1 /* bnx2x_cmn.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/etherdevice.h> 23 #include <linux/if_vlan.h> 24 #include <linux/interrupt.h> 25 #include <linux/ip.h> 26 #include <linux/crash_dump.h> 27 #include <net/tcp.h> 28 #include <net/ipv6.h> 29 #include <net/ip6_checksum.h> 30 #include <linux/prefetch.h> 31 #include "bnx2x_cmn.h" 32 #include "bnx2x_init.h" 33 #include "bnx2x_sp.h" 34 35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 38 static int bnx2x_poll(struct napi_struct *napi, int budget); 39 40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 41 { 42 int i; 43 44 /* Add NAPI objects */ 45 for_each_rx_queue_cnic(bp, i) { 46 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 47 bnx2x_poll, NAPI_POLL_WEIGHT); 48 } 49 } 50 51 static void bnx2x_add_all_napi(struct bnx2x *bp) 52 { 53 int i; 54 55 /* Add NAPI objects */ 56 for_each_eth_queue(bp, i) { 57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 58 bnx2x_poll, NAPI_POLL_WEIGHT); 59 } 60 } 61 62 static int bnx2x_calc_num_queues(struct bnx2x *bp) 63 { 64 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues(); 65 66 /* Reduce memory usage in kdump environment by using only one queue */ 67 if (is_kdump_kernel()) 68 nq = 1; 69 70 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp)); 71 return nq; 72 } 73 74 /** 75 * bnx2x_move_fp - move content of the fastpath structure. 76 * 77 * @bp: driver handle 78 * @from: source FP index 79 * @to: destination FP index 80 * 81 * Makes sure the contents of the bp->fp[to].napi is kept 82 * intact. This is done by first copying the napi struct from 83 * the target to the source, and then mem copying the entire 84 * source onto the target. Update txdata pointers and related 85 * content. 86 */ 87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 88 { 89 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 90 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 91 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 92 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 93 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 94 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 95 int old_max_eth_txqs, new_max_eth_txqs; 96 int old_txdata_index = 0, new_txdata_index = 0; 97 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 98 99 /* Copy the NAPI object as it has been already initialized */ 100 from_fp->napi = to_fp->napi; 101 102 /* Move bnx2x_fastpath contents */ 103 memcpy(to_fp, from_fp, sizeof(*to_fp)); 104 to_fp->index = to; 105 106 /* Retain the tpa_info of the original `to' version as we don't want 107 * 2 FPs to contain the same tpa_info pointer. 108 */ 109 to_fp->tpa_info = old_tpa_info; 110 111 /* move sp_objs contents as well, as their indices match fp ones */ 112 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 113 114 /* move fp_stats contents as well, as their indices match fp ones */ 115 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 116 117 /* Update txdata pointers in fp and move txdata content accordingly: 118 * Each fp consumes 'max_cos' txdata structures, so the index should be 119 * decremented by max_cos x delta. 120 */ 121 122 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 123 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 124 (bp)->max_cos; 125 if (from == FCOE_IDX(bp)) { 126 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 127 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 128 } 129 130 memcpy(&bp->bnx2x_txq[new_txdata_index], 131 &bp->bnx2x_txq[old_txdata_index], 132 sizeof(struct bnx2x_fp_txdata)); 133 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 134 } 135 136 /** 137 * bnx2x_fill_fw_str - Fill buffer with FW version string. 138 * 139 * @bp: driver handle 140 * @buf: character buffer to fill with the fw name 141 * @buf_len: length of the above buffer 142 * 143 */ 144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 145 { 146 if (IS_PF(bp)) { 147 u8 phy_fw_ver[PHY_FW_VER_LEN]; 148 149 phy_fw_ver[0] = '\0'; 150 bnx2x_get_ext_phy_fw_version(&bp->link_params, 151 phy_fw_ver, PHY_FW_VER_LEN); 152 strlcpy(buf, bp->fw_ver, buf_len); 153 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 154 "bc %d.%d.