1 /* bnx2x_cmn.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/etherdevice.h> 23 #include <linux/if_vlan.h> 24 #include <linux/interrupt.h> 25 #include <linux/ip.h> 26 #include <linux/crash_dump.h> 27 #include <net/tcp.h> 28 #include <net/ipv6.h> 29 #include <net/ip6_checksum.h> 30 #include <linux/prefetch.h> 31 #include "bnx2x_cmn.h" 32 #include "bnx2x_init.h" 33 #include "bnx2x_sp.h" 34 35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 38 static int bnx2x_poll(struct napi_struct *napi, int budget); 39 40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 41 { 42 int i; 43 44 /* Add NAPI objects */ 45 for_each_rx_queue_cnic(bp, i) { 46 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 47 bnx2x_poll, NAPI_POLL_WEIGHT); 48 } 49 } 50 51 static void bnx2x_add_all_napi(struct bnx2x *bp) 52 { 53 int i; 54 55 /* Add NAPI objects */ 56 for_each_eth_queue(bp, i) { 57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 58 bnx2x_poll, NAPI_POLL_WEIGHT); 59 } 60 } 61 62 static int bnx2x_calc_num_queues(struct bnx2x *bp) 63 { 64 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues(); 65 66 /* Reduce memory usage in kdump environment by using only one queue */ 67 if (is_kdump_kernel()) 68 nq = 1; 69 70 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp)); 71 return nq; 72 } 73 74 /** 75 * bnx2x_move_fp - move content of the fastpath structure. 76 * 77 * @bp: driver handle 78 * @from: source FP index 79 * @to: destination FP index 80 * 81 * Makes sure the contents of the bp->fp[to].napi is kept 82 * intact. This is done by first copying the napi struct from 83 * the target to the source, and then mem copying the entire 84 * source onto the target. Update txdata pointers and related 85 * content. 86 */ 87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 88 { 89 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 90 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 91 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 92 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 93 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 94 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 95 int old_max_eth_txqs, new_max_eth_txqs; 96 int old_txdata_index = 0, new_txdata_index = 0; 97 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 98 99 /* Copy the NAPI object as it has been already initialized */ 100 from_fp->napi = to_fp->napi; 101 102 /* Move bnx2x_fastpath contents */ 103 memcpy(to_fp, from_fp, sizeof(*to_fp)); 104 to_fp->index = to; 105 106 /* Retain the tpa_info of the original `to' version as we don't want 107 * 2 FPs to contain the same tpa_info pointer. 108 */ 109 to_fp->tpa_info = old_tpa_info; 110 111 /* move sp_objs contents as well, as their indices match fp ones */ 112 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 113 114 /* move fp_stats contents as well, as their indices match fp ones */ 115 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 116 117 /* Update txdata pointers in fp and move txdata content accordingly: 118 * Each fp consumes 'max_cos' txdata structures, so the index should be 119 * decremented by max_cos x delta. 120 */ 121 122 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 123 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 124 (bp)->max_cos; 125 if (from == FCOE_IDX(bp)) { 126 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 127 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 128 } 129 130 memcpy(&bp->bnx2x_txq[new_txdata_index], 131 &bp->bnx2x_txq[old_txdata_index], 132 sizeof(struct bnx2x_fp_txdata)); 133 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 134 } 135 136 /** 137 * bnx2x_fill_fw_str - Fill buffer with FW version string. 138 * 139 * @bp: driver handle 140 * @buf: character buffer to fill with the fw name 141 * @buf_len: length of the above buffer 142 * 143 */ 144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 145 { 146 if (IS_PF(bp)) { 147 u8 phy_fw_ver[PHY_FW_VER_LEN]; 148 149 phy_fw_ver[0] = '\0'; 150 bnx2x_get_ext_phy_fw_version(&bp->link_params, 151 phy_fw_ver, PHY_FW_VER_LEN); 152 strlcpy(buf, bp->fw_ver, buf_len); 153 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 154 "bc %d.%d.%d%s%s", 155 (bp->common.bc_ver & 0xff0000) >> 16, 156 (bp->common.bc_ver & 0xff00) >> 8, 157 (bp->common.bc_ver & 0xff), 158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 159 } else { 160 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 161 } 162 } 163 164 /** 165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 166 * 167 * @bp: driver handle 168 * @delta: number of eth queues which were not allocated 169 */ 170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 171 { 172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 173 174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 175 * backward along the array could cause memory to be overridden 176 */ 177 for (cos = 1; cos < bp->max_cos; cos++) { 178 for (i = 0; i < old_eth_num - delta; i++) { 179 struct bnx2x_fastpath *fp = &bp->fp[i]; 180 int new_idx = cos * (old_eth_num - delta) + i; 181 182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 183 sizeof(struct bnx2x_fp_txdata)); 184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 185 } 186 } 187 } 188 189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 190 191 /* free skb in the packet ring at pos idx 192 * return idx of last bd freed 193 */ 194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 195 u16 idx, unsigned int *pkts_compl, 196 unsigned int *bytes_compl) 197 { 198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 199 struct eth_tx_start_bd *tx_start_bd; 200 struct eth_tx_bd *tx_data_bd; 201 struct sk_buff *skb = tx_buf->skb; 202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 203 int nbd; 204 u16 split_bd_len = 0; 205 206 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 207 prefetch(&skb->end); 208 209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 210 txdata->txq_index, idx, tx_buf, skb); 211 212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 213 214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 215 #ifdef BNX2X_STOP_ON_ERROR 216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 217 BNX2X_ERR("BAD nbd!\n"); 218 bnx2x_panic(); 219 } 220 #endif 221 new_cons = nbd + tx_buf->first_bd; 222 223 /* Get the next bd */ 224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 225 226 /* Skip a parse bd... */ 227 --nbd; 228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 229 230 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { 231 /* Skip second parse bd... */ 232 --nbd; 233 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 234 } 235 236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 237 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 238 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 239 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 240 --nbd; 241 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 242 } 243 244 /* unmap first bd */ 245 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 246 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 247 DMA_TO_DEVICE); 248 249 /* now free frags */ 250 while (nbd > 0) { 251 252 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 253 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 254 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 255 if (--nbd) 256 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 257 } 258 259 /* release skb */ 260 WARN_ON(!skb); 261 if (likely(skb)) { 262 (*pkts_compl)++; 263 (*bytes_compl) += skb->len; 264 dev_kfree_skb_any(skb); 265 } 266 267 tx_buf->first_bd = 0; 268 tx_buf->skb = NULL; 269 270 return new_cons; 271 } 272 273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 274 { 275 struct netdev_queue *txq; 276 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 277 unsigned int pkts_compl = 0, bytes_compl = 0; 278 279 #ifdef BNX2X_STOP_ON_ERROR 280 if (unlikely(bp->panic)) 281 return -1; 282 #endif 283 284 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 285 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 286 sw_cons = txdata->tx_pkt_cons; 287 288 /* Ensure subsequent loads occur after hw_cons */ 289 smp_rmb(); 290 291 while (sw_cons != hw_cons) { 292 u16 pkt_cons; 293 294 pkt_cons = TX_BD(sw_cons); 295 296 DP(NETIF_MSG_TX_DONE, 297 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 298 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 299 300 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 301 &pkts_compl, &bytes_compl); 302 303 sw_cons++; 304 } 305 306 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 307 308 txdata->tx_pkt_cons = sw_cons; 309 txdata->tx_bd_cons = bd_cons; 310 311 /* Need to make the tx_bd_cons update visible to start_xmit() 312 * before checking for netif_tx_queue_stopped(). Without the 313 * memory barrier, there is a small possibility that 314 * start_xmit() will miss it and cause the queue to be stopped 315 * forever. 316 * On the other hand we need an rmb() here to ensure the proper 317 * ordering of bit testing in the following 318 * netif_tx_queue_stopped(txq) call. 319 */ 320 smp_mb(); 321 322 if (unlikely(netif_tx_queue_stopped(txq))) { 323 /* Taking tx_lock() is needed to prevent re-enabling the queue 324 * while it's empty. This could have happen if rx_action() gets 325 * suspended in bnx2x_tx_int() after the condition before 326 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 327 * 328 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 329 * sends some packets consuming the whole queue again-> 330 * stops the queue 331 */ 332 333 __netif_tx_lock(txq, smp_processor_id()); 334 335 if ((netif_tx_queue_stopped(txq)) && 336 (bp->state == BNX2X_STATE_OPEN) && 337 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 338 netif_tx_wake_queue(txq); 339 340 __netif_tx_unlock(txq); 341 } 342 return 0; 343 } 344 345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 346 u16 idx) 347 { 348 u16 last_max = fp->last_max_sge; 349 350 if (SUB_S16(idx, last_max) > 0) 351 fp->last_max_sge = idx; 352 } 353 354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 355 u16 sge_len, 356 struct eth_end_agg_rx_cqe *cqe) 357 { 358 struct bnx2x *bp = fp->bp; 359 u16 last_max, last_elem, first_elem; 360 u16 delta = 0; 361 u16 i; 362 363 if (!sge_len) 364 return; 365 366 /* First mark all used pages */ 367 for (i = 0; i < sge_len; i++) 368 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 369 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 370 371 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 372 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 373 374 /* Here we assume that the last SGE index is the biggest */ 375 prefetch((void *)(fp->sge_mask)); 376 bnx2x_update_last_max_sge(fp, 377 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 378 379 last_max = RX_SGE(fp->last_max_sge); 380 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 381 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 382 383 /* If ring is not full */ 384 if (last_elem + 1 != first_elem) 385 last_elem++; 386 387 /* Now update the prod */ 388 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 389 if (likely(fp->sge_mask[i])) 390 break; 391 392 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 393 delta += BIT_VEC64_ELEM_SZ; 394 } 395 396 if (delta > 0) { 397 fp->rx_sge_prod += delta; 398 /* clear page-end entries */ 399 bnx2x_clear_sge_mask_next_elems(fp); 400 } 401 402 DP(NETIF_MSG_RX_STATUS, 403 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 404 fp->last_max_sge, fp->rx_sge_prod); 405 } 406 407 /* Get Toeplitz hash value in the skb using the value from the 408 * CQE (calculated by HW). 409 */ 410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 411 const struct eth_fast_path_rx_cqe *cqe, 412 enum pkt_hash_types *rxhash_type) 413 { 414 /* Get Toeplitz hash from CQE */ 415 if ((bp->dev->features & NETIF_F_RXHASH) && 416 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 417 enum eth_rss_hash_type htype; 418 419 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 420 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 421 (htype == TCP_IPV6_HASH_TYPE)) ? 422 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 423 424 return le32_to_cpu(cqe->rss_hash_result); 425 } 426 *rxhash_type = PKT_HASH_TYPE_NONE; 427 return 0; 428 } 429 430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 431 u16 cons, u16 prod, 432 struct eth_fast_path_rx_cqe *cqe) 433 { 434 struct bnx2x *bp = fp->bp; 435 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 436 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 437 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 438 dma_addr_t mapping; 439 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 440 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 441 442 /* print error if current state != stop */ 443 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 444 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 445 446 /* Try to map an empty data buffer from the aggregation info */ 447 mapping = dma_map_single(&bp->pdev->dev, 448 first_buf->data + NET_SKB_PAD, 449 fp->rx_buf_size, DMA_FROM_DEVICE); 450 /* 451 * ...if it fails - move the skb from the consumer to the producer 452 * and set the current aggregation state as ERROR to drop it 453 * when TPA_STOP arrives. 454 */ 455 456 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 457 /* Move the BD from the consumer to the producer */ 458 bnx2x_reuse_rx_data(fp, cons, prod); 459 tpa_info->tpa_state = BNX2X_TPA_ERROR; 460 return; 461 } 462 463 /* move empty data from pool to prod */ 464 prod_rx_buf->data = first_buf->data; 465 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 466 /* point prod_bd to new data */ 467 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 468 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 469 470 /* move partial skb from cons to pool (don't unmap yet) */ 471 *first_buf = *cons_rx_buf; 472 473 /* mark bin state as START */ 474 tpa_info->parsing_flags = 475 le16_to_cpu(cqe->pars_flags.flags); 476 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 477 tpa_info->tpa_state = BNX2X_TPA_START; 478 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 479 tpa_info->placement_offset = cqe->placement_offset; 480 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 481 if (fp->mode == TPA_MODE_GRO) { 482 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 483 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 484 tpa_info->gro_size = gro_size; 485 } 486 487 #ifdef BNX2X_STOP_ON_ERROR 488 fp->tpa_queue_used |= (1 << queue); 489 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 490 fp->tpa_queue_used); 491 #endif 492 } 493 494 /* Timestamp option length allowed for TPA aggregation: 495 * 496 * nop nop kind length echo val 497 */ 498 #define TPA_TSTAMP_OPT_LEN 12 499 /** 500 * bnx2x_set_gro_params - compute GRO values 501 * 502 * @skb: packet skb 503 * @parsing_flags: parsing flags from the START CQE 504 * @len_on_bd: total length of the first packet for the 505 * aggregation. 506 * @pkt_len: length of all segments 507 * 508 * Approximate value of the MSS for this aggregation calculated using 509 * the first packet of it. 510 * Compute number of aggregated segments, and gso_type. 511 */ 512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 513 u16 len_on_bd, unsigned int pkt_len, 514 u16 num_of_coalesced_segs) 515 { 516 /* TPA aggregation won't have either IP options or TCP options 517 * other than timestamp or IPv6 extension headers. 518 */ 519 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 520 521 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 522 PRS_FLAG_OVERETH_IPV6) { 523 hdrs_len += sizeof(struct ipv6hdr); 524 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 525 } else { 526 hdrs_len += sizeof(struct iphdr); 527 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 528 } 529 530 /* Check if there was a TCP timestamp, if there is it's will 531 * always be 12 bytes length: nop nop kind length echo val. 532 * 533 * Otherwise FW would close the aggregation. 534 */ 535 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 536 hdrs_len += TPA_TSTAMP_OPT_LEN; 537 538 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 539 540 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 541 * to skb_shinfo(skb)->gso_segs 542 */ 543 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 544 } 545 546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 547 u16 index, gfp_t gfp_mask) 548 { 549 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 550 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 551 struct bnx2x_alloc_pool *pool = &fp->page_pool; 552 dma_addr_t mapping; 553 554 if (!pool->page) { 555 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 556 if (unlikely(!pool->page)) 557 return -ENOMEM; 558 559 pool->offset = 0; 560 } 561 562 mapping = dma_map_page(&bp->pdev->dev, pool->page, 563 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE); 564 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 565 BNX2X_ERR("Can't map sge\n"); 566 return -ENOMEM; 567 } 568 569 sw_buf->page = pool->page; 570 sw_buf->offset = pool->offset; 571 572 dma_unmap_addr_set(sw_buf, mapping, mapping); 573 574 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 575 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 576 577 pool->offset += SGE_PAGE_SIZE; 578 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE) 579 get_page(pool->page); 580 else 581 pool->page = NULL; 582 return 0; 583 } 584 585 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 586 struct bnx2x_agg_info *tpa_info, 587 u16 pages, 588 struct sk_buff *skb, 589 struct eth_end_agg_rx_cqe *cqe, 590 u16 cqe_idx) 591 { 592 struct sw_rx_page *rx_pg, old_rx_pg; 593 u32 i, frag_len, frag_size; 594 int err, j, frag_id = 0; 595 u16 len_on_bd = tpa_info->len_on_bd; 596 u16 full_page = 0, gro_size = 0; 597 598 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 599 600 if (fp->mode == TPA_MODE_GRO) { 601 gro_size = tpa_info->gro_size; 602 full_page = tpa_info->full_page; 603 } 604 605 /* This is needed in order to enable forwarding support */ 606 if (frag_size) 607 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 608 le16_to_cpu(cqe->pkt_len), 609 le16_to_cpu(cqe->num_of_coalesced_segs)); 610 611 #ifdef BNX2X_STOP_ON_ERROR 612 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 613 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 614 pages, cqe_idx); 615 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 616 bnx2x_panic(); 617 return -EINVAL; 618 } 619 #endif 620 621 /* Run through the SGL and compose the fragmented skb */ 622 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 623 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 624 625 /* FW gives the indices of the SGE as if the ring is an array 626 (meaning that "next" element will consume 2 indices) */ 627 if (fp->mode == TPA_MODE_GRO) 628 frag_len = min_t(u32, frag_size, (u32)full_page); 629 else /* LRO */ 630 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 631 632 rx_pg = &fp->rx_page_ring[sge_idx]; 633 old_rx_pg = *rx_pg; 634 635 /* If we fail to allocate a substitute page, we simply stop 636 where we are and drop the whole packet */ 637 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 638 if (unlikely(err)) { 639 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 640 return err; 641 } 642 643 dma_unmap_page(&bp->pdev->dev, 644 dma_unmap_addr(&old_rx_pg, mapping), 645 SGE_PAGE_SIZE, DMA_FROM_DEVICE); 646 /* Add one frag and update the appropriate fields in the skb */ 647 if (fp->mode == TPA_MODE_LRO) 648 skb_fill_page_desc(skb, j, old_rx_pg.page, 649 old_rx_pg.offset, frag_len); 650 else { /* GRO */ 651 int rem; 652 int offset = 0; 653 for (rem = frag_len; rem > 0; rem -= gro_size) { 654 int len = rem > gro_size ? gro_size : rem; 655 skb_fill_page_desc(skb, frag_id++, 656 old_rx_pg.page, 657 old_rx_pg.offset + offset, 658 len); 659 if (offset) 660 get_page(old_rx_pg.page); 661 offset += len; 662 } 663 } 664 665 skb->data_len += frag_len; 666 skb->truesize += SGE_PAGES; 667 skb->len += frag_len; 668 669 frag_size -= frag_len; 670 } 671 672 return 0; 673 } 674 675 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 676 { 677 if (fp->rx_frag_size) 678 skb_free_frag(data); 679 else 680 kfree(data); 681 } 682 683 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 684 { 685 if (fp->rx_frag_size) { 686 /* GFP_KERNEL allocations are used only during initialization */ 687 if (unlikely(gfpflags_allow_blocking(gfp_mask))) 688 return (void *)__get_free_page(gfp_mask); 689 690 return napi_alloc_frag(fp->rx_frag_size); 691 } 692 693 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 694 } 695 696 #ifdef CONFIG_INET 697 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 698 { 699 const struct iphdr *iph = ip_hdr(skb); 700 struct tcphdr *th; 701 702 skb_set_transport_header(skb, sizeof(struct iphdr)); 703 th = tcp_hdr(skb); 704 705 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 706 iph->saddr, iph->daddr, 0); 707 } 708 709 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 710 { 711 struct ipv6hdr *iph = ipv6_hdr(skb); 712 struct tcphdr *th; 713 714 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 715 th = tcp_hdr(skb); 716 717 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 718 &iph->saddr, &iph->daddr, 0); 719 } 720 721 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 722 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 723 { 724 skb_reset_network_header(skb); 725 gro_func(bp, skb); 726 tcp_gro_complete(skb); 727 } 728 #endif 729 730 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 731 struct sk_buff *skb) 732 { 733 #ifdef CONFIG_INET 734 if (skb_shinfo(skb)->gso_size) { 735 switch (be16_to_cpu(skb->protocol)) { 736 case ETH_P_IP: 737 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 738 break; 739 case ETH_P_IPV6: 740 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 741 break; 742 default: 743 netdev_WARN_ONCE(bp->dev, 744 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 745 be16_to_cpu(skb->protocol)); 746 } 747 } 748 #endif 749 skb_record_rx_queue(skb, fp->rx_queue); 750 napi_gro_receive(&fp->napi, skb); 751 } 752 753 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 754 struct bnx2x_agg_info *tpa_info, 755 u16 pages, 756 struct eth_end_agg_rx_cqe *cqe, 757 u16 cqe_idx) 758 { 759 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 760 u8 pad = tpa_info->placement_offset; 761 u16 len = tpa_info->len_on_bd; 762 struct sk_buff *skb = NULL; 763 u8 *new_data, *data = rx_buf->data; 764 u8 old_tpa_state = tpa_info->tpa_state; 765 766 tpa_info->tpa_state = BNX2X_TPA_STOP; 767 768 /* If we there was an error during the handling of the TPA_START - 769 * drop this aggregation. 770 */ 771 if (old_tpa_state == BNX2X_TPA_ERROR) 772 goto drop; 773 774 /* Try to allocate the new data */ 775 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 776 /* Unmap skb in the pool anyway, as we are going to change 777 pool entry status to BNX2X_TPA_STOP even if new skb allocation 778 fails. */ 779 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 780 fp->rx_buf_size, DMA_FROM_DEVICE); 781 if (likely(new_data)) 782 skb = build_skb(data, fp->rx_frag_size); 783 784 if (likely(skb)) { 785 #ifdef BNX2X_STOP_ON_ERROR 786 if (pad + len > fp->rx_buf_size) { 787 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 788 pad, len, fp->rx_buf_size); 789 bnx2x_panic(); 790 return; 791 } 792 #endif 793 794 skb_reserve(skb, pad + NET_SKB_PAD); 795 skb_put(skb, len); 796 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 797 798 skb->protocol = eth_type_trans(skb, bp->dev); 799 skb->ip_summed = CHECKSUM_UNNECESSARY; 800 801 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 802 skb, cqe, cqe_idx)) { 803 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 804 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 805 bnx2x_gro_receive(bp, fp, skb); 806 } else { 807 DP(NETIF_MSG_RX_STATUS, 808 "Failed to allocate new pages - dropping packet!\n"); 809 dev_kfree_skb_any(skb); 810 } 811 812 /* put new data in bin */ 813 rx_buf->data = new_data; 814 815 return; 816 } 817 if (new_data) 818 bnx2x_frag_free(fp, new_data); 819 drop: 820 /* drop the packet and keep the buffer in the bin */ 821 DP(NETIF_MSG_RX_STATUS, 822 "Failed to allocate or map a new skb - dropping packet!\n"); 823 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 824 } 825 826 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 827 u16 index, gfp_t gfp_mask) 828 { 829 u8 *data; 830 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 831 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 832 dma_addr_t mapping; 833 834 data = bnx2x_frag_alloc(fp, gfp_mask); 835 if (unlikely(data == NULL)) 836 return -ENOMEM; 837 838 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 839 fp->rx_buf_size, 840 DMA_FROM_DEVICE); 841 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 842 bnx2x_frag_free(fp, data); 843 BNX2X_ERR("Can't map rx data\n"); 844 return -ENOMEM; 845 } 846 847 rx_buf->data = data; 848 dma_unmap_addr_set(rx_buf, mapping, mapping); 849 850 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 851 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 852 853 return 0; 854 } 855 856 static 857 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 858 struct bnx2x_fastpath *fp, 859 struct bnx2x_eth_q_stats *qstats) 860 { 861 /* Do nothing if no L4 csum validation was done. 862 * We do not check whether IP csum was validated. For IPv4 we assume 863 * that if the card got as far as validating the L4 csum, it also 864 * validated the IP csum. IPv6 has no IP csum. 865 */ 866 if (cqe->fast_path_cqe.status_flags & 867 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 868 return; 869 870 /* If L4 validation was done, check if an error was found. */ 871 872 if (cqe->fast_path_cqe.type_error_flags & 873 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 874 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 875 qstats->hw_csum_err++; 876 else 877 skb->ip_summed = CHECKSUM_UNNECESSARY; 878 } 879 880 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 881 { 882 struct bnx2x *bp = fp->bp; 883 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 884 u16 sw_comp_cons, sw_comp_prod; 885 int rx_pkt = 0; 886 union eth_rx_cqe *cqe; 887 struct eth_fast_path_rx_cqe *cqe_fp; 888 889 #ifdef BNX2X_STOP_ON_ERROR 890 if (unlikely(bp->panic)) 891 return 0; 892 #endif 893 if (budget <= 0) 894 return rx_pkt; 895 896 bd_cons = fp->rx_bd_cons; 897 bd_prod = fp->rx_bd_prod; 898 bd_prod_fw = bd_prod; 899 sw_comp_cons = fp->rx_comp_cons; 900 sw_comp_prod = fp->rx_comp_prod; 901 902 comp_ring_cons = RCQ_BD(sw_comp_cons); 903 cqe = &fp->rx_comp_ring[comp_ring_cons]; 904 cqe_fp = &cqe->fast_path_cqe; 905 906 DP(NETIF_MSG_RX_STATUS, 907 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 908 909 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 910 struct sw_rx_bd *rx_buf = NULL; 911 struct sk_buff *skb; 912 u8 cqe_fp_flags; 913 enum eth_rx_cqe_type cqe_fp_type; 914 u16 len, pad, queue; 915 u8 *data; 916 u32 rxhash; 917 enum pkt_hash_types rxhash_type; 918 919 #ifdef BNX2X_STOP_ON_ERROR 920 if (unlikely(bp->panic)) 921 return 0; 922 #endif 923 924 bd_prod = RX_BD(bd_prod); 925 bd_cons = RX_BD(bd_cons); 926 927 /* A rmb() is required to ensure that the CQE is not read 928 * before it is written by the adapter DMA. PCI ordering 929 * rules will make sure the other fields are written before 930 * the marker at the end of struct eth_fast_path_rx_cqe 931 * but without rmb() a weakly ordered processor can process 932 * stale data. Without the barrier TPA state-machine might 933 * enter inconsistent state and kernel stack might be 934 * provided with incorrect packet description - these lead 935 * to various kernel crashed. 936 */ 937 rmb(); 938 939 cqe_fp_flags = cqe_fp->type_error_flags; 940 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 941 942 DP(NETIF_MSG_RX_STATUS, 943 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 944 CQE_TYPE(cqe_fp_flags), 945 cqe_fp_flags, cqe_fp->status_flags, 946 le32_to_cpu(cqe_fp->rss_hash_result), 947 le16_to_cpu(cqe_fp->vlan_tag), 948 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 949 950 /* is this a slowpath msg? */ 951 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 952 bnx2x_sp_event(fp, cqe); 953 goto next_cqe; 954 } 955 956 rx_buf = &fp->rx_buf_ring[bd_cons]; 957 data = rx_buf->data; 958 959 if (!CQE_TYPE_FAST(cqe_fp_type)) { 960 struct bnx2x_agg_info *tpa_info; 961 u16 frag_size, pages; 962 #ifdef BNX2X_STOP_ON_ERROR 963 /* sanity check */ 964 if (fp->mode == TPA_MODE_DISABLED && 965 (CQE_TYPE_START(cqe_fp_type) || 966 CQE_TYPE_STOP(cqe_fp_type))) 967 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n", 968 CQE_TYPE(cqe_fp_type)); 969 #endif 970 971 if (CQE_TYPE_START(cqe_fp_type)) { 972 u16 queue = cqe_fp->queue_index; 973 DP(NETIF_MSG_RX_STATUS, 974 "calling tpa_start on queue %d\n", 975 queue); 976 977 bnx2x_tpa_start(fp, queue, 978 bd_cons, bd_prod, 979 cqe_fp); 980 981 goto next_rx; 982 } 983 queue = cqe->end_agg_cqe.queue_index; 984 tpa_info = &fp->tpa_info[queue]; 985 DP(NETIF_MSG_RX_STATUS, 986 "calling tpa_stop on queue %d\n", 987 queue); 988 989 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 990 tpa_info->len_on_bd; 991 992 if (fp->mode == TPA_MODE_GRO) 993 pages = (frag_size + tpa_info->full_page - 1) / 994 tpa_info->full_page; 995 else 996 pages = SGE_PAGE_ALIGN(frag_size) >> 997 SGE_PAGE_SHIFT; 998 999 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 1000 &cqe->end_agg_cqe, comp_ring_cons); 1001 #ifdef BNX2X_STOP_ON_ERROR 1002 if (bp->panic) 1003 return 0; 1004 #endif 1005 1006 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 1007 goto next_cqe; 1008 } 1009 /* non TPA */ 1010 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 1011 pad = cqe_fp->placement_offset; 1012 dma_sync_single_for_cpu(&bp->pdev->dev, 1013 dma_unmap_addr(rx_buf, mapping), 1014 pad + RX_COPY_THRESH, 1015 DMA_FROM_DEVICE); 1016 pad += NET_SKB_PAD; 1017 prefetch(data + pad); /* speedup eth_type_trans() */ 1018 /* is this an error packet? */ 1019 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 1020 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1021 "ERROR flags %x rx packet %u\n", 1022 cqe_fp_flags, sw_comp_cons); 1023 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 1024 goto reuse_rx; 1025 } 1026 1027 /* Since we don't have a jumbo ring 1028 * copy small packets if mtu > 1500 1029 */ 1030 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 1031 (len <= RX_COPY_THRESH)) { 1032 skb = napi_alloc_skb(&fp->napi, len); 1033 if (skb == NULL) { 1034 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1035 "ERROR packet dropped because of alloc failure\n"); 1036 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1037 goto reuse_rx; 1038 } 1039 memcpy(skb->data, data + pad, len); 1040 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1041 } else { 1042 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1043 GFP_ATOMIC) == 0)) { 1044 dma_unmap_single(&bp->pdev->dev, 1045 dma_unmap_addr(rx_buf, mapping), 1046 fp->rx_buf_size, 1047 DMA_FROM_DEVICE); 1048 skb = build_skb(data, fp->rx_frag_size); 1049 if (unlikely(!skb)) { 1050 bnx2x_frag_free(fp, data); 1051 bnx2x_fp_qstats(bp, fp)-> 1052 rx_skb_alloc_failed++; 1053 goto next_rx; 1054 } 1055 skb_reserve(skb, pad); 1056 } else { 1057 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1058 "ERROR packet dropped because of alloc failure\n"); 1059 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1060 reuse_rx: 1061 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1062 goto next_rx; 1063 } 1064 } 1065 1066 skb_put(skb, len); 1067 skb->protocol = eth_type_trans(skb, bp->dev); 1068 1069 /* Set Toeplitz hash for a none-LRO skb */ 1070 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1071 skb_set_hash(skb, rxhash, rxhash_type); 1072 1073 skb_checksum_none_assert(skb); 1074 1075 if (bp->dev->features & NETIF_F_RXCSUM) 1076 bnx2x_csum_validate(skb, cqe, fp, 1077 bnx2x_fp_qstats(bp, fp)); 1078 1079 skb_record_rx_queue(skb, fp->rx_queue); 1080 1081 /* Check if this packet was timestamped */ 1082 if (unlikely(cqe->fast_path_cqe.type_error_flags & 1083 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT))) 1084 bnx2x_set_rx_ts(bp, skb); 1085 1086 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1087 PARSING_FLAGS_VLAN) 1088 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1089 le16_to_cpu(cqe_fp->vlan_tag)); 1090 1091 napi_gro_receive(&fp->napi, skb); 1092 next_rx: 1093 rx_buf->data = NULL; 1094 1095 bd_cons = NEXT_RX_IDX(bd_cons); 1096 bd_prod = NEXT_RX_IDX(bd_prod); 1097 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1098 rx_pkt++; 1099 next_cqe: 1100 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1101 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1102 1103 /* mark CQE as free */ 1104 BNX2X_SEED_CQE(cqe_fp); 1105 1106 if (rx_pkt == budget) 1107 break; 1108 1109 comp_ring_cons = RCQ_BD(sw_comp_cons); 1110 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1111 cqe_fp = &cqe->fast_path_cqe; 1112 } /* while */ 1113 1114 fp->rx_bd_cons = bd_cons; 1115 fp->rx_bd_prod = bd_prod_fw; 1116 fp->rx_comp_cons = sw_comp_cons; 1117 fp->rx_comp_prod = sw_comp_prod; 1118 1119 /* Update producers */ 1120 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1121 fp->rx_sge_prod); 1122 1123 return rx_pkt; 1124 } 1125 1126 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1127 { 1128 struct bnx2x_fastpath *fp = fp_cookie; 1129 struct bnx2x *bp = fp->bp; 1130 u8 cos; 1131 1132 DP(NETIF_MSG_INTR, 1133 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1134 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1135 1136 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1137 1138 #ifdef BNX2X_STOP_ON_ERROR 1139 if (unlikely(bp->panic)) 1140 return IRQ_HANDLED; 1141 #endif 1142 1143 /* Handle Rx and Tx according to MSI-X vector */ 1144 for_each_cos_in_tx_queue(fp, cos) 1145 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1146 1147 prefetch(&fp->sb_running_index[SM_RX_ID]); 1148 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1149 1150 return IRQ_HANDLED; 1151 } 1152 1153 /* HW Lock for shared dual port PHYs */ 1154 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1155 { 1156 mutex_lock(&bp->port.phy_mutex); 1157 1158 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1159 } 1160 1161 void bnx2x_release_phy_lock(struct bnx2x *bp) 1162 { 1163 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1164 1165 mutex_unlock(&bp->port.phy_mutex); 1166 } 1167 1168 /* calculates MF speed according to current linespeed and MF configuration */ 1169 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1170 { 1171 u16 line_speed = bp->link_vars.line_speed; 1172 if (IS_MF(bp)) { 1173 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1174 bp->mf_config[BP_VN(bp)]); 1175 1176 /* Calculate the current MAX line speed limit for the MF 1177 * devices 1178 */ 1179 if (IS_MF_PERCENT_BW(bp)) 1180 line_speed = (line_speed * maxCfg) / 100; 1181 else { /* SD mode */ 1182 u16 vn_max_rate = maxCfg * 100; 1183 1184 if (vn_max_rate < line_speed) 1185 line_speed = vn_max_rate; 1186 } 1187 } 1188 1189 return line_speed; 1190 } 1191 1192 /** 1193 * bnx2x_fill_report_data - fill link report data to report 1194 * 1195 * @bp: driver handle 1196 * @data: link state to update 1197 * 1198 * It uses a none-atomic bit operations because is called under the mutex. 1199 */ 1200 static void bnx2x_fill_report_data(struct bnx2x *bp, 1201 struct bnx2x_link_report_data *data) 1202 { 1203 memset(data, 0, sizeof(*data)); 1204 1205 if (IS_PF(bp)) { 1206 /* Fill the report data: effective line speed */ 1207 data->line_speed = bnx2x_get_mf_speed(bp); 1208 1209 /* Link is down */ 1210 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1211 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1212 &data->link_report_flags); 1213 1214 if (!BNX2X_NUM_ETH_QUEUES(bp)) 1215 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1216 &data->link_report_flags); 1217 1218 /* Full DUPLEX */ 1219 if (bp->link_vars.duplex == DUPLEX_FULL) 1220 __set_bit(BNX2X_LINK_REPORT_FD, 1221 &data->link_report_flags); 1222 1223 /* Rx Flow Control is ON */ 1224 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1225 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1226 &data->link_report_flags); 1227 1228 /* Tx Flow Control is ON */ 1229 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1230 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1231 &data->link_report_flags); 1232 } else { /* VF */ 1233 *data = bp->vf_link_vars; 1234 } 1235 } 1236 1237 /** 1238 * bnx2x_link_report - report link status to OS. 1239 * 1240 * @bp: driver handle 1241 * 1242 * Calls the __bnx2x_link_report() under the same locking scheme 1243 * as a link/PHY state managing code to ensure a consistent link 1244 * reporting. 1245 */ 1246 1247 void bnx2x_link_report(struct bnx2x *bp) 1248 { 1249 bnx2x_acquire_phy_lock(bp); 1250 __bnx2x_link_report(bp); 1251 bnx2x_release_phy_lock(bp); 1252 } 1253 1254 /** 1255 * __bnx2x_link_report - report link status to OS. 1256 * 1257 * @bp: driver handle 1258 * 1259 * None atomic implementation. 1260 * Should be called under the phy_lock. 1261 */ 1262 void __bnx2x_link_report(struct bnx2x *bp) 1263 { 1264 struct bnx2x_link_report_data cur_data; 1265 1266 if (bp->force_link_down) { 1267 bp->link_vars.link_up = 0; 1268 return; 1269 } 1270 1271 /* reread mf_cfg */ 1272 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1273 bnx2x_read_mf_cfg(bp); 1274 1275 /* Read the current link report info */ 1276 bnx2x_fill_report_data(bp, &cur_data); 1277 1278 /* Don't report link down or exactly the same link status twice */ 1279 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1280 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1281 &bp->last_reported_link.link_report_flags) && 1282 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1283 &cur_data.link_report_flags))) 1284 return; 1285 1286 bp->link_cnt++; 1287 1288 /* We are going to report a new link parameters now - 1289 * remember the current data for the next time. 1290 */ 1291 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1292 1293 /* propagate status to VFs */ 1294 if (IS_PF(bp)) 1295 bnx2x_iov_link_update(bp); 1296 1297 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1298 &cur_data.link_report_flags)) { 1299 netif_carrier_off(bp->dev); 1300 netdev_err(bp->dev, "NIC Link is Down\n"); 1301 return; 1302 } else { 1303 const char *duplex; 1304 const char *flow; 1305 1306 netif_carrier_on(bp->dev); 1307 1308 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1309 &cur_data.link_report_flags)) 1310 duplex = "full"; 1311 else 1312 duplex = "half"; 1313 1314 /* Handle the FC at the end so that only these flags would be 1315 * possibly set. This way we may easily check if there is no FC 1316 * enabled. 