1 /* bnx2x_cmn.c: Broadcom Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 * 9 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 10 * Written by: Eliezer Tamir 11 * Based on code from Michael Chan's bnx2 driver 12 * UDP CSUM errata workaround by Arik Gendelman 13 * Slowpath and fastpath rework by Vladislav Zolotarov 14 * Statistics and Link management by Yitchak Gertner 15 * 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/etherdevice.h> 21 #include <linux/if_vlan.h> 22 #include <linux/interrupt.h> 23 #include <linux/ip.h> 24 #include <linux/crash_dump.h> 25 #include <net/tcp.h> 26 #include <net/ipv6.h> 27 #include <net/ip6_checksum.h> 28 #include <net/busy_poll.h> 29 #include <linux/prefetch.h> 30 #include "bnx2x_cmn.h" 31 #include "bnx2x_init.h" 32 #include "bnx2x_sp.h" 33 34 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 35 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 36 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 37 static int bnx2x_poll(struct napi_struct *napi, int budget); 38 39 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 40 { 41 int i; 42 43 /* Add NAPI objects */ 44 for_each_rx_queue_cnic(bp, i) { 45 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 46 bnx2x_poll, NAPI_POLL_WEIGHT); 47 napi_hash_add(&bnx2x_fp(bp, i, napi)); 48 } 49 } 50 51 static void bnx2x_add_all_napi(struct bnx2x *bp) 52 { 53 int i; 54 55 /* Add NAPI objects */ 56 for_each_eth_queue(bp, i) { 57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 58 bnx2x_poll, NAPI_POLL_WEIGHT); 59 napi_hash_add(&bnx2x_fp(bp, i, napi)); 60 } 61 } 62 63 static int bnx2x_calc_num_queues(struct bnx2x *bp) 64 { 65 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues(); 66 67 /* Reduce memory usage in kdump environment by using only one queue */ 68 if (is_kdump_kernel()) 69 nq = 1; 70 71 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp)); 72 return nq; 73 } 74 75 /** 76 * bnx2x_move_fp - move content of the fastpath structure. 77 * 78 * @bp: driver handle 79 * @from: source FP index 80 * @to: destination FP index 81 * 82 * Makes sure the contents of the bp->fp[to].napi is kept 83 * intact. This is done by first copying the napi struct from 84 * the target to the source, and then mem copying the entire 85 * source onto the target. Update txdata pointers and related 86 * content. 87 */ 88 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 89 { 90 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 91 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 92 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 93 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 94 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 95 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 96 int old_max_eth_txqs, new_max_eth_txqs; 97 int old_txdata_index = 0, new_txdata_index = 0; 98 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 99 100 /* Copy the NAPI object as it has been already initialized */ 101 from_fp->napi = to_fp->napi; 102 103 /* Move bnx2x_fastpath contents */ 104 memcpy(to_fp, from_fp, sizeof(*to_fp)); 105 to_fp->index = to; 106 107 /* Retain the tpa_info of the original `to' version as we don't want 108 * 2 FPs to contain the same tpa_info pointer. 109 */ 110 to_fp->tpa_info = old_tpa_info; 111 112 /* move sp_objs contents as well, as their indices match fp ones */ 113 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 114 115 /* move fp_stats contents as well, as their indices match fp ones */ 116 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 117 118 /* Update txdata pointers in fp and move txdata content accordingly: 119 * Each fp consumes 'max_cos' txdata structures, so the index should be 120 * decremented by max_cos x delta. 121 */ 122 123 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 124 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 125 (bp)->max_cos; 126 if (from == FCOE_IDX(bp)) { 127 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 128 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 129 } 130 131 memcpy(&bp->bnx2x_txq[new_txdata_index], 132 &bp->bnx2x_txq[old_txdata_index], 133 sizeof(struct bnx2x_fp_txdata)); 134 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 135 } 136 137 /** 138 * bnx2x_fill_fw_str - Fill buffer with FW version string. 139 * 140 * @bp: driver handle 141 * @buf: character buffer to fill with the fw name 142 * @buf_len: length of the above buffer 143 * 144 */ 145 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 146 { 147 if (IS_PF(bp)) { 148 u8 phy_fw_ver[PHY_FW_VER_LEN]; 149 150 phy_fw_ver[0] = '\0'; 151 bnx2x_get_ext_phy_fw_version(&bp->link_params, 152 phy_fw_ver, PHY_FW_VER_LEN); 153 strlcpy(buf, bp->fw_ver, buf_len); 154 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 155 "bc %d.%d.%d%s%s", 156 (bp->common.bc_ver & 0xff0000) >> 16, 157 (bp->common.bc_ver & 0xff00) >> 8, 158 (bp->common.bc_ver & 0xff), 159 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 160 } else { 161 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 162 } 163 } 164 165 /** 166 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 167 * 168 * @bp: driver handle 169 * @delta: number of eth queues which were not allocated 170 */ 171 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 172 { 173 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 174 175 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 176 * backward along the array could cause memory to be overridden 177 */ 178 for (cos = 1; cos < bp->max_cos; cos++) { 179 for (i = 0; i < old_eth_num - delta; i++) { 180 struct bnx2x_fastpath *fp = &bp->fp[i]; 181 int new_idx = cos * (old_eth_num - delta) + i; 182 183 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 184 sizeof(struct bnx2x_fp_txdata)); 185 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 186 } 187 } 188 } 189 190 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 191 192 /* free skb in the packet ring at pos idx 193 * return idx of last bd freed 194 */ 195 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 196 u16 idx, unsigned int *pkts_compl, 197 unsigned int *bytes_compl) 198 { 199 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 200 struct eth_tx_start_bd *tx_start_bd; 201 struct eth_tx_bd *tx_data_bd; 202 struct sk_buff *skb = tx_buf->skb; 203 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 204 int nbd; 205 u16 split_bd_len = 0; 206 207 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 208 prefetch(&skb->end); 209 210 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 211 txdata->txq_index, idx, tx_buf, skb); 212 213 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 214 215 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 216 #ifdef BNX2X_STOP_ON_ERROR 217 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 218 BNX2X_ERR("BAD nbd!\n"); 219 bnx2x_panic(); 220 } 221 #endif 222 new_cons = nbd + tx_buf->first_bd; 223 224 /* Get the next bd */ 225 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 226 227 /* Skip a parse bd... */ 228 --nbd; 229 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 230 231 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { 232 /* Skip second parse bd... */ 233 --nbd; 234 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 235 } 236 237 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 238 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 239 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 240 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 241 --nbd; 242 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 243 } 244 245 /* unmap first bd */ 246 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 247 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 248 DMA_TO_DEVICE); 249 250 /* now free frags */ 251 while (nbd > 0) { 252 253 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 254 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 255 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 256 if (--nbd) 257 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 258 } 259 260 /* release skb */ 261 WARN_ON(!skb); 262 if (likely(skb)) { 263 (*pkts_compl)++; 264 (*bytes_compl) += skb->len; 265 } 266 267 dev_kfree_skb_any(skb); 268 tx_buf->first_bd = 0; 269 tx_buf->skb = NULL; 270 271 return new_cons; 272 } 273 274 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 275 { 276 struct netdev_queue *txq; 277 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 278 unsigned int pkts_compl = 0, bytes_compl = 0; 279 280 #ifdef BNX2X_STOP_ON_ERROR 281 if (unlikely(bp->panic)) 282 return -1; 283 #endif 284 285 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 286 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 287 sw_cons = txdata->tx_pkt_cons; 288 289 while (sw_cons != hw_cons) { 290 u16 pkt_cons; 291 292 pkt_cons = TX_BD(sw_cons); 293 294 DP(NETIF_MSG_TX_DONE, 295 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 296 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 297 298 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 299 &pkts_compl, &bytes_compl); 300 301 sw_cons++; 302 } 303 304 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 305 306 txdata->tx_pkt_cons = sw_cons; 307 txdata->tx_bd_cons = bd_cons; 308 309 /* Need to make the tx_bd_cons update visible to start_xmit() 310 * before checking for netif_tx_queue_stopped(). Without the 311 * memory barrier, there is a small possibility that 312 * start_xmit() will miss it and cause the queue to be stopped 313 * forever. 314 * On the other hand we need an rmb() here to ensure the proper 315 * ordering of bit testing in the following 316 * netif_tx_queue_stopped(txq) call. 317 */ 318 smp_mb(); 319 320 if (unlikely(netif_tx_queue_stopped(txq))) { 321 /* Taking tx_lock() is needed to prevent re-enabling the queue 322 * while it's empty. This could have happen if rx_action() gets 323 * suspended in bnx2x_tx_int() after the condition before 324 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 325 * 326 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 327 * sends some packets consuming the whole queue again-> 328 * stops the queue 329 */ 330 331 __netif_tx_lock(txq, smp_processor_id()); 332 333 if ((netif_tx_queue_stopped(txq)) && 334 (bp->state == BNX2X_STATE_OPEN) && 335 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 336 netif_tx_wake_queue(txq); 337 338 __netif_tx_unlock(txq); 339 } 340 return 0; 341 } 342 343 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 344 u16 idx) 345 { 346 u16 last_max = fp->last_max_sge; 347 348 if (SUB_S16(idx, last_max) > 0) 349 fp->last_max_sge = idx; 350 } 351 352 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 353 u16 sge_len, 354 struct eth_end_agg_rx_cqe *cqe) 355 { 356 struct bnx2x *bp = fp->bp; 357 u16 last_max, last_elem, first_elem; 358 u16 delta = 0; 359 u16 i; 360 361 if (!sge_len) 362 return; 363 364 /* First mark all used pages */ 365 for (i = 0; i < sge_len; i++) 366 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 367 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 368 369 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 370 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 371 372 /* Here we assume that the last SGE index is the biggest */ 373 prefetch((void *)(fp->sge_mask)); 374 bnx2x_update_last_max_sge(fp, 375 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 376 377 last_max = RX_SGE(fp->last_max_sge); 378 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 379 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 380 381 /* If ring is not full */ 382 if (last_elem + 1 != first_elem) 383 last_elem++; 384 385 /* Now update the prod */ 386 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 387 if (likely(fp->sge_mask[i])) 388 break; 389 390 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 391 delta += BIT_VEC64_ELEM_SZ; 392 } 393 394 if (delta > 0) { 395 fp->rx_sge_prod += delta; 396 /* clear page-end entries */ 397 bnx2x_clear_sge_mask_next_elems(fp); 398 } 399 400 DP(NETIF_MSG_RX_STATUS, 401 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 402 fp->last_max_sge, fp->rx_sge_prod); 403 } 404 405 /* Get Toeplitz hash value in the skb using the value from the 406 * CQE (calculated by HW). 407 */ 408 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 409 const struct eth_fast_path_rx_cqe *cqe, 410 enum pkt_hash_types *rxhash_type) 411 { 412 /* Get Toeplitz hash from CQE */ 413 if ((bp->dev->features & NETIF_F_RXHASH) && 414 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 415 enum eth_rss_hash_type htype; 416 417 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 418 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 419 (htype == TCP_IPV6_HASH_TYPE)) ? 420 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 421 422 return le32_to_cpu(cqe->rss_hash_result); 423 } 424 *rxhash_type = PKT_HASH_TYPE_NONE; 425 return 0; 426 } 427 428 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 429 u16 cons, u16 prod, 430 struct eth_fast_path_rx_cqe *cqe) 431 { 432 struct bnx2x *bp = fp->bp; 433 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 434 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 435 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 436 dma_addr_t mapping; 437 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 438 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 439 440 /* print error if current state != stop */ 441 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 442 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 443 444 /* Try to map an empty data buffer from the aggregation info */ 445 mapping = dma_map_single(&bp->pdev->dev, 446 first_buf->data + NET_SKB_PAD, 447 fp->rx_buf_size, DMA_FROM_DEVICE); 448 /* 449 * ...if it fails - move the skb from the consumer to the producer 450 * and set the current aggregation state as ERROR to drop it 451 * when TPA_STOP arrives. 452 */ 453 454 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 455 /* Move the BD from the consumer to the producer */ 456 bnx2x_reuse_rx_data(fp, cons, prod); 457 tpa_info->tpa_state = BNX2X_TPA_ERROR; 458 return; 459 } 460 461 /* move empty data from pool to prod */ 462 prod_rx_buf->data = first_buf->data; 463 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 464 /* point prod_bd to new data */ 465 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 466 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 467 468 /* move partial skb from cons to pool (don't unmap yet) */ 469 *first_buf = *cons_rx_buf; 470 471 /* mark bin state as START */ 472 tpa_info->parsing_flags = 473 le16_to_cpu(cqe->pars_flags.flags); 474 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 475 tpa_info->tpa_state = BNX2X_TPA_START; 476 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 477 tpa_info->placement_offset = cqe->placement_offset; 478 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 479 if (fp->mode == TPA_MODE_GRO) { 480 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 481 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 482 tpa_info->gro_size = gro_size; 483 } 484 485 #ifdef BNX2X_STOP_ON_ERROR 486 fp->tpa_queue_used |= (1 << queue); 487 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 488 fp->tpa_queue_used); 489 #endif 490 } 491 492 /* Timestamp option length allowed for TPA aggregation: 493 * 494 * nop nop kind length echo val 495 */ 496 #define TPA_TSTAMP_OPT_LEN 12 497 /** 498 * bnx2x_set_gro_params - compute GRO values 499 * 500 * @skb: packet skb 501 * @parsing_flags: parsing flags from the START CQE 502 * @len_on_bd: total length of the first packet for the 503 * aggregation. 504 * @pkt_len: length of all segments 505 * 506 * Approximate value of the MSS for this aggregation calculated using 507 * the first packet of it. 508 * Compute number of aggregated segments, and gso_type. 509 */ 510 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 511 u16 len_on_bd, unsigned int pkt_len, 512 u16 num_of_coalesced_segs) 513 { 514 /* TPA aggregation won't have either IP options or TCP options 515 * other than timestamp or IPv6 extension headers. 516 */ 517 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 518 519 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 520 PRS_FLAG_OVERETH_IPV6) { 521 hdrs_len += sizeof(struct ipv6hdr); 522 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 523 } else { 524 hdrs_len += sizeof(struct iphdr); 525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 526 } 527 528 /* Check if there was a TCP timestamp, if there is it's will 529 * always be 12 bytes length: nop nop kind length echo val. 530 * 531 * Otherwise FW would close the aggregation. 