1 /* bnx2x_cmn.c: Broadcom Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 * 9 * Maintained by: Eilon Greenstein <eilong@broadcom.com> 10 * Written by: Eliezer Tamir 11 * Based on code from Michael Chan's bnx2 driver 12 * UDP CSUM errata workaround by Arik Gendelman 13 * Slowpath and fastpath rework by Vladislav Zolotarov 14 * Statistics and Link management by Yitchak Gertner 15 * 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/etherdevice.h> 21 #include <linux/if_vlan.h> 22 #include <linux/interrupt.h> 23 #include <linux/ip.h> 24 #include <net/tcp.h> 25 #include <net/ipv6.h> 26 #include <net/ip6_checksum.h> 27 #include <net/busy_poll.h> 28 #include <linux/prefetch.h> 29 #include "bnx2x_cmn.h" 30 #include "bnx2x_init.h" 31 #include "bnx2x_sp.h" 32 33 /** 34 * bnx2x_move_fp - move content of the fastpath structure. 35 * 36 * @bp: driver handle 37 * @from: source FP index 38 * @to: destination FP index 39 * 40 * Makes sure the contents of the bp->fp[to].napi is kept 41 * intact. This is done by first copying the napi struct from 42 * the target to the source, and then mem copying the entire 43 * source onto the target. Update txdata pointers and related 44 * content. 45 */ 46 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 47 { 48 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 49 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 50 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 51 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 52 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 53 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 54 int old_max_eth_txqs, new_max_eth_txqs; 55 int old_txdata_index = 0, new_txdata_index = 0; 56 57 /* Copy the NAPI object as it has been already initialized */ 58 from_fp->napi = to_fp->napi; 59 60 /* Move bnx2x_fastpath contents */ 61 memcpy(to_fp, from_fp, sizeof(*to_fp)); 62 to_fp->index = to; 63 64 /* move sp_objs contents as well, as their indices match fp ones */ 65 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 66 67 /* move fp_stats contents as well, as their indices match fp ones */ 68 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 69 70 /* Update txdata pointers in fp and move txdata content accordingly: 71 * Each fp consumes 'max_cos' txdata structures, so the index should be 72 * decremented by max_cos x delta. 73 */ 74 75 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 76 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 77 (bp)->max_cos; 78 if (from == FCOE_IDX(bp)) { 79 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 80 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 81 } 82 83 memcpy(&bp->bnx2x_txq[new_txdata_index], 84 &bp->bnx2x_txq[old_txdata_index], 85 sizeof(struct bnx2x_fp_txdata)); 86 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 87 } 88 89 /** 90 * bnx2x_fill_fw_str - Fill buffer with FW version string. 91 * 92 * @bp: driver handle 93 * @buf: character buffer to fill with the fw name 94 * @buf_len: length of the above buffer 95 * 96 */ 97 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 98 { 99 if (IS_PF(bp)) { 100 u8 phy_fw_ver[PHY_FW_VER_LEN]; 101 102 phy_fw_ver[0] = '\0'; 103 bnx2x_get_ext_phy_fw_version(&bp->link_params, 104 phy_fw_ver, PHY_FW_VER_LEN); 105 strlcpy(buf, bp->fw_ver, buf_len); 106 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 107 "bc %d.%d.%d%s%s", 108 (bp->common.bc_ver & 0xff0000) >> 16, 109 (bp->common.bc_ver & 0xff00) >> 8, 110 (bp->common.bc_ver & 0xff), 111 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 112 } else { 113 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 114 } 115 } 116 117 /** 118 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 119 * 120 * @bp: driver handle 121 * @delta: number of eth queues which were not allocated 122 */ 123 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 124 { 125 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 126 127 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 128 * backward along the array could cause memory to be overridden 129 */ 130 for (cos = 1; cos < bp->max_cos; cos++) { 131 for (i = 0; i < old_eth_num - delta; i++) { 132 struct bnx2x_fastpath *fp = &bp->fp[i]; 133 int new_idx = cos * (old_eth_num - delta) + i; 134 135 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 136 sizeof(struct bnx2x_fp_txdata)); 137 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 138 } 139 } 140 } 141 142 int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 143 144 /* free skb in the packet ring at pos idx 145 * return idx of last bd freed 146 */ 147 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 148 u16 idx, unsigned int *pkts_compl, 149 unsigned int *bytes_compl) 150 { 151 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 152 struct eth_tx_start_bd *tx_start_bd; 153 struct eth_tx_bd *tx_data_bd; 154 struct sk_buff *skb = tx_buf->skb; 155 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 156 int nbd; 157 158 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 159 prefetch(&skb->end); 160 161 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 162 txdata->txq_index, idx, tx_buf, skb); 163 164 /* unmap first bd */ 165 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 166 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 167 BD_UNMAP_LEN(tx_start_bd), DMA_TO_DEVICE); 168 169 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 170 #ifdef BNX2X_STOP_ON_ERROR 171 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 172 BNX2X_ERR("BAD nbd!\n"); 173 bnx2x_panic(); 174 } 175 #endif 176 new_cons = nbd + tx_buf->first_bd; 177 178 /* Get the next bd */ 179 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 180 181 /* Skip a parse bd... */ 182 --nbd; 183 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 184 185 /* ...and the TSO split header bd since they have no mapping */ 186 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 187 --nbd; 188 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 189 } 190 191 /* now free frags */ 192 while (nbd > 0) { 193 194 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 195 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 196 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 197 if (--nbd) 198 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 199 } 200 201 /* release skb */ 202 WARN_ON(!skb); 203 if (likely(skb)) { 204 (*pkts_compl)++; 205 (*bytes_compl) += skb->len; 206 } 207 208 dev_kfree_skb_any(skb); 209 tx_buf->first_bd = 0; 210 tx_buf->skb = NULL; 211 212 return new_cons; 213 } 214 215 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 216 { 217 struct netdev_queue *txq; 218 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 219 unsigned int pkts_compl = 0, bytes_compl = 0; 220 221 #ifdef BNX2X_STOP_ON_ERROR 222 if (unlikely(bp->panic)) 223 return -1; 224 #endif 225 226 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 227 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 228 sw_cons = txdata->tx_pkt_cons; 229 230 while (sw_cons != hw_cons) { 231 u16 pkt_cons; 232 233 pkt_cons = TX_BD(sw_cons); 234 235 DP(NETIF_MSG_TX_DONE, 236 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 237 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 238 239 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 240 &pkts_compl, &bytes_compl); 241 242 sw_cons++; 243 } 244 245 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 246 247 txdata->tx_pkt_cons = sw_cons; 248 txdata->tx_bd_cons = bd_cons; 249 250 /* Need to make the tx_bd_cons update visible to start_xmit() 251 * before checking for netif_tx_queue_stopped(). Without the 252 * memory barrier, there is a small possibility that 253 * start_xmit() will miss it and cause the queue to be stopped 254 * forever. 255 * On the other hand we need an rmb() here to ensure the proper 256 * ordering of bit testing in the following 257 * netif_tx_queue_stopped(txq) call. 258 */ 259 smp_mb(); 260 261 if (unlikely(netif_tx_queue_stopped(txq))) { 262 /* Taking tx_lock() is needed to prevent re-enabling the queue 263 * while it's empty. This could have happen if rx_action() gets 264 * suspended in bnx2x_tx_int() after the condition before 265 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 266 * 267 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 268 * sends some packets consuming the whole queue again-> 269 * stops the queue 270 */ 271 272 __netif_tx_lock(txq, smp_processor_id()); 273 274 if ((netif_tx_queue_stopped(txq)) && 275 (bp->state == BNX2X_STATE_OPEN) && 276 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 277 netif_tx_wake_queue(txq); 278 279 __netif_tx_unlock(txq); 280 } 281 return 0; 282 } 283 284 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 285 u16 idx) 286 { 287 u16 last_max = fp->last_max_sge; 288 289 if (SUB_S16(idx, last_max) > 0) 290 fp->last_max_sge = idx; 291 } 292 293 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 294 u16 sge_len, 295 struct eth_end_agg_rx_cqe *cqe) 296 { 297 struct bnx2x *bp = fp->bp; 298 u16 last_max, last_elem, first_elem; 299 u16 delta = 0; 300 u16 i; 301 302 if (!sge_len) 303 return; 304 305 /* First mark all used pages */ 306 for (i = 0; i < sge_len; i++) 307 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 308 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 309 310 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 311 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 312 313 /* Here we assume that the last SGE index is the biggest */ 314 prefetch((void *)(fp->sge_mask)); 315 bnx2x_update_last_max_sge(fp, 316 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 317 318 last_max = RX_SGE(fp->last_max_sge); 319 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 320 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 321 322 /* If ring is not full */ 323 if (last_elem + 1 != first_elem) 324 last_elem++; 325 326 /* Now update the prod */ 327 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 328 if (likely(fp->sge_mask[i])) 329 break; 330 331 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 332 delta += BIT_VEC64_ELEM_SZ; 333 } 334 335 if (delta > 0) { 336 fp->rx_sge_prod += delta; 337 /* clear page-end entries */ 338 bnx2x_clear_sge_mask_next_elems(fp); 339 } 340 341 DP(NETIF_MSG_RX_STATUS, 342 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 343 fp->last_max_sge, fp->rx_sge_prod); 344 } 345 346 /* Get Toeplitz hash value in the skb using the value from the 347 * CQE (calculated by HW). 348 */ 349 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 350 const struct eth_fast_path_rx_cqe *cqe, 351 bool *l4_rxhash) 352 { 353 /* Get Toeplitz hash from CQE */ 354 if ((bp->dev->features & NETIF_F_RXHASH) && 355 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 356 enum eth_rss_hash_type htype; 357 358 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 359 *l4_rxhash = (htype == TCP_IPV4_HASH_TYPE) || 360 (htype == TCP_IPV6_HASH_TYPE); 361 return le32_to_cpu(cqe->rss_hash_result); 362 } 363 *l4_rxhash = false; 364 return 0; 365 } 366 367 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 368 u16 cons, u16 prod, 369 struct eth_fast_path_rx_cqe *cqe) 370 { 371 struct bnx2x *bp = fp->bp; 372 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 373 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 374 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 375 dma_addr_t mapping; 376 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 377 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 378 379 /* print error if current state != stop */ 380 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 381 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 382 383 /* Try to map an empty data buffer from the aggregation info */ 384 mapping = dma_map_single(&bp->pdev->dev, 385 first_buf->data + NET_SKB_PAD, 386 fp->rx_buf_size, DMA_FROM_DEVICE); 387 /* 388 * ...if it fails - move the skb from the consumer to the producer 389 * and set the current aggregation state as ERROR to drop it 390 * when TPA_STOP arrives. 391 */ 392 393 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 394 /* Move the BD from the consumer to the producer */ 395 bnx2x_reuse_rx_data(fp, cons, prod); 396 tpa_info->tpa_state = BNX2X_TPA_ERROR; 397 return; 398 } 399 400 /* move empty data from pool to prod */ 401 prod_rx_buf->data = first_buf->data; 402 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 403 /* point prod_bd to new data */ 404 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 405 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 406 407 /* move partial skb from cons to pool (don't unmap yet) */ 408 *first_buf = *cons_rx_buf; 409 410 /* mark bin state as START */ 411 tpa_info->parsing_flags = 412 le16_to_cpu(cqe->pars_flags.flags); 413 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 414 tpa_info->tpa_state = BNX2X_TPA_START; 415 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 416 tpa_info->placement_offset = cqe->placement_offset; 417 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->l4_rxhash); 418 if (fp->mode == TPA_MODE_GRO) { 419 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 420 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 421 tpa_info->gro_size = gro_size; 422 } 423 424 #ifdef BNX2X_STOP_ON_ERROR 425 fp->tpa_queue_used |= (1 << queue); 426 #ifdef _ASM_GENERIC_INT_L64_H 427 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n", 428 #else 429 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 430 #endif 431 fp->tpa_queue_used); 432 #endif 433 } 434 435 /* Timestamp option length allowed for TPA aggregation: 436 * 437 * nop nop kind length echo val 438 */ 439 #define TPA_TSTAMP_OPT_LEN 12 440 /** 441 * bnx2x_set_gro_params - compute GRO values 442 * 443 * @skb: packet skb 444 * @parsing_flags: parsing flags from the START CQE 445 * @len_on_bd: total length of the first packet for the 446 * aggregation. 447 * @pkt_len: length of all segments 448 * 449 * Approximate value of the MSS for this aggregation calculated using 450 * the first packet of it. 451 * Compute number of aggregated segments, and gso_type. 452 */ 453 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 454 u16 len_on_bd, unsigned int pkt_len, 455 u16 num_of_coalesced_segs) 456 { 457 /* TPA aggregation won't have either IP options or TCP options 458 * other than timestamp or IPv6 extension headers. 459 */ 460 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 461 462 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 463 PRS_FLAG_OVERETH_IPV6) { 464 hdrs_len += sizeof(struct ipv6hdr); 465 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 466 } else { 467 hdrs_len += sizeof(struct iphdr); 468 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 469 } 470 471 /* Check if there was a TCP timestamp, if there is it's will 472 * always be 12 bytes length: nop nop kind length echo val. 473 * 474 * Otherwise FW would close the aggregation. 475 */ 476 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 477 hdrs_len += TPA_TSTAMP_OPT_LEN; 478 479 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 480 481 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 482 * to skb_shinfo(skb)->gso_segs 483 */ 484 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 485 } 486 487 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, 488 struct bnx2x_fastpath *fp, u16 index) 489 { 490 struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT); 491 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 492 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 493 dma_addr_t mapping; 494 495 if (unlikely(page == NULL)) { 496 BNX2X_ERR("Can't alloc sge\n"); 497 return -ENOMEM; 498 } 499 500 mapping = dma_map_page(&bp->pdev->dev, page, 0, 501 SGE_PAGES, DMA_FROM_DEVICE); 502 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 503 __free_pages(page, PAGES_PER_SGE_SHIFT); 504 BNX2X_ERR("Can't map sge\n"); 505 return -ENOMEM; 506 } 507 508 sw_buf->page = page; 509 dma_unmap_addr_set(sw_buf, mapping, mapping); 510 511 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 512 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 513 514 return 0; 515 } 516 517 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 518 struct bnx2x_agg_info *tpa_info, 519 u16 pages, 520 struct sk_buff *skb, 521 struct eth_end_agg_rx_cqe *cqe, 522 u16 cqe_idx) 523 { 524 struct sw_rx_page *rx_pg, old_rx_pg; 525 u32 i, frag_len, frag_size; 526 int err, j, frag_id = 0; 527 u16 len_on_bd = tpa_info->len_on_bd; 528 u16 full_page = 0, gro_size = 0; 529 530 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 531 532 if (fp->mode == TPA_MODE_GRO) { 533 gro_size = tpa_info->gro_size; 534 full_page = tpa_info->full_page; 535 } 536 537 /* This is needed in order to enable forwarding support */ 538 if (frag_size) 539 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 540 le16_to_cpu(cqe->pkt_len), 541 le16_to_cpu(cqe->num_of_coalesced_segs)); 542 543 #ifdef BNX2X_STOP_ON_ERROR 544 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 545 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 546 pages, cqe_idx); 547 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 548 bnx2x_panic(); 549 return -EINVAL; 550 } 551 #endif 552 553 /* Run through the SGL and compose the fragmented skb */ 554 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 555 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 556 557 /* FW gives the indices of the SGE as if the ring is an array 558 (meaning that "next" element will consume 2 indices) */ 559 if (fp->mode == TPA_MODE_GRO) 560 frag_len = min_t(u32, frag_size, (u32)full_page); 561 else /* LRO */ 562 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 563 564 rx_pg = &fp->rx_page_ring[sge_idx]; 565 old_rx_pg = *rx_pg; 566 567 /* If we fail to allocate a substitute page, we simply stop 568 where we are and drop the whole packet */ 569 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx); 570 if (unlikely(err)) { 571 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 572 