1317 */ 1318 if (cur_data.link_report_flags) { 1319 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1320 &cur_data.link_report_flags)) { 1321 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1322 &cur_data.link_report_flags)) 1323 flow = "ON - receive & transmit"; 1324 else 1325 flow = "ON - receive"; 1326 } else { 1327 flow = "ON - transmit"; 1328 } 1329 } else { 1330 flow = "none"; 1331 } 1332 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1333 cur_data.line_speed, duplex, flow); 1334 } 1335 } 1336 1337 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1338 { 1339 int i; 1340 1341 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1342 struct eth_rx_sge *sge; 1343 1344 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1345 sge->addr_hi = 1346 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1347 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1348 1349 sge->addr_lo = 1350 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1351 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1352 } 1353 } 1354 1355 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1356 struct bnx2x_fastpath *fp, int last) 1357 { 1358 int i; 1359 1360 for (i = 0; i < last; i++) { 1361 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1362 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1363 u8 *data = first_buf->data; 1364 1365 if (data == NULL) { 1366 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1367 continue; 1368 } 1369 if (tpa_info->tpa_state == BNX2X_TPA_START) 1370 dma_unmap_single(&bp->pdev->dev, 1371 dma_unmap_addr(first_buf, mapping), 1372 fp->rx_buf_size, DMA_FROM_DEVICE); 1373 bnx2x_frag_free(fp, data); 1374 first_buf->data = NULL; 1375 } 1376 } 1377 1378 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1379 { 1380 int j; 1381 1382 for_each_rx_queue_cnic(bp, j) { 1383 struct bnx2x_fastpath *fp = &bp->fp[j]; 1384 1385 fp->rx_bd_cons = 0; 1386 1387 /* Activate BD ring */ 1388 /* Warning! 1389 * this will generate an interrupt (to the TSTORM) 1390 * must only be done after chip is initialized 1391 */ 1392 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1393 fp->rx_sge_prod); 1394 } 1395 } 1396 1397 void bnx2x_init_rx_rings(struct bnx2x *bp) 1398 { 1399 int func = BP_FUNC(bp); 1400 u16 ring_prod; 1401 int i, j; 1402 1403 /* Allocate TPA resources */ 1404 for_each_eth_queue(bp, j) { 1405 struct bnx2x_fastpath *fp = &bp->fp[j]; 1406 1407 DP(NETIF_MSG_IFUP, 1408 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1409 1410 if (fp->mode != TPA_MODE_DISABLED) { 1411 /* Fill the per-aggregation pool */ 1412 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1413 struct bnx2x_agg_info *tpa_info = 1414 &fp->tpa_info[i]; 1415 struct sw_rx_bd *first_buf = 1416 &tpa_info->first_buf; 1417 1418 first_buf->data = 1419 bnx2x_frag_alloc(fp, GFP_KERNEL); 1420 if (!first_buf->data) { 1421 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1422 j); 1423 bnx2x_free_tpa_pool(bp, fp, i); 1424 fp->mode = TPA_MODE_DISABLED; 1425 break; 1426 } 1427 dma_unmap_addr_set(first_buf, mapping, 0); 1428 tpa_info->tpa_state = BNX2X_TPA_STOP; 1429 } 1430 1431 /* "next page" elements initialization */ 1432 bnx2x_set_next_page_sgl(fp); 1433 1434 /* set SGEs bit mask */ 1435 bnx2x_init_sge_ring_bit_mask(fp); 1436 1437 /* Allocate SGEs and initialize the ring elements */ 1438 for (i = 0, ring_prod = 0; 1439 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1440 1441 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1442 GFP_KERNEL) < 0) { 1443 BNX2X_ERR("was only able to allocate %d rx sges\n", 1444 i); 1445 BNX2X_ERR("disabling TPA for queue[%d]\n", 1446 j); 1447 /* Cleanup already allocated elements */ 1448 bnx2x_free_rx_sge_range(bp, fp, 1449 ring_prod); 1450 bnx2x_free_tpa_pool(bp, fp, 1451 MAX_AGG_QS(bp)); 1452 fp->mode = TPA_MODE_DISABLED; 1453 ring_prod = 0; 1454 break; 1455 } 1456 ring_prod = NEXT_SGE_IDX(ring_prod); 1457 } 1458 1459 fp->rx_sge_prod = ring_prod; 1460 } 1461 } 1462 1463 for_each_eth_queue(bp, j) { 1464 struct bnx2x_fastpath *fp = &bp->fp[j]; 1465 1466 fp->rx_bd_cons = 0; 1467 1468 /* Activate BD ring */ 1469 /* Warning! 1470 * this will generate an interrupt (to the TSTORM) 1471 * must only be done after chip is initialized 1472 */ 1473 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1474 fp->rx_sge_prod); 1475 1476 if (j != 0) 1477 continue; 1478 1479 if (CHIP_IS_E1(bp)) { 1480 REG_WR(bp, BAR_USTRORM_INTMEM + 1481 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1482 U64_LO(fp->rx_comp_mapping)); 1483 REG_WR(bp, BAR_USTRORM_INTMEM + 1484 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1485 U64_HI(fp->rx_comp_mapping)); 1486 } 1487 } 1488 } 1489 1490 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1491 { 1492 u8 cos; 1493 struct bnx2x *bp = fp->bp; 1494 1495 for_each_cos_in_tx_queue(fp, cos) { 1496 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1497 unsigned pkts_compl = 0, bytes_compl = 0; 1498 1499 u16 sw_prod = txdata->tx_pkt_prod; 1500 u16 sw_cons = txdata->tx_pkt_cons; 1501 1502 while (sw_cons != sw_prod) { 1503 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1504 &pkts_compl, &bytes_compl); 1505 sw_cons++; 1506 } 1507 1508 netdev_tx_reset_queue( 1509 netdev_get_tx_queue(bp->dev, 1510 txdata->txq_index)); 1511 } 1512 } 1513 1514 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1515 { 1516 int i; 1517 1518 for_each_tx_queue_cnic(bp, i) { 1519 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1520 } 1521 } 1522 1523 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1524 { 1525 int i; 1526 1527 for_each_eth_queue(bp, i) { 1528 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1529 } 1530 } 1531 1532 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1533 { 1534 struct bnx2x *bp = fp->bp; 1535 int i; 1536 1537 /* ring wasn't allocated */ 1538 if (fp->rx_buf_ring == NULL) 1539 return; 1540 1541 for (i = 0; i < NUM_RX_BD; i++) { 1542 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1543 u8 *data = rx_buf->data; 1544 1545 if (data == NULL) 1546 continue; 1547 dma_unmap_single(&bp->pdev->dev, 1548 dma_unmap_addr(rx_buf, mapping), 1549 fp->rx_buf_size, DMA_FROM_DEVICE); 1550 1551 rx_buf->data = NULL; 1552 bnx2x_frag_free(fp, data); 1553 } 1554 } 1555 1556 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1557 { 1558 int j; 1559 1560 for_each_rx_queue_cnic(bp, j) { 1561 bnx2x_free_rx_bds(&bp->fp[j]); 1562 } 1563 } 1564 1565 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1566 { 1567 int j; 1568 1569 for_each_eth_queue(bp, j) { 1570 struct bnx2x_fastpath *fp = &bp->fp[j]; 1571 1572 bnx2x_free_rx_bds(fp); 1573 1574 if (fp->mode != TPA_MODE_DISABLED) 1575 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1576 } 1577 } 1578 1579 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1580 { 1581 bnx2x_free_tx_skbs_cnic(bp); 1582 bnx2x_free_rx_skbs_cnic(bp); 1583 } 1584 1585 void bnx2x_free_skbs(struct bnx2x *bp) 1586 { 1587 bnx2x_free_tx_skbs(bp); 1588 bnx2x_free_rx_skbs(bp); 1589 } 1590 1591 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1592 { 1593 /* load old values */ 1594 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1595 1596 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1597 /* leave all but MAX value */ 1598 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1599 1600 /* set new MAX value */ 1601 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1602 & FUNC_MF_CFG_MAX_BW_MASK; 1603 1604 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1605 } 1606 } 1607 1608 /** 1609 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1610 * 1611 * @bp: driver handle 1612 * @nvecs: number of vectors to be released 1613 */ 1614 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1615 { 1616 int i, offset = 0; 1617 1618 if (nvecs == offset) 1619 return; 1620 1621 /* VFs don't have a default SB */ 1622 if (IS_PF(bp)) { 1623 free_irq(bp->msix_table[offset].vector, bp->dev); 1624 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1625 bp->msix_table[offset].vector); 1626 offset++; 1627 } 1628 1629 if (CNIC_SUPPORT(bp)) { 1630 if (nvecs == offset) 1631 return; 1632 offset++; 1633 } 1634 1635 for_each_eth_queue(bp, i) { 1636 if (nvecs == offset) 1637 return; 1638 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1639 i, bp->msix_table[offset].vector); 1640 1641 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1642 } 1643 } 1644 1645 void bnx2x_free_irq(struct bnx2x *bp) 1646 { 1647 if (bp->flags & USING_MSIX_FLAG && 1648 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1649 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1650 1651 /* vfs don't have a default status block */ 1652 if (IS_PF(bp)) 1653 nvecs++; 1654 1655 bnx2x_free_msix_irqs(bp, nvecs); 1656 } else { 1657 free_irq(bp->dev->irq, bp->dev); 1658 } 1659 } 1660 1661 int bnx2x_enable_msix(struct bnx2x *bp) 1662 { 1663 int msix_vec = 0, i, rc; 1664 1665 /* VFs don't have a default status block */ 1666 if (IS_PF(bp)) { 1667 bp->msix_table[msix_vec].entry = msix_vec; 1668 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1669 bp->msix_table[0].entry); 1670 msix_vec++; 1671 } 1672 1673 /* Cnic requires an msix vector for itself */ 1674 if (CNIC_SUPPORT(bp)) { 1675 bp->msix_table[msix_vec].entry = msix_vec; 1676 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1677 msix_vec, bp->msix_table[msix_vec].entry); 1678 msix_vec++; 1679 } 1680 1681 /* We need separate vectors for ETH queues only (not FCoE) */ 1682 for_each_eth_queue(bp, i) { 1683 bp->msix_table[msix_vec].entry = msix_vec; 1684 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1685 msix_vec, msix_vec, i); 1686 msix_vec++; 1687 } 1688 1689 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1690 msix_vec); 1691 1692 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1693 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); 1694 /* 1695 * reconfigure number of tx/rx queues according to available 1696 * MSI-X vectors 1697 */ 1698 if (rc == -ENOSPC) { 1699 /* Get by with single vector */ 1700 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); 1701 if (rc < 0) { 1702 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1703 rc); 1704 goto no_msix; 1705 } 1706 1707 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1708 bp->flags |= USING_SINGLE_MSIX_FLAG; 1709 1710 BNX2X_DEV_INFO("set number of queues to 1\n"); 1711 bp->num_ethernet_queues = 1; 1712 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1713 } else if (rc < 0) { 1714 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1715 goto no_msix; 1716 } else if (rc < msix_vec) { 1717 /* how less vectors we will have? */ 1718 int diff = msix_vec - rc; 1719 1720 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1721 1722 /* 1723 * decrease number of queues by number of unallocated entries 1724 */ 1725 bp->num_ethernet_queues -= diff; 1726 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1727 1728 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1729 bp->num_queues); 1730 } 1731 1732 bp->flags |= USING_MSIX_FLAG; 1733 1734 return 0; 1735 1736 no_msix: 1737 /* fall to INTx if not enough memory */ 1738 if (rc == -ENOMEM) 1739 bp->flags |= DISABLE_MSI_FLAG; 1740 1741 return rc; 1742 } 1743 1744 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1745 { 1746 int i, rc, offset = 0; 1747 1748 /* no default status block for vf */ 1749 if (IS_PF(bp)) { 1750 rc = request_irq(bp->msix_table[offset++].vector, 1751 bnx2x_msix_sp_int, 0, 1752 bp->dev->name, bp->dev); 1753 if (rc) { 1754 BNX2X_ERR("request sp irq failed\n"); 1755 return -EBUSY; 1756 } 1757 } 1758 1759 if (CNIC_SUPPORT(bp)) 1760 offset++; 1761 1762 for_each_eth_queue(bp, i) { 1763 struct bnx2x_fastpath *fp = &bp->fp[i]; 1764 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1765 bp->dev->name, i); 1766 1767 rc = request_irq(bp->msix_table[offset].vector, 1768 bnx2x_msix_fp_int, 0, fp->name, fp); 1769 if (rc) { 1770 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1771 bp->msix_table[offset].vector, rc); 1772 bnx2x_free_msix_irqs(bp, offset); 1773 return -EBUSY; 1774 } 1775 1776 offset++; 1777 } 1778 1779 i = BNX2X_NUM_ETH_QUEUES(bp); 1780 if (IS_PF(bp)) { 1781 offset = 1 + CNIC_SUPPORT(bp); 1782 netdev_info(bp->dev, 1783 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1784 bp->msix_table[0].vector, 1785 0, bp->msix_table[offset].vector, 1786 i - 1, bp->msix_table[offset + i - 1].vector); 1787 } else { 1788 offset = CNIC_SUPPORT(bp); 1789 netdev_info(bp->dev, 1790 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1791 0, bp->msix_table[offset].vector, 1792 i - 1, bp->msix_table[offset + i - 1].vector); 1793 } 1794 return 0; 1795 } 1796 1797 int bnx2x_enable_msi(struct bnx2x *bp) 1798 { 1799 int rc; 1800 1801 rc = pci_enable_msi(bp->pdev); 1802 if (rc) { 1803 BNX2X_DEV_INFO("MSI is not attainable\n"); 1804 return -1; 1805 } 1806 bp->flags |= USING_MSI_FLAG; 1807 1808 return 0; 1809 } 1810 1811 static int bnx2x_req_irq(struct bnx2x *bp) 1812 { 1813 unsigned long flags; 1814 unsigned int irq; 1815 1816 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1817 flags = 0; 1818 else 1819 flags = IRQF_SHARED; 1820 1821 if (bp->flags & USING_MSIX_FLAG) 1822 irq = bp->msix_table[0].vector; 1823 else 1824 irq = bp->pdev->irq; 1825 1826 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1827 } 1828 1829 static int bnx2x_setup_irqs(struct bnx2x *bp) 1830 { 1831 int rc = 0; 1832 if (bp->flags & USING_MSIX_FLAG && 1833 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1834 rc = bnx2x_req_msix_irqs(bp); 1835 if (rc) 1836 return rc; 1837 } else { 1838 rc = bnx2x_req_irq(bp); 1839 if (rc) { 1840 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1841 return rc; 1842 } 1843 if (bp->flags & USING_MSI_FLAG) { 1844 bp->dev->irq = bp->pdev->irq; 1845 netdev_info(bp->dev, "using MSI IRQ %d\n", 1846 bp->dev->irq); 1847 } 1848 if (bp->flags & USING_MSIX_FLAG) { 1849 bp->dev->irq = bp->msix_table[0].vector; 1850 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1851 bp->dev->irq); 1852 } 1853 } 1854 1855 return 0; 1856 } 1857 1858 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1859 { 1860 int i; 1861 1862 for_each_rx_queue_cnic(bp, i) { 1863 napi_enable(&bnx2x_fp(bp, i, napi)); 1864 } 1865 } 1866 1867 static void bnx2x_napi_enable(struct bnx2x *bp) 1868 { 1869 int i; 1870 1871 for_each_eth_queue(bp, i) { 1872 napi_enable(&bnx2x_fp(bp, i, napi)); 1873 } 1874 } 1875 1876 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1877 { 1878 int i; 1879 1880 for_each_rx_queue_cnic(bp, i) { 1881 napi_disable(&bnx2x_fp(bp, i, napi)); 1882 } 1883 } 1884 1885 static void bnx2x_napi_disable(struct bnx2x *bp) 1886 { 1887 int i; 1888 1889 for_each_eth_queue(bp, i) { 1890 napi_disable(&bnx2x_fp(bp, i, napi)); 1891 } 1892 } 1893 1894 void bnx2x_netif_start(struct bnx2x *bp) 1895 { 1896 if (netif_running(bp->dev)) { 1897 bnx2x_napi_enable(bp); 1898 if (CNIC_LOADED(bp)) 1899 bnx2x_napi_enable_cnic(bp); 1900 bnx2x_int_enable(bp); 1901 if (bp->state == BNX2X_STATE_OPEN) 1902 netif_tx_wake_all_queues(bp->dev); 1903 } 1904 } 1905 1906 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1907 { 1908 bnx2x_int_disable_sync(bp, disable_hw); 1909 bnx2x_napi_disable(bp); 1910 if (CNIC_LOADED(bp)) 1911 bnx2x_napi_disable_cnic(bp); 1912 } 1913 1914 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1915 struct net_device *sb_dev) 1916 { 1917 struct bnx2x *bp = netdev_priv(dev); 1918 1919 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1920 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1921 u16 ether_type = ntohs(hdr->h_proto); 1922 1923 /* Skip VLAN tag if present */ 1924 if (ether_type == ETH_P_8021Q) { 1925 struct vlan_ethhdr *vhdr = 1926 (struct vlan_ethhdr *)skb->data; 1927 1928 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1929 } 1930 1931 /* If ethertype is FCoE or FIP - use FCoE ring */ 1932 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1933 return bnx2x_fcoe_tx(bp, txq_index); 1934 } 1935 1936 /* select a non-FCoE queue */ 1937 return netdev_pick_tx(dev, skb, NULL) % 1938 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos); 1939 } 1940 1941 void bnx2x_set_num_queues(struct bnx2x *bp) 1942 { 1943 /* RSS queues */ 1944 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1945 1946 /* override in STORAGE SD modes */ 1947 if (IS_MF_STORAGE_ONLY(bp)) 1948 bp->num_ethernet_queues = 1; 1949 1950 /* Add special queues */ 1951 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1952 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1953 1954 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1955 } 1956 1957 /** 1958 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1959 * 1960 * @bp: Driver handle 1961 * 1962 * We currently support for at most 16 Tx queues for each CoS thus we will 1963 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1964 * bp->max_cos. 1965 * 1966 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1967 * index after all ETH L2 indices. 1968 * 1969 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1970 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1971 * 16..31,...) with indices that are not coupled with any real Tx queue. 1972 * 1973 * The proper configuration of skb->queue_mapping is handled by 1974 * bnx2x_select_queue() and __skb_tx_hash(). 1975 * 1976 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1977 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1978 */ 1979 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1980 { 1981 int rc, tx, rx; 1982 1983 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1984 rx = BNX2X_NUM_ETH_QUEUES(bp); 1985 1986 /* account for fcoe queue */ 1987 if (include_cnic && !NO_FCOE(bp)) { 1988 rx++; 1989 tx++; 1990 } 1991 1992 rc = netif_set_real_num_tx_queues(bp->dev, tx); 1993 if (rc) { 1994 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 1995 return rc; 1996 } 1997 rc = netif_set_real_num_rx_queues(bp->dev, rx); 1998 if (rc) { 1999 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 2000 return rc; 2001 } 2002 2003 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 2004 tx, rx); 2005 2006 return rc; 2007 } 2008 2009 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 2010 { 2011 int i; 2012 2013 for_each_queue(bp, i) { 2014 struct bnx2x_fastpath *fp = &bp->fp[i]; 2015 u32 mtu; 2016 2017 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 2018 if (IS_FCOE_IDX(i)) 2019 /* 2020 * Although there are no IP frames expected to arrive to 2021 * this ring we still want to add an 2022 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 2023 * overrun attack. 