1 /* bnx2x_cmn.c: Broadcom Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 * 9 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 10 * Written by: Eliezer Tamir 11 * Based on code from Michael Chan's bnx2 driver 12 * UDP CSUM errata workaround by Arik Gendelman 13 * Slowpath and fastpath rework by Vladislav Zolotarov 14 * Statistics and Link management by Yitchak Gertner 15 * 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/etherdevice.h> 21 #include <linux/if_vlan.h> 22 #include <linux/interrupt.h> 23 #include <linux/ip.h> 24 #include <net/tcp.h> 25 #include <net/ipv6.h> 26 #include <net/ip6_checksum.h> 27 #include <net/busy_poll.h> 28 #include <linux/prefetch.h> 29 #include "bnx2x_cmn.h" 30 #include "bnx2x_init.h" 31 #include "bnx2x_sp.h" 32 33 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 34 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 35 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 36 static int bnx2x_poll(struct napi_struct *napi, int budget); 37 38 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 39 { 40 int i; 41 42 /* Add NAPI objects */ 43 for_each_rx_queue_cnic(bp, i) { 44 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 45 bnx2x_poll, NAPI_POLL_WEIGHT); 46 napi_hash_add(&bnx2x_fp(bp, i, napi)); 47 } 48 } 49 50 static void bnx2x_add_all_napi(struct bnx2x *bp) 51 { 52 int i; 53 54 /* Add NAPI objects */ 55 for_each_eth_queue(bp, i) { 56 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 57 bnx2x_poll, NAPI_POLL_WEIGHT); 58 napi_hash_add(&bnx2x_fp(bp, i, napi)); 59 } 60 } 61 62 static int bnx2x_calc_num_queues(struct bnx2x *bp) 63 { 64 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues(); 65 66 /* Reduce memory usage in kdump environment by using only one queue */ 67 if (reset_devices) 68 nq = 1; 69 70 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp)); 71 return nq; 72 } 73 74 /** 75 * bnx2x_move_fp - move content of the fastpath structure. 76 * 77 * @bp: driver handle 78 * @from: source FP index 79 * @to: destination FP index 80 * 81 * Makes sure the contents of the bp->fp[to].napi is kept 82 * intact. This is done by first copying the napi struct from 83 * the target to the source, and then mem copying the entire 84 * source onto the target. Update txdata pointers and related 85 * content. 86 */ 87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 88 { 89 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 90 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 91 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 92 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 93 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 94 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 95 int old_max_eth_txqs, new_max_eth_txqs; 96 int old_txdata_index = 0, new_txdata_index = 0; 97 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 98 99 /* Copy the NAPI object as it has been already initialized */ 100 from_fp->napi = to_fp->napi; 101 102 /* Move bnx2x_fastpath contents */ 103 memcpy(to_fp, from_fp, sizeof(*to_fp)); 104 to_fp->index = to; 105 106 /* Retain the tpa_info of the original `to' version as we don't want 107 * 2 FPs to contain the same tpa_info pointer. 108 */ 109 to_fp->tpa_info = old_tpa_info; 110 111 /* move sp_objs contents as well, as their indices match fp ones */ 112 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 113 114 /* move fp_stats contents as well, as their indices match fp ones */ 115 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 116 117 /* Update txdata pointers in fp and move txdata content accordingly: 118 * Each fp consumes 'max_cos' txdata structures, so the index should be 119 * decremented by max_cos x delta. 120 */ 121 122 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 123 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 124 (bp)->max_cos; 125 if (from == FCOE_IDX(bp)) { 126 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 127 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 128 } 129 130 memcpy(&bp->bnx2x_txq[new_txdata_index], 131 &bp->bnx2x_txq[old_txdata_index], 132 sizeof(struct bnx2x_fp_txdata)); 133 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 134 } 135 136 /** 137 * bnx2x_fill_fw_str - Fill buffer with FW version string. 138 * 139 * @bp: driver handle 140 * @buf: character buffer to fill with the fw name 141 * @buf_len: length of the above buffer 142 * 143 */ 144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 145 { 146 if (IS_PF(bp)) { 147 u8 phy_fw_ver[PHY_FW_VER_LEN]; 148 149 phy_fw_ver[0] = '\0'; 150 bnx2x_get_ext_phy_fw_version(&bp->link_params, 151 phy_fw_ver, PHY_FW_VER_LEN); 152 strlcpy(buf, bp->fw_ver, buf_len); 153 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 154 "bc %d.%d.%d%s%s", 155 (bp->common.bc_ver & 0xff0000) >> 16, 156 (bp->common.bc_ver & 0xff00) >> 8, 157 (bp->common.bc_ver & 0xff), 158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 159 } else { 160 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 161 } 162 } 163 164 /** 165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 166 * 167 * @bp: driver handle 168 * @delta: number of eth queues which were not allocated 169 */ 170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 171 { 172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 173 174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 175 * backward along the array could cause memory to be overridden 176 */ 177 for (cos = 1; cos < bp->max_cos; cos++) { 178 for (i = 0; i < old_eth_num - delta; i++) { 179 struct bnx2x_fastpath *fp = &bp->fp[i]; 180 int new_idx = cos * (old_eth_num - delta) + i; 181 182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 183 sizeof(struct bnx2x_fp_txdata)); 184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 185 } 186 } 187 } 188 189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 190 191 /* free skb in the packet ring at pos idx 192 * return idx of last bd freed 193 */ 194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 195 u16 idx, unsigned int *pkts_compl, 196 unsigned int *bytes_compl) 197 { 198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 199 struct eth_tx_start_bd *tx_start_bd; 200 struct eth_tx_bd *tx_data_bd; 201 struct sk_buff *skb = tx_buf->skb; 202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 203 int nbd; 204 u16 split_bd_len = 0; 205 206 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 207 prefetch(&skb->end); 208 209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 210 txdata->txq_index, idx, tx_buf, skb); 211 212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 213 214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 215 #ifdef BNX2X_STOP_ON_ERROR 216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 217 BNX2X_ERR("BAD nbd!\n"); 218 bnx2x_panic(); 219 } 220 #endif 221 new_cons = nbd + tx_buf->first_bd; 222 223 /* Get the next bd */ 224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 225 226 /* Skip a parse bd... */ 227 --nbd; 228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 229 230 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { 231 /* Skip second parse bd... */ 232 --nbd; 233 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 234 } 235 236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 237 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 238 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 239 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 240 --nbd; 241 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 242 } 243 244 /* unmap first bd */ 245 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 246 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 247 DMA_TO_DEVICE); 248 249 /* now free frags */ 250 while (nbd > 0) { 251 252 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 253 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 254 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 255 if (--nbd) 256 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 257 } 258 259 /* release skb */ 260 WARN_ON(!skb); 261 if (likely(skb)) { 262 (*pkts_compl)++; 263 (*bytes_compl) += skb->len; 264 } 265 266 dev_kfree_skb_any(skb); 267 tx_buf->first_bd = 0; 268 tx_buf->skb = NULL; 269 270 return new_cons; 271 } 272 273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 274 { 275 struct netdev_queue *txq; 276 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 277 unsigned int pkts_compl = 0, bytes_compl = 0; 278 279 #ifdef BNX2X_STOP_ON_ERROR 280 if (unlikely(bp->panic)) 281 return -1; 282 #endif 283 284 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 285 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 286 sw_cons = txdata->tx_pkt_cons; 287 288 while (sw_cons != hw_cons) { 289 u16 pkt_cons; 290 291 pkt_cons = TX_BD(sw_cons); 292 293 DP(NETIF_MSG_TX_DONE, 294 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 295 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 296 297 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 298 &pkts_compl, &bytes_compl); 299 300 sw_cons++; 301 } 302 303 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 304 305 txdata->tx_pkt_cons = sw_cons; 306 txdata->tx_bd_cons = bd_cons; 307 308 /* Need to make the tx_bd_cons update visible to start_xmit() 309 * before checking for netif_tx_queue_stopped(). Without the 310 * memory barrier, there is a small possibility that 311 * start_xmit() will miss it and cause the queue to be stopped 312 * forever. 313 * On the other hand we need an rmb() here to ensure the proper 314 * ordering of bit testing in the following 315 * netif_tx_queue_stopped(txq) call. 316 */ 317 smp_mb(); 318 319 if (unlikely(netif_tx_queue_stopped(txq))) { 320 /* Taking tx_lock() is needed to prevent re-enabling the queue 321 * while it's empty. This could have happen if rx_action() gets 322 * suspended in bnx2x_tx_int() after the condition before 323 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 324 * 325 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 326 * sends some packets consuming the whole queue again-> 327 * stops the queue 328 */ 329 330 __netif_tx_lock(txq, smp_processor_id()); 331 332 if ((netif_tx_queue_stopped(txq)) && 333 (bp->state == BNX2X_STATE_OPEN) && 334 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 335 netif_tx_wake_queue(txq); 336 337 __netif_tx_unlock(txq); 338 } 339 return 0; 340 } 341 342 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 343 u16 idx) 344 { 345 u16 last_max = fp->last_max_sge; 346 347 if (SUB_S16(idx, last_max) > 0) 348 fp->last_max_sge = idx; 349 } 350 351 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 352 u16 sge_len, 353 struct eth_end_agg_rx_cqe *cqe) 354 { 355 struct bnx2x *bp = fp->bp; 356 u16 last_max, last_elem, first_elem; 357 u16 delta = 0; 358 u16 i; 359 360 if (!sge_len) 361 return; 362 363 /* First mark all used pages */ 364 for (i = 0; i < sge_len; i++) 365 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 366 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 367 368 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 369 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 370 371 /* Here we assume that the last SGE index is the biggest */ 372 prefetch((void *)(fp->sge_mask)); 373 bnx2x_update_last_max_sge(fp, 374 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 375 376 last_max = RX_SGE(fp->last_max_sge); 377 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 378 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 379 380 /* If ring is not full */ 381 if (last_elem + 1 != first_elem) 382 last_elem++; 383 384 /* Now update the prod */ 385 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 386 if (likely(fp->sge_mask[i])) 387 break; 388 389 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 390 delta += BIT_VEC64_ELEM_SZ; 391 } 392 393 if (delta > 0) { 394 fp->rx_sge_prod += delta; 395 /* clear page-end entries */ 396 bnx2x_clear_sge_mask_next_elems(fp); 397 } 398 399 DP(NETIF_MSG_RX_STATUS, 400 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 401 fp->last_max_sge, fp->rx_sge_prod); 402 } 403 404 /* Get Toeplitz hash value in the skb using the value from the 405 * CQE (calculated by HW). 406 */ 407 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 408 const struct eth_fast_path_rx_cqe *cqe, 409 enum pkt_hash_types *rxhash_type) 410 { 411 /* Get Toeplitz hash from CQE */ 412 if ((bp->dev->features & NETIF_F_RXHASH) && 413 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 414 enum eth_rss_hash_type htype; 415 416 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 417 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 418 (htype == TCP_IPV6_HASH_TYPE)) ? 419 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 420 421 return le32_to_cpu(cqe->rss_hash_result); 422 } 423 *rxhash_type = PKT_HASH_TYPE_NONE; 424 return 0; 425 } 426 427 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 428 u16 cons, u16 prod, 429 struct eth_fast_path_rx_cqe *cqe) 430 { 431 struct bnx2x *bp = fp->bp; 432 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 433 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 434 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 435 dma_addr_t mapping; 436 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 437 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 438 439 /* print error if current state != stop */ 440 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 441 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 442 443 /* Try to map an empty data buffer from the aggregation info */ 444 mapping = dma_map_single(&bp->pdev->dev, 445 first_buf->data + NET_SKB_PAD, 446 fp->rx_buf_size, DMA_FROM_DEVICE); 447 /* 448 * ...if it fails - move the skb from the consumer to the producer 449 * and set the current aggregation state as ERROR to drop it 450 * when TPA_STOP arrives. 451 */ 452 453 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 454 /* Move the BD from the consumer to the producer */ 455 bnx2x_reuse_rx_data(fp, cons, prod); 456 tpa_info->tpa_state = BNX2X_TPA_ERROR; 457 return; 458 } 459 460 /* move empty data from pool to prod */ 461 prod_rx_buf->data = first_buf->data; 462 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 463 /* point prod_bd to new data */ 464 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 465 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 466 467 /* move partial skb from cons to pool (don't unmap yet) */ 468 *first_buf = *cons_rx_buf; 469 470 /* mark bin state as START */ 471 tpa_info->parsing_flags = 472 le16_to_cpu(cqe->pars_flags.flags); 473 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 474 tpa_info->tpa_state = BNX2X_TPA_START; 475 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 476 tpa_info->placement_offset = cqe->placement_offset; 477 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 478 if (fp->mode == TPA_MODE_GRO) { 479 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 480 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 481 tpa_info->gro_size = gro_size; 482 } 483 484 #ifdef BNX2X_STOP_ON_ERROR 485 fp->tpa_queue_used |= (1 << queue); 486 #ifdef _ASM_GENERIC_INT_L64_H 487 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n", 488 #else 489 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 490 #endif 491 fp->tpa_queue_used); 492 #endif 493 } 494 495 /* Timestamp option length allowed for TPA aggregation: 496 * 497 * nop nop kind length echo val 498 */ 499 #define TPA_TSTAMP_OPT_LEN 12 500 /** 501 * bnx2x_set_gro_params - compute GRO values 502 * 503 * @skb: packet skb 504 * @parsing_flags: parsing flags from the START CQE 505 * @len_on_bd: total length of the first packet for the 506 * aggregation. 507 * @pkt_len: length of all segments 508 * 509 * Approximate value of the MSS for this aggregation calculated using 510 * the first packet of it. 511 * Compute number of aggregated segments, and gso_type. 512 */ 513 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 514 u16 len_on_bd, unsigned int pkt_len, 515 u16 num_of_coalesced_segs) 516 { 517 /* TPA aggregation won't have either IP options or TCP options 518 * other than timestamp or IPv6 extension headers. 519 */ 520 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 521 522 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 523 PRS_FLAG_OVERETH_IPV6) { 524 hdrs_len += sizeof(struct ipv6hdr); 525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 526 } else { 527 hdrs_len += sizeof(struct iphdr); 528 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 529 } 530 531 /* Check if there was a TCP timestamp, if there is it's will 532 * always be 12 bytes length: nop nop kind length echo val. 533 * 534 * Otherwise FW would close the aggregation. 