return err; 573 } 574 575 /* Unmap the page as we're going to pass it to the stack */ 576 dma_unmap_page(&bp->pdev->dev, 577 dma_unmap_addr(&old_rx_pg, mapping), 578 SGE_PAGES, DMA_FROM_DEVICE); 579 /* Add one frag and update the appropriate fields in the skb */ 580 if (fp->mode == TPA_MODE_LRO) 581 skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len); 582 else { /* GRO */ 583 int rem; 584 int offset = 0; 585 for (rem = frag_len; rem > 0; rem -= gro_size) { 586 int len = rem > gro_size ? gro_size : rem; 587 skb_fill_page_desc(skb, frag_id++, 588 old_rx_pg.page, offset, len); 589 if (offset) 590 get_page(old_rx_pg.page); 591 offset += len; 592 } 593 } 594 595 skb->data_len += frag_len; 596 skb->truesize += SGE_PAGES; 597 skb->len += frag_len; 598 599 frag_size -= frag_len; 600 } 601 602 return 0; 603 } 604 605 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 606 { 607 if (fp->rx_frag_size) 608 put_page(virt_to_head_page(data)); 609 else 610 kfree(data); 611 } 612 613 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp) 614 { 615 if (fp->rx_frag_size) 616 return netdev_alloc_frag(fp->rx_frag_size); 617 618 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC); 619 } 620 621 #ifdef CONFIG_INET 622 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 623 { 624 const struct iphdr *iph = ip_hdr(skb); 625 struct tcphdr *th; 626 627 skb_set_transport_header(skb, sizeof(struct iphdr)); 628 th = tcp_hdr(skb); 629 630 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 631 iph->saddr, iph->daddr, 0); 632 } 633 634 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 635 { 636 struct ipv6hdr *iph = ipv6_hdr(skb); 637 struct tcphdr *th; 638 639 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 640 th = tcp_hdr(skb); 641 642 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 643 &iph->saddr, &iph->daddr, 0); 644 } 645 646 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 647 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 648 { 649 skb_set_network_header(skb, 0); 650 gro_func(bp, skb); 651 tcp_gro_complete(skb); 652 } 653 #endif 654 655 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 656 struct sk_buff *skb) 657 { 658 #ifdef CONFIG_INET 659 if (skb_shinfo(skb)->gso_size) { 660 switch (be16_to_cpu(skb->protocol)) { 661 case ETH_P_IP: 662 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 663 break; 664 case ETH_P_IPV6: 665 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 666 break; 667 default: 668 BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 669 be16_to_cpu(skb->protocol)); 670 } 671 } 672 #endif 673 napi_gro_receive(&fp->napi, skb); 674 } 675 676 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 677 struct bnx2x_agg_info *tpa_info, 678 u16 pages, 679 struct eth_end_agg_rx_cqe *cqe, 680 u16 cqe_idx) 681 { 682 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 683 u8 pad = tpa_info->placement_offset; 684 u16 len = tpa_info->len_on_bd; 685 struct sk_buff *skb = NULL; 686 u8 *new_data, *data = rx_buf->data; 687 u8 old_tpa_state = tpa_info->tpa_state; 688 689 tpa_info->tpa_state = BNX2X_TPA_STOP; 690 691 /* If we there was an error during the handling of the TPA_START - 692 * drop this aggregation. 693 */ 694 if (old_tpa_state == BNX2X_TPA_ERROR) 695 goto drop; 696 697 /* Try to allocate the new data */ 698 new_data = bnx2x_frag_alloc(fp); 699 /* Unmap skb in the pool anyway, as we are going to change 700 pool entry status to BNX2X_TPA_STOP even if new skb allocation 701 fails. */ 702 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 703 fp->rx_buf_size, DMA_FROM_DEVICE); 704 if (likely(new_data)) 705 skb = build_skb(data, fp->rx_frag_size); 706 707 if (likely(skb)) { 708 #ifdef BNX2X_STOP_ON_ERROR 709 if (pad + len > fp->rx_buf_size) { 710 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 711 pad, len, fp->rx_buf_size); 712 bnx2x_panic(); 713 return; 714 } 715 #endif 716 717 skb_reserve(skb, pad + NET_SKB_PAD); 718 skb_put(skb, len); 719 skb->rxhash = tpa_info->rxhash; 720 skb->l4_rxhash = tpa_info->l4_rxhash; 721 722 skb->protocol = eth_type_trans(skb, bp->dev); 723 skb->ip_summed = CHECKSUM_UNNECESSARY; 724 725 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 726 skb, cqe, cqe_idx)) { 727 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 728 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 729 bnx2x_gro_receive(bp, fp, skb); 730 } else { 731 DP(NETIF_MSG_RX_STATUS, 732 "Failed to allocate new pages - dropping packet!\n"); 733 dev_kfree_skb_any(skb); 734 } 735 736 /* put new data in bin */ 737 rx_buf->data = new_data; 738 739 return; 740 } 741 bnx2x_frag_free(fp, new_data); 742 drop: 743 /* drop the packet and keep the buffer in the bin */ 744 DP(NETIF_MSG_RX_STATUS, 745 "Failed to allocate or map a new skb - dropping packet!\n"); 746 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 747 } 748 749 static int bnx2x_alloc_rx_data(struct bnx2x *bp, 750 struct bnx2x_fastpath *fp, u16 index) 751 { 752 u8 *data; 753 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 754 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 755 dma_addr_t mapping; 756 757 data = bnx2x_frag_alloc(fp); 758 if (unlikely(data == NULL)) 759 return -ENOMEM; 760 761 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 762 fp->rx_buf_size, 763 DMA_FROM_DEVICE); 764 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 765 bnx2x_frag_free(fp, data); 766 BNX2X_ERR("Can't map rx data\n"); 767 return -ENOMEM; 768 } 769 770 rx_buf->data = data; 771 dma_unmap_addr_set(rx_buf, mapping, mapping); 772 773 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 774 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 775 776 return 0; 777 } 778 779 static 780 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 781 struct bnx2x_fastpath *fp, 782 struct bnx2x_eth_q_stats *qstats) 783 { 784 /* Do nothing if no L4 csum validation was done. 785 * We do not check whether IP csum was validated. For IPv4 we assume 786 * that if the card got as far as validating the L4 csum, it also 787 * validated the IP csum. IPv6 has no IP csum. 788 */ 789 if (cqe->fast_path_cqe.status_flags & 790 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 791 return; 792 793 /* If L4 validation was done, check if an error was found. */ 794 795 if (cqe->fast_path_cqe.type_error_flags & 796 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 797 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 798 qstats->hw_csum_err++; 799 else 800 skb->ip_summed = CHECKSUM_UNNECESSARY; 801 } 802 803 int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 804 { 805 struct bnx2x *bp = fp->bp; 806 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 807 u16 sw_comp_cons, sw_comp_prod; 808 int rx_pkt = 0; 809 union eth_rx_cqe *cqe; 810 struct eth_fast_path_rx_cqe *cqe_fp; 811 812 #ifdef BNX2X_STOP_ON_ERROR 813 if (unlikely(bp->panic)) 814 return 0; 815 #endif 816 817 bd_cons = fp->rx_bd_cons; 818 bd_prod = fp->rx_bd_prod; 819 bd_prod_fw = bd_prod; 820 sw_comp_cons = fp->rx_comp_cons; 821 sw_comp_prod = fp->rx_comp_prod; 822 823 comp_ring_cons = RCQ_BD(sw_comp_cons); 824 cqe = &fp->rx_comp_ring[comp_ring_cons]; 825 cqe_fp = &cqe->fast_path_cqe; 826 827 DP(NETIF_MSG_RX_STATUS, 828 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 829 830 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 831 struct sw_rx_bd *rx_buf = NULL; 832 struct sk_buff *skb; 833 u8 cqe_fp_flags; 834 enum eth_rx_cqe_type cqe_fp_type; 835 u16 len, pad, queue; 836 u8 *data; 837 bool l4_rxhash; 838 839 #ifdef BNX2X_STOP_ON_ERROR 840 if (unlikely(bp->panic)) 841 return 0; 842 #endif 843 844 bd_prod = RX_BD(bd_prod); 845 bd_cons = RX_BD(bd_cons); 846 847 cqe_fp_flags = cqe_fp->type_error_flags; 848 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 849 850 DP(NETIF_MSG_RX_STATUS, 851 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 852 CQE_TYPE(cqe_fp_flags), 853 cqe_fp_flags, cqe_fp->status_flags, 854 le32_to_cpu(cqe_fp->rss_hash_result), 855 le16_to_cpu(cqe_fp->vlan_tag), 856 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 857 858 /* is this a slowpath msg? */ 859 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 860 bnx2x_sp_event(fp, cqe); 861 goto next_cqe; 862 } 863 864 rx_buf = &fp->rx_buf_ring[bd_cons]; 865 data = rx_buf->data; 866 867 if (!CQE_TYPE_FAST(cqe_fp_type)) { 868 struct bnx2x_agg_info *tpa_info; 869 u16 frag_size, pages; 870 #ifdef BNX2X_STOP_ON_ERROR 871 /* sanity check */ 872 if (fp->disable_tpa && 873 (CQE_TYPE_START(cqe_fp_type) || 874 CQE_TYPE_STOP(cqe_fp_type))) 875 BNX2X_ERR("START/STOP packet while disable_tpa type %x\n", 876 CQE_TYPE(cqe_fp_type)); 877 #endif 878 879 if (CQE_TYPE_START(cqe_fp_type)) { 880 u16 queue = cqe_fp->queue_index; 881 DP(NETIF_MSG_RX_STATUS, 882 "calling tpa_start on queue %d\n", 883 queue); 884 885 bnx2x_tpa_start(fp, queue, 886 bd_cons, bd_prod, 887 cqe_fp); 888 889 goto next_rx; 890 } 891 queue = cqe->end_agg_cqe.queue_index; 892 tpa_info = &fp->tpa_info[queue]; 893 DP(NETIF_MSG_RX_STATUS, 894 "calling tpa_stop on queue %d\n", 895 queue); 896 897 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 898 tpa_info->len_on_bd; 899 900 if (fp->mode == TPA_MODE_GRO) 901 pages = (frag_size + tpa_info->full_page - 1) / 902 tpa_info->full_page; 903 else 904 pages = SGE_PAGE_ALIGN(frag_size) >> 905 SGE_PAGE_SHIFT; 906 907 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 908 &cqe->end_agg_cqe, comp_ring_cons); 909 #ifdef BNX2X_STOP_ON_ERROR 910 if (bp->panic) 911 return 0; 912 #endif 913 914 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 915 goto next_cqe; 916 } 917 /* non TPA */ 918 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 919 pad = cqe_fp->placement_offset; 920 dma_sync_single_for_cpu(&bp->pdev->dev, 921 dma_unmap_addr(rx_buf, mapping), 922 pad + RX_COPY_THRESH, 923 DMA_FROM_DEVICE); 924 pad += NET_SKB_PAD; 925 prefetch(data + pad); /* speedup eth_type_trans() */ 926 /* is this an error packet? */ 927 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 928 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 929 "ERROR flags %x rx packet %u\n", 930 cqe_fp_flags, sw_comp_cons); 931 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 932 goto reuse_rx; 933 } 934 935 /* Since we don't have a jumbo ring 936 * copy small packets if mtu > 1500 937 */ 938 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 939 (len <= RX_COPY_THRESH)) { 940 skb = netdev_alloc_skb_ip_align(bp->dev, len); 941 if (skb == NULL) { 942 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 943 "ERROR packet dropped because of alloc failure\n"); 944 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 945 goto reuse_rx; 946 } 947 memcpy(skb->data, data + pad, len); 948 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 949 } else { 950 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod) == 0)) { 951 dma_unmap_single(&bp->pdev->dev, 952 dma_unmap_addr(rx_buf, mapping), 953 fp->rx_buf_size, 954 DMA_FROM_DEVICE); 955 skb = build_skb(data, fp->rx_frag_size); 956 if (unlikely(!skb)) { 957 bnx2x_frag_free(fp, data); 958 bnx2x_fp_qstats(bp, fp)-> 959 rx_skb_alloc_failed++; 960 goto next_rx; 961 } 962 skb_reserve(skb, pad); 963 } else { 964 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 965 "ERROR packet dropped because of alloc failure\n"); 966 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 967 reuse_rx: 968 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 969 goto next_rx; 970 } 971 } 972 973 skb_put(skb, len); 974 skb->protocol = eth_type_trans(skb, bp->dev); 975 976 /* Set Toeplitz hash for a none-LRO skb */ 977 skb->rxhash = bnx2x_get_rxhash(bp, cqe_fp, &l4_rxhash); 978 skb->l4_rxhash = l4_rxhash; 979 980 skb_checksum_none_assert(skb); 981 982 if (bp->dev->features & NETIF_F_RXCSUM) 983 bnx2x_csum_validate(skb, cqe, fp, 984 bnx2x_fp_qstats(bp, fp)); 985 986 skb_record_rx_queue(skb, fp->rx_queue); 987 988 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 989 PARSING_FLAGS_VLAN) 990 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 991 le16_to_cpu(cqe_fp->vlan_tag)); 992 993 skb_mark_napi_id(skb, &fp->napi); 994 995 if (bnx2x_fp_ll_polling(fp)) 996 netif_receive_skb(skb); 997 else 998 napi_gro_receive(&fp->napi, skb); 999 next_rx: 1000 rx_buf->data = NULL; 1001 1002 bd_cons = NEXT_RX_IDX(bd_cons); 1003 bd_prod = NEXT_RX_IDX(bd_prod); 1004 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1005 rx_pkt++; 1006 next_cqe: 1007 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1008 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1009 1010 /* mark CQE as free */ 1011 BNX2X_SEED_CQE(cqe_fp); 1012 1013 if (rx_pkt == budget) 1014 break; 1015 1016 comp_ring_cons = RCQ_BD(sw_comp_cons); 1017 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1018 cqe_fp = &cqe->fast_path_cqe; 1019 } /* while */ 1020 1021 fp->rx_bd_cons = bd_cons; 1022 fp->rx_bd_prod = bd_prod_fw; 1023 fp->rx_comp_cons = sw_comp_cons; 1024 fp->rx_comp_prod = sw_comp_prod; 1025 1026 /* Update producers */ 1027 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1028 fp->rx_sge_prod); 1029 1030 fp->rx_pkt += rx_pkt; 1031 fp->rx_calls++; 1032 1033 return rx_pkt; 1034 } 1035 1036 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1037 { 1038 struct bnx2x_fastpath *fp = fp_cookie; 1039 struct bnx2x *bp = fp->bp; 1040 u8 cos; 1041 1042 DP(NETIF_MSG_INTR, 1043 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1044 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1045 1046 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1047 1048 #ifdef BNX2X_STOP_ON_ERROR 1049 if (unlikely(bp->panic)) 1050 return IRQ_HANDLED; 1051 #endif 1052 1053 /* Handle Rx and Tx according to MSI-X vector */ 1054 for_each_cos_in_tx_queue(fp, cos) 1055 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1056 1057 prefetch(&fp->sb_running_index[SM_RX_ID]); 1058 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 1059 1060 return IRQ_HANDLED; 1061 } 1062 1063 /* HW Lock for shared dual port PHYs */ 1064 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1065 { 1066 mutex_lock(&bp->port.phy_mutex); 1067 1068 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1069 } 1070 1071 void bnx2x_release_phy_lock(struct bnx2x *bp) 1072 { 1073 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1074 1075 mutex_unlock(&bp->port.phy_mutex); 1076 } 1077 1078 /* calculates MF speed according to current linespeed and MF configuration */ 1079 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1080 { 1081 u16 line_speed = bp->link_vars.line_speed; 1082 if (IS_MF(bp)) { 1083 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1084 bp->mf_config[BP_VN(bp)]); 1085 1086 /* Calculate the current MAX line speed limit for the MF 1087 * devices 1088 */ 1089 if (IS_MF_SI(bp)) 1090 line_speed = (line_speed * maxCfg) / 100; 1091 else { /* SD mode */ 1092 u16 vn_max_rate = maxCfg * 100; 1093 1094 if (vn_max_rate < line_speed) 1095 line_speed = vn_max_rate; 1096 } 1097 } 1098 1099 return line_speed; 1100 } 1101 1102 /** 1103 * bnx2x_fill_report_data - fill link report data to report 1104 * 1105 * @bp: driver handle 1106 * @data: link state to update 1107 * 1108 * It uses a none-atomic bit operations because is called under the mutex. 1109 */ 1110 static void bnx2x_fill_report_data(struct bnx2x *bp, 1111 struct bnx2x_link_report_data *data) 1112 { 1113 u16 line_speed = bnx2x_get_mf_speed(bp); 1114 1115 memset(data, 0, sizeof(*data)); 1116 1117 /* Fill the report data: effective line speed */ 1118 data->line_speed = line_speed; 1119 1120 /* Link is down */ 1121 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1122 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1123 &data->link_report_flags); 1124 1125 /* Full DUPLEX */ 1126 if (bp->link_vars.duplex == DUPLEX_FULL) 1127 __set_bit(BNX2X_LINK_REPORT_FD, &data->link_report_flags); 1128 1129 /* Rx Flow Control is ON */ 1130 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1131 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 1132 1133 /* Tx Flow Control is ON */ 1134 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1135 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 1136 } 1137 1138 /** 1139 * bnx2x_link_report - report link status to OS. 1140 * 1141 * @bp: driver handle 1142 * 1143 * Calls the __bnx2x_link_report() under the same locking scheme 1144 * as a link/PHY state managing code to ensure a consistent link 1145 * reporting. 1146 */ 1147 1148 void bnx2x_link_report(struct bnx2x *bp) 1149 { 1150 bnx2x_acquire_phy_lock(bp); 1151 __bnx2x_link_report(bp); 1152 bnx2x_release_phy_lock(bp); 1153 } 1154 1155 /** 1156 * __bnx2x_link_report - report link status to OS. 1157 * 1158 * @bp: driver handle 1159 * 1160 * None atomic implementation. 1161 * Should be called under the phy_lock. 1162 */ 1163 void __bnx2x_link_report(struct bnx2x *bp) 1164 { 1165 struct bnx2x_link_report_data cur_data; 1166 1167 /* reread mf_cfg */ 1168 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1169 bnx2x_read_mf_cfg(bp); 1170 1171 /* Read the current link report info */ 1172 bnx2x_fill_report_data(bp, &cur_data); 1173 1174 /* Don't report link down or exactly the same link status twice */ 1175 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1176 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1177 &bp->last_reported_link.link_report_flags) && 1178 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1179 &cur_data.link_report_flags))) 1180 return; 1181 1182 bp->link_cnt++; 1183 1184 /* We are going to report a new link parameters now - 1185 * remember the current data for the next time. 1186 */ 1187 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1188 1189 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1190 &cur_data.link_report_flags)) { 1191 netif_carrier_off(bp->dev); 1192 netdev_err(bp->dev, "NIC Link is Down\n"); 1193 return; 1194 } else { 1195 const char *duplex; 1196 const char *flow; 1197 1198 netif_carrier_on(bp->dev); 1199 1200 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1201 &cur_data.link_report_flags)) 1202 duplex = "full"; 1203 else 1204 duplex = "half"; 1205 1206 /* Handle the FC at the end so that only these flags would be 1207 * possibly set. This way we may easily check if there is no FC 1208 * enabled. 