1 /* bnx2x_cmn.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/etherdevice.h>
21 #include <linux/if_vlan.h>
22 #include <linux/interrupt.h>
23 #include <linux/ip.h>
24 #include <net/tcp.h>
25 #include <net/ipv6.h>
26 #include <net/ip6_checksum.h>
27 #include <net/busy_poll.h>
28 #include <linux/prefetch.h>
29 #include "bnx2x_cmn.h"
30 #include "bnx2x_init.h"
31 #include "bnx2x_sp.h"
32 
33 /**
34  * bnx2x_move_fp - move content of the fastpath structure.
35  *
36  * @bp:		driver handle
37  * @from:	source FP index
38  * @to:		destination FP index
39  *
40  * Makes sure the contents of the bp->fp[to].napi is kept
41  * intact. This is done by first copying the napi struct from
42  * the target to the source, and then mem copying the entire
43  * source onto the target. Update txdata pointers and related
44  * content.
45  */
46 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
47 {
48 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
49 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
50 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
51 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
52 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
53 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
54 	int old_max_eth_txqs, new_max_eth_txqs;
55 	int old_txdata_index = 0, new_txdata_index = 0;
56 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
57 
58 	/* Copy the NAPI object as it has been already initialized */
59 	from_fp->napi = to_fp->napi;
60 
61 	/* Move bnx2x_fastpath contents */
62 	memcpy(to_fp, from_fp, sizeof(*to_fp));
63 	to_fp->index = to;
64 
65 	/* Retain the tpa_info of the original `to' version as we don't want
66 	 * 2 FPs to contain the same tpa_info pointer.
67 	 */
68 	to_fp->tpa_info = old_tpa_info;
69 
70 	/* move sp_objs contents as well, as their indices match fp ones */
71 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
72 
73 	/* move fp_stats contents as well, as their indices match fp ones */
74 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
75 
76 	/* Update txdata pointers in fp and move txdata content accordingly:
77 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
78 	 * decremented by max_cos x delta.
79 	 */
80 
81 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
82 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
83 				(bp)->max_cos;
84 	if (from == FCOE_IDX(bp)) {
85 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
86 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
87 	}
88 
89 	memcpy(&bp->bnx2x_txq[new_txdata_index],
90 	       &bp->bnx2x_txq[old_txdata_index],
91 	       sizeof(struct bnx2x_fp_txdata));
92 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
93 }
94 
95 /**
96  * bnx2x_fill_fw_str - Fill buffer with FW version string.
97  *
98  * @bp:        driver handle
99  * @buf:       character buffer to fill with the fw name
100  * @buf_len:   length of the above buffer
101  *
102  */
103 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
104 {
105 	if (IS_PF(bp)) {
106 		u8 phy_fw_ver[PHY_FW_VER_LEN];
107 
108 		phy_fw_ver[0] = '\0';
109 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
110 					     phy_fw_ver, PHY_FW_VER_LEN);
111 		strlcpy(buf, bp->fw_ver, buf_len);
112 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
113 			 "bc %d.%d.%d%s%s",
114 			 (bp->common.bc_ver & 0xff0000) >> 16,
115 			 (bp->common.bc_ver & 0xff00) >> 8,
116 			 (bp->common.bc_ver & 0xff),
117 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
118 	} else {
119 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
120 	}
121 }
122 
123 /**
124  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
125  *
126  * @bp:	driver handle
127  * @delta:	number of eth queues which were not allocated
128  */
129 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
130 {
131 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
132 
133 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
134 	 * backward along the array could cause memory to be overridden
135 	 */
136 	for (cos = 1; cos < bp->max_cos; cos++) {
137 		for (i = 0; i < old_eth_num - delta; i++) {
138 			struct bnx2x_fastpath *fp = &bp->fp[i];
139 			int new_idx = cos * (old_eth_num - delta) + i;
140 
141 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
142 			       sizeof(struct bnx2x_fp_txdata));
143 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
144 		}
145 	}
146 }
147 
148 int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
149 
150 /* free skb in the packet ring at pos idx
151  * return idx of last bd freed
152  */
153 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
154 			     u16 idx, unsigned int *pkts_compl,
155 			     unsigned int *bytes_compl)
156 {
157 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
158 	struct eth_tx_start_bd *tx_start_bd;
159 	struct eth_tx_bd *tx_data_bd;
160 	struct sk_buff *skb = tx_buf->skb;
161 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
162 	int nbd;
163 
164 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
165 	prefetch(&skb->end);
166 
167 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
168 	   txdata->txq_index, idx, tx_buf, skb);
169 
170 	/* unmap first bd */
171 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
172 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
173 			 BD_UNMAP_LEN(tx_start_bd), DMA_TO_DEVICE);
174 
175 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
176 #ifdef BNX2X_STOP_ON_ERROR
177 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
178 		BNX2X_ERR("BAD nbd!\n");
179 		bnx2x_panic();
180 	}
181 #endif
182 	new_cons = nbd + tx_buf->first_bd;
183 
184 	/* Get the next bd */
185 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
186 
187 	/* Skip a parse bd... */
188 	--nbd;
189 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
190 
191 	/* ...and the TSO split header bd since they have no mapping */
192 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
193 		--nbd;
194 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
195 	}
196 
197 	/* now free frags */
198 	while (nbd > 0) {
199 
200 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
201 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
202 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
203 		if (--nbd)
204 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
205 	}
206 
207 	/* release skb */
208 	WARN_ON(!skb);
209 	if (likely(skb)) {
210 		(*pkts_compl)++;
211 		(*bytes_compl) += skb->len;
212 	}
213 
214 	dev_kfree_skb_any(skb);
215 	tx_buf->first_bd = 0;
216 	tx_buf->skb = NULL;
217 
218 	return new_cons;
219 }
220 
221 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
222 {
223 	struct netdev_queue *txq;
224 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
225 	unsigned int pkts_compl = 0, bytes_compl = 0;
226 
227 #ifdef BNX2X_STOP_ON_ERROR
228 	if (unlikely(bp->panic))
229 		return -1;
230 #endif
231 
232 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
233 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
234 	sw_cons = txdata->tx_pkt_cons;
235 
236 	while (sw_cons != hw_cons) {
237 		u16 pkt_cons;
238 
239 		pkt_cons = TX_BD(sw_cons);
240 
241 		DP(NETIF_MSG_TX_DONE,
242 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
243 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
244 
245 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
246 					    &pkts_compl, &bytes_compl);
247 
248 		sw_cons++;
249 	}
250 
251 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
252 
253 	txdata->tx_pkt_cons = sw_cons;
254 	txdata->tx_bd_cons = bd_cons;
255 
256 	/* Need to make the tx_bd_cons update visible to start_xmit()
257 	 * before checking for netif_tx_queue_stopped().  Without the
258 	 * memory barrier, there is a small possibility that
259 	 * start_xmit() will miss it and cause the queue to be stopped
260 	 * forever.
261 	 * On the other hand we need an rmb() here to ensure the proper
262 	 * ordering of bit testing in the following
263 	 * netif_tx_queue_stopped(txq) call.
264 	 */
265 	smp_mb();
266 
267 	if (unlikely(netif_tx_queue_stopped(txq))) {
268 		/* Taking tx_lock() is needed to prevent re-enabling the queue
269 		 * while it's empty. This could have happen if rx_action() gets
270 		 * suspended in bnx2x_tx_int() after the condition before
271 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
272 		 *
273 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
274 		 * sends some packets consuming the whole queue again->
275 		 * stops the queue
276 		 */
277 
278 		__netif_tx_lock(txq, smp_processor_id());
279 
280 		if ((netif_tx_queue_stopped(txq)) &&
281 		    (bp->state == BNX2X_STATE_OPEN) &&
282 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
283 			netif_tx_wake_queue(txq);
284 
285 		__netif_tx_unlock(txq);
286 	}
287 	return 0;
288 }
289 
290 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
291 					     u16 idx)
292 {
293 	u16 last_max = fp->last_max_sge;
294 
295 	if (SUB_S16(idx, last_max) > 0)
296 		fp->last_max_sge = idx;
297 }
298 
299 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
300 					 u16 sge_len,
301 					 struct eth_end_agg_rx_cqe *cqe)
302 {
303 	struct bnx2x *bp = fp->bp;
304 	u16 last_max, last_elem, first_elem;
305 	u16 delta = 0;
306 	u16 i;
307 
308 	if (!sge_len)
309 		return;
310 
311 	/* First mark all used pages */
312 	for (i = 0; i < sge_len; i++)
313 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
314 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
315 
316 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
317 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
318 
319 	/* Here we assume that the last SGE index is the biggest */
320 	prefetch((void *)(fp->sge_mask));
321 	bnx2x_update_last_max_sge(fp,
322 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
323 
324 	last_max = RX_SGE(fp->last_max_sge);
325 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
326 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
327 
328 	/* If ring is not full */
329 	if (last_elem + 1 != first_elem)
330 		last_elem++;
331 
332 	/* Now update the prod */
333 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
334 		if (likely(fp->sge_mask[i]))
335 			break;
336 
337 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
338 		delta += BIT_VEC64_ELEM_SZ;
339 	}
340 
341 	if (delta > 0) {
342 		fp->rx_sge_prod += delta;
343 		/* clear page-end entries */
344 		bnx2x_clear_sge_mask_next_elems(fp);
345 	}
346 
347 	DP(NETIF_MSG_RX_STATUS,
348 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
349 	   fp->last_max_sge, fp->rx_sge_prod);
350 }
351 
352 /* Get Toeplitz hash value in the skb using the value from the
353  * CQE (calculated by HW).
354  */
355 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
356 			    const struct eth_fast_path_rx_cqe *cqe,
357 			    bool *l4_rxhash)
358 {
359 	/* Get Toeplitz hash from CQE */
360 	if ((bp->dev->features & NETIF_F_RXHASH) &&
361 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
362 		enum eth_rss_hash_type htype;
363 
364 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
365 		*l4_rxhash = (htype == TCP_IPV4_HASH_TYPE) ||
366 			     (htype == TCP_IPV6_HASH_TYPE);
367 		return le32_to_cpu(cqe->rss_hash_result);
368 	}
369 	*l4_rxhash = false;
370 	return 0;
371 }
372 
373 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
374 			    u16 cons, u16 prod,
375 			    struct eth_fast_path_rx_cqe *cqe)
376 {
377 	struct bnx2x *bp = fp->bp;
378 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
379 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
380 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
381 	dma_addr_t mapping;
382 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
383 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
384 
385 	/* print error if current state != stop */
386 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
387 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
388 
389 	/* Try to map an empty data buffer from the aggregation info  */
390 	mapping = dma_map_single(&bp->pdev->dev,
391 				 first_buf->data + NET_SKB_PAD,
392 				 fp->rx_buf_size, DMA_FROM_DEVICE);
393 	/*
394 	 *  ...if it fails - move the skb from the consumer to the producer
395 	 *  and set the current aggregation state as ERROR to drop it
396 	 *  when TPA_STOP arrives.
397 	 */
398 
399 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
400 		/* Move the BD from the consumer to the producer */
401 		bnx2x_reuse_rx_data(fp, cons, prod);
402 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
403 		return;
404 	}
405 
406 	/* move empty data from pool to prod */
407 	prod_rx_buf->data = first_buf->data;
408 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
409 	/* point prod_bd to new data */
410 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
411 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
412 
413 	/* move partial skb from cons to pool (don't unmap yet) */
414 	*first_buf = *cons_rx_buf;
415 
416 	/* mark bin state as START */
417 	tpa_info->parsing_flags =
418 		le16_to_cpu(cqe->pars_flags.flags);
419 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
420 	tpa_info->tpa_state = BNX2X_TPA_START;
421 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
422 	tpa_info->placement_offset = cqe->placement_offset;
423 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->l4_rxhash);
424 	if (fp->mode == TPA_MODE_GRO) {
425 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
426 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
427 		tpa_info->gro_size = gro_size;
428 	}
429 
430 #ifdef BNX2X_STOP_ON_ERROR
431 	fp->tpa_queue_used |= (1 << queue);
432 #ifdef _ASM_GENERIC_INT_L64_H
433 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n",
434 #else
435 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
436 #endif
437 	   fp->tpa_queue_used);
438 #endif
439 }
440 
441 /* Timestamp option length allowed for TPA aggregation:
442  *
443  *		nop nop kind length echo val
444  */
445 #define TPA_TSTAMP_OPT_LEN	12
446 /**
447  * bnx2x_set_gro_params - compute GRO values
448  *
449  * @skb:		packet skb
450  * @parsing_flags:	parsing flags from the START CQE
451  * @len_on_bd:		total length of the first packet for the
452  *			aggregation.
453  * @pkt_len:		length of all segments
454  *
455  * Approximate value of the MSS for this aggregation calculated using
456  * the first packet of it.
457  * Compute number of aggregated segments, and gso_type.
458  */
459 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
460 				 u16 len_on_bd, unsigned int pkt_len,
461 				 u16 num_of_coalesced_segs)
462 {
463 	/* TPA aggregation won't have either IP options or TCP options
464 	 * other than timestamp or IPv6 extension headers.
465 	 */
466 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
467 
468 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
469 	    PRS_FLAG_OVERETH_IPV6) {
470 		hdrs_len += sizeof(struct ipv6hdr);
471 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
472 	} else {
473 		hdrs_len += sizeof(struct iphdr);
474 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
475 	}
476 
477 	/* Check if there was a TCP timestamp, if there is it's will
478 	 * always be 12 bytes length: nop nop kind length echo val.
479 	 *
480 	 * Otherwise FW would close the aggregation.
481 	 */
482 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
483 		hdrs_len += TPA_TSTAMP_OPT_LEN;
484 
485 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
486 
487 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
488 	 * to skb_shinfo(skb)->gso_segs
489 	 */
490 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
491 }
492 
493 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
494 			      u16 index, gfp_t gfp_mask)
495 {
496 	struct page *page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
497 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
498 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
499 	dma_addr_t mapping;
500 
501 	if (unlikely(page == NULL)) {
502 		BNX2X_ERR("Can't alloc sge\n");
503 		return -ENOMEM;
504 	}
505 
506 	mapping = dma_map_page(&bp->pdev->dev, page, 0,
507 			       SGE_PAGES, DMA_FROM_DEVICE);
508 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
509 		__free_pages(page, PAGES_PER_SGE_SHIFT);
510 		BNX2X_ERR("Can't map sge\n");
511 		return -ENOMEM;
512 	}
513 
514 	sw_buf->page = page;
515 	dma_unmap_addr_set(sw_buf, mapping, mapping);
516 
517 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
518 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
519 
520 	return 0;
521 }
522 
523 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
524 			       struct bnx2x_agg_info *tpa_info,
525 			       u16 pages,
526 			       struct sk_buff *skb,
527 			       struct eth_end_agg_rx_cqe *cqe,
528 			       u16 cqe_idx)
529 {
530 	struct sw_rx_page *rx_pg, old_rx_pg;
531 	u32 i, frag_len, frag_size;
532 	int err, j, frag_id = 0;
533 	u16 len_on_bd = tpa_info->len_on_bd;
534 	u16 full_page = 0, gro_size = 0;
535 
536 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
537 
538 	if (fp->mode == TPA_MODE_GRO) {
539 		gro_size = tpa_info->gro_size;
540 		full_page = tpa_info->full_page;
541 	}
542 
543 	/* This is needed in order to enable forwarding support */
544 	if (frag_size)
545 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
546 				     le16_to_cpu(cqe->pkt_len),
547 				     le16_to_cpu(cqe->num_of_coalesced_segs));
548 
549 #ifdef BNX2X_STOP_ON_ERROR
550 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
551 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
552 			  pages, cqe_idx);
553 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
554 		bnx2x_panic();
555 		return -EINVAL;
556 	}
557 #endif
558 
559 	/* Run through the SGL and compose the fragmented skb */
560 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
561 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
562 
563 		/* FW gives the indices of the SGE as if the ring is an array
564 		   (meaning that "next" element will consume 2 indices) */
565 		if (fp->mode == TPA_MODE_GRO)
566 			frag_len = min_t(u32, frag_size, (u32)full_page);
567 		else /* LRO */
568 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
569 
570 		rx_pg = &fp->rx_page_ring[sge_idx];
571 		old_rx_pg = *rx_pg;
572 
573 		/* If we fail to allocate a substitute page, we simply stop
574 		   where we are and drop the whole packet */
575 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
576 		if (unlikely(err)) {
577 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
578 			return err;
579 		}
580 
581 		/* Unmap the page as we're going to pass it to the stack */
582 		dma_unmap_page(&bp->pdev->dev,
583 			       dma_unmap_addr(&old_rx_pg, mapping),
584 			       SGE_PAGES, DMA_FROM_DEVICE);
585 		/* Add one frag and update the appropriate fields in the skb */
586 		if (fp->mode == TPA_MODE_LRO)
587 			skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len);
588 		else { /* GRO */
589 			int rem;
590 			int offset = 0;
591 			for (rem = frag_len; rem > 0; rem -= gro_size) {
592 				int len = rem > gro_size ? gro_size : rem;
593 				skb_fill_page_desc(skb, frag_id++,
594 						   old_rx_pg.page, offset, len);
595 				if (offset)
596 					get_page(old_rx_pg.page);
597 				offset += len;
598 			}
599 		}
600 
601 		skb->data_len += frag_len;
602 		skb->truesize += SGE_PAGES;
603 		skb->len += frag_len;
604 
605 		frag_size -= frag_len;
606 	}
607 
608 	return 0;
609 }
610 
611 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
612 {
613 	if (fp->rx_frag_size)
614 		put_page(virt_to_head_page(data));
615 	else
616 		kfree(data);
617 }
618 
619 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
620 {
621 	if (fp->rx_frag_size) {
622 		/* GFP_KERNEL allocations are used only during initialization */
623 		if (unlikely(gfp_mask & __GFP_WAIT))
624 			return (void *)__get_free_page(gfp_mask);
625 
626 		return netdev_alloc_frag(fp->rx_frag_size);
627 	}
628 
629 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
630 }
631 
632 #ifdef CONFIG_INET
633 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
634 {
635 	const struct iphdr *iph = ip_hdr(skb);
636 	struct tcphdr *th;
637 
638 	skb_set_transport_header(skb, sizeof(struct iphdr));
639 	th = tcp_hdr(skb);
640 
641 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
642 				  iph->saddr, iph->daddr, 0);
643 }
644 
645 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
646 {
647 	struct ipv6hdr *iph = ipv6_hdr(skb);
648 	struct tcphdr *th;
649 
650 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
651 	th = tcp_hdr(skb);
652 
653 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
654 				  &iph->saddr, &iph->daddr, 0);
655 }
656 
657 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
658 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
659 {
660 	skb_set_network_header(skb, 0);
661 	gro_func(bp, skb);
662 	tcp_gro_complete(skb);
663 }
664 #endif
665 
666 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
667 			       struct sk_buff *skb)
668 {
669 #ifdef CONFIG_INET
670 	if (skb_shinfo(skb)->gso_size) {
671 		switch (be16_to_cpu(skb->protocol)) {
672 		case ETH_P_IP:
673 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
674 			break;
675 		case ETH_P_IPV6:
676 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
677 			break;
678 		default:
679 			BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
680 				  be16_to_cpu(skb->protocol));
681 		}
682 	}
683 #endif
684 	napi_gro_receive(&fp->napi, skb);
685 }
686 
687 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
688 			   struct bnx2x_agg_info *tpa_info,
689 			   u16 pages,
690 			   struct eth_end_agg_rx_cqe *cqe,
691 			   u16 cqe_idx)
692 {
693 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
694 	u8 pad = tpa_info->placement_offset;
695 	u16 len = tpa_info->len_on_bd;
696 	struct sk_buff *skb = NULL;
697 	u8 *new_data, *data = rx_buf->data;
698 	u8 old_tpa_state = tpa_info->tpa_state;
699 
700 	tpa_info->tpa_state = BNX2X_TPA_STOP;
701 
702 	/* If we there was an error during the handling of the TPA_START -
703 	 * drop this aggregation.
