xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34 
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39 
40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 	int i;
43 
44 	/* Add NAPI objects */
45 	for_each_rx_queue_cnic(bp, i) {
46 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 			       bnx2x_poll, NAPI_POLL_WEIGHT);
48 	}
49 }
50 
51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 	int i;
54 
55 	/* Add NAPI objects */
56 	for_each_eth_queue(bp, i) {
57 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 			       bnx2x_poll, NAPI_POLL_WEIGHT);
59 	}
60 }
61 
62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65 
66 	/* Reduce memory usage in kdump environment by using only one queue */
67 	if (is_kdump_kernel())
68 		nq = 1;
69 
70 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 	return nq;
72 }
73 
74 /**
75  * bnx2x_move_fp - move content of the fastpath structure.
76  *
77  * @bp:		driver handle
78  * @from:	source FP index
79  * @to:		destination FP index
80  *
81  * Makes sure the contents of the bp->fp[to].napi is kept
82  * intact. This is done by first copying the napi struct from
83  * the target to the source, and then mem copying the entire
84  * source onto the target. Update txdata pointers and related
85  * content.
86  */
87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 	int old_max_eth_txqs, new_max_eth_txqs;
96 	int old_txdata_index = 0, new_txdata_index = 0;
97 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98 
99 	/* Copy the NAPI object as it has been already initialized */
100 	from_fp->napi = to_fp->napi;
101 
102 	/* Move bnx2x_fastpath contents */
103 	memcpy(to_fp, from_fp, sizeof(*to_fp));
104 	to_fp->index = to;
105 
106 	/* Retain the tpa_info of the original `to' version as we don't want
107 	 * 2 FPs to contain the same tpa_info pointer.
108 	 */
109 	to_fp->tpa_info = old_tpa_info;
110 
111 	/* move sp_objs contents as well, as their indices match fp ones */
112 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113 
114 	/* move fp_stats contents as well, as their indices match fp ones */
115 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116 
117 	/* Update txdata pointers in fp and move txdata content accordingly:
118 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 	 * decremented by max_cos x delta.
120 	 */
121 
122 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 				(bp)->max_cos;
125 	if (from == FCOE_IDX(bp)) {
126 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 	}
129 
130 	memcpy(&bp->bnx2x_txq[new_txdata_index],
131 	       &bp->bnx2x_txq[old_txdata_index],
132 	       sizeof(struct bnx2x_fp_txdata));
133 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135 
136 /**
137  * bnx2x_fill_fw_str - Fill buffer with FW version string.
138  *
139  * @bp:        driver handle
140  * @buf:       character buffer to fill with the fw name
141  * @buf_len:   length of the above buffer
142  *
143  */
144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 	if (IS_PF(bp)) {
147 		u8 phy_fw_ver[PHY_FW_VER_LEN];
148 
149 		phy_fw_ver[0] = '\0';
150 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 					     phy_fw_ver, PHY_FW_VER_LEN);
152 		strlcpy(buf, bp->fw_ver, buf_len);
153 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 			 "bc %d.%d.%d%s%s",
155 			 (bp->common.bc_ver & 0xff0000) >> 16,
156 			 (bp->common.bc_ver & 0xff00) >> 8,
157 			 (bp->common.bc_ver & 0xff),
158 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 	} else {
160 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 	}
162 }
163 
164 /**
165  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166  *
167  * @bp:	driver handle
168  * @delta:	number of eth queues which were not allocated
169  */
170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173 
174 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 	 * backward along the array could cause memory to be overridden
176 	 */
177 	for (cos = 1; cos < bp->max_cos; cos++) {
178 		for (i = 0; i < old_eth_num - delta; i++) {
179 			struct bnx2x_fastpath *fp = &bp->fp[i];
180 			int new_idx = cos * (old_eth_num - delta) + i;
181 
182 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 			       sizeof(struct bnx2x_fp_txdata));
184 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 		}
186 	}
187 }
188 
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190 
191 /* free skb in the packet ring at pos idx
192  * return idx of last bd freed
193  */
194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 			     u16 idx, unsigned int *pkts_compl,
196 			     unsigned int *bytes_compl)
197 {
198 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 	struct eth_tx_start_bd *tx_start_bd;
200 	struct eth_tx_bd *tx_data_bd;
201 	struct sk_buff *skb = tx_buf->skb;
202 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 	int nbd;
204 	u16 split_bd_len = 0;
205 
206 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
207 	prefetch(&skb->end);
208 
209 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
210 	   txdata->txq_index, idx, tx_buf, skb);
211 
212 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213 
214 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 		BNX2X_ERR("BAD nbd!\n");
218 		bnx2x_panic();
219 	}
220 #endif
221 	new_cons = nbd + tx_buf->first_bd;
222 
223 	/* Get the next bd */
224 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225 
226 	/* Skip a parse bd... */
227 	--nbd;
228 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229 
230 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 		/* Skip second parse bd... */
232 		--nbd;
233 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 	}
235 
236 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 		--nbd;
241 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 	}
243 
244 	/* unmap first bd */
245 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 			 DMA_TO_DEVICE);
248 
249 	/* now free frags */
250 	while (nbd > 0) {
251 
252 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 		if (--nbd)
256 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 	}
258 
259 	/* release skb */
260 	WARN_ON(!skb);
261 	if (likely(skb)) {
262 		(*pkts_compl)++;
263 		(*bytes_compl) += skb->len;
264 		dev_kfree_skb_any(skb);
265 	}
266 
267 	tx_buf->first_bd = 0;
268 	tx_buf->skb = NULL;
269 
270 	return new_cons;
271 }
272 
273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 	struct netdev_queue *txq;
276 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 	unsigned int pkts_compl = 0, bytes_compl = 0;
278 
279 #ifdef BNX2X_STOP_ON_ERROR
280 	if (unlikely(bp->panic))
281 		return -1;
282 #endif
283 
284 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 	sw_cons = txdata->tx_pkt_cons;
287 
288 	/* Ensure subsequent loads occur after hw_cons */
289 	smp_rmb();
290 
291 	while (sw_cons != hw_cons) {
292 		u16 pkt_cons;
293 
294 		pkt_cons = TX_BD(sw_cons);
295 
296 		DP(NETIF_MSG_TX_DONE,
297 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
298 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299 
300 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 					    &pkts_compl, &bytes_compl);
302 
303 		sw_cons++;
304 	}
305 
306 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307 
308 	txdata->tx_pkt_cons = sw_cons;
309 	txdata->tx_bd_cons = bd_cons;
310 
311 	/* Need to make the tx_bd_cons update visible to start_xmit()
312 	 * before checking for netif_tx_queue_stopped().  Without the
313 	 * memory barrier, there is a small possibility that
314 	 * start_xmit() will miss it and cause the queue to be stopped
315 	 * forever.
316 	 * On the other hand we need an rmb() here to ensure the proper
317 	 * ordering of bit testing in the following
318 	 * netif_tx_queue_stopped(txq) call.
319 	 */
320 	smp_mb();
321 
322 	if (unlikely(netif_tx_queue_stopped(txq))) {
323 		/* Taking tx_lock() is needed to prevent re-enabling the queue
324 		 * while it's empty. This could have happen if rx_action() gets
325 		 * suspended in bnx2x_tx_int() after the condition before
326 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 		 *
328 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 		 * sends some packets consuming the whole queue again->
330 		 * stops the queue
331 		 */
332 
333 		__netif_tx_lock(txq, smp_processor_id());
334 
335 		if ((netif_tx_queue_stopped(txq)) &&
336 		    (bp->state == BNX2X_STATE_OPEN) &&
337 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 			netif_tx_wake_queue(txq);
339 
340 		__netif_tx_unlock(txq);
341 	}
342 	return 0;
343 }
344 
345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 					     u16 idx)
347 {
348 	u16 last_max = fp->last_max_sge;
349 
350 	if (SUB_S16(idx, last_max) > 0)
351 		fp->last_max_sge = idx;
352 }
353 
354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 					 u16 sge_len,
356 					 struct eth_end_agg_rx_cqe *cqe)
357 {
358 	struct bnx2x *bp = fp->bp;
359 	u16 last_max, last_elem, first_elem;
360 	u16 delta = 0;
361 	u16 i;
362 
363 	if (!sge_len)
364 		return;
365 
366 	/* First mark all used pages */
367 	for (i = 0; i < sge_len; i++)
368 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370 
371 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373 
374 	/* Here we assume that the last SGE index is the biggest */
375 	prefetch((void *)(fp->sge_mask));
376 	bnx2x_update_last_max_sge(fp,
377 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378 
379 	last_max = RX_SGE(fp->last_max_sge);
380 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382 
383 	/* If ring is not full */
384 	if (last_elem + 1 != first_elem)
385 		last_elem++;
386 
387 	/* Now update the prod */
388 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 		if (likely(fp->sge_mask[i]))
390 			break;
391 
392 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 		delta += BIT_VEC64_ELEM_SZ;
394 	}
395 
396 	if (delta > 0) {
397 		fp->rx_sge_prod += delta;
398 		/* clear page-end entries */
399 		bnx2x_clear_sge_mask_next_elems(fp);
400 	}
401 
402 	DP(NETIF_MSG_RX_STATUS,
403 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
404 	   fp->last_max_sge, fp->rx_sge_prod);
405 }
406 
407 /* Get Toeplitz hash value in the skb using the value from the
408  * CQE (calculated by HW).
409  */
410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 			    const struct eth_fast_path_rx_cqe *cqe,
412 			    enum pkt_hash_types *rxhash_type)
413 {
414 	/* Get Toeplitz hash from CQE */
415 	if ((bp->dev->features & NETIF_F_RXHASH) &&
416 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 		enum eth_rss_hash_type htype;
418 
419 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 				(htype == TCP_IPV6_HASH_TYPE)) ?
422 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423 
424 		return le32_to_cpu(cqe->rss_hash_result);
425 	}
426 	*rxhash_type = PKT_HASH_TYPE_NONE;
427 	return 0;
428 }
429 
430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 			    u16 cons, u16 prod,
432 			    struct eth_fast_path_rx_cqe *cqe)
433 {
434 	struct bnx2x *bp = fp->bp;
435 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 	dma_addr_t mapping;
439 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441 
442 	/* print error if current state != stop */
443 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445 
446 	/* Try to map an empty data buffer from the aggregation info  */
447 	mapping = dma_map_single(&bp->pdev->dev,
448 				 first_buf->data + NET_SKB_PAD,
449 				 fp->rx_buf_size, DMA_FROM_DEVICE);
450 	/*
451 	 *  ...if it fails - move the skb from the consumer to the producer
452 	 *  and set the current aggregation state as ERROR to drop it
453 	 *  when TPA_STOP arrives.
454 	 */
455 
456 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 		/* Move the BD from the consumer to the producer */
458 		bnx2x_reuse_rx_data(fp, cons, prod);
459 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 		return;
461 	}
462 
463 	/* move empty data from pool to prod */
464 	prod_rx_buf->data = first_buf->data;
465 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 	/* point prod_bd to new data */
467 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469 
470 	/* move partial skb from cons to pool (don't unmap yet) */
471 	*first_buf = *cons_rx_buf;
472 
473 	/* mark bin state as START */
474 	tpa_info->parsing_flags =
475 		le16_to_cpu(cqe->pars_flags.flags);
476 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 	tpa_info->tpa_state = BNX2X_TPA_START;
478 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 	tpa_info->placement_offset = cqe->placement_offset;
480 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 	if (fp->mode == TPA_MODE_GRO) {
482 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 		tpa_info->gro_size = gro_size;
485 	}
486 
487 #ifdef BNX2X_STOP_ON_ERROR
488 	fp->tpa_queue_used |= (1 << queue);
489 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 	   fp->tpa_queue_used);
491 #endif
492 }
493 
494 /* Timestamp option length allowed for TPA aggregation:
495  *
496  *		nop nop kind length echo val
497  */
498 #define TPA_TSTAMP_OPT_LEN	12
499 /**
500  * bnx2x_set_gro_params - compute GRO values
501  *
502  * @skb:		packet skb
503  * @parsing_flags:	parsing flags from the START CQE
504  * @len_on_bd:		total length of the first packet for the
505  *			aggregation.
506  * @pkt_len:		length of all segments
507  *
508  * Approximate value of the MSS for this aggregation calculated using
509  * the first packet of it.
510  * Compute number of aggregated segments, and gso_type.
511  */
512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
513 				 u16 len_on_bd, unsigned int pkt_len,
514 				 u16 num_of_coalesced_segs)
515 {
516 	/* TPA aggregation won't have either IP options or TCP options
517 	 * other than timestamp or IPv6 extension headers.
518 	 */
519 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
520 
521 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
522 	    PRS_FLAG_OVERETH_IPV6) {
523 		hdrs_len += sizeof(struct ipv6hdr);
524 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
525 	} else {
526 		hdrs_len += sizeof(struct iphdr);
527 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
528 	}
529 
530 	/* Check if there was a TCP timestamp, if there is it's will
531 	 * always be 12 bytes length: nop nop kind length echo val.
532 	 *
533 	 * Otherwise FW would close the aggregation.
534 	 */
535 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
536 		hdrs_len += TPA_TSTAMP_OPT_LEN;
537 
538 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
539 
540 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
541 	 * to skb_shinfo(skb)->gso_segs
542 	 */
543 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
544 }
545 
546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
547 			      u16 index, gfp_t gfp_mask)
548 {
549 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
550 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
551 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
552 	dma_addr_t mapping;
553 
554 	if (!pool->page) {
555 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
556 		if (unlikely(!pool->page))
557 			return -ENOMEM;
558 
559 		pool->offset = 0;
560 	}
561 
562 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
563 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
564 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
565 		BNX2X_ERR("Can't map sge\n");
566 		return -ENOMEM;
567 	}
568 
569 	sw_buf->page = pool->page;
570 	sw_buf->offset = pool->offset;
571 
572 	dma_unmap_addr_set(sw_buf, mapping, mapping);
573 
574 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
575 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
576 
577 	pool->offset += SGE_PAGE_SIZE;
578 	if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
579 		get_page(pool->page);
580 	else
581 		pool->page = NULL;
582 	return 0;
583 }
584 
585 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
586 			       struct bnx2x_agg_info *tpa_info,
587 			       u16 pages,
588 			       struct sk_buff *skb,
589 			       struct eth_end_agg_rx_cqe *cqe,
590 			       u16 cqe_idx)
591 {
592 	struct sw_rx_page *rx_pg, old_rx_pg;
593 	u32 i, frag_len, frag_size;
594 	int err, j, frag_id = 0;
595 	u16 len_on_bd = tpa_info->len_on_bd;
596 	u16 full_page = 0, gro_size = 0;
597 
598 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
599 
600 	if (fp->mode == TPA_MODE_GRO) {
601 		gro_size = tpa_info->gro_size;
602 		full_page = tpa_info->full_page;
603 	}
604 
605 	/* This is needed in order to enable forwarding support */
606 	if (frag_size)
607 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
608 				     le16_to_cpu(cqe->pkt_len),
609 				     le16_to_cpu(cqe->num_of_coalesced_segs));
610 
611 #ifdef BNX2X_STOP_ON_ERROR
612 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
613 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
614 			  pages, cqe_idx);
615 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
616 		bnx2x_panic();
617 		return -EINVAL;
618 	}
619 #endif
620 
621 	/* Run through the SGL and compose the fragmented skb */
622 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
623 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
624 
625 		/* FW gives the indices of the SGE as if the ring is an array
626 		   (meaning that "next" element will consume 2 indices) */
627 		if (fp->mode == TPA_MODE_GRO)
628 			frag_len = min_t(u32, frag_size, (u32)full_page);
629 		else /* LRO */
630 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
631 
632 		rx_pg = &fp->rx_page_ring[sge_idx];
633 		old_rx_pg = *rx_pg;
634 
635 		/* If we fail to allocate a substitute page, we simply stop
636 		   where we are and drop the whole packet */
637 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
638 		if (unlikely(err)) {
639 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
640 			return err;
641 		}
642 
643 		dma_unmap_page(&bp->pdev->dev,
644 			       dma_unmap_addr(&old_rx_pg, mapping),
645 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
646 		/* Add one frag and update the appropriate fields in the skb */
647 		if (fp->mode == TPA_MODE_LRO)
648 			skb_fill_page_desc(skb, j, old_rx_pg.page,
649 					   old_rx_pg.offset, frag_len);
650 		else { /* GRO */
651 			int rem;
652 			int offset = 0;
653 			for (rem = frag_len; rem > 0; rem -= gro_size) {
654 				int len = rem > gro_size ? gro_size : rem;
655 				skb_fill_page_desc(skb, frag_id++,
656 						   old_rx_pg.page,
657 						   old_rx_pg.offset + offset,
658 						   len);
659 				if (offset)
660 					get_page(old_rx_pg.page);
661 				offset += len;
662 			}
663 		}
664 
665 		skb->data_len += frag_len;
666 		skb->truesize += SGE_PAGES;
667 		skb->len += frag_len;
668 
669 		frag_size -= frag_len;
670 	}
671 
672 	return 0;
673 }
674 
675 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
676 {
677 	if (fp->rx_frag_size)
678 		skb_free_frag(data);
679 	else
680 		kfree(data);
681 }
682 
683 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
684 {
685 	if (fp->rx_frag_size) {
686 		/* GFP_KERNEL allocations are used only during initialization */
687 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
688 			return (void *)__get_free_page(gfp_mask);
689 
690 		return napi_alloc_frag(fp->rx_frag_size);
691 	}
692 
693 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
694 }
695 
696 #ifdef CONFIG_INET
697 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
698 {
699 	const struct iphdr *iph = ip_hdr(skb);
700 	struct tcphdr *th;
701 
702 	skb_set_transport_header(skb, sizeof(struct iphdr));
703 	th = tcp_hdr(skb);
704 
705 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
706 				  iph->saddr, iph->daddr, 0);
707 }
708 
709 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
710 {
711 	struct ipv6hdr *iph = ipv6_hdr(skb);
712 	struct tcphdr *th;
713 
714 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
715 	th = tcp_hdr(skb);
716 
717 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
718 				  &iph->saddr, &iph->daddr, 0);
719 }
720 
721 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
722 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
723 {
724 	skb_reset_network_header(skb);
725 	gro_func(bp, skb);
726 	tcp_gro_complete(skb);
727 }
728 #endif
729 
730 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
731 			       struct sk_buff *skb)
732 {
733 #ifdef CONFIG_INET
734 	if (skb_shinfo(skb)->gso_size) {
735 		switch (be16_to_cpu(skb->protocol)) {
736 		case ETH_P_IP:
737 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
738 			break;
739 		case ETH_P_IPV6:
740 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
741 			break;
742 		default:
743 			netdev_WARN_ONCE(bp->dev,
744 					 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
745 					 be16_to_cpu(skb->protocol));
746 		}
747 	}
748 #endif
749 	skb_record_rx_queue(skb, fp->rx_queue);
750 	napi_gro_receive(&fp->napi, skb);
751 }
752 
753 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
754 			   struct bnx2x_agg_info *tpa_info,
755 			   u16 pages,
756 			   struct eth_end_agg_rx_cqe *cqe,
757 			   u16 cqe_idx)
758 {
759 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
760 	u8 pad = tpa_info->placement_offset;
761 	u16 len = tpa_info->len_on_bd;
762 	struct sk_buff *skb = NULL;
763 	u8 *new_data, *data = rx_buf->data;
764 	u8 old_tpa_state = tpa_info->tpa_state;
765 
766 	tpa_info->tpa_state = BNX2X_TPA_STOP;
767 
768 	/* If we there was an error during the handling of the TPA_START -
769 	 * drop this aggregation.