1209 */ 1210 if (cur_data.link_report_flags) { 1211 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1212 &cur_data.link_report_flags)) { 1213 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1214 &cur_data.link_report_flags)) 1215 flow = "ON - receive & transmit"; 1216 else 1217 flow = "ON - receive"; 1218 } else { 1219 flow = "ON - transmit"; 1220 } 1221 } else { 1222 flow = "none"; 1223 } 1224 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1225 cur_data.line_speed, duplex, flow); 1226 } 1227 } 1228 1229 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1230 { 1231 int i; 1232 1233 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1234 struct eth_rx_sge *sge; 1235 1236 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1237 sge->addr_hi = 1238 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1239 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1240 1241 sge->addr_lo = 1242 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1243 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1244 } 1245 } 1246 1247 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1248 struct bnx2x_fastpath *fp, int last) 1249 { 1250 int i; 1251 1252 for (i = 0; i < last; i++) { 1253 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1254 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1255 u8 *data = first_buf->data; 1256 1257 if (data == NULL) { 1258 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1259 continue; 1260 } 1261 if (tpa_info->tpa_state == BNX2X_TPA_START) 1262 dma_unmap_single(&bp->pdev->dev, 1263 dma_unmap_addr(first_buf, mapping), 1264 fp->rx_buf_size, DMA_FROM_DEVICE); 1265 bnx2x_frag_free(fp, data); 1266 first_buf->data = NULL; 1267 } 1268 } 1269 1270 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1271 { 1272 int j; 1273 1274 for_each_rx_queue_cnic(bp, j) { 1275 struct bnx2x_fastpath *fp = &bp->fp[j]; 1276 1277 fp->rx_bd_cons = 0; 1278 1279 /* Activate BD ring */ 1280 /* Warning! 1281 * this will generate an interrupt (to the TSTORM) 1282 * must only be done after chip is initialized 1283 */ 1284 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1285 fp->rx_sge_prod); 1286 } 1287 } 1288 1289 void bnx2x_init_rx_rings(struct bnx2x *bp) 1290 { 1291 int func = BP_FUNC(bp); 1292 u16 ring_prod; 1293 int i, j; 1294 1295 /* Allocate TPA resources */ 1296 for_each_eth_queue(bp, j) { 1297 struct bnx2x_fastpath *fp = &bp->fp[j]; 1298 1299 DP(NETIF_MSG_IFUP, 1300 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1301 1302 if (!fp->disable_tpa) { 1303 /* Fill the per-aggregation pool */ 1304 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1305 struct bnx2x_agg_info *tpa_info = 1306 &fp->tpa_info[i]; 1307 struct sw_rx_bd *first_buf = 1308 &tpa_info->first_buf; 1309 1310 first_buf->data = bnx2x_frag_alloc(fp); 1311 if (!first_buf->data) { 1312 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1313 j); 1314 bnx2x_free_tpa_pool(bp, fp, i); 1315 fp->disable_tpa = 1; 1316 break; 1317 } 1318 dma_unmap_addr_set(first_buf, mapping, 0); 1319 tpa_info->tpa_state = BNX2X_TPA_STOP; 1320 } 1321 1322 /* "next page" elements initialization */ 1323 bnx2x_set_next_page_sgl(fp); 1324 1325 /* set SGEs bit mask */ 1326 bnx2x_init_sge_ring_bit_mask(fp); 1327 1328 /* Allocate SGEs and initialize the ring elements */ 1329 for (i = 0, ring_prod = 0; 1330 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1331 1332 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod) < 0) { 1333 BNX2X_ERR("was only able to allocate %d rx sges\n", 1334 i); 1335 BNX2X_ERR("disabling TPA for queue[%d]\n", 1336 j); 1337 /* Cleanup already allocated elements */ 1338 bnx2x_free_rx_sge_range(bp, fp, 1339 ring_prod); 1340 bnx2x_free_tpa_pool(bp, fp, 1341 MAX_AGG_QS(bp)); 1342 fp->disable_tpa = 1; 1343 ring_prod = 0; 1344 break; 1345 } 1346 ring_prod = NEXT_SGE_IDX(ring_prod); 1347 } 1348 1349 fp->rx_sge_prod = ring_prod; 1350 } 1351 } 1352 1353 for_each_eth_queue(bp, j) { 1354 struct bnx2x_fastpath *fp = &bp->fp[j]; 1355 1356 fp->rx_bd_cons = 0; 1357 1358 /* Activate BD ring */ 1359 /* Warning! 1360 * this will generate an interrupt (to the TSTORM) 1361 * must only be done after chip is initialized 1362 */ 1363 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1364 fp->rx_sge_prod); 1365 1366 if (j != 0) 1367 continue; 1368 1369 if (CHIP_IS_E1(bp)) { 1370 REG_WR(bp, BAR_USTRORM_INTMEM + 1371 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1372 U64_LO(fp->rx_comp_mapping)); 1373 REG_WR(bp, BAR_USTRORM_INTMEM + 1374 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1375 U64_HI(fp->rx_comp_mapping)); 1376 } 1377 } 1378 } 1379 1380 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1381 { 1382 u8 cos; 1383 struct bnx2x *bp = fp->bp; 1384 1385 for_each_cos_in_tx_queue(fp, cos) { 1386 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1387 unsigned pkts_compl = 0, bytes_compl = 0; 1388 1389 u16 sw_prod = txdata->tx_pkt_prod; 1390 u16 sw_cons = txdata->tx_pkt_cons; 1391 1392 while (sw_cons != sw_prod) { 1393 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1394 &pkts_compl, &bytes_compl); 1395 sw_cons++; 1396 } 1397 1398 netdev_tx_reset_queue( 1399 netdev_get_tx_queue(bp->dev, 1400 txdata->txq_index)); 1401 } 1402 } 1403 1404 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1405 { 1406 int i; 1407 1408 for_each_tx_queue_cnic(bp, i) { 1409 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1410 } 1411 } 1412 1413 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1414 { 1415 int i; 1416 1417 for_each_eth_queue(bp, i) { 1418 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1419 } 1420 } 1421 1422 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1423 { 1424 struct bnx2x *bp = fp->bp; 1425 int i; 1426 1427 /* ring wasn't allocated */ 1428 if (fp->rx_buf_ring == NULL) 1429 return; 1430 1431 for (i = 0; i < NUM_RX_BD; i++) { 1432 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1433 u8 *data = rx_buf->data; 1434 1435 if (data == NULL) 1436 continue; 1437 dma_unmap_single(&bp->pdev->dev, 1438 dma_unmap_addr(rx_buf, mapping), 1439 fp->rx_buf_size, DMA_FROM_DEVICE); 1440 1441 rx_buf->data = NULL; 1442 bnx2x_frag_free(fp, data); 1443 } 1444 } 1445 1446 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1447 { 1448 int j; 1449 1450 for_each_rx_queue_cnic(bp, j) { 1451 bnx2x_free_rx_bds(&bp->fp[j]); 1452 } 1453 } 1454 1455 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1456 { 1457 int j; 1458 1459 for_each_eth_queue(bp, j) { 1460 struct bnx2x_fastpath *fp = &bp->fp[j]; 1461 1462 bnx2x_free_rx_bds(fp); 1463 1464 if (!fp->disable_tpa) 1465 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1466 } 1467 } 1468 1469 void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1470 { 1471 bnx2x_free_tx_skbs_cnic(bp); 1472 bnx2x_free_rx_skbs_cnic(bp); 1473 } 1474 1475 void bnx2x_free_skbs(struct bnx2x *bp) 1476 { 1477 bnx2x_free_tx_skbs(bp); 1478 bnx2x_free_rx_skbs(bp); 1479 } 1480 1481 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1482 { 1483 /* load old values */ 1484 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1485 1486 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1487 /* leave all but MAX value */ 1488 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1489 1490 /* set new MAX value */ 1491 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1492 & FUNC_MF_CFG_MAX_BW_MASK; 1493 1494 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1495 } 1496 } 1497 1498 /** 1499 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1500 * 1501 * @bp: driver handle 1502 * @nvecs: number of vectors to be released 1503 */ 1504 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1505 { 1506 int i, offset = 0; 1507 1508 if (nvecs == offset) 1509 return; 1510 1511 /* VFs don't have a default SB */ 1512 if (IS_PF(bp)) { 1513 free_irq(bp->msix_table[offset].vector, bp->dev); 1514 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1515 bp->msix_table[offset].vector); 1516 offset++; 1517 } 1518 1519 if (CNIC_SUPPORT(bp)) { 1520 if (nvecs == offset) 1521 return; 1522 offset++; 1523 } 1524 1525 for_each_eth_queue(bp, i) { 1526 if (nvecs == offset) 1527 return; 1528 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1529 i, bp->msix_table[offset].vector); 1530 1531 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1532 } 1533 } 1534 1535 void bnx2x_free_irq(struct bnx2x *bp) 1536 { 1537 if (bp->flags & USING_MSIX_FLAG && 1538 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1539 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1540 1541 /* vfs don't have a default status block */ 1542 if (IS_PF(bp)) 1543 nvecs++; 1544 1545 bnx2x_free_msix_irqs(bp, nvecs); 1546 } else { 1547 free_irq(bp->dev->irq, bp->dev); 1548 } 1549 } 1550 1551 int bnx2x_enable_msix(struct bnx2x *bp) 1552 { 1553 int msix_vec = 0, i, rc; 1554 1555 /* VFs don't have a default status block */ 1556 if (IS_PF(bp)) { 1557 bp->msix_table[msix_vec].entry = msix_vec; 1558 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1559 bp->msix_table[0].entry); 1560 msix_vec++; 1561 } 1562 1563 /* Cnic requires an msix vector for itself */ 1564 if (CNIC_SUPPORT(bp)) { 1565 bp->msix_table[msix_vec].entry = msix_vec; 1566 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1567 msix_vec, bp->msix_table[msix_vec].entry); 1568 msix_vec++; 1569 } 1570 1571 /* We need separate vectors for ETH queues only (not FCoE) */ 1572 for_each_eth_queue(bp, i) { 1573 bp->msix_table[msix_vec].entry = msix_vec; 1574 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1575 msix_vec, msix_vec, i); 1576 msix_vec++; 1577 } 1578 1579 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1580 msix_vec); 1581 1582 rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], msix_vec); 1583 1584 /* 1585 * reconfigure number of tx/rx queues according to available 1586 * MSI-X vectors 1587 */ 1588 if (rc >= BNX2X_MIN_MSIX_VEC_CNT(bp)) { 1589 /* how less vectors we will have? */ 1590 int diff = msix_vec - rc; 1591 1592 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1593 1594 rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc); 1595 1596 if (rc) { 1597 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1598 goto no_msix; 1599 } 1600 /* 1601 * decrease number of queues by number of unallocated entries 1602 */ 1603 bp->num_ethernet_queues -= diff; 1604 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1605 1606 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1607 bp->num_queues); 1608 } else if (rc > 0) { 1609 /* Get by with single vector */ 1610 rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], 1); 1611 if (rc) { 1612 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1613 rc); 1614 goto no_msix; 1615 } 1616 1617 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1618 bp->flags |= USING_SINGLE_MSIX_FLAG; 1619 1620 BNX2X_DEV_INFO("set number of queues to 1\n"); 1621 bp->num_ethernet_queues = 1; 1622 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1623 } else if (rc < 0) { 1624 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1625 goto no_msix; 1626 } 1627 1628 bp->flags |= USING_MSIX_FLAG; 1629 1630 return 0; 1631 1632 no_msix: 1633 /* fall to INTx if not enough memory */ 1634 if (rc == -ENOMEM) 1635 bp->flags |= DISABLE_MSI_FLAG; 1636 1637 return rc; 1638 } 1639 1640 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1641 { 1642 int i, rc, offset = 0; 1643 1644 /* no default status block for vf */ 1645 if (IS_PF(bp)) { 1646 rc = request_irq(bp->msix_table[offset++].vector, 1647 bnx2x_msix_sp_int, 0, 1648 bp->dev->name, bp->dev); 1649 if (rc) { 1650 BNX2X_ERR("request sp irq failed\n"); 1651 return -EBUSY; 1652 } 1653 } 1654 1655 if (CNIC_SUPPORT(bp)) 1656 offset++; 1657 1658 for_each_eth_queue(bp, i) { 1659 struct bnx2x_fastpath *fp = &bp->fp[i]; 1660 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1661 bp->dev->name, i); 1662 1663 rc = request_irq(bp->msix_table[offset].vector, 1664 bnx2x_msix_fp_int, 0, fp->name, fp); 1665 if (rc) { 1666 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1667 bp->msix_table[offset].vector, rc); 1668 bnx2x_free_msix_irqs(bp, offset); 1669 return -EBUSY; 1670 } 1671 1672 offset++; 1673 } 1674 1675 i = BNX2X_NUM_ETH_QUEUES(bp); 1676 if (IS_PF(bp)) { 1677 offset = 1 + CNIC_SUPPORT(bp); 1678 netdev_info(bp->dev, 1679 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1680 bp->msix_table[0].vector, 1681 0, bp->msix_table[offset].vector, 1682 i - 1, bp->msix_table[offset + i - 1].vector); 1683 } else { 1684 offset = CNIC_SUPPORT(bp); 1685 netdev_info(bp->dev, 1686 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1687 0, bp->msix_table[offset].vector, 1688 i - 1, bp->msix_table[offset + i - 1].vector); 1689 } 1690 return 0; 1691 } 1692 1693 int bnx2x_enable_msi(struct bnx2x *bp) 1694 { 1695 int rc; 1696 1697 rc = pci_enable_msi(bp->pdev); 1698 if (rc) { 1699 BNX2X_DEV_INFO("MSI is not attainable\n"); 1700 return -1; 1701 } 1702 bp->flags |= USING_MSI_FLAG; 1703 1704 return 0; 1705 } 1706 1707 static int bnx2x_req_irq(struct bnx2x *bp) 1708 { 1709 unsigned long flags; 1710 unsigned int irq; 1711 1712 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1713 flags = 0; 1714 else 1715 flags = IRQF_SHARED; 1716 1717 if (bp->flags & USING_MSIX_FLAG) 1718 irq = bp->msix_table[0].vector; 1719 else 1720 irq = bp->pdev->irq; 1721 1722 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1723 } 1724 1725 static int bnx2x_setup_irqs(struct bnx2x *bp) 1726 { 1727 int rc = 0; 1728 if (bp->flags & USING_MSIX_FLAG && 1729 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1730 rc = bnx2x_req_msix_irqs(bp); 1731 if (rc) 1732 return rc; 1733 } else { 1734 rc = bnx2x_req_irq(bp); 1735 if (rc) { 1736 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1737 return rc; 1738 } 1739 if (bp->flags & USING_MSI_FLAG) { 1740 bp->dev->irq = bp->pdev->irq; 1741 netdev_info(bp->dev, "using MSI IRQ %d\n", 1742 bp->dev->irq); 1743 } 1744 if (bp->flags & USING_MSIX_FLAG) { 1745 bp->dev->irq = bp->msix_table[0].vector; 1746 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1747 bp->dev->irq); 1748 } 1749 } 1750 1751 return 0; 1752 } 1753 1754 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1755 { 1756 int i; 1757 1758 for_each_rx_queue_cnic(bp, i) { 1759 bnx2x_fp_init_lock(&bp->fp[i]); 1760 napi_enable(&bnx2x_fp(bp, i, napi)); 1761 } 1762 } 1763 1764 static void bnx2x_napi_enable(struct bnx2x *bp) 1765 { 1766 int i; 1767 1768 for_each_eth_queue(bp, i) { 1769 bnx2x_fp_init_lock(&bp->fp[i]); 1770 napi_enable(&bnx2x_fp(bp, i, napi)); 1771 } 1772 } 1773 1774 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1775 { 1776 int i; 1777 1778 local_bh_disable(); 1779 for_each_rx_queue_cnic(bp, i) { 1780 napi_disable(&bnx2x_fp(bp, i, napi)); 1781 while (!bnx2x_fp_lock_napi(&bp->fp[i])) 1782 mdelay(1); 1783 } 1784 local_bh_enable(); 1785 } 1786 1787 static void bnx2x_napi_disable(struct bnx2x *bp) 1788 { 1789 int i; 1790 1791 local_bh_disable(); 1792 for_each_eth_queue(bp, i) { 1793 napi_disable(&bnx2x_fp(bp, i, napi)); 1794 while (!bnx2x_fp_lock_napi(&bp->fp[i])) 1795 mdelay(1); 1796 } 1797 local_bh_enable(); 1798 } 1799 1800 void bnx2x_netif_start(struct bnx2x *bp) 1801 { 1802 if (netif_running(bp->dev)) { 1803 bnx2x_napi_enable(bp); 1804 if (CNIC_LOADED(bp)) 1805 bnx2x_napi_enable_cnic(bp); 1806 bnx2x_int_enable(bp); 1807 if (bp->state == BNX2X_STATE_OPEN) 1808 netif_tx_wake_all_queues(bp->dev); 1809 } 1810 } 1811 1812 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1813 { 1814 bnx2x_int_disable_sync(bp, disable_hw); 1815 bnx2x_napi_disable(bp); 1816 if (CNIC_LOADED(bp)) 1817 bnx2x_napi_disable_cnic(bp); 1818 } 1819 1820 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb) 1821 { 1822 struct bnx2x *bp = netdev_priv(dev); 1823 1824 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1825 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1826 u16 ether_type = ntohs(hdr->h_proto); 1827 1828 /* Skip VLAN tag if present */ 1829 if (ether_type == ETH_P_8021Q) { 1830 struct vlan_ethhdr *vhdr = 1831 (struct vlan_ethhdr *)skb->data; 1832 1833 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1834 } 1835 1836 /* If ethertype is FCoE or FIP - use FCoE ring */ 1837 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1838 return bnx2x_fcoe_tx(bp, txq_index); 1839 } 1840 1841 /* select a non-FCoE queue */ 1842 return __netdev_pick_tx(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp); 1843 } 1844 1845 void bnx2x_set_num_queues(struct bnx2x *bp) 1846 { 1847 /* RSS queues */ 1848 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1849 1850 /* override in STORAGE SD modes */ 1851 if (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) 1852 bp->num_ethernet_queues = 1; 1853 1854 /* Add special queues */ 1855 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1856 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1857 1858 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1859 } 1860 1861 /** 1862 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1863 * 1864 * @bp: Driver handle 1865 * 1866 * We currently support for at most 16 Tx queues for each CoS thus we will 1867 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1868 * bp->max_cos. 1869 * 1870 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1871 * index after all ETH L2 indices. 1872 * 1873 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1874 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1875 * 16..31,...) with indices that are not coupled with any real Tx queue. 1876 * 1877 * The proper configuration of skb->queue_mapping is handled by 1878 * bnx2x_select_queue() and __skb_tx_hash(). 