704 	 */
705 	if (old_tpa_state == BNX2X_TPA_ERROR)
706 		goto drop;
707 
708 	/* Try to allocate the new data */
709 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
710 	/* Unmap skb in the pool anyway, as we are going to change
711 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
712 	   fails. */
713 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
714 			 fp->rx_buf_size, DMA_FROM_DEVICE);
715 	if (likely(new_data))
716 		skb = build_skb(data, fp->rx_frag_size);
717 
718 	if (likely(skb)) {
719 #ifdef BNX2X_STOP_ON_ERROR
720 		if (pad + len > fp->rx_buf_size) {
721 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
722 				  pad, len, fp->rx_buf_size);
723 			bnx2x_panic();
724 			return;
725 		}
726 #endif
727 
728 		skb_reserve(skb, pad + NET_SKB_PAD);
729 		skb_put(skb, len);
730 		skb->rxhash = tpa_info->rxhash;
731 		skb->l4_rxhash = tpa_info->l4_rxhash;
732 
733 		skb->protocol = eth_type_trans(skb, bp->dev);
734 		skb->ip_summed = CHECKSUM_UNNECESSARY;
735 
736 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
737 					 skb, cqe, cqe_idx)) {
738 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
739 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
740 			bnx2x_gro_receive(bp, fp, skb);
741 		} else {
742 			DP(NETIF_MSG_RX_STATUS,
743 			   "Failed to allocate new pages - dropping packet!\n");
744 			dev_kfree_skb_any(skb);
745 		}
746 
747 		/* put new data in bin */
748 		rx_buf->data = new_data;
749 
750 		return;
751 	}
752 	bnx2x_frag_free(fp, new_data);
753 drop:
754 	/* drop the packet and keep the buffer in the bin */
755 	DP(NETIF_MSG_RX_STATUS,
756 	   "Failed to allocate or map a new skb - dropping packet!\n");
757 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
758 }
759 
760 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
761 			       u16 index, gfp_t gfp_mask)
762 {
763 	u8 *data;
764 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
765 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
766 	dma_addr_t mapping;
767 
768 	data = bnx2x_frag_alloc(fp, gfp_mask);
769 	if (unlikely(data == NULL))
770 		return -ENOMEM;
771 
772 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
773 				 fp->rx_buf_size,
774 				 DMA_FROM_DEVICE);
775 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
776 		bnx2x_frag_free(fp, data);
777 		BNX2X_ERR("Can't map rx data\n");
778 		return -ENOMEM;
779 	}
780 
781 	rx_buf->data = data;
782 	dma_unmap_addr_set(rx_buf, mapping, mapping);
783 
784 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
785 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
786 
787 	return 0;
788 }
789 
790 static
791 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
792 				 struct bnx2x_fastpath *fp,
793 				 struct bnx2x_eth_q_stats *qstats)
794 {
795 	/* Do nothing if no L4 csum validation was done.
796 	 * We do not check whether IP csum was validated. For IPv4 we assume
797 	 * that if the card got as far as validating the L4 csum, it also
798 	 * validated the IP csum. IPv6 has no IP csum.
799 	 */
800 	if (cqe->fast_path_cqe.status_flags &
801 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
802 		return;
803 
804 	/* If L4 validation was done, check if an error was found. */
805 
806 	if (cqe->fast_path_cqe.type_error_flags &
807 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
808 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
809 		qstats->hw_csum_err++;
810 	else
811 		skb->ip_summed = CHECKSUM_UNNECESSARY;
812 }
813 
814 int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
815 {
816 	struct bnx2x *bp = fp->bp;
817 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
818 	u16 sw_comp_cons, sw_comp_prod;
819 	int rx_pkt = 0;
820 	union eth_rx_cqe *cqe;
821 	struct eth_fast_path_rx_cqe *cqe_fp;
822 
823 #ifdef BNX2X_STOP_ON_ERROR
824 	if (unlikely(bp->panic))
825 		return 0;
826 #endif
827 
828 	bd_cons = fp->rx_bd_cons;
829 	bd_prod = fp->rx_bd_prod;
830 	bd_prod_fw = bd_prod;
831 	sw_comp_cons = fp->rx_comp_cons;
832 	sw_comp_prod = fp->rx_comp_prod;
833 
834 	comp_ring_cons = RCQ_BD(sw_comp_cons);
835 	cqe = &fp->rx_comp_ring[comp_ring_cons];
836 	cqe_fp = &cqe->fast_path_cqe;
837 
838 	DP(NETIF_MSG_RX_STATUS,
839 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
840 
841 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
842 		struct sw_rx_bd *rx_buf = NULL;
843 		struct sk_buff *skb;
844 		u8 cqe_fp_flags;
845 		enum eth_rx_cqe_type cqe_fp_type;
846 		u16 len, pad, queue;
847 		u8 *data;
848 		bool l4_rxhash;
849 
850 #ifdef BNX2X_STOP_ON_ERROR
851 		if (unlikely(bp->panic))
852 			return 0;
853 #endif
854 
855 		bd_prod = RX_BD(bd_prod);
856 		bd_cons = RX_BD(bd_cons);
857 
858 		cqe_fp_flags = cqe_fp->type_error_flags;
859 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
860 
861 		DP(NETIF_MSG_RX_STATUS,
862 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
863 		   CQE_TYPE(cqe_fp_flags),
864 		   cqe_fp_flags, cqe_fp->status_flags,
865 		   le32_to_cpu(cqe_fp->rss_hash_result),
866 		   le16_to_cpu(cqe_fp->vlan_tag),
867 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
868 
869 		/* is this a slowpath msg? */
870 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
871 			bnx2x_sp_event(fp, cqe);
872 			goto next_cqe;
873 		}
874 
875 		rx_buf = &fp->rx_buf_ring[bd_cons];
876 		data = rx_buf->data;
877 
878 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
879 			struct bnx2x_agg_info *tpa_info;
880 			u16 frag_size, pages;
881 #ifdef BNX2X_STOP_ON_ERROR
882 			/* sanity check */
883 			if (fp->disable_tpa &&
884 			    (CQE_TYPE_START(cqe_fp_type) ||
885 			     CQE_TYPE_STOP(cqe_fp_type)))
886 				BNX2X_ERR("START/STOP packet while disable_tpa type %x\n",
887 					  CQE_TYPE(cqe_fp_type));
888 #endif
889 
890 			if (CQE_TYPE_START(cqe_fp_type)) {
891 				u16 queue = cqe_fp->queue_index;
892 				DP(NETIF_MSG_RX_STATUS,
893 				   "calling tpa_start on queue %d\n",
894 				   queue);
895 
896 				bnx2x_tpa_start(fp, queue,
897 						bd_cons, bd_prod,
898 						cqe_fp);
899 
900 				goto next_rx;
901 			}
902 			queue = cqe->end_agg_cqe.queue_index;
903 			tpa_info = &fp->tpa_info[queue];
904 			DP(NETIF_MSG_RX_STATUS,
905 			   "calling tpa_stop on queue %d\n",
906 			   queue);
907 
908 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
909 				    tpa_info->len_on_bd;
910 
911 			if (fp->mode == TPA_MODE_GRO)
912 				pages = (frag_size + tpa_info->full_page - 1) /
913 					 tpa_info->full_page;
914 			else
915 				pages = SGE_PAGE_ALIGN(frag_size) >>
916 					SGE_PAGE_SHIFT;
917 
918 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
919 				       &cqe->end_agg_cqe, comp_ring_cons);
920 #ifdef BNX2X_STOP_ON_ERROR
921 			if (bp->panic)
922 				return 0;
923 #endif
924 
925 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
926 			goto next_cqe;
927 		}
928 		/* non TPA */
929 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
930 		pad = cqe_fp->placement_offset;
931 		dma_sync_single_for_cpu(&bp->pdev->dev,
932 					dma_unmap_addr(rx_buf, mapping),
933 					pad + RX_COPY_THRESH,
934 					DMA_FROM_DEVICE);
935 		pad += NET_SKB_PAD;
936 		prefetch(data + pad); /* speedup eth_type_trans() */
937 		/* is this an error packet? */
938 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
939 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
940 			   "ERROR  flags %x  rx packet %u\n",
941 			   cqe_fp_flags, sw_comp_cons);
942 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
943 			goto reuse_rx;
944 		}
945 
946 		/* Since we don't have a jumbo ring
947 		 * copy small packets if mtu > 1500
948 		 */
949 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
950 		    (len <= RX_COPY_THRESH)) {
951 			skb = netdev_alloc_skb_ip_align(bp->dev, len);
952 			if (skb == NULL) {
953 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
954 				   "ERROR  packet dropped because of alloc failure\n");
955 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
956 				goto reuse_rx;
957 			}
958 			memcpy(skb->data, data + pad, len);
959 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
960 		} else {
961 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
962 						       GFP_ATOMIC) == 0)) {
963 				dma_unmap_single(&bp->pdev->dev,
964 						 dma_unmap_addr(rx_buf, mapping),
965 						 fp->rx_buf_size,
966 						 DMA_FROM_DEVICE);
967 				skb = build_skb(data, fp->rx_frag_size);
968 				if (unlikely(!skb)) {
969 					bnx2x_frag_free(fp, data);
970 					bnx2x_fp_qstats(bp, fp)->
971 							rx_skb_alloc_failed++;
972 					goto next_rx;
973 				}
974 				skb_reserve(skb, pad);
975 			} else {
976 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
977 				   "ERROR  packet dropped because of alloc failure\n");
978 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
979 reuse_rx:
980 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
981 				goto next_rx;
982 			}
983 		}
984 
985 		skb_put(skb, len);
986 		skb->protocol = eth_type_trans(skb, bp->dev);
987 
988 		/* Set Toeplitz hash for a none-LRO skb */
989 		skb->rxhash = bnx2x_get_rxhash(bp, cqe_fp, &l4_rxhash);
990 		skb->l4_rxhash = l4_rxhash;
991 
992 		skb_checksum_none_assert(skb);
993 
994 		if (bp->dev->features & NETIF_F_RXCSUM)
995 			bnx2x_csum_validate(skb, cqe, fp,
996 					    bnx2x_fp_qstats(bp, fp));
997 
998 		skb_record_rx_queue(skb, fp->rx_queue);
999 
1000 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1001 		    PARSING_FLAGS_VLAN)
1002 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1003 					       le16_to_cpu(cqe_fp->vlan_tag));
1004 
1005 		skb_mark_napi_id(skb, &fp->napi);
1006 
1007 		if (bnx2x_fp_ll_polling(fp))
1008 			netif_receive_skb(skb);
1009 		else
1010 			napi_gro_receive(&fp->napi, skb);
1011 next_rx:
1012 		rx_buf->data = NULL;
1013 
1014 		bd_cons = NEXT_RX_IDX(bd_cons);
1015 		bd_prod = NEXT_RX_IDX(bd_prod);
1016 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1017 		rx_pkt++;
1018 next_cqe:
1019 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1020 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1021 
1022 		/* mark CQE as free */
1023 		BNX2X_SEED_CQE(cqe_fp);
1024 
1025 		if (rx_pkt == budget)
1026 			break;
1027 
1028 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1029 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1030 		cqe_fp = &cqe->fast_path_cqe;
1031 	} /* while */
1032 
1033 	fp->rx_bd_cons = bd_cons;
1034 	fp->rx_bd_prod = bd_prod_fw;
1035 	fp->rx_comp_cons = sw_comp_cons;
1036 	fp->rx_comp_prod = sw_comp_prod;
1037 
1038 	/* Update producers */
1039 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1040 			     fp->rx_sge_prod);
1041 
1042 	fp->rx_pkt += rx_pkt;
1043 	fp->rx_calls++;
1044 
1045 	return rx_pkt;
1046 }
1047 
1048 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1049 {
1050 	struct bnx2x_fastpath *fp = fp_cookie;
1051 	struct bnx2x *bp = fp->bp;
1052 	u8 cos;
1053 
1054 	DP(NETIF_MSG_INTR,
1055 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1056 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1057 
1058 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1059 
1060 #ifdef BNX2X_STOP_ON_ERROR
1061 	if (unlikely(bp->panic))
1062 		return IRQ_HANDLED;
1063 #endif
1064 
1065 	/* Handle Rx and Tx according to MSI-X vector */
1066 	for_each_cos_in_tx_queue(fp, cos)
1067 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1068 
1069 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1070 	napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1071 
1072 	return IRQ_HANDLED;
1073 }
1074 
1075 /* HW Lock for shared dual port PHYs */
1076 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1077 {
1078 	mutex_lock(&bp->port.phy_mutex);
1079 
1080 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1081 }
1082 
1083 void bnx2x_release_phy_lock(struct bnx2x *bp)
1084 {
1085 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1086 
1087 	mutex_unlock(&bp->port.phy_mutex);
1088 }
1089 
1090 /* calculates MF speed according to current linespeed and MF configuration */
1091 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1092 {
1093 	u16 line_speed = bp->link_vars.line_speed;
1094 	if (IS_MF(bp)) {
1095 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1096 						   bp->mf_config[BP_VN(bp)]);
1097 
1098 		/* Calculate the current MAX line speed limit for the MF
1099 		 * devices
1100 		 */
1101 		if (IS_MF_SI(bp))
1102 			line_speed = (line_speed * maxCfg) / 100;
1103 		else { /* SD mode */
1104 			u16 vn_max_rate = maxCfg * 100;
1105 
1106 			if (vn_max_rate < line_speed)
1107 				line_speed = vn_max_rate;
1108 		}
1109 	}
1110 
1111 	return line_speed;
1112 }
1113 
1114 /**
1115  * bnx2x_fill_report_data - fill link report data to report
1116  *
1117  * @bp:		driver handle
1118  * @data:	link state to update
1119  *
1120  * It uses a none-atomic bit operations because is called under the mutex.
1121  */
1122 static void bnx2x_fill_report_data(struct bnx2x *bp,
1123 				   struct bnx2x_link_report_data *data)
1124 {
1125 	u16 line_speed = bnx2x_get_mf_speed(bp);
1126 
1127 	memset(data, 0, sizeof(*data));
1128 
1129 	/* Fill the report data: effective line speed */
1130 	data->line_speed = line_speed;
1131 
1132 	/* Link is down */
1133 	if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1134 		__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1135 			  &data->link_report_flags);
1136 
1137 	/* Full DUPLEX */
1138 	if (bp->link_vars.duplex == DUPLEX_FULL)
1139 		__set_bit(BNX2X_LINK_REPORT_FD, &data->link_report_flags);
1140 
1141 	/* Rx Flow Control is ON */
1142 	if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1143 		__set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
1144 
1145 	/* Tx Flow Control is ON */
1146 	if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1147 		__set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
1148 }
1149 
1150 /**
1151  * bnx2x_link_report - report link status to OS.
1152  *
1153  * @bp:		driver handle
1154  *
1155  * Calls the __bnx2x_link_report() under the same locking scheme
1156  * as a link/PHY state managing code to ensure a consistent link
1157  * reporting.
1158  */
1159 
1160 void bnx2x_link_report(struct bnx2x *bp)
1161 {
1162 	bnx2x_acquire_phy_lock(bp);
1163 	__bnx2x_link_report(bp);
1164 	bnx2x_release_phy_lock(bp);
1165 }
1166 
1167 /**
1168  * __bnx2x_link_report - report link status to OS.
1169  *
1170  * @bp:		driver handle
1171  *
1172  * None atomic implementation.
1173  * Should be called under the phy_lock.
1174  */
1175 void __bnx2x_link_report(struct bnx2x *bp)
1176 {
1177 	struct bnx2x_link_report_data cur_data;
1178 
1179 	/* reread mf_cfg */
1180 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1181 		bnx2x_read_mf_cfg(bp);
1182 
1183 	/* Read the current link report info */
1184 	bnx2x_fill_report_data(bp, &cur_data);
1185 
1186 	/* Don't report link down or exactly the same link status twice */
1187 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1188 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1189 		      &bp->last_reported_link.link_report_flags) &&
1190 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1191 		      &cur_data.link_report_flags)))
1192 		return;
1193 
1194 	bp->link_cnt++;
1195 
1196 	/* We are going to report a new link parameters now -
1197 	 * remember the current data for the next time.
1198 	 */
1199 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1200 
1201 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1202 		     &cur_data.link_report_flags)) {
1203 		netif_carrier_off(bp->dev);
1204 		netdev_err(bp->dev, "NIC Link is Down\n");
1205 		return;
1206 	} else {
1207 		const char *duplex;
1208 		const char *flow;
1209 
1210 		netif_carrier_on(bp->dev);
1211 
1212 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1213 				       &cur_data.link_report_flags))
1214 			duplex = "full";
1215 		else
1216 			duplex = "half";
1217 
1218 		/* Handle the FC at the end so that only these flags would be
1219 		 * possibly set. This way we may easily check if there is no FC
1220 		 * enabled.
