_page *) 4401 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4402 nextpg->addr_hi = 4403 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4404 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4405 nextpg->addr_lo = 4406 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4407 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4408 } 4409 } 4410 4411 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4412 { 4413 union host_hc_status_block *sb; 4414 struct bnx2x_fastpath *fp = &bp->fp[index]; 4415 int ring_size = 0; 4416 u8 cos; 4417 int rx_ring_size = 0; 4418 4419 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) { 4420 rx_ring_size = MIN_RX_SIZE_NONTPA; 4421 bp->rx_ring_size = rx_ring_size; 4422 } else if (!bp->rx_ring_size) { 4423 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4424 4425 if (CHIP_IS_E3(bp)) { 4426 u32 cfg = SHMEM_RD(bp, 4427 dev_info.port_hw_config[BP_PORT(bp)]. 4428 default_cfg); 4429 4430 /* Decrease ring size for 1G functions */ 4431 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4432 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4433 rx_ring_size /= 10; 4434 } 4435 4436 /* allocate at least number of buffers required by FW */ 4437 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4438 MIN_RX_SIZE_TPA, rx_ring_size); 4439 4440 bp->rx_ring_size = rx_ring_size; 4441 } else /* if rx_ring_size specified - use it */ 4442 rx_ring_size = bp->rx_ring_size; 4443 4444 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4445 4446 /* Common */ 4447 sb = &bnx2x_fp(bp, index, status_blk); 4448 4449 if (!IS_FCOE_IDX(index)) { 4450 /* status blocks */ 4451 if (!CHIP_IS_E1x(bp)) { 4452 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4453 sizeof(struct host_hc_status_block_e2)); 4454 if (!sb->e2_sb) 4455 goto alloc_mem_err; 4456 } else { 4457 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4458 sizeof(struct host_hc_status_block_e1x)); 4459 if (!sb->e1x_sb) 4460 goto alloc_mem_err; 4461 } 4462 } 4463 4464 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4465 * set shortcuts for it. 4466 */ 4467 if (!IS_FCOE_IDX(index)) 4468 set_sb_shortcuts(bp, index); 4469 4470 /* Tx */ 4471 if (!skip_tx_queue(bp, index)) { 4472 /* fastpath tx rings: tx_buf tx_desc */ 4473 for_each_cos_in_tx_queue(fp, cos) { 4474 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4475 4476 DP(NETIF_MSG_IFUP, 4477 "allocating tx memory of fp %d cos %d\n", 4478 index, cos); 4479 4480 txdata->tx_buf_ring = kcalloc(NUM_TX_BD, 4481 sizeof(struct sw_tx_bd), 4482 GFP_KERNEL); 4483 if (!txdata->tx_buf_ring) 4484 goto alloc_mem_err; 4485 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, 4486 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4487 if (!txdata->tx_desc_ring) 4488 goto alloc_mem_err; 4489 } 4490 } 4491 4492 /* Rx */ 4493 if (!skip_rx_queue(bp, index)) { 4494 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4495 bnx2x_fp(bp, index, rx_buf_ring) = 4496 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL); 4497 if (!bnx2x_fp(bp, index, rx_buf_ring)) 4498 goto alloc_mem_err; 4499 bnx2x_fp(bp, index, rx_desc_ring) = 4500 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), 4501 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4502 if (!bnx2x_fp(bp, index, rx_desc_ring)) 4503 goto alloc_mem_err; 4504 4505 /* Seed all CQEs by 1s */ 4506 bnx2x_fp(bp, index, rx_comp_ring) = 4507 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), 4508 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); 4509 if (!bnx2x_fp(bp, index, rx_comp_ring)) 4510 goto alloc_mem_err; 4511 4512 /* SGE ring */ 4513 bnx2x_fp(bp, index, rx_page_ring) = 4514 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page), 4515 GFP_KERNEL); 4516 if (!bnx2x_fp(bp, index, rx_page_ring)) 4517 goto alloc_mem_err; 4518 bnx2x_fp(bp, index, rx_sge_ring) = 4519 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), 4520 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4521 if (!bnx2x_fp(bp, index, rx_sge_ring)) 4522 goto alloc_mem_err; 4523 /* RX BD ring */ 4524 bnx2x_set_next_page_rx_bd(fp); 4525 4526 /* CQ ring */ 4527 bnx2x_set_next_page_rx_cq(fp); 4528 4529 /* BDs */ 4530 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4531 if (ring_size < rx_ring_size) 4532 goto alloc_mem_err; 4533 } 4534 4535 return 0; 4536 4537 /* handles low memory cases */ 4538 alloc_mem_err: 4539 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4540 index, ring_size); 4541 /* FW will drop all packets if queue is not big enough, 4542 * In these cases we disable the queue 4543 * Min size is different for OOO, TPA and non-TPA queues 4544 */ 4545 if (ring_size < (fp->disable_tpa ? 