%d%s%s", 155 (bp->common.bc_ver & 0xff0000) >> 16, 156 (bp->common.bc_ver & 0xff00) >> 8, 157 (bp->common.bc_ver & 0xff), 158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 159 } else { 160 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 161 } 162 } 163 164 /** 165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 166 * 167 * @bp: driver handle 168 * @delta: number of eth queues which were not allocated 169 */ 170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 171 { 172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 173 174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 175 * backward along the array could cause memory to be overridden 176 */ 177 for (cos = 1; cos < bp->max_cos; cos++) { 178 for (i = 0; i < old_eth_num - delta; i++) { 179 struct bnx2x_fastpath *fp = &bp->fp[i]; 180 int new_idx = cos * (old_eth_num - delta) + i; 181 182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 183 sizeof(struct bnx2x_fp_txdata)); 184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 185 } 186 } 187 } 188 189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 190 191 /* free skb in the packet ring at pos idx 192 * return idx of last bd freed 193 */ 194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 195 u16 idx, unsigned int *pkts_compl, 196 unsigned int *bytes_compl) 197 { 198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 199 struct eth_tx_start_bd *tx_start_bd; 200 struct eth_tx_bd *tx_data_bd; 201 struct sk_buff *skb = tx_buf->skb; 202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 203 int nbd; 204 u16 split_bd_len = 0; 205 206 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 207 prefetch(&skb->end); 208 209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 210 txdata->txq_index, idx, tx_buf, skb); 211 212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 213 214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 215 #ifdef BNX2X_STOP_ON_ERROR 216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 217 BNX2X_ERR("BAD nbd!\n"); 218 bnx2x_panic(); 219 } 220 #endif 221 new_cons = nbd + tx_buf->first_bd; 222 223 /* Get the next bd */ 224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 225 226 /* Skip a parse bd... */ 227 --nbd; 228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 229 230 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { 231 /* Skip second parse bd... */ 232 --nbd; 233 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 234 } 235 236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 237 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 238 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 239 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 240 --nbd; 241 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 242 } 243 244 /* unmap first bd */ 245 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 246 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 247 DMA_TO_DEVICE); 248 249 /* now free frags */ 250 while (nbd > 0) { 251 252 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 253 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 254 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 255 if (--nbd) 256 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 257 } 258 259 /* release skb */ 260 WARN_ON(!skb); 261 if (likely(skb)) { 262 (*pkts_compl)++; 263 (*bytes_compl) += skb->len; 264 dev_kfree_skb_any(skb); 265 } 266 267 tx_buf->first_bd = 0; 268 tx_buf->skb = NULL; 269 270 return new_cons; 271 } 272 273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 274 { 275 struct netdev_queue *txq; 276 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 277 unsigned int pkts_compl = 0, bytes_compl = 0; 278 279 #ifdef BNX2X_STOP_ON_ERROR 280 if (unlikely(bp->panic)) 281 return -1; 282 #endif 283 284 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 285 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 286 sw_cons = txdata->tx_pkt_cons; 287 288 /* Ensure subsequent loads occur after hw_cons */ 289 smp_rmb(); 290 291 while (sw_cons != hw_cons) { 292 u16 pkt_cons; 293 294 pkt_cons = TX_BD(sw_cons); 295 296 DP(NETIF_MSG_TX_DONE, 297 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 298 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 299 300 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 301 &pkts_compl, &bytes_compl); 302 303 sw_cons++; 304 } 305 306 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 307 308 txdata->tx_pkt_cons = sw_cons; 309 txdata->tx_bd_cons = bd_cons; 310 311 /* Need to make the tx_bd_cons update visible to start_xmit() 312 * before checking for netif_tx_queue_stopped(). Without the 313 * memory barrier, there is a small possibility that 314 * start_xmit() will miss it and cause the queue to be stopped 315 * forever. 316 * On the other hand we need an rmb() here to ensure the proper 317 * ordering of bit testing in the following 318 * netif_tx_queue_stopped(txq) call. 319 */ 320 smp_mb(); 321 322 if (unlikely(netif_tx_queue_stopped(txq))) { 323 /* Taking tx_lock() is needed to prevent re-enabling the queue 324 * while it's empty. This could have happen if rx_action() gets 325 * suspended in bnx2x_tx_int() after the condition before 326 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 327 * 328 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 329 * sends some packets consuming the whole queue again-> 330 * stops the queue 331 */ 332 333 __netif_tx_lock(txq, smp_processor_id()); 334 335 if ((netif_tx_queue_stopped(txq)) && 336 (bp->state == BNX2X_STATE_OPEN) && 337 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 