1221 		 */
1222 		if (cur_data.link_report_flags) {
1223 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1224 				     &cur_data.link_report_flags)) {
1225 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1226 				     &cur_data.link_report_flags))
1227 					flow = "ON - receive & transmit";
1228 				else
1229 					flow = "ON - receive";
1230 			} else {
1231 				flow = "ON - transmit";
1232 			}
1233 		} else {
1234 			flow = "none";
1235 		}
1236 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1237 			    cur_data.line_speed, duplex, flow);
1238 	}
1239 }
1240 
1241 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1242 {
1243 	int i;
1244 
1245 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1246 		struct eth_rx_sge *sge;
1247 
1248 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1249 		sge->addr_hi =
1250 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1251 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1252 
1253 		sge->addr_lo =
1254 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1255 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1256 	}
1257 }
1258 
1259 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1260 				struct bnx2x_fastpath *fp, int last)
1261 {
1262 	int i;
1263 
1264 	for (i = 0; i < last; i++) {
1265 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1266 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1267 		u8 *data = first_buf->data;
1268 
1269 		if (data == NULL) {
1270 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1271 			continue;
1272 		}
1273 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1274 			dma_unmap_single(&bp->pdev->dev,
1275 					 dma_unmap_addr(first_buf, mapping),
1276 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1277 		bnx2x_frag_free(fp, data);
1278 		first_buf->data = NULL;
1279 	}
1280 }
1281 
1282 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1283 {
1284 	int j;
1285 
1286 	for_each_rx_queue_cnic(bp, j) {
1287 		struct bnx2x_fastpath *fp = &bp->fp[j];
1288 
1289 		fp->rx_bd_cons = 0;
1290 
1291 		/* Activate BD ring */
1292 		/* Warning!
1293 		 * this will generate an interrupt (to the TSTORM)
1294 		 * must only be done after chip is initialized
1295 		 */
1296 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1297 				     fp->rx_sge_prod);
1298 	}
1299 }
1300 
1301 void bnx2x_init_rx_rings(struct bnx2x *bp)
1302 {
1303 	int func = BP_FUNC(bp);
1304 	u16 ring_prod;
1305 	int i, j;
1306 
1307 	/* Allocate TPA resources */
1308 	for_each_eth_queue(bp, j) {
1309 		struct bnx2x_fastpath *fp = &bp->fp[j];
1310 
1311 		DP(NETIF_MSG_IFUP,
1312 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1313 
1314 		if (!fp->disable_tpa) {
1315 			/* Fill the per-aggregation pool */
1316 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1317 				struct bnx2x_agg_info *tpa_info =
1318 					&fp->tpa_info[i];
1319 				struct sw_rx_bd *first_buf =
1320 					&tpa_info->first_buf;
1321 
1322 				first_buf->data =
1323 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1324 				if (!first_buf->data) {
1325 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1326 						  j);
1327 					bnx2x_free_tpa_pool(bp, fp, i);
1328 					fp->disable_tpa = 1;
1329 					break;
1330 				}
1331 				dma_unmap_addr_set(first_buf, mapping, 0);
1332 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1333 			}
1334 
1335 			/* "next page" elements initialization */
1336 			bnx2x_set_next_page_sgl(fp);
1337 
1338 			/* set SGEs bit mask */
1339 			bnx2x_init_sge_ring_bit_mask(fp);
1340 
1341 			/* Allocate SGEs and initialize the ring elements */
1342 			for (i = 0, ring_prod = 0;
1343 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1344 
1345 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1346 						       GFP_KERNEL) < 0) {
1347 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1348 						  i);
1349 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1350 						  j);
1351 					/* Cleanup already allocated elements */
1352 					bnx2x_free_rx_sge_range(bp, fp,
1353 								ring_prod);
1354 					bnx2x_free_tpa_pool(bp, fp,
1355 							    MAX_AGG_QS(bp));
1356 					fp->disable_tpa = 1;
1357 					ring_prod = 0;
1358 					break;
1359 				}
1360 				ring_prod = NEXT_SGE_IDX(ring_prod);
1361 			}
1362 
1363 			fp->rx_sge_prod = ring_prod;
1364 		}
1365 	}
1366 
1367 	for_each_eth_queue(bp, j) {
1368 		struct bnx2x_fastpath *fp = &bp->fp[j];
1369 
1370 		fp->rx_bd_cons = 0;
1371 
1372 		/* Activate BD ring */
1373 		/* Warning!
1374 		 * this will generate an interrupt (to the TSTORM)
1375 		 * must only be done after chip is initialized
1376 		 */
1377 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1378 				     fp->rx_sge_prod);
1379 
1380 		if (j != 0)
1381 			continue;
1382 
1383 		if (CHIP_IS_E1(bp)) {
1384 			REG_WR(bp, BAR_USTRORM_INTMEM +
1385 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1386 			       U64_LO(fp->rx_comp_mapping));
1387 			REG_WR(bp, BAR_USTRORM_INTMEM +
1388 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1389 			       U64_HI(fp->rx_comp_mapping));
1390 		}
1391 	}
1392 }
1393 
1394 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1395 {
1396 	u8 cos;
1397 	struct bnx2x *bp = fp->bp;
1398 
1399 	for_each_cos_in_tx_queue(fp, cos) {
1400 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1401 		unsigned pkts_compl = 0, bytes_compl = 0;
1402 
1403 		u16 sw_prod = txdata->tx_pkt_prod;
1404 		u16 sw_cons = txdata->tx_pkt_cons;
1405 
1406 		while (sw_cons != sw_prod) {
1407 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1408 					  &pkts_compl, &bytes_compl);
1409 			sw_cons++;
1410 		}
1411 
1412 		netdev_tx_reset_queue(
1413 			netdev_get_tx_queue(bp->dev,
1414 					    txdata->txq_index));
1415 	}
1416 }
1417 
1418 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1419 {
1420 	int i;
1421 
1422 	for_each_tx_queue_cnic(bp, i) {
1423 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1424 	}
1425 }
1426 
1427 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1428 {
1429 	int i;
1430 
1431 	for_each_eth_queue(bp, i) {
1432 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1433 	}
1434 }
1435 
1436 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1437 {
1438 	struct bnx2x *bp = fp->bp;
1439 	int i;
1440 
1441 	/* ring wasn't allocated */
1442 	if (fp->rx_buf_ring == NULL)
1443 		return;
1444 
1445 	for (i = 0; i < NUM_RX_BD; i++) {
1446 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1447 		u8 *data = rx_buf->data;
1448 
1449 		if (data == NULL)
1450 			continue;
1451 		dma_unmap_single(&bp->pdev->dev,
1452 				 dma_unmap_addr(rx_buf, mapping),
1453 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1454 
1455 		rx_buf->data = NULL;
1456 		bnx2x_frag_free(fp, data);
1457 	}
1458 }
1459 
1460 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1461 {
1462 	int j;
1463 
1464 	for_each_rx_queue_cnic(bp, j) {
1465 		bnx2x_free_rx_bds(&bp->fp[j]);
1466 	}
1467 }
1468 
1469 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1470 {
1471 	int j;
1472 
1473 	for_each_eth_queue(bp, j) {
1474 		struct bnx2x_fastpath *fp = &bp->fp[j];
1475 
1476 		bnx2x_free_rx_bds(fp);
1477 
1478 		if (!fp->disable_tpa)
1479 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1480 	}
1481 }
1482 
1483 void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1484 {
1485 	bnx2x_free_tx_skbs_cnic(bp);
1486 	bnx2x_free_rx_skbs_cnic(bp);
1487 }
1488 
1489 void bnx2x_free_skbs(struct bnx2x *bp)
1490 {
1491 	bnx2x_free_tx_skbs(bp);
1492 	bnx2x_free_rx_skbs(bp);
1493 }
1494 
1495 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1496 {
1497 	/* load old values */
1498 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1499 
1500 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1501 		/* leave all but MAX value */
1502 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1503 
1504 		/* set new MAX value */
1505 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1506 				& FUNC_MF_CFG_MAX_BW_MASK;
1507 
1508 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1509 	}
1510 }
1511 
1512 /**
1513  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1514  *
1515  * @bp:		driver handle
1516  * @nvecs:	number of vectors to be released
1517  */
1518 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1519 {
1520 	int i, offset = 0;
1521 
1522 	if (nvecs == offset)
1523 		return;
1524 
1525 	/* VFs don't have a default SB */
1526 	if (IS_PF(bp)) {
1527 		free_irq(bp->msix_table[offset].vector, bp->dev);
1528 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1529 		   bp->msix_table[offset].vector);
1530 		offset++;
1531 	}
1532 
1533 	if (CNIC_SUPPORT(bp)) {
1534 		if (nvecs == offset)
1535 			return;
1536 		offset++;
1537 	}
1538 
1539 	for_each_eth_queue(bp, i) {
1540 		if (nvecs == offset)
1541 			return;
1542 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1543 		   i, bp->msix_table[offset].vector);
1544 
1545 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1546 	}
1547 }
1548 
1549 void bnx2x_free_irq(struct bnx2x *bp)
1550 {
1551 	if (bp->flags & USING_MSIX_FLAG &&
1552 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1553 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1554 
1555 		/* vfs don't have a default status block */
1556 		if (IS_PF(bp))
1557 			nvecs++;
1558 
1559 		bnx2x_free_msix_irqs(bp, nvecs);
1560 	} else {
1561 		free_irq(bp->dev->irq, bp->dev);
1562 	}
1563 }
1564 
1565 int bnx2x_enable_msix(struct bnx2x *bp)
1566 {
1567 	int msix_vec = 0, i, rc;
1568 
1569 	/* VFs don't have a default status block */
1570 	if (IS_PF(bp)) {
1571 		bp->msix_table[msix_vec].entry = msix_vec;
1572 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1573 			       bp->msix_table[0].entry);
1574 		msix_vec++;
1575 	}
1576 
1577 	/* Cnic requires an msix vector for itself */
1578 	if (CNIC_SUPPORT(bp)) {
1579 		bp->msix_table[msix_vec].entry = msix_vec;
1580 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1581 			       msix_vec, bp->msix_table[msix_vec].entry);
1582 		msix_vec++;
1583 	}
1584 
1585 	/* We need separate vectors for ETH queues only (not FCoE) */
1586 	for_each_eth_queue(bp, i) {
1587 		bp->msix_table[msix_vec].entry = msix_vec;
1588 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1589 			       msix_vec, msix_vec, i);
1590 		msix_vec++;
1591 	}
1592 
1593 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1594 	   msix_vec);
1595 
1596 	rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], msix_vec);
1597 
1598 	/*
1599 	 * reconfigure number of tx/rx queues according to available
1600 	 * MSI-X vectors
1601 	 */
1602 	if (rc >= BNX2X_MIN_MSIX_VEC_CNT(bp)) {
1603 		/* how less vectors we will have? */
1604 		int diff = msix_vec - rc;
1605 
1606 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1607 
1608 		rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc);
1609 
1610 		if (rc) {
1611 			BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1612 			goto no_msix;
1613 		}
1614 		/*
1615 		 * decrease number of queues by number of unallocated entries
1616 		 */
1617 		bp->num_ethernet_queues -= diff;
1618 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1619 
1620 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1621 			       bp->num_queues);
1622 	} else if (rc > 0) {
1623 		/* Get by with single vector */
1624 		rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], 1);
1625 		if (rc) {
1626 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1627 				       rc);
1628 			goto no_msix;
1629 		}
1630 
1631 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1632 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1633 
1634 		BNX2X_DEV_INFO("set number of queues to 1\n");
1635 		bp->num_ethernet_queues = 1;
1636 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1637 	} else if (rc < 0) {
1638 		BNX2X_DEV_INFO("MSI-X is not attainable  rc %d\n", rc);
1639 		goto no_msix;
1640 	}
1641 
1642 	bp->flags |= USING_MSIX_FLAG;
1643 
1644 	return 0;
1645 
1646 no_msix:
1647 	/* fall to INTx if not enough memory */
1648 	if (rc == -ENOMEM)
1649 		bp->flags |= DISABLE_MSI_FLAG;
1650 
1651 	return rc;
1652 }
1653 
1654 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1655 {
1656 	int i, rc, offset = 0;
1657 
1658 	/* no default status block for vf */
1659 	if (IS_PF(bp)) {
1660 		rc = request_irq(bp->msix_table[offset++].vector,
1661 				 bnx2x_msix_sp_int, 0,
1662 				 bp->dev->name, bp->dev);
1663 		if (rc) {
1664 			BNX2X_ERR("request sp irq failed\n");
1665 			return -EBUSY;
1666 		}
1667 	}
1668 
1669 	if (CNIC_SUPPORT(bp))
1670 		offset++;
1671 
1672 	for_each_eth_queue(bp, i) {
1673 		struct bnx2x_fastpath *fp = &bp->fp[i];
1674 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1675 			 bp->dev->name, i);
1676 
1677 		rc = request_irq(bp->msix_table[offset].vector,
1678 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1679 		if (rc) {
1680 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1681 			      bp->msix_table[offset].vector, rc);
1682 			bnx2x_free_msix_irqs(bp, offset);
1683 			return -EBUSY;
1684 		}
1685 
1686 		offset++;
1687 	}
1688 
1689 	i = BNX2X_NUM_ETH_QUEUES(bp);
1690 	if (IS_PF(bp)) {
1691 		offset = 1 + CNIC_SUPPORT(bp);
1692 		netdev_info(bp->dev,
1693 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1694 			    bp->msix_table[0].vector,
1695 			    0, bp->msix_table[offset].vector,
1696 			    i - 1, bp->msix_table[offset + i - 1].vector);
1697 	} else {
1698 		offset = CNIC_SUPPORT(bp);
1699 		netdev_info(bp->dev,
1700 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1701 			    0, bp->msix_table[offset].vector,
1702 			    i - 1, bp->msix_table[offset + i - 1].vector);
1703 	}
1704 	return 0;
1705 }
1706 
1707 int bnx2x_enable_msi(struct bnx2x *bp)
1708 {
1709 	int rc;
1710 
1711 	rc = pci_enable_msi(bp->pdev);
1712 	if (rc) {
1713 		BNX2X_DEV_INFO("MSI is not attainable\n");
1714 		return -1;
1715 	}
1716 	bp->flags |= USING_MSI_FLAG;
1717 
1718 	return 0;
1719 }
1720 
1721 static int bnx2x_req_irq(struct bnx2x *bp)
1722 {
1723 	unsigned long flags;
1724 	unsigned int irq;
1725 
1726 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1727 		flags = 0;
1728 	else
1729 		flags = IRQF_SHARED;
1730 
1731 	if (bp->flags & USING_MSIX_FLAG)
1732 		irq = bp->msix_table[0].vector;
1733 	else
1734 		irq = bp->pdev->irq;
1735 
1736 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1737 }
1738 
1739 static int bnx2x_setup_irqs(struct bnx2x *bp)
1740 {
1741 	int rc = 0;
1742 	if (bp->flags & USING_MSIX_FLAG &&
1743 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1744 		rc = bnx2x_req_msix_irqs(bp);
1745 		if (rc)
1746 			return rc;
1747 	} else {
1748 		rc = bnx2x_req_irq(bp);
1749 		if (rc) {
1750 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1751 			return rc;
1752 		}
1753 		if (bp->flags & USING_MSI_FLAG) {
1754 			bp->dev->irq = bp->pdev->irq;
1755 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1756 				    bp->dev->irq);
1757 		}
1758 		if (bp->flags & USING_MSIX_FLAG) {
1759 			bp->dev->irq = bp->msix_table[0].vector;
1760 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1761 				    bp->dev->irq);
1762 		}
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1769 {
1770 	int i;
1771 
1772 	for_each_rx_queue_cnic(bp, i) {
1773 		bnx2x_fp_init_lock(&bp->fp[i]);
1774 		napi_enable(&bnx2x_fp(bp, i, napi));
1775 	}
1776 }
1777 
1778 static void bnx2x_napi_enable(struct bnx2x *bp)
1779 {
1780 	int i;
1781 
1782 	for_each_eth_queue(bp, i) {
1783 		bnx2x_fp_init_lock(&bp->fp[i]);
1784 		napi_enable(&bnx2x_fp(bp, i, napi));
1785 	}
1786 }
1787 
1788 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1789 {
1790 	int i;
1791 
1792 	local_bh_disable();
1793 	for_each_rx_queue_cnic(bp, i) {
1794 		napi_disable(&bnx2x_fp(bp, i, napi));
1795 		while (!bnx2x_fp_lock_napi(&bp->fp[i]))
1796 			mdelay(1);
1797 	}
1798 	local_bh_enable();
1799 }
1800 
1801 static void bnx2x_napi_disable(struct bnx2x *bp)
1802 {
1803 	int i;
1804 
1805 	local_bh_disable();
1806 	for_each_eth_queue(bp, i) {
1807 		napi_disable(&bnx2x_fp(bp, i, napi));
1808 		while (!bnx2x_fp_lock_napi(&bp->fp[i]))
1809 			mdelay(1);
1810 	}
1811 	local_bh_enable();
1812 }
1813 
1814 void bnx2x_netif_start(struct bnx2x *bp)
1815 {
1816 	if (netif_running(bp->dev)) {
1817 		bnx2x_napi_enable(bp);
1818 		if (CNIC_LOADED(bp))
1819 			bnx2x_napi_enable_cnic(bp);
1820 		bnx2x_int_enable(bp);
1821 		if (bp->state == BNX2X_STATE_OPEN)
1822 			netif_tx_wake_all_queues(bp->dev);
1823 	}
1824 }
1825 
1826 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1827 {
1828 	bnx2x_int_disable_sync(bp, disable_hw);
1829 	bnx2x_napi_disable(bp);
1830 	if (CNIC_LOADED(bp))
1831 		bnx2x_napi_disable_cnic(bp);
1832 }
1833 
1834 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb)
1835 {
1836 	struct bnx2x *bp = netdev_priv(dev);
1837 
1838 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1839 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1840 		u16 ether_type = ntohs(hdr->h_proto);
1841 
1842 		/* Skip VLAN tag if present */
1843 		if (ether_type == ETH_P_8021Q) {
1844 			struct vlan_ethhdr *vhdr =
1845 				(struct vlan_ethhdr *)skb->data;
1846 
1847 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1848 		}
1849 
1850 		/* If ethertype is FCoE or FIP - use FCoE ring */
1851 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1852 			return bnx2x_fcoe_tx(bp, txq_index);
1853 	}
1854 
1855 	/* select a non-FCoE queue */
1856 	return __netdev_pick_tx(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp);
1857 }
1858 
1859 void bnx2x_set_num_queues(struct bnx2x *bp)
1860 {
1861 	/* RSS queues */
1862 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1863 
1864 	/* override in STORAGE SD modes */
1865 	if (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))
1866 		bp->num_ethernet_queues = 1;
1867 
1868 	/* Add special queues */
1869 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1870 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1871 
1872 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1873 }
1874 
1875 /**
1876  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1877  *
1878  * @bp:		Driver handle
1879  *
1880  * We currently support for at most 16 Tx queues for each CoS thus we will
1881  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1882  * bp->max_cos.