4546 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4547 /* release memory allocated for this queue */ 4548 bnx2x_free_fp_mem_at(bp, index); 4549 return -ENOMEM; 4550 } 4551 return 0; 4552 } 4553 4554 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4555 { 4556 if (!NO_FCOE(bp)) 4557 /* FCoE */ 4558 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4559 /* we will fail load process instead of mark 4560 * NO_FCOE_FLAG 4561 */ 4562 return -ENOMEM; 4563 4564 return 0; 4565 } 4566 4567 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4568 { 4569 int i; 4570 4571 /* 1. Allocate FP for leading - fatal if error 4572 * 2. Allocate RSS - fix number of queues if error 4573 */ 4574 4575 /* leading */ 4576 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4577 return -ENOMEM; 4578 4579 /* RSS */ 4580 for_each_nondefault_eth_queue(bp, i) 4581 if (bnx2x_alloc_fp_mem_at(bp, i)) 4582 break; 4583 4584 /* handle memory failures */ 4585 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4586 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4587 4588 WARN_ON(delta < 0); 4589 bnx2x_shrink_eth_fp(bp, delta); 4590 if (CNIC_SUPPORT(bp)) 4591 /* move non eth FPs next to last eth FP 4592 * must be done in that order 4593 * FCOE_IDX < FWD_IDX < OOO_IDX 4594 */ 4595 4596 /* move FCoE fp even NO_FCOE_FLAG is on */ 4597 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4598 bp->num_ethernet_queues -= delta; 4599 bp->num_queues = bp->num_ethernet_queues + 4600 bp->num_cnic_queues; 4601 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4602 bp->num_queues + delta, bp->num_queues); 4603 } 4604 4605 return 0; 4606 } 4607 4608 void bnx2x_free_mem_bp(struct bnx2x *bp) 4609 { 4610 int i; 4611 4612 for (i = 0; i < bp->fp_array_size; i++) 4613 kfree(bp->fp[i].tpa_info); 4614 kfree(bp->fp); 4615 kfree(bp->sp_objs); 4616 kfree(bp->fp_stats); 4617 kfree(bp->bnx2x_txq); 4618 kfree(bp->msix_table); 4619 kfree(bp->ilt); 4620 } 4621 4622 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4623 { 4624 struct bnx2x_fastpath *fp; 4625 struct msix_entry *tbl; 4626 struct bnx2x_ilt *ilt; 4627 int msix_table_size = 0; 4628 int fp_array_size, txq_array_size; 4629 int i; 4630 4631 /* 4632 * The biggest MSI-X table we might need is as a maximum number of fast 4633 * path IGU SBs plus default SB (for PF only). 4634 */ 4635 msix_table_size = bp->igu_sb_cnt; 4636 if (IS_PF(bp)) 4637 msix_table_size++; 4638 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4639 4640 /* fp array: RSS plus CNIC related L2 queues */ 4641 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4642 bp->fp_array_size = fp_array_size; 4643 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4644 4645 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4646 if (!fp) 4647 goto alloc_err; 4648 for (i = 0; i < bp->fp_array_size; i++) { 4649 fp[i].tpa_info = 4650 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4651 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4652 if (!(fp[i].tpa_info)) 4653 goto alloc_err; 4654 } 4655 4656 bp->fp = fp; 4657 4658 /* allocate sp objs */ 4659 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4660 GFP_KERNEL); 4661 if (!bp->sp_objs) 4662 goto alloc_err; 4663 4664 /* allocate fp_stats */ 4665 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4666 GFP_KERNEL); 4667 if (!bp->fp_stats) 4668 goto alloc_err; 4669 4670 /* Allocate memory for the transmission queues array */ 4671 txq_array_size = 4672 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4673 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4674 4675 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4676 GFP_KERNEL); 4677 if (!bp->bnx2x_txq) 4678 goto alloc_err; 4679 4680 /* msix table */ 4681 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4682 if (!tbl) 4683 goto alloc_err; 4684 bp->msix_table = tbl; 4685 4686 /* ilt */ 4687 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4688 if (!ilt) 4689 goto alloc_err; 4690 bp->ilt = ilt; 4691 4692 return 0; 4693 alloc_err: 4694 bnx2x_free_mem_bp(bp); 4695 return -ENOMEM; 4696 } 4697 4698 int bnx2x_reload_if_running(struct net_device *dev) 4699 { 4700 struct bnx2x *bp = netdev_priv(dev); 4701 4702 if (unlikely(!netif_running(dev))) 