1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34 
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39 
40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 	int i;
43 
44 	/* Add NAPI objects */
45 	for_each_rx_queue_cnic(bp, i) {
46 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 			       bnx2x_poll, NAPI_POLL_WEIGHT);
48 	}
49 }
50 
51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 	int i;
54 
55 	/* Add NAPI objects */
56 	for_each_eth_queue(bp, i) {
57 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 			       bnx2x_poll, NAPI_POLL_WEIGHT);
59 	}
60 }
61 
62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65 
66 	/* Reduce memory usage in kdump environment by using only one queue */
67 	if (is_kdump_kernel())
68 		nq = 1;
69 
70 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 	return nq;
72 }
73 
74 /**
75  * bnx2x_move_fp - move content of the fastpath structure.
76  *
77  * @bp:		driver handle
78  * @from:	source FP index
79  * @to:		destination FP index
80  *
81  * Makes sure the contents of the bp->fp[to].napi is kept
82  * intact. This is done by first copying the napi struct from
83  * the target to the source, and then mem copying the entire
84  * source onto the target. Update txdata pointers and related
85  * content.
86  */
87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 	int old_max_eth_txqs, new_max_eth_txqs;
96 	int old_txdata_index = 0, new_txdata_index = 0;
97 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98 
99 	/* Copy the NAPI object as it has been already initialized */
100 	from_fp->napi = to_fp->napi;
101 
102 	/* Move bnx2x_fastpath contents */
103 	memcpy(to_fp, from_fp, sizeof(*to_fp));
104 	to_fp->index = to;
105 
106 	/* Retain the tpa_info of the original `to' version as we don't want
107 	 * 2 FPs to contain the same tpa_info pointer.
108 	 */
109 	to_fp->tpa_info = old_tpa_info;
110 
111 	/* move sp_objs contents as well, as their indices match fp ones */
112 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113 
114 	/* move fp_stats contents as well, as their indices match fp ones */
115 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116 
117 	/* Update txdata pointers in fp and move txdata content accordingly:
118 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 	 * decremented by max_cos x delta.
120 	 */
121 
122 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 				(bp)->max_cos;
125 	if (from == FCOE_IDX(bp)) {
126 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 	}
129 
130 	memcpy(&bp->bnx2x_txq[new_txdata_index],
131 	       &bp->bnx2x_txq[old_txdata_index],
132 	       sizeof(struct bnx2x_fp_txdata));
133 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135 
136 /**
137  * bnx2x_fill_fw_str - Fill buffer with FW version string.
138  *
139  * @bp:        driver handle
140  * @buf:       character buffer to fill with the fw name
141  * @buf_len:   length of the above buffer
142  *
143  */
144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 	if (IS_PF(bp)) {
147 		u8 phy_fw_ver[PHY_FW_VER_LEN];
148 
149 		phy_fw_ver[0] = '\0';
150 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 					     phy_fw_ver, PHY_FW_VER_LEN);
152 		strlcpy(buf, bp->fw_ver, buf_len);
153 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 			 "bc %d.%d.%d%s%s",
155 			 (bp->common.bc_ver & 0xff0000) >> 16,
156 			 (bp->common.bc_ver & 0xff00) >> 8,
157 			 (bp->common.bc_ver & 0xff),
158 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 	} else {
160 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 	}
162 }
163 
164 /**
165  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166  *
167  * @bp:	driver handle
168  * @delta:	number of eth queues which were not allocated
169  */
170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173 
174 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 	 * backward along the array could cause memory to be overridden
176 	 */
177 	for (cos = 1; cos < bp->max_cos; cos++) {
178 		for (i = 0; i < old_eth_num - delta; i++) {
179 			struct bnx2x_fastpath *fp = &bp->fp[i];
180 			int new_idx = cos * (old_eth_num - delta) + i;
181 
182 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 			       sizeof(struct bnx2x_fp_txdata));
184 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 		}
186 	}
187 }
188 
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190 
191 /* free skb in the packet ring at pos idx
192  * return idx of last bd freed
193  */
194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 			     u16 idx, unsigned int *pkts_compl,
196 			     unsigned int *bytes_compl)
197 {
198 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 	struct eth_tx_start_bd *tx_start_bd;
200 	struct eth_tx_bd *tx_data_bd;
201 	struct sk_buff *skb = tx_buf->skb;
202 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 	int nbd;
204 	u16 split_bd_len = 0;
205 
206 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
207 	prefetch(&skb->end);
208 
209 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
210 	   txdata->txq_index, idx, tx_buf, skb);
211 
212 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213 
214 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 		BNX2X_ERR("BAD nbd!\n");
218 		bnx2x_panic();
219 	}
220 #endif
221 	new_cons = nbd + tx_buf->first_bd;
222 
223 	/* Get the next bd */
224 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225 
226 	/* Skip a parse bd... */
227 	--nbd;
228 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229 
230 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 		/* Skip second parse bd... */
232 		--nbd;
233 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 	}
235 
236 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 		--nbd;
241 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 	}
243 
244 	/* unmap first bd */
245 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 			 DMA_TO_DEVICE);
248 
249 	/* now free frags */
250 	while (nbd > 0) {
251 
252 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 		if (--nbd)
256 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 	}
258 
259 	/* release skb */
260 	WARN_ON(!skb);
261 	if (likely(skb)) {
262 		(*pkts_compl)++;
263 		(*bytes_compl) += skb->len;
264 		dev_kfree_skb_any(skb);
265 	}
266 
267 	tx_buf->first_bd = 0;
268 	tx_buf->skb = NULL;
269 
270 	return new_cons;
271 }
272 
273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 	struct netdev_queue *txq;
276 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 	unsigned int pkts_compl = 0, bytes_compl = 0;
278 
279 #ifdef BNX2X_STOP_ON_ERROR
280 	if (unlikely(bp->panic))
281 		return -1;
282 #endif
283 
284 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 	sw_cons = txdata->tx_pkt_cons;
287 
288 	while (sw_cons != hw_cons) {
289 		u16 pkt_cons;
290 
291 		pkt_cons = TX_BD(sw_cons);
292 
293 		DP(NETIF_MSG_TX_DONE,
294 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
295 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
296 
297 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
298 					    &pkts_compl, &bytes_compl);
299 
300 		sw_cons++;
301 	}
302 
303 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
304 
305 	txdata->tx_pkt_cons = sw_cons;
306 	txdata->tx_bd_cons = bd_cons;
307 
308 	/* Need to make the tx_bd_cons update visible to start_xmit()
309 	 * before checking for netif_tx_queue_stopped().  Without the
310 	 * memory barrier, there is a small possibility that
311 	 * start_xmit() will miss it and cause the queue to be stopped
312 	 * forever.
313 	 * On the other hand we need an rmb() here to ensure the proper
314 	 * ordering of bit testing in the following
315 	 * netif_tx_queue_stopped(txq) call.
316 	 */
317 	smp_mb();
318 
319 	if (unlikely(netif_tx_queue_stopped(txq))) {
320 		/* Taking tx_lock() is needed to prevent re-enabling the queue
321 		 * while it's empty. This could have happen if rx_action() gets
322 		 * suspended in bnx2x_tx_int() after the condition before
323 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
324 		 *
325 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
326 		 * sends some packets consuming the whole queue again->
327 		 * stops the queue
328 		 */
329 
330 		__netif_tx_lock(txq, smp_processor_id());
331 
332 		if ((netif_tx_queue_stopped(txq)) &&
333 		    (bp->state == BNX2X_STATE_OPEN) &&
334 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
335 			netif_tx_wake_queue(txq);
336 
337 		__netif_tx_unlock(txq);
338 	}
339 	return 0;
340 }
341 
342 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
343 					     u16 idx)
344 {
345 	u16 last_max = fp->last_max_sge;
346 
347 	if (SUB_S16(idx, last_max) > 0)
348 		fp->last_max_sge = idx;
349 }
350 
351 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
352 					 u16 sge_len,
353 					 struct eth_end_agg_rx_cqe *cqe)
354 {
355 	struct bnx2x *bp = fp->bp;
356 	u16 last_max, last_elem, first_elem;
357 	u16 delta = 0;
358 	u16 i;
359 
360 	if (!sge_len)
361 		return;
362 
363 	/* First mark all used pages */
364 	for (i = 0; i < sge_len; i++)
365 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
366 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
367 
368 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
369 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
370 
371 	/* Here we assume that the last SGE index is the biggest */
372 	prefetch((void *)(fp->sge_mask));
373 	bnx2x_update_last_max_sge(fp,
374 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
375 
376 	last_max = RX_SGE(fp->last_max_sge);
377 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
378 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
379 
380 	/* If ring is not full */
381 	if (last_elem + 1 != first_elem)
382 		last_elem++;
383 
384 	/* Now update the prod */
385 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
386 		if (likely(fp->sge_mask[i]))
387 			break;
388 
389 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
390 		delta += BIT_VEC64_ELEM_SZ;
391 	}
392 
393 	if (delta > 0) {
394 		fp->rx_sge_prod += delta;
395 		/* clear page-end entries */
396 		bnx2x_clear_sge_mask_next_elems(fp);
397 	}
398 
399 	DP(NETIF_MSG_RX_STATUS,
400 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
401 	   fp->last_max_sge, fp->rx_sge_prod);
402 }
403 
404 /* Get Toeplitz hash value in the skb using the value from the
405  * CQE (calculated by HW).
406  */
407 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
408 			    const struct eth_fast_path_rx_cqe *cqe,
409 			    enum pkt_hash_types *rxhash_type)
410 {
411 	/* Get Toeplitz hash from CQE */
412 	if ((bp->dev->features & NETIF_F_RXHASH) &&
413 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
414 		enum eth_rss_hash_type htype;
415 
416 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
417 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
418 				(htype == TCP_IPV6_HASH_TYPE)) ?
419 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
420 
421 		return le32_to_cpu(cqe->rss_hash_result);
422 	}
423 	*rxhash_type = PKT_HASH_TYPE_NONE;
424 	return 0;
425 }
426 
427 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
428 			    u16 cons, u16 prod,
429 			    struct eth_fast_path_rx_cqe *cqe)
430 {
431 	struct bnx2x *bp = fp->bp;
432 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
433 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
434 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
435 	dma_addr_t mapping;
436 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
437 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
438 
439 	/* print error if current state != stop */
440 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
441 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
442 
443 	/* Try to map an empty data buffer from the aggregation info  */
444 	mapping = dma_map_single(&bp->pdev->dev,
445 				 first_buf->data + NET_SKB_PAD,
446 				 fp->rx_buf_size, DMA_FROM_DEVICE);
447 	/*
448 	 *  ...if it fails - move the skb from the consumer to the producer
449 	 *  and set the current aggregation state as ERROR to drop it
450 	 *  when TPA_STOP arrives.
451 	 */
452 
453 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
454 		/* Move the BD from the consumer to the producer */
455 		bnx2x_reuse_rx_data(fp, cons, prod);
456 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
457 		return;
458 	}
459 
460 	/* move empty data from pool to prod */
461 	prod_rx_buf->data = first_buf->data;
462 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
463 	/* point prod_bd to new data */
464 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
465 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
466 
467 	/* move partial skb from cons to pool (don't unmap yet) */
468 	*first_buf = *cons_rx_buf;
469 
470 	/* mark bin state as START */
471 	tpa_info->parsing_flags =
472 		le16_to_cpu(cqe->pars_flags.flags);
473 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
474 	tpa_info->tpa_state = BNX2X_TPA_START;
475 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
476 	tpa_info->placement_offset = cqe->placement_offset;
477 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
478 	if (fp->mode == TPA_MODE_GRO) {
479 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
480 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
481 		tpa_info->gro_size = gro_size;
482 	}
483 
484 #ifdef BNX2X_STOP_ON_ERROR
485 	fp->tpa_queue_used |= (1 << queue);
486 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
487 	   fp->tpa_queue_used);
488 #endif
489 }
490 
491 /* Timestamp option length allowed for TPA aggregation:
492  *
493  *		nop nop kind length echo val
494  */
495 #define TPA_TSTAMP_OPT_LEN	12
496 /**
497  * bnx2x_set_gro_params - compute GRO values
498  *
499  * @skb:		packet skb
500  * @parsing_flags:	parsing flags from the START CQE
501  * @len_on_bd:		total length of the first packet for the
502  *			aggregation.
503  * @pkt_len:		length of all segments
504  *
505  * Approximate value of the MSS for this aggregation calculated using
506  * the first packet of it.
507  * Compute number of aggregated segments, and gso_type.
508  */
509 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
510 				 u16 len_on_bd, unsigned int pkt_len,
511 				 u16 num_of_coalesced_segs)
512 {
513 	/* TPA aggregation won't have either IP options or TCP options
514 	 * other than timestamp or IPv6 extension headers.
515 	 */
516 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
517 
518 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
519 	    PRS_FLAG_OVERETH_IPV6) {
520 		hdrs_len += sizeof(struct ipv6hdr);
521 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
522 	} else {
523 		hdrs_len += sizeof(struct iphdr);
524 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
525 	}
526 
527 	/* Check if there was a TCP timestamp, if there is it's will
528 	 * always be 12 bytes length: nop nop kind length echo val.
529 	 *
530 	 * Otherwise FW would close the aggregation.
531 	 */
532 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
533 		hdrs_len += TPA_TSTAMP_OPT_LEN;
534 
535 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
536 
537 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
538 	 * to skb_shinfo(skb)->gso_segs
539 	 */
540 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
541 }
542 
543 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
544 			      u16 index, gfp_t gfp_mask)
545 {
546 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
547 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
548 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
549 	dma_addr_t mapping;
550 
551 	if (!pool->page) {
552 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
553 		if (unlikely(!pool->page))
554 			return -ENOMEM;
555 
556 		pool->offset = 0;
557 	}
558 
559 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
560 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
561 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
562 		BNX2X_ERR("Can't map sge\n");
563 		return -ENOMEM;
564 	}
565 
566 	sw_buf->page = pool->page;
567 	sw_buf->offset = pool->offset;
568 
569 	dma_unmap_addr_set(sw_buf, mapping, mapping);
570 
571 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
572 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
573 
574 	pool->offset += SGE_PAGE_SIZE;
575 	if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
576 		get_page(pool->page);
577 	else
578 		pool->page = NULL;
579 	return 0;
580 }
581 
582 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
583 			       struct bnx2x_agg_info *tpa_info,
584 			       u16 pages,
585 			       struct sk_buff *skb,
586 			       struct eth_end_agg_rx_cqe *cqe,
587 			       u16 cqe_idx)
588 {
589 	struct sw_rx_page *rx_pg, old_rx_pg;
590 	u32 i, frag_len, frag_size;
591 	int err, j, frag_id = 0;
592 	u16 len_on_bd = tpa_info->len_on_bd;
593 	u16 full_page = 0, gro_size = 0;
594 
595 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
596 
597 	if (fp->mode == TPA_MODE_GRO) {
598 		gro_size = tpa_info->gro_size;
599 		full_page = tpa_info->full_page;
600 	}
601 
602 	/* This is needed in order to enable forwarding support */
603 	if (frag_size)
604 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
605 				     le16_to_cpu(cqe->pkt_len),
606 				     le16_to_cpu(cqe->num_of_coalesced_segs));
607 
608 #ifdef BNX2X_STOP_ON_ERROR
609 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
610 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
611 			  pages, cqe_idx);
612 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
613 		bnx2x_panic();
614 		return -EINVAL;
615 	}
616 #endif
617 
618 	/* Run through the SGL and compose the fragmented skb */
619 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
620 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
621 
622 		/* FW gives the indices of the SGE as if the ring is an array
623 		   (meaning that "next" element will consume 2 indices) */
624 		if (fp->mode == TPA_MODE_GRO)
625 			frag_len = min_t(u32, frag_size, (u32)full_page);
626 		else /* LRO */
627 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
628 
629 		rx_pg = &fp->rx_page_ring[sge_idx];
630 		old_rx_pg = *rx_pg;
631 
632 		/* If we fail to allocate a substitute page, we simply stop
633 		   where we are and drop the whole packet */
634 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
635 		if (unlikely(err)) {
636 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
637 			return err;
638 		}
639 
640 		dma_unmap_page(&bp->pdev->dev,
641 			       dma_unmap_addr(&old_rx_pg, mapping),
642 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
643 		/* Add one frag and update the appropriate fields in the skb */
644 		if (fp->mode == TPA_MODE_LRO)
645 			skb_fill_page_desc(skb, j, old_rx_pg.page,
646 					   old_rx_pg.offset, frag_len);
647 		else { /* GRO */
648 			int rem;
649 			int offset = 0;
650 			for (rem = frag_len; rem > 0; rem -= gro_size) {
651 				int len = rem > gro_size ? gro_size : rem;
652 				skb_fill_page_desc(skb, frag_id++,
653 						   old_rx_pg.page,
654 						   old_rx_pg.offset + offset,
655 						   len);
656 				if (offset)
657 					get_page(old_rx_pg.page);
658 				offset += len;
659 			}
660 		}
661 
662 		skb->data_len += frag_len;
663 		skb->truesize += SGE_PAGES;
664 		skb->len += frag_len;
665 
666 		frag_size -= frag_len;
667 	}
668 
669 	return 0;
670 }
671 
672 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
673 {
674 	if (fp->rx_frag_size)
675 		skb_free_frag(data);
676 	else
677 		kfree(data);
678 }
679 
680 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
681 {
682 	if (fp->rx_frag_size) {
683 		/* GFP_KERNEL allocations are used only during initialization */
684 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
685 			return (void *)__get_free_page(gfp_mask);
686 
687 		return netdev_alloc_frag(fp->rx_frag_size);
688 	}
689 
690 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
691 }
692 
693 #ifdef CONFIG_INET
694 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
695 {
696 	const struct iphdr *iph = ip_hdr(skb);
697 	struct tcphdr *th;
698 
699 	skb_set_transport_header(skb, sizeof(struct iphdr));
700 	th = tcp_hdr(skb);
701 
702 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
703 				  iph->saddr, iph->daddr, 0);
704 }
705 
706 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
707 {
708 	struct ipv6hdr *iph = ipv6_hdr(skb);
709 	struct tcphdr *th;
710 
711 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
712 	th = tcp_hdr(skb);
713 
714 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
715 				  &iph->saddr, &iph->daddr, 0);
716 }
717 
718 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
719 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
720 {
721 	skb_reset_network_header(skb);
722 	gro_func(bp, skb);
723 	tcp_gro_complete(skb);
724 }
725 #endif
726 
727 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
728 			       struct sk_buff *skb)
729 {
730 #ifdef CONFIG_INET
731 	if (skb_shinfo(skb)->gso_size) {
732 		switch (be16_to_cpu(skb->protocol)) {
733 		case ETH_P_IP:
734 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
735 			break;
736 		case ETH_P_IPV6:
737 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
738 			break;
739 		default:
740 			netdev_WARN_ONCE(bp->dev,
741 					 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
742 					 be16_to_cpu(skb->protocol));
743 		}
744 	}
745 #endif
746 	skb_record_rx_queue(skb, fp->rx_queue);
747 	napi_gro_receive(&fp->napi, skb);
748 }
749 
750 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
751 			   struct bnx2x_agg_info *tpa_info,
752 			   u16 pages,
753 			   struct eth_end_agg_rx_cqe *cqe,
754 			   u16 cqe_idx)
755 {
756 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
757 	u8 pad = tpa_info->placement_offset;
758 	u16 len = tpa_info->len_on_bd;
759 	struct sk_buff *skb = NULL;
760 	u8 *new_data, *data = rx_buf->data;
761 	u8 old_tpa_state = tpa_info->tpa_state;
762 
763 	tpa_info->tpa_state = BNX2X_TPA_STOP;
764 
765 	/* If we there was an error during the handling of the TPA_START -
766 	 * drop this aggregation.