338 netif_tx_wake_queue(txq); 339 340 __netif_tx_unlock(txq); 341 } 342 return 0; 343 } 344 345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 346 u16 idx) 347 { 348 u16 last_max = fp->last_max_sge; 349 350 if (SUB_S16(idx, last_max) > 0) 351 fp->last_max_sge = idx; 352 } 353 354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 355 u16 sge_len, 356 struct eth_end_agg_rx_cqe *cqe) 357 { 358 struct bnx2x *bp = fp->bp; 359 u16 last_max, last_elem, first_elem; 360 u16 delta = 0; 361 u16 i; 362 363 if (!sge_len) 364 return; 365 366 /* First mark all used pages */ 367 for (i = 0; i < sge_len; i++) 368 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 369 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 370 371 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 372 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 373 374 /* Here we assume that the last SGE index is the biggest */ 375 prefetch((void *)(fp->sge_mask)); 376 bnx2x_update_last_max_sge(fp, 377 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 378 379 last_max = RX_SGE(fp->last_max_sge); 380 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 381 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 382 383 /* If ring is not full */ 384 if (last_elem + 1 != first_elem) 385 last_elem++; 386 387 /* Now update the prod */ 388 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 389 if (likely(fp->sge_mask[i])) 390 break; 391 392 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 393 delta += BIT_VEC64_ELEM_SZ; 394 } 395 396 if (delta > 0) { 397 fp->rx_sge_prod += delta; 398 /* clear page-end entries */ 399 bnx2x_clear_sge_mask_next_elems(fp); 400 } 401 402 DP(NETIF_MSG_RX_STATUS, 403 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 404 fp->last_max_sge, fp->rx_sge_prod); 405 } 406 407 /* Get Toeplitz hash value in the skb using the value from the 408 * CQE (calculated by HW). 409 */ 410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 411 const struct eth_fast_path_rx_cqe *cqe, 412 enum pkt_hash_types *rxhash_type) 413 { 414 /* Get Toeplitz hash from CQE */ 415 if ((bp->dev->features & NETIF_F_RXHASH) && 416 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 417 enum eth_rss_hash_type htype; 418 419 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 420 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 421 (htype == TCP_IPV6_HASH_TYPE)) ? 422 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 423 424 return le32_to_cpu(cqe->rss_hash_result); 425 } 426 *rxhash_type = PKT_HASH_TYPE_NONE; 427 return 0; 428 } 429 430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 431 u16 cons, u16 prod, 432 struct eth_fast_path_rx_cqe *cqe) 433 { 434 struct bnx2x *bp = fp->bp; 435 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 436 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 437 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 438 dma_addr_t mapping; 439 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 440 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 441 442 /* print error if current state != stop */ 443 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 444 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 445 446 /* Try to map an empty data buffer from the aggregation info */ 447 mapping = dma_map_single(&bp->pdev->dev, 448 first_buf->data + NET_SKB_PAD, 449 fp->rx_buf_size, DMA_FROM_DEVICE); 450 /* 451 * ...if it fails - move the skb from the consumer to the producer 452 * and set the current aggregation state as ERROR to drop it 453 * when TPA_STOP arrives. 454 */ 455 456 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 457 /* Move the BD from the consumer to the producer */ 458 bnx2x_reuse_rx_data(fp, cons, prod); 459 tpa_info->tpa_state = BNX2X_TPA_ERROR; 460 return; 461 } 462 463 /* move empty data from pool to prod */ 464 prod_rx_buf->data = first_buf->data; 465 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 466 /* point prod_bd to new data */ 467 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 468 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 469 470 /* move partial skb from cons to pool (don't unmap yet) */ 471 *first_buf = *cons_rx_buf; 472 473 /* mark bin state as START */ 474 tpa_info->parsing_flags = 475 le16_to_cpu(cqe->pars_flags.flags); 476 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 477 tpa_info->tpa_state = BNX2X_TPA_START; 478 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 479 tpa_info->placement_offset = cqe->placement_offset; 480 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 481 if (fp->mode == TPA_MODE_GRO) { 482 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 483 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 484 tpa_info->gro_size = gro_size; 485 } 486 487 #ifdef BNX2X_STOP_ON_ERROR 488 fp->tpa_queue_used |= (1 << queue); 489 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 490 fp->tpa_queue_used); 491 #endif 492 } 493 494 /* Timestamp option length allowed for TPA aggregation: 495 * 496 * nop nop kind length echo val 497 */ 498 #define TPA_TSTAMP_OPT_LEN 12 499 /** 500 * bnx2x_set_gro_params - compute GRO values 501 * 502 * @skb: packet skb 503 * @parsing_flags: parsing flags from the START CQE 504 * @len_on_bd: total length of the first packet for the 505 * aggregation. 