4703 return 0; 4704 4705 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4706 return bnx2x_nic_load(bp, LOAD_NORMAL); 4707 } 4708 4709 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4710 { 4711 u32 sel_phy_idx = 0; 4712 if (bp->link_params.num_phys <= 1) 4713 return INT_PHY; 4714 4715 if (bp->link_vars.link_up) { 4716 sel_phy_idx = EXT_PHY1; 4717 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4718 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4719 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4720 sel_phy_idx = EXT_PHY2; 4721 } else { 4722 4723 switch (bnx2x_phy_selection(&bp->link_params)) { 4724 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4725 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4726 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4727 sel_phy_idx = EXT_PHY1; 4728 break; 4729 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4730 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4731 sel_phy_idx = EXT_PHY2; 4732 break; 4733 } 4734 } 4735 4736 return sel_phy_idx; 4737 } 4738 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4739 { 4740 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4741 /* 4742 * The selected activated PHY is always after swapping (in case PHY 4743 * swapping is enabled). So when swapping is enabled, we need to reverse 4744 * the configuration 4745 */ 4746 4747 if (bp->link_params.multi_phy_config & 4748 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4749 if (sel_phy_idx == EXT_PHY1) 4750 sel_phy_idx = EXT_PHY2; 4751 else if (sel_phy_idx == EXT_PHY2) 4752 sel_phy_idx = EXT_PHY1; 4753 } 4754 return LINK_CONFIG_IDX(sel_phy_idx); 4755 } 4756 4757 #ifdef NETDEV_FCOE_WWNN 4758 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4759 { 4760 struct bnx2x *bp = netdev_priv(dev); 4761 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4762 4763 switch (type) { 4764 case NETDEV_FCOE_WWNN: 4765 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4766 cp->fcoe_wwn_node_name_lo); 4767 break; 4768 case NETDEV_FCOE_WWPN: 4769 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4770 cp->fcoe_wwn_port_name_lo); 4771 break; 4772 default: 4773 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4774 return -EINVAL; 4775 } 4776 4777 return 0; 4778 } 4779 #endif 4780 4781 /* called with rtnl_lock */ 4782 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4783 { 4784 struct bnx2x *bp = netdev_priv(dev); 4785 4786 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4787 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4788 return -EAGAIN; 4789 } 4790 4791 if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || 4792 ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) { 4793 BNX2X_ERR("Can't support requested MTU size\n"); 4794 return -EINVAL; 4795 } 4796 4797 /* This does not race with packet allocation 4798 * because the actual alloc size is 4799 * only updated as part of load 4800 */ 4801 dev->mtu = new_mtu; 4802 4803 return bnx2x_reload_if_running(dev); 4804 } 4805 4806 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4807 netdev_features_t features) 4808 { 4809 struct bnx2x *bp = netdev_priv(dev); 4810 4811 /* TPA requires Rx CSUM offloading */ 4812 if (!(features & NETIF_F_RXCSUM)) { 4813 features &= ~NETIF_F_LRO; 4814 features &= ~NETIF_F_GRO; 4815 } 4816 4817 /* Note: do not disable SW GRO in kernel when HW GRO is off */ 4818 if (bp->disable_tpa) 4819 features &= ~NETIF_F_LRO; 4820 4821 return features; 4822 } 4823 4824 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4825 { 4826 struct bnx2x *bp = netdev_priv(dev); 4827 u32 flags = bp->flags; 4828 u32 changes; 4829 bool bnx2x_reload = false; 4830 4831 if (features & NETIF_F_LRO) 4832 flags |= TPA_ENABLE_FLAG; 4833 else 4834 flags &= ~TPA_ENABLE_FLAG; 4835 4836 if (features & NETIF_F_GRO) 4837 flags |= GRO_ENABLE_FLAG; 4838 else 4839 flags &= ~GRO_ENABLE_FLAG; 4840 4841 if (features & NETIF_F_LOOPBACK) { 4842 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4843 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4844 bnx2x_reload = true; 4845 } 4846 } else { 4847 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4848 bp->link_params.loopback_mode = LOOPBACK_NONE; 4849 bnx2x_reload = true; 4850 } 4851 } 4852 4853 changes = flags ^ bp->flags; 4854 4855 /* if GRO is changed while LRO is enabled, don't force a reload */ 4856 if ((changes & GRO_ENABLE_FLAG) && (flags & TPA_ENABLE_FLAG)) 4857 