535 */ 536 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 537 hdrs_len += TPA_TSTAMP_OPT_LEN; 538 539 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 540 541 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 542 * to skb_shinfo(skb)->gso_segs 543 */ 544 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 545 } 546 547 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 548 u16 index, gfp_t gfp_mask) 549 { 550 struct page *page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 551 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 552 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 553 dma_addr_t mapping; 554 555 if (unlikely(page == NULL)) { 556 BNX2X_ERR("Can't alloc sge\n"); 557 return -ENOMEM; 558 } 559 560 mapping = dma_map_page(&bp->pdev->dev, page, 0, 561 SGE_PAGES, DMA_FROM_DEVICE); 562 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 563 __free_pages(page, PAGES_PER_SGE_SHIFT); 564 BNX2X_ERR("Can't map sge\n"); 565 return -ENOMEM; 566 } 567 568 sw_buf->page = page; 569 dma_unmap_addr_set(sw_buf, mapping, mapping); 570 571 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 572 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 573 574 return 0; 575 } 576 577 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 578 struct bnx2x_agg_info *tpa_info, 579 u16 pages, 580 struct sk_buff *skb, 581 struct eth_end_agg_rx_cqe *cqe, 582 u16 cqe_idx) 583 { 584 struct sw_rx_page *rx_pg, old_rx_pg; 585 u32 i, frag_len, frag_size; 586 int err, j, frag_id = 0; 587 u16 len_on_bd = tpa_info->len_on_bd; 588 u16 full_page = 0, gro_size = 0; 589 590 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 591 592 if (fp->mode == TPA_MODE_GRO) { 593 gro_size = tpa_info->gro_size; 594 full_page = tpa_info->full_page; 595 } 596 597 /* This is needed in order to enable forwarding support */ 598 if (frag_size) 599 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 600 le16_to_cpu(cqe->pkt_len), 601 le16_to_cpu(cqe->num_of_coalesced_segs)); 602 603 #ifdef BNX2X_STOP_ON_ERROR 604 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 605 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 606 pages, cqe_idx); 607 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 608 bnx2x_panic(); 609 return -EINVAL; 610 } 611 #endif 612 613 /* Run through the SGL and compose the fragmented skb */ 614 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 615 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 616 617 /* FW gives the indices of the SGE as if the ring is an array 618 (meaning that "next" element will consume 2 indices) */ 619 if (fp->mode == TPA_MODE_GRO) 620 frag_len = min_t(u32, frag_size, (u32)full_page); 621 else /* LRO */ 622 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 623 624 rx_pg = &fp->rx_page_ring[sge_idx]; 625 old_rx_pg = *rx_pg; 626 627 /* If we fail to allocate a substitute page, we simply stop 628 where we are and drop the whole packet */ 629 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 630 if (unlikely(err)) { 631 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 632 return err; 633 } 634 635 /* Unmap the page as we're going to pass it to the stack */ 636 dma_unmap_page(&bp->pdev->dev, 637 dma_unmap_addr(&old_rx_pg, mapping), 638 SGE_PAGES, DMA_FROM_DEVICE); 639 /* Add one frag and update the appropriate fields in the skb */ 640 if (fp->mode == TPA_MODE_LRO) 641 skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len); 642 else { /* GRO */ 643 int rem; 644 int offset = 0; 645 for (rem = frag_len; rem > 0; rem -= gro_size) { 646 int len = rem > gro_size ? gro_size : rem; 647 skb_fill_page_desc(skb, frag_id++, 648 old_rx_pg.page, offset, len); 649 if (offset) 650 get_page(old_rx_pg.page); 651 offset += len; 652 } 653 } 654 655 skb->data_len += frag_len; 656 skb->truesize += SGE_PAGES; 657 skb->len += frag_len; 658 659 frag_size -= frag_len; 660 } 661 662 return 0; 663 } 664 665 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 666 { 667 if (fp->rx_frag_size) 668 put_page(virt_to_head_page(data)); 669 else 670 kfree(data); 671 } 672 673 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 674 { 675 if (fp->rx_frag_size) { 676 /* GFP_KERNEL allocations are used only during initialization */ 677 if (unlikely(gfp_mask & __GFP_WAIT)) 678 return (void *)__get_free_page(gfp_mask); 679 680 return netdev_alloc_frag(fp->rx_frag_size); 681 } 682 683 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 684 } 685 686 #ifdef CONFIG_INET 687 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 688 { 689 const struct iphdr *iph = ip_hdr(skb); 690 struct tcphdr *th; 691 692 skb_set_transport_header(skb, sizeof(struct iphdr)); 693 th = tcp_hdr(skb); 694 695 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 696 iph->saddr, iph->daddr, 0); 697 } 698 699 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 700 { 701 struct ipv6hdr *iph = ipv6_hdr(skb); 702 struct tcphdr *th; 703 704 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 705 th = tcp_hdr(skb); 706 707 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 708 &iph->saddr, &iph->daddr, 0); 709 } 710 711 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 712 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 713 { 714 skb_set_network_header(skb, 0); 715 gro_func(bp, skb); 716 tcp_gro_complete(skb); 717 } 718 #endif 719 720 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 721 struct sk_buff *skb) 722 { 723 #ifdef CONFIG_INET 724 if (skb_shinfo(skb)->gso_size) { 725 switch (be16_to_cpu(skb->protocol)) { 726 case ETH_P_IP: 727 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 728 break; 729 case ETH_P_IPV6: 730 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 731 break; 732 default: 733 BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 734 be16_to_cpu(skb->protocol)); 735 } 736 } 737 #endif 738 skb_record_rx_queue(skb, fp->rx_queue); 739 napi_gro_receive(&fp->napi, skb); 740 } 741 742 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 743 struct bnx2x_agg_info *tpa_info, 744 u16 pages, 745 struct eth_end_agg_rx_cqe *cqe, 746 u16 cqe_idx) 747 { 748 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 749 u8 pad = tpa_info->placement_offset; 750 u16 len = tpa_info->len_on_bd; 751 struct sk_buff *skb = NULL; 752 u8 *new_data, *data = rx_buf->data; 753 u8 old_tpa_state = tpa_info->tpa_state; 754 755 tpa_info->tpa_state = BNX2X_TPA_STOP; 756 757 /* If we there was an error during the handling of the TPA_START - 758 * drop this aggregation. 759 */ 760 if (old_tpa_state == BNX2X_TPA_ERROR) 761 goto drop; 762 763 /* Try to allocate the new data */ 764 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 765 /* Unmap skb in the pool anyway, as we are going to change 766 pool entry status to BNX2X_TPA_STOP even if new skb allocation 767 fails. */ 768 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 769 fp->rx_buf_size, DMA_FROM_DEVICE); 770 if (likely(new_data)) 771 skb = build_skb(data, fp->rx_frag_size); 772 773 if (likely(skb)) { 774 #ifdef BNX2X_STOP_ON_ERROR 775 if (pad + len > fp->rx_buf_size) { 776 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 777 pad, len, fp->rx_buf_size); 778 bnx2x_panic(); 779 return; 780 } 781 #endif 782 783 skb_reserve(skb, pad + NET_SKB_PAD); 784 skb_put(skb, len); 785 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 786 787 skb->protocol = eth_type_trans(skb, bp->dev); 788 skb->ip_summed = CHECKSUM_UNNECESSARY; 789 790 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 791 skb, cqe, cqe_idx)) { 792 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 793 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 794 bnx2x_gro_receive(bp, fp, skb); 795 } else { 796 DP(NETIF_MSG_RX_STATUS, 797 "Failed to allocate new pages - dropping packet!\n"); 798 dev_kfree_skb_any(skb); 799 } 800 801 /* put new data in bin */ 802 rx_buf->data = new_data; 803 804 return; 805 } 806 if (new_data) 807 bnx2x_frag_free(fp, new_data); 808 drop: 809 /* drop the packet and keep the buffer in the bin */ 810 DP(NETIF_MSG_RX_STATUS, 811 "Failed to allocate or map a new skb - dropping packet!\n"); 812 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 813 } 814 815 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 816 u16 index, gfp_t gfp_mask) 817 { 818 u8 *data; 819 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 820 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 821 dma_addr_t mapping; 822 823 data = bnx2x_frag_alloc(fp, gfp_mask); 824 if (unlikely(data == NULL)) 825 return -ENOMEM; 826 827 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 828 fp->rx_buf_size, 829 DMA_FROM_DEVICE); 830 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 831 bnx2x_frag_free(fp, data); 832 BNX2X_ERR("Can't map rx data\n"); 833 return -ENOMEM; 834 } 835 836 rx_buf->data = data; 837 dma_unmap_addr_set(rx_buf, mapping, mapping); 838 839 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 840 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 841 842 return 0; 843 } 844 845 static 846 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 847 struct bnx2x_fastpath *fp, 848 struct bnx2x_eth_q_stats *qstats) 849 { 850 /* Do nothing if no L4 csum validation was done. 851 * We do not check whether IP csum was validated. For IPv4 we assume 852 * that if the card got as far as validating the L4 csum, it also 853 * validated the IP csum. IPv6 has no IP csum. 854 */ 855 if (cqe->fast_path_cqe.status_flags & 856 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 857 return; 858 859 /* If L4 validation was done, check if an error was found. */ 860 861 if (cqe->fast_path_cqe.type_error_flags & 862 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 863 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 864 qstats->hw_csum_err++; 865 else 866 skb->ip_summed = CHECKSUM_UNNECESSARY; 867 } 868 869 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 870 { 871 struct bnx2x *bp = fp->bp; 872 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 873 u16 sw_comp_cons, sw_comp_prod; 874 int rx_pkt = 0; 875 union eth_rx_cqe *cqe; 876 struct eth_fast_path_rx_cqe *cqe_fp; 877 878 #ifdef BNX2X_STOP_ON_ERROR 879 if (unlikely(bp->panic)) 880 return 0; 881 #endif 882 if (budget <= 0) 883 return rx_pkt; 884 885 bd_cons = fp->rx_bd_cons; 886 bd_prod = fp->rx_bd_prod; 887 bd_prod_fw = bd_prod; 888 sw_comp_cons = fp->rx_comp_cons; 889 sw_comp_prod = fp->rx_comp_prod; 890 891 comp_ring_cons = RCQ_BD(sw_comp_cons); 892 cqe = &fp->rx_comp_ring[comp_ring_cons]; 893 cqe_fp = &cqe->fast_path_cqe; 894 895 DP(NETIF_MSG_RX_STATUS, 896 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 897 898 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 899 struct sw_rx_bd *rx_buf = NULL; 900 struct sk_buff *skb; 901 u8 cqe_fp_flags; 902 enum eth_rx_cqe_type cqe_fp_type; 903 u16 len, pad, queue; 904 u8 *data; 905 u32 rxhash; 906 enum pkt_hash_types rxhash_type; 907 908 #ifdef BNX2X_STOP_ON_ERROR 909 if (unlikely(bp->panic)) 910 return 0; 911 #endif 912 913 bd_prod = RX_BD(bd_prod); 914 bd_cons = RX_BD(bd_cons); 915 916 /* A rmb() is required to ensure that the CQE is not read 917 * before it is written by the adapter DMA. PCI ordering 918 * rules will make sure the other fields are written before 919 * the marker at the end of struct eth_fast_path_rx_cqe 920 * but without rmb() a weakly ordered processor can process 921 * stale data. Without the barrier TPA state-machine might 922 * enter inconsistent state and kernel stack might be 923 * provided with incorrect packet description - these lead 924 * to various kernel crashed. 925 */ 926 rmb(); 927 928 cqe_fp_flags = cqe_fp->type_error_flags; 929 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 930 931 DP(NETIF_MSG_RX_STATUS, 932 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 933 CQE_TYPE(cqe_fp_flags), 934 cqe_fp_flags, cqe_fp->status_flags, 935 le32_to_cpu(cqe_fp->rss_hash_result), 936 le16_to_cpu(cqe_fp->vlan_tag), 937 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 938 939 /* is this a slowpath msg? */ 940 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 941 bnx2x_sp_event(fp, cqe); 942 goto next_cqe; 943 } 944 945 rx_buf = &fp->rx_buf_ring[bd_cons]; 946 data = rx_buf->data; 947 948 if (!CQE_TYPE_FAST(cqe_fp_type)) { 949 struct bnx2x_agg_info *tpa_info; 950 u16 frag_size, pages; 951 #ifdef BNX2X_STOP_ON_ERROR 952 /* sanity check */ 953 if (fp->disable_tpa && 954 (CQE_TYPE_START(cqe_fp_type) || 955 CQE_TYPE_STOP(cqe_fp_type))) 956 BNX2X_ERR("START/STOP packet while disable_tpa type %x\n", 957 CQE_TYPE(cqe_fp_type)); 958 #endif 959 960 if (CQE_TYPE_START(cqe_fp_type)) { 961 u16 queue = cqe_fp->queue_index; 962 DP(NETIF_MSG_RX_STATUS, 963 "calling tpa_start on queue %d\n", 964 queue); 965 966 bnx2x_tpa_start(fp, queue, 967 bd_cons, bd_prod, 968 cqe_fp); 969 970 goto next_rx; 971 } 972 queue = cqe->end_agg_cqe.queue_index; 973 tpa_info = &fp->tpa_info[queue]; 974 DP(NETIF_MSG_RX_STATUS, 975 "calling tpa_stop on queue %d\n", 976 queue); 977 978 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 979 tpa_info->len_on_bd; 980 981 if (fp->mode == TPA_MODE_GRO) 982 pages = (frag_size + tpa_info->full_page - 1) / 983 tpa_info->full_page; 984 else 985 pages = SGE_PAGE_ALIGN(frag_size) >> 986 SGE_PAGE_SHIFT; 987 988 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 989 &cqe->end_agg_cqe, comp_ring_cons); 990 #ifdef BNX2X_STOP_ON_ERROR 991 if (bp->panic) 992 return 0; 993 #endif 994 995 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 996 goto next_cqe; 997 } 998 /* non TPA */ 999 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 1000 pad = cqe_fp->placement_offset; 1001 dma_sync_single_for_cpu(&bp->pdev->dev, 1002 dma_unmap_addr(rx_buf, mapping), 1003 pad + RX_COPY_THRESH, 1004 DMA_FROM_DEVICE); 1005 pad += NET_SKB_PAD; 1006 prefetch(data + pad); /* speedup eth_type_trans() */ 1007 /* is this an error packet? */ 1008 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 1009 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1010 "ERROR flags %x rx packet %u\n", 1011 cqe_fp_flags, sw_comp_cons); 1012 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 1013 goto reuse_rx; 1014 } 1015 1016 /* Since we don't have a jumbo ring 1017 * copy small packets if mtu > 1500 1018 */ 1019 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 1020 (len <= RX_COPY_THRESH)) { 1021 skb = netdev_alloc_skb_ip_align(bp->dev, len); 1022 if (skb == NULL) { 1023 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1024 "ERROR packet dropped because of alloc failure\n"); 1025 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1026 goto reuse_rx; 1027 } 1028 memcpy(skb->data, data + pad, len); 1029 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1030 } else { 1031 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1032 GFP_ATOMIC) == 0)) { 1033 dma_unmap_single(&bp->pdev->dev, 1034 dma_unmap_addr(rx_buf, mapping), 1035 fp->rx_buf_size, 1036 DMA_FROM_DEVICE); 1037 skb = build_skb(data, fp->rx_frag_size); 1038 if (unlikely(!skb)) { 1039 bnx2x_frag_free(fp, data); 1040 bnx2x_fp_qstats(bp, fp)-> 1041 rx_skb_alloc_failed++; 1042 goto next_rx; 1043 } 1044 skb_reserve(skb, pad); 1045 } else { 1046 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1047 "ERROR packet dropped because of alloc failure\n"); 1048 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1049 reuse_rx: 1050 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1051 goto next_rx; 1052 } 1053 } 1054 1055 skb_put(skb, len); 1056 skb->protocol = eth_type_trans(skb, bp->dev); 1057 1058 /* Set Toeplitz hash for a none-LRO skb */ 1059 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1060 skb_set_hash(skb, rxhash, rxhash_type); 1061 1062 skb_checksum_none_assert(skb); 1063 1064 if (bp->dev->features & NETIF_F_RXCSUM) 1065 bnx2x_csum_validate(skb, cqe, fp, 1066 bnx2x_fp_qstats(bp, fp)); 1067 1068 skb_record_rx_queue(skb, fp->rx_queue); 1069 1070 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1071 PARSING_FLAGS_VLAN) 1072 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1073 le16_to_cpu(cqe_fp->vlan_tag)); 1074 1075 skb_mark_napi_id(skb, &fp->napi); 1076 1077 if (bnx2x_fp_ll_polling(fp)) 1078 netif_receive_skb(skb); 1079 else 1080 napi_gro_receive(&fp->napi, skb); 1081 next_rx: 1082 rx_buf->data = NULL; 1083 1084 bd_cons = NEXT_RX_IDX(bd_cons); 1085 bd_prod = NEXT_RX_IDX(bd_prod); 1086 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1087 rx_pkt++; 1088 next_cqe: 1089 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1090 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1091 1092 /* mark CQE as free */ 1093 BNX2X_SEED_CQE(cqe_fp); 1094 1095 if (rx_pkt == budget) 1096 break; 1097 1098 comp_ring_cons = RCQ_BD(sw_comp_cons); 1099 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1100 cqe_fp = &cqe->fast_path_cqe; 1101 } /* while */ 1102 1103 fp->rx_bd_cons = bd_cons; 1104 fp->rx_bd_prod = bd_prod_fw; 1105 fp->rx_comp_cons = sw_comp_cons; 1106 fp->rx_comp_prod = sw_comp_prod; 1107 1108 /* Update producers */ 1109 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1110 fp->rx_sge_prod); 1111 1112 fp->rx_pkt += rx_pkt; 1113 fp->rx_calls++; 1114 1115 return rx_pkt; 1116 } 1117 1118 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1119 { 1120 struct bnx2x_fastpath *fp = fp_cookie; 1121 struct bnx2x *bp = fp->bp; 1122 u8 cos; 1123 1124 DP(NETIF_MSG_INTR, 1125 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1126 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1127 1128 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1129 1130 #ifdef BNX2X_STOP_ON_ERROR 1131 if (unlikely(bp->panic)) 1132 return IRQ_HANDLED; 1133 #endif 1134 1135 /* Handle Rx and Tx according to MSI-X vector */ 1136 for_each_cos_in_tx_queue(fp, cos) 1137 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1138 1139 prefetch(&fp->sb_running_index[SM_RX_ID]); 1140 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 1141 1142 return IRQ_HANDLED; 1143 } 1144 1145 /* HW Lock for shared dual port PHYs */ 1146 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1147 { 1148 mutex_lock(&bp->port.phy_mutex); 1149 1150 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1151 } 1152 1153 void bnx2x_release_phy_lock(struct bnx2x *bp) 1154 { 1155 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1156 1157 mutex_unlock(&bp->port.phy_mutex); 1158 } 1159 1160 /* calculates MF speed according to current linespeed and MF configuration */ 1161 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1162 { 1163 u16 line_speed = bp->link_vars.line_speed; 1164 if (IS_MF(bp)) { 1165 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1166 bp->mf_config[BP_VN(bp)]); 1167 1168 /* Calculate the current MAX line speed limit for the MF 1169 * devices 1170 */ 1171 if (IS_MF_SI(bp)) 1172 line_speed = (line_speed * maxCfg) / 100; 1173 else { /* SD mode */ 1174 u16 vn_max_rate = maxCfg * 100; 1175 1176 if (vn_max_rate < line_speed) 1177 line_speed = vn_max_rate; 1178 } 1179 } 1180 1181 return line_speed; 1182 } 1183 1184 /** 1185 * bnx2x_fill_report_data - fill link report data to report 1186 * 1187 * @bp: driver handle 1188 * @data: link state to update 1189 * 1190 * It uses a none-atomic bit operations because is called under the mutex. 1191 */ 1192 static void bnx2x_fill_report_data(struct bnx2x *bp, 1193 struct bnx2x_link_report_data *data) 1194 { 1195 memset(data, 0, sizeof(*data)); 1196 1197 if (IS_PF(bp)) { 1198 /* Fill the report data: effective line speed */ 1199 data->line_speed = bnx2x_get_mf_speed(bp); 1200 1201 /* Link is down */ 1202 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1203 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1204 &data->link_report_flags); 1205 1206 if (!BNX2X_NUM_ETH_QUEUES(bp)) 1207 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1208 &data->link_report_flags); 1209 1210 /* Full DUPLEX */ 1211 if (bp->link_vars.duplex == DUPLEX_FULL) 1212 __set_bit(BNX2X_LINK_REPORT_FD, 1213 &data->link_report_flags); 1214 1215 /* Rx Flow Control is ON */ 1216 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1217 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1218 &data->link_report_flags); 1219 1220 /* Tx Flow Control is ON */ 1221 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1222 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1223 &data->link_report_flags); 1224 } else { /* VF */ 1225 *data = bp->vf_link_vars; 1226 } 1227 } 1228 1229 /** 1230 * bnx2x_link_report - report link status to OS. 1231 * 1232 * @bp: driver handle 1233 * 1234 * Calls the __bnx2x_link_report() under the same locking scheme 1235 * as a link/PHY state managing code to ensure a consistent link 1236 * reporting. 