767 	 */
768 	if (old_tpa_state == BNX2X_TPA_ERROR)
769 		goto drop;
770 
771 	/* Try to allocate the new data */
772 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
773 	/* Unmap skb in the pool anyway, as we are going to change
774 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
775 	   fails. */
776 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
777 			 fp->rx_buf_size, DMA_FROM_DEVICE);
778 	if (likely(new_data))
779 		skb = build_skb(data, fp->rx_frag_size);
780 
781 	if (likely(skb)) {
782 #ifdef BNX2X_STOP_ON_ERROR
783 		if (pad + len > fp->rx_buf_size) {
784 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
785 				  pad, len, fp->rx_buf_size);
786 			bnx2x_panic();
787 			return;
788 		}
789 #endif
790 
791 		skb_reserve(skb, pad + NET_SKB_PAD);
792 		skb_put(skb, len);
793 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
794 
795 		skb->protocol = eth_type_trans(skb, bp->dev);
796 		skb->ip_summed = CHECKSUM_UNNECESSARY;
797 
798 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
799 					 skb, cqe, cqe_idx)) {
800 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
801 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
802 			bnx2x_gro_receive(bp, fp, skb);
803 		} else {
804 			DP(NETIF_MSG_RX_STATUS,
805 			   "Failed to allocate new pages - dropping packet!\n");
806 			dev_kfree_skb_any(skb);
807 		}
808 
809 		/* put new data in bin */
810 		rx_buf->data = new_data;
811 
812 		return;
813 	}
814 	if (new_data)
815 		bnx2x_frag_free(fp, new_data);
816 drop:
817 	/* drop the packet and keep the buffer in the bin */
818 	DP(NETIF_MSG_RX_STATUS,
819 	   "Failed to allocate or map a new skb - dropping packet!\n");
820 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
821 }
822 
823 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
824 			       u16 index, gfp_t gfp_mask)
825 {
826 	u8 *data;
827 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
828 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
829 	dma_addr_t mapping;
830 
831 	data = bnx2x_frag_alloc(fp, gfp_mask);
832 	if (unlikely(data == NULL))
833 		return -ENOMEM;
834 
835 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
836 				 fp->rx_buf_size,
837 				 DMA_FROM_DEVICE);
838 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
839 		bnx2x_frag_free(fp, data);
840 		BNX2X_ERR("Can't map rx data\n");
841 		return -ENOMEM;
842 	}
843 
844 	rx_buf->data = data;
845 	dma_unmap_addr_set(rx_buf, mapping, mapping);
846 
847 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
848 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
849 
850 	return 0;
851 }
852 
853 static
854 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
855 				 struct bnx2x_fastpath *fp,
856 				 struct bnx2x_eth_q_stats *qstats)
857 {
858 	/* Do nothing if no L4 csum validation was done.
859 	 * We do not check whether IP csum was validated. For IPv4 we assume
860 	 * that if the card got as far as validating the L4 csum, it also
861 	 * validated the IP csum. IPv6 has no IP csum.
862 	 */
863 	if (cqe->fast_path_cqe.status_flags &
864 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
865 		return;
866 
867 	/* If L4 validation was done, check if an error was found. */
868 
869 	if (cqe->fast_path_cqe.type_error_flags &
870 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
871 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
872 		qstats->hw_csum_err++;
873 	else
874 		skb->ip_summed = CHECKSUM_UNNECESSARY;
875 }
876 
877 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
878 {
879 	struct bnx2x *bp = fp->bp;
880 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
881 	u16 sw_comp_cons, sw_comp_prod;
882 	int rx_pkt = 0;
883 	union eth_rx_cqe *cqe;
884 	struct eth_fast_path_rx_cqe *cqe_fp;
885 
886 #ifdef BNX2X_STOP_ON_ERROR
887 	if (unlikely(bp->panic))
888 		return 0;
889 #endif
890 	if (budget <= 0)
891 		return rx_pkt;
892 
893 	bd_cons = fp->rx_bd_cons;
894 	bd_prod = fp->rx_bd_prod;
895 	bd_prod_fw = bd_prod;
896 	sw_comp_cons = fp->rx_comp_cons;
897 	sw_comp_prod = fp->rx_comp_prod;
898 
899 	comp_ring_cons = RCQ_BD(sw_comp_cons);
900 	cqe = &fp->rx_comp_ring[comp_ring_cons];
901 	cqe_fp = &cqe->fast_path_cqe;
902 
903 	DP(NETIF_MSG_RX_STATUS,
904 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
905 
906 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
907 		struct sw_rx_bd *rx_buf = NULL;
908 		struct sk_buff *skb;
909 		u8 cqe_fp_flags;
910 		enum eth_rx_cqe_type cqe_fp_type;
911 		u16 len, pad, queue;
912 		u8 *data;
913 		u32 rxhash;
914 		enum pkt_hash_types rxhash_type;
915 
916 #ifdef BNX2X_STOP_ON_ERROR
917 		if (unlikely(bp->panic))
918 			return 0;
919 #endif
920 
921 		bd_prod = RX_BD(bd_prod);
922 		bd_cons = RX_BD(bd_cons);
923 
924 		/* A rmb() is required to ensure that the CQE is not read
925 		 * before it is written by the adapter DMA.  PCI ordering
926 		 * rules will make sure the other fields are written before
927 		 * the marker at the end of struct eth_fast_path_rx_cqe
928 		 * but without rmb() a weakly ordered processor can process
929 		 * stale data.  Without the barrier TPA state-machine might
930 		 * enter inconsistent state and kernel stack might be
931 		 * provided with incorrect packet description - these lead
932 		 * to various kernel crashed.
933 		 */
934 		rmb();
935 
936 		cqe_fp_flags = cqe_fp->type_error_flags;
937 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
938 
939 		DP(NETIF_MSG_RX_STATUS,
940 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
941 		   CQE_TYPE(cqe_fp_flags),
942 		   cqe_fp_flags, cqe_fp->status_flags,
943 		   le32_to_cpu(cqe_fp->rss_hash_result),
944 		   le16_to_cpu(cqe_fp->vlan_tag),
945 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
946 
947 		/* is this a slowpath msg? */
948 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
949 			bnx2x_sp_event(fp, cqe);
950 			goto next_cqe;
951 		}
952 
953 		rx_buf = &fp->rx_buf_ring[bd_cons];
954 		data = rx_buf->data;
955 
956 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
957 			struct bnx2x_agg_info *tpa_info;
958 			u16 frag_size, pages;
959 #ifdef BNX2X_STOP_ON_ERROR
960 			/* sanity check */
961 			if (fp->mode == TPA_MODE_DISABLED &&
962 			    (CQE_TYPE_START(cqe_fp_type) ||
963 			     CQE_TYPE_STOP(cqe_fp_type)))
964 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
965 					  CQE_TYPE(cqe_fp_type));
966 #endif
967 
968 			if (CQE_TYPE_START(cqe_fp_type)) {
969 				u16 queue = cqe_fp->queue_index;
970 				DP(NETIF_MSG_RX_STATUS,
971 				   "calling tpa_start on queue %d\n",
972 				   queue);
973 
974 				bnx2x_tpa_start(fp, queue,
975 						bd_cons, bd_prod,
976 						cqe_fp);
977 
978 				goto next_rx;
979 			}
980 			queue = cqe->end_agg_cqe.queue_index;
981 			tpa_info = &fp->tpa_info[queue];
982 			DP(NETIF_MSG_RX_STATUS,
983 			   "calling tpa_stop on queue %d\n",
984 			   queue);
985 
986 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
987 				    tpa_info->len_on_bd;
988 
989 			if (fp->mode == TPA_MODE_GRO)
990 				pages = (frag_size + tpa_info->full_page - 1) /
991 					 tpa_info->full_page;
992 			else
993 				pages = SGE_PAGE_ALIGN(frag_size) >>
994 					SGE_PAGE_SHIFT;
995 
996 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
997 				       &cqe->end_agg_cqe, comp_ring_cons);
998 #ifdef BNX2X_STOP_ON_ERROR
999 			if (bp->panic)
1000 				return 0;
1001 #endif
1002 
1003 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1004 			goto next_cqe;
1005 		}
1006 		/* non TPA */
1007 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1008 		pad = cqe_fp->placement_offset;
1009 		dma_sync_single_for_cpu(&bp->pdev->dev,
1010 					dma_unmap_addr(rx_buf, mapping),
1011 					pad + RX_COPY_THRESH,
1012 					DMA_FROM_DEVICE);
1013 		pad += NET_SKB_PAD;
1014 		prefetch(data + pad); /* speedup eth_type_trans() */
1015 		/* is this an error packet? */
1016 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1017 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1018 			   "ERROR  flags %x  rx packet %u\n",
1019 			   cqe_fp_flags, sw_comp_cons);
1020 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1021 			goto reuse_rx;
1022 		}
1023 
1024 		/* Since we don't have a jumbo ring
1025 		 * copy small packets if mtu > 1500
1026 		 */
1027 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1028 		    (len <= RX_COPY_THRESH)) {
1029 			skb = napi_alloc_skb(&fp->napi, len);
1030 			if (skb == NULL) {
1031 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1032 				   "ERROR  packet dropped because of alloc failure\n");
1033 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1034 				goto reuse_rx;
1035 			}
1036 			memcpy(skb->data, data + pad, len);
1037 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1038 		} else {
1039 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1040 						       GFP_ATOMIC) == 0)) {
1041 				dma_unmap_single(&bp->pdev->dev,
1042 						 dma_unmap_addr(rx_buf, mapping),
1043 						 fp->rx_buf_size,
1044 						 DMA_FROM_DEVICE);
1045 				skb = build_skb(data, fp->rx_frag_size);
1046 				if (unlikely(!skb)) {
1047 					bnx2x_frag_free(fp, data);
1048 					bnx2x_fp_qstats(bp, fp)->
1049 							rx_skb_alloc_failed++;
1050 					goto next_rx;
1051 				}
1052 				skb_reserve(skb, pad);
1053 			} else {
1054 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1055 				   "ERROR  packet dropped because of alloc failure\n");
1056 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1057 reuse_rx:
1058 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1059 				goto next_rx;
1060 			}
1061 		}
1062 
1063 		skb_put(skb, len);
1064 		skb->protocol = eth_type_trans(skb, bp->dev);
1065 
1066 		/* Set Toeplitz hash for a none-LRO skb */
1067 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1068 		skb_set_hash(skb, rxhash, rxhash_type);
1069 
1070 		skb_checksum_none_assert(skb);
1071 
1072 		if (bp->dev->features & NETIF_F_RXCSUM)
1073 			bnx2x_csum_validate(skb, cqe, fp,
1074 					    bnx2x_fp_qstats(bp, fp));
1075 
1076 		skb_record_rx_queue(skb, fp->rx_queue);
1077 
1078 		/* Check if this packet was timestamped */
1079 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1080 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1081 			bnx2x_set_rx_ts(bp, skb);
1082 
1083 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1084 		    PARSING_FLAGS_VLAN)
1085 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1086 					       le16_to_cpu(cqe_fp->vlan_tag));
1087 
1088 		napi_gro_receive(&fp->napi, skb);
1089 next_rx:
1090 		rx_buf->data = NULL;
1091 
1092 		bd_cons = NEXT_RX_IDX(bd_cons);
1093 		bd_prod = NEXT_RX_IDX(bd_prod);
1094 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1095 		rx_pkt++;
1096 next_cqe:
1097 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1098 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1099 
1100 		/* mark CQE as free */
1101 		BNX2X_SEED_CQE(cqe_fp);
1102 
1103 		if (rx_pkt == budget)
1104 			break;
1105 
1106 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1107 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1108 		cqe_fp = &cqe->fast_path_cqe;
1109 	} /* while */
1110 
1111 	fp->rx_bd_cons = bd_cons;
1112 	fp->rx_bd_prod = bd_prod_fw;
1113 	fp->rx_comp_cons = sw_comp_cons;
1114 	fp->rx_comp_prod = sw_comp_prod;
1115 
1116 	/* Update producers */
1117 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1118 			     fp->rx_sge_prod);
1119 
1120 	return rx_pkt;
1121 }
1122 
1123 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1124 {
1125 	struct bnx2x_fastpath *fp = fp_cookie;
1126 	struct bnx2x *bp = fp->bp;
1127 	u8 cos;
1128 
1129 	DP(NETIF_MSG_INTR,
1130 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1131 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1132 
1133 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1134 
1135 #ifdef BNX2X_STOP_ON_ERROR
1136 	if (unlikely(bp->panic))
1137 		return IRQ_HANDLED;
1138 #endif
1139 
1140 	/* Handle Rx and Tx according to MSI-X vector */
1141 	for_each_cos_in_tx_queue(fp, cos)
1142 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1143 
1144 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1145 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1146 
1147 	return IRQ_HANDLED;
1148 }
1149 
1150 /* HW Lock for shared dual port PHYs */
1151 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1152 {
1153 	mutex_lock(&bp->port.phy_mutex);
1154 
1155 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1156 }
1157 
1158 void bnx2x_release_phy_lock(struct bnx2x *bp)
1159 {
1160 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1161 
1162 	mutex_unlock(&bp->port.phy_mutex);
1163 }
1164 
1165 /* calculates MF speed according to current linespeed and MF configuration */
1166 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1167 {
1168 	u16 line_speed = bp->link_vars.line_speed;
1169 	if (IS_MF(bp)) {
1170 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1171 						   bp->mf_config[BP_VN(bp)]);
1172 
1173 		/* Calculate the current MAX line speed limit for the MF
1174 		 * devices
1175 		 */
1176 		if (IS_MF_PERCENT_BW(bp))
1177 			line_speed = (line_speed * maxCfg) / 100;
1178 		else { /* SD mode */
1179 			u16 vn_max_rate = maxCfg * 100;
1180 
1181 			if (vn_max_rate < line_speed)
1182 				line_speed = vn_max_rate;
1183 		}
1184 	}
1185 
1186 	return line_speed;
1187 }
1188 
1189 /**
1190  * bnx2x_fill_report_data - fill link report data to report
1191  *
1192  * @bp:		driver handle
1193  * @data:	link state to update
1194  *
1195  * It uses a none-atomic bit operations because is called under the mutex.
1196  */
1197 static void bnx2x_fill_report_data(struct bnx2x *bp,
1198 				   struct bnx2x_link_report_data *data)
1199 {
1200 	memset(data, 0, sizeof(*data));
1201 
1202 	if (IS_PF(bp)) {
1203 		/* Fill the report data: effective line speed */
1204 		data->line_speed = bnx2x_get_mf_speed(bp);
1205 
1206 		/* Link is down */
1207 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1208 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1209 				  &data->link_report_flags);
1210 
1211 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1212 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1213 				  &data->link_report_flags);
1214 
1215 		/* Full DUPLEX */
1216 		if (bp->link_vars.duplex == DUPLEX_FULL)
1217 			__set_bit(BNX2X_LINK_REPORT_FD,
1218 				  &data->link_report_flags);
1219 
1220 		/* Rx Flow Control is ON */
1221 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1222 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1223 				  &data->link_report_flags);
1224 
1225 		/* Tx Flow Control is ON */
1226 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1227 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1228 				  &data->link_report_flags);
1229 	} else { /* VF */
1230 		*data = bp->vf_link_vars;
1231 	}
1232 }
1233 
1234 /**
1235  * bnx2x_link_report - report link status to OS.
1236  *
1237  * @bp:		driver handle
1238  *
1239  * Calls the __bnx2x_link_report() under the same locking scheme
1240  * as a link/PHY state managing code to ensure a consistent link
1241  * reporting.
1242  */
1243 
1244 void bnx2x_link_report(struct bnx2x *bp)
1245 {
1246 	bnx2x_acquire_phy_lock(bp);
1247 	__bnx2x_link_report(bp);
1248 	bnx2x_release_phy_lock(bp);
1249 }
1250 
1251 /**
1252  * __bnx2x_link_report - report link status to OS.
1253  *
1254  * @bp:		driver handle
1255  *
1256  * None atomic implementation.
1257  * Should be called under the phy_lock.
1258  */
1259 void __bnx2x_link_report(struct bnx2x *bp)
1260 {
1261 	struct bnx2x_link_report_data cur_data;
1262 
1263 	if (bp->force_link_down) {
1264 		bp->link_vars.link_up = 0;
1265 		return;
1266 	}
1267 
1268 	/* reread mf_cfg */
1269 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1270 		bnx2x_read_mf_cfg(bp);
1271 
1272 	/* Read the current link report info */
1273 	bnx2x_fill_report_data(bp, &cur_data);
1274 
1275 	/* Don't report link down or exactly the same link status twice */
1276 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1277 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1278 		      &bp->last_reported_link.link_report_flags) &&
1279 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1280 		      &cur_data.link_report_flags)))
1281 		return;
1282 
1283 	bp->link_cnt++;
1284 
1285 	/* We are going to report a new link parameters now -
1286 	 * remember the current data for the next time.
1287 	 */
1288 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1289 
1290 	/* propagate status to VFs */
1291 	if (IS_PF(bp))
1292 		bnx2x_iov_link_update(bp);
1293 
1294 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1295 		     &cur_data.link_report_flags)) {
1296 		netif_carrier_off(bp->dev);
1297 		netdev_err(bp->dev, "NIC Link is Down\n");
1298 		return;
1299 	} else {
1300 		const char *duplex;
1301 		const char *flow;
1302 
1303 		netif_carrier_on(bp->dev);
1304 
1305 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1306 				       &cur_data.link_report_flags))
1307 			duplex = "full";
1308 		else
1309 			duplex = "half";
1310 
1311 		/* Handle the FC at the end so that only these flags would be
1312 		 * possibly set. This way we may easily check if there is no FC
1313 		 * enabled.