532 */ 533 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 534 hdrs_len += TPA_TSTAMP_OPT_LEN; 535 536 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 537 538 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 539 * to skb_shinfo(skb)->gso_segs 540 */ 541 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 542 } 543 544 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 545 u16 index, gfp_t gfp_mask) 546 { 547 struct page *page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 548 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 549 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 550 dma_addr_t mapping; 551 552 if (unlikely(page == NULL)) { 553 BNX2X_ERR("Can't alloc sge\n"); 554 return -ENOMEM; 555 } 556 557 mapping = dma_map_page(&bp->pdev->dev, page, 0, 558 SGE_PAGES, DMA_FROM_DEVICE); 559 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 560 __free_pages(page, PAGES_PER_SGE_SHIFT); 561 BNX2X_ERR("Can't map sge\n"); 562 return -ENOMEM; 563 } 564 565 sw_buf->page = page; 566 dma_unmap_addr_set(sw_buf, mapping, mapping); 567 568 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 569 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 570 571 return 0; 572 } 573 574 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 575 struct bnx2x_agg_info *tpa_info, 576 u16 pages, 577 struct sk_buff *skb, 578 struct eth_end_agg_rx_cqe *cqe, 579 u16 cqe_idx) 580 { 581 struct sw_rx_page *rx_pg, old_rx_pg; 582 u32 i, frag_len, frag_size; 583 int err, j, frag_id = 0; 584 u16 len_on_bd = tpa_info->len_on_bd; 585 u16 full_page = 0, gro_size = 0; 586 587 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 588 589 if (fp->mode == TPA_MODE_GRO) { 590 gro_size = tpa_info->gro_size; 591 full_page = tpa_info->full_page; 592 } 593 594 /* This is needed in order to enable forwarding support */ 595 if (frag_size) 596 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 597 le16_to_cpu(cqe->pkt_len), 598 le16_to_cpu(cqe->num_of_coalesced_segs)); 599 600 #ifdef BNX2X_STOP_ON_ERROR 601 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 602 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 603 pages, cqe_idx); 604 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 605 bnx2x_panic(); 606 return -EINVAL; 607 } 608 #endif 609 610 /* Run through the SGL and compose the fragmented skb */ 611 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 612 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 613 614 /* FW gives the indices of the SGE as if the ring is an array 615 (meaning that "next" element will consume 2 indices) */ 616 if (fp->mode == TPA_MODE_GRO) 617 frag_len = min_t(u32, frag_size, (u32)full_page); 618 else /* LRO */ 619 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 620 621 rx_pg = &fp->rx_page_ring[sge_idx]; 622 old_rx_pg = *rx_pg; 623 624 /* If we fail to allocate a substitute page, we simply stop 625 where we are and drop the whole packet */ 626 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 627 if (unlikely(err)) { 628 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 629 return err; 630 } 631 632 /* Unmap the page as we're going to pass it to the stack */ 633 dma_unmap_page(&bp->pdev->dev, 634 dma_unmap_addr(&old_rx_pg, mapping), 635 SGE_PAGES, DMA_FROM_DEVICE); 636 /* Add one frag and update the appropriate fields in the skb */ 637 if (fp->mode == TPA_MODE_LRO) 638 skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len); 639 else { /* GRO */ 640 int rem; 641 int offset = 0; 642 for (rem = frag_len; rem > 0; rem -= gro_size) { 643 int len = rem > gro_size ? gro_size : rem; 644 skb_fill_page_desc(skb, frag_id++, 645 old_rx_pg.page, offset, len); 646 if (offset) 647 get_page(old_rx_pg.page); 648 offset += len; 649 } 650 } 651 652 skb->data_len += frag_len; 653 skb->truesize += SGE_PAGES; 654 skb->len += frag_len; 655 656 frag_size -= frag_len; 657 } 658 659 return 0; 660 } 661 662 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 663 { 664 if (fp->rx_frag_size) 665 put_page(virt_to_head_page(data)); 666 else 667 kfree(data); 668 } 669 670 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 671 { 672 if (fp->rx_frag_size) { 673 /* GFP_KERNEL allocations are used only during initialization */ 674 if (unlikely(gfp_mask & __GFP_WAIT)) 675 return (void *)__get_free_page(gfp_mask); 676 677 return netdev_alloc_frag(fp->rx_frag_size); 678 } 679 680 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 681 } 682 683 #ifdef CONFIG_INET 684 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 685 { 686 const struct iphdr *iph = ip_hdr(skb); 687 struct tcphdr *th; 688 689 skb_set_transport_header(skb, sizeof(struct iphdr)); 690 th = tcp_hdr(skb); 691 692 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 693 iph->saddr, iph->daddr, 0); 694 } 695 696 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 697 { 698 struct ipv6hdr *iph = ipv6_hdr(skb); 699 struct tcphdr *th; 700 701 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 702 th = tcp_hdr(skb); 703 704 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 705 &iph->saddr, &iph->daddr, 0); 706 } 707 708 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 709 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 710 { 711 skb_set_network_header(skb, 0); 712 gro_func(bp, skb); 713 tcp_gro_complete(skb); 714 } 715 #endif 716 717 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 718 struct sk_buff *skb) 719 { 720 #ifdef CONFIG_INET 721 if (skb_shinfo(skb)->gso_size) { 722 switch (be16_to_cpu(skb->protocol)) { 723 case ETH_P_IP: 724 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 725 break; 726 case ETH_P_IPV6: 727 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 728 break; 729 default: 730 BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 731 be16_to_cpu(skb->protocol)); 732 } 733 } 734 #endif 735 skb_record_rx_queue(skb, fp->rx_queue); 736 napi_gro_receive(&fp->napi, skb); 737 } 738 739 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 740 struct bnx2x_agg_info *tpa_info, 741 u16 pages, 742 struct eth_end_agg_rx_cqe *cqe, 743 u16 cqe_idx) 744 { 745 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 746 u8 pad = tpa_info->placement_offset; 747 u16 len = tpa_info->len_on_bd; 748 struct sk_buff *skb = NULL; 749 u8 *new_data, *data = rx_buf->data; 750 u8 old_tpa_state = tpa_info->tpa_state; 751 752 tpa_info->tpa_state = BNX2X_TPA_STOP; 753 754 /* If we there was an error during the handling of the TPA_START - 755 * drop this aggregation. 756 */ 757 if (old_tpa_state == BNX2X_TPA_ERROR) 758 goto drop; 759 760 /* Try to allocate the new data */ 761 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 762 /* Unmap skb in the pool anyway, as we are going to change 763 pool entry status to BNX2X_TPA_STOP even if new skb allocation 764 fails. */ 765 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 766 fp->rx_buf_size, DMA_FROM_DEVICE); 767 if (likely(new_data)) 768 skb = build_skb(data, fp->rx_frag_size); 769 770 if (likely(skb)) { 771 #ifdef BNX2X_STOP_ON_ERROR 772 if (pad + len > fp->rx_buf_size) { 773 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 774 pad, len, fp->rx_buf_size); 775 bnx2x_panic(); 776 return; 777 } 778 #endif 779 780 skb_reserve(skb, pad + NET_SKB_PAD); 781 skb_put(skb, len); 782 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 783 784 skb->protocol = eth_type_trans(skb, bp->dev); 785 skb->ip_summed = CHECKSUM_UNNECESSARY; 786 787 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 788 skb, cqe, cqe_idx)) { 789 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 790 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 791 bnx2x_gro_receive(bp, fp, skb); 792 } else { 793 DP(NETIF_MSG_RX_STATUS, 794 "Failed to allocate new pages - dropping packet!\n"); 795 dev_kfree_skb_any(skb); 796 } 797 798 /* put new data in bin */ 799 rx_buf->data = new_data; 800 801 return; 802 } 803 if (new_data) 804 bnx2x_frag_free(fp, new_data); 805 drop: 806 /* drop the packet and keep the buffer in the bin */ 807 DP(NETIF_MSG_RX_STATUS, 808 "Failed to allocate or map a new skb - dropping packet!\n"); 809 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 810 } 811 812 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 813 u16 index, gfp_t gfp_mask) 814 { 815 u8 *data; 816 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 817 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 818 dma_addr_t mapping; 819 820 data = bnx2x_frag_alloc(fp, gfp_mask); 821 if (unlikely(data == NULL)) 822 return -ENOMEM; 823 824 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 825 fp->rx_buf_size, 826 DMA_FROM_DEVICE); 827 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 828 bnx2x_frag_free(fp, data); 829 BNX2X_ERR("Can't map rx data\n"); 830 return -ENOMEM; 831 } 832 833 rx_buf->data = data; 834 dma_unmap_addr_set(rx_buf, mapping, mapping); 835 836 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 837 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 838 839 return 0; 840 } 841 842 static 843 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 844 struct bnx2x_fastpath *fp, 845 struct bnx2x_eth_q_stats *qstats) 846 { 847 /* Do nothing if no L4 csum validation was done. 848 * We do not check whether IP csum was validated. For IPv4 we assume 849 * that if the card got as far as validating the L4 csum, it also 850 * validated the IP csum. IPv6 has no IP csum. 851 */ 852 if (cqe->fast_path_cqe.status_flags & 853 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 854 return; 855 856 /* If L4 validation was done, check if an error was found. */ 857 858 if (cqe->fast_path_cqe.type_error_flags & 859 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 860 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 861 qstats->hw_csum_err++; 862 else 863 skb->ip_summed = CHECKSUM_UNNECESSARY; 864 } 865 866 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 867 { 868 struct bnx2x *bp = fp->bp; 869 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 870 u16 sw_comp_cons, sw_comp_prod; 871 int rx_pkt = 0; 872 union eth_rx_cqe *cqe; 873 struct eth_fast_path_rx_cqe *cqe_fp; 874 875 #ifdef BNX2X_STOP_ON_ERROR 876 if (unlikely(bp->panic)) 877 return 0; 878 #endif 879 if (budget <= 0) 880 return rx_pkt; 881 882 bd_cons = fp->rx_bd_cons; 883 bd_prod = fp->rx_bd_prod; 884 bd_prod_fw = bd_prod; 885 sw_comp_cons = fp->rx_comp_cons; 886 sw_comp_prod = fp->rx_comp_prod; 887 888 comp_ring_cons = RCQ_BD(sw_comp_cons); 889 cqe = &fp->rx_comp_ring[comp_ring_cons]; 890 cqe_fp = &cqe->fast_path_cqe; 891 892 DP(NETIF_MSG_RX_STATUS, 893 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 894 895 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 896 struct sw_rx_bd *rx_buf = NULL; 897 struct sk_buff *skb; 898 u8 cqe_fp_flags; 899 enum eth_rx_cqe_type cqe_fp_type; 900 u16 len, pad, queue; 901 u8 *data; 902 u32 rxhash; 903 enum pkt_hash_types rxhash_type; 904 905 #ifdef BNX2X_STOP_ON_ERROR 906 if (unlikely(bp->panic)) 907 return 0; 908 #endif 909 910 bd_prod = RX_BD(bd_prod); 911 bd_cons = RX_BD(bd_cons); 912 913 /* A rmb() is required to ensure that the CQE is not read 914 * before it is written by the adapter DMA. PCI ordering 915 * rules will make sure the other fields are written before 916 * the marker at the end of struct eth_fast_path_rx_cqe 917 * but without rmb() a weakly ordered processor can process 918 * stale data. Without the barrier TPA state-machine might 919 * enter inconsistent state and kernel stack might be 920 * provided with incorrect packet description - these lead 921 * to various kernel crashed. 922 */ 923 rmb(); 924 925 cqe_fp_flags = cqe_fp->type_error_flags; 926 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 927 928 DP(NETIF_MSG_RX_STATUS, 929 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 930 CQE_TYPE(cqe_fp_flags), 931 cqe_fp_flags, cqe_fp->status_flags, 932 le32_to_cpu(cqe_fp->rss_hash_result), 933 le16_to_cpu(cqe_fp->vlan_tag), 934 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 935 936 /* is this a slowpath msg? */ 937 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 938 bnx2x_sp_event(fp, cqe); 939 goto next_cqe; 940 } 941 942 rx_buf = &fp->rx_buf_ring[bd_cons]; 943 data = rx_buf->data; 944 945 if (!CQE_TYPE_FAST(cqe_fp_type)) { 946 struct bnx2x_agg_info *tpa_info; 947 u16 frag_size, pages; 948 #ifdef BNX2X_STOP_ON_ERROR 949 /* sanity check */ 950 if (fp->mode == TPA_MODE_DISABLED && 951 (CQE_TYPE_START(cqe_fp_type) || 952 CQE_TYPE_STOP(cqe_fp_type))) 953 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n", 954 CQE_TYPE(cqe_fp_type)); 955 #endif 956 957 if (CQE_TYPE_START(cqe_fp_type)) { 958 u16 queue = cqe_fp->queue_index; 959 DP(NETIF_MSG_RX_STATUS, 960 "calling tpa_start on queue %d\n", 961 queue); 962 963 bnx2x_tpa_start(fp, queue, 964 bd_cons, bd_prod, 965 cqe_fp); 966 967 goto next_rx; 968 } 969 queue = cqe->end_agg_cqe.queue_index; 970 tpa_info = &fp->tpa_info[queue]; 971 DP(NETIF_MSG_RX_STATUS, 972 "calling tpa_stop on queue %d\n", 973 queue); 974 975 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 976 tpa_info->len_on_bd; 977 978 if (fp->mode == TPA_MODE_GRO) 979 pages = (frag_size + tpa_info->full_page - 1) / 980 tpa_info->full_page; 981 else 982 pages = SGE_PAGE_ALIGN(frag_size) >> 983 SGE_PAGE_SHIFT; 984 985 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 986 &cqe->end_agg_cqe, comp_ring_cons); 987 #ifdef BNX2X_STOP_ON_ERROR 988 if (bp->panic) 989 return 0; 990 #endif 991 992 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 993 goto next_cqe; 994 } 995 /* non TPA */ 996 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 997 pad = cqe_fp->placement_offset; 998 dma_sync_single_for_cpu(&bp->pdev->dev, 999 dma_unmap_addr(rx_buf, mapping), 1000 pad + RX_COPY_THRESH, 1001 DMA_FROM_DEVICE); 1002 pad += NET_SKB_PAD; 1003 prefetch(data + pad); /* speedup eth_type_trans() */ 1004 /* is this an error packet? */ 1005 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 1006 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1007 "ERROR flags %x rx packet %u\n", 1008 cqe_fp_flags, sw_comp_cons); 1009 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 1010 goto reuse_rx; 1011 } 1012 1013 /* Since we don't have a jumbo ring 1014 * copy small packets if mtu > 1500 1015 */ 1016 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 1017 (len <= RX_COPY_THRESH)) { 1018 skb = napi_alloc_skb(&fp->napi, len); 1019 if (skb == NULL) { 1020 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1021 "ERROR packet dropped because of alloc failure\n"); 1022 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1023 goto reuse_rx; 1024 } 1025 memcpy(skb->data, data + pad, len); 1026 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1027 } else { 1028 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1029 GFP_ATOMIC) == 0)) { 1030 dma_unmap_single(&bp->pdev->dev, 1031 dma_unmap_addr(rx_buf, mapping), 1032 fp->rx_buf_size, 1033 DMA_FROM_DEVICE); 1034 skb = build_skb(data, fp->rx_frag_size); 1035 if (unlikely(!skb)) { 1036 bnx2x_frag_free(fp, data); 1037 bnx2x_fp_qstats(bp, fp)-> 1038 rx_skb_alloc_failed++; 1039 goto next_rx; 1040 } 1041 skb_reserve(skb, pad); 1042 } else { 1043 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1044 "ERROR packet dropped because of alloc failure\n"); 1045 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1046 reuse_rx: 1047 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1048 goto next_rx; 1049 } 1050 } 1051 1052 skb_put(skb, len); 1053 skb->protocol = eth_type_trans(skb, bp->dev); 1054 1055 /* Set Toeplitz hash for a none-LRO skb */ 1056 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1057 skb_set_hash(skb, rxhash, rxhash_type); 1058 1059 skb_checksum_none_assert(skb); 1060 1061 if (bp->dev->features & NETIF_F_RXCSUM) 1062 bnx2x_csum_validate(skb, cqe, fp, 1063 bnx2x_fp_qstats(bp, fp)); 1064 1065 skb_record_rx_queue(skb, fp->rx_queue); 1066 1067 /* Check if this packet was timestamped */ 1068 if (unlikely(cqe->fast_path_cqe.type_error_flags & 1069 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT))) 1070 bnx2x_set_rx_ts(bp, skb); 1071 1072 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1073 PARSING_FLAGS_VLAN) 1074 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1075 le16_to_cpu(cqe_fp->vlan_tag)); 1076 1077 skb_mark_napi_id(skb, &fp->napi); 1078 1079 if (bnx2x_fp_ll_polling(fp)) 1080 netif_receive_skb(skb); 1081 else 1082 napi_gro_receive(&fp->napi, skb); 1083 next_rx: 1084 rx_buf->data = NULL; 1085 1086 bd_cons = NEXT_RX_IDX(bd_cons); 1087 bd_prod = NEXT_RX_IDX(bd_prod); 1088 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1089 rx_pkt++; 1090 next_cqe: 1091 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1092 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1093 1094 /* mark CQE as free */ 1095 BNX2X_SEED_CQE(cqe_fp); 1096 1097 if (rx_pkt == budget) 1098 break; 1099 1100 comp_ring_cons = RCQ_BD(sw_comp_cons); 1101 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1102 cqe_fp = &cqe->fast_path_cqe; 1103 } /* while */ 1104 1105 fp->rx_bd_cons = bd_cons; 1106 fp->rx_bd_prod = bd_prod_fw; 1107 fp->rx_comp_cons = sw_comp_cons; 1108 fp->rx_comp_prod = sw_comp_prod; 1109 1110 /* Update producers */ 1111 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1112 fp->rx_sge_prod); 1113 1114 fp->rx_pkt += rx_pkt; 1115 fp->rx_calls++; 1116 1117 return rx_pkt; 1118 } 1119 1120 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1121 { 1122 struct bnx2x_fastpath *fp = fp_cookie; 1123 struct bnx2x *bp = fp->bp; 1124 u8 cos; 1125 1126 DP(NETIF_MSG_INTR, 1127 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1128 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1129 1130 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1131 1132 #ifdef BNX2X_STOP_ON_ERROR 1133 if (unlikely(bp->panic)) 1134 return IRQ_HANDLED; 1135 #endif 1136 1137 /* Handle Rx and Tx according to MSI-X vector */ 1138 for_each_cos_in_tx_queue(fp, cos) 1139 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1140 1141 prefetch(&fp->sb_running_index[SM_RX_ID]); 1142 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1143 1144 return IRQ_HANDLED; 1145 } 1146 1147 /* HW Lock for shared dual port PHYs */ 1148 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1149 { 1150 mutex_lock(&bp->port.phy_mutex); 1151 1152 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1153 } 1154 1155 void bnx2x_release_phy_lock(struct bnx2x *bp) 1156 { 1157 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1158 1159 mutex_unlock(&bp->port.phy_mutex); 1160 } 1161 1162 /* calculates MF speed according to current linespeed and MF configuration */ 1163 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1164 { 1165 u16 line_speed = bp->link_vars.line_speed; 1166 if (IS_MF(bp)) { 1167 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1168 bp->mf_config[BP_VN(bp)]); 1169 1170 /* Calculate the current MAX line speed limit for the MF 1171 * devices 1172 */ 1173 if (IS_MF_SI(bp)) 1174 line_speed = (line_speed * maxCfg) / 100; 1175 else { /* SD mode */ 1176 u16 vn_max_rate = maxCfg * 100; 1177 1178 if (vn_max_rate < line_speed) 1179 line_speed = vn_max_rate; 1180 } 1181 } 1182 1183 return line_speed; 1184 } 1185 1186 /** 1187 * bnx2x_fill_report_data - fill link report data to report 1188 * 1189 * @bp: driver handle 1190 * @data: link state to update 1191 * 1192 * It uses a none-atomic bit operations because is called under the mutex. 1193 */ 1194 static void bnx2x_fill_report_data(struct bnx2x *bp, 1195 struct bnx2x_link_report_data *data) 1196 { 1197 memset(data, 0, sizeof(*data)); 1198 1199 if (IS_PF(bp)) { 1200 /* Fill the report data: effective line speed */ 1201 data->line_speed = bnx2x_get_mf_speed(bp); 1202 1203 /* Link is down */ 1204 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1205 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1206 &data->link_report_flags); 1207 1208 if (!BNX2X_NUM_ETH_QUEUES(bp)) 1209 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1210 &data->link_report_flags); 1211 1212 /* Full DUPLEX */ 1213 if (bp->link_vars.duplex == DUPLEX_FULL) 1214 __set_bit(BNX2X_LINK_REPORT_FD, 1215 &data->link_report_flags); 1216 1217 /* Rx Flow Control is ON */ 1218 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1219 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1220 &data->link_report_flags); 1221 1222 /* Tx Flow Control is ON */ 1223 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1224 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1225 &data->link_report_flags); 1226 } else { /* VF */ 1227 *data = bp->vf_link_vars; 1228 } 1229 } 1230 1231 /** 1232 * bnx2x_link_report - report link status to OS. 1233 * 1234 * @bp: driver handle 1235 * 1236 * Calls the __bnx2x_link_report() under the same locking scheme 1237 * as a link/PHY state managing code to ensure a consistent link 1238 * reporting. 