2024 */ 2025 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 2026 else 2027 mtu = bp->dev->mtu; 2028 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 2029 IP_HEADER_ALIGNMENT_PADDING + 2030 ETH_OVERHEAD + 2031 mtu + 2032 BNX2X_FW_RX_ALIGN_END; 2033 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size); 2034 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 2035 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 2036 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 2037 else 2038 fp->rx_frag_size = 0; 2039 } 2040 } 2041 2042 static int bnx2x_init_rss(struct bnx2x *bp) 2043 { 2044 int i; 2045 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2046 2047 /* Prepare the initial contents for the indirection table if RSS is 2048 * enabled 2049 */ 2050 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2051 bp->rss_conf_obj.ind_table[i] = 2052 bp->fp->cl_id + 2053 ethtool_rxfh_indir_default(i, num_eth_queues); 2054 2055 /* 2056 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2057 * per-port, so if explicit configuration is needed , do it only 2058 * for a PMF. 2059 * 2060 * For 57712 and newer on the other hand it's a per-function 2061 * configuration. 2062 */ 2063 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2064 } 2065 2066 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2067 bool config_hash, bool enable) 2068 { 2069 struct bnx2x_config_rss_params params = {NULL}; 2070 2071 /* Although RSS is meaningless when there is a single HW queue we 2072 * still need it enabled in order to have HW Rx hash generated. 2073 * 2074 * if (!is_eth_multi(bp)) 2075 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2076 */ 2077 2078 params.rss_obj = rss_obj; 2079 2080 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2081 2082 if (enable) { 2083 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2084 2085 /* RSS configuration */ 2086 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2087 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2088 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2089 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2090 if (rss_obj->udp_rss_v4) 2091 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2092 if (rss_obj->udp_rss_v6) 2093 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2094 2095 if (!CHIP_IS_E1x(bp)) { 2096 /* valid only for TUNN_MODE_VXLAN tunnel mode */ 2097 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags); 2098 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags); 2099 2100 /* valid only for TUNN_MODE_GRE tunnel mode */ 2101 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags); 2102 } 2103 } else { 2104 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2105 } 2106 2107 /* Hash bits */ 2108 params.rss_result_mask = MULTI_MASK; 2109 2110 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2111 2112 if (config_hash) { 2113 /* RSS keys */ 2114 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4); 2115 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2116 } 2117 2118 if (IS_PF(bp)) 2119 return bnx2x_config_rss(bp, ¶ms); 2120 else 2121 return bnx2x_vfpf_config_rss(bp, ¶ms); 2122 } 2123 2124 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2125 { 2126 struct bnx2x_func_state_params func_params = {NULL}; 2127 2128 /* Prepare parameters for function state transitions */ 2129 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2130 2131 func_params.f_obj = &bp->func_obj; 2132 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2133 2134 func_params.params.hw_init.load_phase = load_code; 2135 2136 return bnx2x_func_state_change(bp, &func_params); 2137 } 2138 2139 /* 2140 * Cleans the object that have internal lists without sending 2141 * ramrods. Should be run when interrupts are disabled. 2142 */ 2143 void bnx2x_squeeze_objects(struct bnx2x *bp) 2144 { 2145 int rc; 2146 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2147 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2148 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2149 2150 /***************** Cleanup MACs' object first *************************/ 2151 2152 /* Wait for completion of requested */ 2153 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2154 /* Perform a dry cleanup */ 2155 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2156 2157 /* Clean ETH primary MAC */ 2158 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2159 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2160 &ramrod_flags); 2161 if (rc != 0) 2162 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2163 2164 /* Cleanup UC list */ 2165 vlan_mac_flags = 0; 2166 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2167 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2168 &ramrod_flags); 2169 if (rc != 0) 2170 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2171 2172 /***************** Now clean mcast object *****************************/ 2173 rparam.mcast_obj = &bp->mcast_obj; 2174 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2175 2176 /* Add a DEL command... - Since we're doing a driver cleanup only, 2177 * we take a lock surrounding both the initial send and the CONTs, 2178 * as we don't want a true completion to disrupt us in the middle. 2179 */ 2180 netif_addr_lock_bh(bp->dev); 2181 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2182 if (rc < 0) 2183 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2184 rc); 2185 2186 /* ...and wait until all pending commands are cleared */ 2187 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2188 while (rc != 0) { 2189 if (rc < 0) { 2190 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2191 rc); 2192 netif_addr_unlock_bh(bp->dev); 2193 return; 2194 } 2195 2196 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2197 } 2198 netif_addr_unlock_bh(bp->dev); 2199 } 2200 2201 #ifndef BNX2X_STOP_ON_ERROR 2202 #define LOAD_ERROR_EXIT(bp, label) \ 2203 do { \ 2204 (bp)->state = BNX2X_STATE_ERROR; \ 2205 goto label; \ 2206 } while (0) 2207 2208 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2209 do { \ 2210 bp->cnic_loaded = false; \ 2211 goto label; \ 2212 } while (0) 2213 #else /*BNX2X_STOP_ON_ERROR*/ 2214 #define LOAD_ERROR_EXIT(bp, label) \ 2215 do { \ 2216 (bp)->state = BNX2X_STATE_ERROR; \ 2217 (bp)->panic = 1; \ 2218 return -EBUSY; \ 2219 } while (0) 2220 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2221 do { \ 2222 bp->cnic_loaded = false; \ 2223 (bp)->panic = 1; \ 2224 return -EBUSY; \ 2225 } while (0) 2226 #endif /*BNX2X_STOP_ON_ERROR*/ 2227 2228 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2229 { 2230 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2231 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2232 return; 2233 } 2234 2235 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2236 { 2237 int num_groups, vf_headroom = 0; 2238 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2239 2240 /* number of queues for statistics is number of eth queues + FCoE */ 2241 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2242 2243 /* Total number of FW statistics requests = 2244 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2245 * and fcoe l2 queue) stats + num of queues (which includes another 1 2246 * for fcoe l2 queue if applicable) 2247 */ 2248 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2249 2250 /* vf stats appear in the request list, but their data is allocated by 2251 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2252 * it is used to determine where to place the vf stats queries in the 2253 * request struct 2254 */ 2255 if (IS_SRIOV(bp)) 2256 vf_headroom = bnx2x_vf_headroom(bp); 2257 2258 /* Request is built from stats_query_header and an array of 2259 * stats_query_cmd_group each of which contains 2260 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2261 * configured in the stats_query_header. 2262 */ 2263 num_groups = 2264 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2265 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2266 1 : 0)); 2267 2268 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2269 bp->fw_stats_num, vf_headroom, num_groups); 2270 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2271 num_groups * sizeof(struct stats_query_cmd_group); 2272 2273 /* Data for statistics requests + stats_counter 2274 * stats_counter holds per-STORM counters that are incremented 2275 * when STORM has finished with the current request. 2276 * memory for FCoE offloaded statistics are counted anyway, 2277 * even if they will not be sent. 2278 * VF stats are not accounted for here as the data of VF stats is stored 2279 * in memory allocated by the VF, not here. 2280 */ 2281 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2282 sizeof(struct per_pf_stats) + 2283 sizeof(struct fcoe_statistics_params) + 2284 sizeof(struct per_queue_stats) * num_queue_stats + 2285 sizeof(struct stats_counter); 2286 2287 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, 2288 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2289 if (!bp->fw_stats) 2290 goto alloc_mem_err; 2291 2292 /* Set shortcuts */ 2293 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2294 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2295 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2296 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2297 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2298 bp->fw_stats_req_sz; 2299 2300 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2301 U64_HI(bp->fw_stats_req_mapping), 2302 U64_LO(bp->fw_stats_req_mapping)); 2303 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2304 U64_HI(bp->fw_stats_data_mapping), 2305 U64_LO(bp->fw_stats_data_mapping)); 2306 return 0; 2307 2308 alloc_mem_err: 2309 bnx2x_free_fw_stats_mem(bp); 2310 BNX2X_ERR("Can't allocate FW stats memory\n"); 2311 return -ENOMEM; 2312 } 2313 2314 /* send load request to mcp and analyze response */ 2315 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2316 { 2317 u32 param; 2318 2319 /* init fw_seq */ 2320 bp->fw_seq = 2321 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2322 DRV_MSG_SEQ_NUMBER_MASK); 2323 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2324 2325 /* Get current FW pulse sequence */ 2326 bp->fw_drv_pulse_wr_seq = 2327 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2328 DRV_PULSE_SEQ_MASK); 2329 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2330 2331 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2332 2333 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2334 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2335 2336 /* load request */ 2337 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2338 2339 /* if mcp fails to respond we must abort */ 2340 if (!(*load_code)) { 2341 BNX2X_ERR("MCP response failure, aborting\n"); 2342 return -EBUSY; 2343 } 2344 2345 /* If mcp refused (e.g. other port is in diagnostic mode) we 2346 * must abort 2347 */ 2348 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2349 BNX2X_ERR("MCP refused load request, aborting\n"); 2350 return -EBUSY; 2351 } 2352 return 0; 2353 } 2354 2355 /* check whether another PF has already loaded FW to chip. In 2356 * virtualized environments a pf from another VM may have already 2357 * initialized the device including loading FW 2358 */ 2359 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2360 { 2361 /* is another pf loaded on this engine? */ 2362 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2363 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2364 /* build my FW version dword */ 2365 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) + 2366 (BCM_5710_FW_MINOR_VERSION << 8) + 2367 (BCM_5710_FW_REVISION_VERSION << 16) + 2368 (BCM_5710_FW_ENGINEERING_VERSION << 24); 2369 2370 /* read loaded FW from chip */ 2371 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2372 2373 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", 2374 loaded_fw, my_fw); 2375 2376 /* abort nic load if version mismatch */ 2377 if (my_fw != loaded_fw) { 2378 if (print_err) 2379 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", 2380 loaded_fw, my_fw); 2381 else 2382 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n", 2383 loaded_fw, my_fw); 2384 return -EBUSY; 2385 } 2386 } 2387 return 0; 2388 } 2389 2390 /* returns the "mcp load_code" according to global load_count array */ 2391 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2392 { 2393 int path = BP_PATH(bp); 2394 2395 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2396 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2397 bnx2x_load_count[path][2]); 2398 bnx2x_load_count[path][0]++; 2399 bnx2x_load_count[path][1 + port]++; 2400 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2401 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2402 bnx2x_load_count[path][2]); 2403 if (bnx2x_load_count[path][0] == 1) 2404 return FW_MSG_CODE_DRV_LOAD_COMMON; 2405 else if (bnx2x_load_count[path][1 + port] == 1) 2406 return FW_MSG_CODE_DRV_LOAD_PORT; 2407 else 2408 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2409 } 2410 2411 /* mark PMF if applicable */ 2412 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2413 { 2414 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2415 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2416 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2417 bp->port.pmf = 1; 2418 /* We need the barrier to ensure the ordering between the 2419 * writing to bp->port.pmf here and reading it from the 2420 * bnx2x_periodic_task(). 2421 */ 2422 smp_mb(); 2423 } else { 2424 bp->port.pmf = 0; 2425 } 2426 2427 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2428 } 2429 2430 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2431 { 2432 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2433 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2434 (bp->common.shmem2_base)) { 2435 if (SHMEM2_HAS(bp, dcc_support)) 2436 SHMEM2_WR(bp, dcc_support, 2437 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2438 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2439 if (SHMEM2_HAS(bp, afex_driver_support)) 2440 SHMEM2_WR(bp, afex_driver_support, 2441 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2442 } 2443 2444 /* Set AFEX default VLAN tag to an invalid value */ 2445 bp->afex_def_vlan_tag = -1; 2446 } 2447 2448 /** 2449 * bnx2x_bz_fp - zero content of the fastpath structure. 2450 * 2451 * @bp: driver handle 2452 * @index: fastpath index to be zeroed 2453 * 2454 * Makes sure the contents of the bp->fp[index].napi is kept 2455 * intact. 2456 */ 2457 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2458 { 2459 struct bnx2x_fastpath *fp = &bp->fp[index]; 2460 int cos; 2461 struct napi_struct orig_napi = fp->napi; 2462 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2463 2464 /* bzero bnx2x_fastpath contents */ 2465 if (fp->tpa_info) 2466 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2467 sizeof(struct bnx2x_agg_info)); 2468 memset(fp, 0, sizeof(*fp)); 2469 2470 /* Restore the NAPI object as it has been already initialized */ 2471 fp->napi = orig_napi; 2472 fp->tpa_info = orig_tpa_info; 2473 fp->bp = bp; 2474 fp->index = index; 2475 if (IS_ETH_FP(fp)) 2476 fp->max_cos = bp->max_cos; 2477 else 2478 /* Special queues support only one CoS */ 2479 fp->max_cos = 1; 2480 2481 /* Init txdata pointers */ 2482 if (IS_FCOE_FP(fp)) 2483 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2484 if (IS_ETH_FP(fp)) 2485 for_each_cos_in_tx_queue(fp, cos) 2486 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2487 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2488 2489 /* set the tpa flag for each queue. The tpa flag determines the queue 2490 * minimal size so it must be set prior to queue memory allocation 2491 */ 2492 if (bp->dev->features & NETIF_F_LRO) 2493 fp->mode = TPA_MODE_LRO; 2494 else if (bp->dev->features & NETIF_F_GRO_HW) 2495 fp->mode = TPA_MODE_GRO; 2496 else 2497 fp->mode = TPA_MODE_DISABLED; 2498 2499 /* We don't want TPA if it's disabled in bp 2500 * or if this is an FCoE L2 ring. 2501 */ 2502 if (bp->disable_tpa || IS_FCOE_FP(fp)) 2503 fp->mode = TPA_MODE_DISABLED; 2504 } 2505 2506 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state) 2507 { 2508 u32 cur; 2509 2510 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp)) 2511 return; 2512 2513 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]); 2514 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n", 2515 cur, state); 2516 2517 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state); 2518 } 2519 2520 int bnx2x_load_cnic(struct bnx2x *bp) 2521 { 2522 int i, rc, port = BP_PORT(bp); 2523 2524 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2525 2526 mutex_init(&bp->cnic_mutex); 2527 2528 if (IS_PF(bp)) { 2529 rc = bnx2x_alloc_mem_cnic(bp); 2530 if (rc) { 2531 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2532 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2533 } 2534 } 2535 2536 rc = bnx2x_alloc_fp_mem_cnic(bp); 2537 if (rc) { 2538 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2539 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2540 } 2541 2542 /* Update the number of queues with the cnic queues */ 2543 rc = bnx2x_set_real_num_queues(bp, 1); 2544 if (rc) { 2545 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2546 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2547 } 2548 2549 /* Add all CNIC NAPI objects */ 2550 bnx2x_add_all_napi_cnic(bp); 2551 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2552 bnx2x_napi_enable_cnic(bp); 2553 2554 rc = bnx2x_init_hw_func_cnic(bp); 2555 if (rc) 2556 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2557 2558 bnx2x_nic_init_cnic(bp); 2559 2560 if (IS_PF(bp)) { 2561 /* Enable Timer scan */ 2562 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2563 2564 /* setup cnic queues */ 2565 for_each_cnic_queue(bp, i) { 2566 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2567 if (rc) { 2568 BNX2X_ERR("Queue setup failed\n"); 2569 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2570 } 2571 } 2572 } 2573 2574 /* Initialize Rx filter. */ 2575 bnx2x_set_rx_mode_inner(bp); 2576 2577 /* re-read iscsi info */ 2578 bnx2x_get_iscsi_info(bp); 2579 bnx2x_setup_cnic_irq_info(bp); 2580 bnx2x_setup_cnic_info(bp); 2581 bp->cnic_loaded = true; 2582 if (bp->state == BNX2X_STATE_OPEN) 2583 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2584 2585 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2586 2587 return 0; 2588 2589 #ifndef BNX2X_STOP_ON_ERROR 2590 load_error_cnic2: 2591 /* Disable Timer scan */ 2592 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2593 2594 load_error_cnic1: 2595 bnx2x_napi_disable_cnic(bp); 2596 /* Update the number of queues without the cnic queues */ 2597 if (bnx2x_set_real_num_queues(bp, 0)) 2598 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2599 load_error_cnic0: 2600 BNX2X_ERR("CNIC-related load failed\n"); 2601 bnx2x_free_fp_mem_cnic(bp); 2602 bnx2x_free_mem_cnic(bp); 2603 return rc; 2604 #endif /* ! BNX2X_STOP_ON_ERROR */ 2605 } 2606 2607 /* must be called with rtnl_lock */ 2608 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2609 { 2610 int port = BP_PORT(bp); 2611 int i, rc = 0, load_code = 0; 2612 2613 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2614 DP(NETIF_MSG_IFUP, 2615 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2616 2617 #ifdef BNX2X_STOP_ON_ERROR 2618 if (unlikely(bp->panic)) { 2619 BNX2X_ERR("Can't load NIC when there is panic\n"); 2620 return -EPERM; 2621 } 2622 #endif 2623 2624 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2625 2626 /* zero the structure w/o any lock, before SP handler is initialized */ 2627 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2628 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2629 &bp->last_reported_link.link_report_flags); 2630 2631 if (IS_PF(bp)) 2632 /* must be called before memory allocation and HW init */ 2633 bnx2x_ilt_set_info(bp); 2634 2635 /* 2636 * Zero fastpath structures preserving invariants like napi, which are 2637 * allocated only once, fp index, max_cos, bp pointer. 