1314 		 */
1315 		if (cur_data.link_report_flags) {
1316 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1317 				     &cur_data.link_report_flags)) {
1318 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1319 				     &cur_data.link_report_flags))
1320 					flow = "ON - receive & transmit";
1321 				else
1322 					flow = "ON - receive";
1323 			} else {
1324 				flow = "ON - transmit";
1325 			}
1326 		} else {
1327 			flow = "none";
1328 		}
1329 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1330 			    cur_data.line_speed, duplex, flow);
1331 	}
1332 }
1333 
1334 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1335 {
1336 	int i;
1337 
1338 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1339 		struct eth_rx_sge *sge;
1340 
1341 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1342 		sge->addr_hi =
1343 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1344 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1345 
1346 		sge->addr_lo =
1347 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1348 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1349 	}
1350 }
1351 
1352 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1353 				struct bnx2x_fastpath *fp, int last)
1354 {
1355 	int i;
1356 
1357 	for (i = 0; i < last; i++) {
1358 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1359 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1360 		u8 *data = first_buf->data;
1361 
1362 		if (data == NULL) {
1363 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1364 			continue;
1365 		}
1366 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1367 			dma_unmap_single(&bp->pdev->dev,
1368 					 dma_unmap_addr(first_buf, mapping),
1369 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1370 		bnx2x_frag_free(fp, data);
1371 		first_buf->data = NULL;
1372 	}
1373 }
1374 
1375 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1376 {
1377 	int j;
1378 
1379 	for_each_rx_queue_cnic(bp, j) {
1380 		struct bnx2x_fastpath *fp = &bp->fp[j];
1381 
1382 		fp->rx_bd_cons = 0;
1383 
1384 		/* Activate BD ring */
1385 		/* Warning!
1386 		 * this will generate an interrupt (to the TSTORM)
1387 		 * must only be done after chip is initialized
1388 		 */
1389 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1390 				     fp->rx_sge_prod);
1391 	}
1392 }
1393 
1394 void bnx2x_init_rx_rings(struct bnx2x *bp)
1395 {
1396 	int func = BP_FUNC(bp);
1397 	u16 ring_prod;
1398 	int i, j;
1399 
1400 	/* Allocate TPA resources */
1401 	for_each_eth_queue(bp, j) {
1402 		struct bnx2x_fastpath *fp = &bp->fp[j];
1403 
1404 		DP(NETIF_MSG_IFUP,
1405 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1406 
1407 		if (fp->mode != TPA_MODE_DISABLED) {
1408 			/* Fill the per-aggregation pool */
1409 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1410 				struct bnx2x_agg_info *tpa_info =
1411 					&fp->tpa_info[i];
1412 				struct sw_rx_bd *first_buf =
1413 					&tpa_info->first_buf;
1414 
1415 				first_buf->data =
1416 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1417 				if (!first_buf->data) {
1418 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1419 						  j);
1420 					bnx2x_free_tpa_pool(bp, fp, i);
1421 					fp->mode = TPA_MODE_DISABLED;
1422 					break;
1423 				}
1424 				dma_unmap_addr_set(first_buf, mapping, 0);
1425 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1426 			}
1427 
1428 			/* "next page" elements initialization */
1429 			bnx2x_set_next_page_sgl(fp);
1430 
1431 			/* set SGEs bit mask */
1432 			bnx2x_init_sge_ring_bit_mask(fp);
1433 
1434 			/* Allocate SGEs and initialize the ring elements */
1435 			for (i = 0, ring_prod = 0;
1436 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1437 
1438 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1439 						       GFP_KERNEL) < 0) {
1440 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1441 						  i);
1442 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1443 						  j);
1444 					/* Cleanup already allocated elements */
1445 					bnx2x_free_rx_sge_range(bp, fp,
1446 								ring_prod);
1447 					bnx2x_free_tpa_pool(bp, fp,
1448 							    MAX_AGG_QS(bp));
1449 					fp->mode = TPA_MODE_DISABLED;
1450 					ring_prod = 0;
1451 					break;
1452 				}
1453 				ring_prod = NEXT_SGE_IDX(ring_prod);
1454 			}
1455 
1456 			fp->rx_sge_prod = ring_prod;
1457 		}
1458 	}
1459 
1460 	for_each_eth_queue(bp, j) {
1461 		struct bnx2x_fastpath *fp = &bp->fp[j];
1462 
1463 		fp->rx_bd_cons = 0;
1464 
1465 		/* Activate BD ring */
1466 		/* Warning!
1467 		 * this will generate an interrupt (to the TSTORM)
1468 		 * must only be done after chip is initialized
1469 		 */
1470 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1471 				     fp->rx_sge_prod);
1472 
1473 		if (j != 0)
1474 			continue;
1475 
1476 		if (CHIP_IS_E1(bp)) {
1477 			REG_WR(bp, BAR_USTRORM_INTMEM +
1478 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1479 			       U64_LO(fp->rx_comp_mapping));
1480 			REG_WR(bp, BAR_USTRORM_INTMEM +
1481 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1482 			       U64_HI(fp->rx_comp_mapping));
1483 		}
1484 	}
1485 }
1486 
1487 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1488 {
1489 	u8 cos;
1490 	struct bnx2x *bp = fp->bp;
1491 
1492 	for_each_cos_in_tx_queue(fp, cos) {
1493 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1494 		unsigned pkts_compl = 0, bytes_compl = 0;
1495 
1496 		u16 sw_prod = txdata->tx_pkt_prod;
1497 		u16 sw_cons = txdata->tx_pkt_cons;
1498 
1499 		while (sw_cons != sw_prod) {
1500 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1501 					  &pkts_compl, &bytes_compl);
1502 			sw_cons++;
1503 		}
1504 
1505 		netdev_tx_reset_queue(
1506 			netdev_get_tx_queue(bp->dev,
1507 					    txdata->txq_index));
1508 	}
1509 }
1510 
1511 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1512 {
1513 	int i;
1514 
1515 	for_each_tx_queue_cnic(bp, i) {
1516 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1517 	}
1518 }
1519 
1520 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1521 {
1522 	int i;
1523 
1524 	for_each_eth_queue(bp, i) {
1525 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1526 	}
1527 }
1528 
1529 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1530 {
1531 	struct bnx2x *bp = fp->bp;
1532 	int i;
1533 
1534 	/* ring wasn't allocated */
1535 	if (fp->rx_buf_ring == NULL)
1536 		return;
1537 
1538 	for (i = 0; i < NUM_RX_BD; i++) {
1539 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1540 		u8 *data = rx_buf->data;
1541 
1542 		if (data == NULL)
1543 			continue;
1544 		dma_unmap_single(&bp->pdev->dev,
1545 				 dma_unmap_addr(rx_buf, mapping),
1546 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1547 
1548 		rx_buf->data = NULL;
1549 		bnx2x_frag_free(fp, data);
1550 	}
1551 }
1552 
1553 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1554 {
1555 	int j;
1556 
1557 	for_each_rx_queue_cnic(bp, j) {
1558 		bnx2x_free_rx_bds(&bp->fp[j]);
1559 	}
1560 }
1561 
1562 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1563 {
1564 	int j;
1565 
1566 	for_each_eth_queue(bp, j) {
1567 		struct bnx2x_fastpath *fp = &bp->fp[j];
1568 
1569 		bnx2x_free_rx_bds(fp);
1570 
1571 		if (fp->mode != TPA_MODE_DISABLED)
1572 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1573 	}
1574 }
1575 
1576 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1577 {
1578 	bnx2x_free_tx_skbs_cnic(bp);
1579 	bnx2x_free_rx_skbs_cnic(bp);
1580 }
1581 
1582 void bnx2x_free_skbs(struct bnx2x *bp)
1583 {
1584 	bnx2x_free_tx_skbs(bp);
1585 	bnx2x_free_rx_skbs(bp);
1586 }
1587 
1588 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1589 {
1590 	/* load old values */
1591 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1592 
1593 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1594 		/* leave all but MAX value */
1595 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1596 
1597 		/* set new MAX value */
1598 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1599 				& FUNC_MF_CFG_MAX_BW_MASK;
1600 
1601 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1602 	}
1603 }
1604 
1605 /**
1606  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1607  *
1608  * @bp:		driver handle
1609  * @nvecs:	number of vectors to be released
1610  */
1611 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1612 {
1613 	int i, offset = 0;
1614 
1615 	if (nvecs == offset)
1616 		return;
1617 
1618 	/* VFs don't have a default SB */
1619 	if (IS_PF(bp)) {
1620 		free_irq(bp->msix_table[offset].vector, bp->dev);
1621 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1622 		   bp->msix_table[offset].vector);
1623 		offset++;
1624 	}
1625 
1626 	if (CNIC_SUPPORT(bp)) {
1627 		if (nvecs == offset)
1628 			return;
1629 		offset++;
1630 	}
1631 
1632 	for_each_eth_queue(bp, i) {
1633 		if (nvecs == offset)
1634 			return;
1635 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1636 		   i, bp->msix_table[offset].vector);
1637 
1638 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1639 	}
1640 }
1641 
1642 void bnx2x_free_irq(struct bnx2x *bp)
1643 {
1644 	if (bp->flags & USING_MSIX_FLAG &&
1645 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1646 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1647 
1648 		/* vfs don't have a default status block */
1649 		if (IS_PF(bp))
1650 			nvecs++;
1651 
1652 		bnx2x_free_msix_irqs(bp, nvecs);
1653 	} else {
1654 		free_irq(bp->dev->irq, bp->dev);
1655 	}
1656 }
1657 
1658 int bnx2x_enable_msix(struct bnx2x *bp)
1659 {
1660 	int msix_vec = 0, i, rc;
1661 
1662 	/* VFs don't have a default status block */
1663 	if (IS_PF(bp)) {
1664 		bp->msix_table[msix_vec].entry = msix_vec;
1665 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1666 			       bp->msix_table[0].entry);
1667 		msix_vec++;
1668 	}
1669 
1670 	/* Cnic requires an msix vector for itself */
1671 	if (CNIC_SUPPORT(bp)) {
1672 		bp->msix_table[msix_vec].entry = msix_vec;
1673 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1674 			       msix_vec, bp->msix_table[msix_vec].entry);
1675 		msix_vec++;
1676 	}
1677 
1678 	/* We need separate vectors for ETH queues only (not FCoE) */
1679 	for_each_eth_queue(bp, i) {
1680 		bp->msix_table[msix_vec].entry = msix_vec;
1681 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1682 			       msix_vec, msix_vec, i);
1683 		msix_vec++;
1684 	}
1685 
1686 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1687 	   msix_vec);
1688 
1689 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1690 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1691 	/*
1692 	 * reconfigure number of tx/rx queues according to available
1693 	 * MSI-X vectors
1694 	 */
1695 	if (rc == -ENOSPC) {
1696 		/* Get by with single vector */
1697 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1698 		if (rc < 0) {
1699 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1700 				       rc);
1701 			goto no_msix;
1702 		}
1703 
1704 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1705 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1706 
1707 		BNX2X_DEV_INFO("set number of queues to 1\n");
1708 		bp->num_ethernet_queues = 1;
1709 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1710 	} else if (rc < 0) {
1711 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1712 		goto no_msix;
1713 	} else if (rc < msix_vec) {
1714 		/* how less vectors we will have? */
1715 		int diff = msix_vec - rc;
1716 
1717 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1718 
1719 		/*
1720 		 * decrease number of queues by number of unallocated entries
1721 		 */
1722 		bp->num_ethernet_queues -= diff;
1723 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1724 
1725 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1726 			       bp->num_queues);
1727 	}
1728 
1729 	bp->flags |= USING_MSIX_FLAG;
1730 
1731 	return 0;
1732 
1733 no_msix:
1734 	/* fall to INTx if not enough memory */
1735 	if (rc == -ENOMEM)
1736 		bp->flags |= DISABLE_MSI_FLAG;
1737 
1738 	return rc;
1739 }
1740 
1741 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1742 {
1743 	int i, rc, offset = 0;
1744 
1745 	/* no default status block for vf */
1746 	if (IS_PF(bp)) {
1747 		rc = request_irq(bp->msix_table[offset++].vector,
1748 				 bnx2x_msix_sp_int, 0,
1749 				 bp->dev->name, bp->dev);
1750 		if (rc) {
1751 			BNX2X_ERR("request sp irq failed\n");
1752 			return -EBUSY;
1753 		}
1754 	}
1755 
1756 	if (CNIC_SUPPORT(bp))
1757 		offset++;
1758 
1759 	for_each_eth_queue(bp, i) {
1760 		struct bnx2x_fastpath *fp = &bp->fp[i];
1761 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1762 			 bp->dev->name, i);
1763 
1764 		rc = request_irq(bp->msix_table[offset].vector,
1765 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1766 		if (rc) {
1767 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1768 			      bp->msix_table[offset].vector, rc);
1769 			bnx2x_free_msix_irqs(bp, offset);
1770 			return -EBUSY;
1771 		}
1772 
1773 		offset++;
1774 	}
1775 
1776 	i = BNX2X_NUM_ETH_QUEUES(bp);
1777 	if (IS_PF(bp)) {
1778 		offset = 1 + CNIC_SUPPORT(bp);
1779 		netdev_info(bp->dev,
1780 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1781 			    bp->msix_table[0].vector,
1782 			    0, bp->msix_table[offset].vector,
1783 			    i - 1, bp->msix_table[offset + i - 1].vector);
1784 	} else {
1785 		offset = CNIC_SUPPORT(bp);
1786 		netdev_info(bp->dev,
1787 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1788 			    0, bp->msix_table[offset].vector,
1789 			    i - 1, bp->msix_table[offset + i - 1].vector);
1790 	}
1791 	return 0;
1792 }
1793 
1794 int bnx2x_enable_msi(struct bnx2x *bp)
1795 {
1796 	int rc;
1797 
1798 	rc = pci_enable_msi(bp->pdev);
1799 	if (rc) {
1800 		BNX2X_DEV_INFO("MSI is not attainable\n");
1801 		return -1;
1802 	}
1803 	bp->flags |= USING_MSI_FLAG;
1804 
1805 	return 0;
1806 }
1807 
1808 static int bnx2x_req_irq(struct bnx2x *bp)
1809 {
1810 	unsigned long flags;
1811 	unsigned int irq;
1812 
1813 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1814 		flags = 0;
1815 	else
1816 		flags = IRQF_SHARED;
1817 
1818 	if (bp->flags & USING_MSIX_FLAG)
1819 		irq = bp->msix_table[0].vector;
1820 	else
1821 		irq = bp->pdev->irq;
1822 
1823 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1824 }
1825 
1826 static int bnx2x_setup_irqs(struct bnx2x *bp)
1827 {
1828 	int rc = 0;
1829 	if (bp->flags & USING_MSIX_FLAG &&
1830 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1831 		rc = bnx2x_req_msix_irqs(bp);
1832 		if (rc)
1833 			return rc;
1834 	} else {
1835 		rc = bnx2x_req_irq(bp);
1836 		if (rc) {
1837 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1838 			return rc;
1839 		}
1840 		if (bp->flags & USING_MSI_FLAG) {
1841 			bp->dev->irq = bp->pdev->irq;
1842 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1843 				    bp->dev->irq);
1844 		}
1845 		if (bp->flags & USING_MSIX_FLAG) {
1846 			bp->dev->irq = bp->msix_table[0].vector;
1847 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1848 				    bp->dev->irq);
1849 		}
1850 	}
1851 
1852 	return 0;
1853 }
1854 
1855 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1856 {
1857 	int i;
1858 
1859 	for_each_rx_queue_cnic(bp, i) {
1860 		napi_enable(&bnx2x_fp(bp, i, napi));
1861 	}
1862 }
1863 
1864 static void bnx2x_napi_enable(struct bnx2x *bp)
1865 {
1866 	int i;
1867 
1868 	for_each_eth_queue(bp, i) {
1869 		napi_enable(&bnx2x_fp(bp, i, napi));
1870 	}
1871 }
1872 
1873 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1874 {
1875 	int i;
1876 
1877 	for_each_rx_queue_cnic(bp, i) {
1878 		napi_disable(&bnx2x_fp(bp, i, napi));
1879 	}
1880 }
1881 
1882 static void bnx2x_napi_disable(struct bnx2x *bp)
1883 {
1884 	int i;
1885 
1886 	for_each_eth_queue(bp, i) {
1887 		napi_disable(&bnx2x_fp(bp, i, napi));
1888 	}
1889 }
1890 
1891 void bnx2x_netif_start(struct bnx2x *bp)
1892 {
1893 	if (netif_running(bp->dev)) {
1894 		bnx2x_napi_enable(bp);
1895 		if (CNIC_LOADED(bp))
1896 			bnx2x_napi_enable_cnic(bp);
1897 		bnx2x_int_enable(bp);
1898 		if (bp->state == BNX2X_STATE_OPEN)
1899 			netif_tx_wake_all_queues(bp->dev);
1900 	}
1901 }
1902 
1903 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1904 {
1905 	bnx2x_int_disable_sync(bp, disable_hw);
1906 	bnx2x_napi_disable(bp);
1907 	if (CNIC_LOADED(bp))
1908 		bnx2x_napi_disable_cnic(bp);
1909 }
1910 
1911 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1912 		       struct net_device *sb_dev,
1913 		       select_queue_fallback_t fallback)
1914 {
1915 	struct bnx2x *bp = netdev_priv(dev);
1916 
1917 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1918 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1919 		u16 ether_type = ntohs(hdr->h_proto);
1920 
1921 		/* Skip VLAN tag if present */
1922 		if (ether_type == ETH_P_8021Q) {
1923 			struct vlan_ethhdr *vhdr =
1924 				(struct vlan_ethhdr *)skb->data;
1925 
1926 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1927 		}
1928 
1929 		/* If ethertype is FCoE or FIP - use FCoE ring */
1930 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1931 			return bnx2x_fcoe_tx(bp, txq_index);
1932 	}
1933 
1934 	/* select a non-FCoE queue */
1935 	return fallback(dev, skb, NULL) %
1936 	       (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1937 }
1938 
1939 void bnx2x_set_num_queues(struct bnx2x *bp)
1940 {
1941 	/* RSS queues */
1942 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1943 
1944 	/* override in STORAGE SD modes */
1945 	if (IS_MF_STORAGE_ONLY(bp))
1946 		bp->num_ethernet_queues = 1;
1947 
1948 	/* Add special queues */
1949 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1950 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1951 
1952 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1953 }
1954 
1955 /**
1956  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1957  *
1958  * @bp:		Driver handle
1959  *
1960  * We currently support for at most 16 Tx queues for each CoS thus we will
1961  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1962  * bp->max_cos.
1963  *
1964  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1965  * index after all ETH L2 indices.
1966  *
1967  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1968  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1969  * 16..31,...) with indices that are not coupled with any real Tx queue.
1970  *
1971  * The proper configuration of skb->queue_mapping is handled by
1972  * bnx2x_select_queue() and __skb_tx_hash().