1883  *
1884  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1885  * index after all ETH L2 indices.
1886  *
1887  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1888  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1889  * 16..31,...) with indices that are not coupled with any real Tx queue.
1890  *
1891  * The proper configuration of skb->queue_mapping is handled by
1892  * bnx2x_select_queue() and __skb_tx_hash().
1893  *
1894  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1895  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1896  */
1897 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1898 {
1899 	int rc, tx, rx;
1900 
1901 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1902 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1903 
1904 /* account for fcoe queue */
1905 	if (include_cnic && !NO_FCOE(bp)) {
1906 		rx++;
1907 		tx++;
1908 	}
1909 
1910 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
1911 	if (rc) {
1912 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1913 		return rc;
1914 	}
1915 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
1916 	if (rc) {
1917 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1918 		return rc;
1919 	}
1920 
1921 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
1922 			  tx, rx);
1923 
1924 	return rc;
1925 }
1926 
1927 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
1928 {
1929 	int i;
1930 
1931 	for_each_queue(bp, i) {
1932 		struct bnx2x_fastpath *fp = &bp->fp[i];
1933 		u32 mtu;
1934 
1935 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
1936 		if (IS_FCOE_IDX(i))
1937 			/*
1938 			 * Although there are no IP frames expected to arrive to
1939 			 * this ring we still want to add an
1940 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
1941 			 * overrun attack.
1942 			 */
1943 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
1944 		else
1945 			mtu = bp->dev->mtu;
1946 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
1947 				  IP_HEADER_ALIGNMENT_PADDING +
1948 				  ETH_OVREHEAD +
1949 				  mtu +
1950 				  BNX2X_FW_RX_ALIGN_END;
1951 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
1952 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
1953 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
1954 		else
1955 			fp->rx_frag_size = 0;
1956 	}
1957 }
1958 
1959 static int bnx2x_init_rss(struct bnx2x *bp)
1960 {
1961 	int i;
1962 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
1963 
1964 	/* Prepare the initial contents for the indirection table if RSS is
1965 	 * enabled
1966 	 */
1967 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
1968 		bp->rss_conf_obj.ind_table[i] =
1969 			bp->fp->cl_id +
1970 			ethtool_rxfh_indir_default(i, num_eth_queues);
1971 
1972 	/*
1973 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
1974 	 * per-port, so if explicit configuration is needed , do it only
1975 	 * for a PMF.
1976 	 *
1977 	 * For 57712 and newer on the other hand it's a per-function
1978 	 * configuration.
1979 	 */
1980 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
1981 }
1982 
1983 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
1984 	      bool config_hash, bool enable)
1985 {
1986 	struct bnx2x_config_rss_params params = {NULL};
1987 
1988 	/* Although RSS is meaningless when there is a single HW queue we
1989 	 * still need it enabled in order to have HW Rx hash generated.
1990 	 *
1991 	 * if (!is_eth_multi(bp))
1992 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
1993 	 */
1994 
1995 	params.rss_obj = rss_obj;
1996 
1997 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
1998 
1999 	if (enable) {
2000 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2001 
2002 		/* RSS configuration */
2003 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2004 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2005 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2006 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2007 		if (rss_obj->udp_rss_v4)
2008 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2009 		if (rss_obj->udp_rss_v6)
2010 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2011 	} else {
2012 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2013 	}
2014 
2015 	/* Hash bits */
2016 	params.rss_result_mask = MULTI_MASK;
2017 
2018 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2019 
2020 	if (config_hash) {
2021 		/* RSS keys */
2022 		prandom_bytes(params.rss_key, T_ETH_RSS_KEY * 4);
2023 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2024 	}
2025 
2026 	if (IS_PF(bp))
2027 		return bnx2x_config_rss(bp, &params);
2028 	else
2029 		return bnx2x_vfpf_config_rss(bp, &params);
2030 }
2031 
2032 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2033 {
2034 	struct bnx2x_func_state_params func_params = {NULL};
2035 
2036 	/* Prepare parameters for function state transitions */
2037 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2038 
2039 	func_params.f_obj = &bp->func_obj;
2040 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2041 
2042 	func_params.params.hw_init.load_phase = load_code;
2043 
2044 	return bnx2x_func_state_change(bp, &func_params);
2045 }
2046 
2047 /*
2048  * Cleans the object that have internal lists without sending
2049  * ramrods. Should be run when interrupts are disabled.
2050  */
2051 void bnx2x_squeeze_objects(struct bnx2x *bp)
2052 {
2053 	int rc;
2054 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2055 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2056 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2057 
2058 	/***************** Cleanup MACs' object first *************************/
2059 
2060 	/* Wait for completion of requested */
2061 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2062 	/* Perform a dry cleanup */
2063 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2064 
2065 	/* Clean ETH primary MAC */
2066 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2067 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2068 				 &ramrod_flags);
2069 	if (rc != 0)
2070 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2071 
2072 	/* Cleanup UC list */
2073 	vlan_mac_flags = 0;
2074 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2075 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2076 				 &ramrod_flags);
2077 	if (rc != 0)
2078 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2079 
2080 	/***************** Now clean mcast object *****************************/
2081 	rparam.mcast_obj = &bp->mcast_obj;
2082 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2083 
2084 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2085 	 * we take a lock surrounding both the initial send and the CONTs,
2086 	 * as we don't want a true completion to disrupt us in the middle.
2087 	 */
2088 	netif_addr_lock_bh(bp->dev);
2089 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2090 	if (rc < 0)
2091 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2092 			  rc);
2093 
2094 	/* ...and wait until all pending commands are cleared */
2095 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2096 	while (rc != 0) {
2097 		if (rc < 0) {
2098 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2099 				  rc);
2100 			netif_addr_unlock_bh(bp->dev);
2101 			return;
2102 		}
2103 
2104 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2105 	}
2106 	netif_addr_unlock_bh(bp->dev);
2107 }
2108 
2109 #ifndef BNX2X_STOP_ON_ERROR
2110 #define LOAD_ERROR_EXIT(bp, label) \
2111 	do { \
2112 		(bp)->state = BNX2X_STATE_ERROR; \
2113 		goto label; \
2114 	} while (0)
2115 
2116 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2117 	do { \
2118 		bp->cnic_loaded = false; \
2119 		goto label; \
2120 	} while (0)
2121 #else /*BNX2X_STOP_ON_ERROR*/
2122 #define LOAD_ERROR_EXIT(bp, label) \
2123 	do { \
2124 		(bp)->state = BNX2X_STATE_ERROR; \
2125 		(bp)->panic = 1; \
2126 		return -EBUSY; \
2127 	} while (0)
2128 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2129 	do { \
2130 		bp->cnic_loaded = false; \
2131 		(bp)->panic = 1; \
2132 		return -EBUSY; \
2133 	} while (0)
2134 #endif /*BNX2X_STOP_ON_ERROR*/
2135 
2136 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2137 {
2138 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2139 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2140 	return;
2141 }
2142 
2143 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2144 {
2145 	int num_groups, vf_headroom = 0;
2146 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2147 
2148 	/* number of queues for statistics is number of eth queues + FCoE */
2149 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2150 
2151 	/* Total number of FW statistics requests =
2152 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2153 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2154 	 * for fcoe l2 queue if applicable)
2155 	 */
2156 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2157 
2158 	/* vf stats appear in the request list, but their data is allocated by
2159 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2160 	 * it is used to determine where to place the vf stats queries in the
2161 	 * request struct
2162 	 */
2163 	if (IS_SRIOV(bp))
2164 		vf_headroom = bnx2x_vf_headroom(bp);
2165 
2166 	/* Request is built from stats_query_header and an array of
2167 	 * stats_query_cmd_group each of which contains
2168 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2169 	 * configured in the stats_query_header.
2170 	 */
2171 	num_groups =
2172 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2173 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2174 		 1 : 0));
2175 
2176 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2177 	   bp->fw_stats_num, vf_headroom, num_groups);
2178 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2179 		num_groups * sizeof(struct stats_query_cmd_group);
2180 
2181 	/* Data for statistics requests + stats_counter
2182 	 * stats_counter holds per-STORM counters that are incremented
2183 	 * when STORM has finished with the current request.
2184 	 * memory for FCoE offloaded statistics are counted anyway,
2185 	 * even if they will not be sent.
2186 	 * VF stats are not accounted for here as the data of VF stats is stored
2187 	 * in memory allocated by the VF, not here.
2188 	 */
2189 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2190 		sizeof(struct per_pf_stats) +
2191 		sizeof(struct fcoe_statistics_params) +
2192 		sizeof(struct per_queue_stats) * num_queue_stats +
2193 		sizeof(struct stats_counter);
2194 
2195 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
2196 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2197 
2198 	/* Set shortcuts */
2199 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2200 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2201 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2202 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2203 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2204 		bp->fw_stats_req_sz;
2205 
2206 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2207 	   U64_HI(bp->fw_stats_req_mapping),
2208 	   U64_LO(bp->fw_stats_req_mapping));
2209 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2210 	   U64_HI(bp->fw_stats_data_mapping),
2211 	   U64_LO(bp->fw_stats_data_mapping));
2212 	return 0;
2213 
2214 alloc_mem_err:
2215 	bnx2x_free_fw_stats_mem(bp);
2216 	BNX2X_ERR("Can't allocate FW stats memory\n");
2217 	return -ENOMEM;
2218 }
2219 
2220 /* send load request to mcp and analyze response */
2221 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2222 {
2223 	u32 param;
2224 
2225 	/* init fw_seq */
2226 	bp->fw_seq =
2227 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2228 		 DRV_MSG_SEQ_NUMBER_MASK);
2229 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2230 
2231 	/* Get current FW pulse sequence */
2232 	bp->fw_drv_pulse_wr_seq =
2233 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2234 		 DRV_PULSE_SEQ_MASK);
2235 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2236 
2237 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2238 
2239 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2240 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2241 
2242 	/* load request */
2243 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2244 
2245 	/* if mcp fails to respond we must abort */
2246 	if (!(*load_code)) {
2247 		BNX2X_ERR("MCP response failure, aborting\n");
2248 		return -EBUSY;
2249 	}
2250 
2251 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2252 	 * must abort
2253 	 */
2254 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2255 		BNX2X_ERR("MCP refused load request, aborting\n");
2256 		return -EBUSY;
2257 	}
2258 	return 0;
2259 }
2260 
2261 /* check whether another PF has already loaded FW to chip. In
2262  * virtualized environments a pf from another VM may have already
2263  * initialized the device including loading FW
2264  */
2265 int bnx2x_nic_load_analyze_req(struct bnx2x *bp, u32 load_code)
2266 {
2267 	/* is another pf loaded on this engine? */
2268 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2269 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2270 		/* build my FW version dword */
2271 		u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2272 			(BCM_5710_FW_MINOR_VERSION << 8) +
2273 			(BCM_5710_FW_REVISION_VERSION << 16) +
2274 			(BCM_5710_FW_ENGINEERING_VERSION << 24);
2275 
2276 		/* read loaded FW from chip */
2277 		u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2278 
2279 		DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2280 		   loaded_fw, my_fw);
2281 
2282 		/* abort nic load if version mismatch */
2283 		if (my_fw != loaded_fw) {
2284 			BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2285 				  loaded_fw, my_fw);
2286 			return -EBUSY;
2287 		}
2288 	}
2289 	return 0;
2290 }
2291 
2292 /* returns the "mcp load_code" according to global load_count array */
2293 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2294 {
2295 	int path = BP_PATH(bp);
2296 
2297 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2298 	   path, load_count[path][0], load_count[path][1],
2299 	   load_count[path][2]);
2300 	load_count[path][0]++;
2301 	load_count[path][1 + port]++;
2302 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2303 	   path, load_count[path][0], load_count[path][1],
2304 	   load_count[path][2]);
2305 	if (load_count[path][0] == 1)
2306 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2307 	else if (load_count[path][1 + port] == 1)
2308 		return FW_MSG_CODE_DRV_LOAD_PORT;
2309 	else
2310 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2311 }
2312 
2313 /* mark PMF if applicable */
2314 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2315 {
2316 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2317 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2318 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2319 		bp->port.pmf = 1;
2320 		/* We need the barrier to ensure the ordering between the
2321 		 * writing to bp->port.pmf here and reading it from the
2322 		 * bnx2x_periodic_task().
2323 		 */
2324 		smp_mb();
2325 	} else {
2326 		bp->port.pmf = 0;
2327 	}
2328 
2329 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2330 }
2331 
2332 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2333 {
2334 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2335 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2336 	    (bp->common.shmem2_base)) {
2337 		if (SHMEM2_HAS(bp, dcc_support))
2338 			SHMEM2_WR(bp, dcc_support,
2339 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2340 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2341 		if (SHMEM2_HAS(bp, afex_driver_support))
2342 			SHMEM2_WR(bp, afex_driver_support,
2343 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2344 	}
2345 
2346 	/* Set AFEX default VLAN tag to an invalid value */
2347 	bp->afex_def_vlan_tag = -1;
2348 }
2349 
2350 /**
2351  * bnx2x_bz_fp - zero content of the fastpath structure.
2352  *
2353  * @bp:		driver handle
2354  * @index:	fastpath index to be zeroed
2355  *
2356  * Makes sure the contents of the bp->fp[index].napi is kept
2357  * intact.
2358  */
2359 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2360 {
2361 	struct bnx2x_fastpath *fp = &bp->fp[index];
2362 	int cos;
2363 	struct napi_struct orig_napi = fp->napi;
2364 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2365 
2366 	/* bzero bnx2x_fastpath contents */
2367 	if (fp->tpa_info)
2368 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2369 		       sizeof(struct bnx2x_agg_info));
2370 	memset(fp, 0, sizeof(*fp));
2371 
2372 	/* Restore the NAPI object as it has been already initialized */
2373 	fp->napi = orig_napi;
2374 	fp->tpa_info = orig_tpa_info;
2375 	fp->bp = bp;
2376 	fp->index = index;
2377 	if (IS_ETH_FP(fp))
2378 		fp->max_cos = bp->max_cos;
2379 	else
2380 		/* Special queues support only one CoS */
2381 		fp->max_cos = 1;
2382 
2383 	/* Init txdata pointers */
2384 	if (IS_FCOE_FP(fp))
2385 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2386 	if (IS_ETH_FP(fp))
2387 		for_each_cos_in_tx_queue(fp, cos)
2388 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2389 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2390 
2391 	/* set the tpa flag for each queue. The tpa flag determines the queue
2392 	 * minimal size so it must be set prior to queue memory allocation
2393 	 */
2394 	fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG ||
2395 				  (bp->flags & GRO_ENABLE_FLAG &&
2396 				   bnx2x_mtu_allows_gro(bp->dev->mtu)));
2397 	if (bp->flags & TPA_ENABLE_FLAG)
2398 		fp->mode = TPA_MODE_LRO;
2399 	else if (bp->flags & GRO_ENABLE_FLAG)
2400 		fp->mode = TPA_MODE_GRO;
2401 
2402 	/* We don't want TPA on an FCoE L2 ring */
2403 	if (IS_FCOE_FP(fp))
2404 		fp->disable_tpa = 1;
2405 }
2406 
2407 int bnx2x_load_cnic(struct bnx2x *bp)
2408 {
2409 	int i, rc, port = BP_PORT(bp);
2410 
2411 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2412 
2413 	mutex_init(&bp->cnic_mutex);
2414 
2415 	if (IS_PF(bp)) {
2416 		rc = bnx2x_alloc_mem_cnic(bp);
2417 		if (rc) {
2418 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2419 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2420 		}
2421 	}
2422 
2423 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2424 	if (rc) {
2425 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2426 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2427 	}
2428 
2429 	/* Update the number of queues with the cnic queues */
2430 	rc = bnx2x_set_real_num_queues(bp, 1);
2431 	if (rc) {
2432 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2433 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2434 	}
2435 
2436 	/* Add all CNIC NAPI objects */
2437 	bnx2x_add_all_napi_cnic(bp);
2438 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2439 	bnx2x_napi_enable_cnic(bp);
2440 
2441 	rc = bnx2x_init_hw_func_cnic(bp);
2442 	if (rc)
2443 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2444 
2445 	bnx2x_nic_init_cnic(bp);
2446 
2447 	if (IS_PF(bp)) {
2448 		/* Enable Timer scan */
2449 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2450 
2451 		/* setup cnic queues */
2452 		for_each_cnic_queue(bp, i) {
2453 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2454 			if (rc) {
2455 				BNX2X_ERR("Queue setup failed\n");
2456 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2457 			}
2458 		}
2459 	}
2460 
2461 	/* Initialize Rx filter. */
2462 	bnx2x_set_rx_mode_inner(bp);
2463 
2464 	/* re-read iscsi info */
2465 	bnx2x_get_iscsi_info(bp);
2466 	bnx2x_setup_cnic_irq_info(bp);
2467 	bnx2x_setup_cnic_info(bp);
2468 	bp->cnic_loaded = true;
2469 	if (bp->state == BNX2X_STATE_OPEN)
2470 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2471 
2472 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2473 
2474 	return 0;
2475 
2476 #ifndef BNX2X_STOP_ON_ERROR
2477 load_error_cnic2:
2478 	/* Disable Timer scan */
2479 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2480 
2481 load_error_cnic1:
2482 	bnx2x_napi_disable_cnic(bp);
2483 	/* Update the number of queues without the cnic queues */
2484 	rc = bnx2x_set_real_num_queues(bp, 0);
2485 	if (rc)
2486 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2487 load_error_cnic0:
2488 	BNX2X_ERR("CNIC-related load failed\n");
2489 	bnx2x_free_fp_mem_cnic(bp);
2490 	bnx2x_free_mem_cnic(bp);
2491 	return rc;
2492 #endif /* ! BNX2X_STOP_ON_ERROR */
2493 }
2494 
2495 /* must be called with rtnl_lock */
2496 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2497 {
2498 	int port = BP_PORT(bp);
2499 	int i, rc = 0, load_code = 0;
2500 
2501 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2502 	DP(NETIF_MSG_IFUP,
2503 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2504 
2505 #ifdef BNX2X_STOP_ON_ERROR
2506 	if (unlikely(bp->panic)) {
2507 		BNX2X_ERR("Can't load NIC when there is panic\n");
2508 		return -EPERM;
2509 	}
2510 #endif
2511 
2512 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2513 
2514 	/* zero the structure w/o any lock, before SP handler is initialized */
2515 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2516 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2517 		&bp->last_reported_link.link_report_flags);
2518 
2519 	if (IS_PF(bp))
2520 		/* must be called before memory allocation and HW init */
2521 		bnx2x_ilt_set_info(bp);
2522 
2523 	/*
2524 	 * Zero fastpath structures preserving invariants like napi, which are
2525 	 * allocated only once, fp index, max_cos, bp pointer.