1879 * 1880 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1881 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1882 */ 1883 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1884 { 1885 int rc, tx, rx; 1886 1887 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1888 rx = BNX2X_NUM_ETH_QUEUES(bp); 1889 1890 /* account for fcoe queue */ 1891 if (include_cnic && !NO_FCOE(bp)) { 1892 rx++; 1893 tx++; 1894 } 1895 1896 rc = netif_set_real_num_tx_queues(bp->dev, tx); 1897 if (rc) { 1898 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 1899 return rc; 1900 } 1901 rc = netif_set_real_num_rx_queues(bp->dev, rx); 1902 if (rc) { 1903 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 1904 return rc; 1905 } 1906 1907 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 1908 tx, rx); 1909 1910 return rc; 1911 } 1912 1913 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 1914 { 1915 int i; 1916 1917 for_each_queue(bp, i) { 1918 struct bnx2x_fastpath *fp = &bp->fp[i]; 1919 u32 mtu; 1920 1921 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 1922 if (IS_FCOE_IDX(i)) 1923 /* 1924 * Although there are no IP frames expected to arrive to 1925 * this ring we still want to add an 1926 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 1927 * overrun attack. 1928 */ 1929 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 1930 else 1931 mtu = bp->dev->mtu; 1932 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 1933 IP_HEADER_ALIGNMENT_PADDING + 1934 ETH_OVREHEAD + 1935 mtu + 1936 BNX2X_FW_RX_ALIGN_END; 1937 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 1938 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 1939 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 1940 else 1941 fp->rx_frag_size = 0; 1942 } 1943 } 1944 1945 static int bnx2x_init_rss_pf(struct bnx2x *bp) 1946 { 1947 int i; 1948 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 1949 1950 /* Prepare the initial contents for the indirection table if RSS is 1951 * enabled 1952 */ 1953 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 1954 bp->rss_conf_obj.ind_table[i] = 1955 bp->fp->cl_id + 1956 ethtool_rxfh_indir_default(i, num_eth_queues); 1957 1958 /* 1959 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 1960 * per-port, so if explicit configuration is needed , do it only 1961 * for a PMF. 1962 * 1963 * For 57712 and newer on the other hand it's a per-function 1964 * configuration. 1965 */ 1966 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 1967 } 1968 1969 int bnx2x_config_rss_pf(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 1970 bool config_hash) 1971 { 1972 struct bnx2x_config_rss_params params = {NULL}; 1973 1974 /* Although RSS is meaningless when there is a single HW queue we 1975 * still need it enabled in order to have HW Rx hash generated. 1976 * 1977 * if (!is_eth_multi(bp)) 1978 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 1979 */ 1980 1981 params.rss_obj = rss_obj; 1982 1983 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 1984 1985 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 1986 1987 /* RSS configuration */ 1988 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 1989 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 1990 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 1991 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 1992 if (rss_obj->udp_rss_v4) 1993 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 1994 if (rss_obj->udp_rss_v6) 1995 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 1996 1997 /* Hash bits */ 1998 params.rss_result_mask = MULTI_MASK; 1999 2000 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2001 2002 if (config_hash) { 2003 /* RSS keys */ 2004 prandom_bytes(params.rss_key, sizeof(params.rss_key)); 2005 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2006 } 2007 2008 return bnx2x_config_rss(bp, ¶ms); 2009 } 2010 2011 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2012 { 2013 struct bnx2x_func_state_params func_params = {NULL}; 2014 2015 /* Prepare parameters for function state transitions */ 2016 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2017 2018 func_params.f_obj = &bp->func_obj; 2019 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2020 2021 func_params.params.hw_init.load_phase = load_code; 2022 2023 return bnx2x_func_state_change(bp, &func_params); 2024 } 2025 2026 /* 2027 * Cleans the object that have internal lists without sending 2028 * ramrods. Should be run when interrupts are disabled. 2029 */ 2030 void bnx2x_squeeze_objects(struct bnx2x *bp) 2031 { 2032 int rc; 2033 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2034 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2035 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2036 2037 /***************** Cleanup MACs' object first *************************/ 2038 2039 /* Wait for completion of requested */ 2040 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2041 /* Perform a dry cleanup */ 2042 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2043 2044 /* Clean ETH primary MAC */ 2045 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2046 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2047 &ramrod_flags); 2048 if (rc != 0) 2049 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2050 2051 /* Cleanup UC list */ 2052 vlan_mac_flags = 0; 2053 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2054 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2055 &ramrod_flags); 2056 if (rc != 0) 2057 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2058 2059 /***************** Now clean mcast object *****************************/ 2060 rparam.mcast_obj = &bp->mcast_obj; 2061 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2062 2063 /* Add a DEL command... */ 2064 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2065 if (rc < 0) 2066 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2067 rc); 2068 2069 /* ...and wait until all pending commands are cleared */ 2070 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2071 while (rc != 0) { 2072 if (rc < 0) { 2073 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2074 rc); 2075 return; 2076 } 2077 2078 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2079 } 2080 } 2081 2082 #ifndef BNX2X_STOP_ON_ERROR 2083 #define LOAD_ERROR_EXIT(bp, label) \ 2084 do { \ 2085 (bp)->state = BNX2X_STATE_ERROR; \ 2086 goto label; \ 2087 } while (0) 2088 2089 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2090 do { \ 2091 bp->cnic_loaded = false; \ 2092 goto label; \ 2093 } while (0) 2094 #else /*BNX2X_STOP_ON_ERROR*/ 2095 #define LOAD_ERROR_EXIT(bp, label) \ 2096 do { \ 2097 (bp)->state = BNX2X_STATE_ERROR; \ 2098 (bp)->panic = 1; \ 2099 return -EBUSY; \ 2100 } while (0) 2101 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2102 do { \ 2103 bp->cnic_loaded = false; \ 2104 (bp)->panic = 1; \ 2105 return -EBUSY; \ 2106 } while (0) 2107 #endif /*BNX2X_STOP_ON_ERROR*/ 2108 2109 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2110 { 2111 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2112 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2113 return; 2114 } 2115 2116 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2117 { 2118 int num_groups, vf_headroom = 0; 2119 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2120 2121 /* number of queues for statistics is number of eth queues + FCoE */ 2122 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2123 2124 /* Total number of FW statistics requests = 2125 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2126 * and fcoe l2 queue) stats + num of queues (which includes another 1 2127 * for fcoe l2 queue if applicable) 2128 */ 2129 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2130 2131 /* vf stats appear in the request list, but their data is allocated by 2132 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2133 * it is used to determine where to place the vf stats queries in the 2134 * request struct 2135 */ 2136 if (IS_SRIOV(bp)) 2137 vf_headroom = bnx2x_vf_headroom(bp); 2138 2139 /* Request is built from stats_query_header and an array of 2140 * stats_query_cmd_group each of which contains 2141 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2142 * configured in the stats_query_header. 2143 */ 2144 num_groups = 2145 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2146 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2147 1 : 0)); 2148 2149 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2150 bp->fw_stats_num, vf_headroom, num_groups); 2151 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2152 num_groups * sizeof(struct stats_query_cmd_group); 2153 2154 /* Data for statistics requests + stats_counter 2155 * stats_counter holds per-STORM counters that are incremented 2156 * when STORM has finished with the current request. 2157 * memory for FCoE offloaded statistics are counted anyway, 2158 * even if they will not be sent. 2159 * VF stats are not accounted for here as the data of VF stats is stored 2160 * in memory allocated by the VF, not here. 2161 */ 2162 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2163 sizeof(struct per_pf_stats) + 2164 sizeof(struct fcoe_statistics_params) + 2165 sizeof(struct per_queue_stats) * num_queue_stats + 2166 sizeof(struct stats_counter); 2167 2168 BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping, 2169 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2170 2171 /* Set shortcuts */ 2172 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2173 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2174 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2175 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2176 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2177 bp->fw_stats_req_sz; 2178 2179 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2180 U64_HI(bp->fw_stats_req_mapping), 2181 U64_LO(bp->fw_stats_req_mapping)); 2182 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2183 U64_HI(bp->fw_stats_data_mapping), 2184 U64_LO(bp->fw_stats_data_mapping)); 2185 return 0; 2186 2187 alloc_mem_err: 2188 bnx2x_free_fw_stats_mem(bp); 2189 BNX2X_ERR("Can't allocate FW stats memory\n"); 2190 return -ENOMEM; 2191 } 2192 2193 /* send load request to mcp and analyze response */ 2194 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2195 { 2196 u32 param; 2197 2198 /* init fw_seq */ 2199 bp->fw_seq = 2200 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2201 DRV_MSG_SEQ_NUMBER_MASK); 2202 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2203 2204 /* Get current FW pulse sequence */ 2205 bp->fw_drv_pulse_wr_seq = 2206 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2207 DRV_PULSE_SEQ_MASK); 2208 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2209 2210 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2211 2212 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2213 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2214 2215 /* load request */ 2216 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2217 2218 /* if mcp fails to respond we must abort */ 2219 if (!(*load_code)) { 2220 BNX2X_ERR("MCP response failure, aborting\n"); 2221 return -EBUSY; 2222 } 2223 2224 /* If mcp refused (e.g. other port is in diagnostic mode) we 2225 * must abort 2226 */ 2227 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2228 BNX2X_ERR("MCP refused load request, aborting\n"); 2229 return -EBUSY; 2230 } 2231 return 0; 2232 } 2233 2234 /* check whether another PF has already loaded FW to chip. In 2235 * virtualized environments a pf from another VM may have already 2236 * initialized the device including loading FW 2237 */ 2238 int bnx2x_nic_load_analyze_req(struct bnx2x *bp, u32 load_code) 2239 { 2240 /* is another pf loaded on this engine? */ 2241 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2242 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2243 /* build my FW version dword */ 2244 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) + 2245 (BCM_5710_FW_MINOR_VERSION << 8) + 2246 (BCM_5710_FW_REVISION_VERSION << 16) + 2247 (BCM_5710_FW_ENGINEERING_VERSION << 24); 2248 2249 /* read loaded FW from chip */ 2250 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2251 2252 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", 2253 loaded_fw, my_fw); 2254 2255 /* abort nic load if version mismatch */ 2256 if (my_fw != loaded_fw) { 2257 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", 2258 loaded_fw, my_fw); 2259 return -EBUSY; 2260 } 2261 } 2262 return 0; 2263 } 2264 2265 /* returns the "mcp load_code" according to global load_count array */ 2266 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2267 { 2268 int path = BP_PATH(bp); 2269 2270 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2271 path, load_count[path][0], load_count[path][1], 2272 load_count[path][2]); 2273 load_count[path][0]++; 2274 load_count[path][1 + port]++; 2275 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2276 path, load_count[path][0], load_count[path][1], 2277 load_count[path][2]); 2278 if (load_count[path][0] == 1) 2279 return FW_MSG_CODE_DRV_LOAD_COMMON; 2280 else if (load_count[path][1 + port] == 1) 2281 return FW_MSG_CODE_DRV_LOAD_PORT; 2282 else 2283 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2284 } 2285 2286 /* mark PMF if applicable */ 2287 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2288 { 2289 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2290 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2291 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2292 bp->port.pmf = 1; 2293 /* We need the barrier to ensure the ordering between the 2294 * writing to bp->port.pmf here and reading it from the 2295 * bnx2x_periodic_task(). 2296 */ 2297 smp_mb(); 2298 } else { 2299 bp->port.pmf = 0; 2300 } 2301 2302 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2303 } 2304 2305 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2306 { 2307 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2308 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2309 (bp->common.shmem2_base)) { 2310 if (SHMEM2_HAS(bp, dcc_support)) 2311 SHMEM2_WR(bp, dcc_support, 2312 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2313 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2314 if (SHMEM2_HAS(bp, afex_driver_support)) 2315 SHMEM2_WR(bp, afex_driver_support, 2316 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2317 } 2318 2319 /* Set AFEX default VLAN tag to an invalid value */ 2320 bp->afex_def_vlan_tag = -1; 2321 } 2322 2323 /** 2324 * bnx2x_bz_fp - zero content of the fastpath structure. 2325 * 2326 * @bp: driver handle 2327 * @index: fastpath index to be zeroed 2328 * 2329 * Makes sure the contents of the bp->fp[index].napi is kept 2330 * intact. 2331 */ 2332 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2333 { 2334 struct bnx2x_fastpath *fp = &bp->fp[index]; 2335 int cos; 2336 struct napi_struct orig_napi = fp->napi; 2337 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2338 2339 /* bzero bnx2x_fastpath contents */ 2340 if (fp->tpa_info) 2341 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2342 sizeof(struct bnx2x_agg_info)); 2343 memset(fp, 0, sizeof(*fp)); 2344 2345 /* Restore the NAPI object as it has been already initialized */ 2346 fp->napi = orig_napi; 2347 fp->tpa_info = orig_tpa_info; 2348 fp->bp = bp; 2349 fp->index = index; 2350 if (IS_ETH_FP(fp)) 2351 fp->max_cos = bp->max_cos; 2352 else 2353 /* Special queues support only one CoS */ 2354 fp->max_cos = 1; 2355 2356 /* Init txdata pointers */ 2357 if (IS_FCOE_FP(fp)) 2358 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2359 if (IS_ETH_FP(fp)) 2360 for_each_cos_in_tx_queue(fp, cos) 2361 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2362 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2363 2364 /* set the tpa flag for each queue. The tpa flag determines the queue 2365 * minimal size so it must be set prior to queue memory allocation 2366 */ 2367 fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG || 2368 (bp->flags & GRO_ENABLE_FLAG && 2369 bnx2x_mtu_allows_gro(bp->dev->mtu))); 2370 if (bp->flags & TPA_ENABLE_FLAG) 2371 fp->mode = TPA_MODE_LRO; 2372 else if (bp->flags & GRO_ENABLE_FLAG) 2373 fp->mode = TPA_MODE_GRO; 2374 2375 /* We don't want TPA on an FCoE L2 ring */ 2376 if (IS_FCOE_FP(fp)) 2377 fp->disable_tpa = 1; 2378 } 2379 2380 int bnx2x_load_cnic(struct bnx2x *bp) 2381 { 2382 int i, rc, port = BP_PORT(bp); 2383 2384 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2385 2386 mutex_init(&bp->cnic_mutex); 2387 2388 if (IS_PF(bp)) { 2389 rc = bnx2x_alloc_mem_cnic(bp); 2390 if (rc) { 2391 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2392 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2393 } 2394 } 2395 2396 rc = bnx2x_alloc_fp_mem_cnic(bp); 2397 if (rc) { 2398 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2399 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2400 } 2401 2402 /* Update the number of queues with the cnic queues */ 2403 rc = bnx2x_set_real_num_queues(bp, 1); 2404 if (rc) { 2405 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2406 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2407 } 2408 2409 /* Add all CNIC NAPI objects */ 2410 bnx2x_add_all_napi_cnic(bp); 2411 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2412 bnx2x_napi_enable_cnic(bp); 2413 2414 rc = bnx2x_init_hw_func_cnic(bp); 2415 if (rc) 2416 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2417 2418 bnx2x_nic_init_cnic(bp); 2419 2420 if (IS_PF(bp)) { 2421 /* Enable Timer scan */ 2422 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2423 2424 /* setup cnic queues */ 2425 for_each_cnic_queue(bp, i) { 2426 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2427 if (rc) { 2428 BNX2X_ERR("Queue setup failed\n"); 2429 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2430 } 2431 } 2432 } 2433 2434 /* Initialize Rx filter. */ 2435 netif_addr_lock_bh(bp->dev); 2436 bnx2x_set_rx_mode(bp->dev); 2437 netif_addr_unlock_bh(bp->dev); 2438 2439 /* re-read iscsi info */ 2440 bnx2x_get_iscsi_info(bp); 2441 bnx2x_setup_cnic_irq_info(bp); 2442 bnx2x_setup_cnic_info(bp); 2443 bp->cnic_loaded = true; 2444 if (bp->state == BNX2X_STATE_OPEN) 2445 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2446 2447 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2448 2449 return 0; 2450 2451 #ifndef BNX2X_STOP_ON_ERROR 2452 load_error_cnic2: 2453 /* Disable Timer scan */ 2454 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2455 2456 load_error_cnic1: 2457 bnx2x_napi_disable_cnic(bp); 2458 /* Update the number of queues without the cnic queues */ 2459 rc = bnx2x_set_real_num_queues(bp, 0); 2460 if (rc) 2461 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2462 load_error_cnic0: 2463 BNX2X_ERR("CNIC-related load failed\n"); 2464 bnx2x_free_fp_mem_cnic(bp); 2465 bnx2x_free_mem_cnic(bp); 2466 return rc; 2467 #endif /* ! BNX2X_STOP_ON_ERROR */ 2468 } 2469 2470 /* must be called with rtnl_lock */ 2471 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2472 { 2473 int port = BP_PORT(bp); 2474 int i, rc = 0, load_code = 0; 2475 2476 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2477 DP(NETIF_MSG_IFUP, 2478 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2479 2480 #ifdef BNX2X_STOP_ON_ERROR 2481 if (unlikely(bp->panic)) { 2482 BNX2X_ERR("Can't load NIC when there is panic\n"); 2483 return -EPERM; 2484 } 2485 #endif 2486 2487 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2488 2489 /* zero the structure w/o any lock, before SP handler is initialized */ 2490 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2491 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2492 &bp->last_reported_link.link_report_flags); 2493 2494 if (IS_PF(bp)) 2495 /* must be called before memory allocation and HW init */ 2496 bnx2x_ilt_set_info(bp); 2497 2498 /* 2499 * Zero fastpath structures preserving invariants like napi, which are 2500 * allocated only once, fp index, max_cos, bp pointer. 