1237 */ 1238 1239 void bnx2x_link_report(struct bnx2x *bp) 1240 { 1241 bnx2x_acquire_phy_lock(bp); 1242 __bnx2x_link_report(bp); 1243 bnx2x_release_phy_lock(bp); 1244 } 1245 1246 /** 1247 * __bnx2x_link_report - report link status to OS. 1248 * 1249 * @bp: driver handle 1250 * 1251 * None atomic implementation. 1252 * Should be called under the phy_lock. 1253 */ 1254 void __bnx2x_link_report(struct bnx2x *bp) 1255 { 1256 struct bnx2x_link_report_data cur_data; 1257 1258 /* reread mf_cfg */ 1259 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1260 bnx2x_read_mf_cfg(bp); 1261 1262 /* Read the current link report info */ 1263 bnx2x_fill_report_data(bp, &cur_data); 1264 1265 /* Don't report link down or exactly the same link status twice */ 1266 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1267 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1268 &bp->last_reported_link.link_report_flags) && 1269 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1270 &cur_data.link_report_flags))) 1271 return; 1272 1273 bp->link_cnt++; 1274 1275 /* We are going to report a new link parameters now - 1276 * remember the current data for the next time. 1277 */ 1278 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1279 1280 /* propagate status to VFs */ 1281 if (IS_PF(bp)) 1282 bnx2x_iov_link_update(bp); 1283 1284 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1285 &cur_data.link_report_flags)) { 1286 netif_carrier_off(bp->dev); 1287 netdev_err(bp->dev, "NIC Link is Down\n"); 1288 return; 1289 } else { 1290 const char *duplex; 1291 const char *flow; 1292 1293 netif_carrier_on(bp->dev); 1294 1295 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1296 &cur_data.link_report_flags)) 1297 duplex = "full"; 1298 else 1299 duplex = "half"; 1300 1301 /* Handle the FC at the end so that only these flags would be 1302 * possibly set. This way we may easily check if there is no FC 1303 * enabled. 1304 */ 1305 if (cur_data.link_report_flags) { 1306 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1307 &cur_data.link_report_flags)) { 1308 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1309 &cur_data.link_report_flags)) 1310 flow = "ON - receive & transmit"; 1311 else 1312 flow = "ON - receive"; 1313 } else { 1314 flow = "ON - transmit"; 1315 } 1316 } else { 1317 flow = "none"; 1318 } 1319 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1320 cur_data.line_speed, duplex, flow); 1321 } 1322 } 1323 1324 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1325 { 1326 int i; 1327 1328 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1329 struct eth_rx_sge *sge; 1330 1331 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1332 sge->addr_hi = 1333 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1334 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1335 1336 sge->addr_lo = 1337 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1338 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1339 } 1340 } 1341 1342 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1343 struct bnx2x_fastpath *fp, int last) 1344 { 1345 int i; 1346 1347 for (i = 0; i < last; i++) { 1348 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1349 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1350 u8 *data = first_buf->data; 1351 1352 if (data == NULL) { 1353 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1354 continue; 1355 } 1356 if (tpa_info->tpa_state == BNX2X_TPA_START) 1357 dma_unmap_single(&bp->pdev->dev, 1358 dma_unmap_addr(first_buf, mapping), 1359 fp->rx_buf_size, DMA_FROM_DEVICE); 1360 bnx2x_frag_free(fp, data); 1361 first_buf->data = NULL; 1362 } 1363 } 1364 1365 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1366 { 1367 int j; 1368 1369 for_each_rx_queue_cnic(bp, j) { 1370 struct bnx2x_fastpath *fp = &bp->fp[j]; 1371 1372 fp->rx_bd_cons = 0; 1373 1374 /* Activate BD ring */ 1375 /* Warning! 1376 * this will generate an interrupt (to the TSTORM) 1377 * must only be done after chip is initialized 1378 */ 1379 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1380 fp->rx_sge_prod); 1381 } 1382 } 1383 1384 void bnx2x_init_rx_rings(struct bnx2x *bp) 1385 { 1386 int func = BP_FUNC(bp); 1387 u16 ring_prod; 1388 int i, j; 1389 1390 /* Allocate TPA resources */ 1391 for_each_eth_queue(bp, j) { 1392 struct bnx2x_fastpath *fp = &bp->fp[j]; 1393 1394 DP(NETIF_MSG_IFUP, 1395 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1396 1397 if (!fp->disable_tpa) { 1398 /* Fill the per-aggregation pool */ 1399 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1400 struct bnx2x_agg_info *tpa_info = 1401 &fp->tpa_info[i]; 1402 struct sw_rx_bd *first_buf = 1403 &tpa_info->first_buf; 1404 1405 first_buf->data = 1406 bnx2x_frag_alloc(fp, GFP_KERNEL); 1407 if (!first_buf->data) { 1408 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1409 j); 1410 bnx2x_free_tpa_pool(bp, fp, i); 1411 fp->disable_tpa = 1; 1412 break; 1413 } 1414 dma_unmap_addr_set(first_buf, mapping, 0); 1415 tpa_info->tpa_state = BNX2X_TPA_STOP; 1416 } 1417 1418 /* "next page" elements initialization */ 1419 bnx2x_set_next_page_sgl(fp); 1420 1421 /* set SGEs bit mask */ 1422 bnx2x_init_sge_ring_bit_mask(fp); 1423 1424 /* Allocate SGEs and initialize the ring elements */ 1425 for (i = 0, ring_prod = 0; 1426 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1427 1428 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1429 GFP_KERNEL) < 0) { 1430 BNX2X_ERR("was only able to allocate %d rx sges\n", 1431 i); 1432 BNX2X_ERR("disabling TPA for queue[%d]\n", 1433 j); 1434 /* Cleanup already allocated elements */ 1435 bnx2x_free_rx_sge_range(bp, fp, 1436 ring_prod); 1437 bnx2x_free_tpa_pool(bp, fp, 1438 MAX_AGG_QS(bp)); 1439 fp->disable_tpa = 1; 1440 ring_prod = 0; 1441 break; 1442 } 1443 ring_prod = NEXT_SGE_IDX(ring_prod); 1444 } 1445 1446 fp->rx_sge_prod = ring_prod; 1447 } 1448 } 1449 1450 for_each_eth_queue(bp, j) { 1451 struct bnx2x_fastpath *fp = &bp->fp[j]; 1452 1453 fp->rx_bd_cons = 0; 1454 1455 /* Activate BD ring */ 1456 /* Warning! 1457 * this will generate an interrupt (to the TSTORM) 1458 * must only be done after chip is initialized 1459 */ 1460 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1461 fp->rx_sge_prod); 1462 1463 if (j != 0) 1464 continue; 1465 1466 if (CHIP_IS_E1(bp)) { 1467 REG_WR(bp, BAR_USTRORM_INTMEM + 1468 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1469 U64_LO(fp->rx_comp_mapping)); 1470 REG_WR(bp, BAR_USTRORM_INTMEM + 1471 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1472 U64_HI(fp->rx_comp_mapping)); 1473 } 1474 } 1475 } 1476 1477 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1478 { 1479 u8 cos; 1480 struct bnx2x *bp = fp->bp; 1481 1482 for_each_cos_in_tx_queue(fp, cos) { 1483 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1484 unsigned pkts_compl = 0, bytes_compl = 0; 1485 1486 u16 sw_prod = txdata->tx_pkt_prod; 1487 u16 sw_cons = txdata->tx_pkt_cons; 1488 1489 while (sw_cons != sw_prod) { 1490 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1491 &pkts_compl, &bytes_compl); 1492 sw_cons++; 1493 } 1494 1495 netdev_tx_reset_queue( 1496 netdev_get_tx_queue(bp->dev, 1497 txdata->txq_index)); 1498 } 1499 } 1500 1501 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1502 { 1503 int i; 1504 1505 for_each_tx_queue_cnic(bp, i) { 1506 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1507 } 1508 } 1509 1510 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1511 { 1512 int i; 1513 1514 for_each_eth_queue(bp, i) { 1515 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1516 } 1517 } 1518 1519 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1520 { 1521 struct bnx2x *bp = fp->bp; 1522 int i; 1523 1524 /* ring wasn't allocated */ 1525 if (fp->rx_buf_ring == NULL) 1526 return; 1527 1528 for (i = 0; i < NUM_RX_BD; i++) { 1529 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1530 u8 *data = rx_buf->data; 1531 1532 if (data == NULL) 1533 continue; 1534 dma_unmap_single(&bp->pdev->dev, 1535 dma_unmap_addr(rx_buf, mapping), 1536 fp->rx_buf_size, DMA_FROM_DEVICE); 1537 1538 rx_buf->data = NULL; 1539 bnx2x_frag_free(fp, data); 1540 } 1541 } 1542 1543 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1544 { 1545 int j; 1546 1547 for_each_rx_queue_cnic(bp, j) { 1548 bnx2x_free_rx_bds(&bp->fp[j]); 1549 } 1550 } 1551 1552 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1553 { 1554 int j; 1555 1556 for_each_eth_queue(bp, j) { 1557 struct bnx2x_fastpath *fp = &bp->fp[j]; 1558 1559 bnx2x_free_rx_bds(fp); 1560 1561 if (!fp->disable_tpa) 1562 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1563 } 1564 } 1565 1566 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1567 { 1568 bnx2x_free_tx_skbs_cnic(bp); 1569 bnx2x_free_rx_skbs_cnic(bp); 1570 } 1571 1572 void bnx2x_free_skbs(struct bnx2x *bp) 1573 { 1574 bnx2x_free_tx_skbs(bp); 1575 bnx2x_free_rx_skbs(bp); 1576 } 1577 1578 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1579 { 1580 /* load old values */ 1581 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1582 1583 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1584 /* leave all but MAX value */ 1585 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1586 1587 /* set new MAX value */ 1588 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1589 & FUNC_MF_CFG_MAX_BW_MASK; 1590 1591 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1592 } 1593 } 1594 1595 /** 1596 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1597 * 1598 * @bp: driver handle 1599 * @nvecs: number of vectors to be released 1600 */ 1601 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1602 { 1603 int i, offset = 0; 1604 1605 if (nvecs == offset) 1606 return; 1607 1608 /* VFs don't have a default SB */ 1609 if (IS_PF(bp)) { 1610 free_irq(bp->msix_table[offset].vector, bp->dev); 1611 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1612 bp->msix_table[offset].vector); 1613 offset++; 1614 } 1615 1616 if (CNIC_SUPPORT(bp)) { 1617 if (nvecs == offset) 1618 return; 1619 offset++; 1620 } 1621 1622 for_each_eth_queue(bp, i) { 1623 if (nvecs == offset) 1624 return; 1625 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1626 i, bp->msix_table[offset].vector); 1627 1628 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1629 } 1630 } 1631 1632 void bnx2x_free_irq(struct bnx2x *bp) 1633 { 1634 if (bp->flags & USING_MSIX_FLAG && 1635 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1636 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1637 1638 /* vfs don't have a default status block */ 1639 if (IS_PF(bp)) 1640 nvecs++; 1641 1642 bnx2x_free_msix_irqs(bp, nvecs); 1643 } else { 1644 free_irq(bp->dev->irq, bp->dev); 1645 } 1646 } 1647 1648 int bnx2x_enable_msix(struct bnx2x *bp) 1649 { 1650 int msix_vec = 0, i, rc; 1651 1652 /* VFs don't have a default status block */ 1653 if (IS_PF(bp)) { 1654 bp->msix_table[msix_vec].entry = msix_vec; 1655 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1656 bp->msix_table[0].entry); 1657 msix_vec++; 1658 } 1659 1660 /* Cnic requires an msix vector for itself */ 1661 if (CNIC_SUPPORT(bp)) { 1662 bp->msix_table[msix_vec].entry = msix_vec; 1663 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1664 msix_vec, bp->msix_table[msix_vec].entry); 1665 msix_vec++; 1666 } 1667 1668 /* We need separate vectors for ETH queues only (not FCoE) */ 1669 for_each_eth_queue(bp, i) { 1670 bp->msix_table[msix_vec].entry = msix_vec; 1671 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1672 msix_vec, msix_vec, i); 1673 msix_vec++; 1674 } 1675 1676 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1677 msix_vec); 1678 1679 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1680 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); 1681 /* 1682 * reconfigure number of tx/rx queues according to available 1683 * MSI-X vectors 1684 */ 1685 if (rc == -ENOSPC) { 1686 /* Get by with single vector */ 1687 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); 1688 if (rc < 0) { 1689 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1690 rc); 1691 goto no_msix; 1692 } 1693 1694 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1695 bp->flags |= USING_SINGLE_MSIX_FLAG; 1696 1697 BNX2X_DEV_INFO("set number of queues to 1\n"); 1698 bp->num_ethernet_queues = 1; 1699 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1700 } else if (rc < 0) { 1701 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1702 goto no_msix; 1703 } else if (rc < msix_vec) { 1704 /* how less vectors we will have? */ 1705 int diff = msix_vec - rc; 1706 1707 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1708 1709 /* 1710 * decrease number of queues by number of unallocated entries 1711 */ 1712 bp->num_ethernet_queues -= diff; 1713 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1714 1715 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1716 bp->num_queues); 1717 } 1718 1719 bp->flags |= USING_MSIX_FLAG; 1720 1721 return 0; 1722 1723 no_msix: 1724 /* fall to INTx if not enough memory */ 1725 if (rc == -ENOMEM) 1726 bp->flags |= DISABLE_MSI_FLAG; 1727 1728 return rc; 1729 } 1730 1731 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1732 { 1733 int i, rc, offset = 0; 1734 1735 /* no default status block for vf */ 1736 if (IS_PF(bp)) { 1737 rc = request_irq(bp->msix_table[offset++].vector, 1738 bnx2x_msix_sp_int, 0, 1739 bp->dev->name, bp->dev); 1740 if (rc) { 1741 BNX2X_ERR("request sp irq failed\n"); 1742 return -EBUSY; 1743 } 1744 } 1745 1746 if (CNIC_SUPPORT(bp)) 1747 offset++; 1748 1749 for_each_eth_queue(bp, i) { 1750 struct bnx2x_fastpath *fp = &bp->fp[i]; 1751 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1752 bp->dev->name, i); 1753 1754 rc = request_irq(bp->msix_table[offset].vector, 1755 bnx2x_msix_fp_int, 0, fp->name, fp); 1756 if (rc) { 1757 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1758 bp->msix_table[offset].vector, rc); 1759 bnx2x_free_msix_irqs(bp, offset); 1760 return -EBUSY; 1761 } 1762 1763 offset++; 1764 } 1765 1766 i = BNX2X_NUM_ETH_QUEUES(bp); 1767 if (IS_PF(bp)) { 1768 offset = 1 + CNIC_SUPPORT(bp); 1769 netdev_info(bp->dev, 1770 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1771 bp->msix_table[0].vector, 1772 0, bp->msix_table[offset].vector, 1773 i - 1, bp->msix_table[offset + i - 1].vector); 1774 } else { 1775 offset = CNIC_SUPPORT(bp); 1776 netdev_info(bp->dev, 1777 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1778 0, bp->msix_table[offset].vector, 1779 i - 1, bp->msix_table[offset + i - 1].vector); 1780 } 1781 return 0; 1782 } 1783 1784 int bnx2x_enable_msi(struct bnx2x *bp) 1785 { 1786 int rc; 1787 1788 rc = pci_enable_msi(bp->pdev); 1789 if (rc) { 1790 BNX2X_DEV_INFO("MSI is not attainable\n"); 1791 return -1; 1792 } 1793 bp->flags |= USING_MSI_FLAG; 1794 1795 return 0; 1796 } 1797 1798 static int bnx2x_req_irq(struct bnx2x *bp) 1799 { 1800 unsigned long flags; 1801 unsigned int irq; 1802 1803 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1804 flags = 0; 1805 else 1806 flags = IRQF_SHARED; 1807 1808 if (bp->flags & USING_MSIX_FLAG) 1809 irq = bp->msix_table[0].vector; 1810 else 1811 irq = bp->pdev->irq; 1812 1813 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1814 } 1815 1816 static int bnx2x_setup_irqs(struct bnx2x *bp) 1817 { 1818 int rc = 0; 1819 if (bp->flags & USING_MSIX_FLAG && 1820 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1821 rc = bnx2x_req_msix_irqs(bp); 1822 if (rc) 1823 return rc; 1824 } else { 1825 rc = bnx2x_req_irq(bp); 1826 if (rc) { 1827 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1828 return rc; 1829 } 1830 if (bp->flags & USING_MSI_FLAG) { 1831 bp->dev->irq = bp->pdev->irq; 1832 netdev_info(bp->dev, "using MSI IRQ %d\n", 1833 bp->dev->irq); 1834 } 1835 if (bp->flags & USING_MSIX_FLAG) { 1836 bp->dev->irq = bp->msix_table[0].vector; 1837 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1838 bp->dev->irq); 1839 } 1840 } 1841 1842 return 0; 1843 } 1844 1845 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1846 { 1847 int i; 1848 1849 for_each_rx_queue_cnic(bp, i) { 1850 bnx2x_fp_init_lock(&bp->fp[i]); 1851 napi_enable(&bnx2x_fp(bp, i, napi)); 1852 } 1853 } 1854 1855 static void bnx2x_napi_enable(struct bnx2x *bp) 1856 { 1857 int i; 1858 1859 for_each_eth_queue(bp, i) { 1860 bnx2x_fp_init_lock(&bp->fp[i]); 1861 napi_enable(&bnx2x_fp(bp, i, napi)); 1862 } 1863 } 1864 1865 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1866 { 1867 int i; 1868 1869 for_each_rx_queue_cnic(bp, i) { 1870 napi_disable(&bnx2x_fp(bp, i, napi)); 1871 while (!bnx2x_fp_ll_disable(&bp->fp[i])) 1872 usleep_range(1000, 2000); 1873 } 1874 } 1875 1876 static void bnx2x_napi_disable(struct bnx2x *bp) 1877 { 1878 int i; 1879 1880 for_each_eth_queue(bp, i) { 1881 napi_disable(&bnx2x_fp(bp, i, napi)); 1882 while (!bnx2x_fp_ll_disable(&bp->fp[i])) 1883 usleep_range(1000, 2000); 1884 } 1885 } 1886 1887 void bnx2x_netif_start(struct bnx2x *bp) 1888 { 1889 if (netif_running(bp->dev)) { 1890 bnx2x_napi_enable(bp); 1891 if (CNIC_LOADED(bp)) 1892 bnx2x_napi_enable_cnic(bp); 1893 bnx2x_int_enable(bp); 1894 if (bp->state == BNX2X_STATE_OPEN) 1895 netif_tx_wake_all_queues(bp->dev); 1896 } 1897 } 1898 1899 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1900 { 1901 bnx2x_int_disable_sync(bp, disable_hw); 1902 bnx2x_napi_disable(bp); 1903 if (CNIC_LOADED(bp)) 1904 bnx2x_napi_disable_cnic(bp); 1905 } 1906 1907 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1908 void *accel_priv, select_queue_fallback_t fallback) 1909 { 1910 struct bnx2x *bp = netdev_priv(dev); 1911 1912 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1913 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1914 u16 ether_type = ntohs(hdr->h_proto); 1915 1916 /* Skip VLAN tag if present */ 1917 if (ether_type == ETH_P_8021Q) { 1918 struct vlan_ethhdr *vhdr = 1919 (struct vlan_ethhdr *)skb->data; 1920 1921 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1922 } 1923 1924 /* If ethertype is FCoE or FIP - use FCoE ring */ 1925 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1926 return bnx2x_fcoe_tx(bp, txq_index); 1927 } 1928 1929 /* select a non-FCoE queue */ 1930 return fallback(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp); 1931 } 1932 1933 void bnx2x_set_num_queues(struct bnx2x *bp) 1934 { 1935 /* RSS queues */ 1936 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1937 1938 /* override in STORAGE SD modes */ 1939 if (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) 1940 bp->num_ethernet_queues = 1; 1941 1942 /* Add special queues */ 1943 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1944 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1945 1946 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1947 } 1948 1949 /** 1950 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1951 * 1952 * @bp: Driver handle 1953 * 1954 * We currently support for at most 16 Tx queues for each CoS thus we will 1955 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1956 * bp->max_cos. 1957 * 1958 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1959 * index after all ETH L2 indices. 