2526 	 * Also set fp->disable_tpa and txdata_ptr.
2527 	 */
2528 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2529 	for_each_queue(bp, i)
2530 		bnx2x_bz_fp(bp, i);
2531 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2532 				  bp->num_cnic_queues) *
2533 				  sizeof(struct bnx2x_fp_txdata));
2534 
2535 	bp->fcoe_init = false;
2536 
2537 	/* Set the receive queues buffer size */
2538 	bnx2x_set_rx_buf_size(bp);
2539 
2540 	if (IS_PF(bp)) {
2541 		rc = bnx2x_alloc_mem(bp);
2542 		if (rc) {
2543 			BNX2X_ERR("Unable to allocate bp memory\n");
2544 			return rc;
2545 		}
2546 	}
2547 
2548 	/* Allocated memory for FW statistics  */
2549 	if (bnx2x_alloc_fw_stats_mem(bp))
2550 		LOAD_ERROR_EXIT(bp, load_error0);
2551 
2552 	/* need to be done after alloc mem, since it's self adjusting to amount
2553 	 * of memory available for RSS queues
2554 	 */
2555 	rc = bnx2x_alloc_fp_mem(bp);
2556 	if (rc) {
2557 		BNX2X_ERR("Unable to allocate memory for fps\n");
2558 		LOAD_ERROR_EXIT(bp, load_error0);
2559 	}
2560 
2561 	/* request pf to initialize status blocks */
2562 	if (IS_VF(bp)) {
2563 		rc = bnx2x_vfpf_init(bp);
2564 		if (rc)
2565 			LOAD_ERROR_EXIT(bp, load_error0);
2566 	}
2567 
2568 	/* As long as bnx2x_alloc_mem() may possibly update
2569 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2570 	 * come after it. At this stage cnic queues are not counted.
2571 	 */
2572 	rc = bnx2x_set_real_num_queues(bp, 0);
2573 	if (rc) {
2574 		BNX2X_ERR("Unable to set real_num_queues\n");
2575 		LOAD_ERROR_EXIT(bp, load_error0);
2576 	}
2577 
2578 	/* configure multi cos mappings in kernel.
2579 	 * this configuration may be overridden by a multi class queue
2580 	 * discipline or by a dcbx negotiation result.
2581 	 */
2582 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2583 
2584 	/* Add all NAPI objects */
2585 	bnx2x_add_all_napi(bp);
2586 	DP(NETIF_MSG_IFUP, "napi added\n");
2587 	bnx2x_napi_enable(bp);
2588 
2589 	if (IS_PF(bp)) {
2590 		/* set pf load just before approaching the MCP */
2591 		bnx2x_set_pf_load(bp);
2592 
2593 		/* if mcp exists send load request and analyze response */
2594 		if (!BP_NOMCP(bp)) {
2595 			/* attempt to load pf */
2596 			rc = bnx2x_nic_load_request(bp, &load_code);
2597 			if (rc)
2598 				LOAD_ERROR_EXIT(bp, load_error1);
2599 
2600 			/* what did mcp say? */
2601 			rc = bnx2x_nic_load_analyze_req(bp, load_code);
2602 			if (rc) {
2603 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2604 				LOAD_ERROR_EXIT(bp, load_error2);
2605 			}
2606 		} else {
2607 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2608 		}
2609 
2610 		/* mark pmf if applicable */
2611 		bnx2x_nic_load_pmf(bp, load_code);
2612 
2613 		/* Init Function state controlling object */
2614 		bnx2x__init_func_obj(bp);
2615 
2616 		/* Initialize HW */
2617 		rc = bnx2x_init_hw(bp, load_code);
2618 		if (rc) {
2619 			BNX2X_ERR("HW init failed, aborting\n");
2620 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2621 			LOAD_ERROR_EXIT(bp, load_error2);
2622 		}
2623 	}
2624 
2625 	bnx2x_pre_irq_nic_init(bp);
2626 
2627 	/* Connect to IRQs */
2628 	rc = bnx2x_setup_irqs(bp);
2629 	if (rc) {
2630 		BNX2X_ERR("setup irqs failed\n");
2631 		if (IS_PF(bp))
2632 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2633 		LOAD_ERROR_EXIT(bp, load_error2);
2634 	}
2635 
2636 	/* Init per-function objects */
2637 	if (IS_PF(bp)) {
2638 		/* Setup NIC internals and enable interrupts */
2639 		bnx2x_post_irq_nic_init(bp, load_code);
2640 
2641 		bnx2x_init_bp_objs(bp);
2642 		bnx2x_iov_nic_init(bp);
2643 
2644 		/* Set AFEX default VLAN tag to an invalid value */
2645 		bp->afex_def_vlan_tag = -1;
2646 		bnx2x_nic_load_afex_dcc(bp, load_code);
2647 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2648 		rc = bnx2x_func_start(bp);
2649 		if (rc) {
2650 			BNX2X_ERR("Function start failed!\n");
2651 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2652 
2653 			LOAD_ERROR_EXIT(bp, load_error3);
2654 		}
2655 
2656 		/* Send LOAD_DONE command to MCP */
2657 		if (!BP_NOMCP(bp)) {
2658 			load_code = bnx2x_fw_command(bp,
2659 						     DRV_MSG_CODE_LOAD_DONE, 0);
2660 			if (!load_code) {
2661 				BNX2X_ERR("MCP response failure, aborting\n");
2662 				rc = -EBUSY;
2663 				LOAD_ERROR_EXIT(bp, load_error3);
2664 			}
2665 		}
2666 
2667 		/* initialize FW coalescing state machines in RAM */
2668 		bnx2x_update_coalesce(bp);
2669 	}
2670 
2671 	/* setup the leading queue */
2672 	rc = bnx2x_setup_leading(bp);
2673 	if (rc) {
2674 		BNX2X_ERR("Setup leading failed!\n");
2675 		LOAD_ERROR_EXIT(bp, load_error3);
2676 	}
2677 
2678 	/* set up the rest of the queues */
2679 	for_each_nondefault_eth_queue(bp, i) {
2680 		if (IS_PF(bp))
2681 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2682 		else /* VF */
2683 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2684 		if (rc) {
2685 			BNX2X_ERR("Queue %d setup failed\n", i);
2686 			LOAD_ERROR_EXIT(bp, load_error3);
2687 		}
2688 	}
2689 
2690 	/* setup rss */
2691 	rc = bnx2x_init_rss(bp);
2692 	if (rc) {
2693 		BNX2X_ERR("PF RSS init failed\n");
2694 		LOAD_ERROR_EXIT(bp, load_error3);
2695 	}
2696 
2697 	/* Now when Clients are configured we are ready to work */
2698 	bp->state = BNX2X_STATE_OPEN;
2699 
2700 	/* Configure a ucast MAC */
2701 	if (IS_PF(bp))
2702 		rc = bnx2x_set_eth_mac(bp, true);
2703 	else /* vf */
2704 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2705 					   true);
2706 	if (rc) {
2707 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2708 		LOAD_ERROR_EXIT(bp, load_error3);
2709 	}
2710 
2711 	if (IS_PF(bp) && bp->pending_max) {
2712 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2713 		bp->pending_max = 0;
2714 	}
2715 
2716 	if (bp->port.pmf) {
2717 		rc = bnx2x_initial_phy_init(bp, load_mode);
2718 		if (rc)
2719 			LOAD_ERROR_EXIT(bp, load_error3);
2720 	}
2721 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2722 
2723 	/* Start fast path */
2724 
2725 	/* Initialize Rx filter. */
2726 	bnx2x_set_rx_mode_inner(bp);
2727 
2728 	/* Start the Tx */
2729 	switch (load_mode) {
2730 	case LOAD_NORMAL:
2731 		/* Tx queue should be only re-enabled */
2732 		netif_tx_wake_all_queues(bp->dev);
2733 		break;
2734 
2735 	case LOAD_OPEN:
2736 		netif_tx_start_all_queues(bp->dev);
2737 		smp_mb__after_clear_bit();
2738 		break;
2739 
2740 	case LOAD_DIAG:
2741 	case LOAD_LOOPBACK_EXT:
2742 		bp->state = BNX2X_STATE_DIAG;
2743 		break;
2744 
2745 	default:
2746 		break;
2747 	}
2748 
2749 	if (bp->port.pmf)
2750 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2751 	else
2752 		bnx2x__link_status_update(bp);
2753 
2754 	/* start the timer */
2755 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2756 
2757 	if (CNIC_ENABLED(bp))
2758 		bnx2x_load_cnic(bp);
2759 
2760 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2761 		/* mark driver is loaded in shmem2 */
2762 		u32 val;
2763 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2764 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2765 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2766 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2767 	}
2768 
2769 	/* Wait for all pending SP commands to complete */
2770 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2771 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2772 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2773 		return -EBUSY;
2774 	}
2775 
2776 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2777 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2778 		bnx2x_dcbx_init(bp, false);
2779 
2780 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2781 
2782 	return 0;
2783 
2784 #ifndef BNX2X_STOP_ON_ERROR
2785 load_error3:
2786 	if (IS_PF(bp)) {
2787 		bnx2x_int_disable_sync(bp, 1);
2788 
2789 		/* Clean queueable objects */
2790 		bnx2x_squeeze_objects(bp);
2791 	}
2792 
2793 	/* Free SKBs, SGEs, TPA pool and driver internals */
2794 	bnx2x_free_skbs(bp);
2795 	for_each_rx_queue(bp, i)
2796 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2797 
2798 	/* Release IRQs */
2799 	bnx2x_free_irq(bp);
2800 load_error2:
2801 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2802 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2803 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2804 	}
2805 
2806 	bp->port.pmf = 0;
2807 load_error1:
2808 	bnx2x_napi_disable(bp);
2809 	bnx2x_del_all_napi(bp);
2810 
2811 	/* clear pf_load status, as it was already set */
2812 	if (IS_PF(bp))
2813 		bnx2x_clear_pf_load(bp);
2814 load_error0:
2815 	bnx2x_free_fp_mem(bp);
2816 	bnx2x_free_fw_stats_mem(bp);
2817 	bnx2x_free_mem(bp);
2818 
2819 	return rc;
2820 #endif /* ! BNX2X_STOP_ON_ERROR */
2821 }
2822 
2823 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2824 {
2825 	u8 rc = 0, cos, i;
2826 
2827 	/* Wait until tx fastpath tasks complete */
2828 	for_each_tx_queue(bp, i) {
2829 		struct bnx2x_fastpath *fp = &bp->fp[i];
2830 
2831 		for_each_cos_in_tx_queue(fp, cos)
2832 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2833 		if (rc)
2834 			return rc;
2835 	}
2836 	return 0;
2837 }
2838 
2839 /* must be called with rtnl_lock */
2840 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2841 {
2842 	int i;
2843 	bool global = false;
2844 
2845 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2846 
2847 	/* mark driver is unloaded in shmem2 */
2848 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2849 		u32 val;
2850 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2851 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2852 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2853 	}
2854 
2855 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2856 	    (bp->state == BNX2X_STATE_CLOSED ||
2857 	     bp->state == BNX2X_STATE_ERROR)) {
2858 		/* We can get here if the driver has been unloaded
2859 		 * during parity error recovery and is either waiting for a
2860 		 * leader to complete or for other functions to unload and
2861 		 * then ifdown has been issued. In this case we want to
2862 		 * unload and let other functions to complete a recovery
2863 		 * process.
2864 		 */
2865 		bp->recovery_state = BNX2X_RECOVERY_DONE;
2866 		bp->is_leader = 0;
2867 		bnx2x_release_leader_lock(bp);
2868 		smp_mb();
2869 
2870 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
2871 		BNX2X_ERR("Can't unload in closed or error state\n");
2872 		return -EINVAL;
2873 	}
2874 
2875 	/* Nothing to do during unload if previous bnx2x_nic_load()
2876 	 * have not completed successfully - all resources are released.
2877 	 *
2878 	 * we can get here only after unsuccessful ndo_* callback, during which
2879 	 * dev->IFF_UP flag is still on.
2880 	 */
2881 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
2882 		return 0;
2883 
2884 	/* It's important to set the bp->state to the value different from
2885 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
2886 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
2887 	 */
2888 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
2889 	smp_mb();
2890 
2891 	/* indicate to VFs that the PF is going down */
2892 	bnx2x_iov_channel_down(bp);
2893 
2894 	if (CNIC_LOADED(bp))
2895 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
2896 
2897 	/* Stop Tx */
2898 	bnx2x_tx_disable(bp);
2899 	netdev_reset_tc(bp->dev);
2900 
2901 	bp->rx_mode = BNX2X_RX_MODE_NONE;
2902 
2903 	del_timer_sync(&bp->timer);
2904 
2905 	if (IS_PF(bp)) {
2906 		/* Set ALWAYS_ALIVE bit in shmem */
2907 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2908 		bnx2x_drv_pulse(bp);
2909 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2910 		bnx2x_save_statistics(bp);
2911 	}
2912 
2913 	/* wait till consumers catch up with producers in all queues */
2914 	bnx2x_drain_tx_queues(bp);
2915 
2916 	/* if VF indicate to PF this function is going down (PF will delete sp
2917 	 * elements and clear initializations
2918 	 */
2919 	if (IS_VF(bp))
2920 		bnx2x_vfpf_close_vf(bp);
2921 	else if (unload_mode != UNLOAD_RECOVERY)
2922 		/* if this is a normal/close unload need to clean up chip*/
2923 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
2924 	else {
2925 		/* Send the UNLOAD_REQUEST to the MCP */
2926 		bnx2x_send_unload_req(bp, unload_mode);
2927 
2928 		/* Prevent transactions to host from the functions on the
2929 		 * engine that doesn't reset global blocks in case of global
2930 		 * attention once global blocks are reset and gates are opened
2931 		 * (the engine which leader will perform the recovery
2932 		 * last).
2933 		 */
2934 		if (!CHIP_IS_E1x(bp))
2935 			bnx2x_pf_disable(bp);
2936 
2937 		/* Disable HW interrupts, NAPI */
2938 		bnx2x_netif_stop(bp, 1);
2939 		/* Delete all NAPI objects */
2940 		bnx2x_del_all_napi(bp);
2941 		if (CNIC_LOADED(bp))
2942 			bnx2x_del_all_napi_cnic(bp);
2943 		/* Release IRQs */
2944 		bnx2x_free_irq(bp);
2945 
2946 		/* Report UNLOAD_DONE to MCP */
2947 		bnx2x_send_unload_done(bp, false);
2948 	}
2949 
2950 	/*
2951 	 * At this stage no more interrupts will arrive so we may safely clean
2952 	 * the queueable objects here in case they failed to get cleaned so far.
2953 	 */
2954 	if (IS_PF(bp))
2955 		bnx2x_squeeze_objects(bp);
2956 
2957 	/* There should be no more pending SP commands at this stage */
2958 	bp->sp_state = 0;
2959 
2960 	bp->port.pmf = 0;
2961 
2962 	/* Free SKBs, SGEs, TPA pool and driver internals */
2963 	bnx2x_free_skbs(bp);
2964 	if (CNIC_LOADED(bp))
2965 		bnx2x_free_skbs_cnic(bp);
2966 	for_each_rx_queue(bp, i)
2967 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2968 
2969 	bnx2x_free_fp_mem(bp);
2970 	if (CNIC_LOADED(bp))
2971 		bnx2x_free_fp_mem_cnic(bp);
2972 
2973 	if (IS_PF(bp)) {
2974 		if (CNIC_LOADED(bp))
2975 			bnx2x_free_mem_cnic(bp);
2976 	}
2977 	bnx2x_free_mem(bp);
2978 
2979 	bp->state = BNX2X_STATE_CLOSED;
2980 	bp->cnic_loaded = false;
2981 
2982 	/* Check if there are pending parity attentions. If there are - set
2983 	 * RECOVERY_IN_PROGRESS.
2984 	 */
2985 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
2986 		bnx2x_set_reset_in_progress(bp);
2987 
2988 		/* Set RESET_IS_GLOBAL if needed */
2989 		if (global)
2990 			bnx2x_set_reset_global(bp);
2991 	}
2992 
2993 	/* The last driver must disable a "close the gate" if there is no
2994 	 * parity attention or "process kill" pending.
2995 	 */
2996 	if (IS_PF(bp) &&
2997 	    !bnx2x_clear_pf_load(bp) &&
2998 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
2999 		bnx2x_disable_close_the_gate(bp);
3000 
3001 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3002 
3003 	return 0;
3004 }
3005 
3006 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3007 {
3008 	u16 pmcsr;
3009 
3010 	/* If there is no power capability, silently succeed */
3011 	if (!bp->pdev->pm_cap) {
3012 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3013 		return 0;
3014 	}
3015 
3016 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3017 
3018 	switch (state) {
3019 	case PCI_D0:
3020 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3021 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3022 				       PCI_PM_CTRL_PME_STATUS));
3023 
3024 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3025 			/* delay required during transition out of D3hot */
3026 			msleep(20);
3027 		break;
3028 
3029 	case PCI_D3hot:
3030 		/* If there are other clients above don't
3031 		   shut down the power */
3032 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3033 			return 0;
3034 		/* Don't shut down the power for emulation and FPGA */
3035 		if (CHIP_REV_IS_SLOW(bp))
3036 			return 0;
3037 
3038 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3039 		pmcsr |= 3;
3040 
3041 		if (bp->wol)
3042 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3043 
3044 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3045 				      pmcsr);
3046 
3047 		/* No more memory access after this point until
3048 		* device is brought back to D0.