2501 * Also set fp->disable_tpa and txdata_ptr. 2502 */ 2503 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2504 for_each_queue(bp, i) 2505 bnx2x_bz_fp(bp, i); 2506 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2507 bp->num_cnic_queues) * 2508 sizeof(struct bnx2x_fp_txdata)); 2509 2510 bp->fcoe_init = false; 2511 2512 /* Set the receive queues buffer size */ 2513 bnx2x_set_rx_buf_size(bp); 2514 2515 if (IS_PF(bp)) { 2516 rc = bnx2x_alloc_mem(bp); 2517 if (rc) { 2518 BNX2X_ERR("Unable to allocate bp memory\n"); 2519 return rc; 2520 } 2521 } 2522 2523 /* Allocated memory for FW statistics */ 2524 if (bnx2x_alloc_fw_stats_mem(bp)) 2525 LOAD_ERROR_EXIT(bp, load_error0); 2526 2527 /* need to be done after alloc mem, since it's self adjusting to amount 2528 * of memory available for RSS queues 2529 */ 2530 rc = bnx2x_alloc_fp_mem(bp); 2531 if (rc) { 2532 BNX2X_ERR("Unable to allocate memory for fps\n"); 2533 LOAD_ERROR_EXIT(bp, load_error0); 2534 } 2535 2536 /* request pf to initialize status blocks */ 2537 if (IS_VF(bp)) { 2538 rc = bnx2x_vfpf_init(bp); 2539 if (rc) 2540 LOAD_ERROR_EXIT(bp, load_error0); 2541 } 2542 2543 /* As long as bnx2x_alloc_mem() may possibly update 2544 * bp->num_queues, bnx2x_set_real_num_queues() should always 2545 * come after it. At this stage cnic queues are not counted. 2546 */ 2547 rc = bnx2x_set_real_num_queues(bp, 0); 2548 if (rc) { 2549 BNX2X_ERR("Unable to set real_num_queues\n"); 2550 LOAD_ERROR_EXIT(bp, load_error0); 2551 } 2552 2553 /* configure multi cos mappings in kernel. 2554 * this configuration may be overridden by a multi class queue 2555 * discipline or by a dcbx negotiation result. 2556 */ 2557 bnx2x_setup_tc(bp->dev, bp->max_cos); 2558 2559 /* Add all NAPI objects */ 2560 bnx2x_add_all_napi(bp); 2561 DP(NETIF_MSG_IFUP, "napi added\n"); 2562 bnx2x_napi_enable(bp); 2563 2564 if (IS_PF(bp)) { 2565 /* set pf load just before approaching the MCP */ 2566 bnx2x_set_pf_load(bp); 2567 2568 /* if mcp exists send load request and analyze response */ 2569 if (!BP_NOMCP(bp)) { 2570 /* attempt to load pf */ 2571 rc = bnx2x_nic_load_request(bp, &load_code); 2572 if (rc) 2573 LOAD_ERROR_EXIT(bp, load_error1); 2574 2575 /* what did mcp say? */ 2576 rc = bnx2x_nic_load_analyze_req(bp, load_code); 2577 if (rc) { 2578 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2579 LOAD_ERROR_EXIT(bp, load_error2); 2580 } 2581 } else { 2582 load_code = bnx2x_nic_load_no_mcp(bp, port); 2583 } 2584 2585 /* mark pmf if applicable */ 2586 bnx2x_nic_load_pmf(bp, load_code); 2587 2588 /* Init Function state controlling object */ 2589 bnx2x__init_func_obj(bp); 2590 2591 /* Initialize HW */ 2592 rc = bnx2x_init_hw(bp, load_code); 2593 if (rc) { 2594 BNX2X_ERR("HW init failed, aborting\n"); 2595 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2596 LOAD_ERROR_EXIT(bp, load_error2); 2597 } 2598 } 2599 2600 bnx2x_pre_irq_nic_init(bp); 2601 2602 /* Connect to IRQs */ 2603 rc = bnx2x_setup_irqs(bp); 2604 if (rc) { 2605 BNX2X_ERR("setup irqs failed\n"); 2606 if (IS_PF(bp)) 2607 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2608 LOAD_ERROR_EXIT(bp, load_error2); 2609 } 2610 2611 /* Init per-function objects */ 2612 if (IS_PF(bp)) { 2613 /* Setup NIC internals and enable interrupts */ 2614 bnx2x_post_irq_nic_init(bp, load_code); 2615 2616 bnx2x_init_bp_objs(bp); 2617 bnx2x_iov_nic_init(bp); 2618 2619 /* Set AFEX default VLAN tag to an invalid value */ 2620 bp->afex_def_vlan_tag = -1; 2621 bnx2x_nic_load_afex_dcc(bp, load_code); 2622 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2623 rc = bnx2x_func_start(bp); 2624 if (rc) { 2625 BNX2X_ERR("Function start failed!\n"); 2626 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2627 2628 LOAD_ERROR_EXIT(bp, load_error3); 2629 } 2630 2631 /* Send LOAD_DONE command to MCP */ 2632 if (!BP_NOMCP(bp)) { 2633 load_code = bnx2x_fw_command(bp, 2634 DRV_MSG_CODE_LOAD_DONE, 0); 2635 if (!load_code) { 2636 BNX2X_ERR("MCP response failure, aborting\n"); 2637 rc = -EBUSY; 2638 LOAD_ERROR_EXIT(bp, load_error3); 2639 } 2640 } 2641 2642 /* initialize FW coalescing state machines in RAM */ 2643 bnx2x_update_coalesce(bp); 2644 2645 /* setup the leading queue */ 2646 rc = bnx2x_setup_leading(bp); 2647 if (rc) { 2648 BNX2X_ERR("Setup leading failed!\n"); 2649 LOAD_ERROR_EXIT(bp, load_error3); 2650 } 2651 2652 /* set up the rest of the queues */ 2653 for_each_nondefault_eth_queue(bp, i) { 2654 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2655 if (rc) { 2656 BNX2X_ERR("Queue setup failed\n"); 2657 LOAD_ERROR_EXIT(bp, load_error3); 2658 } 2659 } 2660 2661 /* setup rss */ 2662 rc = bnx2x_init_rss_pf(bp); 2663 if (rc) { 2664 BNX2X_ERR("PF RSS init failed\n"); 2665 LOAD_ERROR_EXIT(bp, load_error3); 2666 } 2667 2668 } else { /* vf */ 2669 for_each_eth_queue(bp, i) { 2670 rc = bnx2x_vfpf_setup_q(bp, i); 2671 if (rc) { 2672 BNX2X_ERR("Queue setup failed\n"); 2673 LOAD_ERROR_EXIT(bp, load_error3); 2674 } 2675 } 2676 } 2677 2678 /* Now when Clients are configured we are ready to work */ 2679 bp->state = BNX2X_STATE_OPEN; 2680 2681 /* Configure a ucast MAC */ 2682 if (IS_PF(bp)) 2683 rc = bnx2x_set_eth_mac(bp, true); 2684 else /* vf */ 2685 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2686 true); 2687 if (rc) { 2688 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2689 LOAD_ERROR_EXIT(bp, load_error3); 2690 } 2691 2692 if (IS_PF(bp) && bp->pending_max) { 2693 bnx2x_update_max_mf_config(bp, bp->pending_max); 2694 bp->pending_max = 0; 2695 } 2696 2697 if (bp->port.pmf) { 2698 rc = bnx2x_initial_phy_init(bp, load_mode); 2699 if (rc) 2700 LOAD_ERROR_EXIT(bp, load_error3); 2701 } 2702 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2703 2704 /* Start fast path */ 2705 2706 /* Initialize Rx filter. */ 2707 netif_addr_lock_bh(bp->dev); 2708 bnx2x_set_rx_mode(bp->dev); 2709 netif_addr_unlock_bh(bp->dev); 2710 2711 /* Start the Tx */ 2712 switch (load_mode) { 2713 case LOAD_NORMAL: 2714 /* Tx queue should be only re-enabled */ 2715 netif_tx_wake_all_queues(bp->dev); 2716 break; 2717 2718 case LOAD_OPEN: 2719 netif_tx_start_all_queues(bp->dev); 2720 smp_mb__after_clear_bit(); 2721 break; 2722 2723 case LOAD_DIAG: 2724 case LOAD_LOOPBACK_EXT: 2725 bp->state = BNX2X_STATE_DIAG; 2726 break; 2727 2728 default: 2729 break; 2730 } 2731 2732 if (bp->port.pmf) 2733 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2734 else 2735 bnx2x__link_status_update(bp); 2736 2737 /* start the timer */ 2738 mod_timer(&bp->timer, jiffies + bp->current_interval); 2739 2740 if (CNIC_ENABLED(bp)) 2741 bnx2x_load_cnic(bp); 2742 2743 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2744 /* mark driver is loaded in shmem2 */ 2745 u32 val; 2746 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2747 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2748 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2749 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2750 } 2751 2752 /* Wait for all pending SP commands to complete */ 2753 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2754 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2755 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2756 return -EBUSY; 2757 } 2758 2759 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2760 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2761 bnx2x_dcbx_init(bp, false); 2762 2763 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2764 2765 return 0; 2766 2767 #ifndef BNX2X_STOP_ON_ERROR 2768 load_error3: 2769 if (IS_PF(bp)) { 2770 bnx2x_int_disable_sync(bp, 1); 2771 2772 /* Clean queueable objects */ 2773 bnx2x_squeeze_objects(bp); 2774 } 2775 2776 /* Free SKBs, SGEs, TPA pool and driver internals */ 2777 bnx2x_free_skbs(bp); 2778 for_each_rx_queue(bp, i) 2779 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2780 2781 /* Release IRQs */ 2782 bnx2x_free_irq(bp); 2783 load_error2: 2784 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2785 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2786 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2787 } 2788 2789 bp->port.pmf = 0; 2790 load_error1: 2791 bnx2x_napi_disable(bp); 2792 bnx2x_del_all_napi(bp); 2793 2794 /* clear pf_load status, as it was already set */ 2795 if (IS_PF(bp)) 2796 bnx2x_clear_pf_load(bp); 2797 load_error0: 2798 bnx2x_free_fp_mem(bp); 2799 bnx2x_free_fw_stats_mem(bp); 2800 bnx2x_free_mem(bp); 2801 2802 return rc; 2803 #endif /* ! BNX2X_STOP_ON_ERROR */ 2804 } 2805 2806 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2807 { 2808 u8 rc = 0, cos, i; 2809 2810 /* Wait until tx fastpath tasks complete */ 2811 for_each_tx_queue(bp, i) { 2812 struct bnx2x_fastpath *fp = &bp->fp[i]; 2813 2814 for_each_cos_in_tx_queue(fp, cos) 2815 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2816 if (rc) 2817 return rc; 2818 } 2819 return 0; 2820 } 2821 2822 /* must be called with rtnl_lock */ 2823 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2824 { 2825 int i; 2826 bool global = false; 2827 2828 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 2829 2830 /* mark driver is unloaded in shmem2 */ 2831 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2832 u32 val; 2833 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2834 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2835 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 2836 } 2837 2838 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 2839 (bp->state == BNX2X_STATE_CLOSED || 2840 bp->state == BNX2X_STATE_ERROR)) { 2841 /* We can get here if the driver has been unloaded 2842 * during parity error recovery and is either waiting for a 2843 * leader to complete or for other functions to unload and 2844 * then ifdown has been issued. In this case we want to 2845 * unload and let other functions to complete a recovery 2846 * process. 2847 */ 2848 bp->recovery_state = BNX2X_RECOVERY_DONE; 2849 bp->is_leader = 0; 2850 bnx2x_release_leader_lock(bp); 2851 smp_mb(); 2852 2853 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 2854 BNX2X_ERR("Can't unload in closed or error state\n"); 2855 return -EINVAL; 2856 } 2857 2858 /* Nothing to do during unload if previous bnx2x_nic_load() 2859 * have not completed successfully - all resources are released. 2860 * 2861 * we can get here only after unsuccessful ndo_* callback, during which 2862 * dev->IFF_UP flag is still on. 2863 */ 2864 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 2865 return 0; 2866 2867 /* It's important to set the bp->state to the value different from 2868 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 2869 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 2870 */ 2871 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 2872 smp_mb(); 2873 2874 /* indicate to VFs that the PF is going down */ 2875 bnx2x_iov_channel_down(bp); 2876 2877 if (CNIC_LOADED(bp)) 2878 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 2879 2880 /* Stop Tx */ 2881 bnx2x_tx_disable(bp); 2882 netdev_reset_tc(bp->dev); 2883 2884 bp->rx_mode = BNX2X_RX_MODE_NONE; 2885 2886 del_timer_sync(&bp->timer); 2887 2888 if (IS_PF(bp)) { 2889 /* Set ALWAYS_ALIVE bit in shmem */ 2890 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 2891 bnx2x_drv_pulse(bp); 2892 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2893 bnx2x_save_statistics(bp); 2894 } 2895 2896 /* wait till consumers catch up with producers in all queues */ 2897 bnx2x_drain_tx_queues(bp); 2898 2899 /* if VF indicate to PF this function is going down (PF will delete sp 2900 * elements and clear initializations 2901 */ 2902 if (IS_VF(bp)) 2903 bnx2x_vfpf_close_vf(bp); 2904 else if (unload_mode != UNLOAD_RECOVERY) 2905 /* if this is a normal/close unload need to clean up chip*/ 2906 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 2907 else { 2908 /* Send the UNLOAD_REQUEST to the MCP */ 2909 bnx2x_send_unload_req(bp, unload_mode); 2910 2911 /* Prevent transactions to host from the functions on the 2912 * engine that doesn't reset global blocks in case of global 2913 * attention once global blocks are reset and gates are opened 2914 * (the engine which leader will perform the recovery 2915 * last). 2916 */ 2917 if (!CHIP_IS_E1x(bp)) 2918 bnx2x_pf_disable(bp); 2919 2920 /* Disable HW interrupts, NAPI */ 2921 bnx2x_netif_stop(bp, 1); 2922 /* Delete all NAPI objects */ 2923 bnx2x_del_all_napi(bp); 2924 if (CNIC_LOADED(bp)) 2925 bnx2x_del_all_napi_cnic(bp); 2926 /* Release IRQs */ 2927 bnx2x_free_irq(bp); 2928 2929 /* Report UNLOAD_DONE to MCP */ 2930 bnx2x_send_unload_done(bp, false); 2931 } 2932 2933 /* 2934 * At this stage no more interrupts will arrive so we may safely clean 2935 * the queueable objects here in case they failed to get cleaned so far. 2936 */ 2937 if (IS_PF(bp)) 2938 bnx2x_squeeze_objects(bp); 2939 2940 /* There should be no more pending SP commands at this stage */ 2941 bp->sp_state = 0; 2942 2943 bp->port.pmf = 0; 2944 2945 /* Free SKBs, SGEs, TPA pool and driver internals */ 2946 bnx2x_free_skbs(bp); 2947 if (CNIC_LOADED(bp)) 2948 bnx2x_free_skbs_cnic(bp); 2949 for_each_rx_queue(bp, i) 2950 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2951 2952 bnx2x_free_fp_mem(bp); 2953 if (CNIC_LOADED(bp)) 2954 bnx2x_free_fp_mem_cnic(bp); 2955 2956 if (IS_PF(bp)) { 2957 if (CNIC_LOADED(bp)) 2958 bnx2x_free_mem_cnic(bp); 2959 bnx2x_free_mem(bp); 2960 } 2961 bp->state = BNX2X_STATE_CLOSED; 2962 bp->cnic_loaded = false; 2963 2964 /* Check if there are pending parity attentions. If there are - set 2965 * RECOVERY_IN_PROGRESS. 2966 */ 2967 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 2968 bnx2x_set_reset_in_progress(bp); 2969 2970 /* Set RESET_IS_GLOBAL if needed */ 2971 if (global) 2972 bnx2x_set_reset_global(bp); 2973 } 2974 2975 /* The last driver must disable a "close the gate" if there is no 2976 * parity attention or "process kill" pending. 2977 */ 2978 if (IS_PF(bp) && 2979 !bnx2x_clear_pf_load(bp) && 2980 bnx2x_reset_is_done(bp, BP_PATH(bp))) 2981 bnx2x_disable_close_the_gate(bp); 2982 2983 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 2984 2985 return 0; 2986 } 2987 2988 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 2989 { 2990 u16 pmcsr; 2991 2992 /* If there is no power capability, silently succeed */ 2993 if (!bp->pm_cap) { 2994 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 2995 return 0; 2996 } 2997 2998 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr); 2999 3000 switch (state) { 3001 case PCI_D0: 3002 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, 3003 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3004 PCI_PM_CTRL_PME_STATUS)); 3005 3006 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3007 /* delay required during transition out of D3hot */ 3008 msleep(20); 3009 break; 3010 3011 case PCI_D3hot: 3012 /* If there are other clients above don't 3013 shut down the power */ 3014 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3015 return 0; 3016 /* Don't shut down the power for emulation and FPGA */ 3017 if (CHIP_REV_IS_SLOW(bp)) 3018 return 0; 3019 3020 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3021 pmcsr |= 3; 3022 3023 if (bp->wol) 3024 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3025 3026 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, 3027 pmcsr); 3028 3029 /* No more memory access after this point until 3030 * device is brought back to D0. 3031 */ 3032 break; 3033 3034 default: 3035 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3036 return -EINVAL; 3037 } 3038 return 0; 3039 } 3040 3041 /* 3042 * net_device service functions 3043 */ 3044 int bnx2x_poll(struct napi_struct *napi, int budget) 3045 { 3046 int work_done = 0; 3047 u8 cos; 3048 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3049 napi); 3050 struct bnx2x *bp = fp->bp; 3051 3052 while (1) { 3053 #ifdef BNX2X_STOP_ON_ERROR 3054 if (unlikely(bp->panic)) { 3055 napi_complete(napi); 3056 return 0; 3057 } 3058 #endif 3059 if (!bnx2x_fp_lock_napi(fp)) 3060 return work_done; 3061 3062 for_each_cos_in_tx_queue(fp, cos) 3063 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3064 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3065 3066 if (bnx2x_has_rx_work(fp)) { 3067 work_done += bnx2x_rx_int(fp, budget - work_done); 3068 3069 /* must not complete if we consumed full budget */ 3070 if (work_done >= budget) { 3071 bnx2x_fp_unlock_napi(fp); 3072 break; 3073 } 3074 } 3075 3076 /* Fall out from the NAPI loop if needed */ 3077 if (!bnx2x_fp_unlock_napi(fp) && 3078 !