1960 * 1961 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1962 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1963 * 16..31,...) with indices that are not coupled with any real Tx queue. 1964 * 1965 * The proper configuration of skb->queue_mapping is handled by 1966 * bnx2x_select_queue() and __skb_tx_hash(). 1967 * 1968 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1969 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1970 */ 1971 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1972 { 1973 int rc, tx, rx; 1974 1975 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1976 rx = BNX2X_NUM_ETH_QUEUES(bp); 1977 1978 /* account for fcoe queue */ 1979 if (include_cnic && !NO_FCOE(bp)) { 1980 rx++; 1981 tx++; 1982 } 1983 1984 rc = netif_set_real_num_tx_queues(bp->dev, tx); 1985 if (rc) { 1986 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 1987 return rc; 1988 } 1989 rc = netif_set_real_num_rx_queues(bp->dev, rx); 1990 if (rc) { 1991 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 1992 return rc; 1993 } 1994 1995 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 1996 tx, rx); 1997 1998 return rc; 1999 } 2000 2001 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 2002 { 2003 int i; 2004 2005 for_each_queue(bp, i) { 2006 struct bnx2x_fastpath *fp = &bp->fp[i]; 2007 u32 mtu; 2008 2009 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 2010 if (IS_FCOE_IDX(i)) 2011 /* 2012 * Although there are no IP frames expected to arrive to 2013 * this ring we still want to add an 2014 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 2015 * overrun attack. 2016 */ 2017 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 2018 else 2019 mtu = bp->dev->mtu; 2020 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 2021 IP_HEADER_ALIGNMENT_PADDING + 2022 ETH_OVREHEAD + 2023 mtu + 2024 BNX2X_FW_RX_ALIGN_END; 2025 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 2026 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 2027 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 2028 else 2029 fp->rx_frag_size = 0; 2030 } 2031 } 2032 2033 static int bnx2x_init_rss(struct bnx2x *bp) 2034 { 2035 int i; 2036 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2037 2038 /* Prepare the initial contents for the indirection table if RSS is 2039 * enabled 2040 */ 2041 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2042 bp->rss_conf_obj.ind_table[i] = 2043 bp->fp->cl_id + 2044 ethtool_rxfh_indir_default(i, num_eth_queues); 2045 2046 /* 2047 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2048 * per-port, so if explicit configuration is needed , do it only 2049 * for a PMF. 2050 * 2051 * For 57712 and newer on the other hand it's a per-function 2052 * configuration. 2053 */ 2054 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2055 } 2056 2057 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2058 bool config_hash, bool enable) 2059 { 2060 struct bnx2x_config_rss_params params = {NULL}; 2061 2062 /* Although RSS is meaningless when there is a single HW queue we 2063 * still need it enabled in order to have HW Rx hash generated. 2064 * 2065 * if (!is_eth_multi(bp)) 2066 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2067 */ 2068 2069 params.rss_obj = rss_obj; 2070 2071 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2072 2073 if (enable) { 2074 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2075 2076 /* RSS configuration */ 2077 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2078 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2079 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2080 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2081 if (rss_obj->udp_rss_v4) 2082 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2083 if (rss_obj->udp_rss_v6) 2084 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2085 } else { 2086 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2087 } 2088 2089 /* Hash bits */ 2090 params.rss_result_mask = MULTI_MASK; 2091 2092 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2093 2094 if (config_hash) { 2095 /* RSS keys */ 2096 prandom_bytes(params.rss_key, T_ETH_RSS_KEY * 4); 2097 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2098 } 2099 2100 if (IS_PF(bp)) 2101 return bnx2x_config_rss(bp, ¶ms); 2102 else 2103 return bnx2x_vfpf_config_rss(bp, ¶ms); 2104 } 2105 2106 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2107 { 2108 struct bnx2x_func_state_params func_params = {NULL}; 2109 2110 /* Prepare parameters for function state transitions */ 2111 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2112 2113 func_params.f_obj = &bp->func_obj; 2114 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2115 2116 func_params.params.hw_init.load_phase = load_code; 2117 2118 return bnx2x_func_state_change(bp, &func_params); 2119 } 2120 2121 /* 2122 * Cleans the object that have internal lists without sending 2123 * ramrods. Should be run when interrupts are disabled. 2124 */ 2125 void bnx2x_squeeze_objects(struct bnx2x *bp) 2126 { 2127 int rc; 2128 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2129 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2130 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2131 2132 /***************** Cleanup MACs' object first *************************/ 2133 2134 /* Wait for completion of requested */ 2135 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2136 /* Perform a dry cleanup */ 2137 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2138 2139 /* Clean ETH primary MAC */ 2140 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2141 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2142 &ramrod_flags); 2143 if (rc != 0) 2144 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2145 2146 /* Cleanup UC list */ 2147 vlan_mac_flags = 0; 2148 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2149 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2150 &ramrod_flags); 2151 if (rc != 0) 2152 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2153 2154 /***************** Now clean mcast object *****************************/ 2155 rparam.mcast_obj = &bp->mcast_obj; 2156 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2157 2158 /* Add a DEL command... - Since we're doing a driver cleanup only, 2159 * we take a lock surrounding both the initial send and the CONTs, 2160 * as we don't want a true completion to disrupt us in the middle. 2161 */ 2162 netif_addr_lock_bh(bp->dev); 2163 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2164 if (rc < 0) 2165 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2166 rc); 2167 2168 /* ...and wait until all pending commands are cleared */ 2169 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2170 while (rc != 0) { 2171 if (rc < 0) { 2172 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2173 rc); 2174 netif_addr_unlock_bh(bp->dev); 2175 return; 2176 } 2177 2178 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2179 } 2180 netif_addr_unlock_bh(bp->dev); 2181 } 2182 2183 #ifndef BNX2X_STOP_ON_ERROR 2184 #define LOAD_ERROR_EXIT(bp, label) \ 2185 do { \ 2186 (bp)->state = BNX2X_STATE_ERROR; \ 2187 goto label; \ 2188 } while (0) 2189 2190 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2191 do { \ 2192 bp->cnic_loaded = false; \ 2193 goto label; \ 2194 } while (0) 2195 #else /*BNX2X_STOP_ON_ERROR*/ 2196 #define LOAD_ERROR_EXIT(bp, label) \ 2197 do { \ 2198 (bp)->state = BNX2X_STATE_ERROR; \ 2199 (bp)->panic = 1; \ 2200 return -EBUSY; \ 2201 } while (0) 2202 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2203 do { \ 2204 bp->cnic_loaded = false; \ 2205 (bp)->panic = 1; \ 2206 return -EBUSY; \ 2207 } while (0) 2208 #endif /*BNX2X_STOP_ON_ERROR*/ 2209 2210 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2211 { 2212 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2213 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2214 return; 2215 } 2216 2217 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2218 { 2219 int num_groups, vf_headroom = 0; 2220 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2221 2222 /* number of queues for statistics is number of eth queues + FCoE */ 2223 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2224 2225 /* Total number of FW statistics requests = 2226 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2227 * and fcoe l2 queue) stats + num of queues (which includes another 1 2228 * for fcoe l2 queue if applicable) 2229 */ 2230 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2231 2232 /* vf stats appear in the request list, but their data is allocated by 2233 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2234 * it is used to determine where to place the vf stats queries in the 2235 * request struct 2236 */ 2237 if (IS_SRIOV(bp)) 2238 vf_headroom = bnx2x_vf_headroom(bp); 2239 2240 /* Request is built from stats_query_header and an array of 2241 * stats_query_cmd_group each of which contains 2242 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2243 * configured in the stats_query_header. 2244 */ 2245 num_groups = 2246 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2247 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2248 1 : 0)); 2249 2250 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2251 bp->fw_stats_num, vf_headroom, num_groups); 2252 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2253 num_groups * sizeof(struct stats_query_cmd_group); 2254 2255 /* Data for statistics requests + stats_counter 2256 * stats_counter holds per-STORM counters that are incremented 2257 * when STORM has finished with the current request. 2258 * memory for FCoE offloaded statistics are counted anyway, 2259 * even if they will not be sent. 2260 * VF stats are not accounted for here as the data of VF stats is stored 2261 * in memory allocated by the VF, not here. 2262 */ 2263 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2264 sizeof(struct per_pf_stats) + 2265 sizeof(struct fcoe_statistics_params) + 2266 sizeof(struct per_queue_stats) * num_queue_stats + 2267 sizeof(struct stats_counter); 2268 2269 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, 2270 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2271 if (!bp->fw_stats) 2272 goto alloc_mem_err; 2273 2274 /* Set shortcuts */ 2275 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2276 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2277 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2278 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2279 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2280 bp->fw_stats_req_sz; 2281 2282 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2283 U64_HI(bp->fw_stats_req_mapping), 2284 U64_LO(bp->fw_stats_req_mapping)); 2285 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2286 U64_HI(bp->fw_stats_data_mapping), 2287 U64_LO(bp->fw_stats_data_mapping)); 2288 return 0; 2289 2290 alloc_mem_err: 2291 bnx2x_free_fw_stats_mem(bp); 2292 BNX2X_ERR("Can't allocate FW stats memory\n"); 2293 return -ENOMEM; 2294 } 2295 2296 /* send load request to mcp and analyze response */ 2297 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2298 { 2299 u32 param; 2300 2301 /* init fw_seq */ 2302 bp->fw_seq = 2303 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2304 DRV_MSG_SEQ_NUMBER_MASK); 2305 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2306 2307 /* Get current FW pulse sequence */ 2308 bp->fw_drv_pulse_wr_seq = 2309 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2310 DRV_PULSE_SEQ_MASK); 2311 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2312 2313 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2314 2315 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2316 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2317 2318 /* load request */ 2319 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2320 2321 /* if mcp fails to respond we must abort */ 2322 if (!(*load_code)) { 2323 BNX2X_ERR("MCP response failure, aborting\n"); 2324 return -EBUSY; 2325 } 2326 2327 /* If mcp refused (e.g. other port is in diagnostic mode) we 2328 * must abort 2329 */ 2330 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2331 BNX2X_ERR("MCP refused load request, aborting\n"); 2332 return -EBUSY; 2333 } 2334 return 0; 2335 } 2336 2337 /* check whether another PF has already loaded FW to chip. In 2338 * virtualized environments a pf from another VM may have already 2339 * initialized the device including loading FW 2340 */ 2341 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2342 { 2343 /* is another pf loaded on this engine? */ 2344 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2345 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2346 /* build my FW version dword */ 2347 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) + 2348 (BCM_5710_FW_MINOR_VERSION << 8) + 2349 (BCM_5710_FW_REVISION_VERSION << 16) + 2350 (BCM_5710_FW_ENGINEERING_VERSION << 24); 2351 2352 /* read loaded FW from chip */ 2353 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2354 2355 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", 2356 loaded_fw, my_fw); 2357 2358 /* abort nic load if version mismatch */ 2359 if (my_fw != loaded_fw) { 2360 if (print_err) 2361 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", 2362 loaded_fw, my_fw); 2363 else 2364 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n", 2365 loaded_fw, my_fw); 2366 return -EBUSY; 2367 } 2368 } 2369 return 0; 2370 } 2371 2372 /* returns the "mcp load_code" according to global load_count array */ 2373 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2374 { 2375 int path = BP_PATH(bp); 2376 2377 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2378 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2379 bnx2x_load_count[path][2]); 2380 bnx2x_load_count[path][0]++; 2381 bnx2x_load_count[path][1 + port]++; 2382 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2383 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2384 bnx2x_load_count[path][2]); 2385 if (bnx2x_load_count[path][0] == 1) 2386 return FW_MSG_CODE_DRV_LOAD_COMMON; 2387 else if (bnx2x_load_count[path][1 + port] == 1) 2388 return FW_MSG_CODE_DRV_LOAD_PORT; 2389 else 2390 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2391 } 2392 2393 /* mark PMF if applicable */ 2394 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2395 { 2396 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2397 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2398 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2399 bp->port.pmf = 1; 2400 /* We need the barrier to ensure the ordering between the 2401 * writing to bp->port.pmf here and reading it from the 2402 * bnx2x_periodic_task(). 2403 */ 2404 smp_mb(); 2405 } else { 2406 bp->port.pmf = 0; 2407 } 2408 2409 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2410 } 2411 2412 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2413 { 2414 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2415 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2416 (bp->common.shmem2_base)) { 2417 if (SHMEM2_HAS(bp, dcc_support)) 2418 SHMEM2_WR(bp, dcc_support, 2419 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2420 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2421 if (SHMEM2_HAS(bp, afex_driver_support)) 2422 SHMEM2_WR(bp, afex_driver_support, 2423 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2424 } 2425 2426 /* Set AFEX default VLAN tag to an invalid value */ 2427 bp->afex_def_vlan_tag = -1; 2428 } 2429 2430 /** 2431 * bnx2x_bz_fp - zero content of the fastpath structure. 2432 * 2433 * @bp: driver handle 2434 * @index: fastpath index to be zeroed 2435 * 2436 * Makes sure the contents of the bp->fp[index].napi is kept 2437 * intact. 