1239 */ 1240 1241 void bnx2x_link_report(struct bnx2x *bp) 1242 { 1243 bnx2x_acquire_phy_lock(bp); 1244 __bnx2x_link_report(bp); 1245 bnx2x_release_phy_lock(bp); 1246 } 1247 1248 /** 1249 * __bnx2x_link_report - report link status to OS. 1250 * 1251 * @bp: driver handle 1252 * 1253 * None atomic implementation. 1254 * Should be called under the phy_lock. 1255 */ 1256 void __bnx2x_link_report(struct bnx2x *bp) 1257 { 1258 struct bnx2x_link_report_data cur_data; 1259 1260 /* reread mf_cfg */ 1261 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1262 bnx2x_read_mf_cfg(bp); 1263 1264 /* Read the current link report info */ 1265 bnx2x_fill_report_data(bp, &cur_data); 1266 1267 /* Don't report link down or exactly the same link status twice */ 1268 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1269 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1270 &bp->last_reported_link.link_report_flags) && 1271 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1272 &cur_data.link_report_flags))) 1273 return; 1274 1275 bp->link_cnt++; 1276 1277 /* We are going to report a new link parameters now - 1278 * remember the current data for the next time. 1279 */ 1280 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1281 1282 /* propagate status to VFs */ 1283 if (IS_PF(bp)) 1284 bnx2x_iov_link_update(bp); 1285 1286 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1287 &cur_data.link_report_flags)) { 1288 netif_carrier_off(bp->dev); 1289 netdev_err(bp->dev, "NIC Link is Down\n"); 1290 return; 1291 } else { 1292 const char *duplex; 1293 const char *flow; 1294 1295 netif_carrier_on(bp->dev); 1296 1297 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1298 &cur_data.link_report_flags)) 1299 duplex = "full"; 1300 else 1301 duplex = "half"; 1302 1303 /* Handle the FC at the end so that only these flags would be 1304 * possibly set. This way we may easily check if there is no FC 1305 * enabled. 1306 */ 1307 if (cur_data.link_report_flags) { 1308 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1309 &cur_data.link_report_flags)) { 1310 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1311 &cur_data.link_report_flags)) 1312 flow = "ON - receive & transmit"; 1313 else 1314 flow = "ON - receive"; 1315 } else { 1316 flow = "ON - transmit"; 1317 } 1318 } else { 1319 flow = "none"; 1320 } 1321 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1322 cur_data.line_speed, duplex, flow); 1323 } 1324 } 1325 1326 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1327 { 1328 int i; 1329 1330 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1331 struct eth_rx_sge *sge; 1332 1333 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1334 sge->addr_hi = 1335 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1336 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1337 1338 sge->addr_lo = 1339 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1340 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1341 } 1342 } 1343 1344 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1345 struct bnx2x_fastpath *fp, int last) 1346 { 1347 int i; 1348 1349 for (i = 0; i < last; i++) { 1350 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1351 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1352 u8 *data = first_buf->data; 1353 1354 if (data == NULL) { 1355 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1356 continue; 1357 } 1358 if (tpa_info->tpa_state == BNX2X_TPA_START) 1359 dma_unmap_single(&bp->pdev->dev, 1360 dma_unmap_addr(first_buf, mapping), 1361 fp->rx_buf_size, DMA_FROM_DEVICE); 1362 bnx2x_frag_free(fp, data); 1363 first_buf->data = NULL; 1364 } 1365 } 1366 1367 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1368 { 1369 int j; 1370 1371 for_each_rx_queue_cnic(bp, j) { 1372 struct bnx2x_fastpath *fp = &bp->fp[j]; 1373 1374 fp->rx_bd_cons = 0; 1375 1376 /* Activate BD ring */ 1377 /* Warning! 1378 * this will generate an interrupt (to the TSTORM) 1379 * must only be done after chip is initialized 1380 */ 1381 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1382 fp->rx_sge_prod); 1383 } 1384 } 1385 1386 void bnx2x_init_rx_rings(struct bnx2x *bp) 1387 { 1388 int func = BP_FUNC(bp); 1389 u16 ring_prod; 1390 int i, j; 1391 1392 /* Allocate TPA resources */ 1393 for_each_eth_queue(bp, j) { 1394 struct bnx2x_fastpath *fp = &bp->fp[j]; 1395 1396 DP(NETIF_MSG_IFUP, 1397 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1398 1399 if (fp->mode != TPA_MODE_DISABLED) { 1400 /* Fill the per-aggregation pool */ 1401 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1402 struct bnx2x_agg_info *tpa_info = 1403 &fp->tpa_info[i]; 1404 struct sw_rx_bd *first_buf = 1405 &tpa_info->first_buf; 1406 1407 first_buf->data = 1408 bnx2x_frag_alloc(fp, GFP_KERNEL); 1409 if (!first_buf->data) { 1410 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1411 j); 1412 bnx2x_free_tpa_pool(bp, fp, i); 1413 fp->mode = TPA_MODE_DISABLED; 1414 break; 1415 } 1416 dma_unmap_addr_set(first_buf, mapping, 0); 1417 tpa_info->tpa_state = BNX2X_TPA_STOP; 1418 } 1419 1420 /* "next page" elements initialization */ 1421 bnx2x_set_next_page_sgl(fp); 1422 1423 /* set SGEs bit mask */ 1424 bnx2x_init_sge_ring_bit_mask(fp); 1425 1426 /* Allocate SGEs and initialize the ring elements */ 1427 for (i = 0, ring_prod = 0; 1428 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1429 1430 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1431 GFP_KERNEL) < 0) { 1432 BNX2X_ERR("was only able to allocate %d rx sges\n", 1433 i); 1434 BNX2X_ERR("disabling TPA for queue[%d]\n", 1435 j); 1436 /* Cleanup already allocated elements */ 1437 bnx2x_free_rx_sge_range(bp, fp, 1438 ring_prod); 1439 bnx2x_free_tpa_pool(bp, fp, 1440 MAX_AGG_QS(bp)); 1441 fp->mode = TPA_MODE_DISABLED; 1442 ring_prod = 0; 1443 break; 1444 } 1445 ring_prod = NEXT_SGE_IDX(ring_prod); 1446 } 1447 1448 fp->rx_sge_prod = ring_prod; 1449 } 1450 } 1451 1452 for_each_eth_queue(bp, j) { 1453 struct bnx2x_fastpath *fp = &bp->fp[j]; 1454 1455 fp->rx_bd_cons = 0; 1456 1457 /* Activate BD ring */ 1458 /* Warning! 1459 * this will generate an interrupt (to the TSTORM) 1460 * must only be done after chip is initialized 1461 */ 1462 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1463 fp->rx_sge_prod); 1464 1465 if (j != 0) 1466 continue; 1467 1468 if (CHIP_IS_E1(bp)) { 1469 REG_WR(bp, BAR_USTRORM_INTMEM + 1470 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1471 U64_LO(fp->rx_comp_mapping)); 1472 REG_WR(bp, BAR_USTRORM_INTMEM + 1473 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1474 U64_HI(fp->rx_comp_mapping)); 1475 } 1476 } 1477 } 1478 1479 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1480 { 1481 u8 cos; 1482 struct bnx2x *bp = fp->bp; 1483 1484 for_each_cos_in_tx_queue(fp, cos) { 1485 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1486 unsigned pkts_compl = 0, bytes_compl = 0; 1487 1488 u16 sw_prod = txdata->tx_pkt_prod; 1489 u16 sw_cons = txdata->tx_pkt_cons; 1490 1491 while (sw_cons != sw_prod) { 1492 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1493 &pkts_compl, &bytes_compl); 1494 sw_cons++; 1495 } 1496 1497 netdev_tx_reset_queue( 1498 netdev_get_tx_queue(bp->dev, 1499 txdata->txq_index)); 1500 } 1501 } 1502 1503 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1504 { 1505 int i; 1506 1507 for_each_tx_queue_cnic(bp, i) { 1508 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1509 } 1510 } 1511 1512 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1513 { 1514 int i; 1515 1516 for_each_eth_queue(bp, i) { 1517 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1518 } 1519 } 1520 1521 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1522 { 1523 struct bnx2x *bp = fp->bp; 1524 int i; 1525 1526 /* ring wasn't allocated */ 1527 if (fp->rx_buf_ring == NULL) 1528 return; 1529 1530 for (i = 0; i < NUM_RX_BD; i++) { 1531 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1532 u8 *data = rx_buf->data; 1533 1534 if (data == NULL) 1535 continue; 1536 dma_unmap_single(&bp->pdev->dev, 1537 dma_unmap_addr(rx_buf, mapping), 1538 fp->rx_buf_size, DMA_FROM_DEVICE); 1539 1540 rx_buf->data = NULL; 1541 bnx2x_frag_free(fp, data); 1542 } 1543 } 1544 1545 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1546 { 1547 int j; 1548 1549 for_each_rx_queue_cnic(bp, j) { 1550 bnx2x_free_rx_bds(&bp->fp[j]); 1551 } 1552 } 1553 1554 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1555 { 1556 int j; 1557 1558 for_each_eth_queue(bp, j) { 1559 struct bnx2x_fastpath *fp = &bp->fp[j]; 1560 1561 bnx2x_free_rx_bds(fp); 1562 1563 if (fp->mode != TPA_MODE_DISABLED) 1564 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1565 } 1566 } 1567 1568 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1569 { 1570 bnx2x_free_tx_skbs_cnic(bp); 1571 bnx2x_free_rx_skbs_cnic(bp); 1572 } 1573 1574 void bnx2x_free_skbs(struct bnx2x *bp) 1575 { 1576 bnx2x_free_tx_skbs(bp); 1577 bnx2x_free_rx_skbs(bp); 1578 } 1579 1580 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1581 { 1582 /* load old values */ 1583 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1584 1585 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1586 /* leave all but MAX value */ 1587 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1588 1589 /* set new MAX value */ 1590 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1591 & FUNC_MF_CFG_MAX_BW_MASK; 1592 1593 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1594 } 1595 } 1596 1597 /** 1598 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1599 * 1600 * @bp: driver handle 1601 * @nvecs: number of vectors to be released 1602 */ 1603 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1604 { 1605 int i, offset = 0; 1606 1607 if (nvecs == offset) 1608 return; 1609 1610 /* VFs don't have a default SB */ 1611 if (IS_PF(bp)) { 1612 free_irq(bp->msix_table[offset].vector, bp->dev); 1613 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1614 bp->msix_table[offset].vector); 1615 offset++; 1616 } 1617 1618 if (CNIC_SUPPORT(bp)) { 1619 if (nvecs == offset) 1620 return; 1621 offset++; 1622 } 1623 1624 for_each_eth_queue(bp, i) { 1625 if (nvecs == offset) 1626 return; 1627 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1628 i, bp->msix_table[offset].vector); 1629 1630 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1631 } 1632 } 1633 1634 void bnx2x_free_irq(struct bnx2x *bp) 1635 { 1636 if (bp->flags & USING_MSIX_FLAG && 1637 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1638 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1639 1640 /* vfs don't have a default status block */ 1641 if (IS_PF(bp)) 1642 nvecs++; 1643 1644 bnx2x_free_msix_irqs(bp, nvecs); 1645 } else { 1646 free_irq(bp->dev->irq, bp->dev); 1647 } 1648 } 1649 1650 int bnx2x_enable_msix(struct bnx2x *bp) 1651 { 1652 int msix_vec = 0, i, rc; 1653 1654 /* VFs don't have a default status block */ 1655 if (IS_PF(bp)) { 1656 bp->msix_table[msix_vec].entry = msix_vec; 1657 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1658 bp->msix_table[0].entry); 1659 msix_vec++; 1660 } 1661 1662 /* Cnic requires an msix vector for itself */ 1663 if (CNIC_SUPPORT(bp)) { 1664 bp->msix_table[msix_vec].entry = msix_vec; 1665 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1666 msix_vec, bp->msix_table[msix_vec].entry); 1667 msix_vec++; 1668 } 1669 1670 /* We need separate vectors for ETH queues only (not FCoE) */ 1671 for_each_eth_queue(bp, i) { 1672 bp->msix_table[msix_vec].entry = msix_vec; 1673 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1674 msix_vec, msix_vec, i); 1675 msix_vec++; 1676 } 1677 1678 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1679 msix_vec); 1680 1681 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1682 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); 1683 /* 1684 * reconfigure number of tx/rx queues according to available 1685 * MSI-X vectors 1686 */ 1687 if (rc == -ENOSPC) { 1688 /* Get by with single vector */ 1689 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); 1690 if (rc < 0) { 1691 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1692 rc); 1693 goto no_msix; 1694 } 1695 1696 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1697 bp->flags |= USING_SINGLE_MSIX_FLAG; 1698 1699 BNX2X_DEV_INFO("set number of queues to 1\n"); 1700 bp->num_ethernet_queues = 1; 1701 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1702 } else if (rc < 0) { 1703 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1704 goto no_msix; 1705 } else if (rc < msix_vec) { 1706 /* how less vectors we will have? */ 1707 int diff = msix_vec - rc; 1708 1709 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1710 1711 /* 1712 * decrease number of queues by number of unallocated entries 1713 */ 1714 bp->num_ethernet_queues -= diff; 1715 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1716 1717 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1718 bp->num_queues); 1719 } 1720 1721 bp->flags |= USING_MSIX_FLAG; 1722 1723 return 0; 1724 1725 no_msix: 1726 /* fall to INTx if not enough memory */ 1727 if (rc == -ENOMEM) 1728 bp->flags |= DISABLE_MSI_FLAG; 1729 1730 return rc; 1731 } 1732 1733 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1734 { 1735 int i, rc, offset = 0; 1736 1737 /* no default status block for vf */ 1738 if (IS_PF(bp)) { 1739 rc = request_irq(bp->msix_table[offset++].vector, 1740 bnx2x_msix_sp_int, 0, 1741 bp->dev->name, bp->dev); 1742 if (rc) { 1743 BNX2X_ERR("request sp irq failed\n"); 1744 return -EBUSY; 1745 } 1746 } 1747 1748 if (CNIC_SUPPORT(bp)) 1749 offset++; 1750 1751 for_each_eth_queue(bp, i) { 1752 struct bnx2x_fastpath *fp = &bp->fp[i]; 1753 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1754 bp->dev->name, i); 1755 1756 rc = request_irq(bp->msix_table[offset].vector, 1757 bnx2x_msix_fp_int, 0, fp->name, fp); 1758 if (rc) { 1759 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1760 bp->msix_table[offset].vector, rc); 1761 bnx2x_free_msix_irqs(bp, offset); 1762 return -EBUSY; 1763 } 1764 1765 offset++; 1766 } 1767 1768 i = BNX2X_NUM_ETH_QUEUES(bp); 1769 if (IS_PF(bp)) { 1770 offset = 1 + CNIC_SUPPORT(bp); 1771 netdev_info(bp->dev, 1772 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1773 bp->msix_table[0].vector, 1774 0, bp->msix_table[offset].vector, 1775 i - 1, bp->msix_table[offset + i - 1].vector); 1776 } else { 1777 offset = CNIC_SUPPORT(bp); 1778 netdev_info(bp->dev, 1779 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1780 0, bp->msix_table[offset].vector, 1781 i - 1, bp->msix_table[offset + i - 1].vector); 1782 } 1783 return 0; 1784 } 1785 1786 int bnx2x_enable_msi(struct bnx2x *bp) 1787 { 1788 int rc; 1789 1790 rc = pci_enable_msi(bp->pdev); 1791 if (rc) { 1792 BNX2X_DEV_INFO("MSI is not attainable\n"); 1793 return -1; 1794 } 1795 bp->flags |= USING_MSI_FLAG; 1796 1797 return 0; 1798 } 1799 1800 static int bnx2x_req_irq(struct bnx2x *bp) 1801 { 1802 unsigned long flags; 1803 unsigned int irq; 1804 1805 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1806 flags = 0; 1807 else 1808 flags = IRQF_SHARED; 1809 1810 if (bp->flags & USING_MSIX_FLAG) 1811 irq = bp->msix_table[0].vector; 1812 else 1813 irq = bp->pdev->irq; 1814 1815 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1816 } 1817 1818 static int bnx2x_setup_irqs(struct bnx2x *bp) 1819 { 1820 int rc = 0; 1821 if (bp->flags & USING_MSIX_FLAG && 1822 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1823 rc = bnx2x_req_msix_irqs(bp); 1824 if (rc) 1825 return rc; 1826 } else { 1827 rc = bnx2x_req_irq(bp); 1828 if (rc) { 1829 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1830 return rc; 1831 } 1832 if (bp->flags & USING_MSI_FLAG) { 1833 bp->dev->irq = bp->pdev->irq; 1834 netdev_info(bp->dev, "using MSI IRQ %d\n", 1835 bp->dev->irq); 1836 } 1837 if (bp->flags & USING_MSIX_FLAG) { 1838 bp->dev->irq = bp->msix_table[0].vector; 1839 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1840 bp->dev->irq); 1841 } 1842 } 1843 1844 return 0; 1845 } 1846 1847 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1848 { 1849 int i; 1850 1851 for_each_rx_queue_cnic(bp, i) { 1852 bnx2x_fp_busy_poll_init(&bp->fp[i]); 1853 napi_enable(&bnx2x_fp(bp, i, napi)); 1854 } 1855 } 1856 1857 static void bnx2x_napi_enable(struct bnx2x *bp) 1858 { 1859 int i; 1860 1861 for_each_eth_queue(bp, i) { 1862 bnx2x_fp_busy_poll_init(&bp->fp[i]); 1863 napi_enable(&bnx2x_fp(bp, i, napi)); 1864 } 1865 } 1866 1867 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1868 { 1869 int i; 1870 1871 for_each_rx_queue_cnic(bp, i) { 1872 napi_disable(&bnx2x_fp(bp, i, napi)); 1873 while (!bnx2x_fp_ll_disable(&bp->fp[i])) 1874 usleep_range(1000, 2000); 1875 } 1876 } 1877 1878 static void bnx2x_napi_disable(struct bnx2x *bp) 1879 { 1880 int i; 1881 1882 for_each_eth_queue(bp, i) { 1883 napi_disable(&bnx2x_fp(bp, i, napi)); 1884 while (!bnx2x_fp_ll_disable(&bp->fp[i])) 1885 usleep_range(1000, 2000); 1886 } 1887 } 1888 1889 void bnx2x_netif_start(struct bnx2x *bp) 1890 { 1891 if (netif_running(bp->dev)) { 1892 bnx2x_napi_enable(bp); 1893 if (CNIC_LOADED(bp)) 1894 bnx2x_napi_enable_cnic(bp); 1895 bnx2x_int_enable(bp); 1896 if (bp->state == BNX2X_STATE_OPEN) 1897 netif_tx_wake_all_queues(bp->dev); 1898 } 1899 } 1900 1901 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1902 { 1903 bnx2x_int_disable_sync(bp, disable_hw); 1904 bnx2x_napi_disable(bp); 1905 if (CNIC_LOADED(bp)) 1906 bnx2x_napi_disable_cnic(bp); 1907 } 1908 1909 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1910 void *accel_priv, select_queue_fallback_t fallback) 1911 { 1912 struct bnx2x *bp = netdev_priv(dev); 1913 1914 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1915 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1916 u16 ether_type = ntohs(hdr->h_proto); 1917 1918 /* Skip VLAN tag if present */ 1919 if (ether_type == ETH_P_8021Q) { 1920 struct vlan_ethhdr *vhdr = 1921 (struct vlan_ethhdr *)skb->data; 1922 1923 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1924 } 1925 1926 /* If ethertype is FCoE or FIP - use FCoE ring */ 1927 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1928 return bnx2x_fcoe_tx(bp, txq_index); 1929 } 1930 1931 /* select a non-FCoE queue */ 1932 return fallback(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp); 1933 } 1934 1935 void bnx2x_set_num_queues(struct bnx2x *bp) 1936 { 1937 /* RSS queues */ 1938 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1939 1940 /* override in STORAGE SD modes */ 1941 if (IS_MF_STORAGE_ONLY(bp)) 1942 bp->num_ethernet_queues = 1; 1943 1944 /* Add special queues */ 1945 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1946 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1947 1948 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1949 } 1950 1951 /** 1952 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1953 * 1954 * @bp: Driver handle 1955 * 1956 * We currently support for at most 16 Tx queues for each CoS thus we will 1957 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1958 * bp->max_cos. 1959 * 1960 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1961 * index after all ETH L2 indices. 