770 	 */
771 	if (old_tpa_state == BNX2X_TPA_ERROR)
772 		goto drop;
773 
774 	/* Try to allocate the new data */
775 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
776 	/* Unmap skb in the pool anyway, as we are going to change
777 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
778 	   fails. */
779 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
780 			 fp->rx_buf_size, DMA_FROM_DEVICE);
781 	if (likely(new_data))
782 		skb = build_skb(data, fp->rx_frag_size);
783 
784 	if (likely(skb)) {
785 #ifdef BNX2X_STOP_ON_ERROR
786 		if (pad + len > fp->rx_buf_size) {
787 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
788 				  pad, len, fp->rx_buf_size);
789 			bnx2x_panic();
790 			return;
791 		}
792 #endif
793 
794 		skb_reserve(skb, pad + NET_SKB_PAD);
795 		skb_put(skb, len);
796 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
797 
798 		skb->protocol = eth_type_trans(skb, bp->dev);
799 		skb->ip_summed = CHECKSUM_UNNECESSARY;
800 
801 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
802 					 skb, cqe, cqe_idx)) {
803 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
804 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
805 			bnx2x_gro_receive(bp, fp, skb);
806 		} else {
807 			DP(NETIF_MSG_RX_STATUS,
808 			   "Failed to allocate new pages - dropping packet!\n");
809 			dev_kfree_skb_any(skb);
810 		}
811 
812 		/* put new data in bin */
813 		rx_buf->data = new_data;
814 
815 		return;
816 	}
817 	if (new_data)
818 		bnx2x_frag_free(fp, new_data);
819 drop:
820 	/* drop the packet and keep the buffer in the bin */
821 	DP(NETIF_MSG_RX_STATUS,
822 	   "Failed to allocate or map a new skb - dropping packet!\n");
823 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
824 }
825 
826 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
827 			       u16 index, gfp_t gfp_mask)
828 {
829 	u8 *data;
830 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
831 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
832 	dma_addr_t mapping;
833 
834 	data = bnx2x_frag_alloc(fp, gfp_mask);
835 	if (unlikely(data == NULL))
836 		return -ENOMEM;
837 
838 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
839 				 fp->rx_buf_size,
840 				 DMA_FROM_DEVICE);
841 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
842 		bnx2x_frag_free(fp, data);
843 		BNX2X_ERR("Can't map rx data\n");
844 		return -ENOMEM;
845 	}
846 
847 	rx_buf->data = data;
848 	dma_unmap_addr_set(rx_buf, mapping, mapping);
849 
850 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
851 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
852 
853 	return 0;
854 }
855 
856 static
857 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
858 				 struct bnx2x_fastpath *fp,
859 				 struct bnx2x_eth_q_stats *qstats)
860 {
861 	/* Do nothing if no L4 csum validation was done.
862 	 * We do not check whether IP csum was validated. For IPv4 we assume
863 	 * that if the card got as far as validating the L4 csum, it also
864 	 * validated the IP csum. IPv6 has no IP csum.
865 	 */
866 	if (cqe->fast_path_cqe.status_flags &
867 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
868 		return;
869 
870 	/* If L4 validation was done, check if an error was found. */
871 
872 	if (cqe->fast_path_cqe.type_error_flags &
873 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
874 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
875 		qstats->hw_csum_err++;
876 	else
877 		skb->ip_summed = CHECKSUM_UNNECESSARY;
878 }
879 
880 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
881 {
882 	struct bnx2x *bp = fp->bp;
883 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
884 	u16 sw_comp_cons, sw_comp_prod;
885 	int rx_pkt = 0;
886 	union eth_rx_cqe *cqe;
887 	struct eth_fast_path_rx_cqe *cqe_fp;
888 
889 #ifdef BNX2X_STOP_ON_ERROR
890 	if (unlikely(bp->panic))
891 		return 0;
892 #endif
893 	if (budget <= 0)
894 		return rx_pkt;
895 
896 	bd_cons = fp->rx_bd_cons;
897 	bd_prod = fp->rx_bd_prod;
898 	bd_prod_fw = bd_prod;
899 	sw_comp_cons = fp->rx_comp_cons;
900 	sw_comp_prod = fp->rx_comp_prod;
901 
902 	comp_ring_cons = RCQ_BD(sw_comp_cons);
903 	cqe = &fp->rx_comp_ring[comp_ring_cons];
904 	cqe_fp = &cqe->fast_path_cqe;
905 
906 	DP(NETIF_MSG_RX_STATUS,
907 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
908 
909 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
910 		struct sw_rx_bd *rx_buf = NULL;
911 		struct sk_buff *skb;
912 		u8 cqe_fp_flags;
913 		enum eth_rx_cqe_type cqe_fp_type;
914 		u16 len, pad, queue;
915 		u8 *data;
916 		u32 rxhash;
917 		enum pkt_hash_types rxhash_type;
918 
919 #ifdef BNX2X_STOP_ON_ERROR
920 		if (unlikely(bp->panic))
921 			return 0;
922 #endif
923 
924 		bd_prod = RX_BD(bd_prod);
925 		bd_cons = RX_BD(bd_cons);
926 
927 		/* A rmb() is required to ensure that the CQE is not read
928 		 * before it is written by the adapter DMA.  PCI ordering
929 		 * rules will make sure the other fields are written before
930 		 * the marker at the end of struct eth_fast_path_rx_cqe
931 		 * but without rmb() a weakly ordered processor can process
932 		 * stale data.  Without the barrier TPA state-machine might
933 		 * enter inconsistent state and kernel stack might be
934 		 * provided with incorrect packet description - these lead
935 		 * to various kernel crashed.
936 		 */
937 		rmb();
938 
939 		cqe_fp_flags = cqe_fp->type_error_flags;
940 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
941 
942 		DP(NETIF_MSG_RX_STATUS,
943 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
944 		   CQE_TYPE(cqe_fp_flags),
945 		   cqe_fp_flags, cqe_fp->status_flags,
946 		   le32_to_cpu(cqe_fp->rss_hash_result),
947 		   le16_to_cpu(cqe_fp->vlan_tag),
948 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
949 
950 		/* is this a slowpath msg? */
951 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
952 			bnx2x_sp_event(fp, cqe);
953 			goto next_cqe;
954 		}
955 
956 		rx_buf = &fp->rx_buf_ring[bd_cons];
957 		data = rx_buf->data;
958 
959 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
960 			struct bnx2x_agg_info *tpa_info;
961 			u16 frag_size, pages;
962 #ifdef BNX2X_STOP_ON_ERROR
963 			/* sanity check */
964 			if (fp->mode == TPA_MODE_DISABLED &&
965 			    (CQE_TYPE_START(cqe_fp_type) ||
966 			     CQE_TYPE_STOP(cqe_fp_type)))
967 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
968 					  CQE_TYPE(cqe_fp_type));
969 #endif
970 
971 			if (CQE_TYPE_START(cqe_fp_type)) {
972 				u16 queue = cqe_fp->queue_index;
973 				DP(NETIF_MSG_RX_STATUS,
974 				   "calling tpa_start on queue %d\n",
975 				   queue);
976 
977 				bnx2x_tpa_start(fp, queue,
978 						bd_cons, bd_prod,
979 						cqe_fp);
980 
981 				goto next_rx;
982 			}
983 			queue = cqe->end_agg_cqe.queue_index;
984 			tpa_info = &fp->tpa_info[queue];
985 			DP(NETIF_MSG_RX_STATUS,
986 			   "calling tpa_stop on queue %d\n",
987 			   queue);
988 
989 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
990 				    tpa_info->len_on_bd;
991 
992 			if (fp->mode == TPA_MODE_GRO)
993 				pages = (frag_size + tpa_info->full_page - 1) /
994 					 tpa_info->full_page;
995 			else
996 				pages = SGE_PAGE_ALIGN(frag_size) >>
997 					SGE_PAGE_SHIFT;
998 
999 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1000 				       &cqe->end_agg_cqe, comp_ring_cons);
1001 #ifdef BNX2X_STOP_ON_ERROR
1002 			if (bp->panic)
1003 				return 0;
1004 #endif
1005 
1006 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1007 			goto next_cqe;
1008 		}
1009 		/* non TPA */
1010 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1011 		pad = cqe_fp->placement_offset;
1012 		dma_sync_single_for_cpu(&bp->pdev->dev,
1013 					dma_unmap_addr(rx_buf, mapping),
1014 					pad + RX_COPY_THRESH,
1015 					DMA_FROM_DEVICE);
1016 		pad += NET_SKB_PAD;
1017 		prefetch(data + pad); /* speedup eth_type_trans() */
1018 		/* is this an error packet? */
1019 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1020 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1021 			   "ERROR  flags %x  rx packet %u\n",
1022 			   cqe_fp_flags, sw_comp_cons);
1023 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1024 			goto reuse_rx;
1025 		}
1026 
1027 		/* Since we don't have a jumbo ring
1028 		 * copy small packets if mtu > 1500
1029 		 */
1030 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1031 		    (len <= RX_COPY_THRESH)) {
1032 			skb = napi_alloc_skb(&fp->napi, len);
1033 			if (skb == NULL) {
1034 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1035 				   "ERROR  packet dropped because of alloc failure\n");
1036 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1037 				goto reuse_rx;
1038 			}
1039 			memcpy(skb->data, data + pad, len);
1040 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1041 		} else {
1042 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1043 						       GFP_ATOMIC) == 0)) {
1044 				dma_unmap_single(&bp->pdev->dev,
1045 						 dma_unmap_addr(rx_buf, mapping),
1046 						 fp->rx_buf_size,
1047 						 DMA_FROM_DEVICE);
1048 				skb = build_skb(data, fp->rx_frag_size);
1049 				if (unlikely(!skb)) {
1050 					bnx2x_frag_free(fp, data);
1051 					bnx2x_fp_qstats(bp, fp)->
1052 							rx_skb_alloc_failed++;
1053 					goto next_rx;
1054 				}
1055 				skb_reserve(skb, pad);
1056 			} else {
1057 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1058 				   "ERROR  packet dropped because of alloc failure\n");
1059 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1060 reuse_rx:
1061 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1062 				goto next_rx;
1063 			}
1064 		}
1065 
1066 		skb_put(skb, len);
1067 		skb->protocol = eth_type_trans(skb, bp->dev);
1068 
1069 		/* Set Toeplitz hash for a none-LRO skb */
1070 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1071 		skb_set_hash(skb, rxhash, rxhash_type);
1072 
1073 		skb_checksum_none_assert(skb);
1074 
1075 		if (bp->dev->features & NETIF_F_RXCSUM)
1076 			bnx2x_csum_validate(skb, cqe, fp,
1077 					    bnx2x_fp_qstats(bp, fp));
1078 
1079 		skb_record_rx_queue(skb, fp->rx_queue);
1080 
1081 		/* Check if this packet was timestamped */
1082 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1083 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1084 			bnx2x_set_rx_ts(bp, skb);
1085 
1086 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1087 		    PARSING_FLAGS_VLAN)
1088 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1089 					       le16_to_cpu(cqe_fp->vlan_tag));
1090 
1091 		napi_gro_receive(&fp->napi, skb);
1092 next_rx:
1093 		rx_buf->data = NULL;
1094 
1095 		bd_cons = NEXT_RX_IDX(bd_cons);
1096 		bd_prod = NEXT_RX_IDX(bd_prod);
1097 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1098 		rx_pkt++;
1099 next_cqe:
1100 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1101 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1102 
1103 		/* mark CQE as free */
1104 		BNX2X_SEED_CQE(cqe_fp);
1105 
1106 		if (rx_pkt == budget)
1107 			break;
1108 
1109 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1110 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1111 		cqe_fp = &cqe->fast_path_cqe;
1112 	} /* while */
1113 
1114 	fp->rx_bd_cons = bd_cons;
1115 	fp->rx_bd_prod = bd_prod_fw;
1116 	fp->rx_comp_cons = sw_comp_cons;
1117 	fp->rx_comp_prod = sw_comp_prod;
1118 
1119 	/* Update producers */
1120 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1121 			     fp->rx_sge_prod);
1122 
1123 	return rx_pkt;
1124 }
1125 
1126 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1127 {
1128 	struct bnx2x_fastpath *fp = fp_cookie;
1129 	struct bnx2x *bp = fp->bp;
1130 	u8 cos;
1131 
1132 	DP(NETIF_MSG_INTR,
1133 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1134 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1135 
1136 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1137 
1138 #ifdef BNX2X_STOP_ON_ERROR
1139 	if (unlikely(bp->panic))
1140 		return IRQ_HANDLED;
1141 #endif
1142 
1143 	/* Handle Rx and Tx according to MSI-X vector */
1144 	for_each_cos_in_tx_queue(fp, cos)
1145 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1146 
1147 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1148 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1149 
1150 	return IRQ_HANDLED;
1151 }
1152 
1153 /* HW Lock for shared dual port PHYs */
1154 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1155 {
1156 	mutex_lock(&bp->port.phy_mutex);
1157 
1158 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1159 }
1160 
1161 void bnx2x_release_phy_lock(struct bnx2x *bp)
1162 {
1163 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1164 
1165 	mutex_unlock(&bp->port.phy_mutex);
1166 }
1167 
1168 /* calculates MF speed according to current linespeed and MF configuration */
1169 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1170 {
1171 	u16 line_speed = bp->link_vars.line_speed;
1172 	if (IS_MF(bp)) {
1173 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1174 						   bp->mf_config[BP_VN(bp)]);
1175 
1176 		/* Calculate the current MAX line speed limit for the MF
1177 		 * devices
1178 		 */
1179 		if (IS_MF_PERCENT_BW(bp))
1180 			line_speed = (line_speed * maxCfg) / 100;
1181 		else { /* SD mode */
1182 			u16 vn_max_rate = maxCfg * 100;
1183 
1184 			if (vn_max_rate < line_speed)
1185 				line_speed = vn_max_rate;
1186 		}
1187 	}
1188 
1189 	return line_speed;
1190 }
1191 
1192 /**
1193  * bnx2x_fill_report_data - fill link report data to report
1194  *
1195  * @bp:		driver handle
1196  * @data:	link state to update
1197  *
1198  * It uses a none-atomic bit operations because is called under the mutex.
1199  */
1200 static void bnx2x_fill_report_data(struct bnx2x *bp,
1201 				   struct bnx2x_link_report_data *data)
1202 {
1203 	memset(data, 0, sizeof(*data));
1204 
1205 	if (IS_PF(bp)) {
1206 		/* Fill the report data: effective line speed */
1207 		data->line_speed = bnx2x_get_mf_speed(bp);
1208 
1209 		/* Link is down */
1210 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1211 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1212 				  &data->link_report_flags);
1213 
1214 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1215 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1216 				  &data->link_report_flags);
1217 
1218 		/* Full DUPLEX */
1219 		if (bp->link_vars.duplex == DUPLEX_FULL)
1220 			__set_bit(BNX2X_LINK_REPORT_FD,
1221 				  &data->link_report_flags);
1222 
1223 		/* Rx Flow Control is ON */
1224 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1225 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1226 				  &data->link_report_flags);
1227 
1228 		/* Tx Flow Control is ON */
1229 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1230 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1231 				  &data->link_report_flags);
1232 	} else { /* VF */
1233 		*data = bp->vf_link_vars;
1234 	}
1235 }
1236 
1237 /**
1238  * bnx2x_link_report - report link status to OS.
1239  *
1240  * @bp:		driver handle
1241  *
1242  * Calls the __bnx2x_link_report() under the same locking scheme
1243  * as a link/PHY state managing code to ensure a consistent link
1244  * reporting.
1245  */
1246 
1247 void bnx2x_link_report(struct bnx2x *bp)
1248 {
1249 	bnx2x_acquire_phy_lock(bp);
1250 	__bnx2x_link_report(bp);
1251 	bnx2x_release_phy_lock(bp);
1252 }
1253 
1254 /**
1255  * __bnx2x_link_report - report link status to OS.
1256  *
1257  * @bp:		driver handle
1258  *
1259  * None atomic implementation.
1260  * Should be called under the phy_lock.
1261  */
1262 void __bnx2x_link_report(struct bnx2x *bp)
1263 {
1264 	struct bnx2x_link_report_data cur_data;
1265 
1266 	if (bp->force_link_down) {
1267 		bp->link_vars.link_up = 0;
1268 		return;
1269 	}
1270 
1271 	/* reread mf_cfg */
1272 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1273 		bnx2x_read_mf_cfg(bp);
1274 
1275 	/* Read the current link report info */
1276 	bnx2x_fill_report_data(bp, &cur_data);
1277 
1278 	/* Don't report link down or exactly the same link status twice */
1279 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1280 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1281 		      &bp->last_reported_link.link_report_flags) &&
1282 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1283 		      &cur_data.link_report_flags)))
1284 		return;
1285 
1286 	bp->link_cnt++;
1287 
1288 	/* We are going to report a new link parameters now -
1289 	 * remember the current data for the next time.
1290 	 */
1291 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1292 
1293 	/* propagate status to VFs */
1294 	if (IS_PF(bp))
1295 		bnx2x_iov_link_update(bp);
1296 
1297 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1298 		     &cur_data.link_report_flags)) {
1299 		netif_carrier_off(bp->dev);
1300 		netdev_err(bp->dev, "NIC Link is Down\n");
1301 		return;
1302 	} else {
1303 		const char *duplex;
1304 		const char *flow;
1305 
1306 		netif_carrier_on(bp->dev);
1307 
1308 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1309 				       &cur_data.link_report_flags))
1310 			duplex = "full";
1311 		else
1312 			duplex = "half";
1313 
1314 		/* Handle the FC at the end so that only these flags would be
1315 		 * possibly set. This way we may easily check if there is no FC
1316 		 * enabled.