3049 		*/
3050 		break;
3051 
3052 	default:
3053 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3054 		return -EINVAL;
3055 	}
3056 	return 0;
3057 }
3058 
3059 /*
3060  * net_device service functions
3061  */
3062 int bnx2x_poll(struct napi_struct *napi, int budget)
3063 {
3064 	int work_done = 0;
3065 	u8 cos;
3066 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3067 						 napi);
3068 	struct bnx2x *bp = fp->bp;
3069 
3070 	while (1) {
3071 #ifdef BNX2X_STOP_ON_ERROR
3072 		if (unlikely(bp->panic)) {
3073 			napi_complete(napi);
3074 			return 0;
3075 		}
3076 #endif
3077 		if (!bnx2x_fp_lock_napi(fp))
3078 			return work_done;
3079 
3080 		for_each_cos_in_tx_queue(fp, cos)
3081 			if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3082 				bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3083 
3084 		if (bnx2x_has_rx_work(fp)) {
3085 			work_done += bnx2x_rx_int(fp, budget - work_done);
3086 
3087 			/* must not complete if we consumed full budget */
3088 			if (work_done >= budget) {
3089 				bnx2x_fp_unlock_napi(fp);
3090 				break;
3091 			}
3092 		}
3093 
3094 		/* Fall out from the NAPI loop if needed */
3095 		if (!bnx2x_fp_unlock_napi(fp) &&
3096 		    !(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3097 
3098 			/* No need to update SB for FCoE L2 ring as long as
3099 			 * it's connected to the default SB and the SB
3100 			 * has been updated when NAPI was scheduled.
3101 			 */
3102 			if (IS_FCOE_FP(fp)) {
3103 				napi_complete(napi);
3104 				break;
3105 			}
3106 			bnx2x_update_fpsb_idx(fp);
3107 			/* bnx2x_has_rx_work() reads the status block,
3108 			 * thus we need to ensure that status block indices
3109 			 * have been actually read (bnx2x_update_fpsb_idx)
3110 			 * prior to this check (bnx2x_has_rx_work) so that
3111 			 * we won't write the "newer" value of the status block
3112 			 * to IGU (if there was a DMA right after
3113 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3114 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3115 			 * to right before bnx2x_ack_sb). In this case there
3116 			 * will never be another interrupt until there is
3117 			 * another update of the status block, while there
3118 			 * is still unhandled work.
3119 			 */
3120 			rmb();
3121 
3122 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3123 				napi_complete(napi);
3124 				/* Re-enable interrupts */
3125 				DP(NETIF_MSG_RX_STATUS,
3126 				   "Update index to %d\n", fp->fp_hc_idx);
3127 				bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3128 					     le16_to_cpu(fp->fp_hc_idx),
3129 					     IGU_INT_ENABLE, 1);
3130 				break;
3131 			}
3132 		}
3133 	}
3134 
3135 	return work_done;
3136 }
3137 
3138 #ifdef CONFIG_NET_RX_BUSY_POLL
3139 /* must be called with local_bh_disable()d */
3140 int bnx2x_low_latency_recv(struct napi_struct *napi)
3141 {
3142 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3143 						 napi);
3144 	struct bnx2x *bp = fp->bp;
3145 	int found = 0;
3146 
3147 	if ((bp->state == BNX2X_STATE_CLOSED) ||
3148 	    (bp->state == BNX2X_STATE_ERROR) ||
3149 	    (bp->flags & (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG)))
3150 		return LL_FLUSH_FAILED;
3151 
3152 	if (!bnx2x_fp_lock_poll(fp))
3153 		return LL_FLUSH_BUSY;
3154 
3155 	if (bnx2x_has_rx_work(fp))
3156 		found = bnx2x_rx_int(fp, 4);
3157 
3158 	bnx2x_fp_unlock_poll(fp);
3159 
3160 	return found;
3161 }
3162 #endif
3163 
3164 /* we split the first BD into headers and data BDs
3165  * to ease the pain of our fellow microcode engineers
3166  * we use one mapping for both BDs
3167  */
3168 static u16 bnx2x_tx_split(struct bnx2x *bp,
3169 			  struct bnx2x_fp_txdata *txdata,
3170 			  struct sw_tx_bd *tx_buf,
3171 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3172 			  u16 bd_prod)
3173 {
3174 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3175 	struct eth_tx_bd *d_tx_bd;
3176 	dma_addr_t mapping;
3177 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3178 
3179 	/* first fix first BD */
3180 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3181 
3182 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3183 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3184 
3185 	/* now get a new data BD
3186 	 * (after the pbd) and fill it */
3187 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3188 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3189 
3190 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3191 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3192 
3193 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3194 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3195 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3196 
3197 	/* this marks the BD as one that has no individual mapping */
3198 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3199 
3200 	DP(NETIF_MSG_TX_QUEUED,
3201 	   "TSO split data size is %d (%x:%x)\n",
3202 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3203 
3204 	/* update tx_bd */
3205 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3206 
3207 	return bd_prod;
3208 }
3209 
3210 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3211 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3212 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3213 {
3214 	__sum16 tsum = (__force __sum16) csum;
3215 
3216 	if (fix > 0)
3217 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3218 				  csum_partial(t_header - fix, fix, 0)));
3219 
3220 	else if (fix < 0)
3221 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3222 				  csum_partial(t_header, -fix, 0)));
3223 
3224 	return bswab16(tsum);
3225 }
3226 
3227 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3228 {
3229 	u32 rc;
3230 	__u8 prot = 0;
3231 	__be16 protocol;
3232 
3233 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3234 		return XMIT_PLAIN;
3235 
3236 	protocol = vlan_get_protocol(skb);
3237 	if (protocol == htons(ETH_P_IPV6)) {
3238 		rc = XMIT_CSUM_V6;
3239 		prot = ipv6_hdr(skb)->nexthdr;
3240 	} else {
3241 		rc = XMIT_CSUM_V4;
3242 		prot = ip_hdr(skb)->protocol;
3243 	}
3244 
3245 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3246 		if (inner_ip_hdr(skb)->version == 6) {
3247 			rc |= XMIT_CSUM_ENC_V6;
3248 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3249 				rc |= XMIT_CSUM_TCP;
3250 		} else {
3251 			rc |= XMIT_CSUM_ENC_V4;
3252 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3253 				rc |= XMIT_CSUM_TCP;
3254 		}
3255 	}
3256 	if (prot == IPPROTO_TCP)
3257 		rc |= XMIT_CSUM_TCP;
3258 
3259 	if (skb_is_gso_v6(skb)) {
3260 		rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3261 		if (rc & XMIT_CSUM_ENC)
3262 			rc |= XMIT_GSO_ENC_V6;
3263 	} else if (skb_is_gso(skb)) {
3264 		rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3265 		if (rc & XMIT_CSUM_ENC)
3266 			rc |= XMIT_GSO_ENC_V4;
3267 	}
3268 
3269 	return rc;
3270 }
3271 
3272 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
3273 /* check if packet requires linearization (packet is too fragmented)
3274    no need to check fragmentation if page size > 8K (there will be no
3275    violation to FW restrictions) */
3276 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3277 			     u32 xmit_type)
3278 {
3279 	int to_copy = 0;
3280 	int hlen = 0;
3281 	int first_bd_sz = 0;
3282 
3283 	/* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3284 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) {
3285 
3286 		if (xmit_type & XMIT_GSO) {
3287 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3288 			/* Check if LSO packet needs to be copied:
3289 			   3 = 1 (for headers BD) + 2 (for PBD and last BD) */
3290 			int wnd_size = MAX_FETCH_BD - 3;
3291 			/* Number of windows to check */
3292 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3293 			int wnd_idx = 0;
3294 			int frag_idx = 0;
3295 			u32 wnd_sum = 0;
3296 
3297 			/* Headers length */
3298 			hlen = (int)(skb_transport_header(skb) - skb->data) +
3299 				tcp_hdrlen(skb);
3300 
3301 			/* Amount of data (w/o headers) on linear part of SKB*/
3302 			first_bd_sz = skb_headlen(skb) - hlen;
3303 
3304 			wnd_sum  = first_bd_sz;
3305 
3306 			/* Calculate the first sum - it's special */
3307 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3308 				wnd_sum +=
3309 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3310 
3311 			/* If there was data on linear skb data - check it */
3312 			if (first_bd_sz > 0) {
3313 				if (unlikely(wnd_sum < lso_mss)) {
3314 					to_copy = 1;
3315 					goto exit_lbl;
3316 				}
3317 
3318 				wnd_sum -= first_bd_sz;
3319 			}
3320 
3321 			/* Others are easier: run through the frag list and
3322 			   check all windows */
3323 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3324 				wnd_sum +=
3325 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3326 
3327 				if (unlikely(wnd_sum < lso_mss)) {
3328 					to_copy = 1;
3329 					break;
3330 				}
3331 				wnd_sum -=
3332 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3333 			}
3334 		} else {
3335 			/* in non-LSO too fragmented packet should always
3336 			   be linearized */
3337 			to_copy = 1;
3338 		}
3339 	}
3340 
3341 exit_lbl:
3342 	if (unlikely(to_copy))
3343 		DP(NETIF_MSG_TX_QUEUED,
3344 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3345 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3346 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3347 
3348 	return to_copy;
3349 }
3350 #endif
3351 
3352 static void bnx2x_set_pbd_gso_e2(struct sk_buff *skb, u32 *parsing_data,
3353 				 u32 xmit_type)
3354 {
3355 	struct ipv6hdr *ipv6;
3356 
3357 	*parsing_data |= (skb_shinfo(skb)->gso_size <<
3358 			      ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
3359 			      ETH_TX_PARSE_BD_E2_LSO_MSS;
3360 
3361 	if (xmit_type & XMIT_GSO_ENC_V6)
3362 		ipv6 = inner_ipv6_hdr(skb);
3363 	else if (xmit_type & XMIT_GSO_V6)
3364 		ipv6 = ipv6_hdr(skb);
3365 	else
3366 		ipv6 = NULL;
3367 
3368 	if (ipv6 && ipv6->nexthdr == NEXTHDR_IPV6)
3369 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3370 }
3371 
3372 /**
3373  * bnx2x_set_pbd_gso - update PBD in GSO case.
3374  *
3375  * @skb:	packet skb
3376  * @pbd:	parse BD
3377  * @xmit_type:	xmit flags
3378  */
3379 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3380 			      struct eth_tx_parse_bd_e1x *pbd,
3381 			      struct eth_tx_start_bd *tx_start_bd,
3382 			      u32 xmit_type)
3383 {
3384 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3385 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3386 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3387 
3388 	if (xmit_type & XMIT_GSO_V4) {
3389 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3390 		pbd->tcp_pseudo_csum =
3391 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3392 						   ip_hdr(skb)->daddr,
3393 						   0, IPPROTO_TCP, 0));
3394 
3395 		/* GSO on 57710/57711 needs FW to calculate IP checksum */
3396 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
3397 	} else {
3398 		pbd->tcp_pseudo_csum =
3399 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3400 						 &ipv6_hdr(skb)->daddr,
3401 						 0, IPPROTO_TCP, 0));
3402 	}
3403 
3404 	pbd->global_data |=
3405 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3406 }
3407 
3408 /**
3409  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3410  *
3411  * @bp:			driver handle
3412  * @skb:		packet skb
3413  * @parsing_data:	data to be updated
3414  * @xmit_type:		xmit flags
3415  *
3416  * 57712/578xx related, when skb has encapsulation
3417  */
3418 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3419 				 u32 *parsing_data, u32 xmit_type)
3420 {
3421 	*parsing_data |=
3422 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3423 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3424 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3425 
3426 	if (xmit_type & XMIT_CSUM_TCP) {
3427 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3428 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3429 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3430 
3431 		return skb_inner_transport_header(skb) +
3432 			inner_tcp_hdrlen(skb) - skb->data;
3433 	}
3434 
3435 	/* We support checksum offload for TCP and UDP only.
3436 	 * No need to pass the UDP header length - it's a constant.
3437 	 */
3438 	return skb_inner_transport_header(skb) +
3439 		sizeof(struct udphdr) - skb->data;
3440 }
3441 
3442 /**
3443  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3444  *
3445  * @bp:			driver handle
3446  * @skb:		packet skb
3447  * @parsing_data:	data to be updated
3448  * @xmit_type:		xmit flags
3449  *
3450  * 57712/578xx related
3451  */
3452 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3453 				u32 *parsing_data, u32 xmit_type)
3454 {
3455 	*parsing_data |=
3456 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3457 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3458 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3459 
3460 	if (xmit_type & XMIT_CSUM_TCP) {
3461 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3462 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3463 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3464 
3465 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3466 	}
3467 	/* We support checksum offload for TCP and UDP only.
3468 	 * No need to pass the UDP header length - it's a constant.
3469 	 */
3470 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3471 }
3472 
3473 /* set FW indication according to inner or outer protocols if tunneled */
3474 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3475 			       struct eth_tx_start_bd *tx_start_bd,
3476 			       u32 xmit_type)
3477 {
3478 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3479 
3480 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3481 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3482 
3483 	if (!(xmit_type & XMIT_CSUM_TCP))
3484 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3485 }
3486 
3487 /**
3488  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3489  *
3490  * @bp:		driver handle
3491  * @skb:	packet skb
3492  * @pbd:	parse BD to be updated
3493  * @xmit_type:	xmit flags
3494  */
3495 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3496 			     struct eth_tx_parse_bd_e1x *pbd,
3497 			     u32 xmit_type)
3498 {
3499 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3500 
3501 	/* for now NS flag is not used in Linux */
3502 	pbd->global_data =
3503 		cpu_to_le16(hlen |
3504 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3505 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3506 
3507 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3508 			skb_network_header(skb)) >> 1;
3509 
3510 	hlen += pbd->ip_hlen_w;
3511 
3512 	/* We support checksum offload for TCP and UDP only */
3513 	if (xmit_type & XMIT_CSUM_TCP)
3514 		hlen += tcp_hdrlen(skb) / 2;
3515 	else
3516 		hlen += sizeof(struct udphdr) / 2;
3517 
3518 	pbd->total_hlen_w = cpu_to_le16(hlen);
3519 	hlen = hlen*2;
3520 
3521 	if (xmit_type & XMIT_CSUM_TCP) {
3522 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3523 
3524 	} else {
3525 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3526 
3527 		DP(NETIF_MSG_TX_QUEUED,
3528 		   "hlen %d  fix %d  csum before fix %x\n",
3529 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3530 
3531 		/* HW bug: fixup the CSUM */
3532 		pbd->tcp_pseudo_csum =
3533 			bnx2x_csum_fix(skb_transport_header(skb),
3534 				       SKB_CS(skb), fix);
3535 
3536 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3537 		   pbd->tcp_pseudo_csum);
3538 	}
3539 
3540 	return hlen;
3541 }
3542 
3543 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3544 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3545 				      struct eth_tx_parse_2nd_bd *pbd2,
3546 				      u16 *global_data,
3547 				      u32 xmit_type)
3548 {
3549 	u16 hlen_w = 0;
3550 	u8 outerip_off, outerip_len = 0;
3551 
3552 	/* from outer IP to transport */
3553 	hlen_w = (skb_inner_transport_header(skb) -
3554 		  skb_network_header(skb)) >> 1;
3555 
3556 	/* transport len */
3557 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3558 
3559 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3560 
3561 	/* outer IP header info */
3562 	if (xmit_type & XMIT_CSUM_V4) {
3563 		struct iphdr *iph = ip_hdr(skb);
3564 		u32 csum = (__force u32)(~iph->check) -
3565 			   (__force u32)iph->tot_len -
3566 			   (__force u32)iph->frag_off;
3567 
3568 		pbd2->fw_ip_csum_wo_len_flags_frag =
3569 			bswab16(csum_fold((__force __wsum)csum));
3570 	} else {
3571 		pbd2->fw_ip_hdr_to_payload_w =
3572 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3573 	}
3574 
3575 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3576 
3577 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3578 
3579 	if (xmit_type & XMIT_GSO_V4) {
3580 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3581 
3582 		pbd_e2->data.tunnel_data.pseudo_csum =
3583 			bswab16(~csum_tcpudp_magic(
3584 					inner_ip_hdr(skb)->saddr,
3585 					inner_ip_hdr(skb)->daddr,
3586 					0, IPPROTO_TCP, 0));
3587 
3588 		outerip_len = ip_hdr(skb)->ihl << 1;
3589 	} else {
3590 		pbd_e2->data.tunnel_data.pseudo_csum =
3591 			bswab16(~csum_ipv6_magic(
3592 					&inner_ipv6_hdr(skb)->saddr,
3593 					&inner_ipv6_hdr(skb)->daddr,
3594 					0, IPPROTO_TCP, 0));
3595 	}
3596 
3597 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3598 
3599 	*global_data |=
3600 		outerip_off |
3601 		(!!(xmit_type & XMIT_CSUM_V6) <<
3602 			ETH_TX_PARSE_2ND_BD_IP_HDR_TYPE_OUTER_SHIFT) |
3603 		(outerip_len <<
3604 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3605 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3606 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3607 
3608 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3609 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3610 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3611 	}
3612 }
3613 
3614 /* called with netif_tx_lock
3615  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3616  * netif_wake_queue()
3617  */
3618 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3619 {
3620 	struct bnx2x *bp = netdev_priv(dev);
3621 
3622 	struct netdev_queue *txq;
3623 	struct bnx2x_fp_txdata *txdata;
3624 	struct sw_tx_bd *tx_buf;
3625 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3626 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3627 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3628 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3629 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3630 	u32 pbd_e2_parsing_data = 0;
3631 	u16 pkt_prod, bd_prod;
3632 	int nbd, txq_index;
3633 	dma_addr_t mapping;
3634 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3635 	int i;
3636 	u8 hlen = 0;
3637 	__le16 pkt_size = 0;
3638 	struct ethhdr *eth;
3639 	u8 mac_type = UNICAST_ADDRESS;
3640 
3641 #ifdef BNX2X_STOP_ON_ERROR
3642 	if (unlikely(bp->panic))
3643 		return NETDEV_TX_BUSY;
3644 #endif
3645 
3646 	txq_index = skb_get_queue_mapping(skb);
3647 	txq = netdev_get_tx_queue(dev, txq_index);
3648 
3649 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3650 
3651 	txdata = &bp->bnx2x_txq[txq_index];
3652 
3653 	/* enable this debug print to view the transmission queue being used
3654 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3655 	   txq_index, fp_index, txdata_index); */
3656 
3657 	/* enable this debug print to view the transmission details
3658 	DP(NETIF_MSG_TX_QUEUED,
3659 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3660 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3661 
3662 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3663 			skb_shinfo(skb)->nr_frags +
3664 			BDS_PER_TX_PKT +
3665 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3666 		/* Handle special storage cases separately */
3667 		if (txdata->tx_ring_size == 0) {
3668 			struct bnx2x_eth_q_stats *q_stats =
3669 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3670 			q_stats->driver_filtered_tx_pkt++;
3671 			dev_kfree_skb(skb);
3672 			return NETDEV_TX_OK;
3673 		}
3674 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3675 		netif_tx_stop_queue(txq);
3676 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3677 
3678 		return NETDEV_TX_BUSY;
3679 	}
3680 
3681 	DP(NETIF_MSG_TX_QUEUED,
3682 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3683 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3684 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3685 	   skb->len);
3686 
3687 	eth = (struct ethhdr *)skb->data;
3688 
3689 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3690 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3691 		if (is_broadcast_ether_addr(eth->h_dest))
3692 			mac_type = BROADCAST_ADDRESS;
3693 		else
3694 			mac_type = MULTICAST_ADDRESS;
3695 	}
3696 
3697 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3698 	/* First, check if we need to linearize the skb (due to FW
3699 	   restrictions). No need to check fragmentation if page size > 8K
3700 	   (there will be no violation to FW restrictions) */
3701 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3702 		/* Statistics of linearization */
3703 		bp->lin_cnt++;
3704 		if (skb_linearize(skb) != 0) {
3705 			DP(NETIF_MSG_TX_QUEUED,
3706 			   "SKB linearization failed - silently dropping this SKB\n");
3707 			dev_kfree_skb_any(skb);
3708 			return NETDEV_TX_OK;
3709 		}
3710 	}
3711 #endif
3712 	/* Map skb linear data for DMA */
3713 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3714 				 skb_headlen(skb), DMA_TO_DEVICE);
3715 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3716 		DP(NETIF_MSG_TX_QUEUED,
3717 		   "SKB mapping failed - silently dropping this SKB\n");
3718 		dev_kfree_skb_any(skb);
3719 		return NETDEV_TX_OK;
3720 	}
3721 	/*
3722 	Please read carefully. First we use one BD which we mark as start,
3723 	then we have a parsing info BD (used for TSO or xsum),
3724 	and only then we have the rest of the TSO BDs.