1962 * 1963 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1964 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1965 * 16..31,...) with indices that are not coupled with any real Tx queue. 1966 * 1967 * The proper configuration of skb->queue_mapping is handled by 1968 * bnx2x_select_queue() and __skb_tx_hash(). 1969 * 1970 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1971 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1972 */ 1973 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1974 { 1975 int rc, tx, rx; 1976 1977 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1978 rx = BNX2X_NUM_ETH_QUEUES(bp); 1979 1980 /* account for fcoe queue */ 1981 if (include_cnic && !NO_FCOE(bp)) { 1982 rx++; 1983 tx++; 1984 } 1985 1986 rc = netif_set_real_num_tx_queues(bp->dev, tx); 1987 if (rc) { 1988 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 1989 return rc; 1990 } 1991 rc = netif_set_real_num_rx_queues(bp->dev, rx); 1992 if (rc) { 1993 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 1994 return rc; 1995 } 1996 1997 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 1998 tx, rx); 1999 2000 return rc; 2001 } 2002 2003 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 2004 { 2005 int i; 2006 2007 for_each_queue(bp, i) { 2008 struct bnx2x_fastpath *fp = &bp->fp[i]; 2009 u32 mtu; 2010 2011 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 2012 if (IS_FCOE_IDX(i)) 2013 /* 2014 * Although there are no IP frames expected to arrive to 2015 * this ring we still want to add an 2016 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 2017 * overrun attack. 2018 */ 2019 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 2020 else 2021 mtu = bp->dev->mtu; 2022 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 2023 IP_HEADER_ALIGNMENT_PADDING + 2024 ETH_OVREHEAD + 2025 mtu + 2026 BNX2X_FW_RX_ALIGN_END; 2027 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 2028 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 2029 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 2030 else 2031 fp->rx_frag_size = 0; 2032 } 2033 } 2034 2035 static int bnx2x_init_rss(struct bnx2x *bp) 2036 { 2037 int i; 2038 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2039 2040 /* Prepare the initial contents for the indirection table if RSS is 2041 * enabled 2042 */ 2043 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2044 bp->rss_conf_obj.ind_table[i] = 2045 bp->fp->cl_id + 2046 ethtool_rxfh_indir_default(i, num_eth_queues); 2047 2048 /* 2049 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2050 * per-port, so if explicit configuration is needed , do it only 2051 * for a PMF. 2052 * 2053 * For 57712 and newer on the other hand it's a per-function 2054 * configuration. 2055 */ 2056 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2057 } 2058 2059 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2060 bool config_hash, bool enable) 2061 { 2062 struct bnx2x_config_rss_params params = {NULL}; 2063 2064 /* Although RSS is meaningless when there is a single HW queue we 2065 * still need it enabled in order to have HW Rx hash generated. 2066 * 2067 * if (!is_eth_multi(bp)) 2068 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2069 */ 2070 2071 params.rss_obj = rss_obj; 2072 2073 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2074 2075 if (enable) { 2076 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2077 2078 /* RSS configuration */ 2079 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2080 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2081 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2082 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2083 if (rss_obj->udp_rss_v4) 2084 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2085 if (rss_obj->udp_rss_v6) 2086 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2087 2088 if (!CHIP_IS_E1x(bp)) 2089 /* valid only for TUNN_MODE_GRE tunnel mode */ 2090 __set_bit(BNX2X_RSS_GRE_INNER_HDRS, ¶ms.rss_flags); 2091 } else { 2092 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2093 } 2094 2095 /* Hash bits */ 2096 params.rss_result_mask = MULTI_MASK; 2097 2098 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2099 2100 if (config_hash) { 2101 /* RSS keys */ 2102 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4); 2103 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2104 } 2105 2106 if (IS_PF(bp)) 2107 return bnx2x_config_rss(bp, ¶ms); 2108 else 2109 return bnx2x_vfpf_config_rss(bp, ¶ms); 2110 } 2111 2112 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2113 { 2114 struct bnx2x_func_state_params func_params = {NULL}; 2115 2116 /* Prepare parameters for function state transitions */ 2117 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2118 2119 func_params.f_obj = &bp->func_obj; 2120 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2121 2122 func_params.params.hw_init.load_phase = load_code; 2123 2124 return bnx2x_func_state_change(bp, &func_params); 2125 } 2126 2127 /* 2128 * Cleans the object that have internal lists without sending 2129 * ramrods. Should be run when interrupts are disabled. 2130 */ 2131 void bnx2x_squeeze_objects(struct bnx2x *bp) 2132 { 2133 int rc; 2134 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2135 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2136 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2137 2138 /***************** Cleanup MACs' object first *************************/ 2139 2140 /* Wait for completion of requested */ 2141 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2142 /* Perform a dry cleanup */ 2143 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2144 2145 /* Clean ETH primary MAC */ 2146 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2147 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2148 &ramrod_flags); 2149 if (rc != 0) 2150 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2151 2152 /* Cleanup UC list */ 2153 vlan_mac_flags = 0; 2154 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2155 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2156 &ramrod_flags); 2157 if (rc != 0) 2158 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2159 2160 /***************** Now clean mcast object *****************************/ 2161 rparam.mcast_obj = &bp->mcast_obj; 2162 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2163 2164 /* Add a DEL command... - Since we're doing a driver cleanup only, 2165 * we take a lock surrounding both the initial send and the CONTs, 2166 * as we don't want a true completion to disrupt us in the middle. 2167 */ 2168 netif_addr_lock_bh(bp->dev); 2169 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2170 if (rc < 0) 2171 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2172 rc); 2173 2174 /* ...and wait until all pending commands are cleared */ 2175 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2176 while (rc != 0) { 2177 if (rc < 0) { 2178 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2179 rc); 2180 netif_addr_unlock_bh(bp->dev); 2181 return; 2182 } 2183 2184 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2185 } 2186 netif_addr_unlock_bh(bp->dev); 2187 } 2188 2189 #ifndef BNX2X_STOP_ON_ERROR 2190 #define LOAD_ERROR_EXIT(bp, label) \ 2191 do { \ 2192 (bp)->state = BNX2X_STATE_ERROR; \ 2193 goto label; \ 2194 } while (0) 2195 2196 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2197 do { \ 2198 bp->cnic_loaded = false; \ 2199 goto label; \ 2200 } while (0) 2201 #else /*BNX2X_STOP_ON_ERROR*/ 2202 #define LOAD_ERROR_EXIT(bp, label) \ 2203 do { \ 2204 (bp)->state = BNX2X_STATE_ERROR; \ 2205 (bp)->panic = 1; \ 2206 return -EBUSY; \ 2207 } while (0) 2208 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2209 do { \ 2210 bp->cnic_loaded = false; \ 2211 (bp)->panic = 1; \ 2212 return -EBUSY; \ 2213 } while (0) 2214 #endif /*BNX2X_STOP_ON_ERROR*/ 2215 2216 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2217 { 2218 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2219 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2220 return; 2221 } 2222 2223 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2224 { 2225 int num_groups, vf_headroom = 0; 2226 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2227 2228 /* number of queues for statistics is number of eth queues + FCoE */ 2229 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2230 2231 /* Total number of FW statistics requests = 2232 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2233 * and fcoe l2 queue) stats + num of queues (which includes another 1 2234 * for fcoe l2 queue if applicable) 2235 */ 2236 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2237 2238 /* vf stats appear in the request list, but their data is allocated by 2239 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2240 * it is used to determine where to place the vf stats queries in the 2241 * request struct 2242 */ 2243 if (IS_SRIOV(bp)) 2244 vf_headroom = bnx2x_vf_headroom(bp); 2245 2246 /* Request is built from stats_query_header and an array of 2247 * stats_query_cmd_group each of which contains 2248 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2249 * configured in the stats_query_header. 2250 */ 2251 num_groups = 2252 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2253 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2254 1 : 0)); 2255 2256 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2257 bp->fw_stats_num, vf_headroom, num_groups); 2258 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2259 num_groups * sizeof(struct stats_query_cmd_group); 2260 2261 /* Data for statistics requests + stats_counter 2262 * stats_counter holds per-STORM counters that are incremented 2263 * when STORM has finished with the current request. 2264 * memory for FCoE offloaded statistics are counted anyway, 2265 * even if they will not be sent. 2266 * VF stats are not accounted for here as the data of VF stats is stored 2267 * in memory allocated by the VF, not here. 2268 */ 2269 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2270 sizeof(struct per_pf_stats) + 2271 sizeof(struct fcoe_statistics_params) + 2272 sizeof(struct per_queue_stats) * num_queue_stats + 2273 sizeof(struct stats_counter); 2274 2275 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, 2276 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2277 if (!bp->fw_stats) 2278 goto alloc_mem_err; 2279 2280 /* Set shortcuts */ 2281 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2282 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2283 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2284 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2285 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2286 bp->fw_stats_req_sz; 2287 2288 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2289 U64_HI(bp->fw_stats_req_mapping), 2290 U64_LO(bp->fw_stats_req_mapping)); 2291 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2292 U64_HI(bp->fw_stats_data_mapping), 2293 U64_LO(bp->fw_stats_data_mapping)); 2294 return 0; 2295 2296 alloc_mem_err: 2297 bnx2x_free_fw_stats_mem(bp); 2298 BNX2X_ERR("Can't allocate FW stats memory\n"); 2299 return -ENOMEM; 2300 } 2301 2302 /* send load request to mcp and analyze response */ 2303 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2304 { 2305 u32 param; 2306 2307 /* init fw_seq */ 2308 bp->fw_seq = 2309 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2310 DRV_MSG_SEQ_NUMBER_MASK); 2311 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2312 2313 /* Get current FW pulse sequence */ 2314 bp->fw_drv_pulse_wr_seq = 2315 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2316 DRV_PULSE_SEQ_MASK); 2317 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2318 2319 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2320 2321 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2322 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2323 2324 /* load request */ 2325 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2326 2327 /* if mcp fails to respond we must abort */ 2328 if (!(*load_code)) { 2329 BNX2X_ERR("MCP response failure, aborting\n"); 2330 return -EBUSY; 2331 } 2332 2333 /* If mcp refused (e.g. other port is in diagnostic mode) we 2334 * must abort 2335 */ 2336 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2337 BNX2X_ERR("MCP refused load request, aborting\n"); 2338 return -EBUSY; 2339 } 2340 return 0; 2341 } 2342 2343 /* check whether another PF has already loaded FW to chip. In 2344 * virtualized environments a pf from another VM may have already 2345 * initialized the device including loading FW 2346 */ 2347 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2348 { 2349 /* is another pf loaded on this engine? */ 2350 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2351 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2352 /* build my FW version dword */ 2353 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) + 2354 (BCM_5710_FW_MINOR_VERSION << 8) + 2355 (BCM_5710_FW_REVISION_VERSION << 16) + 2356 (BCM_5710_FW_ENGINEERING_VERSION << 24); 2357 2358 /* read loaded FW from chip */ 2359 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2360 2361 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", 2362 loaded_fw, my_fw); 2363 2364 /* abort nic load if version mismatch */ 2365 if (my_fw != loaded_fw) { 2366 if (print_err) 2367 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", 2368 loaded_fw, my_fw); 2369 else 2370 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n", 2371 loaded_fw, my_fw); 2372 return -EBUSY; 2373 } 2374 } 2375 return 0; 2376 } 2377 2378 /* returns the "mcp load_code" according to global load_count array */ 2379 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2380 { 2381 int path = BP_PATH(bp); 2382 2383 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2384 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2385 bnx2x_load_count[path][2]); 2386 bnx2x_load_count[path][0]++; 2387 bnx2x_load_count[path][1 + port]++; 2388 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2389 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2390 bnx2x_load_count[path][2]); 2391 if (bnx2x_load_count[path][0] == 1) 2392 return FW_MSG_CODE_DRV_LOAD_COMMON; 2393 else if (bnx2x_load_count[path][1 + port] == 1) 2394 return FW_MSG_CODE_DRV_LOAD_PORT; 2395 else 2396 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2397 } 2398 2399 /* mark PMF if applicable */ 2400 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2401 { 2402 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2403 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2404 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2405 bp->port.pmf = 1; 2406 /* We need the barrier to ensure the ordering between the 2407 * writing to bp->port.pmf here and reading it from the 2408 * bnx2x_periodic_task(). 2409 */ 2410 smp_mb(); 2411 } else { 2412 bp->port.pmf = 0; 2413 } 2414 2415 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2416 } 2417 2418 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2419 { 2420 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2421 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2422 (bp->common.shmem2_base)) { 2423 if (SHMEM2_HAS(bp, dcc_support)) 2424 SHMEM2_WR(bp, dcc_support, 2425 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2426 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2427 if (SHMEM2_HAS(bp, afex_driver_support)) 2428 SHMEM2_WR(bp, afex_driver_support, 2429 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2430 } 2431 2432 /* Set AFEX default VLAN tag to an invalid value */ 2433 bp->afex_def_vlan_tag = -1; 2434 } 2435 2436 /** 2437 * bnx2x_bz_fp - zero content of the fastpath structure. 2438 * 2439 * @bp: driver handle 2440 * @index: fastpath index to be zeroed 2441 * 2442 * Makes sure the contents of the bp->fp[index].napi is kept 2443 * intact. 2444 */ 2445 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2446 { 2447 struct bnx2x_fastpath *fp = &bp->fp[index]; 2448 int cos; 2449 struct napi_struct orig_napi = fp->napi; 2450 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2451 2452 /* bzero bnx2x_fastpath contents */ 2453 if (fp->tpa_info) 2454 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2455 sizeof(struct bnx2x_agg_info)); 2456 memset(fp, 0, sizeof(*fp)); 2457 2458 /* Restore the NAPI object as it has been already initialized */ 2459 fp->napi = orig_napi; 2460 fp->tpa_info = orig_tpa_info; 2461 fp->bp = bp; 2462 fp->index = index; 2463 if (IS_ETH_FP(fp)) 2464 fp->max_cos = bp->max_cos; 2465 else 2466 /* Special queues support only one CoS */ 2467 fp->max_cos = 1; 2468 2469 /* Init txdata pointers */ 2470 if (IS_FCOE_FP(fp)) 2471 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2472 if (IS_ETH_FP(fp)) 2473 for_each_cos_in_tx_queue(fp, cos) 2474 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2475 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2476 2477 /* set the tpa flag for each queue. The tpa flag determines the queue 2478 * minimal size so it must be set prior to queue memory allocation 2479 */ 2480 if (bp->dev->features & NETIF_F_LRO) 2481 fp->mode = TPA_MODE_LRO; 2482 else if (bp->dev->features & NETIF_F_GRO && 2483 bnx2x_mtu_allows_gro(bp->dev->mtu)) 2484 fp->mode = TPA_MODE_GRO; 2485 else 2486 fp->mode = TPA_MODE_DISABLED; 2487 2488 /* We don't want TPA if it's disabled in bp 2489 * or if this is an FCoE L2 ring. 2490 */ 2491 if (bp->disable_tpa || IS_FCOE_FP(fp)) 2492 fp->mode = TPA_MODE_DISABLED; 2493 } 2494 2495 int bnx2x_load_cnic(struct bnx2x *bp) 2496 { 2497 int i, rc, port = BP_PORT(bp); 2498 2499 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2500 2501 mutex_init(&bp->cnic_mutex); 2502 2503 if (IS_PF(bp)) { 2504 rc = bnx2x_alloc_mem_cnic(bp); 2505 if (rc) { 2506 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2507 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2508 } 2509 } 2510 2511 rc = bnx2x_alloc_fp_mem_cnic(bp); 2512 if (rc) { 2513 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2514 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2515 } 2516 2517 /* Update the number of queues with the cnic queues */ 2518 rc = bnx2x_set_real_num_queues(bp, 1); 2519 if (rc) { 2520 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2521 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2522 } 2523 2524 /* Add all CNIC NAPI objects */ 2525 bnx2x_add_all_napi_cnic(bp); 2526 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2527 bnx2x_napi_enable_cnic(bp); 2528 2529 rc = bnx2x_init_hw_func_cnic(bp); 2530 if (rc) 2531 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2532 2533 bnx2x_nic_init_cnic(bp); 2534 2535 if (IS_PF(bp)) { 2536 /* Enable Timer scan */ 2537 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2538 2539 /* setup cnic queues */ 2540 for_each_cnic_queue(bp, i) { 2541 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2542 if (rc) { 2543 BNX2X_ERR("Queue setup failed\n"); 2544 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2545 } 2546 } 2547 } 2548 2549 /* Initialize Rx filter. */ 2550 bnx2x_set_rx_mode_inner(bp); 2551 2552 /* re-read iscsi info */ 2553 bnx2x_get_iscsi_info(bp); 2554 bnx2x_setup_cnic_irq_info(bp); 2555 bnx2x_setup_cnic_info(bp); 2556 bp->cnic_loaded = true; 2557 if (bp->state == BNX2X_STATE_OPEN) 2558 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2559 2560 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2561 2562 return 0; 2563 2564 #ifndef BNX2X_STOP_ON_ERROR 2565 load_error_cnic2: 2566 /* Disable Timer scan */ 2567 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2568 2569 load_error_cnic1: 2570 bnx2x_napi_disable_cnic(bp); 2571 /* Update the number of queues without the cnic queues */ 2572 if (bnx2x_set_real_num_queues(bp, 0)) 2573 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2574 load_error_cnic0: 2575 BNX2X_ERR("CNIC-related load failed\n"); 2576 bnx2x_free_fp_mem_cnic(bp); 2577 bnx2x_free_mem_cnic(bp); 2578 return rc; 2579 #endif /* ! BNX2X_STOP_ON_ERROR */ 2580 } 2581 2582 /* must be called with rtnl_lock */ 2583 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2584 { 2585 int port = BP_PORT(bp); 2586 int i, rc = 0, load_code = 0; 2587 2588 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2589 DP(NETIF_MSG_IFUP, 2590 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2591 2592 #ifdef BNX2X_STOP_ON_ERROR 2593 if (unlikely(bp->panic)) { 2594 BNX2X_ERR("Can't load NIC when there is panic\n"); 2595 return -EPERM; 2596 } 2597 #endif 2598 2599 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2600 2601 /* zero the structure w/o any lock, before SP handler is initialized */ 2602 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2603 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2604 &bp->last_reported_link.link_report_flags); 2605 2606 if (IS_PF(bp)) 2607 /* must be called before memory allocation and HW init */ 2608 bnx2x_ilt_set_info(bp); 2609 2610 /* 2611 * Zero fastpath structures preserving invariants like napi, which are 2612 * allocated only once, fp index, max_cos, bp pointer. 