1317 		 */
1318 		if (cur_data.link_report_flags) {
1319 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1320 				     &cur_data.link_report_flags)) {
1321 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1322 				     &cur_data.link_report_flags))
1323 					flow = "ON - receive & transmit";
1324 				else
1325 					flow = "ON - receive";
1326 			} else {
1327 				flow = "ON - transmit";
1328 			}
1329 		} else {
1330 			flow = "none";
1331 		}
1332 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1333 			    cur_data.line_speed, duplex, flow);
1334 	}
1335 }
1336 
1337 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1338 {
1339 	int i;
1340 
1341 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1342 		struct eth_rx_sge *sge;
1343 
1344 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1345 		sge->addr_hi =
1346 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1347 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1348 
1349 		sge->addr_lo =
1350 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1351 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1352 	}
1353 }
1354 
1355 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1356 				struct bnx2x_fastpath *fp, int last)
1357 {
1358 	int i;
1359 
1360 	for (i = 0; i < last; i++) {
1361 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1362 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1363 		u8 *data = first_buf->data;
1364 
1365 		if (data == NULL) {
1366 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1367 			continue;
1368 		}
1369 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1370 			dma_unmap_single(&bp->pdev->dev,
1371 					 dma_unmap_addr(first_buf, mapping),
1372 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1373 		bnx2x_frag_free(fp, data);
1374 		first_buf->data = NULL;
1375 	}
1376 }
1377 
1378 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1379 {
1380 	int j;
1381 
1382 	for_each_rx_queue_cnic(bp, j) {
1383 		struct bnx2x_fastpath *fp = &bp->fp[j];
1384 
1385 		fp->rx_bd_cons = 0;
1386 
1387 		/* Activate BD ring */
1388 		/* Warning!
1389 		 * this will generate an interrupt (to the TSTORM)
1390 		 * must only be done after chip is initialized
1391 		 */
1392 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1393 				     fp->rx_sge_prod);
1394 	}
1395 }
1396 
1397 void bnx2x_init_rx_rings(struct bnx2x *bp)
1398 {
1399 	int func = BP_FUNC(bp);
1400 	u16 ring_prod;
1401 	int i, j;
1402 
1403 	/* Allocate TPA resources */
1404 	for_each_eth_queue(bp, j) {
1405 		struct bnx2x_fastpath *fp = &bp->fp[j];
1406 
1407 		DP(NETIF_MSG_IFUP,
1408 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1409 
1410 		if (fp->mode != TPA_MODE_DISABLED) {
1411 			/* Fill the per-aggregation pool */
1412 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1413 				struct bnx2x_agg_info *tpa_info =
1414 					&fp->tpa_info[i];
1415 				struct sw_rx_bd *first_buf =
1416 					&tpa_info->first_buf;
1417 
1418 				first_buf->data =
1419 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1420 				if (!first_buf->data) {
1421 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1422 						  j);
1423 					bnx2x_free_tpa_pool(bp, fp, i);
1424 					fp->mode = TPA_MODE_DISABLED;
1425 					break;
1426 				}
1427 				dma_unmap_addr_set(first_buf, mapping, 0);
1428 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1429 			}
1430 
1431 			/* "next page" elements initialization */
1432 			bnx2x_set_next_page_sgl(fp);
1433 
1434 			/* set SGEs bit mask */
1435 			bnx2x_init_sge_ring_bit_mask(fp);
1436 
1437 			/* Allocate SGEs and initialize the ring elements */
1438 			for (i = 0, ring_prod = 0;
1439 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1440 
1441 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1442 						       GFP_KERNEL) < 0) {
1443 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1444 						  i);
1445 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1446 						  j);
1447 					/* Cleanup already allocated elements */
1448 					bnx2x_free_rx_sge_range(bp, fp,
1449 								ring_prod);
1450 					bnx2x_free_tpa_pool(bp, fp,
1451 							    MAX_AGG_QS(bp));
1452 					fp->mode = TPA_MODE_DISABLED;
1453 					ring_prod = 0;
1454 					break;
1455 				}
1456 				ring_prod = NEXT_SGE_IDX(ring_prod);
1457 			}
1458 
1459 			fp->rx_sge_prod = ring_prod;
1460 		}
1461 	}
1462 
1463 	for_each_eth_queue(bp, j) {
1464 		struct bnx2x_fastpath *fp = &bp->fp[j];
1465 
1466 		fp->rx_bd_cons = 0;
1467 
1468 		/* Activate BD ring */
1469 		/* Warning!
1470 		 * this will generate an interrupt (to the TSTORM)
1471 		 * must only be done after chip is initialized
1472 		 */
1473 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1474 				     fp->rx_sge_prod);
1475 
1476 		if (j != 0)
1477 			continue;
1478 
1479 		if (CHIP_IS_E1(bp)) {
1480 			REG_WR(bp, BAR_USTRORM_INTMEM +
1481 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1482 			       U64_LO(fp->rx_comp_mapping));
1483 			REG_WR(bp, BAR_USTRORM_INTMEM +
1484 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1485 			       U64_HI(fp->rx_comp_mapping));
1486 		}
1487 	}
1488 }
1489 
1490 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1491 {
1492 	u8 cos;
1493 	struct bnx2x *bp = fp->bp;
1494 
1495 	for_each_cos_in_tx_queue(fp, cos) {
1496 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1497 		unsigned pkts_compl = 0, bytes_compl = 0;
1498 
1499 		u16 sw_prod = txdata->tx_pkt_prod;
1500 		u16 sw_cons = txdata->tx_pkt_cons;
1501 
1502 		while (sw_cons != sw_prod) {
1503 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1504 					  &pkts_compl, &bytes_compl);
1505 			sw_cons++;
1506 		}
1507 
1508 		netdev_tx_reset_queue(
1509 			netdev_get_tx_queue(bp->dev,
1510 					    txdata->txq_index));
1511 	}
1512 }
1513 
1514 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1515 {
1516 	int i;
1517 
1518 	for_each_tx_queue_cnic(bp, i) {
1519 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1520 	}
1521 }
1522 
1523 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1524 {
1525 	int i;
1526 
1527 	for_each_eth_queue(bp, i) {
1528 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1529 	}
1530 }
1531 
1532 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1533 {
1534 	struct bnx2x *bp = fp->bp;
1535 	int i;
1536 
1537 	/* ring wasn't allocated */
1538 	if (fp->rx_buf_ring == NULL)
1539 		return;
1540 
1541 	for (i = 0; i < NUM_RX_BD; i++) {
1542 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1543 		u8 *data = rx_buf->data;
1544 
1545 		if (data == NULL)
1546 			continue;
1547 		dma_unmap_single(&bp->pdev->dev,
1548 				 dma_unmap_addr(rx_buf, mapping),
1549 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1550 
1551 		rx_buf->data = NULL;
1552 		bnx2x_frag_free(fp, data);
1553 	}
1554 }
1555 
1556 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1557 {
1558 	int j;
1559 
1560 	for_each_rx_queue_cnic(bp, j) {
1561 		bnx2x_free_rx_bds(&bp->fp[j]);
1562 	}
1563 }
1564 
1565 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1566 {
1567 	int j;
1568 
1569 	for_each_eth_queue(bp, j) {
1570 		struct bnx2x_fastpath *fp = &bp->fp[j];
1571 
1572 		bnx2x_free_rx_bds(fp);
1573 
1574 		if (fp->mode != TPA_MODE_DISABLED)
1575 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1576 	}
1577 }
1578 
1579 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1580 {
1581 	bnx2x_free_tx_skbs_cnic(bp);
1582 	bnx2x_free_rx_skbs_cnic(bp);
1583 }
1584 
1585 void bnx2x_free_skbs(struct bnx2x *bp)
1586 {
1587 	bnx2x_free_tx_skbs(bp);
1588 	bnx2x_free_rx_skbs(bp);
1589 }
1590 
1591 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1592 {
1593 	/* load old values */
1594 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1595 
1596 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1597 		/* leave all but MAX value */
1598 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1599 
1600 		/* set new MAX value */
1601 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1602 				& FUNC_MF_CFG_MAX_BW_MASK;
1603 
1604 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1605 	}
1606 }
1607 
1608 /**
1609  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1610  *
1611  * @bp:		driver handle
1612  * @nvecs:	number of vectors to be released
1613  */
1614 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1615 {
1616 	int i, offset = 0;
1617 
1618 	if (nvecs == offset)
1619 		return;
1620 
1621 	/* VFs don't have a default SB */
1622 	if (IS_PF(bp)) {
1623 		free_irq(bp->msix_table[offset].vector, bp->dev);
1624 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1625 		   bp->msix_table[offset].vector);
1626 		offset++;
1627 	}
1628 
1629 	if (CNIC_SUPPORT(bp)) {
1630 		if (nvecs == offset)
1631 			return;
1632 		offset++;
1633 	}
1634 
1635 	for_each_eth_queue(bp, i) {
1636 		if (nvecs == offset)
1637 			return;
1638 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1639 		   i, bp->msix_table[offset].vector);
1640 
1641 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1642 	}
1643 }
1644 
1645 void bnx2x_free_irq(struct bnx2x *bp)
1646 {
1647 	if (bp->flags & USING_MSIX_FLAG &&
1648 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1649 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1650 
1651 		/* vfs don't have a default status block */
1652 		if (IS_PF(bp))
1653 			nvecs++;
1654 
1655 		bnx2x_free_msix_irqs(bp, nvecs);
1656 	} else {
1657 		free_irq(bp->dev->irq, bp->dev);
1658 	}
1659 }
1660 
1661 int bnx2x_enable_msix(struct bnx2x *bp)
1662 {
1663 	int msix_vec = 0, i, rc;
1664 
1665 	/* VFs don't have a default status block */
1666 	if (IS_PF(bp)) {
1667 		bp->msix_table[msix_vec].entry = msix_vec;
1668 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1669 			       bp->msix_table[0].entry);
1670 		msix_vec++;
1671 	}
1672 
1673 	/* Cnic requires an msix vector for itself */
1674 	if (CNIC_SUPPORT(bp)) {
1675 		bp->msix_table[msix_vec].entry = msix_vec;
1676 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1677 			       msix_vec, bp->msix_table[msix_vec].entry);
1678 		msix_vec++;
1679 	}
1680 
1681 	/* We need separate vectors for ETH queues only (not FCoE) */
1682 	for_each_eth_queue(bp, i) {
1683 		bp->msix_table[msix_vec].entry = msix_vec;
1684 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1685 			       msix_vec, msix_vec, i);
1686 		msix_vec++;
1687 	}
1688 
1689 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1690 	   msix_vec);
1691 
1692 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1693 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1694 	/*
1695 	 * reconfigure number of tx/rx queues according to available
1696 	 * MSI-X vectors
1697 	 */
1698 	if (rc == -ENOSPC) {
1699 		/* Get by with single vector */
1700 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1701 		if (rc < 0) {
1702 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1703 				       rc);
1704 			goto no_msix;
1705 		}
1706 
1707 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1708 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1709 
1710 		BNX2X_DEV_INFO("set number of queues to 1\n");
1711 		bp->num_ethernet_queues = 1;
1712 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1713 	} else if (rc < 0) {
1714 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1715 		goto no_msix;
1716 	} else if (rc < msix_vec) {
1717 		/* how less vectors we will have? */
1718 		int diff = msix_vec - rc;
1719 
1720 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1721 
1722 		/*
1723 		 * decrease number of queues by number of unallocated entries
1724 		 */
1725 		bp->num_ethernet_queues -= diff;
1726 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1727 
1728 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1729 			       bp->num_queues);
1730 	}
1731 
1732 	bp->flags |= USING_MSIX_FLAG;
1733 
1734 	return 0;
1735 
1736 no_msix:
1737 	/* fall to INTx if not enough memory */
1738 	if (rc == -ENOMEM)
1739 		bp->flags |= DISABLE_MSI_FLAG;
1740 
1741 	return rc;
1742 }
1743 
1744 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1745 {
1746 	int i, rc, offset = 0;
1747 
1748 	/* no default status block for vf */
1749 	if (IS_PF(bp)) {
1750 		rc = request_irq(bp->msix_table[offset++].vector,
1751 				 bnx2x_msix_sp_int, 0,
1752 				 bp->dev->name, bp->dev);
1753 		if (rc) {
1754 			BNX2X_ERR("request sp irq failed\n");
1755 			return -EBUSY;
1756 		}
1757 	}
1758 
1759 	if (CNIC_SUPPORT(bp))
1760 		offset++;
1761 
1762 	for_each_eth_queue(bp, i) {
1763 		struct bnx2x_fastpath *fp = &bp->fp[i];
1764 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1765 			 bp->dev->name, i);
1766 
1767 		rc = request_irq(bp->msix_table[offset].vector,
1768 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1769 		if (rc) {
1770 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1771 			      bp->msix_table[offset].vector, rc);
1772 			bnx2x_free_msix_irqs(bp, offset);
1773 			return -EBUSY;
1774 		}
1775 
1776 		offset++;
1777 	}
1778 
1779 	i = BNX2X_NUM_ETH_QUEUES(bp);
1780 	if (IS_PF(bp)) {
1781 		offset = 1 + CNIC_SUPPORT(bp);
1782 		netdev_info(bp->dev,
1783 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1784 			    bp->msix_table[0].vector,
1785 			    0, bp->msix_table[offset].vector,
1786 			    i - 1, bp->msix_table[offset + i - 1].vector);
1787 	} else {
1788 		offset = CNIC_SUPPORT(bp);
1789 		netdev_info(bp->dev,
1790 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1791 			    0, bp->msix_table[offset].vector,
1792 			    i - 1, bp->msix_table[offset + i - 1].vector);
1793 	}
1794 	return 0;
1795 }
1796 
1797 int bnx2x_enable_msi(struct bnx2x *bp)
1798 {
1799 	int rc;
1800 
1801 	rc = pci_enable_msi(bp->pdev);
1802 	if (rc) {
1803 		BNX2X_DEV_INFO("MSI is not attainable\n");
1804 		return -1;
1805 	}
1806 	bp->flags |= USING_MSI_FLAG;
1807 
1808 	return 0;
1809 }
1810 
1811 static int bnx2x_req_irq(struct bnx2x *bp)
1812 {
1813 	unsigned long flags;
1814 	unsigned int irq;
1815 
1816 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1817 		flags = 0;
1818 	else
1819 		flags = IRQF_SHARED;
1820 
1821 	if (bp->flags & USING_MSIX_FLAG)
1822 		irq = bp->msix_table[0].vector;
1823 	else
1824 		irq = bp->pdev->irq;
1825 
1826 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1827 }
1828 
1829 static int bnx2x_setup_irqs(struct bnx2x *bp)
1830 {
1831 	int rc = 0;
1832 	if (bp->flags & USING_MSIX_FLAG &&
1833 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1834 		rc = bnx2x_req_msix_irqs(bp);
1835 		if (rc)
1836 			return rc;
1837 	} else {
1838 		rc = bnx2x_req_irq(bp);
1839 		if (rc) {
1840 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1841 			return rc;
1842 		}
1843 		if (bp->flags & USING_MSI_FLAG) {
1844 			bp->dev->irq = bp->pdev->irq;
1845 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1846 				    bp->dev->irq);
1847 		}
1848 		if (bp->flags & USING_MSIX_FLAG) {
1849 			bp->dev->irq = bp->msix_table[0].vector;
1850 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1851 				    bp->dev->irq);
1852 		}
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1859 {
1860 	int i;
1861 
1862 	for_each_rx_queue_cnic(bp, i) {
1863 		napi_enable(&bnx2x_fp(bp, i, napi));
1864 	}
1865 }
1866 
1867 static void bnx2x_napi_enable(struct bnx2x *bp)
1868 {
1869 	int i;
1870 
1871 	for_each_eth_queue(bp, i) {
1872 		napi_enable(&bnx2x_fp(bp, i, napi));
1873 	}
1874 }
1875 
1876 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1877 {
1878 	int i;
1879 
1880 	for_each_rx_queue_cnic(bp, i) {
1881 		napi_disable(&bnx2x_fp(bp, i, napi));
1882 	}
1883 }
1884 
1885 static void bnx2x_napi_disable(struct bnx2x *bp)
1886 {
1887 	int i;
1888 
1889 	for_each_eth_queue(bp, i) {
1890 		napi_disable(&bnx2x_fp(bp, i, napi));
1891 	}
1892 }
1893 
1894 void bnx2x_netif_start(struct bnx2x *bp)
1895 {
1896 	if (netif_running(bp->dev)) {
1897 		bnx2x_napi_enable(bp);
1898 		if (CNIC_LOADED(bp))
1899 			bnx2x_napi_enable_cnic(bp);
1900 		bnx2x_int_enable(bp);
1901 		if (bp->state == BNX2X_STATE_OPEN)
1902 			netif_tx_wake_all_queues(bp->dev);
1903 	}
1904 }
1905 
1906 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1907 {
1908 	bnx2x_int_disable_sync(bp, disable_hw);
1909 	bnx2x_napi_disable(bp);
1910 	if (CNIC_LOADED(bp))
1911 		bnx2x_napi_disable_cnic(bp);
1912 }
1913 
1914 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1915 		       struct net_device *sb_dev)
1916 {
1917 	struct bnx2x *bp = netdev_priv(dev);
1918 
1919 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1920 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1921 		u16 ether_type = ntohs(hdr->h_proto);
1922 
1923 		/* Skip VLAN tag if present */
1924 		if (ether_type == ETH_P_8021Q) {
1925 			struct vlan_ethhdr *vhdr =
1926 				(struct vlan_ethhdr *)skb->data;
1927 
1928 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1929 		}
1930 
1931 		/* If ethertype is FCoE or FIP - use FCoE ring */
1932 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1933 			return bnx2x_fcoe_tx(bp, txq_index);
1934 	}
1935 
1936 	/* select a non-FCoE queue */
1937 	return netdev_pick_tx(dev, skb, NULL) % (BNX2X_NUM_ETH_QUEUES(bp));
1938 }
1939 
1940 void bnx2x_set_num_queues(struct bnx2x *bp)
1941 {
1942 	/* RSS queues */
1943 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1944 
1945 	/* override in STORAGE SD modes */
1946 	if (IS_MF_STORAGE_ONLY(bp))
1947 		bp->num_ethernet_queues = 1;
1948 
1949 	/* Add special queues */
1950 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1951 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1952 
1953 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1954 }
1955 
1956 /**
1957  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1958  *
1959  * @bp:		Driver handle
1960  *
1961  * We currently support for at most 16 Tx queues for each CoS thus we will
1962  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1963  * bp->max_cos.
1964  *
1965  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1966  * index after all ETH L2 indices.
1967  *
1968  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1969  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1970  * 16..31,...) with indices that are not coupled with any real Tx queue.
1971  *
1972  * The proper configuration of skb->queue_mapping is handled by
1973  * bnx2x_select_queue() and __skb_tx_hash().
1974  *
1975  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1976  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1977  */
1978 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1979 {
1980 	int rc, tx, rx;
1981 
1982 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1983 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1984 
1985 /* account for fcoe queue */
1986 	if (include_cnic && !NO_FCOE(bp)) {
1987 		rx++;
1988 		tx++;
1989 	}
1990 
1991 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
1992 	if (rc) {
1993 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1994 		return rc;
1995 	}
1996 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
1997 	if (rc) {
1998 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1999 		return rc;
2000 	}
2001 
2002 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2003 			  tx, rx);
2004 
2005 	return rc;
2006 }
2007 
2008 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2009 {
2010 	int i;
2011 
2012 	for_each_queue(bp, i) {
2013 		struct bnx2x_fastpath *fp = &bp->fp[i];
2014 		u32 mtu;
2015 
2016 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2017 		if (IS_FCOE_IDX(i))
2018 			/*
2019 			 * Although there are no IP frames expected to arrive to
2020 			 * this ring we still want to add an
2021 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2022 			 * overrun attack.