3725 	(don't forget to mark the last one as last,
3726 	and to unmap only AFTER you write to the BD ...)
3727 	And above all, all pdb sizes are in words - NOT DWORDS!
3728 	*/
3729 
3730 	/* get current pkt produced now - advance it just before sending packet
3731 	 * since mapping of pages may fail and cause packet to be dropped
3732 	 */
3733 	pkt_prod = txdata->tx_pkt_prod;
3734 	bd_prod = TX_BD(txdata->tx_bd_prod);
3735 
3736 	/* get a tx_buf and first BD
3737 	 * tx_start_bd may be changed during SPLIT,
3738 	 * but first_bd will always stay first
3739 	 */
3740 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3741 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3742 	first_bd = tx_start_bd;
3743 
3744 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3745 
3746 	/* header nbd: indirectly zero other flags! */
3747 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3748 
3749 	/* remember the first BD of the packet */
3750 	tx_buf->first_bd = txdata->tx_bd_prod;
3751 	tx_buf->skb = skb;
3752 	tx_buf->flags = 0;
3753 
3754 	DP(NETIF_MSG_TX_QUEUED,
3755 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3756 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3757 
3758 	if (vlan_tx_tag_present(skb)) {
3759 		tx_start_bd->vlan_or_ethertype =
3760 		    cpu_to_le16(vlan_tx_tag_get(skb));
3761 		tx_start_bd->bd_flags.as_bitfield |=
3762 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3763 	} else {
3764 		/* when transmitting in a vf, start bd must hold the ethertype
3765 		 * for fw to enforce it
3766 		 */
3767 		if (IS_VF(bp))
3768 			tx_start_bd->vlan_or_ethertype =
3769 				cpu_to_le16(ntohs(eth->h_proto));
3770 		else
3771 			/* used by FW for packet accounting */
3772 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3773 	}
3774 
3775 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3776 
3777 	/* turn on parsing and get a BD */
3778 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3779 
3780 	if (xmit_type & XMIT_CSUM)
3781 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3782 
3783 	if (!CHIP_IS_E1x(bp)) {
3784 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3785 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3786 
3787 		if (xmit_type & XMIT_CSUM_ENC) {
3788 			u16 global_data = 0;
3789 
3790 			/* Set PBD in enc checksum offload case */
3791 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3792 						      &pbd_e2_parsing_data,
3793 						      xmit_type);
3794 
3795 			/* turn on 2nd parsing and get a BD */
3796 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3797 
3798 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3799 
3800 			memset(pbd2, 0, sizeof(*pbd2));
3801 
3802 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3803 				(skb_inner_network_header(skb) -
3804 				 skb->data) >> 1;
3805 
3806 			if (xmit_type & XMIT_GSO_ENC)
3807 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3808 							  &global_data,
3809 							  xmit_type);
3810 
3811 			pbd2->global_data = cpu_to_le16(global_data);
3812 
3813 			/* add addition parse BD indication to start BD */
3814 			SET_FLAG(tx_start_bd->general_data,
3815 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3816 			/* set encapsulation flag in start BD */
3817 			SET_FLAG(tx_start_bd->general_data,
3818 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3819 			nbd++;
3820 		} else if (xmit_type & XMIT_CSUM) {
3821 			/* Set PBD in checksum offload case w/o encapsulation */
3822 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3823 						     &pbd_e2_parsing_data,
3824 						     xmit_type);
3825 		}
3826 
3827 		/* Add the macs to the parsing BD this is a vf */
3828 		if (IS_VF(bp)) {
3829 			/* override GRE parameters in BD */
3830 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3831 					      &pbd_e2->data.mac_addr.src_mid,
3832 					      &pbd_e2->data.mac_addr.src_lo,
3833 					      eth->h_source);
3834 
3835 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3836 					      &pbd_e2->data.mac_addr.dst_mid,
3837 					      &pbd_e2->data.mac_addr.dst_lo,
3838 					      eth->h_dest);
3839 		}
3840 
3841 		SET_FLAG(pbd_e2_parsing_data,
3842 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
3843 	} else {
3844 		u16 global_data = 0;
3845 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
3846 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
3847 		/* Set PBD in checksum offload case */
3848 		if (xmit_type & XMIT_CSUM)
3849 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
3850 
3851 		SET_FLAG(global_data,
3852 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
3853 		pbd_e1x->global_data |= cpu_to_le16(global_data);
3854 	}
3855 
3856 	/* Setup the data pointer of the first BD of the packet */
3857 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3858 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3859 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
3860 	pkt_size = tx_start_bd->nbytes;
3861 
3862 	DP(NETIF_MSG_TX_QUEUED,
3863 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
3864 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
3865 	   le16_to_cpu(tx_start_bd->nbytes),
3866 	   tx_start_bd->bd_flags.as_bitfield,
3867 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
3868 
3869 	if (xmit_type & XMIT_GSO) {
3870 
3871 		DP(NETIF_MSG_TX_QUEUED,
3872 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
3873 		   skb->len, hlen, skb_headlen(skb),
3874 		   skb_shinfo(skb)->gso_size);
3875 
3876 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
3877 
3878 		if (unlikely(skb_headlen(skb) > hlen)) {
3879 			nbd++;
3880 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
3881 						 &tx_start_bd, hlen,
3882 						 bd_prod);
3883 		}
3884 		if (!CHIP_IS_E1x(bp))
3885 			bnx2x_set_pbd_gso_e2(skb, &pbd_e2_parsing_data,
3886 					     xmit_type);
3887 		else
3888 			bnx2x_set_pbd_gso(skb, pbd_e1x, first_bd, xmit_type);
3889 	}
3890 
3891 	/* Set the PBD's parsing_data field if not zero
3892 	 * (for the chips newer than 57711).
3893 	 */
3894 	if (pbd_e2_parsing_data)
3895 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
3896 
3897 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
3898 
3899 	/* Handle fragmented skb */
3900 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3901 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3902 
3903 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
3904 					   skb_frag_size(frag), DMA_TO_DEVICE);
3905 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3906 			unsigned int pkts_compl = 0, bytes_compl = 0;
3907 
3908 			DP(NETIF_MSG_TX_QUEUED,
3909 			   "Unable to map page - dropping packet...\n");
3910 
3911 			/* we need unmap all buffers already mapped
3912 			 * for this SKB;
3913 			 * first_bd->nbd need to be properly updated
3914 			 * before call to bnx2x_free_tx_pkt
3915 			 */
3916 			first_bd->nbd = cpu_to_le16(nbd);
3917 			bnx2x_free_tx_pkt(bp, txdata,
3918 					  TX_BD(txdata->tx_pkt_prod),
3919 					  &pkts_compl, &bytes_compl);
3920 			return NETDEV_TX_OK;
3921 		}
3922 
3923 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3924 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3925 		if (total_pkt_bd == NULL)
3926 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3927 
3928 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3929 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3930 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
3931 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
3932 		nbd++;
3933 
3934 		DP(NETIF_MSG_TX_QUEUED,
3935 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
3936 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
3937 		   le16_to_cpu(tx_data_bd->nbytes));
3938 	}
3939 
3940 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
3941 
3942 	/* update with actual num BDs */
3943 	first_bd->nbd = cpu_to_le16(nbd);
3944 
3945 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3946 
3947 	/* now send a tx doorbell, counting the next BD
3948 	 * if the packet contains or ends with it
3949 	 */
3950 	if (TX_BD_POFF(bd_prod) < nbd)
3951 		nbd++;
3952 
3953 	/* total_pkt_bytes should be set on the first data BD if
3954 	 * it's not an LSO packet and there is more than one
3955 	 * data BD. In this case pkt_size is limited by an MTU value.
3956 	 * However we prefer to set it for an LSO packet (while we don't
3957 	 * have to) in order to save some CPU cycles in a none-LSO
3958 	 * case, when we much more care about them.
3959 	 */
3960 	if (total_pkt_bd != NULL)
3961 		total_pkt_bd->total_pkt_bytes = pkt_size;
3962 
3963 	if (pbd_e1x)
3964 		DP(NETIF_MSG_TX_QUEUED,
3965 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
3966 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
3967 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
3968 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
3969 		    le16_to_cpu(pbd_e1x->total_hlen_w));
3970 	if (pbd_e2)
3971 		DP(NETIF_MSG_TX_QUEUED,
3972 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
3973 		   pbd_e2,
3974 		   pbd_e2->data.mac_addr.dst_hi,
3975 		   pbd_e2->data.mac_addr.dst_mid,
3976 		   pbd_e2->data.mac_addr.dst_lo,
3977 		   pbd_e2->data.mac_addr.src_hi,
3978 		   pbd_e2->data.mac_addr.src_mid,
3979 		   pbd_e2->data.mac_addr.src_lo,
3980 		   pbd_e2->parsing_data);
3981 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
3982 
3983 	netdev_tx_sent_queue(txq, skb->len);
3984 
3985 	skb_tx_timestamp(skb);
3986 
3987 	txdata->tx_pkt_prod++;
3988 	/*
3989 	 * Make sure that the BD data is updated before updating the producer
3990 	 * since FW might read the BD right after the producer is updated.
3991 	 * This is only applicable for weak-ordered memory model archs such
3992 	 * as IA-64. The following barrier is also mandatory since FW will
3993 	 * assumes packets must have BDs.
3994 	 */
3995 	wmb();
3996 
3997 	txdata->tx_db.data.prod += nbd;
3998 	barrier();
3999 
4000 	DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
4001 
4002 	mmiowb();
4003 
4004 	txdata->tx_bd_prod += nbd;
4005 
4006 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4007 		netif_tx_stop_queue(txq);
4008 
4009 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4010 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4011 		 * fp->bd_tx_cons */
4012 		smp_mb();
4013 
4014 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4015 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4016 			netif_tx_wake_queue(txq);
4017 	}
4018 	txdata->tx_pkt++;
4019 
4020 	return NETDEV_TX_OK;
4021 }
4022 
4023 /**
4024  * bnx2x_setup_tc - routine to configure net_device for multi tc
4025  *
4026  * @netdev: net device to configure
4027  * @tc: number of traffic classes to enable
4028  *
4029  * callback connected to the ndo_setup_tc function pointer
4030  */
4031 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4032 {
4033 	int cos, prio, count, offset;
4034 	struct bnx2x *bp = netdev_priv(dev);
4035 
4036 	/* setup tc must be called under rtnl lock */
4037 	ASSERT_RTNL();
4038 
4039 	/* no traffic classes requested. Aborting */
4040 	if (!num_tc) {
4041 		netdev_reset_tc(dev);
4042 		return 0;
4043 	}
4044 
4045 	/* requested to support too many traffic classes */
4046 	if (num_tc > bp->max_cos) {
4047 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4048 			  num_tc, bp->max_cos);
4049 		return -EINVAL;
4050 	}
4051 
4052 	/* declare amount of supported traffic classes */
4053 	if (netdev_set_num_tc(dev, num_tc)) {
4054 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4055 		return -EINVAL;
4056 	}
4057 
4058 	/* configure priority to traffic class mapping */
4059 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4060 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[prio]);
4061 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4062 		   "mapping priority %d to tc %d\n",
4063 		   prio, bp->prio_to_cos[prio]);
4064 	}
4065 
4066 	/* Use this configuration to differentiate tc0 from other COSes
4067 	   This can be used for ets or pfc, and save the effort of setting
4068 	   up a multio class queue disc or negotiating DCBX with a switch
4069 	netdev_set_prio_tc_map(dev, 0, 0);
4070 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4071 	for (prio = 1; prio < 16; prio++) {
4072 		netdev_set_prio_tc_map(dev, prio, 1);
4073 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4074 	} */
4075 
4076 	/* configure traffic class to transmission queue mapping */
4077 	for (cos = 0; cos < bp->max_cos; cos++) {
4078 		count = BNX2X_NUM_ETH_QUEUES(bp);
4079 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4080 		netdev_set_tc_queue(dev, cos, count, offset);
4081 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4082 		   "mapping tc %d to offset %d count %d\n",
4083 		   cos, offset, count);
4084 	}
4085 
4086 	return 0;
4087 }
4088 
4089 /* called with rtnl_lock */
4090 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4091 {
4092 	struct sockaddr *addr = p;
4093 	struct bnx2x *bp = netdev_priv(dev);
4094 	int rc = 0;
4095 
4096 	if (!bnx2x_is_valid_ether_addr(bp, addr->sa_data)) {
4097 		BNX2X_ERR("Requested MAC address is not valid\n");
4098 		return -EINVAL;
4099 	}
4100 
4101 	if ((IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) &&
4102 	    !is_zero_ether_addr(addr->sa_data)) {
4103 		BNX2X_ERR("Can't configure non-zero address on iSCSI or FCoE functions in MF-SD mode\n");
4104 		return -EINVAL;
4105 	}
4106 
4107 	if (netif_running(dev))  {
4108 		rc = bnx2x_set_eth_mac(bp, false);
4109 		if (rc)
4110 			return rc;
4111 	}
4112 
4113 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4114 
4115 	if (netif_running(dev))
4116 		rc = bnx2x_set_eth_mac(bp, true);
4117 
4118 	return rc;
4119 }
4120 
4121 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4122 {
4123 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4124 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4125 	u8 cos;
4126 
4127 	/* Common */
4128 
4129 	if (IS_FCOE_IDX(fp_index)) {
4130 		memset(sb, 0, sizeof(union host_hc_status_block));
4131 		fp->status_blk_mapping = 0;
4132 	} else {
4133 		/* status blocks */
4134 		if (!CHIP_IS_E1x(bp))
4135 			BNX2X_PCI_FREE(sb->e2_sb,
4136 				       bnx2x_fp(bp, fp_index,
4137 						status_blk_mapping),
4138 				       sizeof(struct host_hc_status_block_e2));
4139 		else
4140 			BNX2X_PCI_FREE(sb->e1x_sb,
4141 				       bnx2x_fp(bp, fp_index,
4142 						status_blk_mapping),
4143 				       sizeof(struct host_hc_status_block_e1x));
4144 	}
4145 
4146 	/* Rx */
4147 	if (!skip_rx_queue(bp, fp_index)) {
4148 		bnx2x_free_rx_bds(fp);
4149 
4150 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4151 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4152 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4153 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4154 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4155 
4156 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4157 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4158 			       sizeof(struct eth_fast_path_rx_cqe) *
4159 			       NUM_RCQ_BD);
4160 
4161 		/* SGE ring */
4162 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4163 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4164 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4165 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4166 	}
4167 
4168 	/* Tx */
4169 	if (!skip_tx_queue(bp, fp_index)) {
4170 		/* fastpath tx rings: tx_buf tx_desc */
4171 		for_each_cos_in_tx_queue(fp, cos) {
4172 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4173 
4174 			DP(NETIF_MSG_IFDOWN,
4175 			   "freeing tx memory of fp %d cos %d cid %d\n",
4176 			   fp_index, cos, txdata->cid);
4177 
4178 			BNX2X_FREE(txdata->tx_buf_ring);
4179 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4180 				txdata->tx_desc_mapping,
4181 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4182 		}
4183 	}
4184 	/* end of fastpath */
4185 }
4186 
4187 void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4188 {
4189 	int i;
4190 	for_each_cnic_queue(bp, i)
4191 		bnx2x_free_fp_mem_at(bp, i);
4192 }
4193 
4194 void bnx2x_free_fp_mem(struct bnx2x *bp)
4195 {
4196 	int i;
4197 	for_each_eth_queue(bp, i)
4198 		bnx2x_free_fp_mem_at(bp, i);
4199 }
4200 
4201 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4202 {
4203 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4204 	if (!CHIP_IS_E1x(bp)) {
4205 		bnx2x_fp(bp, index, sb_index_values) =
4206 			(__le16 *)status_blk.e2_sb->sb.index_values;
4207 		bnx2x_fp(bp, index, sb_running_index) =
4208 			(__le16 *)status_blk.e2_sb->sb.running_index;
4209 	} else {
4210 		bnx2x_fp(bp, index, sb_index_values) =
4211 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4212 		bnx2x_fp(bp, index, sb_running_index) =
4213 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4214 	}
4215 }
4216 
4217 /* Returns the number of actually allocated BDs */
4218 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4219 			      int rx_ring_size)
4220 {
4221 	struct bnx2x *bp = fp->bp;
4222 	u16 ring_prod, cqe_ring_prod;
4223 	int i, failure_cnt = 0;
4224 
4225 	fp->rx_comp_cons = 0;
4226 	cqe_ring_prod = ring_prod = 0;
4227 
4228 	/* This routine is called only during fo init so
4229 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4230 	 */
4231 	for (i = 0; i < rx_ring_size; i++) {
4232 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4233 			failure_cnt++;
4234 			continue;
4235 		}
4236 		ring_prod = NEXT_RX_IDX(ring_prod);
4237 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4238 		WARN_ON(ring_prod <= (i - failure_cnt));
4239 	}
4240 
4241 	if (failure_cnt)
4242 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4243 			  i - failure_cnt, fp->index);
4244 
4245 	fp->rx_bd_prod = ring_prod;
4246 	/* Limit the CQE producer by the CQE ring size */
4247 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4248 			       cqe_ring_prod);
4249 	fp->rx_pkt = fp->rx_calls = 0;
4250 
4251 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4252 
4253 	return i - failure_cnt;
4254 }
4255 
4256 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4257 {
4258 	int i;
4259 
4260 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4261 		struct eth_rx_cqe_next_page *nextpg;
4262 
4263 		nextpg = (struct eth_rx_cqe_next_page *)
4264 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4265 		nextpg->addr_hi =
4266 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4267 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4268 		nextpg->addr_lo =
4269 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4270 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4271 	}
4272 }
4273 
4274 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4275 {
4276 	union host_hc_status_block *sb;
4277 	struct bnx2x_fastpath *fp = &bp->fp[index];
4278 	int ring_size = 0;
4279 	u8 cos;
4280 	int rx_ring_size = 0;
4281 
4282 	if (!bp->rx_ring_size &&
4283 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
4284 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4285 		bp->rx_ring_size = rx_ring_size;
4286 	} else if (!bp->rx_ring_size) {
4287 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4288 
4289 		if (CHIP_IS_E3(bp)) {
4290 			u32 cfg = SHMEM_RD(bp,
4291 					   dev_info.port_hw_config[BP_PORT(bp)].