2613 * Also set fp->mode and txdata_ptr. 2614 */ 2615 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2616 for_each_queue(bp, i) 2617 bnx2x_bz_fp(bp, i); 2618 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2619 bp->num_cnic_queues) * 2620 sizeof(struct bnx2x_fp_txdata)); 2621 2622 bp->fcoe_init = false; 2623 2624 /* Set the receive queues buffer size */ 2625 bnx2x_set_rx_buf_size(bp); 2626 2627 if (IS_PF(bp)) { 2628 rc = bnx2x_alloc_mem(bp); 2629 if (rc) { 2630 BNX2X_ERR("Unable to allocate bp memory\n"); 2631 return rc; 2632 } 2633 } 2634 2635 /* need to be done after alloc mem, since it's self adjusting to amount 2636 * of memory available for RSS queues 2637 */ 2638 rc = bnx2x_alloc_fp_mem(bp); 2639 if (rc) { 2640 BNX2X_ERR("Unable to allocate memory for fps\n"); 2641 LOAD_ERROR_EXIT(bp, load_error0); 2642 } 2643 2644 /* Allocated memory for FW statistics */ 2645 if (bnx2x_alloc_fw_stats_mem(bp)) 2646 LOAD_ERROR_EXIT(bp, load_error0); 2647 2648 /* request pf to initialize status blocks */ 2649 if (IS_VF(bp)) { 2650 rc = bnx2x_vfpf_init(bp); 2651 if (rc) 2652 LOAD_ERROR_EXIT(bp, load_error0); 2653 } 2654 2655 /* As long as bnx2x_alloc_mem() may possibly update 2656 * bp->num_queues, bnx2x_set_real_num_queues() should always 2657 * come after it. At this stage cnic queues are not counted. 2658 */ 2659 rc = bnx2x_set_real_num_queues(bp, 0); 2660 if (rc) { 2661 BNX2X_ERR("Unable to set real_num_queues\n"); 2662 LOAD_ERROR_EXIT(bp, load_error0); 2663 } 2664 2665 /* configure multi cos mappings in kernel. 2666 * this configuration may be overridden by a multi class queue 2667 * discipline or by a dcbx negotiation result. 2668 */ 2669 bnx2x_setup_tc(bp->dev, bp->max_cos); 2670 2671 /* Add all NAPI objects */ 2672 bnx2x_add_all_napi(bp); 2673 DP(NETIF_MSG_IFUP, "napi added\n"); 2674 bnx2x_napi_enable(bp); 2675 2676 if (IS_PF(bp)) { 2677 /* set pf load just before approaching the MCP */ 2678 bnx2x_set_pf_load(bp); 2679 2680 /* if mcp exists send load request and analyze response */ 2681 if (!BP_NOMCP(bp)) { 2682 /* attempt to load pf */ 2683 rc = bnx2x_nic_load_request(bp, &load_code); 2684 if (rc) 2685 LOAD_ERROR_EXIT(bp, load_error1); 2686 2687 /* what did mcp say? */ 2688 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2689 if (rc) { 2690 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2691 LOAD_ERROR_EXIT(bp, load_error2); 2692 } 2693 } else { 2694 load_code = bnx2x_nic_load_no_mcp(bp, port); 2695 } 2696 2697 /* mark pmf if applicable */ 2698 bnx2x_nic_load_pmf(bp, load_code); 2699 2700 /* Init Function state controlling object */ 2701 bnx2x__init_func_obj(bp); 2702 2703 /* Initialize HW */ 2704 rc = bnx2x_init_hw(bp, load_code); 2705 if (rc) { 2706 BNX2X_ERR("HW init failed, aborting\n"); 2707 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2708 LOAD_ERROR_EXIT(bp, load_error2); 2709 } 2710 } 2711 2712 bnx2x_pre_irq_nic_init(bp); 2713 2714 /* Connect to IRQs */ 2715 rc = bnx2x_setup_irqs(bp); 2716 if (rc) { 2717 BNX2X_ERR("setup irqs failed\n"); 2718 if (IS_PF(bp)) 2719 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2720 LOAD_ERROR_EXIT(bp, load_error2); 2721 } 2722 2723 /* Init per-function objects */ 2724 if (IS_PF(bp)) { 2725 /* Setup NIC internals and enable interrupts */ 2726 bnx2x_post_irq_nic_init(bp, load_code); 2727 2728 bnx2x_init_bp_objs(bp); 2729 bnx2x_iov_nic_init(bp); 2730 2731 /* Set AFEX default VLAN tag to an invalid value */ 2732 bp->afex_def_vlan_tag = -1; 2733 bnx2x_nic_load_afex_dcc(bp, load_code); 2734 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2735 rc = bnx2x_func_start(bp); 2736 if (rc) { 2737 BNX2X_ERR("Function start failed!\n"); 2738 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2739 2740 LOAD_ERROR_EXIT(bp, load_error3); 2741 } 2742 2743 /* Send LOAD_DONE command to MCP */ 2744 if (!BP_NOMCP(bp)) { 2745 load_code = bnx2x_fw_command(bp, 2746 DRV_MSG_CODE_LOAD_DONE, 0); 2747 if (!load_code) { 2748 BNX2X_ERR("MCP response failure, aborting\n"); 2749 rc = -EBUSY; 2750 LOAD_ERROR_EXIT(bp, load_error3); 2751 } 2752 } 2753 2754 /* initialize FW coalescing state machines in RAM */ 2755 bnx2x_update_coalesce(bp); 2756 } 2757 2758 /* setup the leading queue */ 2759 rc = bnx2x_setup_leading(bp); 2760 if (rc) { 2761 BNX2X_ERR("Setup leading failed!\n"); 2762 LOAD_ERROR_EXIT(bp, load_error3); 2763 } 2764 2765 /* set up the rest of the queues */ 2766 for_each_nondefault_eth_queue(bp, i) { 2767 if (IS_PF(bp)) 2768 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2769 else /* VF */ 2770 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2771 if (rc) { 2772 BNX2X_ERR("Queue %d setup failed\n", i); 2773 LOAD_ERROR_EXIT(bp, load_error3); 2774 } 2775 } 2776 2777 /* setup rss */ 2778 rc = bnx2x_init_rss(bp); 2779 if (rc) { 2780 BNX2X_ERR("PF RSS init failed\n"); 2781 LOAD_ERROR_EXIT(bp, load_error3); 2782 } 2783 2784 /* Now when Clients are configured we are ready to work */ 2785 bp->state = BNX2X_STATE_OPEN; 2786 2787 /* Configure a ucast MAC */ 2788 if (IS_PF(bp)) 2789 rc = bnx2x_set_eth_mac(bp, true); 2790 else /* vf */ 2791 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2792 true); 2793 if (rc) { 2794 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2795 LOAD_ERROR_EXIT(bp, load_error3); 2796 } 2797 2798 if (IS_PF(bp) && bp->pending_max) { 2799 bnx2x_update_max_mf_config(bp, bp->pending_max); 2800 bp->pending_max = 0; 2801 } 2802 2803 if (bp->port.pmf) { 2804 rc = bnx2x_initial_phy_init(bp, load_mode); 2805 if (rc) 2806 LOAD_ERROR_EXIT(bp, load_error3); 2807 } 2808 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2809 2810 /* Start fast path */ 2811 2812 /* Initialize Rx filter. */ 2813 bnx2x_set_rx_mode_inner(bp); 2814 2815 if (bp->flags & PTP_SUPPORTED) { 2816 bnx2x_init_ptp(bp); 2817 bnx2x_configure_ptp_filters(bp); 2818 } 2819 /* Start Tx */ 2820 switch (load_mode) { 2821 case LOAD_NORMAL: 2822 /* Tx queue should be only re-enabled */ 2823 netif_tx_wake_all_queues(bp->dev); 2824 break; 2825 2826 case LOAD_OPEN: 2827 netif_tx_start_all_queues(bp->dev); 2828 smp_mb__after_atomic(); 2829 break; 2830 2831 case LOAD_DIAG: 2832 case LOAD_LOOPBACK_EXT: 2833 bp->state = BNX2X_STATE_DIAG; 2834 break; 2835 2836 default: 2837 break; 2838 } 2839 2840 if (bp->port.pmf) 2841 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2842 else 2843 bnx2x__link_status_update(bp); 2844 2845 /* start the timer */ 2846 mod_timer(&bp->timer, jiffies + bp->current_interval); 2847 2848 if (CNIC_ENABLED(bp)) 2849 bnx2x_load_cnic(bp); 2850 2851 if (IS_PF(bp)) 2852 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 2853 2854 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2855 /* mark driver is loaded in shmem2 */ 2856 u32 val; 2857 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2858 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2859 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2860 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2861 } 2862 2863 /* Wait for all pending SP commands to complete */ 2864 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2865 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2866 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2867 return -EBUSY; 2868 } 2869 2870 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2871 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2872 bnx2x_dcbx_init(bp, false); 2873 2874 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2875 2876 return 0; 2877 2878 #ifndef BNX2X_STOP_ON_ERROR 2879 load_error3: 2880 if (IS_PF(bp)) { 2881 bnx2x_int_disable_sync(bp, 1); 2882 2883 /* Clean queueable objects */ 2884 bnx2x_squeeze_objects(bp); 2885 } 2886 2887 /* Free SKBs, SGEs, TPA pool and driver internals */ 2888 bnx2x_free_skbs(bp); 2889 for_each_rx_queue(bp, i) 2890 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2891 2892 /* Release IRQs */ 2893 bnx2x_free_irq(bp); 2894 load_error2: 2895 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2896 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2897 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2898 } 2899 2900 bp->port.pmf = 0; 2901 load_error1: 2902 bnx2x_napi_disable(bp); 2903 bnx2x_del_all_napi(bp); 2904 2905 /* clear pf_load status, as it was already set */ 2906 if (IS_PF(bp)) 2907 bnx2x_clear_pf_load(bp); 2908 load_error0: 2909 bnx2x_free_fw_stats_mem(bp); 2910 bnx2x_free_fp_mem(bp); 2911 bnx2x_free_mem(bp); 2912 2913 return rc; 2914 #endif /* ! BNX2X_STOP_ON_ERROR */ 2915 } 2916 2917 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2918 { 2919 u8 rc = 0, cos, i; 2920 2921 /* Wait until tx fastpath tasks complete */ 2922 for_each_tx_queue(bp, i) { 2923 struct bnx2x_fastpath *fp = &bp->fp[i]; 2924 2925 for_each_cos_in_tx_queue(fp, cos) 2926 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2927 if (rc) 2928 return rc; 2929 } 2930 return 0; 2931 } 2932 2933 /* must be called with rtnl_lock */ 2934 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2935 { 2936 int i; 2937 bool global = false; 2938 2939 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 2940 2941 /* mark driver is unloaded in shmem2 */ 2942 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2943 u32 val; 2944 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2945 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2946 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 2947 } 2948 2949 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 2950 (bp->state == BNX2X_STATE_CLOSED || 2951 bp->state == BNX2X_STATE_ERROR)) { 2952 /* We can get here if the driver has been unloaded 2953 * during parity error recovery and is either waiting for a 2954 * leader to complete or for other functions to unload and 2955 * then ifdown has been issued. In this case we want to 2956 * unload and let other functions to complete a recovery 2957 * process. 2958 */ 2959 bp->recovery_state = BNX2X_RECOVERY_DONE; 2960 bp->is_leader = 0; 2961 bnx2x_release_leader_lock(bp); 2962 smp_mb(); 2963 2964 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 2965 BNX2X_ERR("Can't unload in closed or error state\n"); 2966 return -EINVAL; 2967 } 2968 2969 /* Nothing to do during unload if previous bnx2x_nic_load() 2970 * have not completed successfully - all resources are released. 2971 * 2972 * we can get here only after unsuccessful ndo_* callback, during which 2973 * dev->IFF_UP flag is still on. 2974 */ 2975 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 2976 return 0; 2977 2978 /* It's important to set the bp->state to the value different from 2979 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 2980 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 2981 */ 2982 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 2983 smp_mb(); 2984 2985 /* indicate to VFs that the PF is going down */ 2986 bnx2x_iov_channel_down(bp); 2987 2988 if (CNIC_LOADED(bp)) 2989 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 2990 2991 /* Stop Tx */ 2992 bnx2x_tx_disable(bp); 2993 netdev_reset_tc(bp->dev); 2994 2995 bp->rx_mode = BNX2X_RX_MODE_NONE; 2996 2997 del_timer_sync(&bp->timer); 2998 2999 if (IS_PF(bp)) { 3000 /* Set ALWAYS_ALIVE bit in shmem */ 3001 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 3002 bnx2x_drv_pulse(bp); 3003 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 3004 bnx2x_save_statistics(bp); 3005 } 3006 3007 /* wait till consumers catch up with producers in all queues */ 3008 bnx2x_drain_tx_queues(bp); 3009 3010 /* if VF indicate to PF this function is going down (PF will delete sp 3011 * elements and clear initializations 3012 */ 3013 if (IS_VF(bp)) 3014 bnx2x_vfpf_close_vf(bp); 3015 else if (unload_mode != UNLOAD_RECOVERY) 3016 /* if this is a normal/close unload need to clean up chip*/ 3017 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 3018 else { 3019 /* Send the UNLOAD_REQUEST to the MCP */ 3020 bnx2x_send_unload_req(bp, unload_mode); 3021 3022 /* Prevent transactions to host from the functions on the 3023 * engine that doesn't reset global blocks in case of global 3024 * attention once global blocks are reset and gates are opened 3025 * (the engine which leader will perform the recovery 3026 * last). 3027 */ 3028 if (!CHIP_IS_E1x(bp)) 3029 bnx2x_pf_disable(bp); 3030 3031 /* Disable HW interrupts, NAPI */ 3032 bnx2x_netif_stop(bp, 1); 3033 /* Delete all NAPI objects */ 3034 bnx2x_del_all_napi(bp); 3035 if (CNIC_LOADED(bp)) 3036 bnx2x_del_all_napi_cnic(bp); 3037 /* Release IRQs */ 3038 bnx2x_free_irq(bp); 3039 3040 /* Report UNLOAD_DONE to MCP */ 3041 bnx2x_send_unload_done(bp, false); 3042 } 3043 3044 /* 3045 * At this stage no more interrupts will arrive so we may safely clean 3046 * the queueable objects here in case they failed to get cleaned so far. 3047 */ 3048 if (IS_PF(bp)) 3049 bnx2x_squeeze_objects(bp); 3050 3051 /* There should be no more pending SP commands at this stage */ 3052 bp->sp_state = 0; 3053 3054 bp->port.pmf = 0; 3055 3056 /* clear pending work in rtnl task */ 3057 bp->sp_rtnl_state = 0; 3058 smp_mb(); 3059 3060 /* Free SKBs, SGEs, TPA pool and driver internals */ 3061 bnx2x_free_skbs(bp); 3062 if (CNIC_LOADED(bp)) 3063 bnx2x_free_skbs_cnic(bp); 3064 for_each_rx_queue(bp, i) 3065 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3066 3067 bnx2x_free_fp_mem(bp); 3068 if (CNIC_LOADED(bp)) 3069 bnx2x_free_fp_mem_cnic(bp); 3070 3071 if (IS_PF(bp)) { 3072 if (CNIC_LOADED(bp)) 3073 bnx2x_free_mem_cnic(bp); 3074 } 3075 bnx2x_free_mem(bp); 3076 3077 bp->state = BNX2X_STATE_CLOSED; 3078 bp->cnic_loaded = false; 3079 3080 /* Clear driver version indication in shmem */ 3081 if (IS_PF(bp)) 3082 bnx2x_update_mng_version(bp); 3083 3084 /* Check if there are pending parity attentions. If there are - set 3085 * RECOVERY_IN_PROGRESS. 3086 */ 3087 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3088 bnx2x_set_reset_in_progress(bp); 3089 3090 /* Set RESET_IS_GLOBAL if needed */ 3091 if (global) 3092 bnx2x_set_reset_global(bp); 3093 } 3094 3095 /* The last driver must disable a "close the gate" if there is no 3096 * parity attention or "process kill" pending. 3097 */ 3098 if (IS_PF(bp) && 3099 !bnx2x_clear_pf_load(bp) && 3100 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3101 bnx2x_disable_close_the_gate(bp); 3102 3103 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3104 3105 return 0; 3106 } 3107 3108 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3109 { 3110 u16 pmcsr; 3111 3112 /* If there is no power capability, silently succeed */ 3113 if (!bp->pdev->pm_cap) { 3114 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3115 return 0; 3116 } 3117 3118 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3119 3120 switch (state) { 3121 case PCI_D0: 3122 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3123 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3124 PCI_PM_CTRL_PME_STATUS)); 3125 3126 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3127 /* delay required during transition out of D3hot */ 3128 msleep(20); 3129 break; 3130 3131 case PCI_D3hot: 3132 /* If there are other clients above don't 3133 shut down the power */ 3134 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3135 return 0; 3136 /* Don't shut down the power for emulation and FPGA */ 3137 if (CHIP_REV_IS_SLOW(bp)) 3138 return 0; 3139 3140 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3141 pmcsr |= 3; 3142 3143 if (bp->wol) 3144 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3145 3146 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3147 pmcsr); 3148 3149 /* No more memory access after this point until 3150 * device is brought back to D0. 3151 */ 3152 break; 3153 3154 default: 3155 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3156 return -EINVAL; 3157 } 3158 return 0; 3159 } 3160 3161 /* 3162 * net_device service functions 3163 */ 3164 static int bnx2x_poll(struct napi_struct *napi, int budget) 3165 { 3166 int work_done = 0; 3167 u8 cos; 3168 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3169 napi); 3170 struct bnx2x *bp = fp->bp; 3171 3172 while (1) { 3173 #ifdef BNX2X_STOP_ON_ERROR 3174 if (unlikely(bp->panic)) { 3175 napi_complete(napi); 3176 return 0; 3177 } 3178 #endif 3179 if (!bnx2x_fp_lock_napi(fp)) 3180 return budget; 3181 3182 for_each_cos_in_tx_queue(fp, cos) 3183 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3184 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3185 3186 if (bnx2x_has_rx_work(fp)) { 3187 work_done += bnx2x_rx_int(fp, budget - work_done); 3188 3189 /* must not complete if we consumed full budget */ 3190 if (work_done >= budget) { 3191 bnx2x_fp_unlock_napi(fp); 3192 break; 3193 } 3194 } 3195 3196 bnx2x_fp_unlock_napi(fp); 3197 3198 /* Fall out from the NAPI loop if needed */ 3199 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3200 3201 /* No need to update SB for FCoE L2 ring as long as 3202 * it's connected to the default SB and the SB 3203 * has been updated when NAPI was scheduled. 