2438 */ 2439 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2440 { 2441 struct bnx2x_fastpath *fp = &bp->fp[index]; 2442 int cos; 2443 struct napi_struct orig_napi = fp->napi; 2444 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2445 2446 /* bzero bnx2x_fastpath contents */ 2447 if (fp->tpa_info) 2448 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2449 sizeof(struct bnx2x_agg_info)); 2450 memset(fp, 0, sizeof(*fp)); 2451 2452 /* Restore the NAPI object as it has been already initialized */ 2453 fp->napi = orig_napi; 2454 fp->tpa_info = orig_tpa_info; 2455 fp->bp = bp; 2456 fp->index = index; 2457 if (IS_ETH_FP(fp)) 2458 fp->max_cos = bp->max_cos; 2459 else 2460 /* Special queues support only one CoS */ 2461 fp->max_cos = 1; 2462 2463 /* Init txdata pointers */ 2464 if (IS_FCOE_FP(fp)) 2465 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2466 if (IS_ETH_FP(fp)) 2467 for_each_cos_in_tx_queue(fp, cos) 2468 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2469 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2470 2471 /* set the tpa flag for each queue. The tpa flag determines the queue 2472 * minimal size so it must be set prior to queue memory allocation 2473 */ 2474 fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG || 2475 (bp->flags & GRO_ENABLE_FLAG && 2476 bnx2x_mtu_allows_gro(bp->dev->mtu))); 2477 if (bp->flags & TPA_ENABLE_FLAG) 2478 fp->mode = TPA_MODE_LRO; 2479 else if (bp->flags & GRO_ENABLE_FLAG) 2480 fp->mode = TPA_MODE_GRO; 2481 2482 /* We don't want TPA on an FCoE L2 ring */ 2483 if (IS_FCOE_FP(fp)) 2484 fp->disable_tpa = 1; 2485 } 2486 2487 int bnx2x_load_cnic(struct bnx2x *bp) 2488 { 2489 int i, rc, port = BP_PORT(bp); 2490 2491 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2492 2493 mutex_init(&bp->cnic_mutex); 2494 2495 if (IS_PF(bp)) { 2496 rc = bnx2x_alloc_mem_cnic(bp); 2497 if (rc) { 2498 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2499 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2500 } 2501 } 2502 2503 rc = bnx2x_alloc_fp_mem_cnic(bp); 2504 if (rc) { 2505 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2506 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2507 } 2508 2509 /* Update the number of queues with the cnic queues */ 2510 rc = bnx2x_set_real_num_queues(bp, 1); 2511 if (rc) { 2512 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2513 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2514 } 2515 2516 /* Add all CNIC NAPI objects */ 2517 bnx2x_add_all_napi_cnic(bp); 2518 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2519 bnx2x_napi_enable_cnic(bp); 2520 2521 rc = bnx2x_init_hw_func_cnic(bp); 2522 if (rc) 2523 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2524 2525 bnx2x_nic_init_cnic(bp); 2526 2527 if (IS_PF(bp)) { 2528 /* Enable Timer scan */ 2529 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2530 2531 /* setup cnic queues */ 2532 for_each_cnic_queue(bp, i) { 2533 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2534 if (rc) { 2535 BNX2X_ERR("Queue setup failed\n"); 2536 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2537 } 2538 } 2539 } 2540 2541 /* Initialize Rx filter. */ 2542 bnx2x_set_rx_mode_inner(bp); 2543 2544 /* re-read iscsi info */ 2545 bnx2x_get_iscsi_info(bp); 2546 bnx2x_setup_cnic_irq_info(bp); 2547 bnx2x_setup_cnic_info(bp); 2548 bp->cnic_loaded = true; 2549 if (bp->state == BNX2X_STATE_OPEN) 2550 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2551 2552 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2553 2554 return 0; 2555 2556 #ifndef BNX2X_STOP_ON_ERROR 2557 load_error_cnic2: 2558 /* Disable Timer scan */ 2559 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2560 2561 load_error_cnic1: 2562 bnx2x_napi_disable_cnic(bp); 2563 /* Update the number of queues without the cnic queues */ 2564 if (bnx2x_set_real_num_queues(bp, 0)) 2565 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2566 load_error_cnic0: 2567 BNX2X_ERR("CNIC-related load failed\n"); 2568 bnx2x_free_fp_mem_cnic(bp); 2569 bnx2x_free_mem_cnic(bp); 2570 return rc; 2571 #endif /* ! BNX2X_STOP_ON_ERROR */ 2572 } 2573 2574 /* must be called with rtnl_lock */ 2575 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2576 { 2577 int port = BP_PORT(bp); 2578 int i, rc = 0, load_code = 0; 2579 2580 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2581 DP(NETIF_MSG_IFUP, 2582 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2583 2584 #ifdef BNX2X_STOP_ON_ERROR 2585 if (unlikely(bp->panic)) { 2586 BNX2X_ERR("Can't load NIC when there is panic\n"); 2587 return -EPERM; 2588 } 2589 #endif 2590 2591 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2592 2593 /* zero the structure w/o any lock, before SP handler is initialized */ 2594 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2595 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2596 &bp->last_reported_link.link_report_flags); 2597 2598 if (IS_PF(bp)) 2599 /* must be called before memory allocation and HW init */ 2600 bnx2x_ilt_set_info(bp); 2601 2602 /* 2603 * Zero fastpath structures preserving invariants like napi, which are 2604 * allocated only once, fp index, max_cos, bp pointer. 2605 * Also set fp->disable_tpa and txdata_ptr. 2606 */ 2607 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2608 for_each_queue(bp, i) 2609 bnx2x_bz_fp(bp, i); 2610 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2611 bp->num_cnic_queues) * 2612 sizeof(struct bnx2x_fp_txdata)); 2613 2614 bp->fcoe_init = false; 2615 2616 /* Set the receive queues buffer size */ 2617 bnx2x_set_rx_buf_size(bp); 2618 2619 if (IS_PF(bp)) { 2620 rc = bnx2x_alloc_mem(bp); 2621 if (rc) { 2622 BNX2X_ERR("Unable to allocate bp memory\n"); 2623 return rc; 2624 } 2625 } 2626 2627 /* need to be done after alloc mem, since it's self adjusting to amount 2628 * of memory available for RSS queues 2629 */ 2630 rc = bnx2x_alloc_fp_mem(bp); 2631 if (rc) { 2632 BNX2X_ERR("Unable to allocate memory for fps\n"); 2633 LOAD_ERROR_EXIT(bp, load_error0); 2634 } 2635 2636 /* Allocated memory for FW statistics */ 2637 if (bnx2x_alloc_fw_stats_mem(bp)) 2638 LOAD_ERROR_EXIT(bp, load_error0); 2639 2640 /* request pf to initialize status blocks */ 2641 if (IS_VF(bp)) { 2642 rc = bnx2x_vfpf_init(bp); 2643 if (rc) 2644 LOAD_ERROR_EXIT(bp, load_error0); 2645 } 2646 2647 /* As long as bnx2x_alloc_mem() may possibly update 2648 * bp->num_queues, bnx2x_set_real_num_queues() should always 2649 * come after it. At this stage cnic queues are not counted. 2650 */ 2651 rc = bnx2x_set_real_num_queues(bp, 0); 2652 if (rc) { 2653 BNX2X_ERR("Unable to set real_num_queues\n"); 2654 LOAD_ERROR_EXIT(bp, load_error0); 2655 } 2656 2657 /* configure multi cos mappings in kernel. 2658 * this configuration may be overridden by a multi class queue 2659 * discipline or by a dcbx negotiation result. 2660 */ 2661 bnx2x_setup_tc(bp->dev, bp->max_cos); 2662 2663 /* Add all NAPI objects */ 2664 bnx2x_add_all_napi(bp); 2665 DP(NETIF_MSG_IFUP, "napi added\n"); 2666 bnx2x_napi_enable(bp); 2667 2668 if (IS_PF(bp)) { 2669 /* set pf load just before approaching the MCP */ 2670 bnx2x_set_pf_load(bp); 2671 2672 /* if mcp exists send load request and analyze response */ 2673 if (!BP_NOMCP(bp)) { 2674 /* attempt to load pf */ 2675 rc = bnx2x_nic_load_request(bp, &load_code); 2676 if (rc) 2677 LOAD_ERROR_EXIT(bp, load_error1); 2678 2679 /* what did mcp say? */ 2680 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2681 if (rc) { 2682 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2683 LOAD_ERROR_EXIT(bp, load_error2); 2684 } 2685 } else { 2686 load_code = bnx2x_nic_load_no_mcp(bp, port); 2687 } 2688 2689 /* mark pmf if applicable */ 2690 bnx2x_nic_load_pmf(bp, load_code); 2691 2692 /* Init Function state controlling object */ 2693 bnx2x__init_func_obj(bp); 2694 2695 /* Initialize HW */ 2696 rc = bnx2x_init_hw(bp, load_code); 2697 if (rc) { 2698 BNX2X_ERR("HW init failed, aborting\n"); 2699 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2700 LOAD_ERROR_EXIT(bp, load_error2); 2701 } 2702 } 2703 2704 bnx2x_pre_irq_nic_init(bp); 2705 2706 /* Connect to IRQs */ 2707 rc = bnx2x_setup_irqs(bp); 2708 if (rc) { 2709 BNX2X_ERR("setup irqs failed\n"); 2710 if (IS_PF(bp)) 2711 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2712 LOAD_ERROR_EXIT(bp, load_error2); 2713 } 2714 2715 /* Init per-function objects */ 2716 if (IS_PF(bp)) { 2717 /* Setup NIC internals and enable interrupts */ 2718 bnx2x_post_irq_nic_init(bp, load_code); 2719 2720 bnx2x_init_bp_objs(bp); 2721 bnx2x_iov_nic_init(bp); 2722 2723 /* Set AFEX default VLAN tag to an invalid value */ 2724 bp->afex_def_vlan_tag = -1; 2725 bnx2x_nic_load_afex_dcc(bp, load_code); 2726 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2727 rc = bnx2x_func_start(bp); 2728 if (rc) { 2729 BNX2X_ERR("Function start failed!\n"); 2730 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2731 2732 LOAD_ERROR_EXIT(bp, load_error3); 2733 } 2734 2735 /* Send LOAD_DONE command to MCP */ 2736 if (!BP_NOMCP(bp)) { 2737 load_code = bnx2x_fw_command(bp, 2738 DRV_MSG_CODE_LOAD_DONE, 0); 2739 if (!load_code) { 2740 BNX2X_ERR("MCP response failure, aborting\n"); 2741 rc = -EBUSY; 2742 LOAD_ERROR_EXIT(bp, load_error3); 2743 } 2744 } 2745 2746 /* initialize FW coalescing state machines in RAM */ 2747 bnx2x_update_coalesce(bp); 2748 } 2749 2750 /* setup the leading queue */ 2751 rc = bnx2x_setup_leading(bp); 2752 if (rc) { 2753 BNX2X_ERR("Setup leading failed!\n"); 2754 LOAD_ERROR_EXIT(bp, load_error3); 2755 } 2756 2757 /* set up the rest of the queues */ 2758 for_each_nondefault_eth_queue(bp, i) { 2759 if (IS_PF(bp)) 2760 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2761 else /* VF */ 2762 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2763 if (rc) { 2764 BNX2X_ERR("Queue %d setup failed\n", i); 2765 LOAD_ERROR_EXIT(bp, load_error3); 2766 } 2767 } 2768 2769 /* setup rss */ 2770 rc = bnx2x_init_rss(bp); 2771 if (rc) { 2772 BNX2X_ERR("PF RSS init failed\n"); 2773 LOAD_ERROR_EXIT(bp, load_error3); 2774 } 2775 2776 /* Now when Clients are configured we are ready to work */ 2777 bp->state = BNX2X_STATE_OPEN; 2778 2779 /* Configure a ucast MAC */ 2780 if (IS_PF(bp)) 2781 rc = bnx2x_set_eth_mac(bp, true); 2782 else /* vf */ 2783 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2784 true); 2785 if (rc) { 2786 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2787 LOAD_ERROR_EXIT(bp, load_error3); 2788 } 2789 2790 if (IS_PF(bp) && bp->pending_max) { 2791 bnx2x_update_max_mf_config(bp, bp->pending_max); 2792 bp->pending_max = 0; 2793 } 2794 2795 if (bp->port.pmf) { 2796 rc = bnx2x_initial_phy_init(bp, load_mode); 2797 if (rc) 2798 LOAD_ERROR_EXIT(bp, load_error3); 2799 } 2800 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2801 2802 /* Start fast path */ 2803 2804 /* Initialize Rx filter. */ 2805 bnx2x_set_rx_mode_inner(bp); 2806 2807 /* Start the Tx */ 2808 switch (load_mode) { 2809 case LOAD_NORMAL: 2810 /* Tx queue should be only re-enabled */ 2811 netif_tx_wake_all_queues(bp->dev); 2812 break; 2813 2814 case LOAD_OPEN: 2815 netif_tx_start_all_queues(bp->dev); 2816 smp_mb__after_atomic(); 2817 break; 2818 2819 case LOAD_DIAG: 2820 case LOAD_LOOPBACK_EXT: 2821 bp->state = BNX2X_STATE_DIAG; 2822 break; 2823 2824 default: 2825 break; 2826 } 2827 2828 if (bp->port.pmf) 2829 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2830 else 2831 bnx2x__link_status_update(bp); 2832 2833 /* start the timer */ 2834 mod_timer(&bp->timer, jiffies + bp->current_interval); 2835 2836 if (CNIC_ENABLED(bp)) 2837 bnx2x_load_cnic(bp); 2838 2839 if (IS_PF(bp)) 2840 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 2841 2842 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2843 /* mark driver is loaded in shmem2 */ 2844 u32 val; 2845 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2846 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2847 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2848 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2849 } 2850 2851 /* Wait for all pending SP commands to complete */ 2852 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2853 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2854 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2855 return -EBUSY; 2856 } 2857 2858 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2859 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2860 bnx2x_dcbx_init(bp, false); 2861 2862 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2863 2864 return 0; 2865 2866 #ifndef BNX2X_STOP_ON_ERROR 2867 load_error3: 2868 if (IS_PF(bp)) { 2869 bnx2x_int_disable_sync(bp, 1); 2870 2871 /* Clean queueable objects */ 2872 bnx2x_squeeze_objects(bp); 2873 } 2874 2875 /* Free SKBs, SGEs, TPA pool and driver internals */ 2876 bnx2x_free_skbs(bp); 2877 for_each_rx_queue(bp, i) 2878 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2879 2880 /* Release IRQs */ 2881 bnx2x_free_irq(bp); 2882 load_error2: 2883 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2884 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2885 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2886 } 2887 2888 bp->port.pmf = 0; 2889 load_error1: 2890 bnx2x_napi_disable(bp); 2891 bnx2x_del_all_napi(bp); 2892 2893 /* clear pf_load status, as it was already set */ 2894 if (IS_PF(bp)) 2895 bnx2x_clear_pf_load(bp); 2896 load_error0: 2897 bnx2x_free_fw_stats_mem(bp); 2898 bnx2x_free_fp_mem(bp); 2899 bnx2x_free_mem(bp); 2900 2901 return rc; 2902 #endif /* ! BNX2X_STOP_ON_ERROR */ 2903 } 2904 2905 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2906 { 2907 u8 rc = 0, cos, i; 2908 2909 /* Wait until tx fastpath tasks complete */ 2910 for_each_tx_queue(bp, i) { 2911 struct bnx2x_fastpath *fp = &bp->fp[i]; 2912 2913 for_each_cos_in_tx_queue(fp, cos) 2914 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2915 if (rc) 2916 return rc; 2917 } 2918 return 0; 2919 } 2920 2921 /* must be called with rtnl_lock */ 2922 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2923 { 2924 int i; 2925 bool global = false; 2926 2927 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 2928 2929 /* mark driver is unloaded in shmem2 */ 2930 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2931 u32 val; 2932 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2933 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2934 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 2935 } 2936 2937 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 2938 (bp->state == BNX2X_STATE_CLOSED || 2939 bp->state == BNX2X_STATE_ERROR)) { 2940 /* We can get here if the driver has been unloaded 2941 * during parity error recovery and is either waiting for a 2942 * leader to complete or for other functions to unload and 2943 * then ifdown has been issued. In this case we want to 2944 * unload and let other functions to complete a recovery 2945 * process. 2946 */ 2947 bp->recovery_state = BNX2X_RECOVERY_DONE; 2948 bp->is_leader = 0; 2949 bnx2x_release_leader_lock(bp); 2950 smp_mb(); 2951 2952 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 2953 BNX2X_ERR("Can't unload in closed or error state\n"); 2954 return -EINVAL; 2955 } 2956 2957 /* Nothing to do during unload if previous bnx2x_nic_load() 2958 * have not completed successfully - all resources are released. 2959 * 2960 * we can get here only after unsuccessful ndo_* callback, during which 2961 * dev->IFF_UP flag is still on. 2962 */ 2963 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 2964 return 0; 2965 2966 /* It's important to set the bp->state to the value different from 2967 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 2968 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 2969 */ 2970 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 2971 smp_mb(); 2972 2973 /* indicate to VFs that the PF is going down */ 2974 bnx2x_iov_channel_down(bp); 2975 2976 if (CNIC_LOADED(bp)) 2977 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 2978 2979 /* Stop Tx */ 2980 bnx2x_tx_disable(bp); 2981 netdev_reset_tc(bp->dev); 2982 2983 bp->rx_mode = BNX2X_RX_MODE_NONE; 2984 2985 del_timer_sync(&bp->timer); 2986 2987 if (IS_PF(bp)) { 2988 /* Set ALWAYS_ALIVE bit in shmem */ 2989 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 2990 bnx2x_drv_pulse(bp); 2991 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2992 bnx2x_save_statistics(bp); 2993 } 2994 2995 /* wait till consumers catch up with producers in all queues */ 2996 bnx2x_drain_tx_queues(bp); 2997 2998 /* if VF indicate to PF this function is going down (PF will delete sp 2999 * elements and clear initializations 3000 */ 3001 if (IS_VF(bp)) 3002 bnx2x_vfpf_close_vf(bp); 3003 else if (unload_mode != UNLOAD_RECOVERY) 3004 /* if this is a normal/close unload need to clean up chip*/ 3005 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 3006 else { 3007 /* Send the UNLOAD_REQUEST to the MCP */ 3008 bnx2x_send_unload_req(bp, unload_mode); 3009 3010 /* Prevent transactions to host from the functions on the 3011 * engine that doesn't reset global blocks in case of global 3012 * attention once global blocks are reset and gates are opened 3013 * (the engine which leader will perform the recovery 3014 * last). 3015 */ 3016 if (!CHIP_IS_E1x(bp)) 3017 bnx2x_pf_disable(bp); 3018 3019 /* Disable HW interrupts, NAPI */ 3020 bnx2x_netif_stop(bp, 1); 3021 /* Delete all NAPI objects */ 3022 bnx2x_del_all_napi(bp); 3023 if (CNIC_LOADED(bp)) 3024 bnx2x_del_all_napi_cnic(bp); 3025 /* Release IRQs */ 3026 bnx2x_free_irq(bp); 3027 3028 /* Report UNLOAD_DONE to MCP */ 3029 bnx2x_send_unload_done(bp, false); 3030 } 3031 3032 /* 3033 * At this stage no more interrupts will arrive so we may safely clean 3034 * the queueable objects here in case they failed to get cleaned so far. 3035 */ 3036 if (IS_PF(bp)) 3037 bnx2x_squeeze_objects(bp); 3038 3039 /* There should be no more pending SP commands at this stage */ 3040 bp->sp_state = 0; 3041 3042 bp->port.pmf = 0; 3043 3044 /* clear pending work in rtnl task */ 3045 bp->sp_rtnl_state = 0; 3046 smp_mb(); 3047 3048 /* Free SKBs, SGEs, TPA pool and driver internals */ 3049 bnx2x_free_skbs(bp); 3050 if (CNIC_LOADED(bp)) 3051 bnx2x_free_skbs_cnic(bp); 3052 for_each_rx_queue(bp, i) 3053 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3054 3055 bnx2x_free_fp_mem(bp); 3056 if (CNIC_LOADED(bp)) 3057 bnx2x_free_fp_mem_cnic(bp); 3058 3059 if (IS_PF(bp)) { 3060 if (CNIC_LOADED(bp)) 3061 bnx2x_free_mem_cnic(bp); 3062 } 3063 bnx2x_free_mem(bp); 3064 3065 bp->state = BNX2X_STATE_CLOSED; 3066 bp->cnic_loaded = false; 3067 3068 /* Clear driver version indication in shmem */ 3069 if (IS_PF(bp)) 3070 bnx2x_update_mng_version(bp); 3071 3072 /* Check if there are pending parity attentions. If there are - set 3073 * RECOVERY_IN_PROGRESS. 3074 */ 3075 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3076 bnx2x_set_reset_in_progress(bp); 3077 3078 /* Set RESET_IS_GLOBAL if needed */ 3079 if (global) 3080 bnx2x_set_reset_global(bp); 3081 } 3082 3083 /* The last driver must disable a "close the gate" if there is no 3084 * parity attention or "process kill" pending. 3085 */ 3086 if (IS_PF(bp) && 3087 !bnx2x_clear_pf_load(bp) && 3088 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3089 bnx2x_disable_close_the_gate(bp); 3090 3091 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3092 3093 return 0; 3094 } 3095 3096 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3097 { 3098 u16 pmcsr; 3099 3100 /* If there is no power capability, silently succeed */ 3101 if (!bp->pdev->pm_cap) { 3102 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3103 return 0; 3104 } 3105 3106 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3107 3108 switch (state) { 3109 case PCI_D0: 3110 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3111 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3112 PCI_PM_CTRL_PME_STATUS)); 3113 3114 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3115 /* delay required during transition out of D3hot */ 3116 msleep(20); 3117 break; 3118 3119 case PCI_D3hot: 3120 /* If there are other clients above don't 3121 shut down the power */ 3122 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3123 return 0; 3124 /* Don't shut down the power for emulation and FPGA */ 3125 if (CHIP_REV_IS_SLOW(bp)) 3126 return 0; 3127 3128 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3129 pmcsr |= 3; 3130 3131 if (bp->wol) 3132 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3133 3134 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3135 pmcsr); 3136 3137 /* No more memory access after this point until 3138 * device is brought back to D0. 