2023 			 */
2024 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2025 		else
2026 			mtu = bp->dev->mtu;
2027 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2028 				  IP_HEADER_ALIGNMENT_PADDING +
2029 				  ETH_OVERHEAD +
2030 				  mtu +
2031 				  BNX2X_FW_RX_ALIGN_END;
2032 		fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2033 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2034 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2035 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2036 		else
2037 			fp->rx_frag_size = 0;
2038 	}
2039 }
2040 
2041 static int bnx2x_init_rss(struct bnx2x *bp)
2042 {
2043 	int i;
2044 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2045 
2046 	/* Prepare the initial contents for the indirection table if RSS is
2047 	 * enabled
2048 	 */
2049 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2050 		bp->rss_conf_obj.ind_table[i] =
2051 			bp->fp->cl_id +
2052 			ethtool_rxfh_indir_default(i, num_eth_queues);
2053 
2054 	/*
2055 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2056 	 * per-port, so if explicit configuration is needed , do it only
2057 	 * for a PMF.
2058 	 *
2059 	 * For 57712 and newer on the other hand it's a per-function
2060 	 * configuration.
2061 	 */
2062 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2063 }
2064 
2065 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2066 	      bool config_hash, bool enable)
2067 {
2068 	struct bnx2x_config_rss_params params = {NULL};
2069 
2070 	/* Although RSS is meaningless when there is a single HW queue we
2071 	 * still need it enabled in order to have HW Rx hash generated.
2072 	 *
2073 	 * if (!is_eth_multi(bp))
2074 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2075 	 */
2076 
2077 	params.rss_obj = rss_obj;
2078 
2079 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2080 
2081 	if (enable) {
2082 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2083 
2084 		/* RSS configuration */
2085 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2086 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2087 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2088 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2089 		if (rss_obj->udp_rss_v4)
2090 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2091 		if (rss_obj->udp_rss_v6)
2092 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2093 
2094 		if (!CHIP_IS_E1x(bp)) {
2095 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2096 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2097 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2098 
2099 			/* valid only for TUNN_MODE_GRE tunnel mode */
2100 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2101 		}
2102 	} else {
2103 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2104 	}
2105 
2106 	/* Hash bits */
2107 	params.rss_result_mask = MULTI_MASK;
2108 
2109 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2110 
2111 	if (config_hash) {
2112 		/* RSS keys */
2113 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2114 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2115 	}
2116 
2117 	if (IS_PF(bp))
2118 		return bnx2x_config_rss(bp, &params);
2119 	else
2120 		return bnx2x_vfpf_config_rss(bp, &params);
2121 }
2122 
2123 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2124 {
2125 	struct bnx2x_func_state_params func_params = {NULL};
2126 
2127 	/* Prepare parameters for function state transitions */
2128 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2129 
2130 	func_params.f_obj = &bp->func_obj;
2131 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2132 
2133 	func_params.params.hw_init.load_phase = load_code;
2134 
2135 	return bnx2x_func_state_change(bp, &func_params);
2136 }
2137 
2138 /*
2139  * Cleans the object that have internal lists without sending
2140  * ramrods. Should be run when interrupts are disabled.
2141  */
2142 void bnx2x_squeeze_objects(struct bnx2x *bp)
2143 {
2144 	int rc;
2145 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2146 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2147 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2148 
2149 	/***************** Cleanup MACs' object first *************************/
2150 
2151 	/* Wait for completion of requested */
2152 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2153 	/* Perform a dry cleanup */
2154 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2155 
2156 	/* Clean ETH primary MAC */
2157 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2158 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2159 				 &ramrod_flags);
2160 	if (rc != 0)
2161 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2162 
2163 	/* Cleanup UC list */
2164 	vlan_mac_flags = 0;
2165 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2166 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2167 				 &ramrod_flags);
2168 	if (rc != 0)
2169 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2170 
2171 	/***************** Now clean mcast object *****************************/
2172 	rparam.mcast_obj = &bp->mcast_obj;
2173 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2174 
2175 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2176 	 * we take a lock surrounding both the initial send and the CONTs,
2177 	 * as we don't want a true completion to disrupt us in the middle.
2178 	 */
2179 	netif_addr_lock_bh(bp->dev);
2180 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2181 	if (rc < 0)
2182 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2183 			  rc);
2184 
2185 	/* ...and wait until all pending commands are cleared */
2186 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2187 	while (rc != 0) {
2188 		if (rc < 0) {
2189 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2190 				  rc);
2191 			netif_addr_unlock_bh(bp->dev);
2192 			return;
2193 		}
2194 
2195 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2196 	}
2197 	netif_addr_unlock_bh(bp->dev);
2198 }
2199 
2200 #ifndef BNX2X_STOP_ON_ERROR
2201 #define LOAD_ERROR_EXIT(bp, label) \
2202 	do { \
2203 		(bp)->state = BNX2X_STATE_ERROR; \
2204 		goto label; \
2205 	} while (0)
2206 
2207 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2208 	do { \
2209 		bp->cnic_loaded = false; \
2210 		goto label; \
2211 	} while (0)
2212 #else /*BNX2X_STOP_ON_ERROR*/
2213 #define LOAD_ERROR_EXIT(bp, label) \
2214 	do { \
2215 		(bp)->state = BNX2X_STATE_ERROR; \
2216 		(bp)->panic = 1; \
2217 		return -EBUSY; \
2218 	} while (0)
2219 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2220 	do { \
2221 		bp->cnic_loaded = false; \
2222 		(bp)->panic = 1; \
2223 		return -EBUSY; \
2224 	} while (0)
2225 #endif /*BNX2X_STOP_ON_ERROR*/
2226 
2227 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2228 {
2229 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2230 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2231 	return;
2232 }
2233 
2234 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2235 {
2236 	int num_groups, vf_headroom = 0;
2237 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2238 
2239 	/* number of queues for statistics is number of eth queues + FCoE */
2240 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2241 
2242 	/* Total number of FW statistics requests =
2243 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2244 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2245 	 * for fcoe l2 queue if applicable)
2246 	 */
2247 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2248 
2249 	/* vf stats appear in the request list, but their data is allocated by
2250 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2251 	 * it is used to determine where to place the vf stats queries in the
2252 	 * request struct
2253 	 */
2254 	if (IS_SRIOV(bp))
2255 		vf_headroom = bnx2x_vf_headroom(bp);
2256 
2257 	/* Request is built from stats_query_header and an array of
2258 	 * stats_query_cmd_group each of which contains
2259 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2260 	 * configured in the stats_query_header.
2261 	 */
2262 	num_groups =
2263 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2264 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2265 		 1 : 0));
2266 
2267 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2268 	   bp->fw_stats_num, vf_headroom, num_groups);
2269 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2270 		num_groups * sizeof(struct stats_query_cmd_group);
2271 
2272 	/* Data for statistics requests + stats_counter
2273 	 * stats_counter holds per-STORM counters that are incremented
2274 	 * when STORM has finished with the current request.
2275 	 * memory for FCoE offloaded statistics are counted anyway,
2276 	 * even if they will not be sent.
2277 	 * VF stats are not accounted for here as the data of VF stats is stored
2278 	 * in memory allocated by the VF, not here.
2279 	 */
2280 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2281 		sizeof(struct per_pf_stats) +
2282 		sizeof(struct fcoe_statistics_params) +
2283 		sizeof(struct per_queue_stats) * num_queue_stats +
2284 		sizeof(struct stats_counter);
2285 
2286 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2287 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2288 	if (!bp->fw_stats)
2289 		goto alloc_mem_err;
2290 
2291 	/* Set shortcuts */
2292 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2293 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2294 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2295 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2296 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2297 		bp->fw_stats_req_sz;
2298 
2299 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2300 	   U64_HI(bp->fw_stats_req_mapping),
2301 	   U64_LO(bp->fw_stats_req_mapping));
2302 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2303 	   U64_HI(bp->fw_stats_data_mapping),
2304 	   U64_LO(bp->fw_stats_data_mapping));
2305 	return 0;
2306 
2307 alloc_mem_err:
2308 	bnx2x_free_fw_stats_mem(bp);
2309 	BNX2X_ERR("Can't allocate FW stats memory\n");
2310 	return -ENOMEM;
2311 }
2312 
2313 /* send load request to mcp and analyze response */
2314 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2315 {
2316 	u32 param;
2317 
2318 	/* init fw_seq */
2319 	bp->fw_seq =
2320 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2321 		 DRV_MSG_SEQ_NUMBER_MASK);
2322 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2323 
2324 	/* Get current FW pulse sequence */
2325 	bp->fw_drv_pulse_wr_seq =
2326 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2327 		 DRV_PULSE_SEQ_MASK);
2328 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2329 
2330 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2331 
2332 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2333 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2334 
2335 	/* load request */
2336 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2337 
2338 	/* if mcp fails to respond we must abort */
2339 	if (!(*load_code)) {
2340 		BNX2X_ERR("MCP response failure, aborting\n");
2341 		return -EBUSY;
2342 	}
2343 
2344 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2345 	 * must abort
2346 	 */
2347 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2348 		BNX2X_ERR("MCP refused load request, aborting\n");
2349 		return -EBUSY;
2350 	}
2351 	return 0;
2352 }
2353 
2354 /* check whether another PF has already loaded FW to chip. In
2355  * virtualized environments a pf from another VM may have already
2356  * initialized the device including loading FW
2357  */
2358 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2359 {
2360 	/* is another pf loaded on this engine? */
2361 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2362 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2363 		/* build my FW version dword */
2364 		u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2365 			(BCM_5710_FW_MINOR_VERSION << 8) +
2366 			(BCM_5710_FW_REVISION_VERSION << 16) +
2367 			(BCM_5710_FW_ENGINEERING_VERSION << 24);
2368 
2369 		/* read loaded FW from chip */
2370 		u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2371 
2372 		DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2373 		   loaded_fw, my_fw);
2374 
2375 		/* abort nic load if version mismatch */
2376 		if (my_fw != loaded_fw) {
2377 			if (print_err)
2378 				BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2379 					  loaded_fw, my_fw);
2380 			else
2381 				BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2382 					       loaded_fw, my_fw);
2383 			return -EBUSY;
2384 		}
2385 	}
2386 	return 0;
2387 }
2388 
2389 /* returns the "mcp load_code" according to global load_count array */
2390 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2391 {
2392 	int path = BP_PATH(bp);
2393 
2394 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2395 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2396 	   bnx2x_load_count[path][2]);
2397 	bnx2x_load_count[path][0]++;
2398 	bnx2x_load_count[path][1 + port]++;
2399 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2400 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2401 	   bnx2x_load_count[path][2]);
2402 	if (bnx2x_load_count[path][0] == 1)
2403 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2404 	else if (bnx2x_load_count[path][1 + port] == 1)
2405 		return FW_MSG_CODE_DRV_LOAD_PORT;
2406 	else
2407 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2408 }
2409 
2410 /* mark PMF if applicable */
2411 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2412 {
2413 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2414 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2415 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2416 		bp->port.pmf = 1;
2417 		/* We need the barrier to ensure the ordering between the
2418 		 * writing to bp->port.pmf here and reading it from the
2419 		 * bnx2x_periodic_task().
2420 		 */
2421 		smp_mb();
2422 	} else {
2423 		bp->port.pmf = 0;
2424 	}
2425 
2426 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2427 }
2428 
2429 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2430 {
2431 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2432 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2433 	    (bp->common.shmem2_base)) {
2434 		if (SHMEM2_HAS(bp, dcc_support))
2435 			SHMEM2_WR(bp, dcc_support,
2436 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2437 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2438 		if (SHMEM2_HAS(bp, afex_driver_support))
2439 			SHMEM2_WR(bp, afex_driver_support,
2440 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2441 	}
2442 
2443 	/* Set AFEX default VLAN tag to an invalid value */
2444 	bp->afex_def_vlan_tag = -1;
2445 }
2446 
2447 /**
2448  * bnx2x_bz_fp - zero content of the fastpath structure.
2449  *
2450  * @bp:		driver handle
2451  * @index:	fastpath index to be zeroed
2452  *
2453  * Makes sure the contents of the bp->fp[index].napi is kept
2454  * intact.
2455  */
2456 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2457 {
2458 	struct bnx2x_fastpath *fp = &bp->fp[index];
2459 	int cos;
2460 	struct napi_struct orig_napi = fp->napi;
2461 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2462 
2463 	/* bzero bnx2x_fastpath contents */
2464 	if (fp->tpa_info)
2465 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2466 		       sizeof(struct bnx2x_agg_info));
2467 	memset(fp, 0, sizeof(*fp));
2468 
2469 	/* Restore the NAPI object as it has been already initialized */
2470 	fp->napi = orig_napi;
2471 	fp->tpa_info = orig_tpa_info;
2472 	fp->bp = bp;
2473 	fp->index = index;
2474 	if (IS_ETH_FP(fp))
2475 		fp->max_cos = bp->max_cos;
2476 	else
2477 		/* Special queues support only one CoS */
2478 		fp->max_cos = 1;
2479 
2480 	/* Init txdata pointers */
2481 	if (IS_FCOE_FP(fp))
2482 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2483 	if (IS_ETH_FP(fp))
2484 		for_each_cos_in_tx_queue(fp, cos)
2485 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2486 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2487 
2488 	/* set the tpa flag for each queue. The tpa flag determines the queue
2489 	 * minimal size so it must be set prior to queue memory allocation
2490 	 */
2491 	if (bp->dev->features & NETIF_F_LRO)
2492 		fp->mode = TPA_MODE_LRO;
2493 	else if (bp->dev->features & NETIF_F_GRO_HW)
2494 		fp->mode = TPA_MODE_GRO;
2495 	else
2496 		fp->mode = TPA_MODE_DISABLED;
2497 
2498 	/* We don't want TPA if it's disabled in bp
2499 	 * or if this is an FCoE L2 ring.
2500 	 */
2501 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2502 		fp->mode = TPA_MODE_DISABLED;
2503 }
2504 
2505 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2506 {
2507 	u32 cur;
2508 
2509 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2510 		return;
2511 
2512 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2513 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2514 	   cur, state);
2515 
2516 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2517 }
2518 
2519 int bnx2x_load_cnic(struct bnx2x *bp)
2520 {
2521 	int i, rc, port = BP_PORT(bp);
2522 
2523 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2524 
2525 	mutex_init(&bp->cnic_mutex);
2526 
2527 	if (IS_PF(bp)) {
2528 		rc = bnx2x_alloc_mem_cnic(bp);
2529 		if (rc) {
2530 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2531 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2532 		}
2533 	}
2534 
2535 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2536 	if (rc) {
2537 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2538 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2539 	}
2540 
2541 	/* Update the number of queues with the cnic queues */
2542 	rc = bnx2x_set_real_num_queues(bp, 1);
2543 	if (rc) {
2544 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2545 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2546 	}
2547 
2548 	/* Add all CNIC NAPI objects */
2549 	bnx2x_add_all_napi_cnic(bp);
2550 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2551 	bnx2x_napi_enable_cnic(bp);
2552 
2553 	rc = bnx2x_init_hw_func_cnic(bp);
2554 	if (rc)
2555 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2556 
2557 	bnx2x_nic_init_cnic(bp);
2558 
2559 	if (IS_PF(bp)) {
2560 		/* Enable Timer scan */
2561 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2562 
2563 		/* setup cnic queues */
2564 		for_each_cnic_queue(bp, i) {
2565 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2566 			if (rc) {
2567 				BNX2X_ERR("Queue setup failed\n");
2568 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2569 			}
2570 		}
2571 	}
2572 
2573 	/* Initialize Rx filter. */
2574 	bnx2x_set_rx_mode_inner(bp);
2575 
2576 	/* re-read iscsi info */
2577 	bnx2x_get_iscsi_info(bp);
2578 	bnx2x_setup_cnic_irq_info(bp);
2579 	bnx2x_setup_cnic_info(bp);
2580 	bp->cnic_loaded = true;
2581 	if (bp->state == BNX2X_STATE_OPEN)
2582 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2583 
2584 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2585 
2586 	return 0;
2587 
2588 #ifndef BNX2X_STOP_ON_ERROR
2589 load_error_cnic2:
2590 	/* Disable Timer scan */
2591 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2592 
2593 load_error_cnic1:
2594 	bnx2x_napi_disable_cnic(bp);
2595 	/* Update the number of queues without the cnic queues */
2596 	if (bnx2x_set_real_num_queues(bp, 0))
2597 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2598 load_error_cnic0:
2599 	BNX2X_ERR("CNIC-related load failed\n");
2600 	bnx2x_free_fp_mem_cnic(bp);
2601 	bnx2x_free_mem_cnic(bp);
2602 	return rc;
2603 #endif /* ! BNX2X_STOP_ON_ERROR */
2604 }
2605 
2606 /* must be called with rtnl_lock */
2607 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2608 {
2609 	int port = BP_PORT(bp);
2610 	int i, rc = 0, load_code = 0;
2611 
2612 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2613 	DP(NETIF_MSG_IFUP,
2614 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2615 
2616 #ifdef BNX2X_STOP_ON_ERROR
2617 	if (unlikely(bp->panic)) {
2618 		BNX2X_ERR("Can't load NIC when there is panic\n");
2619 		return -EPERM;
2620 	}
2621 #endif
2622 
2623 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2624 
2625 	/* zero the structure w/o any lock, before SP handler is initialized */
2626 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2627 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2628 		&bp->last_reported_link.link_report_flags);
2629 
2630 	if (IS_PF(bp))
2631 		/* must be called before memory allocation and HW init */
2632 		bnx2x_ilt_set_info(bp);
2633 
2634 	/*
2635 	 * Zero fastpath structures preserving invariants like napi, which are
2636 	 * allocated only once, fp index, max_cos, bp pointer.
2637 	 * Also set fp->mode and txdata_ptr.