1973  *
1974  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1975  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1976  */
1977 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1978 {
1979 	int rc, tx, rx;
1980 
1981 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1982 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1983 
1984 /* account for fcoe queue */
1985 	if (include_cnic && !NO_FCOE(bp)) {
1986 		rx++;
1987 		tx++;
1988 	}
1989 
1990 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
1991 	if (rc) {
1992 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1993 		return rc;
1994 	}
1995 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
1996 	if (rc) {
1997 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1998 		return rc;
1999 	}
2000 
2001 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2002 			  tx, rx);
2003 
2004 	return rc;
2005 }
2006 
2007 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2008 {
2009 	int i;
2010 
2011 	for_each_queue(bp, i) {
2012 		struct bnx2x_fastpath *fp = &bp->fp[i];
2013 		u32 mtu;
2014 
2015 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2016 		if (IS_FCOE_IDX(i))
2017 			/*
2018 			 * Although there are no IP frames expected to arrive to
2019 			 * this ring we still want to add an
2020 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2021 			 * overrun attack.
2022 			 */
2023 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2024 		else
2025 			mtu = bp->dev->mtu;
2026 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2027 				  IP_HEADER_ALIGNMENT_PADDING +
2028 				  ETH_OVERHEAD +
2029 				  mtu +
2030 				  BNX2X_FW_RX_ALIGN_END;
2031 		fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2032 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2033 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2034 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2035 		else
2036 			fp->rx_frag_size = 0;
2037 	}
2038 }
2039 
2040 static int bnx2x_init_rss(struct bnx2x *bp)
2041 {
2042 	int i;
2043 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2044 
2045 	/* Prepare the initial contents for the indirection table if RSS is
2046 	 * enabled
2047 	 */
2048 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2049 		bp->rss_conf_obj.ind_table[i] =
2050 			bp->fp->cl_id +
2051 			ethtool_rxfh_indir_default(i, num_eth_queues);
2052 
2053 	/*
2054 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2055 	 * per-port, so if explicit configuration is needed , do it only
2056 	 * for a PMF.
2057 	 *
2058 	 * For 57712 and newer on the other hand it's a per-function
2059 	 * configuration.
2060 	 */
2061 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2062 }
2063 
2064 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2065 	      bool config_hash, bool enable)
2066 {
2067 	struct bnx2x_config_rss_params params = {NULL};
2068 
2069 	/* Although RSS is meaningless when there is a single HW queue we
2070 	 * still need it enabled in order to have HW Rx hash generated.
2071 	 *
2072 	 * if (!is_eth_multi(bp))
2073 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2074 	 */
2075 
2076 	params.rss_obj = rss_obj;
2077 
2078 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2079 
2080 	if (enable) {
2081 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2082 
2083 		/* RSS configuration */
2084 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2085 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2086 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2087 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2088 		if (rss_obj->udp_rss_v4)
2089 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2090 		if (rss_obj->udp_rss_v6)
2091 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2092 
2093 		if (!CHIP_IS_E1x(bp)) {
2094 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2095 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2096 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2097 
2098 			/* valid only for TUNN_MODE_GRE tunnel mode */
2099 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2100 		}
2101 	} else {
2102 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2103 	}
2104 
2105 	/* Hash bits */
2106 	params.rss_result_mask = MULTI_MASK;
2107 
2108 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2109 
2110 	if (config_hash) {
2111 		/* RSS keys */
2112 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2113 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2114 	}
2115 
2116 	if (IS_PF(bp))
2117 		return bnx2x_config_rss(bp, &params);
2118 	else
2119 		return bnx2x_vfpf_config_rss(bp, &params);
2120 }
2121 
2122 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2123 {
2124 	struct bnx2x_func_state_params func_params = {NULL};
2125 
2126 	/* Prepare parameters for function state transitions */
2127 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2128 
2129 	func_params.f_obj = &bp->func_obj;
2130 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2131 
2132 	func_params.params.hw_init.load_phase = load_code;
2133 
2134 	return bnx2x_func_state_change(bp, &func_params);
2135 }
2136 
2137 /*
2138  * Cleans the object that have internal lists without sending
2139  * ramrods. Should be run when interrupts are disabled.
2140  */
2141 void bnx2x_squeeze_objects(struct bnx2x *bp)
2142 {
2143 	int rc;
2144 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2145 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2146 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2147 
2148 	/***************** Cleanup MACs' object first *************************/
2149 
2150 	/* Wait for completion of requested */
2151 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2152 	/* Perform a dry cleanup */
2153 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2154 
2155 	/* Clean ETH primary MAC */
2156 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2157 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2158 				 &ramrod_flags);
2159 	if (rc != 0)
2160 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2161 
2162 	/* Cleanup UC list */
2163 	vlan_mac_flags = 0;
2164 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2165 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2166 				 &ramrod_flags);
2167 	if (rc != 0)
2168 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2169 
2170 	/***************** Now clean mcast object *****************************/
2171 	rparam.mcast_obj = &bp->mcast_obj;
2172 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2173 
2174 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2175 	 * we take a lock surrounding both the initial send and the CONTs,
2176 	 * as we don't want a true completion to disrupt us in the middle.
2177 	 */
2178 	netif_addr_lock_bh(bp->dev);
2179 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2180 	if (rc < 0)
2181 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2182 			  rc);
2183 
2184 	/* ...and wait until all pending commands are cleared */
2185 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2186 	while (rc != 0) {
2187 		if (rc < 0) {
2188 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2189 				  rc);
2190 			netif_addr_unlock_bh(bp->dev);
2191 			return;
2192 		}
2193 
2194 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2195 	}
2196 	netif_addr_unlock_bh(bp->dev);
2197 }
2198 
2199 #ifndef BNX2X_STOP_ON_ERROR
2200 #define LOAD_ERROR_EXIT(bp, label) \
2201 	do { \
2202 		(bp)->state = BNX2X_STATE_ERROR; \
2203 		goto label; \
2204 	} while (0)
2205 
2206 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2207 	do { \
2208 		bp->cnic_loaded = false; \
2209 		goto label; \
2210 	} while (0)
2211 #else /*BNX2X_STOP_ON_ERROR*/
2212 #define LOAD_ERROR_EXIT(bp, label) \
2213 	do { \
2214 		(bp)->state = BNX2X_STATE_ERROR; \
2215 		(bp)->panic = 1; \
2216 		return -EBUSY; \
2217 	} while (0)
2218 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2219 	do { \
2220 		bp->cnic_loaded = false; \
2221 		(bp)->panic = 1; \
2222 		return -EBUSY; \
2223 	} while (0)
2224 #endif /*BNX2X_STOP_ON_ERROR*/
2225 
2226 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2227 {
2228 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2229 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2230 	return;
2231 }
2232 
2233 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2234 {
2235 	int num_groups, vf_headroom = 0;
2236 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2237 
2238 	/* number of queues for statistics is number of eth queues + FCoE */
2239 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2240 
2241 	/* Total number of FW statistics requests =
2242 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2243 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2244 	 * for fcoe l2 queue if applicable)
2245 	 */
2246 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2247 
2248 	/* vf stats appear in the request list, but their data is allocated by
2249 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2250 	 * it is used to determine where to place the vf stats queries in the
2251 	 * request struct
2252 	 */
2253 	if (IS_SRIOV(bp))
2254 		vf_headroom = bnx2x_vf_headroom(bp);
2255 
2256 	/* Request is built from stats_query_header and an array of
2257 	 * stats_query_cmd_group each of which contains
2258 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2259 	 * configured in the stats_query_header.
2260 	 */
2261 	num_groups =
2262 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2263 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2264 		 1 : 0));
2265 
2266 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2267 	   bp->fw_stats_num, vf_headroom, num_groups);
2268 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2269 		num_groups * sizeof(struct stats_query_cmd_group);
2270 
2271 	/* Data for statistics requests + stats_counter
2272 	 * stats_counter holds per-STORM counters that are incremented
2273 	 * when STORM has finished with the current request.
2274 	 * memory for FCoE offloaded statistics are counted anyway,
2275 	 * even if they will not be sent.
2276 	 * VF stats are not accounted for here as the data of VF stats is stored
2277 	 * in memory allocated by the VF, not here.
2278 	 */
2279 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2280 		sizeof(struct per_pf_stats) +
2281 		sizeof(struct fcoe_statistics_params) +
2282 		sizeof(struct per_queue_stats) * num_queue_stats +
2283 		sizeof(struct stats_counter);
2284 
2285 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2286 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2287 	if (!bp->fw_stats)
2288 		goto alloc_mem_err;
2289 
2290 	/* Set shortcuts */
2291 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2292 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2293 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2294 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2295 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2296 		bp->fw_stats_req_sz;
2297 
2298 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2299 	   U64_HI(bp->fw_stats_req_mapping),
2300 	   U64_LO(bp->fw_stats_req_mapping));
2301 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2302 	   U64_HI(bp->fw_stats_data_mapping),
2303 	   U64_LO(bp->fw_stats_data_mapping));
2304 	return 0;
2305 
2306 alloc_mem_err:
2307 	bnx2x_free_fw_stats_mem(bp);
2308 	BNX2X_ERR("Can't allocate FW stats memory\n");
2309 	return -ENOMEM;
2310 }
2311 
2312 /* send load request to mcp and analyze response */
2313 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2314 {
2315 	u32 param;
2316 
2317 	/* init fw_seq */
2318 	bp->fw_seq =
2319 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2320 		 DRV_MSG_SEQ_NUMBER_MASK);
2321 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2322 
2323 	/* Get current FW pulse sequence */
2324 	bp->fw_drv_pulse_wr_seq =
2325 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2326 		 DRV_PULSE_SEQ_MASK);
2327 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2328 
2329 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2330 
2331 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2332 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2333 
2334 	/* load request */
2335 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2336 
2337 	/* if mcp fails to respond we must abort */
2338 	if (!(*load_code)) {
2339 		BNX2X_ERR("MCP response failure, aborting\n");
2340 		return -EBUSY;
2341 	}
2342 
2343 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2344 	 * must abort
2345 	 */
2346 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2347 		BNX2X_ERR("MCP refused load request, aborting\n");
2348 		return -EBUSY;
2349 	}
2350 	return 0;
2351 }
2352 
2353 /* check whether another PF has already loaded FW to chip. In
2354  * virtualized environments a pf from another VM may have already
2355  * initialized the device including loading FW
2356  */
2357 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2358 {
2359 	/* is another pf loaded on this engine? */
2360 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2361 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2362 		/* build my FW version dword */
2363 		u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2364 			(BCM_5710_FW_MINOR_VERSION << 8) +
2365 			(BCM_5710_FW_REVISION_VERSION << 16) +
2366 			(BCM_5710_FW_ENGINEERING_VERSION << 24);
2367 
2368 		/* read loaded FW from chip */
2369 		u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2370 
2371 		DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2372 		   loaded_fw, my_fw);
2373 
2374 		/* abort nic load if version mismatch */
2375 		if (my_fw != loaded_fw) {
2376 			if (print_err)
2377 				BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2378 					  loaded_fw, my_fw);
2379 			else
2380 				BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2381 					       loaded_fw, my_fw);
2382 			return -EBUSY;
2383 		}
2384 	}
2385 	return 0;
2386 }
2387 
2388 /* returns the "mcp load_code" according to global load_count array */
2389 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2390 {
2391 	int path = BP_PATH(bp);
2392 
2393 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2394 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2395 	   bnx2x_load_count[path][2]);
2396 	bnx2x_load_count[path][0]++;
2397 	bnx2x_load_count[path][1 + port]++;
2398 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2399 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2400 	   bnx2x_load_count[path][2]);
2401 	if (bnx2x_load_count[path][0] == 1)
2402 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2403 	else if (bnx2x_load_count[path][1 + port] == 1)
2404 		return FW_MSG_CODE_DRV_LOAD_PORT;
2405 	else
2406 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2407 }
2408 
2409 /* mark PMF if applicable */
2410 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2411 {
2412 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2413 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2414 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2415 		bp->port.pmf = 1;
2416 		/* We need the barrier to ensure the ordering between the
2417 		 * writing to bp->port.pmf here and reading it from the
2418 		 * bnx2x_periodic_task().
2419 		 */
2420 		smp_mb();
2421 	} else {
2422 		bp->port.pmf = 0;
2423 	}
2424 
2425 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2426 }
2427 
2428 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2429 {
2430 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2431 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2432 	    (bp->common.shmem2_base)) {
2433 		if (SHMEM2_HAS(bp, dcc_support))
2434 			SHMEM2_WR(bp, dcc_support,
2435 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2436 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2437 		if (SHMEM2_HAS(bp, afex_driver_support))
2438 			SHMEM2_WR(bp, afex_driver_support,
2439 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2440 	}
2441 
2442 	/* Set AFEX default VLAN tag to an invalid value */
2443 	bp->afex_def_vlan_tag = -1;
2444 }
2445 
2446 /**
2447  * bnx2x_bz_fp - zero content of the fastpath structure.
2448  *
2449  * @bp:		driver handle
2450  * @index:	fastpath index to be zeroed
2451  *
2452  * Makes sure the contents of the bp->fp[index].napi is kept
2453  * intact.
2454  */
2455 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2456 {
2457 	struct bnx2x_fastpath *fp = &bp->fp[index];
2458 	int cos;
2459 	struct napi_struct orig_napi = fp->napi;
2460 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2461 
2462 	/* bzero bnx2x_fastpath contents */
2463 	if (fp->tpa_info)
2464 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2465 		       sizeof(struct bnx2x_agg_info));
2466 	memset(fp, 0, sizeof(*fp));
2467 
2468 	/* Restore the NAPI object as it has been already initialized */
2469 	fp->napi = orig_napi;
2470 	fp->tpa_info = orig_tpa_info;
2471 	fp->bp = bp;
2472 	fp->index = index;
2473 	if (IS_ETH_FP(fp))
2474 		fp->max_cos = bp->max_cos;
2475 	else
2476 		/* Special queues support only one CoS */
2477 		fp->max_cos = 1;
2478 
2479 	/* Init txdata pointers */
2480 	if (IS_FCOE_FP(fp))
2481 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2482 	if (IS_ETH_FP(fp))
2483 		for_each_cos_in_tx_queue(fp, cos)
2484 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2485 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2486 
2487 	/* set the tpa flag for each queue. The tpa flag determines the queue
2488 	 * minimal size so it must be set prior to queue memory allocation
2489 	 */
2490 	if (bp->dev->features & NETIF_F_LRO)
2491 		fp->mode = TPA_MODE_LRO;
2492 	else if (bp->dev->features & NETIF_F_GRO_HW)
2493 		fp->mode = TPA_MODE_GRO;
2494 	else
2495 		fp->mode = TPA_MODE_DISABLED;
2496 
2497 	/* We don't want TPA if it's disabled in bp
2498 	 * or if this is an FCoE L2 ring.
2499 	 */
2500 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2501 		fp->mode = TPA_MODE_DISABLED;
2502 }
2503 
2504 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2505 {
2506 	u32 cur;
2507 
2508 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2509 		return;
2510 
2511 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2512 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2513 	   cur, state);
2514 
2515 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2516 }
2517 
2518 int bnx2x_load_cnic(struct bnx2x *bp)
2519 {
2520 	int i, rc, port = BP_PORT(bp);
2521 
2522 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2523 
2524 	mutex_init(&bp->cnic_mutex);
2525 
2526 	if (IS_PF(bp)) {
2527 		rc = bnx2x_alloc_mem_cnic(bp);
2528 		if (rc) {
2529 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2530 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2531 		}
2532 	}
2533 
2534 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2535 	if (rc) {
2536 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2537 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2538 	}
2539 
2540 	/* Update the number of queues with the cnic queues */
2541 	rc = bnx2x_set_real_num_queues(bp, 1);
2542 	if (rc) {
2543 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2544 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2545 	}
2546 
2547 	/* Add all CNIC NAPI objects */
2548 	bnx2x_add_all_napi_cnic(bp);
2549 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2550 	bnx2x_napi_enable_cnic(bp);
2551 
2552 	rc = bnx2x_init_hw_func_cnic(bp);
2553 	if (rc)
2554 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2555 
2556 	bnx2x_nic_init_cnic(bp);
2557 
2558 	if (IS_PF(bp)) {
2559 		/* Enable Timer scan */
2560 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2561 
2562 		/* setup cnic queues */
2563 		for_each_cnic_queue(bp, i) {
2564 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2565 			if (rc) {
2566 				BNX2X_ERR("Queue setup failed\n");
2567 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2568 			}
2569 		}
2570 	}
2571 
2572 	/* Initialize Rx filter. */
2573 	bnx2x_set_rx_mode_inner(bp);
2574 
2575 	/* re-read iscsi info */
2576 	bnx2x_get_iscsi_info(bp);
2577 	bnx2x_setup_cnic_irq_info(bp);
2578 	bnx2x_setup_cnic_info(bp);
2579 	bp->cnic_loaded = true;
2580 	if (bp->state == BNX2X_STATE_OPEN)
2581 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2582 
2583 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2584 
2585 	return 0;
2586 
2587 #ifndef BNX2X_STOP_ON_ERROR
2588 load_error_cnic2:
2589 	/* Disable Timer scan */
2590 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2591 
2592 load_error_cnic1:
2593 	bnx2x_napi_disable_cnic(bp);
2594 	/* Update the number of queues without the cnic queues */
2595 	if (bnx2x_set_real_num_queues(bp, 0))
2596 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2597 load_error_cnic0:
2598 	BNX2X_ERR("CNIC-related load failed\n");
2599 	bnx2x_free_fp_mem_cnic(bp);
2600 	bnx2x_free_mem_cnic(bp);
2601 	return rc;
2602 #endif /* ! BNX2X_STOP_ON_ERROR */
2603 }
2604 
2605 /* must be called with rtnl_lock */
2606 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2607 {
2608 	int port = BP_PORT(bp);
2609 	int i, rc = 0, load_code = 0;
2610 
2611 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2612 	DP(NETIF_MSG_IFUP,
2613 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2614 
2615 #ifdef BNX2X_STOP_ON_ERROR
2616 	if (unlikely(bp->panic)) {
2617 		BNX2X_ERR("Can't load NIC when there is panic\n");
2618 		return -EPERM;
2619 	}
2620 #endif
2621 
2622 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2623 
2624 	/* zero the structure w/o any lock, before SP handler is initialized */
2625 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2626 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2627 		&bp->last_reported_link.link_report_flags);
2628 
2629 	if (IS_PF(bp))
2630 		/* must be called before memory allocation and HW init */
2631 		bnx2x_ilt_set_info(bp);
2632 
2633 	/*
2634 	 * Zero fastpath structures preserving invariants like napi, which are
2635 	 * allocated only once, fp index, max_cos, bp pointer.
2636 	 * Also set fp->mode and txdata_ptr.