3139 */ 3140 break; 3141 3142 default: 3143 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3144 return -EINVAL; 3145 } 3146 return 0; 3147 } 3148 3149 /* 3150 * net_device service functions 3151 */ 3152 static int bnx2x_poll(struct napi_struct *napi, int budget) 3153 { 3154 int work_done = 0; 3155 u8 cos; 3156 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3157 napi); 3158 struct bnx2x *bp = fp->bp; 3159 3160 while (1) { 3161 #ifdef BNX2X_STOP_ON_ERROR 3162 if (unlikely(bp->panic)) { 3163 napi_complete(napi); 3164 return 0; 3165 } 3166 #endif 3167 if (!bnx2x_fp_lock_napi(fp)) 3168 return work_done; 3169 3170 for_each_cos_in_tx_queue(fp, cos) 3171 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3172 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3173 3174 if (bnx2x_has_rx_work(fp)) { 3175 work_done += bnx2x_rx_int(fp, budget - work_done); 3176 3177 /* must not complete if we consumed full budget */ 3178 if (work_done >= budget) { 3179 bnx2x_fp_unlock_napi(fp); 3180 break; 3181 } 3182 } 3183 3184 /* Fall out from the NAPI loop if needed */ 3185 if (!bnx2x_fp_unlock_napi(fp) && 3186 !(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3187 3188 /* No need to update SB for FCoE L2 ring as long as 3189 * it's connected to the default SB and the SB 3190 * has been updated when NAPI was scheduled. 3191 */ 3192 if (IS_FCOE_FP(fp)) { 3193 napi_complete(napi); 3194 break; 3195 } 3196 bnx2x_update_fpsb_idx(fp); 3197 /* bnx2x_has_rx_work() reads the status block, 3198 * thus we need to ensure that status block indices 3199 * have been actually read (bnx2x_update_fpsb_idx) 3200 * prior to this check (bnx2x_has_rx_work) so that 3201 * we won't write the "newer" value of the status block 3202 * to IGU (if there was a DMA right after 3203 * bnx2x_has_rx_work and if there is no rmb, the memory 3204 * reading (bnx2x_update_fpsb_idx) may be postponed 3205 * to right before bnx2x_ack_sb). In this case there 3206 * will never be another interrupt until there is 3207 * another update of the status block, while there 3208 * is still unhandled work. 3209 */ 3210 rmb(); 3211 3212 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3213 napi_complete(napi); 3214 /* Re-enable interrupts */ 3215 DP(NETIF_MSG_RX_STATUS, 3216 "Update index to %d\n", fp->fp_hc_idx); 3217 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3218 le16_to_cpu(fp->fp_hc_idx), 3219 IGU_INT_ENABLE, 1); 3220 break; 3221 } 3222 } 3223 } 3224 3225 return work_done; 3226 } 3227 3228 #ifdef CONFIG_NET_RX_BUSY_POLL 3229 /* must be called with local_bh_disable()d */ 3230 int bnx2x_low_latency_recv(struct napi_struct *napi) 3231 { 3232 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3233 napi); 3234 struct bnx2x *bp = fp->bp; 3235 int found = 0; 3236 3237 if ((bp->state == BNX2X_STATE_CLOSED) || 3238 (bp->state == BNX2X_STATE_ERROR) || 3239 (bp->flags & (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG))) 3240 return LL_FLUSH_FAILED; 3241 3242 if (!bnx2x_fp_lock_poll(fp)) 3243 return LL_FLUSH_BUSY; 3244 3245 if (bnx2x_has_rx_work(fp)) 3246 found = bnx2x_rx_int(fp, 4); 3247 3248 bnx2x_fp_unlock_poll(fp); 3249 3250 return found; 3251 } 3252 #endif 3253 3254 /* we split the first BD into headers and data BDs 3255 * to ease the pain of our fellow microcode engineers 3256 * we use one mapping for both BDs 3257 */ 3258 static u16 bnx2x_tx_split(struct bnx2x *bp, 3259 struct bnx2x_fp_txdata *txdata, 3260 struct sw_tx_bd *tx_buf, 3261 struct eth_tx_start_bd **tx_bd, u16 hlen, 3262 u16 bd_prod) 3263 { 3264 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3265 struct eth_tx_bd *d_tx_bd; 3266 dma_addr_t mapping; 3267 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3268 3269 /* first fix first BD */ 3270 h_tx_bd->nbytes = cpu_to_le16(hlen); 3271 3272 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3273 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3274 3275 /* now get a new data BD 3276 * (after the pbd) and fill it */ 3277 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3278 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3279 3280 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3281 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3282 3283 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3284 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3285 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3286 3287 /* this marks the BD as one that has no individual mapping */ 3288 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3289 3290 DP(NETIF_MSG_TX_QUEUED, 3291 "TSO split data size is %d (%x:%x)\n", 3292 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3293 3294 /* update tx_bd */ 3295 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3296 3297 return bd_prod; 3298 } 3299 3300 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3301 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3302 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3303 { 3304 __sum16 tsum = (__force __sum16) csum; 3305 3306 if (fix > 0) 3307 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3308 csum_partial(t_header - fix, fix, 0))); 3309 3310 else if (fix < 0) 3311 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3312 csum_partial(t_header, -fix, 0))); 3313 3314 return bswab16(tsum); 3315 } 3316 3317 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3318 { 3319 u32 rc; 3320 __u8 prot = 0; 3321 __be16 protocol; 3322 3323 if (skb->ip_summed != CHECKSUM_PARTIAL) 3324 return XMIT_PLAIN; 3325 3326 protocol = vlan_get_protocol(skb); 3327 if (protocol == htons(ETH_P_IPV6)) { 3328 rc = XMIT_CSUM_V6; 3329 prot = ipv6_hdr(skb)->nexthdr; 3330 } else { 3331 rc = XMIT_CSUM_V4; 3332 prot = ip_hdr(skb)->protocol; 3333 } 3334 3335 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3336 if (inner_ip_hdr(skb)->version == 6) { 3337 rc |= XMIT_CSUM_ENC_V6; 3338 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3339 rc |= XMIT_CSUM_TCP; 3340 } else { 3341 rc |= XMIT_CSUM_ENC_V4; 3342 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3343 rc |= XMIT_CSUM_TCP; 3344 } 3345 } 3346 if (prot == IPPROTO_TCP) 3347 rc |= XMIT_CSUM_TCP; 3348 3349 if (skb_is_gso(skb)) { 3350 if (skb_is_gso_v6(skb)) { 3351 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3352 if (rc & XMIT_CSUM_ENC) 3353 rc |= XMIT_GSO_ENC_V6; 3354 } else { 3355 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3356 if (rc & XMIT_CSUM_ENC) 3357 rc |= XMIT_GSO_ENC_V4; 3358 } 3359 } 3360 3361 return rc; 3362 } 3363 3364 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) 3365 /* check if packet requires linearization (packet is too fragmented) 3366 no need to check fragmentation if page size > 8K (there will be no 3367 violation to FW restrictions) */ 3368 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3369 u32 xmit_type) 3370 { 3371 int to_copy = 0; 3372 int hlen = 0; 3373 int first_bd_sz = 0; 3374 3375 /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3376 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) { 3377 3378 if (xmit_type & XMIT_GSO) { 3379 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3380 /* Check if LSO packet needs to be copied: 3381 3 = 1 (for headers BD) + 2 (for PBD and last BD) */ 3382 int wnd_size = MAX_FETCH_BD - 3; 3383 /* Number of windows to check */ 3384 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3385 int wnd_idx = 0; 3386 int frag_idx = 0; 3387 u32 wnd_sum = 0; 3388 3389 /* Headers length */ 3390 hlen = (int)(skb_transport_header(skb) - skb->data) + 3391 tcp_hdrlen(skb); 3392 3393 /* Amount of data (w/o headers) on linear part of SKB*/ 3394 first_bd_sz = skb_headlen(skb) - hlen; 3395 3396 wnd_sum = first_bd_sz; 3397 3398 /* Calculate the first sum - it's special */ 3399 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3400 wnd_sum += 3401 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3402 3403 /* If there was data on linear skb data - check it */ 3404 if (first_bd_sz > 0) { 3405 if (unlikely(wnd_sum < lso_mss)) { 3406 to_copy = 1; 3407 goto exit_lbl; 3408 } 3409 3410 wnd_sum -= first_bd_sz; 3411 } 3412 3413 /* Others are easier: run through the frag list and 3414 check all windows */ 3415 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3416 wnd_sum += 3417 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3418 3419 if (unlikely(wnd_sum < lso_mss)) { 3420 to_copy = 1; 3421 break; 3422 } 3423 wnd_sum -= 3424 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3425 } 3426 } else { 3427 /* in non-LSO too fragmented packet should always 3428 be linearized */ 3429 to_copy = 1; 3430 } 3431 } 3432 3433 exit_lbl: 3434 if (unlikely(to_copy)) 3435 DP(NETIF_MSG_TX_QUEUED, 3436 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3437 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3438 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3439 3440 return to_copy; 3441 } 3442 #endif 3443 3444 static void bnx2x_set_pbd_gso_e2(struct sk_buff *skb, u32 *parsing_data, 3445 u32 xmit_type) 3446 { 3447 struct ipv6hdr *ipv6; 3448 3449 *parsing_data |= (skb_shinfo(skb)->gso_size << 3450 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 3451 ETH_TX_PARSE_BD_E2_LSO_MSS; 3452 3453 if (xmit_type & XMIT_GSO_ENC_V6) 3454 ipv6 = inner_ipv6_hdr(skb); 3455 else if (xmit_type & XMIT_GSO_V6) 3456 ipv6 = ipv6_hdr(skb); 3457 else 3458 ipv6 = NULL; 3459 3460 if (ipv6 && ipv6->nexthdr == NEXTHDR_IPV6) 3461 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3462 } 3463 3464 /** 3465 * bnx2x_set_pbd_gso - update PBD in GSO case. 3466 * 3467 * @skb: packet skb 3468 * @pbd: parse BD 3469 * @xmit_type: xmit flags 3470 */ 3471 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3472 struct eth_tx_parse_bd_e1x *pbd, 3473 struct eth_tx_start_bd *tx_start_bd, 3474 u32 xmit_type) 3475 { 3476 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3477 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3478 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3479 3480 if (xmit_type & XMIT_GSO_V4) { 3481 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3482 pbd->tcp_pseudo_csum = 3483 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3484 ip_hdr(skb)->daddr, 3485 0, IPPROTO_TCP, 0)); 3486 3487 /* GSO on 57710/57711 needs FW to calculate IP checksum */ 3488 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 3489 } else { 3490 pbd->tcp_pseudo_csum = 3491 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3492 &ipv6_hdr(skb)->daddr, 3493 0, IPPROTO_TCP, 0)); 3494 } 3495 3496 pbd->global_data |= 3497 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3498 } 3499 3500 /** 3501 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3502 * 3503 * @bp: driver handle 3504 * @skb: packet skb 3505 * @parsing_data: data to be updated 3506 * @xmit_type: xmit flags 3507 * 3508 * 57712/578xx related, when skb has encapsulation 3509 */ 3510 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3511 u32 *parsing_data, u32 xmit_type) 3512 { 3513 *parsing_data |= 3514 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3515 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3516 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3517 3518 if (xmit_type & XMIT_CSUM_TCP) { 3519 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3520 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3521 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3522 3523 return skb_inner_transport_header(skb) + 3524 inner_tcp_hdrlen(skb) - skb->data; 3525 } 3526 3527 /* We support checksum offload for TCP and UDP only. 3528 * No need to pass the UDP header length - it's a constant. 3529 */ 3530 return skb_inner_transport_header(skb) + 3531 sizeof(struct udphdr) - skb->data; 3532 } 3533 3534 /** 3535 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3536 * 3537 * @bp: driver handle 3538 * @skb: packet skb 3539 * @parsing_data: data to be updated 3540 * @xmit_type: xmit flags 3541 * 3542 * 57712/578xx related 3543 */ 3544 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3545 u32 *parsing_data, u32 xmit_type) 3546 { 3547 *parsing_data |= 3548 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3549 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3550 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3551 3552 if (xmit_type & XMIT_CSUM_TCP) { 3553 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3554 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3555 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3556 3557 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; 3558 } 3559 /* We support checksum offload for TCP and UDP only. 3560 * No need to pass the UDP header length - it's a constant. 3561 */ 3562 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; 3563 } 3564 3565 /* set FW indication according to inner or outer protocols if tunneled */ 3566 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3567 struct eth_tx_start_bd *tx_start_bd, 3568 u32 xmit_type) 3569 { 3570 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3571 3572 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3573 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3574 3575 if (!(xmit_type & XMIT_CSUM_TCP)) 3576 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3577 } 3578 3579 /** 3580 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3581 * 3582 * @bp: driver handle 3583 * @skb: packet skb 3584 * @pbd: parse BD to be updated 3585 * @xmit_type: xmit flags 3586 */ 3587 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3588 struct eth_tx_parse_bd_e1x *pbd, 3589 u32 xmit_type) 3590 { 3591 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3592 3593 /* for now NS flag is not used in Linux */ 3594 pbd->global_data = 3595 cpu_to_le16(hlen | 3596 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3597 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3598 3599 pbd->ip_hlen_w = (skb_transport_header(skb) - 3600 skb_network_header(skb)) >> 1; 3601 3602 hlen += pbd->ip_hlen_w; 3603 3604 /* We support checksum offload for TCP and UDP only */ 3605 if (xmit_type & XMIT_CSUM_TCP) 3606 hlen += tcp_hdrlen(skb) / 2; 3607 else 3608 hlen += sizeof(struct udphdr) / 2; 3609 3610 pbd->total_hlen_w = cpu_to_le16(hlen); 3611 hlen = hlen*2; 3612 3613 if (xmit_type & XMIT_CSUM_TCP) { 3614 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3615 3616 } else { 3617 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3618 3619 DP(NETIF_MSG_TX_QUEUED, 3620 "hlen %d fix %d csum before fix %x\n", 3621 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3622 3623 /* HW bug: fixup the CSUM */ 3624 pbd->tcp_pseudo_csum = 3625 bnx2x_csum_fix(skb_transport_header(skb), 3626 SKB_CS(skb), fix); 3627 3628 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3629 pbd->tcp_pseudo_csum); 3630 } 3631 3632 return hlen; 3633 } 3634 3635 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3636 struct eth_tx_parse_bd_e2 *pbd_e2, 3637 struct eth_tx_parse_2nd_bd *pbd2, 3638 u16 *global_data, 3639 u32 xmit_type) 3640 { 3641 u16 hlen_w = 0; 3642 u8 outerip_off, outerip_len = 0; 3643 3644 /* from outer IP to transport */ 3645 hlen_w = (skb_inner_transport_header(skb) - 3646 skb_network_header(skb)) >> 1; 3647 3648 /* transport len */ 3649 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3650 3651 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3652 3653 /* outer IP header info */ 3654 if (xmit_type & XMIT_CSUM_V4) { 3655 struct iphdr *iph = ip_hdr(skb); 3656 u32 csum = (__force u32)(~iph->check) - 3657 (__force u32)iph->tot_len - 3658 (__force u32)iph->frag_off; 3659 3660 pbd2->fw_ip_csum_wo_len_flags_frag = 3661 bswab16(csum_fold((__force __wsum)csum)); 3662 } else { 3663 pbd2->fw_ip_hdr_to_payload_w = 3664 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3665 } 3666 3667 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3668 3669 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3670 3671 if (xmit_type & XMIT_GSO_V4) { 3672 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3673 3674 pbd_e2->data.tunnel_data.pseudo_csum = 3675 bswab16(~csum_tcpudp_magic( 3676 inner_ip_hdr(skb)->saddr, 3677 inner_ip_hdr(skb)->daddr, 3678 0, IPPROTO_TCP, 0)); 3679 3680 outerip_len = ip_hdr(skb)->ihl << 1; 3681 } else { 3682 pbd_e2->data.tunnel_data.pseudo_csum = 3683 bswab16(~csum_ipv6_magic( 3684 &inner_ipv6_hdr(skb)->saddr, 3685 &inner_ipv6_hdr(skb)->daddr, 3686 0, IPPROTO_TCP, 0)); 3687 } 3688 3689 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3690 3691 *global_data |= 3692 outerip_off | 3693 (!!(xmit_type & XMIT_CSUM_V6) << 3694 ETH_TX_PARSE_2ND_BD_IP_HDR_TYPE_OUTER_SHIFT) | 3695 (outerip_len << 3696 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3697 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3698 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3699 3700 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3701 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3702 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3703 } 3704 } 3705 3706 /* called with netif_tx_lock 3707 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3708 * netif_wake_queue() 3709 */ 3710 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3711 { 3712 struct bnx2x *bp = netdev_priv(dev); 3713 3714 struct netdev_queue *txq; 3715 struct bnx2x_fp_txdata *txdata; 3716 struct sw_tx_bd *tx_buf; 3717 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3718 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3719 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3720 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3721 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3722 u32 pbd_e2_parsing_data = 0; 3723 u16 pkt_prod, bd_prod; 3724 int nbd, txq_index; 3725 dma_addr_t mapping; 3726 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3727 int i; 3728 u8 hlen = 0; 3729 __le16 pkt_size = 0; 3730 struct ethhdr *eth; 3731 u8 mac_type = UNICAST_ADDRESS; 3732 3733 #ifdef BNX2X_STOP_ON_ERROR 3734 if (unlikely(bp->panic)) 3735 return NETDEV_TX_BUSY; 3736 #endif 3737 3738 txq_index = skb_get_queue_mapping(skb); 3739 txq = netdev_get_tx_queue(dev, txq_index); 3740 3741 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3742 3743 txdata = &bp->bnx2x_txq[txq_index]; 3744 3745 /* enable this debug print to view the transmission queue being used 3746 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3747 txq_index, fp_index, txdata_index); */ 3748 3749 /* enable this debug print to view the transmission details 3750 DP(NETIF_MSG_TX_QUEUED, 3751 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3752 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3753 3754 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3755 skb_shinfo(skb)->nr_frags + 3756 BDS_PER_TX_PKT + 3757 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3758 /* Handle special storage cases separately */ 3759 if (txdata->tx_ring_size == 0) { 3760 struct bnx2x_eth_q_stats *q_stats = 3761 bnx2x_fp_qstats(bp, txdata->parent_fp); 3762 q_stats->driver_filtered_tx_pkt++; 3763 dev_kfree_skb(skb); 3764 return NETDEV_TX_OK; 3765 } 3766 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3767 netif_tx_stop_queue(txq); 3768 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3769 3770 return NETDEV_TX_BUSY; 3771 } 3772 3773 DP(NETIF_MSG_TX_QUEUED, 3774 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3775 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3776 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3777 skb->len); 3778 3779 eth = (struct ethhdr *)skb->data; 3780 3781 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3782 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3783 if (is_broadcast_ether_addr(eth->h_dest)) 3784 mac_type = BROADCAST_ADDRESS; 3785 else 3786 mac_type = MULTICAST_ADDRESS; 3787 } 3788 3789 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3790 /* First, check if we need to linearize the skb (due to FW 3791 restrictions). No need to check fragmentation if page size > 8K 3792 (there will be no violation to FW restrictions) */ 3793 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3794 /* Statistics of linearization */ 3795 bp->lin_cnt++; 3796 if (skb_linearize(skb) != 0) { 3797 DP(NETIF_MSG_TX_QUEUED, 3798 "SKB linearization failed - silently dropping this SKB\n"); 3799 dev_kfree_skb_any(skb); 3800 return NETDEV_TX_OK; 3801 } 3802 } 3803 #endif 3804 /* Map skb linear data for DMA */ 3805 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3806 skb_headlen(skb), DMA_TO_DEVICE); 3807 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3808 DP(NETIF_MSG_TX_QUEUED, 3809 "SKB mapping failed - silently dropping this SKB\n"); 3810 dev_kfree_skb_any(skb); 3811 return NETDEV_TX_OK; 3812 } 3813 /* 3814 Please read carefully. First we use one BD which we mark as start, 3815 then we have a parsing info BD (used for TSO or xsum), 3816 and only then we have the rest of the TSO BDs. 3817 (don't forget to mark the last one as last, 3818 and to unmap only AFTER you write to the BD ...) 