changes &= ~GRO_ENABLE_FLAG; 4858 4859 /* if GRO is changed while HW TPA is off, don't force a reload */ 4860 if ((changes & GRO_ENABLE_FLAG) && bp->disable_tpa) 4861 changes &= ~GRO_ENABLE_FLAG; 4862 4863 if (changes) 4864 bnx2x_reload = true; 4865 4866 bp->flags = flags; 4867 4868 if (bnx2x_reload) { 4869 if (bp->recovery_state == BNX2X_RECOVERY_DONE) 4870 return bnx2x_reload_if_running(dev); 4871 /* else: bnx2x_nic_load() will be called at end of recovery */ 4872 } 4873 4874 return 0; 4875 } 4876 4877 void bnx2x_tx_timeout(struct net_device *dev) 4878 { 4879 struct bnx2x *bp = netdev_priv(dev); 4880 4881 #ifdef BNX2X_STOP_ON_ERROR 4882 if (!bp->panic) 4883 bnx2x_panic(); 4884 #endif 4885 4886 /* This allows the netif to be shutdown gracefully before resetting */ 4887 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); 4888 } 4889 4890 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) 4891 { 4892 struct net_device *dev = pci_get_drvdata(pdev); 4893 struct bnx2x *bp; 4894 4895 if (!dev) { 4896 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4897 return -ENODEV; 4898 } 4899 bp = netdev_priv(dev); 4900 4901 rtnl_lock(); 4902 4903 pci_save_state(pdev); 4904 4905 if (!netif_running(dev)) { 4906 rtnl_unlock(); 4907 return 0; 4908 } 4909 4910 netif_device_detach(dev); 4911 4912 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 4913 4914 bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); 4915 4916 rtnl_unlock(); 4917 4918 return 0; 4919 } 4920 4921 int bnx2x_resume(struct pci_dev *pdev) 4922 { 4923 struct net_device *dev = pci_get_drvdata(pdev); 4924 struct bnx2x *bp; 4925 int rc; 4926 4927 if (!dev) { 4928 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4929 return -ENODEV; 4930 } 4931 bp = netdev_priv(dev); 4932 4933 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4934 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 4935 return -EAGAIN; 4936 } 4937 4938 rtnl_lock(); 4939 4940 pci_restore_state(pdev); 4941 4942 if (!netif_running(dev)) { 4943 rtnl_unlock(); 4944 return 0; 4945 } 4946 4947 bnx2x_set_power_state(bp, PCI_D0); 4948 netif_device_attach(dev); 4949 4950 rc = bnx2x_nic_load(bp, LOAD_OPEN); 4951 4952 rtnl_unlock(); 4953 4954 return rc; 4955 } 4956 4957 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 4958 u32 cid) 4959 { 4960 if (!cxt) { 4961 BNX2X_ERR("bad context pointer %p\n", cxt); 4962 return; 4963 } 4964 4965 /* ustorm cxt validation */ 4966 cxt->ustorm_ag_context.cdu_usage = 4967 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 4968 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 4969 /* xcontext validation */ 4970 cxt->xstorm_ag_context.cdu_reserved = 4971 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 4972 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 4973 } 4974 4975 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 4976 u8 fw_sb_id, u8 sb_index, 4977 u8 ticks) 4978 { 4979 u32 addr = BAR_CSTRORM_INTMEM + 4980 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 4981 REG_WR8(bp, addr, ticks); 4982 DP(NETIF_MSG_IFUP, 4983 "port %x fw_sb_id %d sb_index %d ticks %d\n", 4984 port, fw_sb_id, sb_index, ticks); 4985 } 4986 4987 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 4988 u16 fw_sb_id, u8 sb_index, 4989 u8 disable) 4990 { 4991 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 4992 u32 addr = BAR_CSTRORM_INTMEM + 4993 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 4994 u8 flags = REG_RD8(bp, addr); 4995 /* clear and set */ 4996 flags &= ~HC_INDEX_DATA_HC_ENABLED; 4997 flags |= enable_flag; 4998 REG_WR8(bp, addr, flags); 4999 DP(NETIF_MSG_IFUP, 5000 "port %x fw_sb_id %d sb_index %d disable %d\n", 5001 port, fw_sb_id, sb_index, disable); 5002 } 5003 5004 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 5005 u8 sb_index, u8 disable, u16 usec) 5006 { 5007 int port = BP_PORT(bp); 5008 u8 ticks = usec / BNX2X_BTR; 5009 5010 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 5011 5012 disable = disable ? 1 : (usec ? 0 : 1); 5013 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 5014 } 5015 5016 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, 5017 u32 verbose) 5018 { 5019 smp_mb__before_atomic(); 5020 set_bit(flag, &bp->sp_rtnl_state); 5021 smp_mb__after_atomic(); 5022 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", 5023 flag); 5024 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5025 } 5026 EXPORT_SYMBOL(bnx2x_schedule_sp_rtnl); 5027