2637 	 */
2638 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2639 	for_each_queue(bp, i)
2640 		bnx2x_bz_fp(bp, i);
2641 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2642 				  bp->num_cnic_queues) *
2643 				  sizeof(struct bnx2x_fp_txdata));
2644 
2645 	bp->fcoe_init = false;
2646 
2647 	/* Set the receive queues buffer size */
2648 	bnx2x_set_rx_buf_size(bp);
2649 
2650 	if (IS_PF(bp)) {
2651 		rc = bnx2x_alloc_mem(bp);
2652 		if (rc) {
2653 			BNX2X_ERR("Unable to allocate bp memory\n");
2654 			return rc;
2655 		}
2656 	}
2657 
2658 	/* need to be done after alloc mem, since it's self adjusting to amount
2659 	 * of memory available for RSS queues
2660 	 */
2661 	rc = bnx2x_alloc_fp_mem(bp);
2662 	if (rc) {
2663 		BNX2X_ERR("Unable to allocate memory for fps\n");
2664 		LOAD_ERROR_EXIT(bp, load_error0);
2665 	}
2666 
2667 	/* Allocated memory for FW statistics  */
2668 	if (bnx2x_alloc_fw_stats_mem(bp))
2669 		LOAD_ERROR_EXIT(bp, load_error0);
2670 
2671 	/* request pf to initialize status blocks */
2672 	if (IS_VF(bp)) {
2673 		rc = bnx2x_vfpf_init(bp);
2674 		if (rc)
2675 			LOAD_ERROR_EXIT(bp, load_error0);
2676 	}
2677 
2678 	/* As long as bnx2x_alloc_mem() may possibly update
2679 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2680 	 * come after it. At this stage cnic queues are not counted.
2681 	 */
2682 	rc = bnx2x_set_real_num_queues(bp, 0);
2683 	if (rc) {
2684 		BNX2X_ERR("Unable to set real_num_queues\n");
2685 		LOAD_ERROR_EXIT(bp, load_error0);
2686 	}
2687 
2688 	/* configure multi cos mappings in kernel.
2689 	 * this configuration may be overridden by a multi class queue
2690 	 * discipline or by a dcbx negotiation result.
2691 	 */
2692 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2693 
2694 	/* Add all NAPI objects */
2695 	bnx2x_add_all_napi(bp);
2696 	DP(NETIF_MSG_IFUP, "napi added\n");
2697 	bnx2x_napi_enable(bp);
2698 
2699 	if (IS_PF(bp)) {
2700 		/* set pf load just before approaching the MCP */
2701 		bnx2x_set_pf_load(bp);
2702 
2703 		/* if mcp exists send load request and analyze response */
2704 		if (!BP_NOMCP(bp)) {
2705 			/* attempt to load pf */
2706 			rc = bnx2x_nic_load_request(bp, &load_code);
2707 			if (rc)
2708 				LOAD_ERROR_EXIT(bp, load_error1);
2709 
2710 			/* what did mcp say? */
2711 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2712 			if (rc) {
2713 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2714 				LOAD_ERROR_EXIT(bp, load_error2);
2715 			}
2716 		} else {
2717 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2718 		}
2719 
2720 		/* mark pmf if applicable */
2721 		bnx2x_nic_load_pmf(bp, load_code);
2722 
2723 		/* Init Function state controlling object */
2724 		bnx2x__init_func_obj(bp);
2725 
2726 		/* Initialize HW */
2727 		rc = bnx2x_init_hw(bp, load_code);
2728 		if (rc) {
2729 			BNX2X_ERR("HW init failed, aborting\n");
2730 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2731 			LOAD_ERROR_EXIT(bp, load_error2);
2732 		}
2733 	}
2734 
2735 	bnx2x_pre_irq_nic_init(bp);
2736 
2737 	/* Connect to IRQs */
2738 	rc = bnx2x_setup_irqs(bp);
2739 	if (rc) {
2740 		BNX2X_ERR("setup irqs failed\n");
2741 		if (IS_PF(bp))
2742 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2743 		LOAD_ERROR_EXIT(bp, load_error2);
2744 	}
2745 
2746 	/* Init per-function objects */
2747 	if (IS_PF(bp)) {
2748 		/* Setup NIC internals and enable interrupts */
2749 		bnx2x_post_irq_nic_init(bp, load_code);
2750 
2751 		bnx2x_init_bp_objs(bp);
2752 		bnx2x_iov_nic_init(bp);
2753 
2754 		/* Set AFEX default VLAN tag to an invalid value */
2755 		bp->afex_def_vlan_tag = -1;
2756 		bnx2x_nic_load_afex_dcc(bp, load_code);
2757 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2758 		rc = bnx2x_func_start(bp);
2759 		if (rc) {
2760 			BNX2X_ERR("Function start failed!\n");
2761 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2762 
2763 			LOAD_ERROR_EXIT(bp, load_error3);
2764 		}
2765 
2766 		/* Send LOAD_DONE command to MCP */
2767 		if (!BP_NOMCP(bp)) {
2768 			load_code = bnx2x_fw_command(bp,
2769 						     DRV_MSG_CODE_LOAD_DONE, 0);
2770 			if (!load_code) {
2771 				BNX2X_ERR("MCP response failure, aborting\n");
2772 				rc = -EBUSY;
2773 				LOAD_ERROR_EXIT(bp, load_error3);
2774 			}
2775 		}
2776 
2777 		/* initialize FW coalescing state machines in RAM */
2778 		bnx2x_update_coalesce(bp);
2779 	}
2780 
2781 	/* setup the leading queue */
2782 	rc = bnx2x_setup_leading(bp);
2783 	if (rc) {
2784 		BNX2X_ERR("Setup leading failed!\n");
2785 		LOAD_ERROR_EXIT(bp, load_error3);
2786 	}
2787 
2788 	/* set up the rest of the queues */
2789 	for_each_nondefault_eth_queue(bp, i) {
2790 		if (IS_PF(bp))
2791 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2792 		else /* VF */
2793 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2794 		if (rc) {
2795 			BNX2X_ERR("Queue %d setup failed\n", i);
2796 			LOAD_ERROR_EXIT(bp, load_error3);
2797 		}
2798 	}
2799 
2800 	/* setup rss */
2801 	rc = bnx2x_init_rss(bp);
2802 	if (rc) {
2803 		BNX2X_ERR("PF RSS init failed\n");
2804 		LOAD_ERROR_EXIT(bp, load_error3);
2805 	}
2806 
2807 	/* Now when Clients are configured we are ready to work */
2808 	bp->state = BNX2X_STATE_OPEN;
2809 
2810 	/* Configure a ucast MAC */
2811 	if (IS_PF(bp))
2812 		rc = bnx2x_set_eth_mac(bp, true);
2813 	else /* vf */
2814 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2815 					   true);
2816 	if (rc) {
2817 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2818 		LOAD_ERROR_EXIT(bp, load_error3);
2819 	}
2820 
2821 	if (IS_PF(bp) && bp->pending_max) {
2822 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2823 		bp->pending_max = 0;
2824 	}
2825 
2826 	bp->force_link_down = false;
2827 	if (bp->port.pmf) {
2828 		rc = bnx2x_initial_phy_init(bp, load_mode);
2829 		if (rc)
2830 			LOAD_ERROR_EXIT(bp, load_error3);
2831 	}
2832 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2833 
2834 	/* Start fast path */
2835 
2836 	/* Re-configure vlan filters */
2837 	rc = bnx2x_vlan_reconfigure_vid(bp);
2838 	if (rc)
2839 		LOAD_ERROR_EXIT(bp, load_error3);
2840 
2841 	/* Initialize Rx filter. */
2842 	bnx2x_set_rx_mode_inner(bp);
2843 
2844 	if (bp->flags & PTP_SUPPORTED) {
2845 		bnx2x_register_phc(bp);
2846 		bnx2x_init_ptp(bp);
2847 		bnx2x_configure_ptp_filters(bp);
2848 	}
2849 	/* Start Tx */
2850 	switch (load_mode) {
2851 	case LOAD_NORMAL:
2852 		/* Tx queue should be only re-enabled */
2853 		netif_tx_wake_all_queues(bp->dev);
2854 		break;
2855 
2856 	case LOAD_OPEN:
2857 		netif_tx_start_all_queues(bp->dev);
2858 		smp_mb__after_atomic();
2859 		break;
2860 
2861 	case LOAD_DIAG:
2862 	case LOAD_LOOPBACK_EXT:
2863 		bp->state = BNX2X_STATE_DIAG;
2864 		break;
2865 
2866 	default:
2867 		break;
2868 	}
2869 
2870 	if (bp->port.pmf)
2871 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2872 	else
2873 		bnx2x__link_status_update(bp);
2874 
2875 	/* start the timer */
2876 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2877 
2878 	if (CNIC_ENABLED(bp))
2879 		bnx2x_load_cnic(bp);
2880 
2881 	if (IS_PF(bp))
2882 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2883 
2884 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2885 		/* mark driver is loaded in shmem2 */
2886 		u32 val;
2887 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2888 		val &= ~DRV_FLAGS_MTU_MASK;
2889 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2890 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2891 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2892 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2893 	}
2894 
2895 	/* Wait for all pending SP commands to complete */
2896 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2897 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2898 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2899 		return -EBUSY;
2900 	}
2901 
2902 	/* Update driver data for On-Chip MFW dump. */
2903 	if (IS_PF(bp))
2904 		bnx2x_update_mfw_dump(bp);
2905 
2906 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2907 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2908 		bnx2x_dcbx_init(bp, false);
2909 
2910 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2911 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2912 
2913 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2914 
2915 	return 0;
2916 
2917 #ifndef BNX2X_STOP_ON_ERROR
2918 load_error3:
2919 	if (IS_PF(bp)) {
2920 		bnx2x_int_disable_sync(bp, 1);
2921 
2922 		/* Clean queueable objects */
2923 		bnx2x_squeeze_objects(bp);
2924 	}
2925 
2926 	/* Free SKBs, SGEs, TPA pool and driver internals */
2927 	bnx2x_free_skbs(bp);
2928 	for_each_rx_queue(bp, i)
2929 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2930 
2931 	/* Release IRQs */
2932 	bnx2x_free_irq(bp);
2933 load_error2:
2934 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2935 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2936 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2937 	}
2938 
2939 	bp->port.pmf = 0;
2940 load_error1:
2941 	bnx2x_napi_disable(bp);
2942 	bnx2x_del_all_napi(bp);
2943 
2944 	/* clear pf_load status, as it was already set */
2945 	if (IS_PF(bp))
2946 		bnx2x_clear_pf_load(bp);
2947 load_error0:
2948 	bnx2x_free_fw_stats_mem(bp);
2949 	bnx2x_free_fp_mem(bp);
2950 	bnx2x_free_mem(bp);
2951 
2952 	return rc;
2953 #endif /* ! BNX2X_STOP_ON_ERROR */
2954 }
2955 
2956 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2957 {
2958 	u8 rc = 0, cos, i;
2959 
2960 	/* Wait until tx fastpath tasks complete */
2961 	for_each_tx_queue(bp, i) {
2962 		struct bnx2x_fastpath *fp = &bp->fp[i];
2963 
2964 		for_each_cos_in_tx_queue(fp, cos)
2965 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2966 		if (rc)
2967 			return rc;
2968 	}
2969 	return 0;
2970 }
2971 
2972 /* must be called with rtnl_lock */
2973 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2974 {
2975 	int i;
2976 	bool global = false;
2977 
2978 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2979 
2980 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2981 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2982 
2983 	/* mark driver is unloaded in shmem2 */
2984 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2985 		u32 val;
2986 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2987 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2988 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2989 	}
2990 
2991 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2992 	    (bp->state == BNX2X_STATE_CLOSED ||
2993 	     bp->state == BNX2X_STATE_ERROR)) {
2994 		/* We can get here if the driver has been unloaded
2995 		 * during parity error recovery and is either waiting for a
2996 		 * leader to complete or for other functions to unload and
2997 		 * then ifdown has been issued. In this case we want to
2998 		 * unload and let other functions to complete a recovery
2999 		 * process.
3000 		 */
3001 		bp->recovery_state = BNX2X_RECOVERY_DONE;
3002 		bp->is_leader = 0;
3003 		bnx2x_release_leader_lock(bp);
3004 		smp_mb();
3005 
3006 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3007 		BNX2X_ERR("Can't unload in closed or error state\n");
3008 		return -EINVAL;
3009 	}
3010 
3011 	/* Nothing to do during unload if previous bnx2x_nic_load()
3012 	 * have not completed successfully - all resources are released.
3013 	 *
3014 	 * we can get here only after unsuccessful ndo_* callback, during which
3015 	 * dev->IFF_UP flag is still on.
3016 	 */
3017 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3018 		return 0;
3019 
3020 	/* It's important to set the bp->state to the value different from
3021 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3022 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3023 	 */
3024 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3025 	smp_mb();
3026 
3027 	/* indicate to VFs that the PF is going down */
3028 	bnx2x_iov_channel_down(bp);
3029 
3030 	if (CNIC_LOADED(bp))
3031 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3032 
3033 	/* Stop Tx */
3034 	bnx2x_tx_disable(bp);
3035 	netdev_reset_tc(bp->dev);
3036 
3037 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3038 
3039 	del_timer_sync(&bp->timer);
3040 
3041 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
3042 		/* Set ALWAYS_ALIVE bit in shmem */
3043 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3044 		bnx2x_drv_pulse(bp);
3045 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3046 		bnx2x_save_statistics(bp);
3047 	}
3048 
3049 	/* wait till consumers catch up with producers in all queues.
3050 	 * If we're recovering, FW can't write to host so no reason
3051 	 * to wait for the queues to complete all Tx.
3052 	 */
3053 	if (unload_mode != UNLOAD_RECOVERY)
3054 		bnx2x_drain_tx_queues(bp);
3055 
3056 	/* if VF indicate to PF this function is going down (PF will delete sp
3057 	 * elements and clear initializations
3058 	 */
3059 	if (IS_VF(bp))
3060 		bnx2x_vfpf_close_vf(bp);
3061 	else if (unload_mode != UNLOAD_RECOVERY)
3062 		/* if this is a normal/close unload need to clean up chip*/
3063 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3064 	else {
3065 		/* Send the UNLOAD_REQUEST to the MCP */
3066 		bnx2x_send_unload_req(bp, unload_mode);
3067 
3068 		/* Prevent transactions to host from the functions on the
3069 		 * engine that doesn't reset global blocks in case of global
3070 		 * attention once global blocks are reset and gates are opened
3071 		 * (the engine which leader will perform the recovery
3072 		 * last).
3073 		 */
3074 		if (!CHIP_IS_E1x(bp))
3075 			bnx2x_pf_disable(bp);
3076 
3077 		/* Disable HW interrupts, NAPI */
3078 		bnx2x_netif_stop(bp, 1);
3079 		/* Delete all NAPI objects */
3080 		bnx2x_del_all_napi(bp);
3081 		if (CNIC_LOADED(bp))
3082 			bnx2x_del_all_napi_cnic(bp);
3083 		/* Release IRQs */
3084 		bnx2x_free_irq(bp);
3085 
3086 		/* Report UNLOAD_DONE to MCP */
3087 		bnx2x_send_unload_done(bp, false);
3088 	}
3089 
3090 	/*
3091 	 * At this stage no more interrupts will arrive so we may safely clean
3092 	 * the queueable objects here in case they failed to get cleaned so far.
3093 	 */
3094 	if (IS_PF(bp))
3095 		bnx2x_squeeze_objects(bp);
3096 
3097 	/* There should be no more pending SP commands at this stage */
3098 	bp->sp_state = 0;
3099 
3100 	bp->port.pmf = 0;
3101 
3102 	/* clear pending work in rtnl task */
3103 	bp->sp_rtnl_state = 0;
3104 	smp_mb();
3105 
3106 	/* Free SKBs, SGEs, TPA pool and driver internals */
3107 	bnx2x_free_skbs(bp);
3108 	if (CNIC_LOADED(bp))
3109 		bnx2x_free_skbs_cnic(bp);
3110 	for_each_rx_queue(bp, i)
3111 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3112 
3113 	bnx2x_free_fp_mem(bp);
3114 	if (CNIC_LOADED(bp))
3115 		bnx2x_free_fp_mem_cnic(bp);
3116 
3117 	if (IS_PF(bp)) {
3118 		if (CNIC_LOADED(bp))
3119 			bnx2x_free_mem_cnic(bp);
3120 	}
3121 	bnx2x_free_mem(bp);
3122 
3123 	bp->state = BNX2X_STATE_CLOSED;
3124 	bp->cnic_loaded = false;
3125 
3126 	/* Clear driver version indication in shmem */
3127 	if (IS_PF(bp) && !BP_NOMCP(bp))
3128 		bnx2x_update_mng_version(bp);
3129 
3130 	/* Check if there are pending parity attentions. If there are - set
3131 	 * RECOVERY_IN_PROGRESS.
3132 	 */
3133 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3134 		bnx2x_set_reset_in_progress(bp);
3135 
3136 		/* Set RESET_IS_GLOBAL if needed */
3137 		if (global)
3138 			bnx2x_set_reset_global(bp);
3139 	}
3140 
3141 	/* The last driver must disable a "close the gate" if there is no
3142 	 * parity attention or "process kill" pending.
3143 	 */
3144 	if (IS_PF(bp) &&
3145 	    !bnx2x_clear_pf_load(bp) &&
3146 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3147 		bnx2x_disable_close_the_gate(bp);
3148 
3149 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3150 
3151 	return 0;
3152 }
3153 
3154 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3155 {
3156 	u16 pmcsr;
3157 
3158 	/* If there is no power capability, silently succeed */
3159 	if (!bp->pdev->pm_cap) {
3160 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3161 		return 0;
3162 	}
3163 
3164 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3165 
3166 	switch (state) {
3167 	case PCI_D0:
3168 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3169 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3170 				       PCI_PM_CTRL_PME_STATUS));
3171 
3172 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3173 			/* delay required during transition out of D3hot */
3174 			msleep(20);
3175 		break;
3176 
3177 	case PCI_D3hot:
3178 		/* If there are other clients above don't
3179 		   shut down the power */
3180 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3181 			return 0;
3182 		/* Don't shut down the power for emulation and FPGA */
3183 		if (CHIP_REV_IS_SLOW(bp))
3184 			return 0;
3185 
3186 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3187 		pmcsr |= 3;
3188 
3189 		if (bp->wol)
3190 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3191 
3192 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3193 				      pmcsr);
3194 
3195 		/* No more memory access after this point until
3196 		* device is brought back to D0.
3197 		*/
3198 		break;
3199 
3200 	default:
3201 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3202 		return -EINVAL;
3203 	}
3204 	return 0;
3205 }
3206 
3207 /*
3208  * net_device service functions
3209  */
3210 static int bnx2x_poll(struct napi_struct *napi, int budget)
3211 {
3212 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3213 						 napi);
3214 	struct bnx2x *bp = fp->bp;
3215 	int rx_work_done;
3216 	u8 cos;
3217 
3218 #ifdef BNX2X_STOP_ON_ERROR
3219 	if (unlikely(bp->panic)) {
3220 		napi_complete(napi);
3221 		return 0;
3222 	}
3223 #endif
3224 	for_each_cos_in_tx_queue(fp, cos)
3225 		if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3226 			bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3227 
3228 	rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3229 
3230 	if (rx_work_done < budget) {
3231 		/* No need to update SB for FCoE L2 ring as long as
3232 		 * it's connected to the default SB and the SB
3233 		 * has been updated when NAPI was scheduled.