3204 */ 3205 if (IS_FCOE_FP(fp)) { 3206 napi_complete(napi); 3207 break; 3208 } 3209 bnx2x_update_fpsb_idx(fp); 3210 /* bnx2x_has_rx_work() reads the status block, 3211 * thus we need to ensure that status block indices 3212 * have been actually read (bnx2x_update_fpsb_idx) 3213 * prior to this check (bnx2x_has_rx_work) so that 3214 * we won't write the "newer" value of the status block 3215 * to IGU (if there was a DMA right after 3216 * bnx2x_has_rx_work and if there is no rmb, the memory 3217 * reading (bnx2x_update_fpsb_idx) may be postponed 3218 * to right before bnx2x_ack_sb). In this case there 3219 * will never be another interrupt until there is 3220 * another update of the status block, while there 3221 * is still unhandled work. 3222 */ 3223 rmb(); 3224 3225 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3226 napi_complete(napi); 3227 /* Re-enable interrupts */ 3228 DP(NETIF_MSG_RX_STATUS, 3229 "Update index to %d\n", fp->fp_hc_idx); 3230 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3231 le16_to_cpu(fp->fp_hc_idx), 3232 IGU_INT_ENABLE, 1); 3233 break; 3234 } 3235 } 3236 } 3237 3238 return work_done; 3239 } 3240 3241 #ifdef CONFIG_NET_RX_BUSY_POLL 3242 /* must be called with local_bh_disable()d */ 3243 int bnx2x_low_latency_recv(struct napi_struct *napi) 3244 { 3245 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3246 napi); 3247 struct bnx2x *bp = fp->bp; 3248 int found = 0; 3249 3250 if ((bp->state == BNX2X_STATE_CLOSED) || 3251 (bp->state == BNX2X_STATE_ERROR) || 3252 (bp->dev->features & (NETIF_F_LRO | NETIF_F_GRO))) 3253 return LL_FLUSH_FAILED; 3254 3255 if (!bnx2x_fp_lock_poll(fp)) 3256 return LL_FLUSH_BUSY; 3257 3258 if (bnx2x_has_rx_work(fp)) 3259 found = bnx2x_rx_int(fp, 4); 3260 3261 bnx2x_fp_unlock_poll(fp); 3262 3263 return found; 3264 } 3265 #endif 3266 3267 /* we split the first BD into headers and data BDs 3268 * to ease the pain of our fellow microcode engineers 3269 * we use one mapping for both BDs 3270 */ 3271 static u16 bnx2x_tx_split(struct bnx2x *bp, 3272 struct bnx2x_fp_txdata *txdata, 3273 struct sw_tx_bd *tx_buf, 3274 struct eth_tx_start_bd **tx_bd, u16 hlen, 3275 u16 bd_prod) 3276 { 3277 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3278 struct eth_tx_bd *d_tx_bd; 3279 dma_addr_t mapping; 3280 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3281 3282 /* first fix first BD */ 3283 h_tx_bd->nbytes = cpu_to_le16(hlen); 3284 3285 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3286 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3287 3288 /* now get a new data BD 3289 * (after the pbd) and fill it */ 3290 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3291 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3292 3293 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3294 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3295 3296 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3297 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3298 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3299 3300 /* this marks the BD as one that has no individual mapping */ 3301 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3302 3303 DP(NETIF_MSG_TX_QUEUED, 3304 "TSO split data size is %d (%x:%x)\n", 3305 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3306 3307 /* update tx_bd */ 3308 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3309 3310 return bd_prod; 3311 } 3312 3313 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3314 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3315 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3316 { 3317 __sum16 tsum = (__force __sum16) csum; 3318 3319 if (fix > 0) 3320 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3321 csum_partial(t_header - fix, fix, 0))); 3322 3323 else if (fix < 0) 3324 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3325 csum_partial(t_header, -fix, 0))); 3326 3327 return bswab16(tsum); 3328 } 3329 3330 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3331 { 3332 u32 rc; 3333 __u8 prot = 0; 3334 __be16 protocol; 3335 3336 if (skb->ip_summed != CHECKSUM_PARTIAL) 3337 return XMIT_PLAIN; 3338 3339 protocol = vlan_get_protocol(skb); 3340 if (protocol == htons(ETH_P_IPV6)) { 3341 rc = XMIT_CSUM_V6; 3342 prot = ipv6_hdr(skb)->nexthdr; 3343 } else { 3344 rc = XMIT_CSUM_V4; 3345 prot = ip_hdr(skb)->protocol; 3346 } 3347 3348 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3349 if (inner_ip_hdr(skb)->version == 6) { 3350 rc |= XMIT_CSUM_ENC_V6; 3351 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3352 rc |= XMIT_CSUM_TCP; 3353 } else { 3354 rc |= XMIT_CSUM_ENC_V4; 3355 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3356 rc |= XMIT_CSUM_TCP; 3357 } 3358 } 3359 if (prot == IPPROTO_TCP) 3360 rc |= XMIT_CSUM_TCP; 3361 3362 if (skb_is_gso(skb)) { 3363 if (skb_is_gso_v6(skb)) { 3364 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3365 if (rc & XMIT_CSUM_ENC) 3366 rc |= XMIT_GSO_ENC_V6; 3367 } else { 3368 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3369 if (rc & XMIT_CSUM_ENC) 3370 rc |= XMIT_GSO_ENC_V4; 3371 } 3372 } 3373 3374 return rc; 3375 } 3376 3377 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) 3378 /* check if packet requires linearization (packet is too fragmented) 3379 no need to check fragmentation if page size > 8K (there will be no 3380 violation to FW restrictions) */ 3381 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3382 u32 xmit_type) 3383 { 3384 int to_copy = 0; 3385 int hlen = 0; 3386 int first_bd_sz = 0; 3387 3388 /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3389 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) { 3390 3391 if (xmit_type & XMIT_GSO) { 3392 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3393 /* Check if LSO packet needs to be copied: 3394 3 = 1 (for headers BD) + 2 (for PBD and last BD) */ 3395 int wnd_size = MAX_FETCH_BD - 3; 3396 /* Number of windows to check */ 3397 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3398 int wnd_idx = 0; 3399 int frag_idx = 0; 3400 u32 wnd_sum = 0; 3401 3402 /* Headers length */ 3403 hlen = (int)(skb_transport_header(skb) - skb->data) + 3404 tcp_hdrlen(skb); 3405 3406 /* Amount of data (w/o headers) on linear part of SKB*/ 3407 first_bd_sz = skb_headlen(skb) - hlen; 3408 3409 wnd_sum = first_bd_sz; 3410 3411 /* Calculate the first sum - it's special */ 3412 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3413 wnd_sum += 3414 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3415 3416 /* If there was data on linear skb data - check it */ 3417 if (first_bd_sz > 0) { 3418 if (unlikely(wnd_sum < lso_mss)) { 3419 to_copy = 1; 3420 goto exit_lbl; 3421 } 3422 3423 wnd_sum -= first_bd_sz; 3424 } 3425 3426 /* Others are easier: run through the frag list and 3427 check all windows */ 3428 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3429 wnd_sum += 3430 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3431 3432 if (unlikely(wnd_sum < lso_mss)) { 3433 to_copy = 1; 3434 break; 3435 } 3436 wnd_sum -= 3437 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3438 } 3439 } else { 3440 /* in non-LSO too fragmented packet should always 3441 be linearized */ 3442 to_copy = 1; 3443 } 3444 } 3445 3446 exit_lbl: 3447 if (unlikely(to_copy)) 3448 DP(NETIF_MSG_TX_QUEUED, 3449 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3450 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3451 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3452 3453 return to_copy; 3454 } 3455 #endif 3456 3457 /** 3458 * bnx2x_set_pbd_gso - update PBD in GSO case. 3459 * 3460 * @skb: packet skb 3461 * @pbd: parse BD 3462 * @xmit_type: xmit flags 3463 */ 3464 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3465 struct eth_tx_parse_bd_e1x *pbd, 3466 u32 xmit_type) 3467 { 3468 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3469 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3470 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3471 3472 if (xmit_type & XMIT_GSO_V4) { 3473 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3474 pbd->tcp_pseudo_csum = 3475 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3476 ip_hdr(skb)->daddr, 3477 0, IPPROTO_TCP, 0)); 3478 } else { 3479 pbd->tcp_pseudo_csum = 3480 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3481 &ipv6_hdr(skb)->daddr, 3482 0, IPPROTO_TCP, 0)); 3483 } 3484 3485 pbd->global_data |= 3486 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3487 } 3488 3489 /** 3490 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3491 * 3492 * @bp: driver handle 3493 * @skb: packet skb 3494 * @parsing_data: data to be updated 3495 * @xmit_type: xmit flags 3496 * 3497 * 57712/578xx related, when skb has encapsulation 3498 */ 3499 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3500 u32 *parsing_data, u32 xmit_type) 3501 { 3502 *parsing_data |= 3503 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3504 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3505 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3506 3507 if (xmit_type & XMIT_CSUM_TCP) { 3508 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3509 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3510 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3511 3512 return skb_inner_transport_header(skb) + 3513 inner_tcp_hdrlen(skb) - skb->data; 3514 } 3515 3516 /* We support checksum offload for TCP and UDP only. 3517 * No need to pass the UDP header length - it's a constant. 3518 */ 3519 return skb_inner_transport_header(skb) + 3520 sizeof(struct udphdr) - skb->data; 3521 } 3522 3523 /** 3524 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3525 * 3526 * @bp: driver handle 3527 * @skb: packet skb 3528 * @parsing_data: data to be updated 3529 * @xmit_type: xmit flags 3530 * 3531 * 57712/578xx related 3532 */ 3533 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3534 u32 *parsing_data, u32 xmit_type) 3535 { 3536 *parsing_data |= 3537 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3538 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3539 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3540 3541 if (xmit_type & XMIT_CSUM_TCP) { 3542 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3543 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3544 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3545 3546 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; 3547 } 3548 /* We support checksum offload for TCP and UDP only. 3549 * No need to pass the UDP header length - it's a constant. 3550 */ 3551 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; 3552 } 3553 3554 /* set FW indication according to inner or outer protocols if tunneled */ 3555 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3556 struct eth_tx_start_bd *tx_start_bd, 3557 u32 xmit_type) 3558 { 3559 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3560 3561 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3562 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3563 3564 if (!(xmit_type & XMIT_CSUM_TCP)) 3565 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3566 } 3567 3568 /** 3569 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3570 * 3571 * @bp: driver handle 3572 * @skb: packet skb 3573 * @pbd: parse BD to be updated 3574 * @xmit_type: xmit flags 3575 */ 3576 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3577 struct eth_tx_parse_bd_e1x *pbd, 3578 u32 xmit_type) 3579 { 3580 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3581 3582 /* for now NS flag is not used in Linux */ 3583 pbd->global_data = 3584 cpu_to_le16(hlen | 3585 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3586 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3587 3588 pbd->ip_hlen_w = (skb_transport_header(skb) - 3589 skb_network_header(skb)) >> 1; 3590 3591 hlen += pbd->ip_hlen_w; 3592 3593 /* We support checksum offload for TCP and UDP only */ 3594 if (xmit_type & XMIT_CSUM_TCP) 3595 hlen += tcp_hdrlen(skb) / 2; 3596 else 3597 hlen += sizeof(struct udphdr) / 2; 3598 3599 pbd->total_hlen_w = cpu_to_le16(hlen); 3600 hlen = hlen*2; 3601 3602 if (xmit_type & XMIT_CSUM_TCP) { 3603 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3604 3605 } else { 3606 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3607 3608 DP(NETIF_MSG_TX_QUEUED, 3609 "hlen %d fix %d csum before fix %x\n", 3610 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3611 3612 /* HW bug: fixup the CSUM */ 3613 pbd->tcp_pseudo_csum = 3614 bnx2x_csum_fix(skb_transport_header(skb), 3615 SKB_CS(skb), fix); 3616 3617 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3618 pbd->tcp_pseudo_csum); 3619 } 3620 3621 return hlen; 3622 } 3623 3624 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3625 struct eth_tx_parse_bd_e2 *pbd_e2, 3626 struct eth_tx_parse_2nd_bd *pbd2, 3627 u16 *global_data, 3628 u32 xmit_type) 3629 { 3630 u16 hlen_w = 0; 3631 u8 outerip_off, outerip_len = 0; 3632 3633 /* from outer IP to transport */ 3634 hlen_w = (skb_inner_transport_header(skb) - 3635 skb_network_header(skb)) >> 1; 3636 3637 /* transport len */ 3638 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3639 3640 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3641 3642 /* outer IP header info */ 3643 if (xmit_type & XMIT_CSUM_V4) { 3644 struct iphdr *iph = ip_hdr(skb); 3645 u32 csum = (__force u32)(~iph->check) - 3646 (__force u32)iph->tot_len - 3647 (__force u32)iph->frag_off; 3648 3649 outerip_len = iph->ihl << 1; 3650 3651 pbd2->fw_ip_csum_wo_len_flags_frag = 3652 bswab16(csum_fold((__force __wsum)csum)); 3653 } else { 3654 pbd2->fw_ip_hdr_to_payload_w = 3655 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3656 pbd_e2->data.tunnel_data.flags |= 3657 ETH_TUNNEL_DATA_IP_HDR_TYPE_OUTER; 3658 } 3659 3660 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3661 3662 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3663 3664 /* inner IP header info */ 3665 if (xmit_type & XMIT_CSUM_ENC_V4) { 3666 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3667 3668 pbd_e2->data.tunnel_data.pseudo_csum = 3669 bswab16(~csum_tcpudp_magic( 3670 inner_ip_hdr(skb)->saddr, 3671 inner_ip_hdr(skb)->daddr, 3672 0, IPPROTO_TCP, 0)); 3673 } else { 3674 pbd_e2->data.tunnel_data.pseudo_csum = 3675 bswab16(~csum_ipv6_magic( 3676 &inner_ipv6_hdr(skb)->saddr, 3677 &inner_ipv6_hdr(skb)->daddr, 3678 0, IPPROTO_TCP, 0)); 3679 } 3680 3681 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3682 3683 *global_data |= 3684 outerip_off | 3685 (outerip_len << 3686 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3687 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3688 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3689 3690 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3691 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3692 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3693 } 3694 } 3695 3696 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data, 3697 u32 xmit_type) 3698 { 3699 struct ipv6hdr *ipv6; 3700 3701 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6))) 3702 return; 3703 3704 if (xmit_type & XMIT_GSO_ENC_V6) 3705 ipv6 = inner_ipv6_hdr(skb); 3706 else /* XMIT_GSO_V6 */ 3707 ipv6 = ipv6_hdr(skb); 3708 3709 if (ipv6->nexthdr == NEXTHDR_IPV6) 3710 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3711 } 3712 3713 /* called with netif_tx_lock 3714 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3715 * netif_wake_queue() 3716 */ 3717 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3718 { 3719 struct bnx2x *bp = netdev_priv(dev); 3720 3721 struct netdev_queue *txq; 3722 struct bnx2x_fp_txdata *txdata; 3723 struct sw_tx_bd *tx_buf; 3724 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3725 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3726 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3727 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3728 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3729 u32 pbd_e2_parsing_data = 0; 3730 u16 pkt_prod, bd_prod; 3731 int nbd, txq_index; 3732 dma_addr_t mapping; 3733 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3734 int i; 3735 u8 hlen = 0; 3736 __le16 pkt_size = 0; 3737 struct ethhdr *eth; 3738 u8 mac_type = UNICAST_ADDRESS; 3739 3740 #ifdef BNX2X_STOP_ON_ERROR 3741 if (unlikely(bp->panic)) 3742 return NETDEV_TX_BUSY; 3743 #endif 3744 3745 txq_index = skb_get_queue_mapping(skb); 3746 txq = netdev_get_tx_queue(dev, txq_index); 3747 3748 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3749 3750 txdata = &bp->bnx2x_txq[txq_index]; 3751 3752 /* enable this debug print to view the transmission queue being used 3753 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3754 txq_index, fp_index, txdata_index); */ 3755 3756 /* enable this debug print to view the transmission details 3757 DP(NETIF_MSG_TX_QUEUED, 3758 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3759 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3760 3761 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3762 skb_shinfo(skb)->nr_frags + 3763 BDS_PER_TX_PKT + 3764 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3765 /* Handle special storage cases separately */ 3766 if (txdata->tx_ring_size == 0) { 3767 struct bnx2x_eth_q_stats *q_stats = 3768 bnx2x_fp_qstats(bp, txdata->parent_fp); 3769 q_stats->driver_filtered_tx_pkt++; 3770 dev_kfree_skb(skb); 3771 return NETDEV_TX_OK; 3772 } 3773 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3774 netif_tx_stop_queue(txq); 3775 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3776 3777 return NETDEV_TX_BUSY; 3778 } 3779 3780 DP(NETIF_MSG_TX_QUEUED, 3781 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3782 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3783 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3784 skb->len); 3785 3786 eth = (struct ethhdr *)skb->data; 3787 3788 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3789 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3790 if (is_broadcast_ether_addr(eth->h_dest)) 3791 mac_type = BROADCAST_ADDRESS; 3792 else 3793 mac_type = MULTICAST_ADDRESS; 3794 } 3795 3796 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3797 /* First, check if we need to linearize the skb (due to FW 3798 restrictions). No need to check fragmentation if page size > 8K 3799 (there will be no violation to FW restrictions) */ 3800 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3801 /* Statistics of linearization */ 3802 bp->lin_cnt++; 3803 if (skb_linearize(skb) != 0) { 3804 DP(NETIF_MSG_TX_QUEUED, 3805 "SKB linearization failed - silently dropping this SKB\n"); 3806 dev_kfree_skb_any(skb); 3807 return NETDEV_TX_OK; 3808 } 3809 } 3810 #endif 3811 /* Map skb linear data for DMA */ 3812 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3813 skb_headlen(skb), DMA_TO_DEVICE); 3814 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3815 DP(NETIF_MSG_TX_QUEUED, 3816 "SKB mapping failed - silently dropping this SKB\n"); 3817 dev_kfree_skb_any(skb); 3818 return NETDEV_TX_OK; 3819 } 3820 /* 3821 Please read carefully. First we use one BD which we mark as start, 3822 then we have a parsing info BD (used for TSO or xsum), 3823 and only then we have the rest of the TSO BDs. 3824 (don't forget to mark the last one as last, 3825 and to unmap only AFTER you write to the BD ...) 