2638 * Also set fp->mode and txdata_ptr. 2639 */ 2640 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2641 for_each_queue(bp, i) 2642 bnx2x_bz_fp(bp, i); 2643 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2644 bp->num_cnic_queues) * 2645 sizeof(struct bnx2x_fp_txdata)); 2646 2647 bp->fcoe_init = false; 2648 2649 /* Set the receive queues buffer size */ 2650 bnx2x_set_rx_buf_size(bp); 2651 2652 if (IS_PF(bp)) { 2653 rc = bnx2x_alloc_mem(bp); 2654 if (rc) { 2655 BNX2X_ERR("Unable to allocate bp memory\n"); 2656 return rc; 2657 } 2658 } 2659 2660 /* need to be done after alloc mem, since it's self adjusting to amount 2661 * of memory available for RSS queues 2662 */ 2663 rc = bnx2x_alloc_fp_mem(bp); 2664 if (rc) { 2665 BNX2X_ERR("Unable to allocate memory for fps\n"); 2666 LOAD_ERROR_EXIT(bp, load_error0); 2667 } 2668 2669 /* Allocated memory for FW statistics */ 2670 if (bnx2x_alloc_fw_stats_mem(bp)) 2671 LOAD_ERROR_EXIT(bp, load_error0); 2672 2673 /* request pf to initialize status blocks */ 2674 if (IS_VF(bp)) { 2675 rc = bnx2x_vfpf_init(bp); 2676 if (rc) 2677 LOAD_ERROR_EXIT(bp, load_error0); 2678 } 2679 2680 /* As long as bnx2x_alloc_mem() may possibly update 2681 * bp->num_queues, bnx2x_set_real_num_queues() should always 2682 * come after it. At this stage cnic queues are not counted. 2683 */ 2684 rc = bnx2x_set_real_num_queues(bp, 0); 2685 if (rc) { 2686 BNX2X_ERR("Unable to set real_num_queues\n"); 2687 LOAD_ERROR_EXIT(bp, load_error0); 2688 } 2689 2690 /* configure multi cos mappings in kernel. 2691 * this configuration may be overridden by a multi class queue 2692 * discipline or by a dcbx negotiation result. 2693 */ 2694 bnx2x_setup_tc(bp->dev, bp->max_cos); 2695 2696 /* Add all NAPI objects */ 2697 bnx2x_add_all_napi(bp); 2698 DP(NETIF_MSG_IFUP, "napi added\n"); 2699 bnx2x_napi_enable(bp); 2700 2701 if (IS_PF(bp)) { 2702 /* set pf load just before approaching the MCP */ 2703 bnx2x_set_pf_load(bp); 2704 2705 /* if mcp exists send load request and analyze response */ 2706 if (!BP_NOMCP(bp)) { 2707 /* attempt to load pf */ 2708 rc = bnx2x_nic_load_request(bp, &load_code); 2709 if (rc) 2710 LOAD_ERROR_EXIT(bp, load_error1); 2711 2712 /* what did mcp say? */ 2713 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2714 if (rc) { 2715 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2716 LOAD_ERROR_EXIT(bp, load_error2); 2717 } 2718 } else { 2719 load_code = bnx2x_nic_load_no_mcp(bp, port); 2720 } 2721 2722 /* mark pmf if applicable */ 2723 bnx2x_nic_load_pmf(bp, load_code); 2724 2725 /* Init Function state controlling object */ 2726 bnx2x__init_func_obj(bp); 2727 2728 /* Initialize HW */ 2729 rc = bnx2x_init_hw(bp, load_code); 2730 if (rc) { 2731 BNX2X_ERR("HW init failed, aborting\n"); 2732 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2733 LOAD_ERROR_EXIT(bp, load_error2); 2734 } 2735 } 2736 2737 bnx2x_pre_irq_nic_init(bp); 2738 2739 /* Connect to IRQs */ 2740 rc = bnx2x_setup_irqs(bp); 2741 if (rc) { 2742 BNX2X_ERR("setup irqs failed\n"); 2743 if (IS_PF(bp)) 2744 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2745 LOAD_ERROR_EXIT(bp, load_error2); 2746 } 2747 2748 /* Init per-function objects */ 2749 if (IS_PF(bp)) { 2750 /* Setup NIC internals and enable interrupts */ 2751 bnx2x_post_irq_nic_init(bp, load_code); 2752 2753 bnx2x_init_bp_objs(bp); 2754 bnx2x_iov_nic_init(bp); 2755 2756 /* Set AFEX default VLAN tag to an invalid value */ 2757 bp->afex_def_vlan_tag = -1; 2758 bnx2x_nic_load_afex_dcc(bp, load_code); 2759 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2760 rc = bnx2x_func_start(bp); 2761 if (rc) { 2762 BNX2X_ERR("Function start failed!\n"); 2763 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2764 2765 LOAD_ERROR_EXIT(bp, load_error3); 2766 } 2767 2768 /* Send LOAD_DONE command to MCP */ 2769 if (!BP_NOMCP(bp)) { 2770 load_code = bnx2x_fw_command(bp, 2771 DRV_MSG_CODE_LOAD_DONE, 0); 2772 if (!load_code) { 2773 BNX2X_ERR("MCP response failure, aborting\n"); 2774 rc = -EBUSY; 2775 LOAD_ERROR_EXIT(bp, load_error3); 2776 } 2777 } 2778 2779 /* initialize FW coalescing state machines in RAM */ 2780 bnx2x_update_coalesce(bp); 2781 } 2782 2783 /* setup the leading queue */ 2784 rc = bnx2x_setup_leading(bp); 2785 if (rc) { 2786 BNX2X_ERR("Setup leading failed!\n"); 2787 LOAD_ERROR_EXIT(bp, load_error3); 2788 } 2789 2790 /* set up the rest of the queues */ 2791 for_each_nondefault_eth_queue(bp, i) { 2792 if (IS_PF(bp)) 2793 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2794 else /* VF */ 2795 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2796 if (rc) { 2797 BNX2X_ERR("Queue %d setup failed\n", i); 2798 LOAD_ERROR_EXIT(bp, load_error3); 2799 } 2800 } 2801 2802 /* setup rss */ 2803 rc = bnx2x_init_rss(bp); 2804 if (rc) { 2805 BNX2X_ERR("PF RSS init failed\n"); 2806 LOAD_ERROR_EXIT(bp, load_error3); 2807 } 2808 2809 /* Now when Clients are configured we are ready to work */ 2810 bp->state = BNX2X_STATE_OPEN; 2811 2812 /* Configure a ucast MAC */ 2813 if (IS_PF(bp)) 2814 rc = bnx2x_set_eth_mac(bp, true); 2815 else /* vf */ 2816 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2817 true); 2818 if (rc) { 2819 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2820 LOAD_ERROR_EXIT(bp, load_error3); 2821 } 2822 2823 if (IS_PF(bp) && bp->pending_max) { 2824 bnx2x_update_max_mf_config(bp, bp->pending_max); 2825 bp->pending_max = 0; 2826 } 2827 2828 bp->force_link_down = false; 2829 if (bp->port.pmf) { 2830 rc = bnx2x_initial_phy_init(bp, load_mode); 2831 if (rc) 2832 LOAD_ERROR_EXIT(bp, load_error3); 2833 } 2834 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2835 2836 /* Start fast path */ 2837 2838 /* Re-configure vlan filters */ 2839 rc = bnx2x_vlan_reconfigure_vid(bp); 2840 if (rc) 2841 LOAD_ERROR_EXIT(bp, load_error3); 2842 2843 /* Initialize Rx filter. */ 2844 bnx2x_set_rx_mode_inner(bp); 2845 2846 if (bp->flags & PTP_SUPPORTED) { 2847 bnx2x_register_phc(bp); 2848 bnx2x_init_ptp(bp); 2849 bnx2x_configure_ptp_filters(bp); 2850 } 2851 /* Start Tx */ 2852 switch (load_mode) { 2853 case LOAD_NORMAL: 2854 /* Tx queue should be only re-enabled */ 2855 netif_tx_wake_all_queues(bp->dev); 2856 break; 2857 2858 case LOAD_OPEN: 2859 netif_tx_start_all_queues(bp->dev); 2860 smp_mb__after_atomic(); 2861 break; 2862 2863 case LOAD_DIAG: 2864 case LOAD_LOOPBACK_EXT: 2865 bp->state = BNX2X_STATE_DIAG; 2866 break; 2867 2868 default: 2869 break; 2870 } 2871 2872 if (bp->port.pmf) 2873 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2874 else 2875 bnx2x__link_status_update(bp); 2876 2877 /* start the timer */ 2878 mod_timer(&bp->timer, jiffies + bp->current_interval); 2879 2880 if (CNIC_ENABLED(bp)) 2881 bnx2x_load_cnic(bp); 2882 2883 if (IS_PF(bp)) 2884 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 2885 2886 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2887 /* mark driver is loaded in shmem2 */ 2888 u32 val; 2889 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2890 val &= ~DRV_FLAGS_MTU_MASK; 2891 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT); 2892 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2893 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2894 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2895 } 2896 2897 /* Wait for all pending SP commands to complete */ 2898 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2899 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2900 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2901 return -EBUSY; 2902 } 2903 2904 /* Update driver data for On-Chip MFW dump. */ 2905 if (IS_PF(bp)) 2906 bnx2x_update_mfw_dump(bp); 2907 2908 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2909 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2910 bnx2x_dcbx_init(bp, false); 2911 2912 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2913 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE); 2914 2915 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2916 2917 return 0; 2918 2919 #ifndef BNX2X_STOP_ON_ERROR 2920 load_error3: 2921 if (IS_PF(bp)) { 2922 bnx2x_int_disable_sync(bp, 1); 2923 2924 /* Clean queueable objects */ 2925 bnx2x_squeeze_objects(bp); 2926 } 2927 2928 /* Free SKBs, SGEs, TPA pool and driver internals */ 2929 bnx2x_free_skbs(bp); 2930 for_each_rx_queue(bp, i) 2931 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2932 2933 /* Release IRQs */ 2934 bnx2x_free_irq(bp); 2935 load_error2: 2936 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2937 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2938 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2939 } 2940 2941 bp->port.pmf = 0; 2942 load_error1: 2943 bnx2x_napi_disable(bp); 2944 bnx2x_del_all_napi(bp); 2945 2946 /* clear pf_load status, as it was already set */ 2947 if (IS_PF(bp)) 2948 bnx2x_clear_pf_load(bp); 2949 load_error0: 2950 bnx2x_free_fw_stats_mem(bp); 2951 bnx2x_free_fp_mem(bp); 2952 bnx2x_free_mem(bp); 2953 2954 return rc; 2955 #endif /* ! BNX2X_STOP_ON_ERROR */ 2956 } 2957 2958 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2959 { 2960 u8 rc = 0, cos, i; 2961 2962 /* Wait until tx fastpath tasks complete */ 2963 for_each_tx_queue(bp, i) { 2964 struct bnx2x_fastpath *fp = &bp->fp[i]; 2965 2966 for_each_cos_in_tx_queue(fp, cos) 2967 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2968 if (rc) 2969 return rc; 2970 } 2971 return 0; 2972 } 2973 2974 /* must be called with rtnl_lock */ 2975 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2976 { 2977 int i; 2978 bool global = false; 2979 2980 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 2981 2982 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2983 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 2984 2985 /* mark driver is unloaded in shmem2 */ 2986 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2987 u32 val; 2988 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2989 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2990 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 2991 } 2992 2993 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 2994 (bp->state == BNX2X_STATE_CLOSED || 2995 bp->state == BNX2X_STATE_ERROR)) { 2996 /* We can get here if the driver has been unloaded 2997 * during parity error recovery and is either waiting for a 2998 * leader to complete or for other functions to unload and 2999 * then ifdown has been issued. In this case we want to 3000 * unload and let other functions to complete a recovery 3001 * process. 3002 */ 3003 bp->recovery_state = BNX2X_RECOVERY_DONE; 3004 bp->is_leader = 0; 3005 bnx2x_release_leader_lock(bp); 3006 smp_mb(); 3007 3008 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 3009 BNX2X_ERR("Can't unload in closed or error state\n"); 3010 return -EINVAL; 3011 } 3012 3013 /* Nothing to do during unload if previous bnx2x_nic_load() 3014 * have not completed successfully - all resources are released. 3015 * 3016 * we can get here only after unsuccessful ndo_* callback, during which 3017 * dev->IFF_UP flag is still on. 3018 */ 3019 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 3020 return 0; 3021 3022 /* It's important to set the bp->state to the value different from 3023 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 3024 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 3025 */ 3026 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 3027 smp_mb(); 3028 3029 /* indicate to VFs that the PF is going down */ 3030 bnx2x_iov_channel_down(bp); 3031 3032 if (CNIC_LOADED(bp)) 3033 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 3034 3035 /* Stop Tx */ 3036 bnx2x_tx_disable(bp); 3037 netdev_reset_tc(bp->dev); 3038 3039 bp->rx_mode = BNX2X_RX_MODE_NONE; 3040 3041 del_timer_sync(&bp->timer); 3042 3043 if (IS_PF(bp) && !BP_NOMCP(bp)) { 3044 /* Set ALWAYS_ALIVE bit in shmem */ 3045 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 3046 bnx2x_drv_pulse(bp); 3047 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 3048 bnx2x_save_statistics(bp); 3049 } 3050 3051 /* wait till consumers catch up with producers in all queues. 3052 * If we're recovering, FW can't write to host so no reason 3053 * to wait for the queues to complete all Tx. 3054 */ 3055 if (unload_mode != UNLOAD_RECOVERY) 3056 bnx2x_drain_tx_queues(bp); 3057 3058 /* if VF indicate to PF this function is going down (PF will delete sp 3059 * elements and clear initializations 3060 */ 3061 if (IS_VF(bp)) { 3062 bnx2x_clear_vlan_info(bp); 3063 bnx2x_vfpf_close_vf(bp); 3064 } else if (unload_mode != UNLOAD_RECOVERY) { 3065 /* if this is a normal/close unload need to clean up chip*/ 3066 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 3067 } else { 3068 /* Send the UNLOAD_REQUEST to the MCP */ 3069 bnx2x_send_unload_req(bp, unload_mode); 3070 3071 /* Prevent transactions to host from the functions on the 3072 * engine that doesn't reset global blocks in case of global 3073 * attention once global blocks are reset and gates are opened 3074 * (the engine which leader will perform the recovery 3075 * last). 3076 */ 3077 if (!CHIP_IS_E1x(bp)) 3078 bnx2x_pf_disable(bp); 3079 3080 /* Disable HW interrupts, NAPI */ 3081 bnx2x_netif_stop(bp, 1); 3082 /* Delete all NAPI objects */ 3083 bnx2x_del_all_napi(bp); 3084 if (CNIC_LOADED(bp)) 3085 bnx2x_del_all_napi_cnic(bp); 3086 /* Release IRQs */ 3087 bnx2x_free_irq(bp); 3088 3089 /* Report UNLOAD_DONE to MCP */ 3090 bnx2x_send_unload_done(bp, false); 3091 } 3092 3093 /* 3094 * At this stage no more interrupts will arrive so we may safely clean 3095 * the queueable objects here in case they failed to get cleaned so far. 3096 */ 3097 if (IS_PF(bp)) 3098 bnx2x_squeeze_objects(bp); 3099 3100 /* There should be no more pending SP commands at this stage */ 3101 bp->sp_state = 0; 3102 3103 bp->port.pmf = 0; 3104 3105 /* clear pending work in rtnl task */ 3106 bp->sp_rtnl_state = 0; 3107 smp_mb(); 3108 3109 /* Free SKBs, SGEs, TPA pool and driver internals */ 3110 bnx2x_free_skbs(bp); 3111 if (CNIC_LOADED(bp)) 3112 bnx2x_free_skbs_cnic(bp); 3113 for_each_rx_queue(bp, i) 3114 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3115 3116 bnx2x_free_fp_mem(bp); 3117 if (CNIC_LOADED(bp)) 3118 bnx2x_free_fp_mem_cnic(bp); 3119 3120 if (IS_PF(bp)) { 3121 if (CNIC_LOADED(bp)) 3122 bnx2x_free_mem_cnic(bp); 3123 } 3124 bnx2x_free_mem(bp); 3125 3126 bp->state = BNX2X_STATE_CLOSED; 3127 bp->cnic_loaded = false; 3128 3129 /* Clear driver version indication in shmem */ 3130 if (IS_PF(bp) && !BP_NOMCP(bp)) 3131 bnx2x_update_mng_version(bp); 3132 3133 /* Check if there are pending parity attentions. If there are - set 3134 * RECOVERY_IN_PROGRESS. 3135 */ 3136 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3137 bnx2x_set_reset_in_progress(bp); 3138 3139 /* Set RESET_IS_GLOBAL if needed */ 3140 if (global) 3141 bnx2x_set_reset_global(bp); 3142 } 3143 3144 /* The last driver must disable a "close the gate" if there is no 3145 * parity attention or "process kill" pending. 3146 */ 3147 if (IS_PF(bp) && 3148 !bnx2x_clear_pf_load(bp) && 3149 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3150 bnx2x_disable_close_the_gate(bp); 3151 3152 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3153 3154 return 0; 3155 } 3156 3157 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3158 { 3159 u16 pmcsr; 3160 3161 /* If there is no power capability, silently succeed */ 3162 if (!bp->pdev->pm_cap) { 3163 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3164 return 0; 3165 } 3166 3167 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3168 3169 switch (state) { 3170 case PCI_D0: 3171 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3172 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3173 PCI_PM_CTRL_PME_STATUS)); 3174 3175 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3176 /* delay required during transition out of D3hot */ 3177 msleep(20); 3178 break; 3179 3180 case PCI_D3hot: 3181 /* If there are other clients above don't 3182 shut down the power */ 3183 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3184 return 0; 3185 /* Don't shut down the power for emulation and FPGA */ 3186 if (CHIP_REV_IS_SLOW(bp)) 3187 return 0; 3188 3189 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3190 pmcsr |= 3; 3191 3192 if (bp->wol) 3193 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3194 3195 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3196 pmcsr); 3197 3198 /* No more memory access after this point until 3199 * device is brought back to D0. 3200 */ 3201 break; 3202 3203 default: 3204 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3205 return -EINVAL; 3206 } 3207 return 0; 3208 } 3209 3210 /* 3211 * net_device service functions 3212 */ 3213 static int bnx2x_poll(struct napi_struct *napi, int budget) 3214 { 3215 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3216 napi); 3217 struct bnx2x *bp = fp->bp; 3218 int rx_work_done; 3219 u8 cos; 3220 3221 #ifdef BNX2X_STOP_ON_ERROR 3222 if (unlikely(bp->panic)) { 3223 napi_complete(napi); 3224 return 0; 3225 } 3226 #endif 3227 for_each_cos_in_tx_queue(fp, cos) 3228 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3229 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3230 3231 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0; 3232 3233 if (rx_work_done < budget) { 3234 /* No need to update SB for FCoE L2 ring as long as 3235 * it's connected to the default SB and the SB 3236 * has been updated when NAPI was scheduled. 