3234 		 */
3235 		if (IS_FCOE_FP(fp)) {
3236 			napi_complete_done(napi, rx_work_done);
3237 		} else {
3238 			bnx2x_update_fpsb_idx(fp);
3239 			/* bnx2x_has_rx_work() reads the status block,
3240 			 * thus we need to ensure that status block indices
3241 			 * have been actually read (bnx2x_update_fpsb_idx)
3242 			 * prior to this check (bnx2x_has_rx_work) so that
3243 			 * we won't write the "newer" value of the status block
3244 			 * to IGU (if there was a DMA right after
3245 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3246 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3247 			 * to right before bnx2x_ack_sb). In this case there
3248 			 * will never be another interrupt until there is
3249 			 * another update of the status block, while there
3250 			 * is still unhandled work.
3251 			 */
3252 			rmb();
3253 
3254 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3255 				if (napi_complete_done(napi, rx_work_done)) {
3256 					/* Re-enable interrupts */
3257 					DP(NETIF_MSG_RX_STATUS,
3258 					   "Update index to %d\n", fp->fp_hc_idx);
3259 					bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3260 						     le16_to_cpu(fp->fp_hc_idx),
3261 						     IGU_INT_ENABLE, 1);
3262 				}
3263 			} else {
3264 				rx_work_done = budget;
3265 			}
3266 		}
3267 	}
3268 
3269 	return rx_work_done;
3270 }
3271 
3272 /* we split the first BD into headers and data BDs
3273  * to ease the pain of our fellow microcode engineers
3274  * we use one mapping for both BDs
3275  */
3276 static u16 bnx2x_tx_split(struct bnx2x *bp,
3277 			  struct bnx2x_fp_txdata *txdata,
3278 			  struct sw_tx_bd *tx_buf,
3279 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3280 			  u16 bd_prod)
3281 {
3282 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3283 	struct eth_tx_bd *d_tx_bd;
3284 	dma_addr_t mapping;
3285 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3286 
3287 	/* first fix first BD */
3288 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3289 
3290 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3291 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3292 
3293 	/* now get a new data BD
3294 	 * (after the pbd) and fill it */
3295 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3296 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3297 
3298 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3299 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3300 
3301 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3302 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3303 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3304 
3305 	/* this marks the BD as one that has no individual mapping */
3306 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3307 
3308 	DP(NETIF_MSG_TX_QUEUED,
3309 	   "TSO split data size is %d (%x:%x)\n",
3310 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3311 
3312 	/* update tx_bd */
3313 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3314 
3315 	return bd_prod;
3316 }
3317 
3318 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3319 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3320 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3321 {
3322 	__sum16 tsum = (__force __sum16) csum;
3323 
3324 	if (fix > 0)
3325 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3326 				  csum_partial(t_header - fix, fix, 0)));
3327 
3328 	else if (fix < 0)
3329 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3330 				  csum_partial(t_header, -fix, 0)));
3331 
3332 	return bswab16(tsum);
3333 }
3334 
3335 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3336 {
3337 	u32 rc;
3338 	__u8 prot = 0;
3339 	__be16 protocol;
3340 
3341 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3342 		return XMIT_PLAIN;
3343 
3344 	protocol = vlan_get_protocol(skb);
3345 	if (protocol == htons(ETH_P_IPV6)) {
3346 		rc = XMIT_CSUM_V6;
3347 		prot = ipv6_hdr(skb)->nexthdr;
3348 	} else {
3349 		rc = XMIT_CSUM_V4;
3350 		prot = ip_hdr(skb)->protocol;
3351 	}
3352 
3353 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3354 		if (inner_ip_hdr(skb)->version == 6) {
3355 			rc |= XMIT_CSUM_ENC_V6;
3356 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3357 				rc |= XMIT_CSUM_TCP;
3358 		} else {
3359 			rc |= XMIT_CSUM_ENC_V4;
3360 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3361 				rc |= XMIT_CSUM_TCP;
3362 		}
3363 	}
3364 	if (prot == IPPROTO_TCP)
3365 		rc |= XMIT_CSUM_TCP;
3366 
3367 	if (skb_is_gso(skb)) {
3368 		if (skb_is_gso_v6(skb)) {
3369 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3370 			if (rc & XMIT_CSUM_ENC)
3371 				rc |= XMIT_GSO_ENC_V6;
3372 		} else {
3373 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3374 			if (rc & XMIT_CSUM_ENC)
3375 				rc |= XMIT_GSO_ENC_V4;
3376 		}
3377 	}
3378 
3379 	return rc;
3380 }
3381 
3382 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3383 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS         4
3384 
3385 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3386 #define BNX2X_NUM_TSO_WIN_SUB_BDS               3
3387 
3388 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3389 /* check if packet requires linearization (packet is too fragmented)
3390    no need to check fragmentation if page size > 8K (there will be no
3391    violation to FW restrictions) */
3392 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3393 			     u32 xmit_type)
3394 {
3395 	int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3396 	int to_copy = 0, hlen = 0;
3397 
3398 	if (xmit_type & XMIT_GSO_ENC)
3399 		num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3400 
3401 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3402 		if (xmit_type & XMIT_GSO) {
3403 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3404 			int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3405 			/* Number of windows to check */
3406 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3407 			int wnd_idx = 0;
3408 			int frag_idx = 0;
3409 			u32 wnd_sum = 0;
3410 
3411 			/* Headers length */
3412 			if (xmit_type & XMIT_GSO_ENC)
3413 				hlen = (int)(skb_inner_transport_header(skb) -
3414 					     skb->data) +
3415 					     inner_tcp_hdrlen(skb);
3416 			else
3417 				hlen = (int)(skb_transport_header(skb) -
3418 					     skb->data) + tcp_hdrlen(skb);
3419 
3420 			/* Amount of data (w/o headers) on linear part of SKB*/
3421 			first_bd_sz = skb_headlen(skb) - hlen;
3422 
3423 			wnd_sum  = first_bd_sz;
3424 
3425 			/* Calculate the first sum - it's special */
3426 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3427 				wnd_sum +=
3428 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3429 
3430 			/* If there was data on linear skb data - check it */
3431 			if (first_bd_sz > 0) {
3432 				if (unlikely(wnd_sum < lso_mss)) {
3433 					to_copy = 1;
3434 					goto exit_lbl;
3435 				}
3436 
3437 				wnd_sum -= first_bd_sz;
3438 			}
3439 
3440 			/* Others are easier: run through the frag list and
3441 			   check all windows */
3442 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3443 				wnd_sum +=
3444 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3445 
3446 				if (unlikely(wnd_sum < lso_mss)) {
3447 					to_copy = 1;
3448 					break;
3449 				}
3450 				wnd_sum -=
3451 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3452 			}
3453 		} else {
3454 			/* in non-LSO too fragmented packet should always
3455 			   be linearized */
3456 			to_copy = 1;
3457 		}
3458 	}
3459 
3460 exit_lbl:
3461 	if (unlikely(to_copy))
3462 		DP(NETIF_MSG_TX_QUEUED,
3463 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3464 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3465 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3466 
3467 	return to_copy;
3468 }
3469 #endif
3470 
3471 /**
3472  * bnx2x_set_pbd_gso - update PBD in GSO case.
3473  *
3474  * @skb:	packet skb
3475  * @pbd:	parse BD
3476  * @xmit_type:	xmit flags
3477  */
3478 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3479 			      struct eth_tx_parse_bd_e1x *pbd,
3480 			      u32 xmit_type)
3481 {
3482 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3483 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3484 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3485 
3486 	if (xmit_type & XMIT_GSO_V4) {
3487 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3488 		pbd->tcp_pseudo_csum =
3489 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3490 						   ip_hdr(skb)->daddr,
3491 						   0, IPPROTO_TCP, 0));
3492 	} else {
3493 		pbd->tcp_pseudo_csum =
3494 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3495 						 &ipv6_hdr(skb)->daddr,
3496 						 0, IPPROTO_TCP, 0));
3497 	}
3498 
3499 	pbd->global_data |=
3500 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3501 }
3502 
3503 /**
3504  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3505  *
3506  * @bp:			driver handle
3507  * @skb:		packet skb
3508  * @parsing_data:	data to be updated
3509  * @xmit_type:		xmit flags
3510  *
3511  * 57712/578xx related, when skb has encapsulation
3512  */
3513 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3514 				 u32 *parsing_data, u32 xmit_type)
3515 {
3516 	*parsing_data |=
3517 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3518 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3519 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3520 
3521 	if (xmit_type & XMIT_CSUM_TCP) {
3522 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3523 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3524 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3525 
3526 		return skb_inner_transport_header(skb) +
3527 			inner_tcp_hdrlen(skb) - skb->data;
3528 	}
3529 
3530 	/* We support checksum offload for TCP and UDP only.
3531 	 * No need to pass the UDP header length - it's a constant.
3532 	 */
3533 	return skb_inner_transport_header(skb) +
3534 		sizeof(struct udphdr) - skb->data;
3535 }
3536 
3537 /**
3538  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3539  *
3540  * @bp:			driver handle
3541  * @skb:		packet skb
3542  * @parsing_data:	data to be updated
3543  * @xmit_type:		xmit flags
3544  *
3545  * 57712/578xx related
3546  */
3547 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3548 				u32 *parsing_data, u32 xmit_type)
3549 {
3550 	*parsing_data |=
3551 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3552 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3553 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3554 
3555 	if (xmit_type & XMIT_CSUM_TCP) {
3556 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3557 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3558 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3559 
3560 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3561 	}
3562 	/* We support checksum offload for TCP and UDP only.
3563 	 * No need to pass the UDP header length - it's a constant.
3564 	 */
3565 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3566 }
3567 
3568 /* set FW indication according to inner or outer protocols if tunneled */
3569 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3570 			       struct eth_tx_start_bd *tx_start_bd,
3571 			       u32 xmit_type)
3572 {
3573 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3574 
3575 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3576 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3577 
3578 	if (!(xmit_type & XMIT_CSUM_TCP))
3579 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3580 }
3581 
3582 /**
3583  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3584  *
3585  * @bp:		driver handle
3586  * @skb:	packet skb
3587  * @pbd:	parse BD to be updated
3588  * @xmit_type:	xmit flags
3589  */
3590 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3591 			     struct eth_tx_parse_bd_e1x *pbd,
3592 			     u32 xmit_type)
3593 {
3594 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3595 
3596 	/* for now NS flag is not used in Linux */
3597 	pbd->global_data =
3598 		cpu_to_le16(hlen |
3599 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3600 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3601 
3602 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3603 			skb_network_header(skb)) >> 1;
3604 
3605 	hlen += pbd->ip_hlen_w;
3606 
3607 	/* We support checksum offload for TCP and UDP only */
3608 	if (xmit_type & XMIT_CSUM_TCP)
3609 		hlen += tcp_hdrlen(skb) / 2;
3610 	else
3611 		hlen += sizeof(struct udphdr) / 2;
3612 
3613 	pbd->total_hlen_w = cpu_to_le16(hlen);
3614 	hlen = hlen*2;
3615 
3616 	if (xmit_type & XMIT_CSUM_TCP) {
3617 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3618 
3619 	} else {
3620 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3621 
3622 		DP(NETIF_MSG_TX_QUEUED,
3623 		   "hlen %d  fix %d  csum before fix %x\n",
3624 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3625 
3626 		/* HW bug: fixup the CSUM */
3627 		pbd->tcp_pseudo_csum =
3628 			bnx2x_csum_fix(skb_transport_header(skb),
3629 				       SKB_CS(skb), fix);
3630 
3631 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3632 		   pbd->tcp_pseudo_csum);
3633 	}
3634 
3635 	return hlen;
3636 }
3637 
3638 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3639 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3640 				      struct eth_tx_parse_2nd_bd *pbd2,
3641 				      u16 *global_data,
3642 				      u32 xmit_type)
3643 {
3644 	u16 hlen_w = 0;
3645 	u8 outerip_off, outerip_len = 0;
3646 
3647 	/* from outer IP to transport */
3648 	hlen_w = (skb_inner_transport_header(skb) -
3649 		  skb_network_header(skb)) >> 1;
3650 
3651 	/* transport len */
3652 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3653 
3654 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3655 
3656 	/* outer IP header info */
3657 	if (xmit_type & XMIT_CSUM_V4) {
3658 		struct iphdr *iph = ip_hdr(skb);
3659 		u32 csum = (__force u32)(~iph->check) -
3660 			   (__force u32)iph->tot_len -
3661 			   (__force u32)iph->frag_off;
3662 
3663 		outerip_len = iph->ihl << 1;
3664 
3665 		pbd2->fw_ip_csum_wo_len_flags_frag =
3666 			bswab16(csum_fold((__force __wsum)csum));
3667 	} else {
3668 		pbd2->fw_ip_hdr_to_payload_w =
3669 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3670 		pbd_e2->data.tunnel_data.flags |=
3671 			ETH_TUNNEL_DATA_IPV6_OUTER;
3672 	}
3673 
3674 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3675 
3676 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3677 
3678 	/* inner IP header info */
3679 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3680 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3681 
3682 		pbd_e2->data.tunnel_data.pseudo_csum =
3683 			bswab16(~csum_tcpudp_magic(
3684 					inner_ip_hdr(skb)->saddr,
3685 					inner_ip_hdr(skb)->daddr,
3686 					0, IPPROTO_TCP, 0));
3687 	} else {
3688 		pbd_e2->data.tunnel_data.pseudo_csum =
3689 			bswab16(~csum_ipv6_magic(
3690 					&inner_ipv6_hdr(skb)->saddr,
3691 					&inner_ipv6_hdr(skb)->daddr,
3692 					0, IPPROTO_TCP, 0));
3693 	}
3694 
3695 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3696 
3697 	*global_data |=
3698 		outerip_off |
3699 		(outerip_len <<
3700 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3701 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3702 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3703 
3704 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3705 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3706 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3707 	}
3708 }
3709 
3710 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3711 					 u32 xmit_type)
3712 {
3713 	struct ipv6hdr *ipv6;
3714 
3715 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3716 		return;
3717 
3718 	if (xmit_type & XMIT_GSO_ENC_V6)
3719 		ipv6 = inner_ipv6_hdr(skb);
3720 	else /* XMIT_GSO_V6 */
3721 		ipv6 = ipv6_hdr(skb);
3722 
3723 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3724 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3725 }
3726 
3727 /* called with netif_tx_lock
3728  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3729  * netif_wake_queue()
3730  */
3731 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3732 {
3733 	struct bnx2x *bp = netdev_priv(dev);
3734 
3735 	struct netdev_queue *txq;
3736 	struct bnx2x_fp_txdata *txdata;
3737 	struct sw_tx_bd *tx_buf;
3738 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3739 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3740 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3741 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3742 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3743 	u32 pbd_e2_parsing_data = 0;
3744 	u16 pkt_prod, bd_prod;
3745 	int nbd, txq_index;
3746 	dma_addr_t mapping;
3747 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3748 	int i;
3749 	u8 hlen = 0;
3750 	__le16 pkt_size = 0;
3751 	struct ethhdr *eth;
3752 	u8 mac_type = UNICAST_ADDRESS;
3753 
3754 #ifdef BNX2X_STOP_ON_ERROR
3755 	if (unlikely(bp->panic))
3756 		return NETDEV_TX_BUSY;
3757 #endif
3758 
3759 	txq_index = skb_get_queue_mapping(skb);
3760 	txq = netdev_get_tx_queue(dev, txq_index);
3761 
3762 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3763 
3764 	txdata = &bp->bnx2x_txq[txq_index];
3765 
3766 	/* enable this debug print to view the transmission queue being used
3767 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3768 	   txq_index, fp_index, txdata_index); */
3769 
3770 	/* enable this debug print to view the transmission details
3771 	DP(NETIF_MSG_TX_QUEUED,
3772 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3773 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3774 
3775 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3776 			skb_shinfo(skb)->nr_frags +
3777 			BDS_PER_TX_PKT +
3778 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3779 		/* Handle special storage cases separately */
3780 		if (txdata->tx_ring_size == 0) {
3781 			struct bnx2x_eth_q_stats *q_stats =
3782 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3783 			q_stats->driver_filtered_tx_pkt++;
3784 			dev_kfree_skb(skb);
3785 			return NETDEV_TX_OK;
3786 		}
3787 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3788 		netif_tx_stop_queue(txq);
3789 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3790 
3791 		return NETDEV_TX_BUSY;
3792 	}
3793 
3794 	DP(NETIF_MSG_TX_QUEUED,
3795 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3796 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3797 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3798 	   skb->len);
3799 
3800 	eth = (struct ethhdr *)skb->data;
3801 
3802 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3803 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3804 		if (is_broadcast_ether_addr(eth->h_dest))
3805 			mac_type = BROADCAST_ADDRESS;
3806 		else
3807 			mac_type = MULTICAST_ADDRESS;
3808 	}
3809 
3810 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3811 	/* First, check if we need to linearize the skb (due to FW
3812 	   restrictions). No need to check fragmentation if page size > 8K
3813 	   (there will be no violation to FW restrictions) */
3814 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3815 		/* Statistics of linearization */
3816 		bp->lin_cnt++;
3817 		if (skb_linearize(skb) != 0) {
3818 			DP(NETIF_MSG_TX_QUEUED,
3819 			   "SKB linearization failed - silently dropping this SKB\n");
3820 			dev_kfree_skb_any(skb);
3821 			return NETDEV_TX_OK;
3822 		}
3823 	}
3824 #endif
3825 	/* Map skb linear data for DMA */
3826 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3827 				 skb_headlen(skb), DMA_TO_DEVICE);
3828 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3829 		DP(NETIF_MSG_TX_QUEUED,
3830 		   "SKB mapping failed - silently dropping this SKB\n");
3831 		dev_kfree_skb_any(skb);
3832 		return NETDEV_TX_OK;
3833 	}
3834 	/*
3835 	Please read carefully. First we use one BD which we mark as start,
3836 	then we have a parsing info BD (used for TSO or xsum),
3837 	and only then we have the rest of the TSO BDs.
3838 	(don't forget to mark the last one as last,
3839 	and to unmap only AFTER you write to the BD ...)