3819 And above all, all pdb sizes are in words - NOT DWORDS! 3820 */ 3821 3822 /* get current pkt produced now - advance it just before sending packet 3823 * since mapping of pages may fail and cause packet to be dropped 3824 */ 3825 pkt_prod = txdata->tx_pkt_prod; 3826 bd_prod = TX_BD(txdata->tx_bd_prod); 3827 3828 /* get a tx_buf and first BD 3829 * tx_start_bd may be changed during SPLIT, 3830 * but first_bd will always stay first 3831 */ 3832 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3833 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3834 first_bd = tx_start_bd; 3835 3836 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3837 3838 /* header nbd: indirectly zero other flags! */ 3839 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3840 3841 /* remember the first BD of the packet */ 3842 tx_buf->first_bd = txdata->tx_bd_prod; 3843 tx_buf->skb = skb; 3844 tx_buf->flags = 0; 3845 3846 DP(NETIF_MSG_TX_QUEUED, 3847 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3848 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3849 3850 if (vlan_tx_tag_present(skb)) { 3851 tx_start_bd->vlan_or_ethertype = 3852 cpu_to_le16(vlan_tx_tag_get(skb)); 3853 tx_start_bd->bd_flags.as_bitfield |= 3854 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3855 } else { 3856 /* when transmitting in a vf, start bd must hold the ethertype 3857 * for fw to enforce it 3858 */ 3859 if (IS_VF(bp)) 3860 tx_start_bd->vlan_or_ethertype = 3861 cpu_to_le16(ntohs(eth->h_proto)); 3862 else 3863 /* used by FW for packet accounting */ 3864 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3865 } 3866 3867 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3868 3869 /* turn on parsing and get a BD */ 3870 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3871 3872 if (xmit_type & XMIT_CSUM) 3873 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3874 3875 if (!CHIP_IS_E1x(bp)) { 3876 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3877 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3878 3879 if (xmit_type & XMIT_CSUM_ENC) { 3880 u16 global_data = 0; 3881 3882 /* Set PBD in enc checksum offload case */ 3883 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3884 &pbd_e2_parsing_data, 3885 xmit_type); 3886 3887 /* turn on 2nd parsing and get a BD */ 3888 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3889 3890 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3891 3892 memset(pbd2, 0, sizeof(*pbd2)); 3893 3894 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3895 (skb_inner_network_header(skb) - 3896 skb->data) >> 1; 3897 3898 if (xmit_type & XMIT_GSO_ENC) 3899 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3900 &global_data, 3901 xmit_type); 3902 3903 pbd2->global_data = cpu_to_le16(global_data); 3904 3905 /* add addition parse BD indication to start BD */ 3906 SET_FLAG(tx_start_bd->general_data, 3907 ETH_TX_START_BD_PARSE_NBDS, 1); 3908 /* set encapsulation flag in start BD */ 3909 SET_FLAG(tx_start_bd->general_data, 3910 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3911 3912 tx_buf->flags |= BNX2X_HAS_SECOND_PBD; 3913 3914 nbd++; 3915 } else if (xmit_type & XMIT_CSUM) { 3916 /* Set PBD in checksum offload case w/o encapsulation */ 3917 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3918 &pbd_e2_parsing_data, 3919 xmit_type); 3920 } 3921 3922 /* Add the macs to the parsing BD if this is a vf or if 3923 * Tx Switching is enabled. 3924 */ 3925 if (IS_VF(bp)) { 3926 /* override GRE parameters in BD */ 3927 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3928 &pbd_e2->data.mac_addr.src_mid, 3929 &pbd_e2->data.mac_addr.src_lo, 3930 eth->h_source); 3931 3932 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 3933 &pbd_e2->data.mac_addr.dst_mid, 3934 &pbd_e2->data.mac_addr.dst_lo, 3935 eth->h_dest); 3936 } else if (bp->flags & TX_SWITCHING) { 3937 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 3938 &pbd_e2->data.mac_addr.dst_mid, 3939 &pbd_e2->data.mac_addr.dst_lo, 3940 eth->h_dest); 3941 } 3942 3943 SET_FLAG(pbd_e2_parsing_data, 3944 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 3945 } else { 3946 u16 global_data = 0; 3947 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 3948 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 3949 /* Set PBD in checksum offload case */ 3950 if (xmit_type & XMIT_CSUM) 3951 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 3952 3953 SET_FLAG(global_data, 3954 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 3955 pbd_e1x->global_data |= cpu_to_le16(global_data); 3956 } 3957 3958 /* Setup the data pointer of the first BD of the packet */ 3959 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3960 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3961 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 3962 pkt_size = tx_start_bd->nbytes; 3963 3964 DP(NETIF_MSG_TX_QUEUED, 3965 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 3966 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 3967 le16_to_cpu(tx_start_bd->nbytes), 3968 tx_start_bd->bd_flags.as_bitfield, 3969 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 3970 3971 if (xmit_type & XMIT_GSO) { 3972 3973 DP(NETIF_MSG_TX_QUEUED, 3974 "TSO packet len %d hlen %d total len %d tso size %d\n", 3975 skb->len, hlen, skb_headlen(skb), 3976 skb_shinfo(skb)->gso_size); 3977 3978 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 3979 3980 if (unlikely(skb_headlen(skb) > hlen)) { 3981 nbd++; 3982 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 3983 &tx_start_bd, hlen, 3984 bd_prod); 3985 } 3986 if (!CHIP_IS_E1x(bp)) 3987 bnx2x_set_pbd_gso_e2(skb, &pbd_e2_parsing_data, 3988 xmit_type); 3989 else 3990 bnx2x_set_pbd_gso(skb, pbd_e1x, first_bd, xmit_type); 3991 } 3992 3993 /* Set the PBD's parsing_data field if not zero 3994 * (for the chips newer than 57711). 3995 */ 3996 if (pbd_e2_parsing_data) 3997 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 3998 3999 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 4000 4001 /* Handle fragmented skb */ 4002 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4003 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4004 4005 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 4006 skb_frag_size(frag), DMA_TO_DEVICE); 4007 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 4008 unsigned int pkts_compl = 0, bytes_compl = 0; 4009 4010 DP(NETIF_MSG_TX_QUEUED, 4011 "Unable to map page - dropping packet...\n"); 4012 4013 /* we need unmap all buffers already mapped 4014 * for this SKB; 4015 * first_bd->nbd need to be properly updated 4016 * before call to bnx2x_free_tx_pkt 4017 */ 4018 first_bd->nbd = cpu_to_le16(nbd); 4019 bnx2x_free_tx_pkt(bp, txdata, 4020 TX_BD(txdata->tx_pkt_prod), 4021 &pkts_compl, &bytes_compl); 4022 return NETDEV_TX_OK; 4023 } 4024 4025 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4026 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4027 if (total_pkt_bd == NULL) 4028 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4029 4030 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4031 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4032 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 4033 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 4034 nbd++; 4035 4036 DP(NETIF_MSG_TX_QUEUED, 4037 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 4038 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 4039 le16_to_cpu(tx_data_bd->nbytes)); 4040 } 4041 4042 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 4043 4044 /* update with actual num BDs */ 4045 first_bd->nbd = cpu_to_le16(nbd); 4046 4047 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4048 4049 /* now send a tx doorbell, counting the next BD 4050 * if the packet contains or ends with it 4051 */ 4052 if (TX_BD_POFF(bd_prod) < nbd) 4053 nbd++; 4054 4055 /* total_pkt_bytes should be set on the first data BD if 4056 * it's not an LSO packet and there is more than one 4057 * data BD. In this case pkt_size is limited by an MTU value. 4058 * However we prefer to set it for an LSO packet (while we don't 4059 * have to) in order to save some CPU cycles in a none-LSO 4060 * case, when we much more care about them. 4061 */ 4062 if (total_pkt_bd != NULL) 4063 total_pkt_bd->total_pkt_bytes = pkt_size; 4064 4065 if (pbd_e1x) 4066 DP(NETIF_MSG_TX_QUEUED, 4067 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4068 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4069 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4070 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4071 le16_to_cpu(pbd_e1x->total_hlen_w)); 4072 if (pbd_e2) 4073 DP(NETIF_MSG_TX_QUEUED, 4074 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4075 pbd_e2, 4076 pbd_e2->data.mac_addr.dst_hi, 4077 pbd_e2->data.mac_addr.dst_mid, 4078 pbd_e2->data.mac_addr.dst_lo, 4079 pbd_e2->data.mac_addr.src_hi, 4080 pbd_e2->data.mac_addr.src_mid, 4081 pbd_e2->data.mac_addr.src_lo, 4082 pbd_e2->parsing_data); 4083 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4084 4085 netdev_tx_sent_queue(txq, skb->len); 4086 4087 skb_tx_timestamp(skb); 4088 4089 txdata->tx_pkt_prod++; 4090 /* 4091 * Make sure that the BD data is updated before updating the producer 4092 * since FW might read the BD right after the producer is updated. 4093 * This is only applicable for weak-ordered memory model archs such 4094 * as IA-64. The following barrier is also mandatory since FW will 4095 * assumes packets must have BDs. 4096 */ 4097 wmb(); 4098 4099 txdata->tx_db.data.prod += nbd; 4100 barrier(); 4101 4102 DOORBELL(bp, txdata->cid, txdata->tx_db.raw); 4103 4104 mmiowb(); 4105 4106 txdata->tx_bd_prod += nbd; 4107 4108 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4109 netif_tx_stop_queue(txq); 4110 4111 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4112 * ordering of set_bit() in netif_tx_stop_queue() and read of 4113 * fp->bd_tx_cons */ 4114 smp_mb(); 4115 4116 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4117 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4118 netif_tx_wake_queue(txq); 4119 } 4120 txdata->tx_pkt++; 4121 4122 return NETDEV_TX_OK; 4123 } 4124 4125 /** 4126 * bnx2x_setup_tc - routine to configure net_device for multi tc 4127 * 4128 * @netdev: net device to configure 4129 * @tc: number of traffic classes to enable 4130 * 4131 * callback connected to the ndo_setup_tc function pointer 4132 */ 4133 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4134 { 4135 int cos, prio, count, offset; 4136 struct bnx2x *bp = netdev_priv(dev); 4137 4138 /* setup tc must be called under rtnl lock */ 4139 ASSERT_RTNL(); 4140 4141 /* no traffic classes requested. Aborting */ 4142 if (!num_tc) { 4143 netdev_reset_tc(dev); 4144 return 0; 4145 } 4146 4147 /* requested to support too many traffic classes */ 4148 if (num_tc > bp->max_cos) { 4149 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4150 num_tc, bp->max_cos); 4151 return -EINVAL; 4152 } 4153 4154 /* declare amount of supported traffic classes */ 4155 if (netdev_set_num_tc(dev, num_tc)) { 4156 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4157 return -EINVAL; 4158 } 4159 4160 /* configure priority to traffic class mapping */ 4161 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4162 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[prio]); 4163 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4164 "mapping priority %d to tc %d\n", 4165 prio, bp->prio_to_cos[prio]); 4166 } 4167 4168 /* Use this configuration to differentiate tc0 from other COSes 4169 This can be used for ets or pfc, and save the effort of setting 4170 up a multio class queue disc or negotiating DCBX with a switch 4171 netdev_set_prio_tc_map(dev, 0, 0); 4172 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4173 for (prio = 1; prio < 16; prio++) { 4174 netdev_set_prio_tc_map(dev, prio, 1); 4175 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4176 } */ 4177 4178 /* configure traffic class to transmission queue mapping */ 4179 for (cos = 0; cos < bp->max_cos; cos++) { 4180 count = BNX2X_NUM_ETH_QUEUES(bp); 4181 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4182 netdev_set_tc_queue(dev, cos, count, offset); 4183 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4184 "mapping tc %d to offset %d count %d\n", 4185 cos, offset, count); 4186 } 4187 4188 return 0; 4189 } 4190 4191 /* called with rtnl_lock */ 4192 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4193 { 4194 struct sockaddr *addr = p; 4195 struct bnx2x *bp = netdev_priv(dev); 4196 int rc = 0; 4197 4198 if (!bnx2x_is_valid_ether_addr(bp, addr->sa_data)) { 4199 BNX2X_ERR("Requested MAC address is not valid\n"); 4200 return -EINVAL; 4201 } 4202 4203 if ((IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) && 4204 !is_zero_ether_addr(addr->sa_data)) { 4205 BNX2X_ERR("Can't configure non-zero address on iSCSI or FCoE functions in MF-SD mode\n"); 4206 return -EINVAL; 4207 } 4208 4209 if (netif_running(dev)) { 4210 rc = bnx2x_set_eth_mac(bp, false); 4211 if (rc) 4212 return rc; 4213 } 4214 4215 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4216 4217 if (netif_running(dev)) 4218 rc = bnx2x_set_eth_mac(bp, true); 4219 4220 return rc; 4221 } 4222 4223 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4224 { 4225 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4226 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4227 u8 cos; 4228 4229 /* Common */ 4230 4231 if (IS_FCOE_IDX(fp_index)) { 4232 memset(sb, 0, sizeof(union host_hc_status_block)); 4233 fp->status_blk_mapping = 0; 4234 } else { 4235 /* status blocks */ 4236 if (!CHIP_IS_E1x(bp)) 4237 BNX2X_PCI_FREE(sb->e2_sb, 4238 bnx2x_fp(bp, fp_index, 4239 status_blk_mapping), 4240 sizeof(struct host_hc_status_block_e2)); 4241 else 4242 BNX2X_PCI_FREE(sb->e1x_sb, 4243 bnx2x_fp(bp, fp_index, 4244 status_blk_mapping), 4245 sizeof(struct host_hc_status_block_e1x)); 4246 } 4247 4248 /* Rx */ 4249 if (!skip_rx_queue(bp, fp_index)) { 4250 bnx2x_free_rx_bds(fp); 4251 4252 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4253 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4254 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4255 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4256 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4257 4258 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4259 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4260 sizeof(struct eth_fast_path_rx_cqe) * 4261 NUM_RCQ_BD); 4262 4263 /* SGE ring */ 4264 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4265 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4266 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4267 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4268 } 4269 4270 /* Tx */ 4271 if (!skip_tx_queue(bp, fp_index)) { 4272 /* fastpath tx rings: tx_buf tx_desc */ 4273 for_each_cos_in_tx_queue(fp, cos) { 4274 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4275 4276 DP(NETIF_MSG_IFDOWN, 4277 "freeing tx memory of fp %d cos %d cid %d\n", 4278 fp_index, cos, txdata->cid); 4279 4280 BNX2X_FREE(txdata->tx_buf_ring); 4281 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4282 txdata->tx_desc_mapping, 4283 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4284 } 4285 } 4286 /* end of fastpath */ 4287 } 4288 4289 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4290 { 4291 int i; 4292 for_each_cnic_queue(bp, i) 4293 bnx2x_free_fp_mem_at(bp, i); 4294 } 4295 4296 void bnx2x_free_fp_mem(struct bnx2x *bp) 4297 { 4298 int i; 4299 for_each_eth_queue(bp, i) 4300 bnx2x_free_fp_mem_at(bp, i); 4301 } 4302 4303 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4304 { 4305 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4306 if (!CHIP_IS_E1x(bp)) { 4307 bnx2x_fp(bp, index, sb_index_values) = 4308 (__le16 *)status_blk.e2_sb->sb.index_values; 4309 bnx2x_fp(bp, index, sb_running_index) = 4310 (__le16 *)status_blk.e2_sb->sb.running_index; 4311 } else { 4312 bnx2x_fp(bp, index, sb_index_values) = 4313 (__le16 *)status_blk.e1x_sb->sb.index_values; 4314 bnx2x_fp(bp, index, sb_running_index) = 4315 (__le16 *)status_blk.e1x_sb->sb.running_index; 4316 } 4317 } 4318 4319 /* Returns the number of actually allocated BDs */ 4320 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4321 int rx_ring_size) 4322 { 4323 struct bnx2x *bp = fp->bp; 4324 u16 ring_prod, cqe_ring_prod; 4325 int i, failure_cnt = 0; 4326 4327 fp->rx_comp_cons = 0; 4328 cqe_ring_prod = ring_prod = 0; 4329 4330 /* This routine is called only during fo init so 4331 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4332 */ 4333 for (i = 0; i < rx_ring_size; i++) { 4334 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4335 failure_cnt++; 4336 continue; 4337 } 4338 ring_prod = NEXT_RX_IDX(ring_prod); 4339 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4340 WARN_ON(ring_prod <= (i - failure_cnt)); 4341 } 4342 4343 if (failure_cnt) 4344 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4345 i - failure_cnt, fp->index); 4346 4347 fp->rx_bd_prod = ring_prod; 4348 /* Limit the CQE producer by the CQE ring size */ 4349 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4350 cqe_ring_prod); 4351 fp->rx_pkt = fp->rx_calls = 0; 4352 4353 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4354 4355 return i - failure_cnt; 4356 } 4357 4358 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4359 { 4360 int i; 4361 4362 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4363 struct eth_rx_cqe_next_page *nextpg; 4364 4365 nextpg = (struct eth_rx_cqe_next_page *) 4366 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4367 nextpg->addr_hi = 4368 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4369 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4370 nextpg->addr_lo = 4371 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4372 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4373 } 4374 } 4375 4376 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4377 { 4378 union host_hc_status_block *sb; 4379 struct bnx2x_fastpath *fp = &bp->fp[index]; 4380 int ring_size = 0; 4381 u8 cos; 4382 int rx_ring_size = 0; 4383 4384 if (!bp->rx_ring_size && 4385 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) { 4386 rx_ring_size = MIN_RX_SIZE_NONTPA; 4387 bp->rx_ring_size = rx_ring_size; 4388 } else if (!bp->rx_ring_size) { 4389 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4390 4391 if (CHIP_IS_E3(bp)) { 4392 u32 cfg = SHMEM_RD(bp, 4393 dev_info.port_hw_config[BP_PORT(bp)]. 