2638 	 */
2639 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2640 	for_each_queue(bp, i)
2641 		bnx2x_bz_fp(bp, i);
2642 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2643 				  bp->num_cnic_queues) *
2644 				  sizeof(struct bnx2x_fp_txdata));
2645 
2646 	bp->fcoe_init = false;
2647 
2648 	/* Set the receive queues buffer size */
2649 	bnx2x_set_rx_buf_size(bp);
2650 
2651 	if (IS_PF(bp)) {
2652 		rc = bnx2x_alloc_mem(bp);
2653 		if (rc) {
2654 			BNX2X_ERR("Unable to allocate bp memory\n");
2655 			return rc;
2656 		}
2657 	}
2658 
2659 	/* need to be done after alloc mem, since it's self adjusting to amount
2660 	 * of memory available for RSS queues
2661 	 */
2662 	rc = bnx2x_alloc_fp_mem(bp);
2663 	if (rc) {
2664 		BNX2X_ERR("Unable to allocate memory for fps\n");
2665 		LOAD_ERROR_EXIT(bp, load_error0);
2666 	}
2667 
2668 	/* Allocated memory for FW statistics  */
2669 	if (bnx2x_alloc_fw_stats_mem(bp))
2670 		LOAD_ERROR_EXIT(bp, load_error0);
2671 
2672 	/* request pf to initialize status blocks */
2673 	if (IS_VF(bp)) {
2674 		rc = bnx2x_vfpf_init(bp);
2675 		if (rc)
2676 			LOAD_ERROR_EXIT(bp, load_error0);
2677 	}
2678 
2679 	/* As long as bnx2x_alloc_mem() may possibly update
2680 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2681 	 * come after it. At this stage cnic queues are not counted.
2682 	 */
2683 	rc = bnx2x_set_real_num_queues(bp, 0);
2684 	if (rc) {
2685 		BNX2X_ERR("Unable to set real_num_queues\n");
2686 		LOAD_ERROR_EXIT(bp, load_error0);
2687 	}
2688 
2689 	/* configure multi cos mappings in kernel.
2690 	 * this configuration may be overridden by a multi class queue
2691 	 * discipline or by a dcbx negotiation result.
2692 	 */
2693 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2694 
2695 	/* Add all NAPI objects */
2696 	bnx2x_add_all_napi(bp);
2697 	DP(NETIF_MSG_IFUP, "napi added\n");
2698 	bnx2x_napi_enable(bp);
2699 
2700 	if (IS_PF(bp)) {
2701 		/* set pf load just before approaching the MCP */
2702 		bnx2x_set_pf_load(bp);
2703 
2704 		/* if mcp exists send load request and analyze response */
2705 		if (!BP_NOMCP(bp)) {
2706 			/* attempt to load pf */
2707 			rc = bnx2x_nic_load_request(bp, &load_code);
2708 			if (rc)
2709 				LOAD_ERROR_EXIT(bp, load_error1);
2710 
2711 			/* what did mcp say? */
2712 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2713 			if (rc) {
2714 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2715 				LOAD_ERROR_EXIT(bp, load_error2);
2716 			}
2717 		} else {
2718 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2719 		}
2720 
2721 		/* mark pmf if applicable */
2722 		bnx2x_nic_load_pmf(bp, load_code);
2723 
2724 		/* Init Function state controlling object */
2725 		bnx2x__init_func_obj(bp);
2726 
2727 		/* Initialize HW */
2728 		rc = bnx2x_init_hw(bp, load_code);
2729 		if (rc) {
2730 			BNX2X_ERR("HW init failed, aborting\n");
2731 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2732 			LOAD_ERROR_EXIT(bp, load_error2);
2733 		}
2734 	}
2735 
2736 	bnx2x_pre_irq_nic_init(bp);
2737 
2738 	/* Connect to IRQs */
2739 	rc = bnx2x_setup_irqs(bp);
2740 	if (rc) {
2741 		BNX2X_ERR("setup irqs failed\n");
2742 		if (IS_PF(bp))
2743 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2744 		LOAD_ERROR_EXIT(bp, load_error2);
2745 	}
2746 
2747 	/* Init per-function objects */
2748 	if (IS_PF(bp)) {
2749 		/* Setup NIC internals and enable interrupts */
2750 		bnx2x_post_irq_nic_init(bp, load_code);
2751 
2752 		bnx2x_init_bp_objs(bp);
2753 		bnx2x_iov_nic_init(bp);
2754 
2755 		/* Set AFEX default VLAN tag to an invalid value */
2756 		bp->afex_def_vlan_tag = -1;
2757 		bnx2x_nic_load_afex_dcc(bp, load_code);
2758 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2759 		rc = bnx2x_func_start(bp);
2760 		if (rc) {
2761 			BNX2X_ERR("Function start failed!\n");
2762 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2763 
2764 			LOAD_ERROR_EXIT(bp, load_error3);
2765 		}
2766 
2767 		/* Send LOAD_DONE command to MCP */
2768 		if (!BP_NOMCP(bp)) {
2769 			load_code = bnx2x_fw_command(bp,
2770 						     DRV_MSG_CODE_LOAD_DONE, 0);
2771 			if (!load_code) {
2772 				BNX2X_ERR("MCP response failure, aborting\n");
2773 				rc = -EBUSY;
2774 				LOAD_ERROR_EXIT(bp, load_error3);
2775 			}
2776 		}
2777 
2778 		/* initialize FW coalescing state machines in RAM */
2779 		bnx2x_update_coalesce(bp);
2780 	}
2781 
2782 	/* setup the leading queue */
2783 	rc = bnx2x_setup_leading(bp);
2784 	if (rc) {
2785 		BNX2X_ERR("Setup leading failed!\n");
2786 		LOAD_ERROR_EXIT(bp, load_error3);
2787 	}
2788 
2789 	/* set up the rest of the queues */
2790 	for_each_nondefault_eth_queue(bp, i) {
2791 		if (IS_PF(bp))
2792 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2793 		else /* VF */
2794 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2795 		if (rc) {
2796 			BNX2X_ERR("Queue %d setup failed\n", i);
2797 			LOAD_ERROR_EXIT(bp, load_error3);
2798 		}
2799 	}
2800 
2801 	/* setup rss */
2802 	rc = bnx2x_init_rss(bp);
2803 	if (rc) {
2804 		BNX2X_ERR("PF RSS init failed\n");
2805 		LOAD_ERROR_EXIT(bp, load_error3);
2806 	}
2807 
2808 	/* Now when Clients are configured we are ready to work */
2809 	bp->state = BNX2X_STATE_OPEN;
2810 
2811 	/* Configure a ucast MAC */
2812 	if (IS_PF(bp))
2813 		rc = bnx2x_set_eth_mac(bp, true);
2814 	else /* vf */
2815 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2816 					   true);
2817 	if (rc) {
2818 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2819 		LOAD_ERROR_EXIT(bp, load_error3);
2820 	}
2821 
2822 	if (IS_PF(bp) && bp->pending_max) {
2823 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2824 		bp->pending_max = 0;
2825 	}
2826 
2827 	bp->force_link_down = false;
2828 	if (bp->port.pmf) {
2829 		rc = bnx2x_initial_phy_init(bp, load_mode);
2830 		if (rc)
2831 			LOAD_ERROR_EXIT(bp, load_error3);
2832 	}
2833 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2834 
2835 	/* Start fast path */
2836 
2837 	/* Re-configure vlan filters */
2838 	rc = bnx2x_vlan_reconfigure_vid(bp);
2839 	if (rc)
2840 		LOAD_ERROR_EXIT(bp, load_error3);
2841 
2842 	/* Initialize Rx filter. */
2843 	bnx2x_set_rx_mode_inner(bp);
2844 
2845 	if (bp->flags & PTP_SUPPORTED) {
2846 		bnx2x_register_phc(bp);
2847 		bnx2x_init_ptp(bp);
2848 		bnx2x_configure_ptp_filters(bp);
2849 	}
2850 	/* Start Tx */
2851 	switch (load_mode) {
2852 	case LOAD_NORMAL:
2853 		/* Tx queue should be only re-enabled */
2854 		netif_tx_wake_all_queues(bp->dev);
2855 		break;
2856 
2857 	case LOAD_OPEN:
2858 		netif_tx_start_all_queues(bp->dev);
2859 		smp_mb__after_atomic();
2860 		break;
2861 
2862 	case LOAD_DIAG:
2863 	case LOAD_LOOPBACK_EXT:
2864 		bp->state = BNX2X_STATE_DIAG;
2865 		break;
2866 
2867 	default:
2868 		break;
2869 	}
2870 
2871 	if (bp->port.pmf)
2872 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2873 	else
2874 		bnx2x__link_status_update(bp);
2875 
2876 	/* start the timer */
2877 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2878 
2879 	if (CNIC_ENABLED(bp))
2880 		bnx2x_load_cnic(bp);
2881 
2882 	if (IS_PF(bp))
2883 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2884 
2885 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2886 		/* mark driver is loaded in shmem2 */
2887 		u32 val;
2888 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2889 		val &= ~DRV_FLAGS_MTU_MASK;
2890 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2891 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2892 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2893 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2894 	}
2895 
2896 	/* Wait for all pending SP commands to complete */
2897 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2898 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2899 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2900 		return -EBUSY;
2901 	}
2902 
2903 	/* Update driver data for On-Chip MFW dump. */
2904 	if (IS_PF(bp))
2905 		bnx2x_update_mfw_dump(bp);
2906 
2907 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2908 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2909 		bnx2x_dcbx_init(bp, false);
2910 
2911 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2912 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2913 
2914 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2915 
2916 	return 0;
2917 
2918 #ifndef BNX2X_STOP_ON_ERROR
2919 load_error3:
2920 	if (IS_PF(bp)) {
2921 		bnx2x_int_disable_sync(bp, 1);
2922 
2923 		/* Clean queueable objects */
2924 		bnx2x_squeeze_objects(bp);
2925 	}
2926 
2927 	/* Free SKBs, SGEs, TPA pool and driver internals */
2928 	bnx2x_free_skbs(bp);
2929 	for_each_rx_queue(bp, i)
2930 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2931 
2932 	/* Release IRQs */
2933 	bnx2x_free_irq(bp);
2934 load_error2:
2935 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2936 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2937 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2938 	}
2939 
2940 	bp->port.pmf = 0;
2941 load_error1:
2942 	bnx2x_napi_disable(bp);
2943 	bnx2x_del_all_napi(bp);
2944 
2945 	/* clear pf_load status, as it was already set */
2946 	if (IS_PF(bp))
2947 		bnx2x_clear_pf_load(bp);
2948 load_error0:
2949 	bnx2x_free_fw_stats_mem(bp);
2950 	bnx2x_free_fp_mem(bp);
2951 	bnx2x_free_mem(bp);
2952 
2953 	return rc;
2954 #endif /* ! BNX2X_STOP_ON_ERROR */
2955 }
2956 
2957 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2958 {
2959 	u8 rc = 0, cos, i;
2960 
2961 	/* Wait until tx fastpath tasks complete */
2962 	for_each_tx_queue(bp, i) {
2963 		struct bnx2x_fastpath *fp = &bp->fp[i];
2964 
2965 		for_each_cos_in_tx_queue(fp, cos)
2966 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2967 		if (rc)
2968 			return rc;
2969 	}
2970 	return 0;
2971 }
2972 
2973 /* must be called with rtnl_lock */
2974 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2975 {
2976 	int i;
2977 	bool global = false;
2978 
2979 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2980 
2981 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2982 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2983 
2984 	/* mark driver is unloaded in shmem2 */
2985 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2986 		u32 val;
2987 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2988 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2989 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2990 	}
2991 
2992 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2993 	    (bp->state == BNX2X_STATE_CLOSED ||
2994 	     bp->state == BNX2X_STATE_ERROR)) {
2995 		/* We can get here if the driver has been unloaded
2996 		 * during parity error recovery and is either waiting for a
2997 		 * leader to complete or for other functions to unload and
2998 		 * then ifdown has been issued. In this case we want to
2999 		 * unload and let other functions to complete a recovery
3000 		 * process.
3001 		 */
3002 		bp->recovery_state = BNX2X_RECOVERY_DONE;
3003 		bp->is_leader = 0;
3004 		bnx2x_release_leader_lock(bp);
3005 		smp_mb();
3006 
3007 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3008 		BNX2X_ERR("Can't unload in closed or error state\n");
3009 		return -EINVAL;
3010 	}
3011 
3012 	/* Nothing to do during unload if previous bnx2x_nic_load()
3013 	 * have not completed successfully - all resources are released.
3014 	 *
3015 	 * we can get here only after unsuccessful ndo_* callback, during which
3016 	 * dev->IFF_UP flag is still on.
3017 	 */
3018 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3019 		return 0;
3020 
3021 	/* It's important to set the bp->state to the value different from
3022 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3023 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3024 	 */
3025 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3026 	smp_mb();
3027 
3028 	/* indicate to VFs that the PF is going down */
3029 	bnx2x_iov_channel_down(bp);
3030 
3031 	if (CNIC_LOADED(bp))
3032 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3033 
3034 	/* Stop Tx */
3035 	bnx2x_tx_disable(bp);
3036 	netdev_reset_tc(bp->dev);
3037 
3038 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3039 
3040 	del_timer_sync(&bp->timer);
3041 
3042 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
3043 		/* Set ALWAYS_ALIVE bit in shmem */
3044 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3045 		bnx2x_drv_pulse(bp);
3046 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3047 		bnx2x_save_statistics(bp);
3048 	}
3049 
3050 	/* wait till consumers catch up with producers in all queues.
3051 	 * If we're recovering, FW can't write to host so no reason
3052 	 * to wait for the queues to complete all Tx.
3053 	 */
3054 	if (unload_mode != UNLOAD_RECOVERY)
3055 		bnx2x_drain_tx_queues(bp);
3056 
3057 	/* if VF indicate to PF this function is going down (PF will delete sp
3058 	 * elements and clear initializations
3059 	 */
3060 	if (IS_VF(bp))
3061 		bnx2x_vfpf_close_vf(bp);
3062 	else if (unload_mode != UNLOAD_RECOVERY)
3063 		/* if this is a normal/close unload need to clean up chip*/
3064 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3065 	else {
3066 		/* Send the UNLOAD_REQUEST to the MCP */
3067 		bnx2x_send_unload_req(bp, unload_mode);
3068 
3069 		/* Prevent transactions to host from the functions on the
3070 		 * engine that doesn't reset global blocks in case of global
3071 		 * attention once global blocks are reset and gates are opened
3072 		 * (the engine which leader will perform the recovery
3073 		 * last).
3074 		 */
3075 		if (!CHIP_IS_E1x(bp))
3076 			bnx2x_pf_disable(bp);
3077 
3078 		/* Disable HW interrupts, NAPI */
3079 		bnx2x_netif_stop(bp, 1);
3080 		/* Delete all NAPI objects */
3081 		bnx2x_del_all_napi(bp);
3082 		if (CNIC_LOADED(bp))
3083 			bnx2x_del_all_napi_cnic(bp);
3084 		/* Release IRQs */
3085 		bnx2x_free_irq(bp);
3086 
3087 		/* Report UNLOAD_DONE to MCP */
3088 		bnx2x_send_unload_done(bp, false);
3089 	}
3090 
3091 	/*
3092 	 * At this stage no more interrupts will arrive so we may safely clean
3093 	 * the queueable objects here in case they failed to get cleaned so far.
3094 	 */
3095 	if (IS_PF(bp))
3096 		bnx2x_squeeze_objects(bp);
3097 
3098 	/* There should be no more pending SP commands at this stage */
3099 	bp->sp_state = 0;
3100 
3101 	bp->port.pmf = 0;
3102 
3103 	/* clear pending work in rtnl task */
3104 	bp->sp_rtnl_state = 0;
3105 	smp_mb();
3106 
3107 	/* Free SKBs, SGEs, TPA pool and driver internals */
3108 	bnx2x_free_skbs(bp);
3109 	if (CNIC_LOADED(bp))
3110 		bnx2x_free_skbs_cnic(bp);
3111 	for_each_rx_queue(bp, i)
3112 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3113 
3114 	bnx2x_free_fp_mem(bp);
3115 	if (CNIC_LOADED(bp))
3116 		bnx2x_free_fp_mem_cnic(bp);
3117 
3118 	if (IS_PF(bp)) {
3119 		if (CNIC_LOADED(bp))
3120 			bnx2x_free_mem_cnic(bp);
3121 	}
3122 	bnx2x_free_mem(bp);
3123 
3124 	bp->state = BNX2X_STATE_CLOSED;
3125 	bp->cnic_loaded = false;
3126 
3127 	/* Clear driver version indication in shmem */
3128 	if (IS_PF(bp) && !BP_NOMCP(bp))
3129 		bnx2x_update_mng_version(bp);
3130 
3131 	/* Check if there are pending parity attentions. If there are - set
3132 	 * RECOVERY_IN_PROGRESS.
3133 	 */
3134 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3135 		bnx2x_set_reset_in_progress(bp);
3136 
3137 		/* Set RESET_IS_GLOBAL if needed */
3138 		if (global)
3139 			bnx2x_set_reset_global(bp);
3140 	}
3141 
3142 	/* The last driver must disable a "close the gate" if there is no
3143 	 * parity attention or "process kill" pending.
3144 	 */
3145 	if (IS_PF(bp) &&
3146 	    !bnx2x_clear_pf_load(bp) &&
3147 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3148 		bnx2x_disable_close_the_gate(bp);
3149 
3150 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3151 
3152 	return 0;
3153 }
3154 
3155 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3156 {
3157 	u16 pmcsr;
3158 
3159 	/* If there is no power capability, silently succeed */
3160 	if (!bp->pdev->pm_cap) {
3161 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3162 		return 0;
3163 	}
3164 
3165 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3166 
3167 	switch (state) {
3168 	case PCI_D0:
3169 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3170 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3171 				       PCI_PM_CTRL_PME_STATUS));
3172 
3173 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3174 			/* delay required during transition out of D3hot */
3175 			msleep(20);
3176 		break;
3177 
3178 	case PCI_D3hot:
3179 		/* If there are other clients above don't
3180 		   shut down the power */
3181 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3182 			return 0;
3183 		/* Don't shut down the power for emulation and FPGA */
3184 		if (CHIP_REV_IS_SLOW(bp))
3185 			return 0;
3186 
3187 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3188 		pmcsr |= 3;
3189 
3190 		if (bp->wol)
3191 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3192 
3193 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3194 				      pmcsr);
3195 
3196 		/* No more memory access after this point until
3197 		* device is brought back to D0.
3198 		*/
3199 		break;
3200 
3201 	default:
3202 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3203 		return -EINVAL;
3204 	}
3205 	return 0;
3206 }
3207 
3208 /*
3209  * net_device service functions
3210  */
3211 static int bnx2x_poll(struct napi_struct *napi, int budget)
3212 {
3213 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3214 						 napi);
3215 	struct bnx2x *bp = fp->bp;
3216 	int rx_work_done;
3217 	u8 cos;
3218 
3219 #ifdef BNX2X_STOP_ON_ERROR
3220 	if (unlikely(bp->panic)) {
3221 		napi_complete(napi);
3222 		return 0;
3223 	}
3224 #endif
3225 	for_each_cos_in_tx_queue(fp, cos)
3226 		if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3227 			bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3228 
3229 	rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3230 
3231 	if (rx_work_done < budget) {
3232 		/* No need to update SB for FCoE L2 ring as long as
3233 		 * it's connected to the default SB and the SB
3234 		 * has been updated when NAPI was scheduled.