3826 And above all, all pdb sizes are in words - NOT DWORDS! 3827 */ 3828 3829 /* get current pkt produced now - advance it just before sending packet 3830 * since mapping of pages may fail and cause packet to be dropped 3831 */ 3832 pkt_prod = txdata->tx_pkt_prod; 3833 bd_prod = TX_BD(txdata->tx_bd_prod); 3834 3835 /* get a tx_buf and first BD 3836 * tx_start_bd may be changed during SPLIT, 3837 * but first_bd will always stay first 3838 */ 3839 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3840 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3841 first_bd = tx_start_bd; 3842 3843 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3844 3845 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3846 if (!(bp->flags & TX_TIMESTAMPING_EN)) { 3847 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n"); 3848 } else if (bp->ptp_tx_skb) { 3849 BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n"); 3850 } else { 3851 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3852 /* schedule check for Tx timestamp */ 3853 bp->ptp_tx_skb = skb_get(skb); 3854 bp->ptp_tx_start = jiffies; 3855 schedule_work(&bp->ptp_task); 3856 } 3857 } 3858 3859 /* header nbd: indirectly zero other flags! */ 3860 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3861 3862 /* remember the first BD of the packet */ 3863 tx_buf->first_bd = txdata->tx_bd_prod; 3864 tx_buf->skb = skb; 3865 tx_buf->flags = 0; 3866 3867 DP(NETIF_MSG_TX_QUEUED, 3868 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3869 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3870 3871 if (skb_vlan_tag_present(skb)) { 3872 tx_start_bd->vlan_or_ethertype = 3873 cpu_to_le16(skb_vlan_tag_get(skb)); 3874 tx_start_bd->bd_flags.as_bitfield |= 3875 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3876 } else { 3877 /* when transmitting in a vf, start bd must hold the ethertype 3878 * for fw to enforce it 3879 */ 3880 #ifndef BNX2X_STOP_ON_ERROR 3881 if (IS_VF(bp)) 3882 #endif 3883 tx_start_bd->vlan_or_ethertype = 3884 cpu_to_le16(ntohs(eth->h_proto)); 3885 #ifndef BNX2X_STOP_ON_ERROR 3886 else 3887 /* used by FW for packet accounting */ 3888 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3889 #endif 3890 } 3891 3892 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3893 3894 /* turn on parsing and get a BD */ 3895 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3896 3897 if (xmit_type & XMIT_CSUM) 3898 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3899 3900 if (!CHIP_IS_E1x(bp)) { 3901 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3902 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3903 3904 if (xmit_type & XMIT_CSUM_ENC) { 3905 u16 global_data = 0; 3906 3907 /* Set PBD in enc checksum offload case */ 3908 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3909 &pbd_e2_parsing_data, 3910 xmit_type); 3911 3912 /* turn on 2nd parsing and get a BD */ 3913 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3914 3915 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3916 3917 memset(pbd2, 0, sizeof(*pbd2)); 3918 3919 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3920 (skb_inner_network_header(skb) - 3921 skb->data) >> 1; 3922 3923 if (xmit_type & XMIT_GSO_ENC) 3924 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3925 &global_data, 3926 xmit_type); 3927 3928 pbd2->global_data = cpu_to_le16(global_data); 3929 3930 /* add addition parse BD indication to start BD */ 3931 SET_FLAG(tx_start_bd->general_data, 3932 ETH_TX_START_BD_PARSE_NBDS, 1); 3933 /* set encapsulation flag in start BD */ 3934 SET_FLAG(tx_start_bd->general_data, 3935 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3936 3937 tx_buf->flags |= BNX2X_HAS_SECOND_PBD; 3938 3939 nbd++; 3940 } else if (xmit_type & XMIT_CSUM) { 3941 /* Set PBD in checksum offload case w/o encapsulation */ 3942 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3943 &pbd_e2_parsing_data, 3944 xmit_type); 3945 } 3946 3947 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type); 3948 /* Add the macs to the parsing BD if this is a vf or if 3949 * Tx Switching is enabled. 3950 */ 3951 if (IS_VF(bp)) { 3952 /* override GRE parameters in BD */ 3953 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3954 &pbd_e2->data.mac_addr.src_mid, 3955 &pbd_e2->data.mac_addr.src_lo, 3956 eth->h_source); 3957 3958 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 3959 &pbd_e2->data.mac_addr.dst_mid, 3960 &pbd_e2->data.mac_addr.dst_lo, 3961 eth->h_dest); 3962 } else { 3963 if (bp->flags & TX_SWITCHING) 3964 bnx2x_set_fw_mac_addr( 3965 &pbd_e2->data.mac_addr.dst_hi, 3966 &pbd_e2->data.mac_addr.dst_mid, 3967 &pbd_e2->data.mac_addr.dst_lo, 3968 eth->h_dest); 3969 #ifdef BNX2X_STOP_ON_ERROR 3970 /* Enforce security is always set in Stop on Error - 3971 * source mac should be present in the parsing BD 3972 */ 3973 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3974 &pbd_e2->data.mac_addr.src_mid, 3975 &pbd_e2->data.mac_addr.src_lo, 3976 eth->h_source); 3977 #endif 3978 } 3979 3980 SET_FLAG(pbd_e2_parsing_data, 3981 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 3982 } else { 3983 u16 global_data = 0; 3984 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 3985 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 3986 /* Set PBD in checksum offload case */ 3987 if (xmit_type & XMIT_CSUM) 3988 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 3989 3990 SET_FLAG(global_data, 3991 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 3992 pbd_e1x->global_data |= cpu_to_le16(global_data); 3993 } 3994 3995 /* Setup the data pointer of the first BD of the packet */ 3996 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3997 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3998 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 3999 pkt_size = tx_start_bd->nbytes; 4000 4001 DP(NETIF_MSG_TX_QUEUED, 4002 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 4003 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 4004 le16_to_cpu(tx_start_bd->nbytes), 4005 tx_start_bd->bd_flags.as_bitfield, 4006 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 4007 4008 if (xmit_type & XMIT_GSO) { 4009 4010 DP(NETIF_MSG_TX_QUEUED, 4011 "TSO packet len %d hlen %d total len %d tso size %d\n", 4012 skb->len, hlen, skb_headlen(skb), 4013 skb_shinfo(skb)->gso_size); 4014 4015 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 4016 4017 if (unlikely(skb_headlen(skb) > hlen)) { 4018 nbd++; 4019 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 4020 &tx_start_bd, hlen, 4021 bd_prod); 4022 } 4023 if (!CHIP_IS_E1x(bp)) 4024 pbd_e2_parsing_data |= 4025 (skb_shinfo(skb)->gso_size << 4026 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 4027 ETH_TX_PARSE_BD_E2_LSO_MSS; 4028 else 4029 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); 4030 } 4031 4032 /* Set the PBD's parsing_data field if not zero 4033 * (for the chips newer than 57711). 4034 */ 4035 if (pbd_e2_parsing_data) 4036 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 4037 4038 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 4039 4040 /* Handle fragmented skb */ 4041 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4042 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4043 4044 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 4045 skb_frag_size(frag), DMA_TO_DEVICE); 4046 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 4047 unsigned int pkts_compl = 0, bytes_compl = 0; 4048 4049 DP(NETIF_MSG_TX_QUEUED, 4050 "Unable to map page - dropping packet...\n"); 4051 4052 /* we need unmap all buffers already mapped 4053 * for this SKB; 4054 * first_bd->nbd need to be properly updated 4055 * before call to bnx2x_free_tx_pkt 4056 */ 4057 first_bd->nbd = cpu_to_le16(nbd); 4058 bnx2x_free_tx_pkt(bp, txdata, 4059 TX_BD(txdata->tx_pkt_prod), 4060 &pkts_compl, &bytes_compl); 4061 return NETDEV_TX_OK; 4062 } 4063 4064 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4065 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4066 if (total_pkt_bd == NULL) 4067 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4068 4069 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4070 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4071 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 4072 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 4073 nbd++; 4074 4075 DP(NETIF_MSG_TX_QUEUED, 4076 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 4077 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 4078 le16_to_cpu(tx_data_bd->nbytes)); 4079 } 4080 4081 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 4082 4083 /* update with actual num BDs */ 4084 first_bd->nbd = cpu_to_le16(nbd); 4085 4086 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4087 4088 /* now send a tx doorbell, counting the next BD 4089 * if the packet contains or ends with it 4090 */ 4091 if (TX_BD_POFF(bd_prod) < nbd) 4092 nbd++; 4093 4094 /* total_pkt_bytes should be set on the first data BD if 4095 * it's not an LSO packet and there is more than one 4096 * data BD. In this case pkt_size is limited by an MTU value. 4097 * However we prefer to set it for an LSO packet (while we don't 4098 * have to) in order to save some CPU cycles in a none-LSO 4099 * case, when we much more care about them. 4100 */ 4101 if (total_pkt_bd != NULL) 4102 total_pkt_bd->total_pkt_bytes = pkt_size; 4103 4104 if (pbd_e1x) 4105 DP(NETIF_MSG_TX_QUEUED, 4106 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4107 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4108 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4109 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4110 le16_to_cpu(pbd_e1x->total_hlen_w)); 4111 if (pbd_e2) 4112 DP(NETIF_MSG_TX_QUEUED, 4113 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4114 pbd_e2, 4115 pbd_e2->data.mac_addr.dst_hi, 4116 pbd_e2->data.mac_addr.dst_mid, 4117 pbd_e2->data.mac_addr.dst_lo, 4118 pbd_e2->data.mac_addr.src_hi, 4119 pbd_e2->data.mac_addr.src_mid, 4120 pbd_e2->data.mac_addr.src_lo, 4121 pbd_e2->parsing_data); 4122 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4123 4124 netdev_tx_sent_queue(txq, skb->len); 4125 4126 skb_tx_timestamp(skb); 4127 4128 txdata->tx_pkt_prod++; 4129 /* 4130 * Make sure that the BD data is updated before updating the producer 4131 * since FW might read the BD right after the producer is updated. 4132 * This is only applicable for weak-ordered memory model archs such 4133 * as IA-64. The following barrier is also mandatory since FW will 4134 * assumes packets must have BDs. 4135 */ 4136 wmb(); 4137 4138 txdata->tx_db.data.prod += nbd; 4139 barrier(); 4140 4141 DOORBELL(bp, txdata->cid, txdata->tx_db.raw); 4142 4143 mmiowb(); 4144 4145 txdata->tx_bd_prod += nbd; 4146 4147 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4148 netif_tx_stop_queue(txq); 4149 4150 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4151 * ordering of set_bit() in netif_tx_stop_queue() and read of 4152 * fp->bd_tx_cons */ 4153 smp_mb(); 4154 4155 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4156 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4157 netif_tx_wake_queue(txq); 4158 } 4159 txdata->tx_pkt++; 4160 4161 return NETDEV_TX_OK; 4162 } 4163 4164 /** 4165 * bnx2x_setup_tc - routine to configure net_device for multi tc 4166 * 4167 * @netdev: net device to configure 4168 * @tc: number of traffic classes to enable 4169 * 4170 * callback connected to the ndo_setup_tc function pointer 4171 */ 4172 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4173 { 4174 int cos, prio, count, offset; 4175 struct bnx2x *bp = netdev_priv(dev); 4176 4177 /* setup tc must be called under rtnl lock */ 4178 ASSERT_RTNL(); 4179 4180 /* no traffic classes requested. Aborting */ 4181 if (!num_tc) { 4182 netdev_reset_tc(dev); 4183 return 0; 4184 } 4185 4186 /* requested to support too many traffic classes */ 4187 if (num_tc > bp->max_cos) { 4188 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4189 num_tc, bp->max_cos); 4190 return -EINVAL; 4191 } 4192 4193 /* declare amount of supported traffic classes */ 4194 if (netdev_set_num_tc(dev, num_tc)) { 4195 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4196 return -EINVAL; 4197 } 4198 4199 /* configure priority to traffic class mapping */ 4200 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4201 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[prio]); 4202 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4203 "mapping priority %d to tc %d\n", 4204 prio, bp->prio_to_cos[prio]); 4205 } 4206 4207 /* Use this configuration to differentiate tc0 from other COSes 4208 This can be used for ets or pfc, and save the effort of setting 4209 up a multio class queue disc or negotiating DCBX with a switch 4210 netdev_set_prio_tc_map(dev, 0, 0); 4211 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4212 for (prio = 1; prio < 16; prio++) { 4213 netdev_set_prio_tc_map(dev, prio, 1); 4214 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4215 } */ 4216 4217 /* configure traffic class to transmission queue mapping */ 4218 for (cos = 0; cos < bp->max_cos; cos++) { 4219 count = BNX2X_NUM_ETH_QUEUES(bp); 4220 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4221 netdev_set_tc_queue(dev, cos, count, offset); 4222 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4223 "mapping tc %d to offset %d count %d\n", 4224 cos, offset, count); 4225 } 4226 4227 return 0; 4228 } 4229 4230 /* called with rtnl_lock */ 4231 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4232 { 4233 struct sockaddr *addr = p; 4234 struct bnx2x *bp = netdev_priv(dev); 4235 int rc = 0; 4236 4237 if (!is_valid_ether_addr(addr->sa_data)) { 4238 BNX2X_ERR("Requested MAC address is not valid\n"); 4239 return -EINVAL; 4240 } 4241 4242 if (IS_MF_STORAGE_ONLY(bp)) { 4243 BNX2X_ERR("Can't change address on STORAGE ONLY function\n"); 4244 return -EINVAL; 4245 } 4246 4247 if (netif_running(dev)) { 4248 rc = bnx2x_set_eth_mac(bp, false); 4249 if (rc) 4250 return rc; 4251 } 4252 4253 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4254 4255 if (netif_running(dev)) 4256 rc = bnx2x_set_eth_mac(bp, true); 4257 4258 return rc; 4259 } 4260 4261 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4262 { 4263 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4264 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4265 u8 cos; 4266 4267 /* Common */ 4268 4269 if (IS_FCOE_IDX(fp_index)) { 4270 memset(sb, 0, sizeof(union host_hc_status_block)); 4271 fp->status_blk_mapping = 0; 4272 } else { 4273 /* status blocks */ 4274 if (!CHIP_IS_E1x(bp)) 4275 BNX2X_PCI_FREE(sb->e2_sb, 4276 bnx2x_fp(bp, fp_index, 4277 status_blk_mapping), 4278 sizeof(struct host_hc_status_block_e2)); 4279 else 4280 BNX2X_PCI_FREE(sb->e1x_sb, 4281 bnx2x_fp(bp, fp_index, 4282 status_blk_mapping), 4283 sizeof(struct host_hc_status_block_e1x)); 4284 } 4285 4286 /* Rx */ 4287 if (!skip_rx_queue(bp, fp_index)) { 4288 bnx2x_free_rx_bds(fp); 4289 4290 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4291 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4292 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4293 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4294 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4295 4296 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4297 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4298 sizeof(struct eth_fast_path_rx_cqe) * 4299 NUM_RCQ_BD); 4300 4301 /* SGE ring */ 4302 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4303 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4304 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4305 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4306 } 4307 4308 /* Tx */ 4309 if (!skip_tx_queue(bp, fp_index)) { 4310 /* fastpath tx rings: tx_buf tx_desc */ 4311 for_each_cos_in_tx_queue(fp, cos) { 4312 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4313 4314 DP(NETIF_MSG_IFDOWN, 4315 "freeing tx memory of fp %d cos %d cid %d\n", 4316 fp_index, cos, txdata->cid); 4317 4318 BNX2X_FREE(txdata->tx_buf_ring); 4319 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4320 txdata->tx_desc_mapping, 4321 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4322 } 4323 } 4324 /* end of fastpath */ 4325 } 4326 4327 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4328 { 4329 int i; 4330 for_each_cnic_queue(bp, i) 4331 bnx2x_free_fp_mem_at(bp, i); 4332 } 4333 4334 void bnx2x_free_fp_mem(struct bnx2x *bp) 4335 { 4336 int i; 4337 for_each_eth_queue(bp, i) 4338 bnx2x_free_fp_mem_at(bp, i); 4339 } 4340 4341 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4342 { 4343 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4344 if (!CHIP_IS_E1x(bp)) { 4345 bnx2x_fp(bp, index, sb_index_values) = 4346 (__le16 *)status_blk.e2_sb->sb.index_values; 4347 bnx2x_fp(bp, index, sb_running_index) = 4348 (__le16 *)status_blk.e2_sb->sb.running_index; 4349 } else { 4350 bnx2x_fp(bp, index, sb_index_values) = 4351 (__le16 *)status_blk.e1x_sb->sb.index_values; 4352 bnx2x_fp(bp, index, sb_running_index) = 4353 (__le16 *)status_blk.e1x_sb->sb.running_index; 4354 } 4355 } 4356 4357 /* Returns the number of actually allocated BDs */ 4358 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4359 int rx_ring_size) 4360 { 4361 struct bnx2x *bp = fp->bp; 4362 u16 ring_prod, cqe_ring_prod; 4363 int i, failure_cnt = 0; 4364 4365 fp->rx_comp_cons = 0; 4366 cqe_ring_prod = ring_prod = 0; 4367 4368 /* This routine is called only during fo init so 4369 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4370 */ 4371 for (i = 0; i < rx_ring_size; i++) { 4372 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4373 failure_cnt++; 4374 continue; 4375 } 4376 ring_prod = NEXT_RX_IDX(ring_prod); 4377 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4378 WARN_ON(ring_prod <= (i - failure_cnt)); 4379 } 4380 4381 if (failure_cnt) 4382 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4383 i - failure_cnt, fp->index); 4384 4385 fp->rx_bd_prod = ring_prod; 4386 /* Limit the CQE producer by the CQE ring size */ 4387 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4388 cqe_ring_prod); 4389 fp->rx_pkt = fp->rx_calls = 0; 4390 4391 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4392 4393 return i - failure_cnt; 4394 } 4395 4396 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4397 { 4398 int i; 4399 4400 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4401 struct eth_rx_cqe_next_page *nextpg; 4402 4403 nextpg = (struct eth_rx_cqe_next_page *) 4404 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4405 nextpg->addr_hi = 4406 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4407 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4408 nextpg->addr_lo = 4409 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4410 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4411 } 4412 } 4413 4414 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4415 { 4416 union host_hc_status_block *sb; 4417 struct bnx2x_fastpath *fp = &bp->fp[index]; 4418 int ring_size = 0; 4419 u8 cos; 4420 int rx_ring_size = 0; 4421 4422 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) { 4423 rx_ring_size = MIN_RX_SIZE_NONTPA; 4424 bp->rx_ring_size = rx_ring_size; 4425 } else if (!bp->rx_ring_size) { 4426 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4427 4428 if (CHIP_IS_E3(bp)) { 4429 u32 cfg = SHMEM_RD(bp, 4430 dev_info.port_hw_config[BP_PORT(bp)]. 