4394 default_cfg); 4395 4396 /* Decrease ring size for 1G functions */ 4397 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4398 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4399 rx_ring_size /= 10; 4400 } 4401 4402 /* allocate at least number of buffers required by FW */ 4403 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4404 MIN_RX_SIZE_TPA, rx_ring_size); 4405 4406 bp->rx_ring_size = rx_ring_size; 4407 } else /* if rx_ring_size specified - use it */ 4408 rx_ring_size = bp->rx_ring_size; 4409 4410 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4411 4412 /* Common */ 4413 sb = &bnx2x_fp(bp, index, status_blk); 4414 4415 if (!IS_FCOE_IDX(index)) { 4416 /* status blocks */ 4417 if (!CHIP_IS_E1x(bp)) { 4418 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4419 sizeof(struct host_hc_status_block_e2)); 4420 if (!sb->e2_sb) 4421 goto alloc_mem_err; 4422 } else { 4423 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4424 sizeof(struct host_hc_status_block_e1x)); 4425 if (!sb->e1x_sb) 4426 goto alloc_mem_err; 4427 } 4428 } 4429 4430 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4431 * set shortcuts for it. 4432 */ 4433 if (!IS_FCOE_IDX(index)) 4434 set_sb_shortcuts(bp, index); 4435 4436 /* Tx */ 4437 if (!skip_tx_queue(bp, index)) { 4438 /* fastpath tx rings: tx_buf tx_desc */ 4439 for_each_cos_in_tx_queue(fp, cos) { 4440 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4441 4442 DP(NETIF_MSG_IFUP, 4443 "allocating tx memory of fp %d cos %d\n", 4444 index, cos); 4445 4446 txdata->tx_buf_ring = kcalloc(NUM_TX_BD, 4447 sizeof(struct sw_tx_bd), 4448 GFP_KERNEL); 4449 if (!txdata->tx_buf_ring) 4450 goto alloc_mem_err; 4451 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, 4452 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4453 if (!txdata->tx_desc_ring) 4454 goto alloc_mem_err; 4455 } 4456 } 4457 4458 /* Rx */ 4459 if (!skip_rx_queue(bp, index)) { 4460 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4461 bnx2x_fp(bp, index, rx_buf_ring) = 4462 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL); 4463 if (!bnx2x_fp(bp, index, rx_buf_ring)) 4464 goto alloc_mem_err; 4465 bnx2x_fp(bp, index, rx_desc_ring) = 4466 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), 4467 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4468 if (!bnx2x_fp(bp, index, rx_desc_ring)) 4469 goto alloc_mem_err; 4470 4471 /* Seed all CQEs by 1s */ 4472 bnx2x_fp(bp, index, rx_comp_ring) = 4473 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), 4474 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); 4475 if (!bnx2x_fp(bp, index, rx_comp_ring)) 4476 goto alloc_mem_err; 4477 4478 /* SGE ring */ 4479 bnx2x_fp(bp, index, rx_page_ring) = 4480 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page), 4481 GFP_KERNEL); 4482 if (!bnx2x_fp(bp, index, rx_page_ring)) 4483 goto alloc_mem_err; 4484 bnx2x_fp(bp, index, rx_sge_ring) = 4485 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), 4486 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4487 if (!bnx2x_fp(bp, index, rx_sge_ring)) 4488 goto alloc_mem_err; 4489 /* RX BD ring */ 4490 bnx2x_set_next_page_rx_bd(fp); 4491 4492 /* CQ ring */ 4493 bnx2x_set_next_page_rx_cq(fp); 4494 4495 /* BDs */ 4496 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4497 if (ring_size < rx_ring_size) 4498 goto alloc_mem_err; 4499 } 4500 4501 return 0; 4502 4503 /* handles low memory cases */ 4504 alloc_mem_err: 4505 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4506 index, ring_size); 4507 /* FW will drop all packets if queue is not big enough, 4508 * In these cases we disable the queue 4509 * Min size is different for OOO, TPA and non-TPA queues 4510 */ 4511 if (ring_size < (fp->disable_tpa ? 4512 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4513 /* release memory allocated for this queue */ 4514 bnx2x_free_fp_mem_at(bp, index); 4515 return -ENOMEM; 4516 } 4517 return 0; 4518 } 4519 4520 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4521 { 4522 if (!NO_FCOE(bp)) 4523 /* FCoE */ 4524 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4525 /* we will fail load process instead of mark 4526 * NO_FCOE_FLAG 4527 */ 4528 return -ENOMEM; 4529 4530 return 0; 4531 } 4532 4533 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4534 { 4535 int i; 4536 4537 /* 1. Allocate FP for leading - fatal if error 4538 * 2. Allocate RSS - fix number of queues if error 4539 */ 4540 4541 /* leading */ 4542 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4543 return -ENOMEM; 4544 4545 /* RSS */ 4546 for_each_nondefault_eth_queue(bp, i) 4547 if (bnx2x_alloc_fp_mem_at(bp, i)) 4548 break; 4549 4550 /* handle memory failures */ 4551 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4552 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4553 4554 WARN_ON(delta < 0); 4555 bnx2x_shrink_eth_fp(bp, delta); 4556 if (CNIC_SUPPORT(bp)) 4557 /* move non eth FPs next to last eth FP 4558 * must be done in that order 4559 * FCOE_IDX < FWD_IDX < OOO_IDX 4560 */ 4561 4562 /* move FCoE fp even NO_FCOE_FLAG is on */ 4563 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4564 bp->num_ethernet_queues -= delta; 4565 bp->num_queues = bp->num_ethernet_queues + 4566 bp->num_cnic_queues; 4567 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4568 bp->num_queues + delta, bp->num_queues); 4569 } 4570 4571 return 0; 4572 } 4573 4574 void bnx2x_free_mem_bp(struct bnx2x *bp) 4575 { 4576 int i; 4577 4578 for (i = 0; i < bp->fp_array_size; i++) 4579 kfree(bp->fp[i].tpa_info); 4580 kfree(bp->fp); 4581 kfree(bp->sp_objs); 4582 kfree(bp->fp_stats); 4583 kfree(bp->bnx2x_txq); 4584 kfree(bp->msix_table); 4585 kfree(bp->ilt); 4586 } 4587 4588 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4589 { 4590 struct bnx2x_fastpath *fp; 4591 struct msix_entry *tbl; 4592 struct bnx2x_ilt *ilt; 4593 int msix_table_size = 0; 4594 int fp_array_size, txq_array_size; 4595 int i; 4596 4597 /* 4598 * The biggest MSI-X table we might need is as a maximum number of fast 4599 * path IGU SBs plus default SB (for PF only). 4600 */ 4601 msix_table_size = bp->igu_sb_cnt; 4602 if (IS_PF(bp)) 4603 msix_table_size++; 4604 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4605 4606 /* fp array: RSS plus CNIC related L2 queues */ 4607 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4608 bp->fp_array_size = fp_array_size; 4609 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4610 4611 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4612 if (!fp) 4613 goto alloc_err; 4614 for (i = 0; i < bp->fp_array_size; i++) { 4615 fp[i].tpa_info = 4616 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4617 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4618 if (!(fp[i].tpa_info)) 4619 goto alloc_err; 4620 } 4621 4622 bp->fp = fp; 4623 4624 /* allocate sp objs */ 4625 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4626 GFP_KERNEL); 4627 if (!bp->sp_objs) 4628 goto alloc_err; 4629 4630 /* allocate fp_stats */ 4631 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4632 GFP_KERNEL); 4633 if (!bp->fp_stats) 4634 goto alloc_err; 4635 4636 /* Allocate memory for the transmission queues array */ 4637 txq_array_size = 4638 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4639 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4640 4641 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4642 GFP_KERNEL); 4643 if (!bp->bnx2x_txq) 4644 goto alloc_err; 4645 4646 /* msix table */ 4647 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4648 if (!tbl) 4649 goto alloc_err; 4650 bp->msix_table = tbl; 4651 4652 /* ilt */ 4653 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4654 if (!ilt) 4655 goto alloc_err; 4656 bp->ilt = ilt; 4657 4658 return 0; 4659 alloc_err: 4660 bnx2x_free_mem_bp(bp); 4661 return -ENOMEM; 4662 } 4663 4664 int bnx2x_reload_if_running(struct net_device *dev) 4665 { 4666 struct bnx2x *bp = netdev_priv(dev); 4667 4668 if (unlikely(!netif_running(dev))) 4669 return 0; 4670 4671 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4672 return bnx2x_nic_load(bp, LOAD_NORMAL); 4673 } 4674 4675 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4676 { 4677 u32 sel_phy_idx = 0; 4678 if (bp->link_params.num_phys <= 1) 4679 return INT_PHY; 4680 4681 if (bp->link_vars.link_up) { 4682 sel_phy_idx = EXT_PHY1; 4683 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4684 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4685 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4686 sel_phy_idx = EXT_PHY2; 4687 } else { 4688 4689 switch (bnx2x_phy_selection(&bp->link_params)) { 4690 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4691 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4692 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4693 sel_phy_idx = EXT_PHY1; 4694 break; 4695 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4696 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4697 sel_phy_idx = EXT_PHY2; 4698 break; 4699 } 4700 } 4701 4702 return sel_phy_idx; 4703 } 4704 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4705 { 4706 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4707 /* 4708 * The selected activated PHY is always after swapping (in case PHY 4709 * swapping is enabled). So when swapping is enabled, we need to reverse 4710 * the configuration 4711 */ 4712 4713 if (bp->link_params.multi_phy_config & 4714 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4715 if (sel_phy_idx == EXT_PHY1) 4716 sel_phy_idx = EXT_PHY2; 4717 else if (sel_phy_idx == EXT_PHY2) 4718 sel_phy_idx = EXT_PHY1; 4719 } 4720 return LINK_CONFIG_IDX(sel_phy_idx); 4721 } 4722 4723 #ifdef NETDEV_FCOE_WWNN 4724 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4725 { 4726 struct bnx2x *bp = netdev_priv(dev); 4727 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4728 4729 switch (type) { 4730 case NETDEV_FCOE_WWNN: 4731 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4732 cp->fcoe_wwn_node_name_lo); 4733 break; 4734 case NETDEV_FCOE_WWPN: 4735 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4736 cp->fcoe_wwn_port_name_lo); 4737 break; 4738 default: 4739 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4740 return -EINVAL; 4741 } 4742 4743 return 0; 4744 } 4745 #endif 4746 4747 /* called with rtnl_lock */ 4748 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4749 { 4750 struct bnx2x *bp = netdev_priv(dev); 4751 4752 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4753 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4754 return -EAGAIN; 4755 } 4756 4757 if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || 4758 ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) { 4759 BNX2X_ERR("Can't support requested MTU size\n"); 4760 return -EINVAL; 4761 } 4762 4763 /* This does not race with packet allocation 4764 * because the actual alloc size is 4765 * only updated as part of load 4766 */ 4767 dev->mtu = new_mtu; 4768 4769 return bnx2x_reload_if_running(dev); 4770 } 4771 4772 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4773 netdev_features_t features) 4774 { 4775 struct bnx2x *bp = netdev_priv(dev); 4776 4777 /* TPA requires Rx CSUM offloading */ 4778 if (!(features & NETIF_F_RXCSUM) || bp->disable_tpa) { 4779 features &= ~NETIF_F_LRO; 4780 features &= ~NETIF_F_GRO; 4781 } 4782 4783 return features; 4784 } 4785 4786 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4787 { 4788 struct bnx2x *bp = netdev_priv(dev); 4789 u32 flags = bp->flags; 4790 u32 changes; 4791 bool bnx2x_reload = false; 4792 4793 if (features & NETIF_F_LRO) 4794 flags |= TPA_ENABLE_FLAG; 4795 else 4796 flags &= ~TPA_ENABLE_FLAG; 4797 4798 if (features & NETIF_F_GRO) 4799 flags |= GRO_ENABLE_FLAG; 4800 else 4801 flags &= ~GRO_ENABLE_FLAG; 4802 4803 if (features & NETIF_F_LOOPBACK) { 4804 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4805 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4806 bnx2x_reload = true; 4807 } 4808 } else { 4809 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4810 bp->link_params.loopback_mode = LOOPBACK_NONE; 4811 bnx2x_reload = true; 4812 } 4813 } 4814 4815 changes = flags ^ bp->flags; 4816 4817 /* if GRO is changed while LRO is enabled, don't force a reload */ 4818 if ((changes & GRO_ENABLE_FLAG) && (flags & TPA_ENABLE_FLAG)) 4819 changes &= ~GRO_ENABLE_FLAG; 4820 4821 if (changes) 4822 bnx2x_reload = true; 4823 4824 bp->flags = flags; 4825 4826 if (bnx2x_reload) { 4827 if (bp->recovery_state == BNX2X_RECOVERY_DONE) 4828 return bnx2x_reload_if_running(dev); 4829 /* else: bnx2x_nic_load() will be called at end of recovery */ 4830 } 4831 4832 return 0; 4833 } 4834 4835 void bnx2x_tx_timeout(struct net_device *dev) 4836 { 4837 struct bnx2x *bp = netdev_priv(dev); 4838 4839 #ifdef BNX2X_STOP_ON_ERROR 4840 if (!bp->panic) 4841 bnx2x_panic(); 4842 #endif 4843 4844 /* This allows the netif to be shutdown gracefully before resetting */ 4845 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); 4846 } 4847 4848 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) 4849 { 4850 struct net_device *dev = pci_get_drvdata(pdev); 4851 struct bnx2x *bp; 4852 4853 if (!dev) { 4854 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4855 return -ENODEV; 4856 } 4857 bp = netdev_priv(dev); 4858 4859 rtnl_lock(); 4860 4861 pci_save_state(pdev); 4862 4863 if (!netif_running(dev)) { 4864 rtnl_unlock(); 4865 return 0; 4866 } 4867 4868 netif_device_detach(dev); 4869 4870 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 4871 4872 bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); 4873 4874 rtnl_unlock(); 4875 4876 return 0; 4877 } 4878 4879 int bnx2x_resume(struct pci_dev *pdev) 4880 { 4881 struct net_device *dev = pci_get_drvdata(pdev); 4882 struct bnx2x *bp; 4883 int rc; 4884 4885 if (!dev) { 4886 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4887 return -ENODEV; 4888 } 4889 bp = netdev_priv(dev); 4890 4891 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4892 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 4893 return -EAGAIN; 4894 } 4895 4896 rtnl_lock(); 4897 4898 pci_restore_state(pdev); 4899 4900 if (!netif_running(dev)) { 4901 rtnl_unlock(); 4902 return 0; 4903 } 4904 4905 bnx2x_set_power_state(bp, PCI_D0); 4906 netif_device_attach(dev); 4907 4908 rc = bnx2x_nic_load(bp, LOAD_OPEN); 4909 4910 rtnl_unlock(); 4911 4912 return rc; 4913 } 4914 4915 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 4916 u32 cid) 4917 { 4918 if (!cxt) { 4919 BNX2X_ERR("bad context pointer %p\n", cxt); 4920 return; 4921 } 4922 4923 /* ustorm cxt validation */ 4924 cxt->ustorm_ag_context.cdu_usage = 4925 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 4926 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 4927 /* xcontext validation */ 4928 cxt->xstorm_ag_context.cdu_reserved = 4929 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 4930 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 4931 } 4932 4933 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 4934 u8 fw_sb_id, u8 sb_index, 4935 u8 ticks) 4936 { 4937 u32 addr = BAR_CSTRORM_INTMEM + 4938 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 4939 REG_WR8(bp, addr, ticks); 4940 DP(NETIF_MSG_IFUP, 4941 "port %x fw_sb_id %d sb_index %d ticks %d\n", 4942 port, fw_sb_id, sb_index, ticks); 4943 } 4944 4945 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 4946 u16 fw_sb_id, u8 sb_index, 4947 u8 disable) 4948 { 4949 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 4950 u32 addr = BAR_CSTRORM_INTMEM + 4951 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 4952 u8 flags = REG_RD8(bp, addr); 4953 /* clear and set */ 4954 flags &= ~HC_INDEX_DATA_HC_ENABLED; 4955 flags |= enable_flag; 4956 REG_WR8(bp, addr, flags); 4957 DP(NETIF_MSG_IFUP, 4958 "port %x fw_sb_id %d sb_index %d disable %d\n", 4959 port, fw_sb_id, sb_index, disable); 4960 } 4961 4962 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 4963 u8 sb_index, u8 disable, u16 usec) 4964 { 4965 int port = BP_PORT(bp); 4966 u8 ticks = usec / BNX2X_BTR; 4967 4968 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 4969 4970 disable = disable ? 1 : (usec ? 0 : 1); 4971 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 4972 } 4973 4974 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, 4975 u32 verbose) 4976 { 4977 smp_mb__before_atomic(); 4978 set_bit(flag, &bp->sp_rtnl_state); 4979 smp_mb__after_atomic(); 4980 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", 4981 flag); 4982 schedule_delayed_work(&bp->sp_rtnl_task, 0); 4983 } 4984 EXPORT_SYMBOL(bnx2x_schedule_sp_rtnl); 4985