3840 	And above all, all pdb sizes are in words - NOT DWORDS!
3841 	*/
3842 
3843 	/* get current pkt produced now - advance it just before sending packet
3844 	 * since mapping of pages may fail and cause packet to be dropped
3845 	 */
3846 	pkt_prod = txdata->tx_pkt_prod;
3847 	bd_prod = TX_BD(txdata->tx_bd_prod);
3848 
3849 	/* get a tx_buf and first BD
3850 	 * tx_start_bd may be changed during SPLIT,
3851 	 * but first_bd will always stay first
3852 	 */
3853 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3854 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3855 	first_bd = tx_start_bd;
3856 
3857 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3858 
3859 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3860 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3861 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3862 		} else if (bp->ptp_tx_skb) {
3863 			BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n");
3864 		} else {
3865 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3866 			/* schedule check for Tx timestamp */
3867 			bp->ptp_tx_skb = skb_get(skb);
3868 			bp->ptp_tx_start = jiffies;
3869 			schedule_work(&bp->ptp_task);
3870 		}
3871 	}
3872 
3873 	/* header nbd: indirectly zero other flags! */
3874 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3875 
3876 	/* remember the first BD of the packet */
3877 	tx_buf->first_bd = txdata->tx_bd_prod;
3878 	tx_buf->skb = skb;
3879 	tx_buf->flags = 0;
3880 
3881 	DP(NETIF_MSG_TX_QUEUED,
3882 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3883 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3884 
3885 	if (skb_vlan_tag_present(skb)) {
3886 		tx_start_bd->vlan_or_ethertype =
3887 		    cpu_to_le16(skb_vlan_tag_get(skb));
3888 		tx_start_bd->bd_flags.as_bitfield |=
3889 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3890 	} else {
3891 		/* when transmitting in a vf, start bd must hold the ethertype
3892 		 * for fw to enforce it
3893 		 */
3894 		u16 vlan_tci = 0;
3895 #ifndef BNX2X_STOP_ON_ERROR
3896 		if (IS_VF(bp)) {
3897 #endif
3898 			/* Still need to consider inband vlan for enforced */
3899 			if (__vlan_get_tag(skb, &vlan_tci)) {
3900 				tx_start_bd->vlan_or_ethertype =
3901 					cpu_to_le16(ntohs(eth->h_proto));
3902 			} else {
3903 				tx_start_bd->bd_flags.as_bitfield |=
3904 					(X_ETH_INBAND_VLAN <<
3905 					 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3906 				tx_start_bd->vlan_or_ethertype =
3907 					cpu_to_le16(vlan_tci);
3908 			}
3909 #ifndef BNX2X_STOP_ON_ERROR
3910 		} else {
3911 			/* used by FW for packet accounting */
3912 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3913 		}
3914 #endif
3915 	}
3916 
3917 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3918 
3919 	/* turn on parsing and get a BD */
3920 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3921 
3922 	if (xmit_type & XMIT_CSUM)
3923 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3924 
3925 	if (!CHIP_IS_E1x(bp)) {
3926 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3927 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3928 
3929 		if (xmit_type & XMIT_CSUM_ENC) {
3930 			u16 global_data = 0;
3931 
3932 			/* Set PBD in enc checksum offload case */
3933 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3934 						      &pbd_e2_parsing_data,
3935 						      xmit_type);
3936 
3937 			/* turn on 2nd parsing and get a BD */
3938 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3939 
3940 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3941 
3942 			memset(pbd2, 0, sizeof(*pbd2));
3943 
3944 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3945 				(skb_inner_network_header(skb) -
3946 				 skb->data) >> 1;
3947 
3948 			if (xmit_type & XMIT_GSO_ENC)
3949 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3950 							  &global_data,
3951 							  xmit_type);
3952 
3953 			pbd2->global_data = cpu_to_le16(global_data);
3954 
3955 			/* add addition parse BD indication to start BD */
3956 			SET_FLAG(tx_start_bd->general_data,
3957 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3958 			/* set encapsulation flag in start BD */
3959 			SET_FLAG(tx_start_bd->general_data,
3960 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3961 
3962 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3963 
3964 			nbd++;
3965 		} else if (xmit_type & XMIT_CSUM) {
3966 			/* Set PBD in checksum offload case w/o encapsulation */
3967 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3968 						     &pbd_e2_parsing_data,
3969 						     xmit_type);
3970 		}
3971 
3972 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3973 		/* Add the macs to the parsing BD if this is a vf or if
3974 		 * Tx Switching is enabled.
3975 		 */
3976 		if (IS_VF(bp)) {
3977 			/* override GRE parameters in BD */
3978 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3979 					      &pbd_e2->data.mac_addr.src_mid,
3980 					      &pbd_e2->data.mac_addr.src_lo,
3981 					      eth->h_source);
3982 
3983 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3984 					      &pbd_e2->data.mac_addr.dst_mid,
3985 					      &pbd_e2->data.mac_addr.dst_lo,
3986 					      eth->h_dest);
3987 		} else {
3988 			if (bp->flags & TX_SWITCHING)
3989 				bnx2x_set_fw_mac_addr(
3990 						&pbd_e2->data.mac_addr.dst_hi,
3991 						&pbd_e2->data.mac_addr.dst_mid,
3992 						&pbd_e2->data.mac_addr.dst_lo,
3993 						eth->h_dest);
3994 #ifdef BNX2X_STOP_ON_ERROR
3995 			/* Enforce security is always set in Stop on Error -
3996 			 * source mac should be present in the parsing BD
3997 			 */
3998 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3999 					      &pbd_e2->data.mac_addr.src_mid,
4000 					      &pbd_e2->data.mac_addr.src_lo,
4001 					      eth->h_source);
4002 #endif
4003 		}
4004 
4005 		SET_FLAG(pbd_e2_parsing_data,
4006 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4007 	} else {
4008 		u16 global_data = 0;
4009 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4010 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4011 		/* Set PBD in checksum offload case */
4012 		if (xmit_type & XMIT_CSUM)
4013 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4014 
4015 		SET_FLAG(global_data,
4016 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4017 		pbd_e1x->global_data |= cpu_to_le16(global_data);
4018 	}
4019 
4020 	/* Setup the data pointer of the first BD of the packet */
4021 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4022 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4023 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4024 	pkt_size = tx_start_bd->nbytes;
4025 
4026 	DP(NETIF_MSG_TX_QUEUED,
4027 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4028 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4029 	   le16_to_cpu(tx_start_bd->nbytes),
4030 	   tx_start_bd->bd_flags.as_bitfield,
4031 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4032 
4033 	if (xmit_type & XMIT_GSO) {
4034 
4035 		DP(NETIF_MSG_TX_QUEUED,
4036 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4037 		   skb->len, hlen, skb_headlen(skb),
4038 		   skb_shinfo(skb)->gso_size);
4039 
4040 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4041 
4042 		if (unlikely(skb_headlen(skb) > hlen)) {
4043 			nbd++;
4044 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4045 						 &tx_start_bd, hlen,
4046 						 bd_prod);
4047 		}
4048 		if (!CHIP_IS_E1x(bp))
4049 			pbd_e2_parsing_data |=
4050 				(skb_shinfo(skb)->gso_size <<
4051 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4052 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4053 		else
4054 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4055 	}
4056 
4057 	/* Set the PBD's parsing_data field if not zero
4058 	 * (for the chips newer than 57711).
4059 	 */
4060 	if (pbd_e2_parsing_data)
4061 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4062 
4063 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4064 
4065 	/* Handle fragmented skb */
4066 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4067 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4068 
4069 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4070 					   skb_frag_size(frag), DMA_TO_DEVICE);
4071 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4072 			unsigned int pkts_compl = 0, bytes_compl = 0;
4073 
4074 			DP(NETIF_MSG_TX_QUEUED,
4075 			   "Unable to map page - dropping packet...\n");
4076 
4077 			/* we need unmap all buffers already mapped
4078 			 * for this SKB;
4079 			 * first_bd->nbd need to be properly updated
4080 			 * before call to bnx2x_free_tx_pkt
4081 			 */
4082 			first_bd->nbd = cpu_to_le16(nbd);
4083 			bnx2x_free_tx_pkt(bp, txdata,
4084 					  TX_BD(txdata->tx_pkt_prod),
4085 					  &pkts_compl, &bytes_compl);
4086 			return NETDEV_TX_OK;
4087 		}
4088 
4089 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4090 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4091 		if (total_pkt_bd == NULL)
4092 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4093 
4094 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4095 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4096 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4097 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4098 		nbd++;
4099 
4100 		DP(NETIF_MSG_TX_QUEUED,
4101 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4102 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4103 		   le16_to_cpu(tx_data_bd->nbytes));
4104 	}
4105 
4106 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4107 
4108 	/* update with actual num BDs */
4109 	first_bd->nbd = cpu_to_le16(nbd);
4110 
4111 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4112 
4113 	/* now send a tx doorbell, counting the next BD
4114 	 * if the packet contains or ends with it
4115 	 */
4116 	if (TX_BD_POFF(bd_prod) < nbd)
4117 		nbd++;
4118 
4119 	/* total_pkt_bytes should be set on the first data BD if
4120 	 * it's not an LSO packet and there is more than one
4121 	 * data BD. In this case pkt_size is limited by an MTU value.
4122 	 * However we prefer to set it for an LSO packet (while we don't
4123 	 * have to) in order to save some CPU cycles in a none-LSO
4124 	 * case, when we much more care about them.
4125 	 */
4126 	if (total_pkt_bd != NULL)
4127 		total_pkt_bd->total_pkt_bytes = pkt_size;
4128 
4129 	if (pbd_e1x)
4130 		DP(NETIF_MSG_TX_QUEUED,
4131 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4132 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4133 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4134 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4135 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4136 	if (pbd_e2)
4137 		DP(NETIF_MSG_TX_QUEUED,
4138 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4139 		   pbd_e2,
4140 		   pbd_e2->data.mac_addr.dst_hi,
4141 		   pbd_e2->data.mac_addr.dst_mid,
4142 		   pbd_e2->data.mac_addr.dst_lo,
4143 		   pbd_e2->data.mac_addr.src_hi,
4144 		   pbd_e2->data.mac_addr.src_mid,
4145 		   pbd_e2->data.mac_addr.src_lo,
4146 		   pbd_e2->parsing_data);
4147 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4148 
4149 	netdev_tx_sent_queue(txq, skb->len);
4150 
4151 	skb_tx_timestamp(skb);
4152 
4153 	txdata->tx_pkt_prod++;
4154 	/*
4155 	 * Make sure that the BD data is updated before updating the producer
4156 	 * since FW might read the BD right after the producer is updated.
4157 	 * This is only applicable for weak-ordered memory model archs such
4158 	 * as IA-64. The following barrier is also mandatory since FW will
4159 	 * assumes packets must have BDs.
4160 	 */
4161 	wmb();
4162 
4163 	txdata->tx_db.data.prod += nbd;
4164 	/* make sure descriptor update is observed by HW */
4165 	wmb();
4166 
4167 	DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4168 
4169 	mmiowb();
4170 
4171 	txdata->tx_bd_prod += nbd;
4172 
4173 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4174 		netif_tx_stop_queue(txq);
4175 
4176 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4177 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4178 		 * fp->bd_tx_cons */
4179 		smp_mb();
4180 
4181 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4182 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4183 			netif_tx_wake_queue(txq);
4184 	}
4185 	txdata->tx_pkt++;
4186 
4187 	return NETDEV_TX_OK;
4188 }
4189 
4190 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4191 {
4192 	int mfw_vn = BP_FW_MB_IDX(bp);
4193 	u32 tmp;
4194 
4195 	/* If the shmem shouldn't affect configuration, reflect */
4196 	if (!IS_MF_BD(bp)) {
4197 		int i;
4198 
4199 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4200 			c2s_map[i] = i;
4201 		*c2s_default = 0;
4202 
4203 		return;
4204 	}
4205 
4206 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4207 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4208 	c2s_map[0] = tmp & 0xff;
4209 	c2s_map[1] = (tmp >> 8) & 0xff;
4210 	c2s_map[2] = (tmp >> 16) & 0xff;
4211 	c2s_map[3] = (tmp >> 24) & 0xff;
4212 
4213 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4214 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4215 	c2s_map[4] = tmp & 0xff;
4216 	c2s_map[5] = (tmp >> 8) & 0xff;
4217 	c2s_map[6] = (tmp >> 16) & 0xff;
4218 	c2s_map[7] = (tmp >> 24) & 0xff;
4219 
4220 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4221 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4222 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4223 }
4224 
4225 /**
4226  * bnx2x_setup_tc - routine to configure net_device for multi tc
4227  *
4228  * @netdev: net device to configure
4229  * @tc: number of traffic classes to enable
4230  *
4231  * callback connected to the ndo_setup_tc function pointer
4232  */
4233 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4234 {
4235 	struct bnx2x *bp = netdev_priv(dev);
4236 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4237 	int cos, prio, count, offset;
4238 
4239 	/* setup tc must be called under rtnl lock */
4240 	ASSERT_RTNL();
4241 
4242 	/* no traffic classes requested. Aborting */
4243 	if (!num_tc) {
4244 		netdev_reset_tc(dev);
4245 		return 0;
4246 	}
4247 
4248 	/* requested to support too many traffic classes */
4249 	if (num_tc > bp->max_cos) {
4250 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4251 			  num_tc, bp->max_cos);
4252 		return -EINVAL;
4253 	}
4254 
4255 	/* declare amount of supported traffic classes */
4256 	if (netdev_set_num_tc(dev, num_tc)) {
4257 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4258 		return -EINVAL;
4259 	}
4260 
4261 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4262 
4263 	/* configure priority to traffic class mapping */
4264 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4265 		int outer_prio = c2s_map[prio];
4266 
4267 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4268 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4269 		   "mapping priority %d to tc %d\n",
4270 		   outer_prio, bp->prio_to_cos[outer_prio]);
4271 	}
4272 
4273 	/* Use this configuration to differentiate tc0 from other COSes
4274 	   This can be used for ets or pfc, and save the effort of setting
4275 	   up a multio class queue disc or negotiating DCBX with a switch
4276 	netdev_set_prio_tc_map(dev, 0, 0);
4277 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4278 	for (prio = 1; prio < 16; prio++) {
4279 		netdev_set_prio_tc_map(dev, prio, 1);
4280 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4281 	} */
4282 
4283 	/* configure traffic class to transmission queue mapping */
4284 	for (cos = 0; cos < bp->max_cos; cos++) {
4285 		count = BNX2X_NUM_ETH_QUEUES(bp);
4286 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4287 		netdev_set_tc_queue(dev, cos, count, offset);
4288 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4289 		   "mapping tc %d to offset %d count %d\n",
4290 		   cos, offset, count);
4291 	}
4292 
4293 	return 0;
4294 }
4295 
4296 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4297 		     void *type_data)
4298 {
4299 	struct tc_mqprio_qopt *mqprio = type_data;
4300 
4301 	if (type != TC_SETUP_QDISC_MQPRIO)
4302 		return -EOPNOTSUPP;
4303 
4304 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4305 
4306 	return bnx2x_setup_tc(dev, mqprio->num_tc);
4307 }
4308 
4309 /* called with rtnl_lock */
4310 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4311 {
4312 	struct sockaddr *addr = p;
4313 	struct bnx2x *bp = netdev_priv(dev);
4314 	int rc = 0;
4315 
4316 	if (!is_valid_ether_addr(addr->sa_data)) {
4317 		BNX2X_ERR("Requested MAC address is not valid\n");
4318 		return -EINVAL;
4319 	}
4320 
4321 	if (IS_MF_STORAGE_ONLY(bp)) {
4322 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4323 		return -EINVAL;
4324 	}
4325 
4326 	if (netif_running(dev))  {
4327 		rc = bnx2x_set_eth_mac(bp, false);
4328 		if (rc)
4329 			return rc;
4330 	}
4331 
4332 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4333 
4334 	if (netif_running(dev))
4335 		rc = bnx2x_set_eth_mac(bp, true);
4336 
4337 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4338 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4339 
4340 	return rc;
4341 }
4342 
4343 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4344 {
4345 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4346 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4347 	u8 cos;
4348 
4349 	/* Common */
4350 
4351 	if (IS_FCOE_IDX(fp_index)) {
4352 		memset(sb, 0, sizeof(union host_hc_status_block));
4353 		fp->status_blk_mapping = 0;
4354 	} else {
4355 		/* status blocks */
4356 		if (!CHIP_IS_E1x(bp))
4357 			BNX2X_PCI_FREE(sb->e2_sb,
4358 				       bnx2x_fp(bp, fp_index,
4359 						status_blk_mapping),
4360 				       sizeof(struct host_hc_status_block_e2));
4361 		else
4362 			BNX2X_PCI_FREE(sb->e1x_sb,
4363 				       bnx2x_fp(bp, fp_index,
4364 						status_blk_mapping),
4365 				       sizeof(struct host_hc_status_block_e1x));
4366 	}
4367 
4368 	/* Rx */
4369 	if (!skip_rx_queue(bp, fp_index)) {
4370 		bnx2x_free_rx_bds(fp);
4371 
4372 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4373 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4374 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4375 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4376 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4377 
4378 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4379 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4380 			       sizeof(struct eth_fast_path_rx_cqe) *
4381 			       NUM_RCQ_BD);
4382 
4383 		/* SGE ring */
4384 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4385 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4386 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4387 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4388 	}
4389 
4390 	/* Tx */
4391 	if (!skip_tx_queue(bp, fp_index)) {
4392 		/* fastpath tx rings: tx_buf tx_desc */
4393 		for_each_cos_in_tx_queue(fp, cos) {
4394 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4395 
4396 			DP(NETIF_MSG_IFDOWN,
4397 			   "freeing tx memory of fp %d cos %d cid %d\n",
4398 			   fp_index, cos, txdata->cid);
4399 
4400 			BNX2X_FREE(txdata->tx_buf_ring);
4401 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4402 				txdata->tx_desc_mapping,
4403 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4404 		}
4405 	}
4406 	/* end of fastpath */
4407 }
4408 
4409 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4410 {
4411 	int i;
4412 	for_each_cnic_queue(bp, i)
4413 		bnx2x_free_fp_mem_at(bp, i);
4414 }
4415 
4416 void bnx2x_free_fp_mem(struct bnx2x *bp)
4417 {
4418 	int i;
4419 	for_each_eth_queue(bp, i)
4420 		bnx2x_free_fp_mem_at(bp, i);
4421 }
4422 
4423 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4424 {
4425 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4426 	if (!CHIP_IS_E1x(bp)) {
4427 		bnx2x_fp(bp, index, sb_index_values) =
4428 			(__le16 *)status_blk.e2_sb->sb.index_values;
4429 		bnx2x_fp(bp, index, sb_running_index) =
4430 			(__le16 *)status_blk.e2_sb->sb.running_index;
4431 	} else {
4432 		bnx2x_fp(bp, index, sb_index_values) =
4433 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4434 		bnx2x_fp(bp, index, sb_running_index) =
4435 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4436 	}
4437 }
4438 
4439 /* Returns the number of actually allocated BDs */
4440 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4441 			      int rx_ring_size)
4442 {
4443 	struct bnx2x *bp = fp->bp;
4444 	u16 ring_prod, cqe_ring_prod;
4445 	int i, failure_cnt = 0;
4446 
4447 	fp->rx_comp_cons = 0;
4448 	cqe_ring_prod = ring_prod = 0;
4449 
4450 	/* This routine is called only during fo init so
4451 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4452 	 */
4453 	for (i = 0; i < rx_ring_size; i++) {
4454 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4455 			failure_cnt++;
4456 			continue;
4457 		}
4458 		ring_prod = NEXT_RX_IDX(ring_prod);
4459 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4460 		WARN_ON(ring_prod <= (i - failure_cnt));
4461 	}
4462 
4463 	if (failure_cnt)
4464 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4465 			  i - failure_cnt, fp->index);
4466 
4467 	fp->rx_bd_prod = ring_prod;
4468 	/* Limit the CQE producer by the CQE ring size */
4469 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4470 			       cqe_ring_prod);
4471 
4472 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4473 
4474 	return i - failure_cnt;
4475 }
4476 
4477 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4478 {
4479 	int i;
4480 
4481 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4482 		struct eth_rx_cqe_next_page *nextpg;
4483 
4484 		nextpg = (struct eth_rx_cqe_next_page *)
4485 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4486 		nextpg->addr_hi =
4487 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4488 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4489 		nextpg->addr_lo =
4490 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4491 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4492 	}
4493 }
4494 
4495 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4496 {
4497 	union host_hc_status_block *sb;
4498 	struct bnx2x_fastpath *fp = &bp->fp[index];
4499 	int ring_size = 0;
4500 	u8 cos;
4501 	int rx_ring_size = 0;
4502 
4503 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4504 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4505 		bp->rx_ring_size = rx_ring_size;
4506 	} else if (!bp->rx_ring_size) {
4507 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4508 
4509 		if (CHIP_IS_E3(bp)) {
4510 			u32 cfg = SHMEM_RD(bp,
4511 					   dev_info.port_hw_config[BP_PORT(bp)].