3237 */ 3238 if (IS_FCOE_FP(fp)) { 3239 napi_complete_done(napi, rx_work_done); 3240 } else { 3241 bnx2x_update_fpsb_idx(fp); 3242 /* bnx2x_has_rx_work() reads the status block, 3243 * thus we need to ensure that status block indices 3244 * have been actually read (bnx2x_update_fpsb_idx) 3245 * prior to this check (bnx2x_has_rx_work) so that 3246 * we won't write the "newer" value of the status block 3247 * to IGU (if there was a DMA right after 3248 * bnx2x_has_rx_work and if there is no rmb, the memory 3249 * reading (bnx2x_update_fpsb_idx) may be postponed 3250 * to right before bnx2x_ack_sb). In this case there 3251 * will never be another interrupt until there is 3252 * another update of the status block, while there 3253 * is still unhandled work. 3254 */ 3255 rmb(); 3256 3257 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3258 if (napi_complete_done(napi, rx_work_done)) { 3259 /* Re-enable interrupts */ 3260 DP(NETIF_MSG_RX_STATUS, 3261 "Update index to %d\n", fp->fp_hc_idx); 3262 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3263 le16_to_cpu(fp->fp_hc_idx), 3264 IGU_INT_ENABLE, 1); 3265 } 3266 } else { 3267 rx_work_done = budget; 3268 } 3269 } 3270 } 3271 3272 return rx_work_done; 3273 } 3274 3275 /* we split the first BD into headers and data BDs 3276 * to ease the pain of our fellow microcode engineers 3277 * we use one mapping for both BDs 3278 */ 3279 static u16 bnx2x_tx_split(struct bnx2x *bp, 3280 struct bnx2x_fp_txdata *txdata, 3281 struct sw_tx_bd *tx_buf, 3282 struct eth_tx_start_bd **tx_bd, u16 hlen, 3283 u16 bd_prod) 3284 { 3285 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3286 struct eth_tx_bd *d_tx_bd; 3287 dma_addr_t mapping; 3288 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3289 3290 /* first fix first BD */ 3291 h_tx_bd->nbytes = cpu_to_le16(hlen); 3292 3293 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3294 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3295 3296 /* now get a new data BD 3297 * (after the pbd) and fill it */ 3298 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3299 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3300 3301 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3302 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3303 3304 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3305 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3306 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3307 3308 /* this marks the BD as one that has no individual mapping */ 3309 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3310 3311 DP(NETIF_MSG_TX_QUEUED, 3312 "TSO split data size is %d (%x:%x)\n", 3313 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3314 3315 /* update tx_bd */ 3316 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3317 3318 return bd_prod; 3319 } 3320 3321 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3322 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3323 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3324 { 3325 __sum16 tsum = (__force __sum16) csum; 3326 3327 if (fix > 0) 3328 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3329 csum_partial(t_header - fix, fix, 0))); 3330 3331 else if (fix < 0) 3332 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3333 csum_partial(t_header, -fix, 0))); 3334 3335 return bswab16(tsum); 3336 } 3337 3338 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3339 { 3340 u32 rc; 3341 __u8 prot = 0; 3342 __be16 protocol; 3343 3344 if (skb->ip_summed != CHECKSUM_PARTIAL) 3345 return XMIT_PLAIN; 3346 3347 protocol = vlan_get_protocol(skb); 3348 if (protocol == htons(ETH_P_IPV6)) { 3349 rc = XMIT_CSUM_V6; 3350 prot = ipv6_hdr(skb)->nexthdr; 3351 } else { 3352 rc = XMIT_CSUM_V4; 3353 prot = ip_hdr(skb)->protocol; 3354 } 3355 3356 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3357 if (inner_ip_hdr(skb)->version == 6) { 3358 rc |= XMIT_CSUM_ENC_V6; 3359 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3360 rc |= XMIT_CSUM_TCP; 3361 } else { 3362 rc |= XMIT_CSUM_ENC_V4; 3363 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3364 rc |= XMIT_CSUM_TCP; 3365 } 3366 } 3367 if (prot == IPPROTO_TCP) 3368 rc |= XMIT_CSUM_TCP; 3369 3370 if (skb_is_gso(skb)) { 3371 if (skb_is_gso_v6(skb)) { 3372 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3373 if (rc & XMIT_CSUM_ENC) 3374 rc |= XMIT_GSO_ENC_V6; 3375 } else { 3376 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3377 if (rc & XMIT_CSUM_ENC) 3378 rc |= XMIT_GSO_ENC_V4; 3379 } 3380 } 3381 3382 return rc; 3383 } 3384 3385 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */ 3386 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4 3387 3388 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3389 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3 3390 3391 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3392 /* check if packet requires linearization (packet is too fragmented) 3393 no need to check fragmentation if page size > 8K (there will be no 3394 violation to FW restrictions) */ 3395 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3396 u32 xmit_type) 3397 { 3398 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS; 3399 int to_copy = 0, hlen = 0; 3400 3401 if (xmit_type & XMIT_GSO_ENC) 3402 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS; 3403 3404 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) { 3405 if (xmit_type & XMIT_GSO) { 3406 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3407 int wnd_size = MAX_FETCH_BD - num_tso_win_sub; 3408 /* Number of windows to check */ 3409 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3410 int wnd_idx = 0; 3411 int frag_idx = 0; 3412 u32 wnd_sum = 0; 3413 3414 /* Headers length */ 3415 if (xmit_type & XMIT_GSO_ENC) 3416 hlen = (int)(skb_inner_transport_header(skb) - 3417 skb->data) + 3418 inner_tcp_hdrlen(skb); 3419 else 3420 hlen = (int)(skb_transport_header(skb) - 3421 skb->data) + tcp_hdrlen(skb); 3422 3423 /* Amount of data (w/o headers) on linear part of SKB*/ 3424 first_bd_sz = skb_headlen(skb) - hlen; 3425 3426 wnd_sum = first_bd_sz; 3427 3428 /* Calculate the first sum - it's special */ 3429 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3430 wnd_sum += 3431 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3432 3433 /* If there was data on linear skb data - check it */ 3434 if (first_bd_sz > 0) { 3435 if (unlikely(wnd_sum < lso_mss)) { 3436 to_copy = 1; 3437 goto exit_lbl; 3438 } 3439 3440 wnd_sum -= first_bd_sz; 3441 } 3442 3443 /* Others are easier: run through the frag list and 3444 check all windows */ 3445 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3446 wnd_sum += 3447 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3448 3449 if (unlikely(wnd_sum < lso_mss)) { 3450 to_copy = 1; 3451 break; 3452 } 3453 wnd_sum -= 3454 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3455 } 3456 } else { 3457 /* in non-LSO too fragmented packet should always 3458 be linearized */ 3459 to_copy = 1; 3460 } 3461 } 3462 3463 exit_lbl: 3464 if (unlikely(to_copy)) 3465 DP(NETIF_MSG_TX_QUEUED, 3466 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3467 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3468 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3469 3470 return to_copy; 3471 } 3472 #endif 3473 3474 /** 3475 * bnx2x_set_pbd_gso - update PBD in GSO case. 3476 * 3477 * @skb: packet skb 3478 * @pbd: parse BD 3479 * @xmit_type: xmit flags 3480 */ 3481 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3482 struct eth_tx_parse_bd_e1x *pbd, 3483 u32 xmit_type) 3484 { 3485 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3486 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3487 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3488 3489 if (xmit_type & XMIT_GSO_V4) { 3490 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3491 pbd->tcp_pseudo_csum = 3492 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3493 ip_hdr(skb)->daddr, 3494 0, IPPROTO_TCP, 0)); 3495 } else { 3496 pbd->tcp_pseudo_csum = 3497 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3498 &ipv6_hdr(skb)->daddr, 3499 0, IPPROTO_TCP, 0)); 3500 } 3501 3502 pbd->global_data |= 3503 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3504 } 3505 3506 /** 3507 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3508 * 3509 * @bp: driver handle 3510 * @skb: packet skb 3511 * @parsing_data: data to be updated 3512 * @xmit_type: xmit flags 3513 * 3514 * 57712/578xx related, when skb has encapsulation 3515 */ 3516 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3517 u32 *parsing_data, u32 xmit_type) 3518 { 3519 *parsing_data |= 3520 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3521 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3522 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3523 3524 if (xmit_type & XMIT_CSUM_TCP) { 3525 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3526 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3527 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3528 3529 return skb_inner_transport_header(skb) + 3530 inner_tcp_hdrlen(skb) - skb->data; 3531 } 3532 3533 /* We support checksum offload for TCP and UDP only. 3534 * No need to pass the UDP header length - it's a constant. 3535 */ 3536 return skb_inner_transport_header(skb) + 3537 sizeof(struct udphdr) - skb->data; 3538 } 3539 3540 /** 3541 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3542 * 3543 * @bp: driver handle 3544 * @skb: packet skb 3545 * @parsing_data: data to be updated 3546 * @xmit_type: xmit flags 3547 * 3548 * 57712/578xx related 3549 */ 3550 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3551 u32 *parsing_data, u32 xmit_type) 3552 { 3553 *parsing_data |= 3554 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3555 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3556 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3557 3558 if (xmit_type & XMIT_CSUM_TCP) { 3559 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3560 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3561 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3562 3563 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; 3564 } 3565 /* We support checksum offload for TCP and UDP only. 3566 * No need to pass the UDP header length - it's a constant. 3567 */ 3568 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; 3569 } 3570 3571 /* set FW indication according to inner or outer protocols if tunneled */ 3572 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3573 struct eth_tx_start_bd *tx_start_bd, 3574 u32 xmit_type) 3575 { 3576 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3577 3578 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3579 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3580 3581 if (!(xmit_type & XMIT_CSUM_TCP)) 3582 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3583 } 3584 3585 /** 3586 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3587 * 3588 * @bp: driver handle 3589 * @skb: packet skb 3590 * @pbd: parse BD to be updated 3591 * @xmit_type: xmit flags 3592 */ 3593 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3594 struct eth_tx_parse_bd_e1x *pbd, 3595 u32 xmit_type) 3596 { 3597 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3598 3599 /* for now NS flag is not used in Linux */ 3600 pbd->global_data = 3601 cpu_to_le16(hlen | 3602 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3603 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3604 3605 pbd->ip_hlen_w = (skb_transport_header(skb) - 3606 skb_network_header(skb)) >> 1; 3607 3608 hlen += pbd->ip_hlen_w; 3609 3610 /* We support checksum offload for TCP and UDP only */ 3611 if (xmit_type & XMIT_CSUM_TCP) 3612 hlen += tcp_hdrlen(skb) / 2; 3613 else 3614 hlen += sizeof(struct udphdr) / 2; 3615 3616 pbd->total_hlen_w = cpu_to_le16(hlen); 3617 hlen = hlen*2; 3618 3619 if (xmit_type & XMIT_CSUM_TCP) { 3620 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3621 3622 } else { 3623 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3624 3625 DP(NETIF_MSG_TX_QUEUED, 3626 "hlen %d fix %d csum before fix %x\n", 3627 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3628 3629 /* HW bug: fixup the CSUM */ 3630 pbd->tcp_pseudo_csum = 3631 bnx2x_csum_fix(skb_transport_header(skb), 3632 SKB_CS(skb), fix); 3633 3634 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3635 pbd->tcp_pseudo_csum); 3636 } 3637 3638 return hlen; 3639 } 3640 3641 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3642 struct eth_tx_parse_bd_e2 *pbd_e2, 3643 struct eth_tx_parse_2nd_bd *pbd2, 3644 u16 *global_data, 3645 u32 xmit_type) 3646 { 3647 u16 hlen_w = 0; 3648 u8 outerip_off, outerip_len = 0; 3649 3650 /* from outer IP to transport */ 3651 hlen_w = (skb_inner_transport_header(skb) - 3652 skb_network_header(skb)) >> 1; 3653 3654 /* transport len */ 3655 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3656 3657 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3658 3659 /* outer IP header info */ 3660 if (xmit_type & XMIT_CSUM_V4) { 3661 struct iphdr *iph = ip_hdr(skb); 3662 u32 csum = (__force u32)(~iph->check) - 3663 (__force u32)iph->tot_len - 3664 (__force u32)iph->frag_off; 3665 3666 outerip_len = iph->ihl << 1; 3667 3668 pbd2->fw_ip_csum_wo_len_flags_frag = 3669 bswab16(csum_fold((__force __wsum)csum)); 3670 } else { 3671 pbd2->fw_ip_hdr_to_payload_w = 3672 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3673 pbd_e2->data.tunnel_data.flags |= 3674 ETH_TUNNEL_DATA_IPV6_OUTER; 3675 } 3676 3677 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3678 3679 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3680 3681 /* inner IP header info */ 3682 if (xmit_type & XMIT_CSUM_ENC_V4) { 3683 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3684 3685 pbd_e2->data.tunnel_data.pseudo_csum = 3686 bswab16(~csum_tcpudp_magic( 3687 inner_ip_hdr(skb)->saddr, 3688 inner_ip_hdr(skb)->daddr, 3689 0, IPPROTO_TCP, 0)); 3690 } else { 3691 pbd_e2->data.tunnel_data.pseudo_csum = 3692 bswab16(~csum_ipv6_magic( 3693 &inner_ipv6_hdr(skb)->saddr, 3694 &inner_ipv6_hdr(skb)->daddr, 3695 0, IPPROTO_TCP, 0)); 3696 } 3697 3698 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3699 3700 *global_data |= 3701 outerip_off | 3702 (outerip_len << 3703 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3704 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3705 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3706 3707 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3708 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3709 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3710 } 3711 } 3712 3713 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data, 3714 u32 xmit_type) 3715 { 3716 struct ipv6hdr *ipv6; 3717 3718 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6))) 3719 return; 3720 3721 if (xmit_type & XMIT_GSO_ENC_V6) 3722 ipv6 = inner_ipv6_hdr(skb); 3723 else /* XMIT_GSO_V6 */ 3724 ipv6 = ipv6_hdr(skb); 3725 3726 if (ipv6->nexthdr == NEXTHDR_IPV6) 3727 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3728 } 3729 3730 /* called with netif_tx_lock 3731 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3732 * netif_wake_queue() 3733 */ 3734 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3735 { 3736 struct bnx2x *bp = netdev_priv(dev); 3737 3738 struct netdev_queue *txq; 3739 struct bnx2x_fp_txdata *txdata; 3740 struct sw_tx_bd *tx_buf; 3741 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3742 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3743 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3744 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3745 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3746 u32 pbd_e2_parsing_data = 0; 3747 u16 pkt_prod, bd_prod; 3748 int nbd, txq_index; 3749 dma_addr_t mapping; 3750 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3751 int i; 3752 u8 hlen = 0; 3753 __le16 pkt_size = 0; 3754 struct ethhdr *eth; 3755 u8 mac_type = UNICAST_ADDRESS; 3756 3757 #ifdef BNX2X_STOP_ON_ERROR 3758 if (unlikely(bp->panic)) 3759 return NETDEV_TX_BUSY; 3760 #endif 3761 3762 txq_index = skb_get_queue_mapping(skb); 3763 txq = netdev_get_tx_queue(dev, txq_index); 3764 3765 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3766 3767 txdata = &bp->bnx2x_txq[txq_index]; 3768 3769 /* enable this debug print to view the transmission queue being used 3770 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3771 txq_index, fp_index, txdata_index); */ 3772 3773 /* enable this debug print to view the transmission details 3774 DP(NETIF_MSG_TX_QUEUED, 3775 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3776 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3777 3778 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3779 skb_shinfo(skb)->nr_frags + 3780 BDS_PER_TX_PKT + 3781 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3782 /* Handle special storage cases separately */ 3783 if (txdata->tx_ring_size == 0) { 3784 struct bnx2x_eth_q_stats *q_stats = 3785 bnx2x_fp_qstats(bp, txdata->parent_fp); 3786 q_stats->driver_filtered_tx_pkt++; 3787 dev_kfree_skb(skb); 3788 return NETDEV_TX_OK; 3789 } 3790 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3791 netif_tx_stop_queue(txq); 3792 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3793 3794 return NETDEV_TX_BUSY; 3795 } 3796 3797 DP(NETIF_MSG_TX_QUEUED, 3798 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3799 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3800 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3801 skb->len); 3802 3803 eth = (struct ethhdr *)skb->data; 3804 3805 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3806 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3807 if (is_broadcast_ether_addr(eth->h_dest)) 3808 mac_type = BROADCAST_ADDRESS; 3809 else 3810 mac_type = MULTICAST_ADDRESS; 3811 } 3812 3813 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3814 /* First, check if we need to linearize the skb (due to FW 3815 restrictions). No need to check fragmentation if page size > 8K 3816 (there will be no violation to FW restrictions) */ 3817 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3818 /* Statistics of linearization */ 3819 bp->lin_cnt++; 3820 if (skb_linearize(skb) != 0) { 3821 DP(NETIF_MSG_TX_QUEUED, 3822 "SKB linearization failed - silently dropping this SKB\n"); 3823 dev_kfree_skb_any(skb); 3824 return NETDEV_TX_OK; 3825 } 3826 } 3827 #endif 3828 /* Map skb linear data for DMA */ 3829 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3830 skb_headlen(skb), DMA_TO_DEVICE); 3831 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3832 DP(NETIF_MSG_TX_QUEUED, 3833 "SKB mapping failed - silently dropping this SKB\n"); 3834 dev_kfree_skb_any(skb); 3835 return NETDEV_TX_OK; 3836 } 3837 /* 3838 Please read carefully. First we use one BD which we mark as start, 3839 then we have a parsing info BD (used for TSO or xsum), 3840 and only then we have the rest of the TSO BDs. 3841 (don't forget to mark the last one as last, 3842 and to unmap only AFTER you write to the BD ...) 3843 And above all, all pdb sizes are in words - NOT DWORDS! 3844 */ 3845 3846 /* get current pkt produced now - advance it just before sending packet 3847 * since mapping of pages may fail and cause packet to be dropped 3848 */ 3849 pkt_prod = txdata->tx_pkt_prod; 3850 bd_prod = TX_BD(txdata->tx_bd_prod); 3851 3852 /* get a tx_buf and first BD 3853 * tx_start_bd may be changed during SPLIT, 3854 * but first_bd will always stay first 3855 */ 3856 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3857 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3858 first_bd = tx_start_bd; 3859 3860 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3861 3862 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3863 if (!