(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3079 3080 /* No need to update SB for FCoE L2 ring as long as 3081 * it's connected to the default SB and the SB 3082 * has been updated when NAPI was scheduled. 3083 */ 3084 if (IS_FCOE_FP(fp)) { 3085 napi_complete(napi); 3086 break; 3087 } 3088 bnx2x_update_fpsb_idx(fp); 3089 /* bnx2x_has_rx_work() reads the status block, 3090 * thus we need to ensure that status block indices 3091 * have been actually read (bnx2x_update_fpsb_idx) 3092 * prior to this check (bnx2x_has_rx_work) so that 3093 * we won't write the "newer" value of the status block 3094 * to IGU (if there was a DMA right after 3095 * bnx2x_has_rx_work and if there is no rmb, the memory 3096 * reading (bnx2x_update_fpsb_idx) may be postponed 3097 * to right before bnx2x_ack_sb). In this case there 3098 * will never be another interrupt until there is 3099 * another update of the status block, while there 3100 * is still unhandled work. 3101 */ 3102 rmb(); 3103 3104 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3105 napi_complete(napi); 3106 /* Re-enable interrupts */ 3107 DP(NETIF_MSG_RX_STATUS, 3108 "Update index to %d\n", fp->fp_hc_idx); 3109 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3110 le16_to_cpu(fp->fp_hc_idx), 3111 IGU_INT_ENABLE, 1); 3112 break; 3113 } 3114 } 3115 } 3116 3117 return work_done; 3118 } 3119 3120 #ifdef CONFIG_NET_LL_RX_POLL 3121 /* must be called with local_bh_disable()d */ 3122 int bnx2x_low_latency_recv(struct napi_struct *napi) 3123 { 3124 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3125 napi); 3126 struct bnx2x *bp = fp->bp; 3127 int found = 0; 3128 3129 if ((bp->state == BNX2X_STATE_CLOSED) || 3130 (bp->state == BNX2X_STATE_ERROR) || 3131 (bp->flags & (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG))) 3132 return LL_FLUSH_FAILED; 3133 3134 if (!bnx2x_fp_lock_poll(fp)) 3135 return LL_FLUSH_BUSY; 3136 3137 if (bnx2x_has_rx_work(fp)) 3138 found = bnx2x_rx_int(fp, 4); 3139 3140 bnx2x_fp_unlock_poll(fp); 3141 3142 return found; 3143 } 3144 #endif 3145 3146 /* we split the first BD into headers and data BDs 3147 * to ease the pain of our fellow microcode engineers 3148 * we use one mapping for both BDs 3149 */ 3150 static u16 bnx2x_tx_split(struct bnx2x *bp, 3151 struct bnx2x_fp_txdata *txdata, 3152 struct sw_tx_bd *tx_buf, 3153 struct eth_tx_start_bd **tx_bd, u16 hlen, 3154 u16 bd_prod) 3155 { 3156 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3157 struct eth_tx_bd *d_tx_bd; 3158 dma_addr_t mapping; 3159 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3160 3161 /* first fix first BD */ 3162 h_tx_bd->nbytes = cpu_to_le16(hlen); 3163 3164 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3165 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3166 3167 /* now get a new data BD 3168 * (after the pbd) and fill it */ 3169 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3170 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3171 3172 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3173 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3174 3175 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3176 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3177 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3178 3179 /* this marks the BD as one that has no individual mapping */ 3180 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3181 3182 DP(NETIF_MSG_TX_QUEUED, 3183 "TSO split data size is %d (%x:%x)\n", 3184 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3185 3186 /* update tx_bd */ 3187 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3188 3189 return bd_prod; 3190 } 3191 3192 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3193 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3194 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3195 { 3196 __sum16 tsum = (__force __sum16) csum; 3197 3198 if (fix > 0) 3199 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3200 csum_partial(t_header - fix, fix, 0))); 3201 3202 else if (fix < 0) 3203 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3204 csum_partial(t_header, -fix, 0))); 3205 3206 return bswab16(tsum); 3207 } 3208 3209 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3210 { 3211 u32 rc; 3212 __u8 prot = 0; 3213 __be16 protocol; 3214 3215 if (skb->ip_summed != CHECKSUM_PARTIAL) 3216 return XMIT_PLAIN; 3217 3218 protocol = vlan_get_protocol(skb); 3219 if (protocol == htons(ETH_P_IPV6)) { 3220 rc = XMIT_CSUM_V6; 3221 prot = ipv6_hdr(skb)->nexthdr; 3222 } else { 3223 rc = XMIT_CSUM_V4; 3224 prot = ip_hdr(skb)->protocol; 3225 } 3226 3227 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3228 if (inner_ip_hdr(skb)->version == 6) { 3229 rc |= XMIT_CSUM_ENC_V6; 3230 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3231 rc |= XMIT_CSUM_TCP; 3232 } else { 3233 rc |= XMIT_CSUM_ENC_V4; 3234 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3235 rc |= XMIT_CSUM_TCP; 3236 } 3237 } 3238 if (prot == IPPROTO_TCP) 3239 rc |= XMIT_CSUM_TCP; 3240 3241 if (skb_is_gso_v6(skb)) { 3242 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3243 if (rc & XMIT_CSUM_ENC) 3244 rc |= XMIT_GSO_ENC_V6; 3245 } else if (skb_is_gso(skb)) { 3246 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3247 if (rc & XMIT_CSUM_ENC) 3248 rc |= XMIT_GSO_ENC_V4; 3249 } 3250 3251 return rc; 3252 } 3253 3254 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) 3255 /* check if packet requires linearization (packet is too fragmented) 3256 no need to check fragmentation if page size > 8K (there will be no 3257 violation to FW restrictions) */ 3258 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3259 u32 xmit_type) 3260 { 3261 int to_copy = 0; 3262 int hlen = 0; 3263 int first_bd_sz = 0; 3264 3265 /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3266 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) { 3267 3268 if (xmit_type & XMIT_GSO) { 3269 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3270 /* Check if LSO packet needs to be copied: 3271 3 = 1 (for headers BD) + 2 (for PBD and last BD) */ 3272 int wnd_size = MAX_FETCH_BD - 3; 3273 /* Number of windows to check */ 3274 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3275 int wnd_idx = 0; 3276 int frag_idx = 0; 3277 u32 wnd_sum = 0; 3278 3279 /* Headers length */ 3280 hlen = (int)(skb_transport_header(skb) - skb->data) + 3281 tcp_hdrlen(skb); 3282 3283 /* Amount of data (w/o headers) on linear part of SKB*/ 3284 first_bd_sz = skb_headlen(skb) - hlen; 3285 3286 wnd_sum = first_bd_sz; 3287 3288 /* Calculate the first sum - it's special */ 3289 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3290 wnd_sum += 3291 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3292 3293 /* If there was data on linear skb data - check it */ 3294 if (first_bd_sz > 0) { 3295 if (unlikely(wnd_sum < lso_mss)) { 3296 to_copy = 1; 3297 goto exit_lbl; 3298 } 3299 3300 wnd_sum -= first_bd_sz; 3301 } 3302 3303 /* Others are easier: run through the frag list and 3304 check all windows */ 3305 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3306 wnd_sum += 3307 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3308 3309 if (unlikely(wnd_sum < lso_mss)) { 3310 to_copy = 1; 3311 break; 3312 } 3313 wnd_sum -= 3314 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3315 } 3316 } else { 3317 /* in non-LSO too fragmented packet should always 3318 be linearized */ 3319 to_copy = 1; 3320 } 3321 } 3322 3323 exit_lbl: 3324 if (unlikely(to_copy)) 3325 DP(NETIF_MSG_TX_QUEUED, 3326 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3327 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3328 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3329 3330 return to_copy; 3331 } 3332 #endif 3333 3334 static void bnx2x_set_pbd_gso_e2(struct sk_buff *skb, u32 *parsing_data, 3335 u32 xmit_type) 3336 { 3337 struct ipv6hdr *ipv6; 3338 3339 *parsing_data |= (skb_shinfo(skb)->gso_size << 3340 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 3341 ETH_TX_PARSE_BD_E2_LSO_MSS; 3342 3343 if (xmit_type & XMIT_GSO_ENC_V6) 3344 ipv6 = inner_ipv6_hdr(skb); 3345 else if (xmit_type & XMIT_GSO_V6) 3346 ipv6 = ipv6_hdr(skb); 3347 else 3348 ipv6 = NULL; 3349 3350 if (ipv6 && ipv6->nexthdr == NEXTHDR_IPV6) 3351 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3352 } 3353 3354 /** 3355 * bnx2x_set_pbd_gso - update PBD in GSO case. 3356 * 3357 * @skb: packet skb 3358 * @pbd: parse BD 3359 * @xmit_type: xmit flags 3360 */ 3361 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3362 struct eth_tx_parse_bd_e1x *pbd, 3363 struct eth_tx_start_bd *tx_start_bd, 3364 u32 xmit_type) 3365 { 3366 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3367 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3368 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3369 3370 if (xmit_type & XMIT_GSO_V4) { 3371 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3372 pbd->tcp_pseudo_csum = 3373 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3374 ip_hdr(skb)->daddr, 3375 0, IPPROTO_TCP, 0)); 3376 3377 /* GSO on 57710/57711 needs FW to calculate IP checksum */ 3378 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 3379 } else { 3380 pbd->tcp_pseudo_csum = 3381 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3382 &ipv6_hdr(skb)->daddr, 3383 0, IPPROTO_TCP, 0)); 3384 } 3385 3386 pbd->global_data |= 3387 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3388 } 3389 3390 /** 3391 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3392 * 3393 * @bp: driver handle 3394 * @skb: packet skb 3395 * @parsing_data: data to be updated 3396 * @xmit_type: xmit flags 3397 * 3398 * 57712/578xx related, when skb has encapsulation 3399 */ 3400 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3401 u32 *parsing_data, u32 xmit_type) 3402 { 3403 *parsing_data |= 3404 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3405 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3406 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3407 3408 if (xmit_type & XMIT_CSUM_TCP) { 3409 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3410 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3411 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3412 3413 return skb_inner_transport_header(skb) + 3414 inner_tcp_hdrlen(skb) - skb->data; 3415 } 3416 3417 /* We support checksum offload for TCP and UDP only. 3418 * No need to pass the UDP header length - it's a constant. 3419 */ 3420 return skb_inner_transport_header(skb) + 3421 sizeof(struct udphdr) - skb->data; 3422 } 3423 3424 /** 3425 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3426 * 3427 * @bp: driver handle 3428 * @skb: packet skb 3429 * @parsing_data: data to be updated 3430 * @xmit_type: xmit flags 3431 * 3432 * 57712/578xx related 3433 */ 3434 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3435 u32 *parsing_data, u32 xmit_type) 3436 { 3437 *parsing_data |= 3438 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3439 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3440 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3441 3442 if (xmit_type & XMIT_CSUM_TCP) { 3443 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3444 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3445 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3446 3447 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; 3448 } 3449 /* We support checksum offload for TCP and UDP only. 3450 * No need to pass the UDP header length - it's a constant. 3451 */ 3452 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; 3453 } 3454 3455 /* set FW indication according to inner or outer protocols if tunneled */ 3456 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3457 struct eth_tx_start_bd *tx_start_bd, 3458 u32 xmit_type) 3459 { 3460 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3461 3462 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3463 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3464 3465 if (!(xmit_type & XMIT_CSUM_TCP)) 3466 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3467 } 3468 3469 /** 3470 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3471 * 3472 * @bp: driver handle 3473 * @skb: packet skb 3474 * @pbd: parse BD to be updated 3475 * @xmit_type: xmit flags 3476 */ 3477 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3478 struct eth_tx_parse_bd_e1x *pbd, 3479 u32 xmit_type) 3480 { 3481 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3482 3483 /* for now NS flag is not used in Linux */ 3484 pbd->global_data = 3485 cpu_to_le16(hlen | 3486 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3487 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3488 3489 pbd->ip_hlen_w = (skb_transport_header(skb) - 3490 skb_network_header(skb)) >> 1; 3491 3492 hlen += pbd->ip_hlen_w; 3493 3494 /* We support checksum offload for TCP and UDP only */ 3495 if (xmit_type & XMIT_CSUM_TCP) 3496 hlen += tcp_hdrlen(skb) / 2; 3497 else 3498 hlen += sizeof(struct udphdr) / 2; 3499 3500 pbd->total_hlen_w = cpu_to_le16(hlen); 3501 hlen = hlen*2; 3502 3503 if (xmit_type & XMIT_CSUM_TCP) { 3504 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3505 3506 } else { 3507 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3508 3509 DP(NETIF_MSG_TX_QUEUED, 3510 "hlen %d fix %d csum before fix %x\n", 3511 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3512 3513 /* HW bug: fixup the CSUM */ 3514 pbd->tcp_pseudo_csum = 3515 bnx2x_csum_fix(skb_transport_header(skb), 3516 SKB_CS(skb), fix); 3517 3518 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3519 pbd->tcp_pseudo_csum); 3520 } 3521 3522 return hlen; 3523 } 3524 3525 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3526 struct eth_tx_parse_bd_e2 *pbd_e2, 3527 struct eth_tx_parse_2nd_bd *pbd2, 3528 u16 *global_data, 3529 u32 xmit_type) 3530 { 3531 u16 hlen_w = 0; 3532 u8 outerip_off, outerip_len = 0; 3533 3534 /* from outer IP to transport */ 3535 hlen_w = (skb_inner_transport_header(skb) - 3536 skb_network_header(skb)) >> 1; 3537 3538 /* transport len */ 3539 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3540 3541 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3542 3543 /* outer IP header info */ 3544 if (xmit_type & XMIT_CSUM_V4) { 3545 struct iphdr *iph = ip_hdr(skb); 3546 u32 csum = (__force u32)(~iph->check) - 3547 (__force u32)iph->tot_len - 3548 (__force u32)iph->frag_off; 3549 3550 pbd2->fw_ip_csum_wo_len_flags_frag = 3551 bswab16(csum_fold((__force __wsum)csum)); 3552 } else { 3553 pbd2->fw_ip_hdr_to_payload_w = 3554 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3555 } 3556 3557 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3558 3559 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3560 3561 if (xmit_type & XMIT_GSO_V4) { 3562 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3563 3564 pbd_e2->data.tunnel_data.pseudo_csum = 3565 bswab16(~csum_tcpudp_magic( 3566 inner_ip_hdr(skb)->saddr, 3567 inner_ip_hdr(skb)->daddr, 3568 0, IPPROTO_TCP, 0)); 3569 3570 outerip_len = ip_hdr(skb)->ihl << 1; 3571 } else { 3572 pbd_e2->data.tunnel_data.pseudo_csum = 3573 bswab16(~csum_ipv6_magic( 3574 &inner_ipv6_hdr(skb)->saddr, 3575 &inner_ipv6_hdr(skb)->daddr, 3576 0, IPPROTO_TCP, 0)); 3577 } 3578 3579 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3580 3581 *global_data |= 3582 outerip_off | 3583 (!!(xmit_type & XMIT_CSUM_V6) << 3584 ETH_TX_PARSE_2ND_BD_IP_HDR_TYPE_OUTER_SHIFT) | 3585 (outerip_len << 3586 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3587 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3588 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3589 3590 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3591 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3592 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3593 } 3594 } 3595 3596 /* called with netif_tx_lock 3597 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3598 * netif_wake_queue() 3599 */ 3600 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3601 { 3602 struct bnx2x *bp = netdev_priv(dev); 3603 3604 struct netdev_queue *txq; 3605 struct bnx2x_fp_txdata *txdata; 3606 struct sw_tx_bd *tx_buf; 3607 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3608 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3609 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3610 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3611 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3612 u32 pbd_e2_parsing_data = 0; 3613 u16 pkt_prod, bd_prod; 3614 int nbd, txq_index; 3615 dma_addr_t mapping; 3616 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3617 int i; 3618 u8 hlen = 0; 3619 __le16 pkt_size = 0; 3620 struct ethhdr *eth; 3621 u8 mac_type = UNICAST_ADDRESS; 3622 3623 #ifdef BNX2X_STOP_ON_ERROR 3624 if (unlikely(bp->panic)) 3625 return NETDEV_TX_BUSY; 3626 #endif 3627 3628 txq_index = skb_get_queue_mapping(skb); 3629 txq = netdev_get_tx_queue(dev, txq_index); 3630 3631 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3632 3633 txdata = &bp->bnx2x_txq[txq_index]; 3634 3635 /* enable this debug print to view the transmission queue being used 3636 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3637 txq_index, fp_index, txdata_index); */ 3638 3639 /* enable this debug print to view the transmission details 3640 DP(NETIF_MSG_TX_QUEUED, 3641 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3642 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3643 3644 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3645 skb_shinfo(skb)->nr_frags + 3646 BDS_PER_TX_PKT + 3647 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3648 /* Handle special storage cases separately */ 3649 if (txdata->tx_ring_size == 0) { 3650 struct bnx2x_eth_q_stats *q_stats = 3651 bnx2x_fp_qstats(bp, txdata->parent_fp); 3652 q_stats->driver_filtered_tx_pkt++; 3653 dev_kfree_skb(skb); 3654 return NETDEV_TX_OK; 3655 } 3656 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3657 netif_tx_stop_queue(txq); 3658 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3659 3660 return NETDEV_TX_BUSY; 3661 } 3662 3663 DP(NETIF_MSG_TX_QUEUED, 3664 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3665 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3666 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3667 skb->len); 3668 3669 eth = (struct ethhdr *)skb->data; 3670 3671 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3672 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3673 if (is_broadcast_ether_addr(eth->h_dest)) 3674 mac_type = BROADCAST_ADDRESS; 3675 else 3676 mac_type = MULTICAST_ADDRESS; 3677 } 3678 3679 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3680 /* First, check if we need to linearize the skb (due to FW 3681 restrictions). No need to check fragmentation if page size > 8K 3682 (there will be no violation to FW restrictions) */ 3683 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3684 /* Statistics of linearization */ 3685 bp->lin_cnt++; 3686 if (skb_linearize(skb) != 0) { 3687 DP(NETIF_MSG_TX_QUEUED, 3688 "SKB linearization failed - silently dropping this SKB\n"); 3689 dev_kfree_skb_any(skb); 3690 return NETDEV_TX_OK; 3691 } 3692 } 3693 #endif 3694 /* Map skb linear data for DMA */ 3695 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3696 skb_headlen(skb), DMA_TO_DEVICE); 3697 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3698 DP(NETIF_MSG_TX_QUEUED, 3699 "SKB mapping failed - silently dropping this SKB\n"); 3700 dev_kfree_skb_any(skb); 3701 return NETDEV_TX_OK; 3702 } 3703 /* 3704 Please read carefully. First we use one BD which we mark as start, 3705 then we have a parsing info BD (used for TSO or xsum), 3706 and only then we have the rest of the TSO BDs. 3707 (don't forget to mark the last one as last, 3708 and to unmap only AFTER you write to the BD ...) 