4512 					   default_cfg);
4513 
4514 			/* Decrease ring size for 1G functions */
4515 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4516 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4517 				rx_ring_size /= 10;
4518 		}
4519 
4520 		/* allocate at least number of buffers required by FW */
4521 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4522 				     MIN_RX_SIZE_TPA, rx_ring_size);
4523 
4524 		bp->rx_ring_size = rx_ring_size;
4525 	} else /* if rx_ring_size specified - use it */
4526 		rx_ring_size = bp->rx_ring_size;
4527 
4528 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4529 
4530 	/* Common */
4531 	sb = &bnx2x_fp(bp, index, status_blk);
4532 
4533 	if (!IS_FCOE_IDX(index)) {
4534 		/* status blocks */
4535 		if (!CHIP_IS_E1x(bp)) {
4536 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4537 						    sizeof(struct host_hc_status_block_e2));
4538 			if (!sb->e2_sb)
4539 				goto alloc_mem_err;
4540 		} else {
4541 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4542 						     sizeof(struct host_hc_status_block_e1x));
4543 			if (!sb->e1x_sb)
4544 				goto alloc_mem_err;
4545 		}
4546 	}
4547 
4548 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4549 	 * set shortcuts for it.
4550 	 */
4551 	if (!IS_FCOE_IDX(index))
4552 		set_sb_shortcuts(bp, index);
4553 
4554 	/* Tx */
4555 	if (!skip_tx_queue(bp, index)) {
4556 		/* fastpath tx rings: tx_buf tx_desc */
4557 		for_each_cos_in_tx_queue(fp, cos) {
4558 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4559 
4560 			DP(NETIF_MSG_IFUP,
4561 			   "allocating tx memory of fp %d cos %d\n",
4562 			   index, cos);
4563 
4564 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4565 						      sizeof(struct sw_tx_bd),
4566 						      GFP_KERNEL);
4567 			if (!txdata->tx_buf_ring)
4568 				goto alloc_mem_err;
4569 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4570 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4571 			if (!txdata->tx_desc_ring)
4572 				goto alloc_mem_err;
4573 		}
4574 	}
4575 
4576 	/* Rx */
4577 	if (!skip_rx_queue(bp, index)) {
4578 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4579 		bnx2x_fp(bp, index, rx_buf_ring) =
4580 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4581 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4582 			goto alloc_mem_err;
4583 		bnx2x_fp(bp, index, rx_desc_ring) =
4584 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4585 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4586 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4587 			goto alloc_mem_err;
4588 
4589 		/* Seed all CQEs by 1s */
4590 		bnx2x_fp(bp, index, rx_comp_ring) =
4591 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4592 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4593 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4594 			goto alloc_mem_err;
4595 
4596 		/* SGE ring */
4597 		bnx2x_fp(bp, index, rx_page_ring) =
4598 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4599 				GFP_KERNEL);
4600 		if (!bnx2x_fp(bp, index, rx_page_ring))
4601 			goto alloc_mem_err;
4602 		bnx2x_fp(bp, index, rx_sge_ring) =
4603 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4604 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4605 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4606 			goto alloc_mem_err;
4607 		/* RX BD ring */
4608 		bnx2x_set_next_page_rx_bd(fp);
4609 
4610 		/* CQ ring */
4611 		bnx2x_set_next_page_rx_cq(fp);
4612 
4613 		/* BDs */
4614 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4615 		if (ring_size < rx_ring_size)
4616 			goto alloc_mem_err;
4617 	}
4618 
4619 	return 0;
4620 
4621 /* handles low memory cases */
4622 alloc_mem_err:
4623 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4624 						index, ring_size);
4625 	/* FW will drop all packets if queue is not big enough,
4626 	 * In these cases we disable the queue
4627 	 * Min size is different for OOO, TPA and non-TPA queues
4628 	 */
4629 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4630 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4631 			/* release memory allocated for this queue */
4632 			bnx2x_free_fp_mem_at(bp, index);
4633 			return -ENOMEM;
4634 	}
4635 	return 0;
4636 }
4637 
4638 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4639 {
4640 	if (!NO_FCOE(bp))
4641 		/* FCoE */
4642 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4643 			/* we will fail load process instead of mark
4644 			 * NO_FCOE_FLAG
4645 			 */
4646 			return -ENOMEM;
4647 
4648 	return 0;
4649 }
4650 
4651 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4652 {
4653 	int i;
4654 
4655 	/* 1. Allocate FP for leading - fatal if error
4656 	 * 2. Allocate RSS - fix number of queues if error
4657 	 */
4658 
4659 	/* leading */
4660 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4661 		return -ENOMEM;
4662 
4663 	/* RSS */
4664 	for_each_nondefault_eth_queue(bp, i)
4665 		if (bnx2x_alloc_fp_mem_at(bp, i))
4666 			break;
4667 
4668 	/* handle memory failures */
4669 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4670 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4671 
4672 		WARN_ON(delta < 0);
4673 		bnx2x_shrink_eth_fp(bp, delta);
4674 		if (CNIC_SUPPORT(bp))
4675 			/* move non eth FPs next to last eth FP
4676 			 * must be done in that order
4677 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4678 			 */
4679 
4680 			/* move FCoE fp even NO_FCOE_FLAG is on */
4681 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4682 		bp->num_ethernet_queues -= delta;
4683 		bp->num_queues = bp->num_ethernet_queues +
4684 				 bp->num_cnic_queues;
4685 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4686 			  bp->num_queues + delta, bp->num_queues);
4687 	}
4688 
4689 	return 0;
4690 }
4691 
4692 void bnx2x_free_mem_bp(struct bnx2x *bp)
4693 {
4694 	int i;
4695 
4696 	for (i = 0; i < bp->fp_array_size; i++)
4697 		kfree(bp->fp[i].tpa_info);
4698 	kfree(bp->fp);
4699 	kfree(bp->sp_objs);
4700 	kfree(bp->fp_stats);
4701 	kfree(bp->bnx2x_txq);
4702 	kfree(bp->msix_table);
4703 	kfree(bp->ilt);
4704 }
4705 
4706 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4707 {
4708 	struct bnx2x_fastpath *fp;
4709 	struct msix_entry *tbl;
4710 	struct bnx2x_ilt *ilt;
4711 	int msix_table_size = 0;
4712 	int fp_array_size, txq_array_size;
4713 	int i;
4714 
4715 	/*
4716 	 * The biggest MSI-X table we might need is as a maximum number of fast
4717 	 * path IGU SBs plus default SB (for PF only).
4718 	 */
4719 	msix_table_size = bp->igu_sb_cnt;
4720 	if (IS_PF(bp))
4721 		msix_table_size++;
4722 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4723 
4724 	/* fp array: RSS plus CNIC related L2 queues */
4725 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4726 	bp->fp_array_size = fp_array_size;
4727 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4728 
4729 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4730 	if (!fp)
4731 		goto alloc_err;
4732 	for (i = 0; i < bp->fp_array_size; i++) {
4733 		fp[i].tpa_info =
4734 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4735 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4736 		if (!(fp[i].tpa_info))
4737 			goto alloc_err;
4738 	}
4739 
4740 	bp->fp = fp;
4741 
4742 	/* allocate sp objs */
4743 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4744 			      GFP_KERNEL);
4745 	if (!bp->sp_objs)
4746 		goto alloc_err;
4747 
4748 	/* allocate fp_stats */
4749 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4750 			       GFP_KERNEL);
4751 	if (!bp->fp_stats)
4752 		goto alloc_err;
4753 
4754 	/* Allocate memory for the transmission queues array */
4755 	txq_array_size =
4756 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4757 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4758 
4759 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4760 				GFP_KERNEL);
4761 	if (!bp->bnx2x_txq)
4762 		goto alloc_err;
4763 
4764 	/* msix table */
4765 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4766 	if (!tbl)
4767 		goto alloc_err;
4768 	bp->msix_table = tbl;
4769 
4770 	/* ilt */
4771 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4772 	if (!ilt)
4773 		goto alloc_err;
4774 	bp->ilt = ilt;
4775 
4776 	return 0;
4777 alloc_err:
4778 	bnx2x_free_mem_bp(bp);
4779 	return -ENOMEM;
4780 }
4781 
4782 int bnx2x_reload_if_running(struct net_device *dev)
4783 {
4784 	struct bnx2x *bp = netdev_priv(dev);
4785 
4786 	if (unlikely(!netif_running(dev)))
4787 		return 0;
4788 
4789 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4790 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4791 }
4792 
4793 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4794 {
4795 	u32 sel_phy_idx = 0;
4796 	if (bp->link_params.num_phys <= 1)
4797 		return INT_PHY;
4798 
4799 	if (bp->link_vars.link_up) {
4800 		sel_phy_idx = EXT_PHY1;
4801 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4802 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4803 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4804 			sel_phy_idx = EXT_PHY2;
4805 	} else {
4806 
4807 		switch (bnx2x_phy_selection(&bp->link_params)) {
4808 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4809 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4810 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4811 		       sel_phy_idx = EXT_PHY1;
4812 		       break;
4813 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4814 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4815 		       sel_phy_idx = EXT_PHY2;
4816 		       break;
4817 		}
4818 	}
4819 
4820 	return sel_phy_idx;
4821 }
4822 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4823 {
4824 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4825 	/*
4826 	 * The selected activated PHY is always after swapping (in case PHY
4827 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4828 	 * the configuration
4829 	 */
4830 
4831 	if (bp->link_params.multi_phy_config &
4832 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4833 		if (sel_phy_idx == EXT_PHY1)
4834 			sel_phy_idx = EXT_PHY2;
4835 		else if (sel_phy_idx == EXT_PHY2)
4836 			sel_phy_idx = EXT_PHY1;
4837 	}
4838 	return LINK_CONFIG_IDX(sel_phy_idx);
4839 }
4840 
4841 #ifdef NETDEV_FCOE_WWNN
4842 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4843 {
4844 	struct bnx2x *bp = netdev_priv(dev);
4845 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4846 
4847 	switch (type) {
4848 	case NETDEV_FCOE_WWNN:
4849 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4850 				cp->fcoe_wwn_node_name_lo);
4851 		break;
4852 	case NETDEV_FCOE_WWPN:
4853 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4854 				cp->fcoe_wwn_port_name_lo);
4855 		break;
4856 	default:
4857 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4858 		return -EINVAL;
4859 	}
4860 
4861 	return 0;
4862 }
4863 #endif
4864 
4865 /* called with rtnl_lock */
4866 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4867 {
4868 	struct bnx2x *bp = netdev_priv(dev);
4869 
4870 	if (pci_num_vf(bp->pdev)) {
4871 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4872 		return -EPERM;
4873 	}
4874 
4875 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4876 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4877 		return -EAGAIN;
4878 	}
4879 
4880 	/* This does not race with packet allocation
4881 	 * because the actual alloc size is
4882 	 * only updated as part of load
4883 	 */
4884 	dev->mtu = new_mtu;
4885 
4886 	if (!bnx2x_mtu_allows_gro(new_mtu))
4887 		dev->features &= ~NETIF_F_GRO_HW;
4888 
4889 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4890 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4891 
4892 	return bnx2x_reload_if_running(dev);
4893 }
4894 
4895 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4896 				     netdev_features_t features)
4897 {
4898 	struct bnx2x *bp = netdev_priv(dev);
4899 
4900 	if (pci_num_vf(bp->pdev)) {
4901 		netdev_features_t changed = dev->features ^ features;
4902 
4903 		/* Revert the requested changes in features if they
4904 		 * would require internal reload of PF in bnx2x_set_features().
4905 		 */
4906 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4907 			features &= ~NETIF_F_RXCSUM;
4908 			features |= dev->features & NETIF_F_RXCSUM;
4909 		}
4910 
4911 		if (changed & NETIF_F_LOOPBACK) {
4912 			features &= ~NETIF_F_LOOPBACK;
4913 			features |= dev->features & NETIF_F_LOOPBACK;
4914 		}
4915 	}
4916 
4917 	/* TPA requires Rx CSUM offloading */
4918 	if (!(features & NETIF_F_RXCSUM))
4919 		features &= ~NETIF_F_LRO;
4920 
4921 	if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4922 		features &= ~NETIF_F_GRO_HW;
4923 	if (features & NETIF_F_GRO_HW)
4924 		features &= ~NETIF_F_LRO;
4925 
4926 	return features;
4927 }
4928 
4929 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4930 {
4931 	struct bnx2x *bp = netdev_priv(dev);
4932 	netdev_features_t changes = features ^ dev->features;
4933 	bool bnx2x_reload = false;
4934 	int rc;
4935 
4936 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4937 	if (!pci_num_vf(bp->pdev)) {
4938 		if (features & NETIF_F_LOOPBACK) {
4939 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4940 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4941 				bnx2x_reload = true;
4942 			}
4943 		} else {
4944 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4945 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4946 				bnx2x_reload = true;
4947 			}
4948 		}
4949 	}
4950 
4951 	/* Don't care about GRO changes */
4952 	changes &= ~NETIF_F_GRO;
4953 
4954 	if (changes)
4955 		bnx2x_reload = true;
4956 
4957 	if (bnx2x_reload) {
4958 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4959 			dev->features = features;
4960 			rc = bnx2x_reload_if_running(dev);
4961 			return rc ? rc : 1;
4962 		}
4963 		/* else: bnx2x_nic_load() will be called at end of recovery */
4964 	}
4965 
4966 	return 0;
4967 }
4968 
4969 void bnx2x_tx_timeout(struct net_device *dev)
4970 {
4971 	struct bnx2x *bp = netdev_priv(dev);
4972 
4973 	/* We want the information of the dump logged,
4974 	 * but calling bnx2x_panic() would kill all chances of recovery.
4975 	 */
4976 	if (!bp->panic)
4977 #ifndef BNX2X_STOP_ON_ERROR
4978 		bnx2x_panic_dump(bp, false);
4979 #else
4980 		bnx2x_panic();
4981 #endif
4982 
4983 	/* This allows the netif to be shutdown gracefully before resetting */
4984 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4985 }
4986 
4987 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4988 {
4989 	struct net_device *dev = pci_get_drvdata(pdev);
4990 	struct bnx2x *bp;
4991 
4992 	if (!dev) {
4993 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4994 		return -ENODEV;
4995 	}
4996 	bp = netdev_priv(dev);
4997 
4998 	rtnl_lock();
4999 
5000 	pci_save_state(pdev);
5001 
5002 	if (!netif_running(dev)) {
5003 		rtnl_unlock();
5004 		return 0;
5005 	}
5006 
5007 	netif_device_detach(dev);
5008 
5009 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5010 
5011 	bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5012 
5013 	rtnl_unlock();
5014 
5015 	return 0;
5016 }
5017 
5018 int bnx2x_resume(struct pci_dev *pdev)
5019 {
5020 	struct net_device *dev = pci_get_drvdata(pdev);
5021 	struct bnx2x *bp;
5022 	int rc;
5023 
5024 	if (!dev) {
5025 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5026 		return -ENODEV;
5027 	}
5028 	bp = netdev_priv(dev);
5029 
5030 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5031 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5032 		return -EAGAIN;
5033 	}
5034 
5035 	rtnl_lock();
5036 
5037 	pci_restore_state(pdev);
5038 
5039 	if (!netif_running(dev)) {
5040 		rtnl_unlock();
5041 		return 0;
5042 	}
5043 
5044 	bnx2x_set_power_state(bp, PCI_D0);
5045 	netif_device_attach(dev);
5046 
5047 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5048 
5049 	rtnl_unlock();
5050 
5051 	return rc;
5052 }
5053 
5054 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5055 			      u32 cid)
5056 {
5057 	if (!cxt) {
5058 		BNX2X_ERR("bad context pointer %p\n", cxt);
5059 		return;
5060 	}
5061 
5062 	/* ustorm cxt validation */
5063 	cxt->ustorm_ag_context.cdu_usage =
5064 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5065 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5066 	/* xcontext validation */
5067 	cxt->xstorm_ag_context.cdu_reserved =
5068 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5069 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5070 }
5071 
5072 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5073 				    u8 fw_sb_id, u8 sb_index,
5074 				    u8 ticks)
5075 {
5076 	u32 addr = BAR_CSTRORM_INTMEM +
5077 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5078 	REG_WR8(bp, addr, ticks);
5079 	DP(NETIF_MSG_IFUP,
5080 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5081 	   port, fw_sb_id, sb_index, ticks);
5082 }
5083 
5084 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5085 				    u16 fw_sb_id, u8 sb_index,
5086 				    u8 disable)
5087 {
5088 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5089 	u32 addr = BAR_CSTRORM_INTMEM +
5090 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5091 	u8 flags = REG_RD8(bp, addr);
5092 	/* clear and set */
5093 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5094 	flags |= enable_flag;
5095 	REG_WR8(bp, addr, flags);
5096 	DP(NETIF_MSG_IFUP,
5097 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5098 	   port, fw_sb_id, sb_index, disable);
5099 }
5100 
5101 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5102 				    u8 sb_index, u8 disable, u16 usec)
5103 {
5104 	int port = BP_PORT(bp);
5105 	u8 ticks = usec / BNX2X_BTR;
5106 
5107 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5108 
5109 	disable = disable ? 1 : (usec ? 0 : 1);
5110 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5111 }
5112 
5113 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5114 			    u32 verbose)
5115 {
5116 	smp_mb__before_atomic();
5117 	set_bit(flag, &bp->sp_rtnl_state);
5118 	smp_mb__after_atomic();
5119 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5120 	   flag);
5121 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5122 }
5123