4431 default_cfg); 4432 4433 /* Decrease ring size for 1G functions */ 4434 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4435 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4436 rx_ring_size /= 10; 4437 } 4438 4439 /* allocate at least number of buffers required by FW */ 4440 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4441 MIN_RX_SIZE_TPA, rx_ring_size); 4442 4443 bp->rx_ring_size = rx_ring_size; 4444 } else /* if rx_ring_size specified - use it */ 4445 rx_ring_size = bp->rx_ring_size; 4446 4447 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4448 4449 /* Common */ 4450 sb = &bnx2x_fp(bp, index, status_blk); 4451 4452 if (!IS_FCOE_IDX(index)) { 4453 /* status blocks */ 4454 if (!CHIP_IS_E1x(bp)) { 4455 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4456 sizeof(struct host_hc_status_block_e2)); 4457 if (!sb->e2_sb) 4458 goto alloc_mem_err; 4459 } else { 4460 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4461 sizeof(struct host_hc_status_block_e1x)); 4462 if (!sb->e1x_sb) 4463 goto alloc_mem_err; 4464 } 4465 } 4466 4467 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4468 * set shortcuts for it. 4469 */ 4470 if (!IS_FCOE_IDX(index)) 4471 set_sb_shortcuts(bp, index); 4472 4473 /* Tx */ 4474 if (!skip_tx_queue(bp, index)) { 4475 /* fastpath tx rings: tx_buf tx_desc */ 4476 for_each_cos_in_tx_queue(fp, cos) { 4477 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4478 4479 DP(NETIF_MSG_IFUP, 4480 "allocating tx memory of fp %d cos %d\n", 4481 index, cos); 4482 4483 txdata->tx_buf_ring = kcalloc(NUM_TX_BD, 4484 sizeof(struct sw_tx_bd), 4485 GFP_KERNEL); 4486 if (!txdata->tx_buf_ring) 4487 goto alloc_mem_err; 4488 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, 4489 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4490 if (!txdata->tx_desc_ring) 4491 goto alloc_mem_err; 4492 } 4493 } 4494 4495 /* Rx */ 4496 if (!skip_rx_queue(bp, index)) { 4497 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4498 bnx2x_fp(bp, index, rx_buf_ring) = 4499 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL); 4500 if (!bnx2x_fp(bp, index, rx_buf_ring)) 4501 goto alloc_mem_err; 4502 bnx2x_fp(bp, index, rx_desc_ring) = 4503 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), 4504 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4505 if (!bnx2x_fp(bp, index, rx_desc_ring)) 4506 goto alloc_mem_err; 4507 4508 /* Seed all CQEs by 1s */ 4509 bnx2x_fp(bp, index, rx_comp_ring) = 4510 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), 4511 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); 4512 if (!bnx2x_fp(bp, index, rx_comp_ring)) 4513 goto alloc_mem_err; 4514 4515 /* SGE ring */ 4516 bnx2x_fp(bp, index, rx_page_ring) = 4517 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page), 4518 GFP_KERNEL); 4519 if (!bnx2x_fp(bp, index, rx_page_ring)) 4520 goto alloc_mem_err; 4521 bnx2x_fp(bp, index, rx_sge_ring) = 4522 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), 4523 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4524 if (!bnx2x_fp(bp, index, rx_sge_ring)) 4525 goto alloc_mem_err; 4526 /* RX BD ring */ 4527 bnx2x_set_next_page_rx_bd(fp); 4528 4529 /* CQ ring */ 4530 bnx2x_set_next_page_rx_cq(fp); 4531 4532 /* BDs */ 4533 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4534 if (ring_size < rx_ring_size) 4535 goto alloc_mem_err; 4536 } 4537 4538 return 0; 4539 4540 /* handles low memory cases */ 4541 alloc_mem_err: 4542 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4543 index, ring_size); 4544 /* FW will drop all packets if queue is not big enough, 4545 * In these cases we disable the queue 4546 * Min size is different for OOO, TPA and non-TPA queues 4547 */ 4548 if (ring_size < (fp->mode == TPA_MODE_DISABLED ? 4549 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4550 /* release memory allocated for this queue */ 4551 bnx2x_free_fp_mem_at(bp, index); 4552 return -ENOMEM; 4553 } 4554 return 0; 4555 } 4556 4557 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4558 { 4559 if (!NO_FCOE(bp)) 4560 /* FCoE */ 4561 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4562 /* we will fail load process instead of mark 4563 * NO_FCOE_FLAG 4564 */ 4565 return -ENOMEM; 4566 4567 return 0; 4568 } 4569 4570 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4571 { 4572 int i; 4573 4574 /* 1. Allocate FP for leading - fatal if error 4575 * 2. Allocate RSS - fix number of queues if error 4576 */ 4577 4578 /* leading */ 4579 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4580 return -ENOMEM; 4581 4582 /* RSS */ 4583 for_each_nondefault_eth_queue(bp, i) 4584 if (bnx2x_alloc_fp_mem_at(bp, i)) 4585 break; 4586 4587 /* handle memory failures */ 4588 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4589 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4590 4591 WARN_ON(delta < 0); 4592 bnx2x_shrink_eth_fp(bp, delta); 4593 if (CNIC_SUPPORT(bp)) 4594 /* move non eth FPs next to last eth FP 4595 * must be done in that order 4596 * FCOE_IDX < FWD_IDX < OOO_IDX 4597 */ 4598 4599 /* move FCoE fp even NO_FCOE_FLAG is on */ 4600 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4601 bp->num_ethernet_queues -= delta; 4602 bp->num_queues = bp->num_ethernet_queues + 4603 bp->num_cnic_queues; 4604 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4605 bp->num_queues + delta, bp->num_queues); 4606 } 4607 4608 return 0; 4609 } 4610 4611 void bnx2x_free_mem_bp(struct bnx2x *bp) 4612 { 4613 int i; 4614 4615 for (i = 0; i < bp->fp_array_size; i++) 4616 kfree(bp->fp[i].tpa_info); 4617 kfree(bp->fp); 4618 kfree(bp->sp_objs); 4619 kfree(bp->fp_stats); 4620 kfree(bp->bnx2x_txq); 4621 kfree(bp->msix_table); 4622 kfree(bp->ilt); 4623 } 4624 4625 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4626 { 4627 struct bnx2x_fastpath *fp; 4628 struct msix_entry *tbl; 4629 struct bnx2x_ilt *ilt; 4630 int msix_table_size = 0; 4631 int fp_array_size, txq_array_size; 4632 int i; 4633 4634 /* 4635 * The biggest MSI-X table we might need is as a maximum number of fast 4636 * path IGU SBs plus default SB (for PF only). 4637 */ 4638 msix_table_size = bp->igu_sb_cnt; 4639 if (IS_PF(bp)) 4640 msix_table_size++; 4641 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4642 4643 /* fp array: RSS plus CNIC related L2 queues */ 4644 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4645 bp->fp_array_size = fp_array_size; 4646 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4647 4648 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4649 if (!fp) 4650 goto alloc_err; 4651 for (i = 0; i < bp->fp_array_size; i++) { 4652 fp[i].tpa_info = 4653 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4654 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4655 if (!(fp[i].tpa_info)) 4656 goto alloc_err; 4657 } 4658 4659 bp->fp = fp; 4660 4661 /* allocate sp objs */ 4662 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4663 GFP_KERNEL); 4664 if (!bp->sp_objs) 4665 goto alloc_err; 4666 4667 /* allocate fp_stats */ 4668 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4669 GFP_KERNEL); 4670 if (!bp->fp_stats) 4671 goto alloc_err; 4672 4673 /* Allocate memory for the transmission queues array */ 4674 txq_array_size = 4675 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4676 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4677 4678 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4679 GFP_KERNEL); 4680 if (!bp->bnx2x_txq) 4681 goto alloc_err; 4682 4683 /* msix table */ 4684 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4685 if (!tbl) 4686 goto alloc_err; 4687 bp->msix_table = tbl; 4688 4689 /* ilt */ 4690 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4691 if (!ilt) 4692 goto alloc_err; 4693 bp->ilt = ilt; 4694 4695 return 0; 4696 alloc_err: 4697 bnx2x_free_mem_bp(bp); 4698 return -ENOMEM; 4699 } 4700 4701 int bnx2x_reload_if_running(struct net_device *dev) 4702 { 4703 struct bnx2x *bp = netdev_priv(dev); 4704 4705 if (unlikely(!netif_running(dev))) 4706 return 0; 4707 4708 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4709 return bnx2x_nic_load(bp, LOAD_NORMAL); 4710 } 4711 4712 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4713 { 4714 u32 sel_phy_idx = 0; 4715 if (bp->link_params.num_phys <= 1) 4716 return INT_PHY; 4717 4718 if (bp->link_vars.link_up) { 4719 sel_phy_idx = EXT_PHY1; 4720 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4721 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4722 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4723 sel_phy_idx = EXT_PHY2; 4724 } else { 4725 4726 switch (bnx2x_phy_selection(&bp->link_params)) { 4727 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4728 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4729 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4730 sel_phy_idx = EXT_PHY1; 4731 break; 4732 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4733 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4734 sel_phy_idx = EXT_PHY2; 4735 break; 4736 } 4737 } 4738 4739 return sel_phy_idx; 4740 } 4741 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4742 { 4743 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4744 /* 4745 * The selected activated PHY is always after swapping (in case PHY 4746 * swapping is enabled). So when swapping is enabled, we need to reverse 4747 * the configuration 4748 */ 4749 4750 if (bp->link_params.multi_phy_config & 4751 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4752 if (sel_phy_idx == EXT_PHY1) 4753 sel_phy_idx = EXT_PHY2; 4754 else if (sel_phy_idx == EXT_PHY2) 4755 sel_phy_idx = EXT_PHY1; 4756 } 4757 return LINK_CONFIG_IDX(sel_phy_idx); 4758 } 4759 4760 #ifdef NETDEV_FCOE_WWNN 4761 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4762 { 4763 struct bnx2x *bp = netdev_priv(dev); 4764 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4765 4766 switch (type) { 4767 case NETDEV_FCOE_WWNN: 4768 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4769 cp->fcoe_wwn_node_name_lo); 4770 break; 4771 case NETDEV_FCOE_WWPN: 4772 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4773 cp->fcoe_wwn_port_name_lo); 4774 break; 4775 default: 4776 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4777 return -EINVAL; 4778 } 4779 4780 return 0; 4781 } 4782 #endif 4783 4784 /* called with rtnl_lock */ 4785 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4786 { 4787 struct bnx2x *bp = netdev_priv(dev); 4788 4789 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4790 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4791 return -EAGAIN; 4792 } 4793 4794 if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || 4795 ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) { 4796 BNX2X_ERR("Can't support requested MTU size\n"); 4797 return -EINVAL; 4798 } 4799 4800 /* This does not race with packet allocation 4801 * because the actual alloc size is 4802 * only updated as part of load 4803 */ 4804 dev->mtu = new_mtu; 4805 4806 return bnx2x_reload_if_running(dev); 4807 } 4808 4809 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4810 netdev_features_t features) 4811 { 4812 struct bnx2x *bp = netdev_priv(dev); 4813 4814 if (pci_num_vf(bp->pdev)) { 4815 netdev_features_t changed = dev->features ^ features; 4816 4817 /* Revert the requested changes in features if they 4818 * would require internal reload of PF in bnx2x_set_features(). 4819 */ 4820 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) { 4821 features &= ~NETIF_F_RXCSUM; 4822 features |= dev->features & NETIF_F_RXCSUM; 4823 } 4824 4825 if (changed & NETIF_F_LOOPBACK) { 4826 features &= ~NETIF_F_LOOPBACK; 4827 features |= dev->features & NETIF_F_LOOPBACK; 4828 } 4829 } 4830 4831 /* TPA requires Rx CSUM offloading */ 4832 if (!(features & NETIF_F_RXCSUM)) { 4833 features &= ~NETIF_F_LRO; 4834 features &= ~NETIF_F_GRO; 4835 } 4836 4837 return features; 4838 } 4839 4840 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4841 { 4842 struct bnx2x *bp = netdev_priv(dev); 4843 netdev_features_t changes = features ^ dev->features; 4844 bool bnx2x_reload = false; 4845 int rc; 4846 4847 /* VFs or non SRIOV PFs should be able to change loopback feature */ 4848 if (!pci_num_vf(bp->pdev)) { 4849 if (features & NETIF_F_LOOPBACK) { 4850 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4851 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4852 bnx2x_reload = true; 4853 } 4854 } else { 4855 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4856 bp->link_params.loopback_mode = LOOPBACK_NONE; 4857 bnx2x_reload = true; 4858 } 4859 } 4860 } 4861 4862 /* if GRO is changed while LRO is enabled, don't force a reload */ 4863 if ((changes & NETIF_F_GRO) && (features & NETIF_F_LRO)) 4864 changes &= ~NETIF_F_GRO; 4865 4866 /* if GRO is changed while HW TPA is off, don't force a reload */ 4867 if ((changes & NETIF_F_GRO) && bp->disable_tpa) 4868 changes &= ~NETIF_F_GRO; 4869 4870 if (changes) 4871 bnx2x_reload = true; 4872 4873 if (bnx2x_reload) { 4874 if (bp->recovery_state == BNX2X_RECOVERY_DONE) { 4875 dev->features = features; 4876 rc = bnx2x_reload_if_running(dev); 4877 return rc ? rc : 1; 4878 } 4879 /* else: bnx2x_nic_load() will be called at end of recovery */ 4880 } 4881 4882 return 0; 4883 } 4884 4885 void bnx2x_tx_timeout(struct net_device *dev) 4886 { 4887 struct bnx2x *bp = netdev_priv(dev); 4888 4889 #ifdef BNX2X_STOP_ON_ERROR 4890 if (!bp->panic) 4891 bnx2x_panic(); 4892 #endif 4893 4894 /* This allows the netif to be shutdown gracefully before resetting */ 4895 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); 4896 } 4897 4898 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) 4899 { 4900 struct net_device *dev = pci_get_drvdata(pdev); 4901 struct bnx2x *bp; 4902 4903 if (!dev) { 4904 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4905 return -ENODEV; 4906 } 4907 bp = netdev_priv(dev); 4908 4909 rtnl_lock(); 4910 4911 pci_save_state(pdev); 4912 4913 if (!netif_running(dev)) { 4914 rtnl_unlock(); 4915 return 0; 4916 } 4917 4918 netif_device_detach(dev); 4919 4920 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 4921 4922 bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); 4923 4924 rtnl_unlock(); 4925 4926 return 0; 4927 } 4928 4929 int bnx2x_resume(struct pci_dev *pdev) 4930 { 4931 struct net_device *dev = pci_get_drvdata(pdev); 4932 struct bnx2x *bp; 4933 int rc; 4934 4935 if (!dev) { 4936 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4937 return -ENODEV; 4938 } 4939 bp = netdev_priv(dev); 4940 4941 if (pci_num_vf(bp->pdev)) { 4942 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n"); 4943 return -EPERM; 4944 } 4945 4946 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4947 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 4948 return -EAGAIN; 4949 } 4950 4951 rtnl_lock(); 4952 4953 pci_restore_state(pdev); 4954 4955 if (!netif_running(dev)) { 4956 rtnl_unlock(); 4957 return 0; 4958 } 4959 4960 bnx2x_set_power_state(bp, PCI_D0); 4961 netif_device_attach(dev); 4962 4963 rc = bnx2x_nic_load(bp, LOAD_OPEN); 4964 4965 rtnl_unlock(); 4966 4967 return rc; 4968 } 4969 4970 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 4971 u32 cid) 4972 { 4973 if (!cxt) { 4974 BNX2X_ERR("bad context pointer %p\n", cxt); 4975 return; 4976 } 4977 4978 /* ustorm cxt validation */ 4979 cxt->ustorm_ag_context.cdu_usage = 4980 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 4981 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 4982 /* xcontext validation */ 4983 cxt->xstorm_ag_context.cdu_reserved = 4984 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 4985 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 4986 } 4987 4988 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 4989 u8 fw_sb_id, u8 sb_index, 4990 u8 ticks) 4991 { 4992 u32 addr = BAR_CSTRORM_INTMEM + 4993 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 4994 REG_WR8(bp, addr, ticks); 4995 DP(NETIF_MSG_IFUP, 4996 "port %x fw_sb_id %d sb_index %d ticks %d\n", 4997 port, fw_sb_id, sb_index, ticks); 4998 } 4999 5000 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 5001 u16 fw_sb_id, u8 sb_index, 5002 u8 disable) 5003 { 5004 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 5005 u32 addr = BAR_CSTRORM_INTMEM + 5006 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 5007 u8 flags = REG_RD8(bp, addr); 5008 /* clear and set */ 5009 flags &= ~HC_INDEX_DATA_HC_ENABLED; 5010 flags |= enable_flag; 5011 REG_WR8(bp, addr, flags); 5012 DP(NETIF_MSG_IFUP, 5013 "port %x fw_sb_id %d sb_index %d disable %d\n", 5014 port, fw_sb_id, sb_index, disable); 5015 } 5016 5017 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 5018 u8 sb_index, u8 disable, u16 usec) 5019 { 5020 int port = BP_PORT(bp); 5021 u8 ticks = usec / BNX2X_BTR; 5022 5023 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 5024 5025 disable = disable ? 1 : (usec ? 0 : 1); 5026 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 5027 } 5028 5029 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, 5030 u32 verbose) 5031 { 5032 smp_mb__before_atomic(); 5033 set_bit(flag, &bp->sp_rtnl_state); 5034 smp_mb__after_atomic(); 5035 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", 5036 flag); 5037 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5038 } 5039 EXPORT_SYMBOL(bnx2x_schedule_sp_rtnl); 5040