3709 And above all, all pdb sizes are in words - NOT DWORDS! 3710 */ 3711 3712 /* get current pkt produced now - advance it just before sending packet 3713 * since mapping of pages may fail and cause packet to be dropped 3714 */ 3715 pkt_prod = txdata->tx_pkt_prod; 3716 bd_prod = TX_BD(txdata->tx_bd_prod); 3717 3718 /* get a tx_buf and first BD 3719 * tx_start_bd may be changed during SPLIT, 3720 * but first_bd will always stay first 3721 */ 3722 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3723 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3724 first_bd = tx_start_bd; 3725 3726 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3727 3728 /* header nbd: indirectly zero other flags! */ 3729 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3730 3731 /* remember the first BD of the packet */ 3732 tx_buf->first_bd = txdata->tx_bd_prod; 3733 tx_buf->skb = skb; 3734 tx_buf->flags = 0; 3735 3736 DP(NETIF_MSG_TX_QUEUED, 3737 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3738 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3739 3740 if (vlan_tx_tag_present(skb)) { 3741 tx_start_bd->vlan_or_ethertype = 3742 cpu_to_le16(vlan_tx_tag_get(skb)); 3743 tx_start_bd->bd_flags.as_bitfield |= 3744 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3745 } else { 3746 /* when transmitting in a vf, start bd must hold the ethertype 3747 * for fw to enforce it 3748 */ 3749 if (IS_VF(bp)) 3750 tx_start_bd->vlan_or_ethertype = 3751 cpu_to_le16(ntohs(eth->h_proto)); 3752 else 3753 /* used by FW for packet accounting */ 3754 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3755 } 3756 3757 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3758 3759 /* turn on parsing and get a BD */ 3760 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3761 3762 if (xmit_type & XMIT_CSUM) 3763 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3764 3765 if (!CHIP_IS_E1x(bp)) { 3766 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3767 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3768 3769 if (xmit_type & XMIT_CSUM_ENC) { 3770 u16 global_data = 0; 3771 3772 /* Set PBD in enc checksum offload case */ 3773 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3774 &pbd_e2_parsing_data, 3775 xmit_type); 3776 3777 /* turn on 2nd parsing and get a BD */ 3778 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3779 3780 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3781 3782 memset(pbd2, 0, sizeof(*pbd2)); 3783 3784 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3785 (skb_inner_network_header(skb) - 3786 skb->data) >> 1; 3787 3788 if (xmit_type & XMIT_GSO_ENC) 3789 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3790 &global_data, 3791 xmit_type); 3792 3793 pbd2->global_data = cpu_to_le16(global_data); 3794 3795 /* add addition parse BD indication to start BD */ 3796 SET_FLAG(tx_start_bd->general_data, 3797 ETH_TX_START_BD_PARSE_NBDS, 1); 3798 /* set encapsulation flag in start BD */ 3799 SET_FLAG(tx_start_bd->general_data, 3800 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3801 nbd++; 3802 } else if (xmit_type & XMIT_CSUM) { 3803 /* Set PBD in checksum offload case w/o encapsulation */ 3804 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3805 &pbd_e2_parsing_data, 3806 xmit_type); 3807 } 3808 3809 /* Add the macs to the parsing BD this is a vf */ 3810 if (IS_VF(bp)) { 3811 /* override GRE parameters in BD */ 3812 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3813 &pbd_e2->data.mac_addr.src_mid, 3814 &pbd_e2->data.mac_addr.src_lo, 3815 eth->h_source); 3816 3817 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 3818 &pbd_e2->data.mac_addr.dst_mid, 3819 &pbd_e2->data.mac_addr.dst_lo, 3820 eth->h_dest); 3821 } 3822 3823 SET_FLAG(pbd_e2_parsing_data, 3824 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 3825 } else { 3826 u16 global_data = 0; 3827 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 3828 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 3829 /* Set PBD in checksum offload case */ 3830 if (xmit_type & XMIT_CSUM) 3831 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 3832 3833 SET_FLAG(global_data, 3834 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 3835 pbd_e1x->global_data |= cpu_to_le16(global_data); 3836 } 3837 3838 /* Setup the data pointer of the first BD of the packet */ 3839 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3840 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3841 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 3842 pkt_size = tx_start_bd->nbytes; 3843 3844 DP(NETIF_MSG_TX_QUEUED, 3845 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 3846 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 3847 le16_to_cpu(tx_start_bd->nbytes), 3848 tx_start_bd->bd_flags.as_bitfield, 3849 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 3850 3851 if (xmit_type & XMIT_GSO) { 3852 3853 DP(NETIF_MSG_TX_QUEUED, 3854 "TSO packet len %d hlen %d total len %d tso size %d\n", 3855 skb->len, hlen, skb_headlen(skb), 3856 skb_shinfo(skb)->gso_size); 3857 3858 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 3859 3860 if (unlikely(skb_headlen(skb) > hlen)) { 3861 nbd++; 3862 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 3863 &tx_start_bd, hlen, 3864 bd_prod); 3865 } 3866 if (!CHIP_IS_E1x(bp)) 3867 bnx2x_set_pbd_gso_e2(skb, &pbd_e2_parsing_data, 3868 xmit_type); 3869 else 3870 bnx2x_set_pbd_gso(skb, pbd_e1x, first_bd, xmit_type); 3871 } 3872 3873 /* Set the PBD's parsing_data field if not zero 3874 * (for the chips newer than 57711). 3875 */ 3876 if (pbd_e2_parsing_data) 3877 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 3878 3879 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 3880 3881 /* Handle fragmented skb */ 3882 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3883 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3884 3885 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 3886 skb_frag_size(frag), DMA_TO_DEVICE); 3887 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3888 unsigned int pkts_compl = 0, bytes_compl = 0; 3889 3890 DP(NETIF_MSG_TX_QUEUED, 3891 "Unable to map page - dropping packet...\n"); 3892 3893 /* we need unmap all buffers already mapped 3894 * for this SKB; 3895 * first_bd->nbd need to be properly updated 3896 * before call to bnx2x_free_tx_pkt 3897 */ 3898 first_bd->nbd = cpu_to_le16(nbd); 3899 bnx2x_free_tx_pkt(bp, txdata, 3900 TX_BD(txdata->tx_pkt_prod), 3901 &pkts_compl, &bytes_compl); 3902 return NETDEV_TX_OK; 3903 } 3904 3905 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3906 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3907 if (total_pkt_bd == NULL) 3908 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3909 3910 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3911 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3912 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 3913 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 3914 nbd++; 3915 3916 DP(NETIF_MSG_TX_QUEUED, 3917 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 3918 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 3919 le16_to_cpu(tx_data_bd->nbytes)); 3920 } 3921 3922 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 3923 3924 /* update with actual num BDs */ 3925 first_bd->nbd = cpu_to_le16(nbd); 3926 3927 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3928 3929 /* now send a tx doorbell, counting the next BD 3930 * if the packet contains or ends with it 3931 */ 3932 if (TX_BD_POFF(bd_prod) < nbd) 3933 nbd++; 3934 3935 /* total_pkt_bytes should be set on the first data BD if 3936 * it's not an LSO packet and there is more than one 3937 * data BD. In this case pkt_size is limited by an MTU value. 3938 * However we prefer to set it for an LSO packet (while we don't 3939 * have to) in order to save some CPU cycles in a none-LSO 3940 * case, when we much more care about them. 3941 */ 3942 if (total_pkt_bd != NULL) 3943 total_pkt_bd->total_pkt_bytes = pkt_size; 3944 3945 if (pbd_e1x) 3946 DP(NETIF_MSG_TX_QUEUED, 3947 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 3948 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 3949 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 3950 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 3951 le16_to_cpu(pbd_e1x->total_hlen_w)); 3952 if (pbd_e2) 3953 DP(NETIF_MSG_TX_QUEUED, 3954 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 3955 pbd_e2, 3956 pbd_e2->data.mac_addr.dst_hi, 3957 pbd_e2->data.mac_addr.dst_mid, 3958 pbd_e2->data.mac_addr.dst_lo, 3959 pbd_e2->data.mac_addr.src_hi, 3960 pbd_e2->data.mac_addr.src_mid, 3961 pbd_e2->data.mac_addr.src_lo, 3962 pbd_e2->parsing_data); 3963 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 3964 3965 netdev_tx_sent_queue(txq, skb->len); 3966 3967 skb_tx_timestamp(skb); 3968 3969 txdata->tx_pkt_prod++; 3970 /* 3971 * Make sure that the BD data is updated before updating the producer 3972 * since FW might read the BD right after the producer is updated. 3973 * This is only applicable for weak-ordered memory model archs such 3974 * as IA-64. The following barrier is also mandatory since FW will 3975 * assumes packets must have BDs. 3976 */ 3977 wmb(); 3978 3979 txdata->tx_db.data.prod += nbd; 3980 barrier(); 3981 3982 DOORBELL(bp, txdata->cid, txdata->tx_db.raw); 3983 3984 mmiowb(); 3985 3986 txdata->tx_bd_prod += nbd; 3987 3988 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 3989 netif_tx_stop_queue(txq); 3990 3991 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 3992 * ordering of set_bit() in netif_tx_stop_queue() and read of 3993 * fp->bd_tx_cons */ 3994 smp_mb(); 3995 3996 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3997 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 3998 netif_tx_wake_queue(txq); 3999 } 4000 txdata->tx_pkt++; 4001 4002 return NETDEV_TX_OK; 4003 } 4004 4005 /** 4006 * bnx2x_setup_tc - routine to configure net_device for multi tc 4007 * 4008 * @netdev: net device to configure 4009 * @tc: number of traffic classes to enable 4010 * 4011 * callback connected to the ndo_setup_tc function pointer 4012 */ 4013 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4014 { 4015 int cos, prio, count, offset; 4016 struct bnx2x *bp = netdev_priv(dev); 4017 4018 /* setup tc must be called under rtnl lock */ 4019 ASSERT_RTNL(); 4020 4021 /* no traffic classes requested. Aborting */ 4022 if (!num_tc) { 4023 netdev_reset_tc(dev); 4024 return 0; 4025 } 4026 4027 /* requested to support too many traffic classes */ 4028 if (num_tc > bp->max_cos) { 4029 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4030 num_tc, bp->max_cos); 4031 return -EINVAL; 4032 } 4033 4034 /* declare amount of supported traffic classes */ 4035 if (netdev_set_num_tc(dev, num_tc)) { 4036 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4037 return -EINVAL; 4038 } 4039 4040 /* configure priority to traffic class mapping */ 4041 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4042 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[prio]); 4043 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4044 "mapping priority %d to tc %d\n", 4045 prio, bp->prio_to_cos[prio]); 4046 } 4047 4048 /* Use this configuration to differentiate tc0 from other COSes 4049 This can be used for ets or pfc, and save the effort of setting 4050 up a multio class queue disc or negotiating DCBX with a switch 4051 netdev_set_prio_tc_map(dev, 0, 0); 4052 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4053 for (prio = 1; prio < 16; prio++) { 4054 netdev_set_prio_tc_map(dev, prio, 1); 4055 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4056 } */ 4057 4058 /* configure traffic class to transmission queue mapping */ 4059 for (cos = 0; cos < bp->max_cos; cos++) { 4060 count = BNX2X_NUM_ETH_QUEUES(bp); 4061 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4062 netdev_set_tc_queue(dev, cos, count, offset); 4063 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4064 "mapping tc %d to offset %d count %d\n", 4065 cos, offset, count); 4066 } 4067 4068 return 0; 4069 } 4070 4071 /* called with rtnl_lock */ 4072 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4073 { 4074 struct sockaddr *addr = p; 4075 struct bnx2x *bp = netdev_priv(dev); 4076 int rc = 0; 4077 4078 if (!bnx2x_is_valid_ether_addr(bp, addr->sa_data)) { 4079 BNX2X_ERR("Requested MAC address is not valid\n"); 4080 return -EINVAL; 4081 } 4082 4083 if ((IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) && 4084 !is_zero_ether_addr(addr->sa_data)) { 4085 BNX2X_ERR("Can't configure non-zero address on iSCSI or FCoE functions in MF-SD mode\n"); 4086 return -EINVAL; 4087 } 4088 4089 if (netif_running(dev)) { 4090 rc = bnx2x_set_eth_mac(bp, false); 4091 if (rc) 4092 return rc; 4093 } 4094 4095 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4096 4097 if (netif_running(dev)) 4098 rc = bnx2x_set_eth_mac(bp, true); 4099 4100 return rc; 4101 } 4102 4103 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4104 { 4105 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4106 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4107 u8 cos; 4108 4109 /* Common */ 4110 4111 if (IS_FCOE_IDX(fp_index)) { 4112 memset(sb, 0, sizeof(union host_hc_status_block)); 4113 fp->status_blk_mapping = 0; 4114 } else { 4115 /* status blocks */ 4116 if (!CHIP_IS_E1x(bp)) 4117 BNX2X_PCI_FREE(sb->e2_sb, 4118 bnx2x_fp(bp, fp_index, 4119 status_blk_mapping), 4120 sizeof(struct host_hc_status_block_e2)); 4121 else 4122 BNX2X_PCI_FREE(sb->e1x_sb, 4123 bnx2x_fp(bp, fp_index, 4124 status_blk_mapping), 4125 sizeof(struct host_hc_status_block_e1x)); 4126 } 4127 4128 /* Rx */ 4129 if (!skip_rx_queue(bp, fp_index)) { 4130 bnx2x_free_rx_bds(fp); 4131 4132 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4133 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4134 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4135 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4136 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4137 4138 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4139 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4140 sizeof(struct eth_fast_path_rx_cqe) * 4141 NUM_RCQ_BD); 4142 4143 /* SGE ring */ 4144 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4145 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4146 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4147 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4148 } 4149 4150 /* Tx */ 4151 if (!skip_tx_queue(bp, fp_index)) { 4152 /* fastpath tx rings: tx_buf tx_desc */ 4153 for_each_cos_in_tx_queue(fp, cos) { 4154 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4155 4156 DP(NETIF_MSG_IFDOWN, 4157 "freeing tx memory of fp %d cos %d cid %d\n", 4158 fp_index, cos, txdata->cid); 4159 4160 BNX2X_FREE(txdata->tx_buf_ring); 4161 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4162 txdata->tx_desc_mapping, 4163 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4164 } 4165 } 4166 /* end of fastpath */ 4167 } 4168 4169 void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4170 { 4171 int i; 4172 for_each_cnic_queue(bp, i) 4173 bnx2x_free_fp_mem_at(bp, i); 4174 } 4175 4176 void bnx2x_free_fp_mem(struct bnx2x *bp) 4177 { 4178 int i; 4179 for_each_eth_queue(bp, i) 4180 bnx2x_free_fp_mem_at(bp, i); 4181 } 4182 4183 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4184 { 4185 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4186 if (!CHIP_IS_E1x(bp)) { 4187 bnx2x_fp(bp, index, sb_index_values) = 4188 (__le16 *)status_blk.e2_sb->sb.index_values; 4189 bnx2x_fp(bp, index, sb_running_index) = 4190 (__le16 *)status_blk.e2_sb->sb.running_index; 4191 } else { 4192 bnx2x_fp(bp, index, sb_index_values) = 4193 (__le16 *)status_blk.e1x_sb->sb.index_values; 4194 bnx2x_fp(bp, index, sb_running_index) = 4195 (__le16 *)status_blk.e1x_sb->sb.running_index; 4196 } 4197 } 4198 4199 /* Returns the number of actually allocated BDs */ 4200 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4201 int rx_ring_size) 4202 { 4203 struct bnx2x *bp = fp->bp; 4204 u16 ring_prod, cqe_ring_prod; 4205 int i, failure_cnt = 0; 4206 4207 fp->rx_comp_cons = 0; 4208 cqe_ring_prod = ring_prod = 0; 4209 4210 /* This routine is called only during fo init so 4211 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4212 */ 4213 for (i = 0; i < rx_ring_size; i++) { 4214 if (bnx2x_alloc_rx_data(bp, fp, ring_prod) < 0) { 4215 failure_cnt++; 4216 continue; 4217 } 4218 ring_prod = NEXT_RX_IDX(ring_prod); 4219 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4220 WARN_ON(ring_prod <= (i - failure_cnt)); 4221 } 4222 4223 if (failure_cnt) 4224 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4225 i - failure_cnt, fp->index); 4226 4227 fp->rx_bd_prod = ring_prod; 4228 /* Limit the CQE producer by the CQE ring size */ 4229 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4230 cqe_ring_prod); 4231 fp->rx_pkt = fp->rx_calls = 0; 4232 4233 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4234 4235 return i - failure_cnt; 4236 } 4237 4238 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4239 { 4240 int i; 4241 4242 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4243 struct eth_rx_cqe_next_page *nextpg; 4244 4245 nextpg = (struct eth_rx_cqe_next_page *) 4246 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4247 nextpg->addr_hi = 4248 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4249 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4250 nextpg->addr_lo = 4251 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4252 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4253 } 4254 } 4255 4256 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4257 { 4258 union host_hc_status_block *sb; 4259 struct bnx2x_fastpath *fp = &bp->fp[index]; 4260 int ring_size = 0; 4261 u8 cos; 4262 int rx_ring_size = 0; 4263 4264 if (!bp->rx_ring_size && 4265 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) { 4266 rx_ring_size = MIN_RX_SIZE_NONTPA; 4267 bp->rx_ring_size = rx_ring_size; 4268 } else if (!bp->rx_ring_size) { 4269 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4270 4271 if (CHIP_IS_E3(bp)) { 4272 u32 cfg = SHMEM_RD(bp, 4273 dev_info.port_hw_config[BP_PORT(bp)]. 