3235 		 */
3236 		if (IS_FCOE_FP(fp)) {
3237 			napi_complete_done(napi, rx_work_done);
3238 		} else {
3239 			bnx2x_update_fpsb_idx(fp);
3240 			/* bnx2x_has_rx_work() reads the status block,
3241 			 * thus we need to ensure that status block indices
3242 			 * have been actually read (bnx2x_update_fpsb_idx)
3243 			 * prior to this check (bnx2x_has_rx_work) so that
3244 			 * we won't write the "newer" value of the status block
3245 			 * to IGU (if there was a DMA right after
3246 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3247 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3248 			 * to right before bnx2x_ack_sb). In this case there
3249 			 * will never be another interrupt until there is
3250 			 * another update of the status block, while there
3251 			 * is still unhandled work.
3252 			 */
3253 			rmb();
3254 
3255 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3256 				if (napi_complete_done(napi, rx_work_done)) {
3257 					/* Re-enable interrupts */
3258 					DP(NETIF_MSG_RX_STATUS,
3259 					   "Update index to %d\n", fp->fp_hc_idx);
3260 					bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3261 						     le16_to_cpu(fp->fp_hc_idx),
3262 						     IGU_INT_ENABLE, 1);
3263 				}
3264 			} else {
3265 				rx_work_done = budget;
3266 			}
3267 		}
3268 	}
3269 
3270 	return rx_work_done;
3271 }
3272 
3273 /* we split the first BD into headers and data BDs
3274  * to ease the pain of our fellow microcode engineers
3275  * we use one mapping for both BDs
3276  */
3277 static u16 bnx2x_tx_split(struct bnx2x *bp,
3278 			  struct bnx2x_fp_txdata *txdata,
3279 			  struct sw_tx_bd *tx_buf,
3280 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3281 			  u16 bd_prod)
3282 {
3283 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3284 	struct eth_tx_bd *d_tx_bd;
3285 	dma_addr_t mapping;
3286 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3287 
3288 	/* first fix first BD */
3289 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3290 
3291 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3292 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3293 
3294 	/* now get a new data BD
3295 	 * (after the pbd) and fill it */
3296 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3297 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3298 
3299 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3300 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3301 
3302 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3303 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3304 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3305 
3306 	/* this marks the BD as one that has no individual mapping */
3307 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3308 
3309 	DP(NETIF_MSG_TX_QUEUED,
3310 	   "TSO split data size is %d (%x:%x)\n",
3311 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3312 
3313 	/* update tx_bd */
3314 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3315 
3316 	return bd_prod;
3317 }
3318 
3319 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3320 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3321 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3322 {
3323 	__sum16 tsum = (__force __sum16) csum;
3324 
3325 	if (fix > 0)
3326 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3327 				  csum_partial(t_header - fix, fix, 0)));
3328 
3329 	else if (fix < 0)
3330 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3331 				  csum_partial(t_header, -fix, 0)));
3332 
3333 	return bswab16(tsum);
3334 }
3335 
3336 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3337 {
3338 	u32 rc;
3339 	__u8 prot = 0;
3340 	__be16 protocol;
3341 
3342 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3343 		return XMIT_PLAIN;
3344 
3345 	protocol = vlan_get_protocol(skb);
3346 	if (protocol == htons(ETH_P_IPV6)) {
3347 		rc = XMIT_CSUM_V6;
3348 		prot = ipv6_hdr(skb)->nexthdr;
3349 	} else {
3350 		rc = XMIT_CSUM_V4;
3351 		prot = ip_hdr(skb)->protocol;
3352 	}
3353 
3354 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3355 		if (inner_ip_hdr(skb)->version == 6) {
3356 			rc |= XMIT_CSUM_ENC_V6;
3357 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3358 				rc |= XMIT_CSUM_TCP;
3359 		} else {
3360 			rc |= XMIT_CSUM_ENC_V4;
3361 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3362 				rc |= XMIT_CSUM_TCP;
3363 		}
3364 	}
3365 	if (prot == IPPROTO_TCP)
3366 		rc |= XMIT_CSUM_TCP;
3367 
3368 	if (skb_is_gso(skb)) {
3369 		if (skb_is_gso_v6(skb)) {
3370 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3371 			if (rc & XMIT_CSUM_ENC)
3372 				rc |= XMIT_GSO_ENC_V6;
3373 		} else {
3374 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3375 			if (rc & XMIT_CSUM_ENC)
3376 				rc |= XMIT_GSO_ENC_V4;
3377 		}
3378 	}
3379 
3380 	return rc;
3381 }
3382 
3383 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3384 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS         4
3385 
3386 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3387 #define BNX2X_NUM_TSO_WIN_SUB_BDS               3
3388 
3389 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3390 /* check if packet requires linearization (packet is too fragmented)
3391    no need to check fragmentation if page size > 8K (there will be no
3392    violation to FW restrictions) */
3393 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3394 			     u32 xmit_type)
3395 {
3396 	int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3397 	int to_copy = 0, hlen = 0;
3398 
3399 	if (xmit_type & XMIT_GSO_ENC)
3400 		num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3401 
3402 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3403 		if (xmit_type & XMIT_GSO) {
3404 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3405 			int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3406 			/* Number of windows to check */
3407 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3408 			int wnd_idx = 0;
3409 			int frag_idx = 0;
3410 			u32 wnd_sum = 0;
3411 
3412 			/* Headers length */
3413 			if (xmit_type & XMIT_GSO_ENC)
3414 				hlen = (int)(skb_inner_transport_header(skb) -
3415 					     skb->data) +
3416 					     inner_tcp_hdrlen(skb);
3417 			else
3418 				hlen = (int)(skb_transport_header(skb) -
3419 					     skb->data) + tcp_hdrlen(skb);
3420 
3421 			/* Amount of data (w/o headers) on linear part of SKB*/
3422 			first_bd_sz = skb_headlen(skb) - hlen;
3423 
3424 			wnd_sum  = first_bd_sz;
3425 
3426 			/* Calculate the first sum - it's special */
3427 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3428 				wnd_sum +=
3429 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3430 
3431 			/* If there was data on linear skb data - check it */
3432 			if (first_bd_sz > 0) {
3433 				if (unlikely(wnd_sum < lso_mss)) {
3434 					to_copy = 1;
3435 					goto exit_lbl;
3436 				}
3437 
3438 				wnd_sum -= first_bd_sz;
3439 			}
3440 
3441 			/* Others are easier: run through the frag list and
3442 			   check all windows */
3443 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3444 				wnd_sum +=
3445 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3446 
3447 				if (unlikely(wnd_sum < lso_mss)) {
3448 					to_copy = 1;
3449 					break;
3450 				}
3451 				wnd_sum -=
3452 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3453 			}
3454 		} else {
3455 			/* in non-LSO too fragmented packet should always
3456 			   be linearized */
3457 			to_copy = 1;
3458 		}
3459 	}
3460 
3461 exit_lbl:
3462 	if (unlikely(to_copy))
3463 		DP(NETIF_MSG_TX_QUEUED,
3464 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3465 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3466 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3467 
3468 	return to_copy;
3469 }
3470 #endif
3471 
3472 /**
3473  * bnx2x_set_pbd_gso - update PBD in GSO case.
3474  *
3475  * @skb:	packet skb
3476  * @pbd:	parse BD
3477  * @xmit_type:	xmit flags
3478  */
3479 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3480 			      struct eth_tx_parse_bd_e1x *pbd,
3481 			      u32 xmit_type)
3482 {
3483 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3484 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3485 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3486 
3487 	if (xmit_type & XMIT_GSO_V4) {
3488 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3489 		pbd->tcp_pseudo_csum =
3490 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3491 						   ip_hdr(skb)->daddr,
3492 						   0, IPPROTO_TCP, 0));
3493 	} else {
3494 		pbd->tcp_pseudo_csum =
3495 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3496 						 &ipv6_hdr(skb)->daddr,
3497 						 0, IPPROTO_TCP, 0));
3498 	}
3499 
3500 	pbd->global_data |=
3501 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3502 }
3503 
3504 /**
3505  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3506  *
3507  * @bp:			driver handle
3508  * @skb:		packet skb
3509  * @parsing_data:	data to be updated
3510  * @xmit_type:		xmit flags
3511  *
3512  * 57712/578xx related, when skb has encapsulation
3513  */
3514 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3515 				 u32 *parsing_data, u32 xmit_type)
3516 {
3517 	*parsing_data |=
3518 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3519 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3520 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3521 
3522 	if (xmit_type & XMIT_CSUM_TCP) {
3523 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3524 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3525 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3526 
3527 		return skb_inner_transport_header(skb) +
3528 			inner_tcp_hdrlen(skb) - skb->data;
3529 	}
3530 
3531 	/* We support checksum offload for TCP and UDP only.
3532 	 * No need to pass the UDP header length - it's a constant.
3533 	 */
3534 	return skb_inner_transport_header(skb) +
3535 		sizeof(struct udphdr) - skb->data;
3536 }
3537 
3538 /**
3539  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3540  *
3541  * @bp:			driver handle
3542  * @skb:		packet skb
3543  * @parsing_data:	data to be updated
3544  * @xmit_type:		xmit flags
3545  *
3546  * 57712/578xx related
3547  */
3548 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3549 				u32 *parsing_data, u32 xmit_type)
3550 {
3551 	*parsing_data |=
3552 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3553 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3554 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3555 
3556 	if (xmit_type & XMIT_CSUM_TCP) {
3557 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3558 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3559 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3560 
3561 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3562 	}
3563 	/* We support checksum offload for TCP and UDP only.
3564 	 * No need to pass the UDP header length - it's a constant.
3565 	 */
3566 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3567 }
3568 
3569 /* set FW indication according to inner or outer protocols if tunneled */
3570 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3571 			       struct eth_tx_start_bd *tx_start_bd,
3572 			       u32 xmit_type)
3573 {
3574 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3575 
3576 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3577 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3578 
3579 	if (!(xmit_type & XMIT_CSUM_TCP))
3580 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3581 }
3582 
3583 /**
3584  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3585  *
3586  * @bp:		driver handle
3587  * @skb:	packet skb
3588  * @pbd:	parse BD to be updated
3589  * @xmit_type:	xmit flags
3590  */
3591 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3592 			     struct eth_tx_parse_bd_e1x *pbd,
3593 			     u32 xmit_type)
3594 {
3595 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3596 
3597 	/* for now NS flag is not used in Linux */
3598 	pbd->global_data =
3599 		cpu_to_le16(hlen |
3600 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3601 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3602 
3603 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3604 			skb_network_header(skb)) >> 1;
3605 
3606 	hlen += pbd->ip_hlen_w;
3607 
3608 	/* We support checksum offload for TCP and UDP only */
3609 	if (xmit_type & XMIT_CSUM_TCP)
3610 		hlen += tcp_hdrlen(skb) / 2;
3611 	else
3612 		hlen += sizeof(struct udphdr) / 2;
3613 
3614 	pbd->total_hlen_w = cpu_to_le16(hlen);
3615 	hlen = hlen*2;
3616 
3617 	if (xmit_type & XMIT_CSUM_TCP) {
3618 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3619 
3620 	} else {
3621 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3622 
3623 		DP(NETIF_MSG_TX_QUEUED,
3624 		   "hlen %d  fix %d  csum before fix %x\n",
3625 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3626 
3627 		/* HW bug: fixup the CSUM */
3628 		pbd->tcp_pseudo_csum =
3629 			bnx2x_csum_fix(skb_transport_header(skb),
3630 				       SKB_CS(skb), fix);
3631 
3632 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3633 		   pbd->tcp_pseudo_csum);
3634 	}
3635 
3636 	return hlen;
3637 }
3638 
3639 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3640 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3641 				      struct eth_tx_parse_2nd_bd *pbd2,
3642 				      u16 *global_data,
3643 				      u32 xmit_type)
3644 {
3645 	u16 hlen_w = 0;
3646 	u8 outerip_off, outerip_len = 0;
3647 
3648 	/* from outer IP to transport */
3649 	hlen_w = (skb_inner_transport_header(skb) -
3650 		  skb_network_header(skb)) >> 1;
3651 
3652 	/* transport len */
3653 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3654 
3655 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3656 
3657 	/* outer IP header info */
3658 	if (xmit_type & XMIT_CSUM_V4) {
3659 		struct iphdr *iph = ip_hdr(skb);
3660 		u32 csum = (__force u32)(~iph->check) -
3661 			   (__force u32)iph->tot_len -
3662 			   (__force u32)iph->frag_off;
3663 
3664 		outerip_len = iph->ihl << 1;
3665 
3666 		pbd2->fw_ip_csum_wo_len_flags_frag =
3667 			bswab16(csum_fold((__force __wsum)csum));
3668 	} else {
3669 		pbd2->fw_ip_hdr_to_payload_w =
3670 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3671 		pbd_e2->data.tunnel_data.flags |=
3672 			ETH_TUNNEL_DATA_IPV6_OUTER;
3673 	}
3674 
3675 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3676 
3677 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3678 
3679 	/* inner IP header info */
3680 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3681 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3682 
3683 		pbd_e2->data.tunnel_data.pseudo_csum =
3684 			bswab16(~csum_tcpudp_magic(
3685 					inner_ip_hdr(skb)->saddr,
3686 					inner_ip_hdr(skb)->daddr,
3687 					0, IPPROTO_TCP, 0));
3688 	} else {
3689 		pbd_e2->data.tunnel_data.pseudo_csum =
3690 			bswab16(~csum_ipv6_magic(
3691 					&inner_ipv6_hdr(skb)->saddr,
3692 					&inner_ipv6_hdr(skb)->daddr,
3693 					0, IPPROTO_TCP, 0));
3694 	}
3695 
3696 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3697 
3698 	*global_data |=
3699 		outerip_off |
3700 		(outerip_len <<
3701 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3702 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3703 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3704 
3705 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3706 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3707 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3708 	}
3709 }
3710 
3711 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3712 					 u32 xmit_type)
3713 {
3714 	struct ipv6hdr *ipv6;
3715 
3716 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3717 		return;
3718 
3719 	if (xmit_type & XMIT_GSO_ENC_V6)
3720 		ipv6 = inner_ipv6_hdr(skb);
3721 	else /* XMIT_GSO_V6 */
3722 		ipv6 = ipv6_hdr(skb);
3723 
3724 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3725 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3726 }
3727 
3728 /* called with netif_tx_lock
3729  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3730  * netif_wake_queue()
3731  */
3732 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3733 {
3734 	struct bnx2x *bp = netdev_priv(dev);
3735 
3736 	struct netdev_queue *txq;
3737 	struct bnx2x_fp_txdata *txdata;
3738 	struct sw_tx_bd *tx_buf;
3739 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3740 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3741 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3742 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3743 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3744 	u32 pbd_e2_parsing_data = 0;
3745 	u16 pkt_prod, bd_prod;
3746 	int nbd, txq_index;
3747 	dma_addr_t mapping;
3748 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3749 	int i;
3750 	u8 hlen = 0;
3751 	__le16 pkt_size = 0;
3752 	struct ethhdr *eth;
3753 	u8 mac_type = UNICAST_ADDRESS;
3754 
3755 #ifdef BNX2X_STOP_ON_ERROR
3756 	if (unlikely(bp->panic))
3757 		return NETDEV_TX_BUSY;
3758 #endif
3759 
3760 	txq_index = skb_get_queue_mapping(skb);
3761 	txq = netdev_get_tx_queue(dev, txq_index);
3762 
3763 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3764 
3765 	txdata = &bp->bnx2x_txq[txq_index];
3766 
3767 	/* enable this debug print to view the transmission queue being used
3768 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3769 	   txq_index, fp_index, txdata_index); */
3770 
3771 	/* enable this debug print to view the transmission details
3772 	DP(NETIF_MSG_TX_QUEUED,
3773 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3774 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3775 
3776 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3777 			skb_shinfo(skb)->nr_frags +
3778 			BDS_PER_TX_PKT +
3779 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3780 		/* Handle special storage cases separately */
3781 		if (txdata->tx_ring_size == 0) {
3782 			struct bnx2x_eth_q_stats *q_stats =
3783 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3784 			q_stats->driver_filtered_tx_pkt++;
3785 			dev_kfree_skb(skb);
3786 			return NETDEV_TX_OK;
3787 		}
3788 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3789 		netif_tx_stop_queue(txq);
3790 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3791 
3792 		return NETDEV_TX_BUSY;
3793 	}
3794 
3795 	DP(NETIF_MSG_TX_QUEUED,
3796 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3797 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3798 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3799 	   skb->len);
3800 
3801 	eth = (struct ethhdr *)skb->data;
3802 
3803 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3804 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3805 		if (is_broadcast_ether_addr(eth->h_dest))
3806 			mac_type = BROADCAST_ADDRESS;
3807 		else
3808 			mac_type = MULTICAST_ADDRESS;
3809 	}
3810 
3811 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3812 	/* First, check if we need to linearize the skb (due to FW
3813 	   restrictions). No need to check fragmentation if page size > 8K
3814 	   (there will be no violation to FW restrictions) */
3815 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3816 		/* Statistics of linearization */
3817 		bp->lin_cnt++;
3818 		if (skb_linearize(skb) != 0) {
3819 			DP(NETIF_MSG_TX_QUEUED,
3820 			   "SKB linearization failed - silently dropping this SKB\n");
3821 			dev_kfree_skb_any(skb);
3822 			return NETDEV_TX_OK;
3823 		}
3824 	}
3825 #endif
3826 	/* Map skb linear data for DMA */
3827 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3828 				 skb_headlen(skb), DMA_TO_DEVICE);
3829 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3830 		DP(NETIF_MSG_TX_QUEUED,
3831 		   "SKB mapping failed - silently dropping this SKB\n");
3832 		dev_kfree_skb_any(skb);
3833 		return NETDEV_TX_OK;
3834 	}
3835 	/*
3836 	Please read carefully. First we use one BD which we mark as start,
3837 	then we have a parsing info BD (used for TSO or xsum),
3838 	and only then we have the rest of the TSO BDs.
3839 	(don't forget to mark the last one as last,
3840 	and to unmap only AFTER you write to the BD ...)