4292 					   default_cfg);
4293 
4294 			/* Decrease ring size for 1G functions */
4295 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4296 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4297 				rx_ring_size /= 10;
4298 		}
4299 
4300 		/* allocate at least number of buffers required by FW */
4301 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4302 				     MIN_RX_SIZE_TPA, rx_ring_size);
4303 
4304 		bp->rx_ring_size = rx_ring_size;
4305 	} else /* if rx_ring_size specified - use it */
4306 		rx_ring_size = bp->rx_ring_size;
4307 
4308 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4309 
4310 	/* Common */
4311 	sb = &bnx2x_fp(bp, index, status_blk);
4312 
4313 	if (!IS_FCOE_IDX(index)) {
4314 		/* status blocks */
4315 		if (!CHIP_IS_E1x(bp))
4316 			BNX2X_PCI_ALLOC(sb->e2_sb,
4317 				&bnx2x_fp(bp, index, status_blk_mapping),
4318 				sizeof(struct host_hc_status_block_e2));
4319 		else
4320 			BNX2X_PCI_ALLOC(sb->e1x_sb,
4321 				&bnx2x_fp(bp, index, status_blk_mapping),
4322 			    sizeof(struct host_hc_status_block_e1x));
4323 	}
4324 
4325 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4326 	 * set shortcuts for it.
4327 	 */
4328 	if (!IS_FCOE_IDX(index))
4329 		set_sb_shortcuts(bp, index);
4330 
4331 	/* Tx */
4332 	if (!skip_tx_queue(bp, index)) {
4333 		/* fastpath tx rings: tx_buf tx_desc */
4334 		for_each_cos_in_tx_queue(fp, cos) {
4335 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4336 
4337 			DP(NETIF_MSG_IFUP,
4338 			   "allocating tx memory of fp %d cos %d\n",
4339 			   index, cos);
4340 
4341 			BNX2X_ALLOC(txdata->tx_buf_ring,
4342 				sizeof(struct sw_tx_bd) * NUM_TX_BD);
4343 			BNX2X_PCI_ALLOC(txdata->tx_desc_ring,
4344 				&txdata->tx_desc_mapping,
4345 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4346 		}
4347 	}
4348 
4349 	/* Rx */
4350 	if (!skip_rx_queue(bp, index)) {
4351 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4352 		BNX2X_ALLOC(bnx2x_fp(bp, index, rx_buf_ring),
4353 				sizeof(struct sw_rx_bd) * NUM_RX_BD);
4354 		BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_desc_ring),
4355 				&bnx2x_fp(bp, index, rx_desc_mapping),
4356 				sizeof(struct eth_rx_bd) * NUM_RX_BD);
4357 
4358 		/* Seed all CQEs by 1s */
4359 		BNX2X_PCI_FALLOC(bnx2x_fp(bp, index, rx_comp_ring),
4360 				 &bnx2x_fp(bp, index, rx_comp_mapping),
4361 				 sizeof(struct eth_fast_path_rx_cqe) *
4362 				 NUM_RCQ_BD);
4363 
4364 		/* SGE ring */
4365 		BNX2X_ALLOC(bnx2x_fp(bp, index, rx_page_ring),
4366 				sizeof(struct sw_rx_page) * NUM_RX_SGE);
4367 		BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_sge_ring),
4368 				&bnx2x_fp(bp, index, rx_sge_mapping),
4369 				BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4370 		/* RX BD ring */
4371 		bnx2x_set_next_page_rx_bd(fp);
4372 
4373 		/* CQ ring */
4374 		bnx2x_set_next_page_rx_cq(fp);
4375 
4376 		/* BDs */
4377 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4378 		if (ring_size < rx_ring_size)
4379 			goto alloc_mem_err;
4380 	}
4381 
4382 	return 0;
4383 
4384 /* handles low memory cases */
4385 alloc_mem_err:
4386 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4387 						index, ring_size);
4388 	/* FW will drop all packets if queue is not big enough,
4389 	 * In these cases we disable the queue
4390 	 * Min size is different for OOO, TPA and non-TPA queues
4391 	 */
4392 	if (ring_size < (fp->disable_tpa ?
4393 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4394 			/* release memory allocated for this queue */
4395 			bnx2x_free_fp_mem_at(bp, index);
4396 			return -ENOMEM;
4397 	}
4398 	return 0;
4399 }
4400 
4401 int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4402 {
4403 	if (!NO_FCOE(bp))
4404 		/* FCoE */
4405 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4406 			/* we will fail load process instead of mark
4407 			 * NO_FCOE_FLAG
4408 			 */
4409 			return -ENOMEM;
4410 
4411 	return 0;
4412 }
4413 
4414 int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4415 {
4416 	int i;
4417 
4418 	/* 1. Allocate FP for leading - fatal if error
4419 	 * 2. Allocate RSS - fix number of queues if error
4420 	 */
4421 
4422 	/* leading */
4423 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4424 		return -ENOMEM;
4425 
4426 	/* RSS */
4427 	for_each_nondefault_eth_queue(bp, i)
4428 		if (bnx2x_alloc_fp_mem_at(bp, i))
4429 			break;
4430 
4431 	/* handle memory failures */
4432 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4433 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4434 
4435 		WARN_ON(delta < 0);
4436 		bnx2x_shrink_eth_fp(bp, delta);
4437 		if (CNIC_SUPPORT(bp))
4438 			/* move non eth FPs next to last eth FP
4439 			 * must be done in that order
4440 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4441 			 */
4442 
4443 			/* move FCoE fp even NO_FCOE_FLAG is on */
4444 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4445 		bp->num_ethernet_queues -= delta;
4446 		bp->num_queues = bp->num_ethernet_queues +
4447 				 bp->num_cnic_queues;
4448 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4449 			  bp->num_queues + delta, bp->num_queues);
4450 	}
4451 
4452 	return 0;
4453 }
4454 
4455 void bnx2x_free_mem_bp(struct bnx2x *bp)
4456 {
4457 	int i;
4458 
4459 	for (i = 0; i < bp->fp_array_size; i++)
4460 		kfree(bp->fp[i].tpa_info);
4461 	kfree(bp->fp);
4462 	kfree(bp->sp_objs);
4463 	kfree(bp->fp_stats);
4464 	kfree(bp->bnx2x_txq);
4465 	kfree(bp->msix_table);
4466 	kfree(bp->ilt);
4467 }
4468 
4469 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4470 {
4471 	struct bnx2x_fastpath *fp;
4472 	struct msix_entry *tbl;
4473 	struct bnx2x_ilt *ilt;
4474 	int msix_table_size = 0;
4475 	int fp_array_size, txq_array_size;
4476 	int i;
4477 
4478 	/*
4479 	 * The biggest MSI-X table we might need is as a maximum number of fast
4480 	 * path IGU SBs plus default SB (for PF only).
4481 	 */
4482 	msix_table_size = bp->igu_sb_cnt;
4483 	if (IS_PF(bp))
4484 		msix_table_size++;
4485 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4486 
4487 	/* fp array: RSS plus CNIC related L2 queues */
4488 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4489 	bp->fp_array_size = fp_array_size;
4490 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4491 
4492 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4493 	if (!fp)
4494 		goto alloc_err;
4495 	for (i = 0; i < bp->fp_array_size; i++) {
4496 		fp[i].tpa_info =
4497 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4498 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4499 		if (!(fp[i].tpa_info))
4500 			goto alloc_err;
4501 	}
4502 
4503 	bp->fp = fp;
4504 
4505 	/* allocate sp objs */
4506 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4507 			      GFP_KERNEL);
4508 	if (!bp->sp_objs)
4509 		goto alloc_err;
4510 
4511 	/* allocate fp_stats */
4512 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4513 			       GFP_KERNEL);
4514 	if (!bp->fp_stats)
4515 		goto alloc_err;
4516 
4517 	/* Allocate memory for the transmission queues array */
4518 	txq_array_size =
4519 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4520 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4521 
4522 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4523 				GFP_KERNEL);
4524 	if (!bp->bnx2x_txq)
4525 		goto alloc_err;
4526 
4527 	/* msix table */
4528 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4529 	if (!tbl)
4530 		goto alloc_err;
4531 	bp->msix_table = tbl;
4532 
4533 	/* ilt */
4534 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4535 	if (!ilt)
4536 		goto alloc_err;
4537 	bp->ilt = ilt;
4538 
4539 	return 0;
4540 alloc_err:
4541 	bnx2x_free_mem_bp(bp);
4542 	return -ENOMEM;
4543 }
4544 
4545 int bnx2x_reload_if_running(struct net_device *dev)
4546 {
4547 	struct bnx2x *bp = netdev_priv(dev);
4548 
4549 	if (unlikely(!netif_running(dev)))
4550 		return 0;
4551 
4552 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4553 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4554 }
4555 
4556 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4557 {
4558 	u32 sel_phy_idx = 0;
4559 	if (bp->link_params.num_phys <= 1)
4560 		return INT_PHY;
4561 
4562 	if (bp->link_vars.link_up) {
4563 		sel_phy_idx = EXT_PHY1;
4564 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4565 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4566 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4567 			sel_phy_idx = EXT_PHY2;
4568 	} else {
4569 
4570 		switch (bnx2x_phy_selection(&bp->link_params)) {
4571 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4572 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4573 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4574 		       sel_phy_idx = EXT_PHY1;
4575 		       break;
4576 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4577 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4578 		       sel_phy_idx = EXT_PHY2;
4579 		       break;
4580 		}
4581 	}
4582 
4583 	return sel_phy_idx;
4584 }
4585 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4586 {
4587 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4588 	/*
4589 	 * The selected activated PHY is always after swapping (in case PHY
4590 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4591 	 * the configuration
4592 	 */
4593 
4594 	if (bp->link_params.multi_phy_config &
4595 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4596 		if (sel_phy_idx == EXT_PHY1)
4597 			sel_phy_idx = EXT_PHY2;
4598 		else if (sel_phy_idx == EXT_PHY2)
4599 			sel_phy_idx = EXT_PHY1;
4600 	}
4601 	return LINK_CONFIG_IDX(sel_phy_idx);
4602 }
4603 
4604 #ifdef NETDEV_FCOE_WWNN
4605 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4606 {
4607 	struct bnx2x *bp = netdev_priv(dev);
4608 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4609 
4610 	switch (type) {
4611 	case NETDEV_FCOE_WWNN:
4612 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4613 				cp->fcoe_wwn_node_name_lo);
4614 		break;
4615 	case NETDEV_FCOE_WWPN:
4616 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4617 				cp->fcoe_wwn_port_name_lo);
4618 		break;
4619 	default:
4620 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4621 		return -EINVAL;
4622 	}
4623 
4624 	return 0;
4625 }
4626 #endif
4627 
4628 /* called with rtnl_lock */
4629 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4630 {
4631 	struct bnx2x *bp = netdev_priv(dev);
4632 
4633 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4634 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4635 		return -EAGAIN;
4636 	}
4637 
4638 	if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) ||
4639 	    ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) {
4640 		BNX2X_ERR("Can't support requested MTU size\n");
4641 		return -EINVAL;
4642 	}
4643 
4644 	/* This does not race with packet allocation
4645 	 * because the actual alloc size is
4646 	 * only updated as part of load
4647 	 */
4648 	dev->mtu = new_mtu;
4649 
4650 	return bnx2x_reload_if_running(dev);
4651 }
4652 
4653 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4654 				     netdev_features_t features)
4655 {
4656 	struct bnx2x *bp = netdev_priv(dev);
4657 
4658 	/* TPA requires Rx CSUM offloading */
4659 	if (!(features & NETIF_F_RXCSUM) || bp->disable_tpa) {
4660 		features &= ~NETIF_F_LRO;
4661 		features &= ~NETIF_F_GRO;
4662 	}
4663 
4664 	return features;
4665 }
4666 
4667 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4668 {
4669 	struct bnx2x *bp = netdev_priv(dev);
4670 	u32 flags = bp->flags;
4671 	u32 changes;
4672 	bool bnx2x_reload = false;
4673 
4674 	if (features & NETIF_F_LRO)
4675 		flags |= TPA_ENABLE_FLAG;
4676 	else
4677 		flags &= ~TPA_ENABLE_FLAG;
4678 
4679 	if (features & NETIF_F_GRO)
4680 		flags |= GRO_ENABLE_FLAG;
4681 	else
4682 		flags &= ~GRO_ENABLE_FLAG;
4683 
4684 	if (features & NETIF_F_LOOPBACK) {
4685 		if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4686 			bp->link_params.loopback_mode = LOOPBACK_BMAC;
4687 			bnx2x_reload = true;
4688 		}
4689 	} else {
4690 		if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4691 			bp->link_params.loopback_mode = LOOPBACK_NONE;
4692 			bnx2x_reload = true;
4693 		}
4694 	}
4695 
4696 	changes = flags ^ bp->flags;
4697 
4698 	/* if GRO is changed while LRO is enabled, don't force a reload */
4699 	if ((changes & GRO_ENABLE_FLAG) && (flags & TPA_ENABLE_FLAG))
4700 		changes &= ~GRO_ENABLE_FLAG;
4701 
4702 	if (changes)
4703 		bnx2x_reload = true;
4704 
4705 	bp->flags = flags;
4706 
4707 	if (bnx2x_reload) {
4708 		if (bp->recovery_state == BNX2X_RECOVERY_DONE)
4709 			return bnx2x_reload_if_running(dev);
4710 		/* else: bnx2x_nic_load() will be called at end of recovery */
4711 	}
4712 
4713 	return 0;
4714 }
4715 
4716 void bnx2x_tx_timeout(struct net_device *dev)
4717 {
4718 	struct bnx2x *bp = netdev_priv(dev);
4719 
4720 #ifdef BNX2X_STOP_ON_ERROR
4721 	if (!bp->panic)
4722 		bnx2x_panic();
4723 #endif
4724 
4725 	smp_mb__before_clear_bit();
4726 	set_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state);
4727 	smp_mb__after_clear_bit();
4728 
4729 	/* This allows the netif to be shutdown gracefully before resetting */
4730 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
4731 }
4732 
4733 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4734 {
4735 	struct net_device *dev = pci_get_drvdata(pdev);
4736 	struct bnx2x *bp;
4737 
4738 	if (!dev) {
4739 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4740 		return -ENODEV;
4741 	}
4742 	bp = netdev_priv(dev);
4743 
4744 	rtnl_lock();
4745 
4746 	pci_save_state(pdev);
4747 
4748 	if (!netif_running(dev)) {
4749 		rtnl_unlock();
4750 		return 0;
4751 	}
4752 
4753 	netif_device_detach(dev);
4754 
4755 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
4756 
4757 	bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
4758 
4759 	rtnl_unlock();
4760 
4761 	return 0;
4762 }
4763 
4764 int bnx2x_resume(struct pci_dev *pdev)
4765 {
4766 	struct net_device *dev = pci_get_drvdata(pdev);
4767 	struct bnx2x *bp;
4768 	int rc;
4769 
4770 	if (!dev) {
4771 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4772 		return -ENODEV;
4773 	}
4774 	bp = netdev_priv(dev);
4775 
4776 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4777 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
4778 		return -EAGAIN;
4779 	}
4780 
4781 	rtnl_lock();
4782 
4783 	pci_restore_state(pdev);
4784 
4785 	if (!netif_running(dev)) {
4786 		rtnl_unlock();
4787 		return 0;
4788 	}
4789 
4790 	bnx2x_set_power_state(bp, PCI_D0);
4791 	netif_device_attach(dev);
4792 
4793 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
4794 
4795 	rtnl_unlock();
4796 
4797 	return rc;
4798 }
4799 
4800 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
4801 			      u32 cid)
4802 {
4803 	if (!cxt) {
4804 		BNX2X_ERR("bad context pointer %p\n", cxt);
4805 		return;
4806 	}
4807 
4808 	/* ustorm cxt validation */
4809 	cxt->ustorm_ag_context.cdu_usage =
4810 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
4811 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
4812 	/* xcontext validation */
4813 	cxt->xstorm_ag_context.cdu_reserved =
4814 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
4815 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
4816 }
4817 
4818 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
4819 				    u8 fw_sb_id, u8 sb_index,
4820 				    u8 ticks)
4821 {
4822 	u32 addr = BAR_CSTRORM_INTMEM +
4823 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
4824 	REG_WR8(bp, addr, ticks);
4825 	DP(NETIF_MSG_IFUP,
4826 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
4827 	   port, fw_sb_id, sb_index, ticks);
4828 }
4829 
4830 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
4831 				    u16 fw_sb_id, u8 sb_index,
4832 				    u8 disable)
4833 {
4834 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
4835 	u32 addr = BAR_CSTRORM_INTMEM +
4836 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
4837 	u8 flags = REG_RD8(bp, addr);
4838 	/* clear and set */
4839 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
4840 	flags |= enable_flag;
4841 	REG_WR8(bp, addr, flags);
4842 	DP(NETIF_MSG_IFUP,
4843 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
4844 	   port, fw_sb_id, sb_index, disable);
4845 }
4846 
4847 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
4848 				    u8 sb_index, u8 disable, u16 usec)
4849 {
4850 	int port = BP_PORT(bp);
4851 	u8 ticks = usec / BNX2X_BTR;
4852 
4853 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
4854 
4855 	disable = disable ? 1 : (usec ? 0 : 1);
4856 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
4857 }
4858