4274 default_cfg); 4275 4276 /* Decrease ring size for 1G functions */ 4277 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4278 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4279 rx_ring_size /= 10; 4280 } 4281 4282 /* allocate at least number of buffers required by FW */ 4283 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4284 MIN_RX_SIZE_TPA, rx_ring_size); 4285 4286 bp->rx_ring_size = rx_ring_size; 4287 } else /* if rx_ring_size specified - use it */ 4288 rx_ring_size = bp->rx_ring_size; 4289 4290 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4291 4292 /* Common */ 4293 sb = &bnx2x_fp(bp, index, status_blk); 4294 4295 if (!IS_FCOE_IDX(index)) { 4296 /* status blocks */ 4297 if (!CHIP_IS_E1x(bp)) 4298 BNX2X_PCI_ALLOC(sb->e2_sb, 4299 &bnx2x_fp(bp, index, status_blk_mapping), 4300 sizeof(struct host_hc_status_block_e2)); 4301 else 4302 BNX2X_PCI_ALLOC(sb->e1x_sb, 4303 &bnx2x_fp(bp, index, status_blk_mapping), 4304 sizeof(struct host_hc_status_block_e1x)); 4305 } 4306 4307 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4308 * set shortcuts for it. 4309 */ 4310 if (!IS_FCOE_IDX(index)) 4311 set_sb_shortcuts(bp, index); 4312 4313 /* Tx */ 4314 if (!skip_tx_queue(bp, index)) { 4315 /* fastpath tx rings: tx_buf tx_desc */ 4316 for_each_cos_in_tx_queue(fp, cos) { 4317 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4318 4319 DP(NETIF_MSG_IFUP, 4320 "allocating tx memory of fp %d cos %d\n", 4321 index, cos); 4322 4323 BNX2X_ALLOC(txdata->tx_buf_ring, 4324 sizeof(struct sw_tx_bd) * NUM_TX_BD); 4325 BNX2X_PCI_ALLOC(txdata->tx_desc_ring, 4326 &txdata->tx_desc_mapping, 4327 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4328 } 4329 } 4330 4331 /* Rx */ 4332 if (!skip_rx_queue(bp, index)) { 4333 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4334 BNX2X_ALLOC(bnx2x_fp(bp, index, rx_buf_ring), 4335 sizeof(struct sw_rx_bd) * NUM_RX_BD); 4336 BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_desc_ring), 4337 &bnx2x_fp(bp, index, rx_desc_mapping), 4338 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4339 4340 /* Seed all CQEs by 1s */ 4341 BNX2X_PCI_FALLOC(bnx2x_fp(bp, index, rx_comp_ring), 4342 &bnx2x_fp(bp, index, rx_comp_mapping), 4343 sizeof(struct eth_fast_path_rx_cqe) * 4344 NUM_RCQ_BD); 4345 4346 /* SGE ring */ 4347 BNX2X_ALLOC(bnx2x_fp(bp, index, rx_page_ring), 4348 sizeof(struct sw_rx_page) * NUM_RX_SGE); 4349 BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_sge_ring), 4350 &bnx2x_fp(bp, index, rx_sge_mapping), 4351 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4352 /* RX BD ring */ 4353 bnx2x_set_next_page_rx_bd(fp); 4354 4355 /* CQ ring */ 4356 bnx2x_set_next_page_rx_cq(fp); 4357 4358 /* BDs */ 4359 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4360 if (ring_size < rx_ring_size) 4361 goto alloc_mem_err; 4362 } 4363 4364 return 0; 4365 4366 /* handles low memory cases */ 4367 alloc_mem_err: 4368 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4369 index, ring_size); 4370 /* FW will drop all packets if queue is not big enough, 4371 * In these cases we disable the queue 4372 * Min size is different for OOO, TPA and non-TPA queues 4373 */ 4374 if (ring_size < (fp->disable_tpa ? 4375 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4376 /* release memory allocated for this queue */ 4377 bnx2x_free_fp_mem_at(bp, index); 4378 return -ENOMEM; 4379 } 4380 return 0; 4381 } 4382 4383 int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4384 { 4385 if (!NO_FCOE(bp)) 4386 /* FCoE */ 4387 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4388 /* we will fail load process instead of mark 4389 * NO_FCOE_FLAG 4390 */ 4391 return -ENOMEM; 4392 4393 return 0; 4394 } 4395 4396 int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4397 { 4398 int i; 4399 4400 /* 1. Allocate FP for leading - fatal if error 4401 * 2. Allocate RSS - fix number of queues if error 4402 */ 4403 4404 /* leading */ 4405 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4406 return -ENOMEM; 4407 4408 /* RSS */ 4409 for_each_nondefault_eth_queue(bp, i) 4410 if (bnx2x_alloc_fp_mem_at(bp, i)) 4411 break; 4412 4413 /* handle memory failures */ 4414 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4415 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4416 4417 WARN_ON(delta < 0); 4418 bnx2x_shrink_eth_fp(bp, delta); 4419 if (CNIC_SUPPORT(bp)) 4420 /* move non eth FPs next to last eth FP 4421 * must be done in that order 4422 * FCOE_IDX < FWD_IDX < OOO_IDX 4423 */ 4424 4425 /* move FCoE fp even NO_FCOE_FLAG is on */ 4426 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4427 bp->num_ethernet_queues -= delta; 4428 bp->num_queues = bp->num_ethernet_queues + 4429 bp->num_cnic_queues; 4430 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4431 bp->num_queues + delta, bp->num_queues); 4432 } 4433 4434 return 0; 4435 } 4436 4437 void bnx2x_free_mem_bp(struct bnx2x *bp) 4438 { 4439 int i; 4440 4441 for (i = 0; i < bp->fp_array_size; i++) 4442 kfree(bp->fp[i].tpa_info); 4443 kfree(bp->fp); 4444 kfree(bp->sp_objs); 4445 kfree(bp->fp_stats); 4446 kfree(bp->bnx2x_txq); 4447 kfree(bp->msix_table); 4448 kfree(bp->ilt); 4449 } 4450 4451 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4452 { 4453 struct bnx2x_fastpath *fp; 4454 struct msix_entry *tbl; 4455 struct bnx2x_ilt *ilt; 4456 int msix_table_size = 0; 4457 int fp_array_size, txq_array_size; 4458 int i; 4459 4460 /* 4461 * The biggest MSI-X table we might need is as a maximum number of fast 4462 * path IGU SBs plus default SB (for PF only). 4463 */ 4464 msix_table_size = bp->igu_sb_cnt; 4465 if (IS_PF(bp)) 4466 msix_table_size++; 4467 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4468 4469 /* fp array: RSS plus CNIC related L2 queues */ 4470 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4471 bp->fp_array_size = fp_array_size; 4472 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4473 4474 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4475 if (!fp) 4476 goto alloc_err; 4477 for (i = 0; i < bp->fp_array_size; i++) { 4478 fp[i].tpa_info = 4479 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4480 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4481 if (!(fp[i].tpa_info)) 4482 goto alloc_err; 4483 } 4484 4485 bp->fp = fp; 4486 4487 /* allocate sp objs */ 4488 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4489 GFP_KERNEL); 4490 if (!bp->sp_objs) 4491 goto alloc_err; 4492 4493 /* allocate fp_stats */ 4494 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4495 GFP_KERNEL); 4496 if (!bp->fp_stats) 4497 goto alloc_err; 4498 4499 /* Allocate memory for the transmission queues array */ 4500 txq_array_size = 4501 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4502 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4503 4504 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4505 GFP_KERNEL); 4506 if (!bp->bnx2x_txq) 4507 goto alloc_err; 4508 4509 /* msix table */ 4510 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4511 if (!tbl) 4512 goto alloc_err; 4513 bp->msix_table = tbl; 4514 4515 /* ilt */ 4516 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4517 if (!ilt) 4518 goto alloc_err; 4519 bp->ilt = ilt; 4520 4521 return 0; 4522 alloc_err: 4523 bnx2x_free_mem_bp(bp); 4524 return -ENOMEM; 4525 } 4526 4527 int bnx2x_reload_if_running(struct net_device *dev) 4528 { 4529 struct bnx2x *bp = netdev_priv(dev); 4530 4531 if (unlikely(!netif_running(dev))) 4532 return 0; 4533 4534 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4535 return bnx2x_nic_load(bp, LOAD_NORMAL); 4536 } 4537 4538 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4539 { 4540 u32 sel_phy_idx = 0; 4541 if (bp->link_params.num_phys <= 1) 4542 return INT_PHY; 4543 4544 if (bp->link_vars.link_up) { 4545 sel_phy_idx = EXT_PHY1; 4546 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4547 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4548 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4549 sel_phy_idx = EXT_PHY2; 4550 } else { 4551 4552 switch (bnx2x_phy_selection(&bp->link_params)) { 4553 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4554 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4555 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4556 sel_phy_idx = EXT_PHY1; 4557 break; 4558 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4559 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4560 sel_phy_idx = EXT_PHY2; 4561 break; 4562 } 4563 } 4564 4565 return sel_phy_idx; 4566 } 4567 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4568 { 4569 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4570 /* 4571 * The selected activated PHY is always after swapping (in case PHY 4572 * swapping is enabled). So when swapping is enabled, we need to reverse 4573 * the configuration 4574 */ 4575 4576 if (bp->link_params.multi_phy_config & 4577 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4578 if (sel_phy_idx == EXT_PHY1) 4579 sel_phy_idx = EXT_PHY2; 4580 else if (sel_phy_idx == EXT_PHY2) 4581 sel_phy_idx = EXT_PHY1; 4582 } 4583 return LINK_CONFIG_IDX(sel_phy_idx); 4584 } 4585 4586 #ifdef NETDEV_FCOE_WWNN 4587 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4588 { 4589 struct bnx2x *bp = netdev_priv(dev); 4590 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4591 4592 switch (type) { 4593 case NETDEV_FCOE_WWNN: 4594 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4595 cp->fcoe_wwn_node_name_lo); 4596 break; 4597 case NETDEV_FCOE_WWPN: 4598 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4599 cp->fcoe_wwn_port_name_lo); 4600 break; 4601 default: 4602 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4603 return -EINVAL; 4604 } 4605 4606 return 0; 4607 } 4608 #endif 4609 4610 /* called with rtnl_lock */ 4611 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4612 { 4613 struct bnx2x *bp = netdev_priv(dev); 4614 4615 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4616 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4617 return -EAGAIN; 4618 } 4619 4620 if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || 4621 ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) { 4622 BNX2X_ERR("Can't support requested MTU size\n"); 4623 return -EINVAL; 4624 } 4625 4626 /* This does not race with packet allocation 4627 * because the actual alloc size is 4628 * only updated as part of load 4629 */ 4630 dev->mtu = new_mtu; 4631 4632 return bnx2x_reload_if_running(dev); 4633 } 4634 4635 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4636 netdev_features_t features) 4637 { 4638 struct bnx2x *bp = netdev_priv(dev); 4639 4640 /* TPA requires Rx CSUM offloading */ 4641 if (!(features & NETIF_F_RXCSUM) || bp->disable_tpa) { 4642 features &= ~NETIF_F_LRO; 4643 features &= ~NETIF_F_GRO; 4644 } 4645 4646 return features; 4647 } 4648 4649 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4650 { 4651 struct bnx2x *bp = netdev_priv(dev); 4652 u32 flags = bp->flags; 4653 u32 changes; 4654 bool bnx2x_reload = false; 4655 4656 if (features & NETIF_F_LRO) 4657 flags |= TPA_ENABLE_FLAG; 4658 else 4659 flags &= ~TPA_ENABLE_FLAG; 4660 4661 if (features & NETIF_F_GRO) 4662 flags |= GRO_ENABLE_FLAG; 4663 else 4664 flags &= ~GRO_ENABLE_FLAG; 4665 4666 if (features & NETIF_F_LOOPBACK) { 4667 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4668 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4669 bnx2x_reload = true; 4670 } 4671 } else { 4672 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4673 bp->link_params.loopback_mode = LOOPBACK_NONE; 4674 bnx2x_reload = true; 4675 } 4676 } 4677 4678 changes = flags ^ bp->flags; 4679 4680 /* if GRO is changed while LRO is enabled, don't force a reload */ 4681 if ((changes & GRO_ENABLE_FLAG) && (flags & TPA_ENABLE_FLAG)) 4682 changes &= ~GRO_ENABLE_FLAG; 4683 4684 if (changes) 4685 bnx2x_reload = true; 4686 4687 bp->flags = flags; 4688 4689 if (bnx2x_reload) { 4690 if (bp->recovery_state == BNX2X_RECOVERY_DONE) 4691 return bnx2x_reload_if_running(dev); 4692 /* else: bnx2x_nic_load() will be called at end of recovery */ 4693 } 4694 4695 return 0; 4696 } 4697 4698 void bnx2x_tx_timeout(struct net_device *dev) 4699 { 4700 struct bnx2x *bp = netdev_priv(dev); 4701 4702 #ifdef BNX2X_STOP_ON_ERROR 4703 if (!bp->panic) 4704 bnx2x_panic(); 4705 #endif 4706 4707 smp_mb__before_clear_bit(); 4708 set_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state); 4709 smp_mb__after_clear_bit(); 4710 4711 /* This allows the netif to be shutdown gracefully before resetting */ 4712 schedule_delayed_work(&bp->sp_rtnl_task, 0); 4713 } 4714 4715 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) 4716 { 4717 struct net_device *dev = pci_get_drvdata(pdev); 4718 struct bnx2x *bp; 4719 4720 if (!dev) { 4721 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4722 return -ENODEV; 4723 } 4724 bp = netdev_priv(dev); 4725 4726 rtnl_lock(); 4727 4728 pci_save_state(pdev); 4729 4730 if (!netif_running(dev)) { 4731 rtnl_unlock(); 4732 return 0; 4733 } 4734 4735 netif_device_detach(dev); 4736 4737 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 4738 4739 bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); 4740 4741 rtnl_unlock(); 4742 4743 return 0; 4744 } 4745 4746 int bnx2x_resume(struct pci_dev *pdev) 4747 { 4748 struct net_device *dev = pci_get_drvdata(pdev); 4749 struct bnx2x *bp; 4750 int rc; 4751 4752 if (!dev) { 4753 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4754 return -ENODEV; 4755 } 4756 bp = netdev_priv(dev); 4757 4758 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4759 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 4760 return -EAGAIN; 4761 } 4762 4763 rtnl_lock(); 4764 4765 pci_restore_state(pdev); 4766 4767 if (!netif_running(dev)) { 4768 rtnl_unlock(); 4769 return 0; 4770 } 4771 4772 bnx2x_set_power_state(bp, PCI_D0); 4773 netif_device_attach(dev); 4774 4775 rc = bnx2x_nic_load(bp, LOAD_OPEN); 4776 4777 rtnl_unlock(); 4778 4779 return rc; 4780 } 4781 4782 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 4783 u32 cid) 4784 { 4785 /* ustorm cxt validation */ 4786 cxt->ustorm_ag_context.cdu_usage = 4787 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 4788 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 4789 /* xcontext validation */ 4790 cxt->xstorm_ag_context.cdu_reserved = 4791 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 4792 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 4793 } 4794 4795 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 4796 u8 fw_sb_id, u8 sb_index, 4797 u8 ticks) 4798 { 4799 u32 addr = BAR_CSTRORM_INTMEM + 4800 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 4801 REG_WR8(bp, addr, ticks); 4802 DP(NETIF_MSG_IFUP, 4803 "port %x fw_sb_id %d sb_index %d ticks %d\n", 4804 port, fw_sb_id, sb_index, ticks); 4805 } 4806 4807 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 4808 u16 fw_sb_id, u8 sb_index, 4809 u8 disable) 4810 { 4811 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 4812 u32 addr = BAR_CSTRORM_INTMEM + 4813 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 4814 u8 flags = REG_RD8(bp, addr); 4815 /* clear and set */ 4816 flags &= ~HC_INDEX_DATA_HC_ENABLED; 4817 flags |= enable_flag; 4818 REG_WR8(bp, addr, flags); 4819 DP(NETIF_MSG_IFUP, 4820 "port %x fw_sb_id %d sb_index %d disable %d\n", 4821 port, fw_sb_id, sb_index, disable); 4822 } 4823 4824 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 4825 u8 sb_index, u8 disable, u16 usec) 4826 { 4827 int port = BP_PORT(bp); 4828 u8 ticks = usec / BNX2X_BTR; 4829 4830 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 4831 4832 disable = disable ? 1 : (usec ? 0 : 1); 4833 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 4834 } 4835