3841 	And above all, all pdb sizes are in words - NOT DWORDS!
3842 	*/
3843 
3844 	/* get current pkt produced now - advance it just before sending packet
3845 	 * since mapping of pages may fail and cause packet to be dropped
3846 	 */
3847 	pkt_prod = txdata->tx_pkt_prod;
3848 	bd_prod = TX_BD(txdata->tx_bd_prod);
3849 
3850 	/* get a tx_buf and first BD
3851 	 * tx_start_bd may be changed during SPLIT,
3852 	 * but first_bd will always stay first
3853 	 */
3854 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3855 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3856 	first_bd = tx_start_bd;
3857 
3858 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3859 
3860 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3861 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3862 			bp->eth_stats.ptp_skip_tx_ts++;
3863 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3864 		} else if (bp->ptp_tx_skb) {
3865 			bp->eth_stats.ptp_skip_tx_ts++;
3866 			netdev_err_once(bp->dev,
3867 					"Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3868 		} else {
3869 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3870 			/* schedule check for Tx timestamp */
3871 			bp->ptp_tx_skb = skb_get(skb);
3872 			bp->ptp_tx_start = jiffies;
3873 			schedule_work(&bp->ptp_task);
3874 		}
3875 	}
3876 
3877 	/* header nbd: indirectly zero other flags! */
3878 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3879 
3880 	/* remember the first BD of the packet */
3881 	tx_buf->first_bd = txdata->tx_bd_prod;
3882 	tx_buf->skb = skb;
3883 	tx_buf->flags = 0;
3884 
3885 	DP(NETIF_MSG_TX_QUEUED,
3886 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3887 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3888 
3889 	if (skb_vlan_tag_present(skb)) {
3890 		tx_start_bd->vlan_or_ethertype =
3891 		    cpu_to_le16(skb_vlan_tag_get(skb));
3892 		tx_start_bd->bd_flags.as_bitfield |=
3893 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3894 	} else {
3895 		/* when transmitting in a vf, start bd must hold the ethertype
3896 		 * for fw to enforce it
3897 		 */
3898 		u16 vlan_tci = 0;
3899 #ifndef BNX2X_STOP_ON_ERROR
3900 		if (IS_VF(bp)) {
3901 #endif
3902 			/* Still need to consider inband vlan for enforced */
3903 			if (__vlan_get_tag(skb, &vlan_tci)) {
3904 				tx_start_bd->vlan_or_ethertype =
3905 					cpu_to_le16(ntohs(eth->h_proto));
3906 			} else {
3907 				tx_start_bd->bd_flags.as_bitfield |=
3908 					(X_ETH_INBAND_VLAN <<
3909 					 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3910 				tx_start_bd->vlan_or_ethertype =
3911 					cpu_to_le16(vlan_tci);
3912 			}
3913 #ifndef BNX2X_STOP_ON_ERROR
3914 		} else {
3915 			/* used by FW for packet accounting */
3916 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3917 		}
3918 #endif
3919 	}
3920 
3921 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3922 
3923 	/* turn on parsing and get a BD */
3924 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3925 
3926 	if (xmit_type & XMIT_CSUM)
3927 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3928 
3929 	if (!CHIP_IS_E1x(bp)) {
3930 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3931 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3932 
3933 		if (xmit_type & XMIT_CSUM_ENC) {
3934 			u16 global_data = 0;
3935 
3936 			/* Set PBD in enc checksum offload case */
3937 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3938 						      &pbd_e2_parsing_data,
3939 						      xmit_type);
3940 
3941 			/* turn on 2nd parsing and get a BD */
3942 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3943 
3944 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3945 
3946 			memset(pbd2, 0, sizeof(*pbd2));
3947 
3948 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3949 				(skb_inner_network_header(skb) -
3950 				 skb->data) >> 1;
3951 
3952 			if (xmit_type & XMIT_GSO_ENC)
3953 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3954 							  &global_data,
3955 							  xmit_type);
3956 
3957 			pbd2->global_data = cpu_to_le16(global_data);
3958 
3959 			/* add addition parse BD indication to start BD */
3960 			SET_FLAG(tx_start_bd->general_data,
3961 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3962 			/* set encapsulation flag in start BD */
3963 			SET_FLAG(tx_start_bd->general_data,
3964 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3965 
3966 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3967 
3968 			nbd++;
3969 		} else if (xmit_type & XMIT_CSUM) {
3970 			/* Set PBD in checksum offload case w/o encapsulation */
3971 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3972 						     &pbd_e2_parsing_data,
3973 						     xmit_type);
3974 		}
3975 
3976 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3977 		/* Add the macs to the parsing BD if this is a vf or if
3978 		 * Tx Switching is enabled.
3979 		 */
3980 		if (IS_VF(bp)) {
3981 			/* override GRE parameters in BD */
3982 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3983 					      &pbd_e2->data.mac_addr.src_mid,
3984 					      &pbd_e2->data.mac_addr.src_lo,
3985 					      eth->h_source);
3986 
3987 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3988 					      &pbd_e2->data.mac_addr.dst_mid,
3989 					      &pbd_e2->data.mac_addr.dst_lo,
3990 					      eth->h_dest);
3991 		} else {
3992 			if (bp->flags & TX_SWITCHING)
3993 				bnx2x_set_fw_mac_addr(
3994 						&pbd_e2->data.mac_addr.dst_hi,
3995 						&pbd_e2->data.mac_addr.dst_mid,
3996 						&pbd_e2->data.mac_addr.dst_lo,
3997 						eth->h_dest);
3998 #ifdef BNX2X_STOP_ON_ERROR
3999 			/* Enforce security is always set in Stop on Error -
4000 			 * source mac should be present in the parsing BD
4001 			 */
4002 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4003 					      &pbd_e2->data.mac_addr.src_mid,
4004 					      &pbd_e2->data.mac_addr.src_lo,
4005 					      eth->h_source);
4006 #endif
4007 		}
4008 
4009 		SET_FLAG(pbd_e2_parsing_data,
4010 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4011 	} else {
4012 		u16 global_data = 0;
4013 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4014 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4015 		/* Set PBD in checksum offload case */
4016 		if (xmit_type & XMIT_CSUM)
4017 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4018 
4019 		SET_FLAG(global_data,
4020 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4021 		pbd_e1x->global_data |= cpu_to_le16(global_data);
4022 	}
4023 
4024 	/* Setup the data pointer of the first BD of the packet */
4025 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4026 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4027 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4028 	pkt_size = tx_start_bd->nbytes;
4029 
4030 	DP(NETIF_MSG_TX_QUEUED,
4031 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4032 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4033 	   le16_to_cpu(tx_start_bd->nbytes),
4034 	   tx_start_bd->bd_flags.as_bitfield,
4035 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4036 
4037 	if (xmit_type & XMIT_GSO) {
4038 
4039 		DP(NETIF_MSG_TX_QUEUED,
4040 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4041 		   skb->len, hlen, skb_headlen(skb),
4042 		   skb_shinfo(skb)->gso_size);
4043 
4044 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4045 
4046 		if (unlikely(skb_headlen(skb) > hlen)) {
4047 			nbd++;
4048 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4049 						 &tx_start_bd, hlen,
4050 						 bd_prod);
4051 		}
4052 		if (!CHIP_IS_E1x(bp))
4053 			pbd_e2_parsing_data |=
4054 				(skb_shinfo(skb)->gso_size <<
4055 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4056 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4057 		else
4058 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4059 	}
4060 
4061 	/* Set the PBD's parsing_data field if not zero
4062 	 * (for the chips newer than 57711).
4063 	 */
4064 	if (pbd_e2_parsing_data)
4065 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4066 
4067 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4068 
4069 	/* Handle fragmented skb */
4070 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4071 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4072 
4073 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4074 					   skb_frag_size(frag), DMA_TO_DEVICE);
4075 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4076 			unsigned int pkts_compl = 0, bytes_compl = 0;
4077 
4078 			DP(NETIF_MSG_TX_QUEUED,
4079 			   "Unable to map page - dropping packet...\n");
4080 
4081 			/* we need unmap all buffers already mapped
4082 			 * for this SKB;
4083 			 * first_bd->nbd need to be properly updated
4084 			 * before call to bnx2x_free_tx_pkt
4085 			 */
4086 			first_bd->nbd = cpu_to_le16(nbd);
4087 			bnx2x_free_tx_pkt(bp, txdata,
4088 					  TX_BD(txdata->tx_pkt_prod),
4089 					  &pkts_compl, &bytes_compl);
4090 			return NETDEV_TX_OK;
4091 		}
4092 
4093 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4094 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4095 		if (total_pkt_bd == NULL)
4096 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4097 
4098 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4099 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4100 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4101 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4102 		nbd++;
4103 
4104 		DP(NETIF_MSG_TX_QUEUED,
4105 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4106 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4107 		   le16_to_cpu(tx_data_bd->nbytes));
4108 	}
4109 
4110 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4111 
4112 	/* update with actual num BDs */
4113 	first_bd->nbd = cpu_to_le16(nbd);
4114 
4115 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4116 
4117 	/* now send a tx doorbell, counting the next BD
4118 	 * if the packet contains or ends with it
4119 	 */
4120 	if (TX_BD_POFF(bd_prod) < nbd)
4121 		nbd++;
4122 
4123 	/* total_pkt_bytes should be set on the first data BD if
4124 	 * it's not an LSO packet and there is more than one
4125 	 * data BD. In this case pkt_size is limited by an MTU value.
4126 	 * However we prefer to set it for an LSO packet (while we don't
4127 	 * have to) in order to save some CPU cycles in a none-LSO
4128 	 * case, when we much more care about them.
4129 	 */
4130 	if (total_pkt_bd != NULL)
4131 		total_pkt_bd->total_pkt_bytes = pkt_size;
4132 
4133 	if (pbd_e1x)
4134 		DP(NETIF_MSG_TX_QUEUED,
4135 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4136 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4137 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4138 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4139 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4140 	if (pbd_e2)
4141 		DP(NETIF_MSG_TX_QUEUED,
4142 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4143 		   pbd_e2,
4144 		   pbd_e2->data.mac_addr.dst_hi,
4145 		   pbd_e2->data.mac_addr.dst_mid,
4146 		   pbd_e2->data.mac_addr.dst_lo,
4147 		   pbd_e2->data.mac_addr.src_hi,
4148 		   pbd_e2->data.mac_addr.src_mid,
4149 		   pbd_e2->data.mac_addr.src_lo,
4150 		   pbd_e2->parsing_data);
4151 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4152 
4153 	netdev_tx_sent_queue(txq, skb->len);
4154 
4155 	skb_tx_timestamp(skb);
4156 
4157 	txdata->tx_pkt_prod++;
4158 	/*
4159 	 * Make sure that the BD data is updated before updating the producer
4160 	 * since FW might read the BD right after the producer is updated.
4161 	 * This is only applicable for weak-ordered memory model archs such
4162 	 * as IA-64. The following barrier is also mandatory since FW will
4163 	 * assumes packets must have BDs.
4164 	 */
4165 	wmb();
4166 
4167 	txdata->tx_db.data.prod += nbd;
4168 	/* make sure descriptor update is observed by HW */
4169 	wmb();
4170 
4171 	DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4172 
4173 	txdata->tx_bd_prod += nbd;
4174 
4175 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4176 		netif_tx_stop_queue(txq);
4177 
4178 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4179 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4180 		 * fp->bd_tx_cons */
4181 		smp_mb();
4182 
4183 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4184 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4185 			netif_tx_wake_queue(txq);
4186 	}
4187 	txdata->tx_pkt++;
4188 
4189 	return NETDEV_TX_OK;
4190 }
4191 
4192 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4193 {
4194 	int mfw_vn = BP_FW_MB_IDX(bp);
4195 	u32 tmp;
4196 
4197 	/* If the shmem shouldn't affect configuration, reflect */
4198 	if (!IS_MF_BD(bp)) {
4199 		int i;
4200 
4201 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4202 			c2s_map[i] = i;
4203 		*c2s_default = 0;
4204 
4205 		return;
4206 	}
4207 
4208 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4209 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4210 	c2s_map[0] = tmp & 0xff;
4211 	c2s_map[1] = (tmp >> 8) & 0xff;
4212 	c2s_map[2] = (tmp >> 16) & 0xff;
4213 	c2s_map[3] = (tmp >> 24) & 0xff;
4214 
4215 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4216 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4217 	c2s_map[4] = tmp & 0xff;
4218 	c2s_map[5] = (tmp >> 8) & 0xff;
4219 	c2s_map[6] = (tmp >> 16) & 0xff;
4220 	c2s_map[7] = (tmp >> 24) & 0xff;
4221 
4222 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4223 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4224 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4225 }
4226 
4227 /**
4228  * bnx2x_setup_tc - routine to configure net_device for multi tc
4229  *
4230  * @netdev: net device to configure
4231  * @tc: number of traffic classes to enable
4232  *
4233  * callback connected to the ndo_setup_tc function pointer
4234  */
4235 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4236 {
4237 	struct bnx2x *bp = netdev_priv(dev);
4238 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4239 	int cos, prio, count, offset;
4240 
4241 	/* setup tc must be called under rtnl lock */
4242 	ASSERT_RTNL();
4243 
4244 	/* no traffic classes requested. Aborting */
4245 	if (!num_tc) {
4246 		netdev_reset_tc(dev);
4247 		return 0;
4248 	}
4249 
4250 	/* requested to support too many traffic classes */
4251 	if (num_tc > bp->max_cos) {
4252 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4253 			  num_tc, bp->max_cos);
4254 		return -EINVAL;
4255 	}
4256 
4257 	/* declare amount of supported traffic classes */
4258 	if (netdev_set_num_tc(dev, num_tc)) {
4259 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4260 		return -EINVAL;
4261 	}
4262 
4263 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4264 
4265 	/* configure priority to traffic class mapping */
4266 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4267 		int outer_prio = c2s_map[prio];
4268 
4269 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4270 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4271 		   "mapping priority %d to tc %d\n",
4272 		   outer_prio, bp->prio_to_cos[outer_prio]);
4273 	}
4274 
4275 	/* Use this configuration to differentiate tc0 from other COSes
4276 	   This can be used for ets or pfc, and save the effort of setting
4277 	   up a multio class queue disc or negotiating DCBX with a switch
4278 	netdev_set_prio_tc_map(dev, 0, 0);
4279 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4280 	for (prio = 1; prio < 16; prio++) {
4281 		netdev_set_prio_tc_map(dev, prio, 1);
4282 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4283 	} */
4284 
4285 	/* configure traffic class to transmission queue mapping */
4286 	for (cos = 0; cos < bp->max_cos; cos++) {
4287 		count = BNX2X_NUM_ETH_QUEUES(bp);
4288 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4289 		netdev_set_tc_queue(dev, cos, count, offset);
4290 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4291 		   "mapping tc %d to offset %d count %d\n",
4292 		   cos, offset, count);
4293 	}
4294 
4295 	return 0;
4296 }
4297 
4298 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4299 		     void *type_data)
4300 {
4301 	struct tc_mqprio_qopt *mqprio = type_data;
4302 
4303 	if (type != TC_SETUP_QDISC_MQPRIO)
4304 		return -EOPNOTSUPP;
4305 
4306 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4307 
4308 	return bnx2x_setup_tc(dev, mqprio->num_tc);
4309 }
4310 
4311 /* called with rtnl_lock */
4312 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4313 {
4314 	struct sockaddr *addr = p;
4315 	struct bnx2x *bp = netdev_priv(dev);
4316 	int rc = 0;
4317 
4318 	if (!is_valid_ether_addr(addr->sa_data)) {
4319 		BNX2X_ERR("Requested MAC address is not valid\n");
4320 		return -EINVAL;
4321 	}
4322 
4323 	if (IS_MF_STORAGE_ONLY(bp)) {
4324 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4325 		return -EINVAL;
4326 	}
4327 
4328 	if (netif_running(dev))  {
4329 		rc = bnx2x_set_eth_mac(bp, false);
4330 		if (rc)
4331 			return rc;
4332 	}
4333 
4334 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4335 
4336 	if (netif_running(dev))
4337 		rc = bnx2x_set_eth_mac(bp, true);
4338 
4339 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4340 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4341 
4342 	return rc;
4343 }
4344 
4345 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4346 {
4347 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4348 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4349 	u8 cos;
4350 
4351 	/* Common */
4352 
4353 	if (IS_FCOE_IDX(fp_index)) {
4354 		memset(sb, 0, sizeof(union host_hc_status_block));
4355 		fp->status_blk_mapping = 0;
4356 	} else {
4357 		/* status blocks */
4358 		if (!CHIP_IS_E1x(bp))
4359 			BNX2X_PCI_FREE(sb->e2_sb,
4360 				       bnx2x_fp(bp, fp_index,
4361 						status_blk_mapping),
4362 				       sizeof(struct host_hc_status_block_e2));
4363 		else
4364 			BNX2X_PCI_FREE(sb->e1x_sb,
4365 				       bnx2x_fp(bp, fp_index,
4366 						status_blk_mapping),
4367 				       sizeof(struct host_hc_status_block_e1x));
4368 	}
4369 
4370 	/* Rx */
4371 	if (!skip_rx_queue(bp, fp_index)) {
4372 		bnx2x_free_rx_bds(fp);
4373 
4374 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4375 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4376 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4377 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4378 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4379 
4380 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4381 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4382 			       sizeof(struct eth_fast_path_rx_cqe) *
4383 			       NUM_RCQ_BD);
4384 
4385 		/* SGE ring */
4386 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4387 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4388 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4389 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4390 	}
4391 
4392 	/* Tx */
4393 	if (!skip_tx_queue(bp, fp_index)) {
4394 		/* fastpath tx rings: tx_buf tx_desc */
4395 		for_each_cos_in_tx_queue(fp, cos) {
4396 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4397 
4398 			DP(NETIF_MSG_IFDOWN,
4399 			   "freeing tx memory of fp %d cos %d cid %d\n",
4400 			   fp_index, cos, txdata->cid);
4401 
4402 			BNX2X_FREE(txdata->tx_buf_ring);
4403 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4404 				txdata->tx_desc_mapping,
4405 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4406 		}
4407 	}
4408 	/* end of fastpath */
4409 }
4410 
4411 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4412 {
4413 	int i;
4414 	for_each_cnic_queue(bp, i)
4415 		bnx2x_free_fp_mem_at(bp, i);
4416 }
4417 
4418 void bnx2x_free_fp_mem(struct bnx2x *bp)
4419 {
4420 	int i;
4421 	for_each_eth_queue(bp, i)
4422 		bnx2x_free_fp_mem_at(bp, i);
4423 }
4424 
4425 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4426 {
4427 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4428 	if (!CHIP_IS_E1x(bp)) {
4429 		bnx2x_fp(bp, index, sb_index_values) =
4430 			(__le16 *)status_blk.e2_sb->sb.index_values;
4431 		bnx2x_fp(bp, index, sb_running_index) =
4432 			(__le16 *)status_blk.e2_sb->sb.running_index;
4433 	} else {
4434 		bnx2x_fp(bp, index, sb_index_values) =
4435 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4436 		bnx2x_fp(bp, index, sb_running_index) =
4437 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4438 	}
4439 }
4440 
4441 /* Returns the number of actually allocated BDs */
4442 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4443 			      int rx_ring_size)
4444 {
4445 	struct bnx2x *bp = fp->bp;
4446 	u16 ring_prod, cqe_ring_prod;
4447 	int i, failure_cnt = 0;
4448 
4449 	fp->rx_comp_cons = 0;
4450 	cqe_ring_prod = ring_prod = 0;
4451 
4452 	/* This routine is called only during fo init so
4453 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4454 	 */
4455 	for (i = 0; i < rx_ring_size; i++) {
4456 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4457 			failure_cnt++;
4458 			continue;
4459 		}
4460 		ring_prod = NEXT_RX_IDX(ring_prod);
4461 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4462 		WARN_ON(ring_prod <= (i - failure_cnt));
4463 	}
4464 
4465 	if (failure_cnt)
4466 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4467 			  i - failure_cnt, fp->index);
4468 
4469 	fp->rx_bd_prod = ring_prod;
4470 	/* Limit the CQE producer by the CQE ring size */
4471 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4472 			       cqe_ring_prod);
4473 
4474 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4475 
4476 	return i - failure_cnt;
4477 }
4478 
4479 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4480 {
4481 	int i;
4482 
4483 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4484 		struct eth_rx_cqe_next_page *nextpg;
4485 
4486 		nextpg = (struct eth_rx_cqe_next_page *)
4487 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4488 		nextpg->addr_hi =
4489 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4490 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4491 		nextpg->addr_lo =
4492 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4493 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4494 	}
4495 }
4496 
4497 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4498 {
4499 	union host_hc_status_block *sb;
4500 	struct bnx2x_fastpath *fp = &bp->fp[index];
4501 	int ring_size = 0;
4502 	u8 cos;
4503 	int rx_ring_size = 0;
4504 
4505 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4506 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4507 		bp->rx_ring_size = rx_ring_size;
4508 	} else if (!bp->rx_ring_size) {
4509 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4510 
4511 		if (CHIP_IS_E3(bp)) {
4512 			u32 cfg = SHMEM_RD(bp,
4513 					   dev_info.port_hw_config[BP_PORT(bp)].