(bp->flags & TX_TIMESTAMPING_EN)) { 3864 bp->eth_stats.ptp_skip_tx_ts++; 3865 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n"); 3866 } else if (bp->ptp_tx_skb) { 3867 bp->eth_stats.ptp_skip_tx_ts++; 3868 netdev_err_once(bp->dev, 3869 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n"); 3870 } else { 3871 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3872 /* schedule check for Tx timestamp */ 3873 bp->ptp_tx_skb = skb_get(skb); 3874 bp->ptp_tx_start = jiffies; 3875 schedule_work(&bp->ptp_task); 3876 } 3877 } 3878 3879 /* header nbd: indirectly zero other flags! */ 3880 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3881 3882 /* remember the first BD of the packet */ 3883 tx_buf->first_bd = txdata->tx_bd_prod; 3884 tx_buf->skb = skb; 3885 tx_buf->flags = 0; 3886 3887 DP(NETIF_MSG_TX_QUEUED, 3888 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3889 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3890 3891 if (skb_vlan_tag_present(skb)) { 3892 tx_start_bd->vlan_or_ethertype = 3893 cpu_to_le16(skb_vlan_tag_get(skb)); 3894 tx_start_bd->bd_flags.as_bitfield |= 3895 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3896 } else { 3897 /* when transmitting in a vf, start bd must hold the ethertype 3898 * for fw to enforce it 3899 */ 3900 u16 vlan_tci = 0; 3901 #ifndef BNX2X_STOP_ON_ERROR 3902 if (IS_VF(bp)) { 3903 #endif 3904 /* Still need to consider inband vlan for enforced */ 3905 if (__vlan_get_tag(skb, &vlan_tci)) { 3906 tx_start_bd->vlan_or_ethertype = 3907 cpu_to_le16(ntohs(eth->h_proto)); 3908 } else { 3909 tx_start_bd->bd_flags.as_bitfield |= 3910 (X_ETH_INBAND_VLAN << 3911 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3912 tx_start_bd->vlan_or_ethertype = 3913 cpu_to_le16(vlan_tci); 3914 } 3915 #ifndef BNX2X_STOP_ON_ERROR 3916 } else { 3917 /* used by FW for packet accounting */ 3918 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3919 } 3920 #endif 3921 } 3922 3923 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3924 3925 /* turn on parsing and get a BD */ 3926 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3927 3928 if (xmit_type & XMIT_CSUM) 3929 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3930 3931 if (!CHIP_IS_E1x(bp)) { 3932 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3933 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3934 3935 if (xmit_type & XMIT_CSUM_ENC) { 3936 u16 global_data = 0; 3937 3938 /* Set PBD in enc checksum offload case */ 3939 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3940 &pbd_e2_parsing_data, 3941 xmit_type); 3942 3943 /* turn on 2nd parsing and get a BD */ 3944 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3945 3946 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3947 3948 memset(pbd2, 0, sizeof(*pbd2)); 3949 3950 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3951 (skb_inner_network_header(skb) - 3952 skb->data) >> 1; 3953 3954 if (xmit_type & XMIT_GSO_ENC) 3955 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3956 &global_data, 3957 xmit_type); 3958 3959 pbd2->global_data = cpu_to_le16(global_data); 3960 3961 /* add addition parse BD indication to start BD */ 3962 SET_FLAG(tx_start_bd->general_data, 3963 ETH_TX_START_BD_PARSE_NBDS, 1); 3964 /* set encapsulation flag in start BD */ 3965 SET_FLAG(tx_start_bd->general_data, 3966 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3967 3968 tx_buf->flags |= BNX2X_HAS_SECOND_PBD; 3969 3970 nbd++; 3971 } else if (xmit_type & XMIT_CSUM) { 3972 /* Set PBD in checksum offload case w/o encapsulation */ 3973 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3974 &pbd_e2_parsing_data, 3975 xmit_type); 3976 } 3977 3978 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type); 3979 /* Add the macs to the parsing BD if this is a vf or if 3980 * Tx Switching is enabled. 3981 */ 3982 if (IS_VF(bp)) { 3983 /* override GRE parameters in BD */ 3984 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3985 &pbd_e2->data.mac_addr.src_mid, 3986 &pbd_e2->data.mac_addr.src_lo, 3987 eth->h_source); 3988 3989 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 3990 &pbd_e2->data.mac_addr.dst_mid, 3991 &pbd_e2->data.mac_addr.dst_lo, 3992 eth->h_dest); 3993 } else { 3994 if (bp->flags & TX_SWITCHING) 3995 bnx2x_set_fw_mac_addr( 3996 &pbd_e2->data.mac_addr.dst_hi, 3997 &pbd_e2->data.mac_addr.dst_mid, 3998 &pbd_e2->data.mac_addr.dst_lo, 3999 eth->h_dest); 4000 #ifdef BNX2X_STOP_ON_ERROR 4001 /* Enforce security is always set in Stop on Error - 4002 * source mac should be present in the parsing BD 4003 */ 4004 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 4005 &pbd_e2->data.mac_addr.src_mid, 4006 &pbd_e2->data.mac_addr.src_lo, 4007 eth->h_source); 4008 #endif 4009 } 4010 4011 SET_FLAG(pbd_e2_parsing_data, 4012 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 4013 } else { 4014 u16 global_data = 0; 4015 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 4016 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 4017 /* Set PBD in checksum offload case */ 4018 if (xmit_type & XMIT_CSUM) 4019 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 4020 4021 SET_FLAG(global_data, 4022 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 4023 pbd_e1x->global_data |= cpu_to_le16(global_data); 4024 } 4025 4026 /* Setup the data pointer of the first BD of the packet */ 4027 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4028 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4029 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 4030 pkt_size = tx_start_bd->nbytes; 4031 4032 DP(NETIF_MSG_TX_QUEUED, 4033 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 4034 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 4035 le16_to_cpu(tx_start_bd->nbytes), 4036 tx_start_bd->bd_flags.as_bitfield, 4037 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 4038 4039 if (xmit_type & XMIT_GSO) { 4040 4041 DP(NETIF_MSG_TX_QUEUED, 4042 "TSO packet len %d hlen %d total len %d tso size %d\n", 4043 skb->len, hlen, skb_headlen(skb), 4044 skb_shinfo(skb)->gso_size); 4045 4046 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 4047 4048 if (unlikely(skb_headlen(skb) > hlen)) { 4049 nbd++; 4050 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 4051 &tx_start_bd, hlen, 4052 bd_prod); 4053 } 4054 if (!CHIP_IS_E1x(bp)) 4055 pbd_e2_parsing_data |= 4056 (skb_shinfo(skb)->gso_size << 4057 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 4058 ETH_TX_PARSE_BD_E2_LSO_MSS; 4059 else 4060 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); 4061 } 4062 4063 /* Set the PBD's parsing_data field if not zero 4064 * (for the chips newer than 57711). 4065 */ 4066 if (pbd_e2_parsing_data) 4067 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 4068 4069 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 4070 4071 /* Handle fragmented skb */ 4072 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4073 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4074 4075 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 4076 skb_frag_size(frag), DMA_TO_DEVICE); 4077 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 4078 unsigned int pkts_compl = 0, bytes_compl = 0; 4079 4080 DP(NETIF_MSG_TX_QUEUED, 4081 "Unable to map page - dropping packet...\n"); 4082 4083 /* we need unmap all buffers already mapped 4084 * for this SKB; 4085 * first_bd->nbd need to be properly updated 4086 * before call to bnx2x_free_tx_pkt 4087 */ 4088 first_bd->nbd = cpu_to_le16(nbd); 4089 bnx2x_free_tx_pkt(bp, txdata, 4090 TX_BD(txdata->tx_pkt_prod), 4091 &pkts_compl, &bytes_compl); 4092 return NETDEV_TX_OK; 4093 } 4094 4095 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4096 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4097 if (total_pkt_bd == NULL) 4098 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4099 4100 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4101 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4102 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 4103 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 4104 nbd++; 4105 4106 DP(NETIF_MSG_TX_QUEUED, 4107 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 4108 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 4109 le16_to_cpu(tx_data_bd->nbytes)); 4110 } 4111 4112 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 4113 4114 /* update with actual num BDs */ 4115 first_bd->nbd = cpu_to_le16(nbd); 4116 4117 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4118 4119 /* now send a tx doorbell, counting the next BD 4120 * if the packet contains or ends with it 4121 */ 4122 if (TX_BD_POFF(bd_prod) < nbd) 4123 nbd++; 4124 4125 /* total_pkt_bytes should be set on the first data BD if 4126 * it's not an LSO packet and there is more than one 4127 * data BD. In this case pkt_size is limited by an MTU value. 4128 * However we prefer to set it for an LSO packet (while we don't 4129 * have to) in order to save some CPU cycles in a none-LSO 4130 * case, when we much more care about them. 4131 */ 4132 if (total_pkt_bd != NULL) 4133 total_pkt_bd->total_pkt_bytes = pkt_size; 4134 4135 if (pbd_e1x) 4136 DP(NETIF_MSG_TX_QUEUED, 4137 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4138 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4139 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4140 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4141 le16_to_cpu(pbd_e1x->total_hlen_w)); 4142 if (pbd_e2) 4143 DP(NETIF_MSG_TX_QUEUED, 4144 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4145 pbd_e2, 4146 pbd_e2->data.mac_addr.dst_hi, 4147 pbd_e2->data.mac_addr.dst_mid, 4148 pbd_e2->data.mac_addr.dst_lo, 4149 pbd_e2->data.mac_addr.src_hi, 4150 pbd_e2->data.mac_addr.src_mid, 4151 pbd_e2->data.mac_addr.src_lo, 4152 pbd_e2->parsing_data); 4153 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4154 4155 netdev_tx_sent_queue(txq, skb->len); 4156 4157 skb_tx_timestamp(skb); 4158 4159 txdata->tx_pkt_prod++; 4160 /* 4161 * Make sure that the BD data is updated before updating the producer 4162 * since FW might read the BD right after the producer is updated. 4163 * This is only applicable for weak-ordered memory model archs such 4164 * as IA-64. The following barrier is also mandatory since FW will 4165 * assumes packets must have BDs. 4166 */ 4167 wmb(); 4168 4169 txdata->tx_db.data.prod += nbd; 4170 /* make sure descriptor update is observed by HW */ 4171 wmb(); 4172 4173 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw); 4174 4175 txdata->tx_bd_prod += nbd; 4176 4177 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4178 netif_tx_stop_queue(txq); 4179 4180 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4181 * ordering of set_bit() in netif_tx_stop_queue() and read of 4182 * fp->bd_tx_cons */ 4183 smp_mb(); 4184 4185 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4186 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4187 netif_tx_wake_queue(txq); 4188 } 4189 txdata->tx_pkt++; 4190 4191 return NETDEV_TX_OK; 4192 } 4193 4194 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default) 4195 { 4196 int mfw_vn = BP_FW_MB_IDX(bp); 4197 u32 tmp; 4198 4199 /* If the shmem shouldn't affect configuration, reflect */ 4200 if (!IS_MF_BD(bp)) { 4201 int i; 4202 4203 for (i = 0; i < BNX2X_MAX_PRIORITY; i++) 4204 c2s_map[i] = i; 4205 *c2s_default = 0; 4206 4207 return; 4208 } 4209 4210 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]); 4211 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4212 c2s_map[0] = tmp & 0xff; 4213 c2s_map[1] = (tmp >> 8) & 0xff; 4214 c2s_map[2] = (tmp >> 16) & 0xff; 4215 c2s_map[3] = (tmp >> 24) & 0xff; 4216 4217 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]); 4218 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4219 c2s_map[4] = tmp & 0xff; 4220 c2s_map[5] = (tmp >> 8) & 0xff; 4221 c2s_map[6] = (tmp >> 16) & 0xff; 4222 c2s_map[7] = (tmp >> 24) & 0xff; 4223 4224 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]); 4225 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4226 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff; 4227 } 4228 4229 /** 4230 * bnx2x_setup_tc - routine to configure net_device for multi tc 4231 * 4232 * @netdev: net device to configure 4233 * @tc: number of traffic classes to enable 4234 * 4235 * callback connected to the ndo_setup_tc function pointer 4236 */ 4237 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4238 { 4239 struct bnx2x *bp = netdev_priv(dev); 4240 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def; 4241 int cos, prio, count, offset; 4242 4243 /* setup tc must be called under rtnl lock */ 4244 ASSERT_RTNL(); 4245 4246 /* no traffic classes requested. Aborting */ 4247 if (!num_tc) { 4248 netdev_reset_tc(dev); 4249 return 0; 4250 } 4251 4252 /* requested to support too many traffic classes */ 4253 if (num_tc > bp->max_cos) { 4254 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4255 num_tc, bp->max_cos); 4256 return -EINVAL; 4257 } 4258 4259 /* declare amount of supported traffic classes */ 4260 if (netdev_set_num_tc(dev, num_tc)) { 4261 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4262 return -EINVAL; 4263 } 4264 4265 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def); 4266 4267 /* configure priority to traffic class mapping */ 4268 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4269 int outer_prio = c2s_map[prio]; 4270 4271 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]); 4272 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4273 "mapping priority %d to tc %d\n", 4274 outer_prio, bp->prio_to_cos[outer_prio]); 4275 } 4276 4277 /* Use this configuration to differentiate tc0 from other COSes 4278 This can be used for ets or pfc, and save the effort of setting 4279 up a multio class queue disc or negotiating DCBX with a switch 4280 netdev_set_prio_tc_map(dev, 0, 0); 4281 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4282 for (prio = 1; prio < 16; prio++) { 4283 netdev_set_prio_tc_map(dev, prio, 1); 4284 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4285 } */ 4286 4287 /* configure traffic class to transmission queue mapping */ 4288 for (cos = 0; cos < bp->max_cos; cos++) { 4289 count = BNX2X_NUM_ETH_QUEUES(bp); 4290 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4291 netdev_set_tc_queue(dev, cos, count, offset); 4292 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4293 "mapping tc %d to offset %d count %d\n", 4294 cos, offset, count); 4295 } 4296 4297 return 0; 4298 } 4299 4300 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type, 4301 void *type_data) 4302 { 4303 struct tc_mqprio_qopt *mqprio = type_data; 4304 4305 if (type != TC_SETUP_QDISC_MQPRIO) 4306 return -EOPNOTSUPP; 4307 4308 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 4309 4310 return bnx2x_setup_tc(dev, mqprio->num_tc); 4311 } 4312 4313 /* called with rtnl_lock */ 4314 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4315 { 4316 struct sockaddr *addr = p; 4317 struct bnx2x *bp = netdev_priv(dev); 4318 int rc = 0; 4319 4320 if (!is_valid_ether_addr(addr->sa_data)) { 4321 BNX2X_ERR("Requested MAC address is not valid\n"); 4322 return -EINVAL; 4323 } 4324 4325 if (IS_MF_STORAGE_ONLY(bp)) { 4326 BNX2X_ERR("Can't change address on STORAGE ONLY function\n"); 4327 return -EINVAL; 4328 } 4329 4330 if (netif_running(dev)) { 4331 rc = bnx2x_set_eth_mac(bp, false); 4332 if (rc) 4333 return rc; 4334 } 4335 4336 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4337 4338 if (netif_running(dev)) 4339 rc = bnx2x_set_eth_mac(bp, true); 4340 4341 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4342 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4343 4344 return rc; 4345 } 4346 4347 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4348 { 4349 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4350 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4351 u8 cos; 4352 4353 /* Common */ 4354 4355 if (IS_FCOE_IDX(fp_index)) { 4356 memset(sb, 0, sizeof(union host_hc_status_block)); 4357 fp->status_blk_mapping = 0; 4358 } else { 4359 /* status blocks */ 4360 if (!CHIP_IS_E1x(bp)) 4361 BNX2X_PCI_FREE(sb->e2_sb, 4362 bnx2x_fp(bp, fp_index, 4363 status_blk_mapping), 4364 sizeof(struct host_hc_status_block_e2)); 4365 else 4366 BNX2X_PCI_FREE(sb->e1x_sb, 4367 bnx2x_fp(bp, fp_index, 4368 status_blk_mapping), 4369 sizeof(struct host_hc_status_block_e1x)); 4370 } 4371 4372 /* Rx */ 4373 if (!skip_rx_queue(bp, fp_index)) { 4374 bnx2x_free_rx_bds(fp); 4375 4376 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4377 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4378 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4379 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4380 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4381 4382 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4383 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4384 sizeof(struct eth_fast_path_rx_cqe) * 4385 NUM_RCQ_BD); 4386 4387 /* SGE ring */ 4388 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4389 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4390 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4391 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4392 } 4393 4394 /* Tx */ 4395 if (!skip_tx_queue(bp, fp_index)) { 4396 /* fastpath tx rings: tx_buf tx_desc */ 4397 for_each_cos_in_tx_queue(fp, cos) { 4398 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4399 4400 DP(NETIF_MSG_IFDOWN, 4401 "freeing tx memory of fp %d cos %d cid %d\n", 4402 fp_index, cos, txdata->cid); 4403 4404 BNX2X_FREE(txdata->tx_buf_ring); 4405 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4406 txdata->tx_desc_mapping, 4407 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4408 } 4409 } 4410 /* end of fastpath */ 4411 } 4412 4413 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4414 { 4415 int i; 4416 for_each_cnic_queue(bp, i) 4417 bnx2x_free_fp_mem_at(bp, i); 4418 } 4419 4420 void bnx2x_free_fp_mem(struct bnx2x *bp) 4421 { 4422 int i; 4423 for_each_eth_queue(bp, i) 4424 bnx2x_free_fp_mem_at(bp, i); 4425 } 4426 4427 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4428 { 4429 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4430 if (!CHIP_IS_E1x(bp)) { 4431 bnx2x_fp(bp, index, sb_index_values) = 4432 (__le16 *)status_blk.e2_sb->sb.index_values; 4433 bnx2x_fp(bp, index, sb_running_index) = 4434 (__le16 *)status_blk.e2_sb->sb.running_index; 4435 } else { 4436 bnx2x_fp(bp, index, sb_index_values) = 4437 (__le16 *)status_blk.e1x_sb->sb.index_values; 4438 bnx2x_fp(bp, index, sb_running_index) = 4439 (__le16 *)status_blk.e1x_sb->sb.running_index; 4440 } 4441 } 4442 4443 /* Returns the number of actually allocated BDs */ 4444 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4445 int rx_ring_size) 4446 { 4447 struct bnx2x *bp = fp->bp; 4448 u16 ring_prod, cqe_ring_prod; 4449 int i, failure_cnt = 0; 4450 4451 fp->rx_comp_cons = 0; 4452 cqe_ring_prod = ring_prod = 0; 4453 4454 /* This routine is called only during fo init so 4455 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4456 */ 4457 for (i = 0; i < rx_ring_size; i++) { 4458 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4459 failure_cnt++; 4460 continue; 4461 } 4462 ring_prod = NEXT_RX_IDX(ring_prod); 4463 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4464 WARN_ON(ring_prod <= (i - failure_cnt)); 4465 } 4466 4467 if (failure_cnt) 4468 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4469 i - failure_cnt, fp->index); 4470 4471 fp->rx_bd_prod = ring_prod; 4472 /* Limit the CQE producer by the CQE ring size */ 4473 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4474 cqe_ring_prod); 4475 4476 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4477 4478 return i - failure_cnt; 4479 } 4480 4481 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4482 { 4483 int i; 4484 4485 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4486 struct eth_rx_cqe_next_page *nextpg; 4487 4488 nextpg = (struct eth_rx_cqe_next_page *) 4489 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4490 nextpg->addr_hi = 4491 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4492 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4493 nextpg->addr_lo = 4494 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4495 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4496 } 4497 } 4498 4499 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4500 { 4501 union host_hc_status_block *sb; 4502 struct bnx2x_fastpath *fp = &bp->fp[index]; 4503 int ring_size = 0; 4504 u8 cos; 4505 int rx_ring_size = 0; 4506 4507 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) { 4508 rx_ring_size = MIN_RX_SIZE_NONTPA; 4509 bp->rx_ring_size = rx_ring_size; 4510 } else if (!bp->rx_ring_size) { 4511 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4512 4513 if (CHIP_IS_E3(bp)) { 4514 u32 cfg = SHMEM_RD(bp, 4515 dev_info.port_hw_config[BP_PORT(bp)]. 