4514 					   default_cfg);
4515 
4516 			/* Decrease ring size for 1G functions */
4517 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4518 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4519 				rx_ring_size /= 10;
4520 		}
4521 
4522 		/* allocate at least number of buffers required by FW */
4523 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4524 				     MIN_RX_SIZE_TPA, rx_ring_size);
4525 
4526 		bp->rx_ring_size = rx_ring_size;
4527 	} else /* if rx_ring_size specified - use it */
4528 		rx_ring_size = bp->rx_ring_size;
4529 
4530 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4531 
4532 	/* Common */
4533 	sb = &bnx2x_fp(bp, index, status_blk);
4534 
4535 	if (!IS_FCOE_IDX(index)) {
4536 		/* status blocks */
4537 		if (!CHIP_IS_E1x(bp)) {
4538 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4539 						    sizeof(struct host_hc_status_block_e2));
4540 			if (!sb->e2_sb)
4541 				goto alloc_mem_err;
4542 		} else {
4543 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4544 						     sizeof(struct host_hc_status_block_e1x));
4545 			if (!sb->e1x_sb)
4546 				goto alloc_mem_err;
4547 		}
4548 	}
4549 
4550 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4551 	 * set shortcuts for it.
4552 	 */
4553 	if (!IS_FCOE_IDX(index))
4554 		set_sb_shortcuts(bp, index);
4555 
4556 	/* Tx */
4557 	if (!skip_tx_queue(bp, index)) {
4558 		/* fastpath tx rings: tx_buf tx_desc */
4559 		for_each_cos_in_tx_queue(fp, cos) {
4560 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4561 
4562 			DP(NETIF_MSG_IFUP,
4563 			   "allocating tx memory of fp %d cos %d\n",
4564 			   index, cos);
4565 
4566 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4567 						      sizeof(struct sw_tx_bd),
4568 						      GFP_KERNEL);
4569 			if (!txdata->tx_buf_ring)
4570 				goto alloc_mem_err;
4571 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4572 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4573 			if (!txdata->tx_desc_ring)
4574 				goto alloc_mem_err;
4575 		}
4576 	}
4577 
4578 	/* Rx */
4579 	if (!skip_rx_queue(bp, index)) {
4580 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4581 		bnx2x_fp(bp, index, rx_buf_ring) =
4582 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4583 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4584 			goto alloc_mem_err;
4585 		bnx2x_fp(bp, index, rx_desc_ring) =
4586 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4587 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4588 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4589 			goto alloc_mem_err;
4590 
4591 		/* Seed all CQEs by 1s */
4592 		bnx2x_fp(bp, index, rx_comp_ring) =
4593 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4594 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4595 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4596 			goto alloc_mem_err;
4597 
4598 		/* SGE ring */
4599 		bnx2x_fp(bp, index, rx_page_ring) =
4600 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4601 				GFP_KERNEL);
4602 		if (!bnx2x_fp(bp, index, rx_page_ring))
4603 			goto alloc_mem_err;
4604 		bnx2x_fp(bp, index, rx_sge_ring) =
4605 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4606 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4607 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4608 			goto alloc_mem_err;
4609 		/* RX BD ring */
4610 		bnx2x_set_next_page_rx_bd(fp);
4611 
4612 		/* CQ ring */
4613 		bnx2x_set_next_page_rx_cq(fp);
4614 
4615 		/* BDs */
4616 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4617 		if (ring_size < rx_ring_size)
4618 			goto alloc_mem_err;
4619 	}
4620 
4621 	return 0;
4622 
4623 /* handles low memory cases */
4624 alloc_mem_err:
4625 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4626 						index, ring_size);
4627 	/* FW will drop all packets if queue is not big enough,
4628 	 * In these cases we disable the queue
4629 	 * Min size is different for OOO, TPA and non-TPA queues
4630 	 */
4631 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4632 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4633 			/* release memory allocated for this queue */
4634 			bnx2x_free_fp_mem_at(bp, index);
4635 			return -ENOMEM;
4636 	}
4637 	return 0;
4638 }
4639 
4640 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4641 {
4642 	if (!NO_FCOE(bp))
4643 		/* FCoE */
4644 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4645 			/* we will fail load process instead of mark
4646 			 * NO_FCOE_FLAG
4647 			 */
4648 			return -ENOMEM;
4649 
4650 	return 0;
4651 }
4652 
4653 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4654 {
4655 	int i;
4656 
4657 	/* 1. Allocate FP for leading - fatal if error
4658 	 * 2. Allocate RSS - fix number of queues if error
4659 	 */
4660 
4661 	/* leading */
4662 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4663 		return -ENOMEM;
4664 
4665 	/* RSS */
4666 	for_each_nondefault_eth_queue(bp, i)
4667 		if (bnx2x_alloc_fp_mem_at(bp, i))
4668 			break;
4669 
4670 	/* handle memory failures */
4671 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4672 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4673 
4674 		WARN_ON(delta < 0);
4675 		bnx2x_shrink_eth_fp(bp, delta);
4676 		if (CNIC_SUPPORT(bp))
4677 			/* move non eth FPs next to last eth FP
4678 			 * must be done in that order
4679 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4680 			 */
4681 
4682 			/* move FCoE fp even NO_FCOE_FLAG is on */
4683 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4684 		bp->num_ethernet_queues -= delta;
4685 		bp->num_queues = bp->num_ethernet_queues +
4686 				 bp->num_cnic_queues;
4687 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4688 			  bp->num_queues + delta, bp->num_queues);
4689 	}
4690 
4691 	return 0;
4692 }
4693 
4694 void bnx2x_free_mem_bp(struct bnx2x *bp)
4695 {
4696 	int i;
4697 
4698 	for (i = 0; i < bp->fp_array_size; i++)
4699 		kfree(bp->fp[i].tpa_info);
4700 	kfree(bp->fp);
4701 	kfree(bp->sp_objs);
4702 	kfree(bp->fp_stats);
4703 	kfree(bp->bnx2x_txq);
4704 	kfree(bp->msix_table);
4705 	kfree(bp->ilt);
4706 }
4707 
4708 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4709 {
4710 	struct bnx2x_fastpath *fp;
4711 	struct msix_entry *tbl;
4712 	struct bnx2x_ilt *ilt;
4713 	int msix_table_size = 0;
4714 	int fp_array_size, txq_array_size;
4715 	int i;
4716 
4717 	/*
4718 	 * The biggest MSI-X table we might need is as a maximum number of fast
4719 	 * path IGU SBs plus default SB (for PF only).
4720 	 */
4721 	msix_table_size = bp->igu_sb_cnt;
4722 	if (IS_PF(bp))
4723 		msix_table_size++;
4724 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4725 
4726 	/* fp array: RSS plus CNIC related L2 queues */
4727 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4728 	bp->fp_array_size = fp_array_size;
4729 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4730 
4731 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4732 	if (!fp)
4733 		goto alloc_err;
4734 	for (i = 0; i < bp->fp_array_size; i++) {
4735 		fp[i].tpa_info =
4736 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4737 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4738 		if (!(fp[i].tpa_info))
4739 			goto alloc_err;
4740 	}
4741 
4742 	bp->fp = fp;
4743 
4744 	/* allocate sp objs */
4745 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4746 			      GFP_KERNEL);
4747 	if (!bp->sp_objs)
4748 		goto alloc_err;
4749 
4750 	/* allocate fp_stats */
4751 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4752 			       GFP_KERNEL);
4753 	if (!bp->fp_stats)
4754 		goto alloc_err;
4755 
4756 	/* Allocate memory for the transmission queues array */
4757 	txq_array_size =
4758 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4759 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4760 
4761 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4762 				GFP_KERNEL);
4763 	if (!bp->bnx2x_txq)
4764 		goto alloc_err;
4765 
4766 	/* msix table */
4767 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4768 	if (!tbl)
4769 		goto alloc_err;
4770 	bp->msix_table = tbl;
4771 
4772 	/* ilt */
4773 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4774 	if (!ilt)
4775 		goto alloc_err;
4776 	bp->ilt = ilt;
4777 
4778 	return 0;
4779 alloc_err:
4780 	bnx2x_free_mem_bp(bp);
4781 	return -ENOMEM;
4782 }
4783 
4784 int bnx2x_reload_if_running(struct net_device *dev)
4785 {
4786 	struct bnx2x *bp = netdev_priv(dev);
4787 
4788 	if (unlikely(!netif_running(dev)))
4789 		return 0;
4790 
4791 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4792 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4793 }
4794 
4795 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4796 {
4797 	u32 sel_phy_idx = 0;
4798 	if (bp->link_params.num_phys <= 1)
4799 		return INT_PHY;
4800 
4801 	if (bp->link_vars.link_up) {
4802 		sel_phy_idx = EXT_PHY1;
4803 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4804 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4805 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4806 			sel_phy_idx = EXT_PHY2;
4807 	} else {
4808 
4809 		switch (bnx2x_phy_selection(&bp->link_params)) {
4810 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4811 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4812 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4813 		       sel_phy_idx = EXT_PHY1;
4814 		       break;
4815 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4816 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4817 		       sel_phy_idx = EXT_PHY2;
4818 		       break;
4819 		}
4820 	}
4821 
4822 	return sel_phy_idx;
4823 }
4824 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4825 {
4826 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4827 	/*
4828 	 * The selected activated PHY is always after swapping (in case PHY
4829 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4830 	 * the configuration
4831 	 */
4832 
4833 	if (bp->link_params.multi_phy_config &
4834 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4835 		if (sel_phy_idx == EXT_PHY1)
4836 			sel_phy_idx = EXT_PHY2;
4837 		else if (sel_phy_idx == EXT_PHY2)
4838 			sel_phy_idx = EXT_PHY1;
4839 	}
4840 	return LINK_CONFIG_IDX(sel_phy_idx);
4841 }
4842 
4843 #ifdef NETDEV_FCOE_WWNN
4844 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4845 {
4846 	struct bnx2x *bp = netdev_priv(dev);
4847 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4848 
4849 	switch (type) {
4850 	case NETDEV_FCOE_WWNN:
4851 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4852 				cp->fcoe_wwn_node_name_lo);
4853 		break;
4854 	case NETDEV_FCOE_WWPN:
4855 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4856 				cp->fcoe_wwn_port_name_lo);
4857 		break;
4858 	default:
4859 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4860 		return -EINVAL;
4861 	}
4862 
4863 	return 0;
4864 }
4865 #endif
4866 
4867 /* called with rtnl_lock */
4868 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4869 {
4870 	struct bnx2x *bp = netdev_priv(dev);
4871 
4872 	if (pci_num_vf(bp->pdev)) {
4873 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4874 		return -EPERM;
4875 	}
4876 
4877 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4878 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4879 		return -EAGAIN;
4880 	}
4881 
4882 	/* This does not race with packet allocation
4883 	 * because the actual alloc size is
4884 	 * only updated as part of load
4885 	 */
4886 	dev->mtu = new_mtu;
4887 
4888 	if (!bnx2x_mtu_allows_gro(new_mtu))
4889 		dev->features &= ~NETIF_F_GRO_HW;
4890 
4891 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4892 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4893 
4894 	return bnx2x_reload_if_running(dev);
4895 }
4896 
4897 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4898 				     netdev_features_t features)
4899 {
4900 	struct bnx2x *bp = netdev_priv(dev);
4901 
4902 	if (pci_num_vf(bp->pdev)) {
4903 		netdev_features_t changed = dev->features ^ features;
4904 
4905 		/* Revert the requested changes in features if they
4906 		 * would require internal reload of PF in bnx2x_set_features().
4907 		 */
4908 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4909 			features &= ~NETIF_F_RXCSUM;
4910 			features |= dev->features & NETIF_F_RXCSUM;
4911 		}
4912 
4913 		if (changed & NETIF_F_LOOPBACK) {
4914 			features &= ~NETIF_F_LOOPBACK;
4915 			features |= dev->features & NETIF_F_LOOPBACK;
4916 		}
4917 	}
4918 
4919 	/* TPA requires Rx CSUM offloading */
4920 	if (!(features & NETIF_F_RXCSUM))
4921 		features &= ~NETIF_F_LRO;
4922 
4923 	if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4924 		features &= ~NETIF_F_GRO_HW;
4925 	if (features & NETIF_F_GRO_HW)
4926 		features &= ~NETIF_F_LRO;
4927 
4928 	return features;
4929 }
4930 
4931 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4932 {
4933 	struct bnx2x *bp = netdev_priv(dev);
4934 	netdev_features_t changes = features ^ dev->features;
4935 	bool bnx2x_reload = false;
4936 	int rc;
4937 
4938 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4939 	if (!pci_num_vf(bp->pdev)) {
4940 		if (features & NETIF_F_LOOPBACK) {
4941 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4942 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4943 				bnx2x_reload = true;
4944 			}
4945 		} else {
4946 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4947 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4948 				bnx2x_reload = true;
4949 			}
4950 		}
4951 	}
4952 
4953 	/* Don't care about GRO changes */
4954 	changes &= ~NETIF_F_GRO;
4955 
4956 	if (changes)
4957 		bnx2x_reload = true;
4958 
4959 	if (bnx2x_reload) {
4960 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4961 			dev->features = features;
4962 			rc = bnx2x_reload_if_running(dev);
4963 			return rc ? rc : 1;
4964 		}
4965 		/* else: bnx2x_nic_load() will be called at end of recovery */
4966 	}
4967 
4968 	return 0;
4969 }
4970 
4971 void bnx2x_tx_timeout(struct net_device *dev)
4972 {
4973 	struct bnx2x *bp = netdev_priv(dev);
4974 
4975 	/* We want the information of the dump logged,
4976 	 * but calling bnx2x_panic() would kill all chances of recovery.
4977 	 */
4978 	if (!bp->panic)
4979 #ifndef BNX2X_STOP_ON_ERROR
4980 		bnx2x_panic_dump(bp, false);
4981 #else
4982 		bnx2x_panic();
4983 #endif
4984 
4985 	/* This allows the netif to be shutdown gracefully before resetting */
4986 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4987 }
4988 
4989 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4990 {
4991 	struct net_device *dev = pci_get_drvdata(pdev);
4992 	struct bnx2x *bp;
4993 
4994 	if (!dev) {
4995 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4996 		return -ENODEV;
4997 	}
4998 	bp = netdev_priv(dev);
4999 
5000 	rtnl_lock();
5001 
5002 	pci_save_state(pdev);
5003 
5004 	if (!netif_running(dev)) {
5005 		rtnl_unlock();
5006 		return 0;
5007 	}
5008 
5009 	netif_device_detach(dev);
5010 
5011 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5012 
5013 	bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5014 
5015 	rtnl_unlock();
5016 
5017 	return 0;
5018 }
5019 
5020 int bnx2x_resume(struct pci_dev *pdev)
5021 {
5022 	struct net_device *dev = pci_get_drvdata(pdev);
5023 	struct bnx2x *bp;
5024 	int rc;
5025 
5026 	if (!dev) {
5027 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5028 		return -ENODEV;
5029 	}
5030 	bp = netdev_priv(dev);
5031 
5032 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5033 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5034 		return -EAGAIN;
5035 	}
5036 
5037 	rtnl_lock();
5038 
5039 	pci_restore_state(pdev);
5040 
5041 	if (!netif_running(dev)) {
5042 		rtnl_unlock();
5043 		return 0;
5044 	}
5045 
5046 	bnx2x_set_power_state(bp, PCI_D0);
5047 	netif_device_attach(dev);
5048 
5049 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5050 
5051 	rtnl_unlock();
5052 
5053 	return rc;
5054 }
5055 
5056 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5057 			      u32 cid)
5058 {
5059 	if (!cxt) {
5060 		BNX2X_ERR("bad context pointer %p\n", cxt);
5061 		return;
5062 	}
5063 
5064 	/* ustorm cxt validation */
5065 	cxt->ustorm_ag_context.cdu_usage =
5066 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5067 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5068 	/* xcontext validation */
5069 	cxt->xstorm_ag_context.cdu_reserved =
5070 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5071 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5072 }
5073 
5074 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5075 				    u8 fw_sb_id, u8 sb_index,
5076 				    u8 ticks)
5077 {
5078 	u32 addr = BAR_CSTRORM_INTMEM +
5079 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5080 	REG_WR8(bp, addr, ticks);
5081 	DP(NETIF_MSG_IFUP,
5082 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5083 	   port, fw_sb_id, sb_index, ticks);
5084 }
5085 
5086 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5087 				    u16 fw_sb_id, u8 sb_index,
5088 				    u8 disable)
5089 {
5090 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5091 	u32 addr = BAR_CSTRORM_INTMEM +
5092 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5093 	u8 flags = REG_RD8(bp, addr);
5094 	/* clear and set */
5095 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5096 	flags |= enable_flag;
5097 	REG_WR8(bp, addr, flags);
5098 	DP(NETIF_MSG_IFUP,
5099 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5100 	   port, fw_sb_id, sb_index, disable);
5101 }
5102 
5103 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5104 				    u8 sb_index, u8 disable, u16 usec)
5105 {
5106 	int port = BP_PORT(bp);
5107 	u8 ticks = usec / BNX2X_BTR;
5108 
5109 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5110 
5111 	disable = disable ? 1 : (usec ? 0 : 1);
5112 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5113 }
5114 
5115 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5116 			    u32 verbose)
5117 {
5118 	smp_mb__before_atomic();
5119 	set_bit(flag, &bp->sp_rtnl_state);
5120 	smp_mb__after_atomic();
5121 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5122 	   flag);
5123 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5124 }
5125