4516 default_cfg); 4517 4518 /* Decrease ring size for 1G functions */ 4519 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4520 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4521 rx_ring_size /= 10; 4522 } 4523 4524 /* allocate at least number of buffers required by FW */ 4525 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4526 MIN_RX_SIZE_TPA, rx_ring_size); 4527 4528 bp->rx_ring_size = rx_ring_size; 4529 } else /* if rx_ring_size specified - use it */ 4530 rx_ring_size = bp->rx_ring_size; 4531 4532 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4533 4534 /* Common */ 4535 sb = &bnx2x_fp(bp, index, status_blk); 4536 4537 if (!IS_FCOE_IDX(index)) { 4538 /* status blocks */ 4539 if (!CHIP_IS_E1x(bp)) { 4540 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4541 sizeof(struct host_hc_status_block_e2)); 4542 if (!sb->e2_sb) 4543 goto alloc_mem_err; 4544 } else { 4545 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4546 sizeof(struct host_hc_status_block_e1x)); 4547 if (!sb->e1x_sb) 4548 goto alloc_mem_err; 4549 } 4550 } 4551 4552 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4553 * set shortcuts for it. 4554 */ 4555 if (!IS_FCOE_IDX(index)) 4556 set_sb_shortcuts(bp, index); 4557 4558 /* Tx */ 4559 if (!skip_tx_queue(bp, index)) { 4560 /* fastpath tx rings: tx_buf tx_desc */ 4561 for_each_cos_in_tx_queue(fp, cos) { 4562 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4563 4564 DP(NETIF_MSG_IFUP, 4565 "allocating tx memory of fp %d cos %d\n", 4566 index, cos); 4567 4568 txdata->tx_buf_ring = kcalloc(NUM_TX_BD, 4569 sizeof(struct sw_tx_bd), 4570 GFP_KERNEL); 4571 if (!txdata->tx_buf_ring) 4572 goto alloc_mem_err; 4573 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, 4574 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4575 if (!txdata->tx_desc_ring) 4576 goto alloc_mem_err; 4577 } 4578 } 4579 4580 /* Rx */ 4581 if (!skip_rx_queue(bp, index)) { 4582 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4583 bnx2x_fp(bp, index, rx_buf_ring) = 4584 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL); 4585 if (!bnx2x_fp(bp, index, rx_buf_ring)) 4586 goto alloc_mem_err; 4587 bnx2x_fp(bp, index, rx_desc_ring) = 4588 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), 4589 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4590 if (!bnx2x_fp(bp, index, rx_desc_ring)) 4591 goto alloc_mem_err; 4592 4593 /* Seed all CQEs by 1s */ 4594 bnx2x_fp(bp, index, rx_comp_ring) = 4595 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), 4596 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); 4597 if (!bnx2x_fp(bp, index, rx_comp_ring)) 4598 goto alloc_mem_err; 4599 4600 /* SGE ring */ 4601 bnx2x_fp(bp, index, rx_page_ring) = 4602 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page), 4603 GFP_KERNEL); 4604 if (!bnx2x_fp(bp, index, rx_page_ring)) 4605 goto alloc_mem_err; 4606 bnx2x_fp(bp, index, rx_sge_ring) = 4607 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), 4608 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4609 if (!bnx2x_fp(bp, index, rx_sge_ring)) 4610 goto alloc_mem_err; 4611 /* RX BD ring */ 4612 bnx2x_set_next_page_rx_bd(fp); 4613 4614 /* CQ ring */ 4615 bnx2x_set_next_page_rx_cq(fp); 4616 4617 /* BDs */ 4618 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4619 if (ring_size < rx_ring_size) 4620 goto alloc_mem_err; 4621 } 4622 4623 return 0; 4624 4625 /* handles low memory cases */ 4626 alloc_mem_err: 4627 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4628 index, ring_size); 4629 /* FW will drop all packets if queue is not big enough, 4630 * In these cases we disable the queue 4631 * Min size is different for OOO, TPA and non-TPA queues 4632 */ 4633 if (ring_size < (fp->mode == TPA_MODE_DISABLED ? 4634 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4635 /* release memory allocated for this queue */ 4636 bnx2x_free_fp_mem_at(bp, index); 4637 return -ENOMEM; 4638 } 4639 return 0; 4640 } 4641 4642 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4643 { 4644 if (!NO_FCOE(bp)) 4645 /* FCoE */ 4646 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4647 /* we will fail load process instead of mark 4648 * NO_FCOE_FLAG 4649 */ 4650 return -ENOMEM; 4651 4652 return 0; 4653 } 4654 4655 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4656 { 4657 int i; 4658 4659 /* 1. Allocate FP for leading - fatal if error 4660 * 2. Allocate RSS - fix number of queues if error 4661 */ 4662 4663 /* leading */ 4664 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4665 return -ENOMEM; 4666 4667 /* RSS */ 4668 for_each_nondefault_eth_queue(bp, i) 4669 if (bnx2x_alloc_fp_mem_at(bp, i)) 4670 break; 4671 4672 /* handle memory failures */ 4673 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4674 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4675 4676 WARN_ON(delta < 0); 4677 bnx2x_shrink_eth_fp(bp, delta); 4678 if (CNIC_SUPPORT(bp)) 4679 /* move non eth FPs next to last eth FP 4680 * must be done in that order 4681 * FCOE_IDX < FWD_IDX < OOO_IDX 4682 */ 4683 4684 /* move FCoE fp even NO_FCOE_FLAG is on */ 4685 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4686 bp->num_ethernet_queues -= delta; 4687 bp->num_queues = bp->num_ethernet_queues + 4688 bp->num_cnic_queues; 4689 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4690 bp->num_queues + delta, bp->num_queues); 4691 } 4692 4693 return 0; 4694 } 4695 4696 void bnx2x_free_mem_bp(struct bnx2x *bp) 4697 { 4698 int i; 4699 4700 for (i = 0; i < bp->fp_array_size; i++) 4701 kfree(bp->fp[i].tpa_info); 4702 kfree(bp->fp); 4703 kfree(bp->sp_objs); 4704 kfree(bp->fp_stats); 4705 kfree(bp->bnx2x_txq); 4706 kfree(bp->msix_table); 4707 kfree(bp->ilt); 4708 } 4709 4710 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4711 { 4712 struct bnx2x_fastpath *fp; 4713 struct msix_entry *tbl; 4714 struct bnx2x_ilt *ilt; 4715 int msix_table_size = 0; 4716 int fp_array_size, txq_array_size; 4717 int i; 4718 4719 /* 4720 * The biggest MSI-X table we might need is as a maximum number of fast 4721 * path IGU SBs plus default SB (for PF only). 4722 */ 4723 msix_table_size = bp->igu_sb_cnt; 4724 if (IS_PF(bp)) 4725 msix_table_size++; 4726 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4727 4728 /* fp array: RSS plus CNIC related L2 queues */ 4729 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4730 bp->fp_array_size = fp_array_size; 4731 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4732 4733 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4734 if (!fp) 4735 goto alloc_err; 4736 for (i = 0; i < bp->fp_array_size; i++) { 4737 fp[i].tpa_info = 4738 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4739 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4740 if (!(fp[i].tpa_info)) 4741 goto alloc_err; 4742 } 4743 4744 bp->fp = fp; 4745 4746 /* allocate sp objs */ 4747 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4748 GFP_KERNEL); 4749 if (!bp->sp_objs) 4750 goto alloc_err; 4751 4752 /* allocate fp_stats */ 4753 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4754 GFP_KERNEL); 4755 if (!bp->fp_stats) 4756 goto alloc_err; 4757 4758 /* Allocate memory for the transmission queues array */ 4759 txq_array_size = 4760 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4761 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4762 4763 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4764 GFP_KERNEL); 4765 if (!bp->bnx2x_txq) 4766 goto alloc_err; 4767 4768 /* msix table */ 4769 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4770 if (!tbl) 4771 goto alloc_err; 4772 bp->msix_table = tbl; 4773 4774 /* ilt */ 4775 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4776 if (!ilt) 4777 goto alloc_err; 4778 bp->ilt = ilt; 4779 4780 return 0; 4781 alloc_err: 4782 bnx2x_free_mem_bp(bp); 4783 return -ENOMEM; 4784 } 4785 4786 int bnx2x_reload_if_running(struct net_device *dev) 4787 { 4788 struct bnx2x *bp = netdev_priv(dev); 4789 4790 if (unlikely(!netif_running(dev))) 4791 return 0; 4792 4793 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4794 return bnx2x_nic_load(bp, LOAD_NORMAL); 4795 } 4796 4797 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4798 { 4799 u32 sel_phy_idx = 0; 4800 if (bp->link_params.num_phys <= 1) 4801 return INT_PHY; 4802 4803 if (bp->link_vars.link_up) { 4804 sel_phy_idx = EXT_PHY1; 4805 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4806 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4807 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4808 sel_phy_idx = EXT_PHY2; 4809 } else { 4810 4811 switch (bnx2x_phy_selection(&bp->link_params)) { 4812 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4813 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4814 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4815 sel_phy_idx = EXT_PHY1; 4816 break; 4817 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4818 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4819 sel_phy_idx = EXT_PHY2; 4820 break; 4821 } 4822 } 4823 4824 return sel_phy_idx; 4825 } 4826 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4827 { 4828 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4829 /* 4830 * The selected activated PHY is always after swapping (in case PHY 4831 * swapping is enabled). So when swapping is enabled, we need to reverse 4832 * the configuration 4833 */ 4834 4835 if (bp->link_params.multi_phy_config & 4836 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4837 if (sel_phy_idx == EXT_PHY1) 4838 sel_phy_idx = EXT_PHY2; 4839 else if (sel_phy_idx == EXT_PHY2) 4840 sel_phy_idx = EXT_PHY1; 4841 } 4842 return LINK_CONFIG_IDX(sel_phy_idx); 4843 } 4844 4845 #ifdef NETDEV_FCOE_WWNN 4846 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4847 { 4848 struct bnx2x *bp = netdev_priv(dev); 4849 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4850 4851 switch (type) { 4852 case NETDEV_FCOE_WWNN: 4853 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4854 cp->fcoe_wwn_node_name_lo); 4855 break; 4856 case NETDEV_FCOE_WWPN: 4857 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4858 cp->fcoe_wwn_port_name_lo); 4859 break; 4860 default: 4861 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4862 return -EINVAL; 4863 } 4864 4865 return 0; 4866 } 4867 #endif 4868 4869 /* called with rtnl_lock */ 4870 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4871 { 4872 struct bnx2x *bp = netdev_priv(dev); 4873 4874 if (pci_num_vf(bp->pdev)) { 4875 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n"); 4876 return -EPERM; 4877 } 4878 4879 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4880 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4881 return -EAGAIN; 4882 } 4883 4884 /* This does not race with packet allocation 4885 * because the actual alloc size is 4886 * only updated as part of load 4887 */ 4888 dev->mtu = new_mtu; 4889 4890 if (!bnx2x_mtu_allows_gro(new_mtu)) 4891 dev->features &= ~NETIF_F_GRO_HW; 4892 4893 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4894 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4895 4896 return bnx2x_reload_if_running(dev); 4897 } 4898 4899 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4900 netdev_features_t features) 4901 { 4902 struct bnx2x *bp = netdev_priv(dev); 4903 4904 if (pci_num_vf(bp->pdev)) { 4905 netdev_features_t changed = dev->features ^ features; 4906 4907 /* Revert the requested changes in features if they 4908 * would require internal reload of PF in bnx2x_set_features(). 4909 */ 4910 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) { 4911 features &= ~NETIF_F_RXCSUM; 4912 features |= dev->features & NETIF_F_RXCSUM; 4913 } 4914 4915 if (changed & NETIF_F_LOOPBACK) { 4916 features &= ~NETIF_F_LOOPBACK; 4917 features |= dev->features & NETIF_F_LOOPBACK; 4918 } 4919 } 4920 4921 /* TPA requires Rx CSUM offloading */ 4922 if (!(features & NETIF_F_RXCSUM)) 4923 features &= ~NETIF_F_LRO; 4924 4925 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu)) 4926 features &= ~NETIF_F_GRO_HW; 4927 if (features & NETIF_F_GRO_HW) 4928 features &= ~NETIF_F_LRO; 4929 4930 return features; 4931 } 4932 4933 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4934 { 4935 struct bnx2x *bp = netdev_priv(dev); 4936 netdev_features_t changes = features ^ dev->features; 4937 bool bnx2x_reload = false; 4938 int rc; 4939 4940 /* VFs or non SRIOV PFs should be able to change loopback feature */ 4941 if (!pci_num_vf(bp->pdev)) { 4942 if (features & NETIF_F_LOOPBACK) { 4943 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4944 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4945 bnx2x_reload = true; 4946 } 4947 } else { 4948 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4949 bp->link_params.loopback_mode = LOOPBACK_NONE; 4950 bnx2x_reload = true; 4951 } 4952 } 4953 } 4954 4955 /* Don't care about GRO changes */ 4956 changes &= ~NETIF_F_GRO; 4957 4958 if (changes) 4959 bnx2x_reload = true; 4960 4961 if (bnx2x_reload) { 4962 if (bp->recovery_state == BNX2X_RECOVERY_DONE) { 4963 dev->features = features; 4964 rc = bnx2x_reload_if_running(dev); 4965 return rc ? rc : 1; 4966 } 4967 /* else: bnx2x_nic_load() will be called at end of recovery */ 4968 } 4969 4970 return 0; 4971 } 4972 4973 void bnx2x_tx_timeout(struct net_device *dev) 4974 { 4975 struct bnx2x *bp = netdev_priv(dev); 4976 4977 /* We want the information of the dump logged, 4978 * but calling bnx2x_panic() would kill all chances of recovery. 4979 */ 4980 if (!bp->panic) 4981 #ifndef BNX2X_STOP_ON_ERROR 4982 bnx2x_panic_dump(bp, false); 4983 #else 4984 bnx2x_panic(); 4985 #endif 4986 4987 /* This allows the netif to be shutdown gracefully before resetting */ 4988 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); 4989 } 4990 4991 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) 4992 { 4993 struct net_device *dev = pci_get_drvdata(pdev); 4994 struct bnx2x *bp; 4995 4996 if (!dev) { 4997 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4998 return -ENODEV; 4999 } 5000 bp = netdev_priv(dev); 5001 5002 rtnl_lock(); 5003 5004 pci_save_state(pdev); 5005 5006 if (!netif_running(dev)) { 5007 rtnl_unlock(); 5008 return 0; 5009 } 5010 5011 netif_device_detach(dev); 5012 5013 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 5014 5015 bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); 5016 5017 rtnl_unlock(); 5018 5019 return 0; 5020 } 5021 5022 int bnx2x_resume(struct pci_dev *pdev) 5023 { 5024 struct net_device *dev = pci_get_drvdata(pdev); 5025 struct bnx2x *bp; 5026 int rc; 5027 5028 if (!dev) { 5029 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5030 return -ENODEV; 5031 } 5032 bp = netdev_priv(dev); 5033 5034 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 5035 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 5036 return -EAGAIN; 5037 } 5038 5039 rtnl_lock(); 5040 5041 pci_restore_state(pdev); 5042 5043 if (!netif_running(dev)) { 5044 rtnl_unlock(); 5045 return 0; 5046 } 5047 5048 bnx2x_set_power_state(bp, PCI_D0); 5049 netif_device_attach(dev); 5050 5051 rc = bnx2x_nic_load(bp, LOAD_OPEN); 5052 5053 rtnl_unlock(); 5054 5055 return rc; 5056 } 5057 5058 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 5059 u32 cid) 5060 { 5061 if (!cxt) { 5062 BNX2X_ERR("bad context pointer %p\n", cxt); 5063 return; 5064 } 5065 5066 /* ustorm cxt validation */ 5067 cxt->ustorm_ag_context.cdu_usage = 5068 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5069 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 5070 /* xcontext validation */ 5071 cxt->xstorm_ag_context.cdu_reserved = 5072 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5073 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 5074 } 5075 5076 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 5077 u8 fw_sb_id, u8 sb_index, 5078 u8 ticks) 5079 { 5080 u32 addr = BAR_CSTRORM_INTMEM + 5081 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 5082 REG_WR8(bp, addr, ticks); 5083 DP(NETIF_MSG_IFUP, 5084 "port %x fw_sb_id %d sb_index %d ticks %d\n", 5085 port, fw_sb_id, sb_index, ticks); 5086 } 5087 5088 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 5089 u16 fw_sb_id, u8 sb_index, 5090 u8 disable) 5091 { 5092 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 5093 u32 addr = BAR_CSTRORM_INTMEM + 5094 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 5095 u8 flags = REG_RD8(bp, addr); 5096 /* clear and set */ 5097 flags &= ~HC_INDEX_DATA_HC_ENABLED; 5098 flags |= enable_flag; 5099 REG_WR8(bp, addr, flags); 5100 DP(NETIF_MSG_IFUP, 5101 "port %x fw_sb_id %d sb_index %d disable %d\n", 5102 port, fw_sb_id, sb_index, disable); 5103 } 5104 5105 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 5106 u8 sb_index, u8 disable, u16 usec) 5107 { 5108 int port = BP_PORT(bp); 5109 u8 ticks = usec / BNX2X_BTR; 5110 5111 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 5112 5113 disable = disable ? 1 : (usec ? 0 : 1); 5114 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 5115 } 5116 5117 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, 5118 u32 verbose) 5119 { 5120 smp_mb__before_atomic(); 5121 set_bit(flag, &bp->sp_rtnl_state); 5122 smp_mb__after_atomic(); 5123 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", 5124 flag); 5125 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5126 } 5127