506 * @pkt_len: length of all segments 507 * 508 * Approximate value of the MSS for this aggregation calculated using 509 * the first packet of it. 510 * Compute number of aggregated segments, and gso_type. 511 */ 512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 513 u16 len_on_bd, unsigned int pkt_len, 514 u16 num_of_coalesced_segs) 515 { 516 /* TPA aggregation won't have either IP options or TCP options 517 * other than timestamp or IPv6 extension headers. 518 */ 519 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 520 521 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 522 PRS_FLAG_OVERETH_IPV6) { 523 hdrs_len += sizeof(struct ipv6hdr); 524 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 525 } else { 526 hdrs_len += sizeof(struct iphdr); 527 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 528 } 529 530 /* Check if there was a TCP timestamp, if there is it's will 531 * always be 12 bytes length: nop nop kind length echo val. 532 * 533 * Otherwise FW would close the aggregation. 534 */ 535 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 536 hdrs_len += TPA_TSTAMP_OPT_LEN; 537 538 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 539 540 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 541 * to skb_shinfo(skb)->gso_segs 542 */ 543 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 544 } 545 546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 547 u16 index, gfp_t gfp_mask) 548 { 549 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 550 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 551 struct bnx2x_alloc_pool *pool = &fp->page_pool; 552 dma_addr_t mapping; 553 554 if (!pool->page) { 555 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 556 if (unlikely(!pool->page)) 557 return -ENOMEM; 558 559 pool->offset = 0; 560 } 561 562 mapping = dma_map_page(&bp->pdev->dev, pool->page, 563 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE); 564 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 565 BNX2X_ERR("Can't map sge\n"); 566 return -ENOMEM; 567 } 568 569 sw_buf->page = pool->page; 570 sw_buf->offset = pool->offset; 571 572 dma_unmap_addr_set(sw_buf, mapping, mapping); 573 574 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 575 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 576 577 pool->offset += SGE_PAGE_SIZE; 578 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE) 579 get_page(pool->page); 580 else 581 pool->page = NULL; 582 return 0; 583 } 584 585 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 586 struct bnx2x_agg_info *tpa_info, 587 u16 pages, 588 struct sk_buff *skb, 589 struct eth_end_agg_rx_cqe *cqe, 590 u16 cqe_idx) 591 { 592 struct sw_rx_page *rx_pg, old_rx_pg; 593 u32 i, frag_len, frag_size; 594 int err, j, frag_id = 0; 595 u16 len_on_bd = tpa_info->len_on_bd; 596 u16 full_page = 0, gro_size = 0; 597 598 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 599 600 if (fp->mode == TPA_MODE_GRO) { 601 gro_size = tpa_info->gro_size; 602 full_page = tpa_info->full_page; 603 } 604 605 /* This is needed in order to enable forwarding support */ 606 if (frag_size) 607 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 608 le16_to_cpu(cqe->pkt_len), 609 le16_to_cpu(cqe->num_of_coalesced_segs)); 610 611 #ifdef BNX2X_STOP_ON_ERROR 612 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 613 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 614 pages, cqe_idx); 615 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 616 bnx2x_panic(); 617 return -EINVAL; 618 } 619 #endif 620 621 /* Run through the SGL and compose the fragmented skb */ 622 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 623 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 624 625 /* FW gives the indices of the SGE as if the ring is an array 626 (meaning that "next" element will consume 2 indices) */ 627 if (fp->mode == TPA_MODE_GRO) 628 frag_len = min_t(u32, frag_size, (u32)full_page); 629 else /* LRO */ 630 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 631 632 rx_pg = &fp->rx_page_ring[sge_idx]; 633 old_rx_pg = *rx_pg; 634 635 /* If we fail to allocate a substitute page, we simply stop 636 where we are and drop the whole packet */ 637 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 638 if (unlikely(err)) { 639 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 640 return err; 641 } 642 643 dma_unmap_page(&bp->pdev->dev, 644 dma_unmap_addr(&old_rx_pg, mapping), 645 SGE_PAGE_SIZE, DMA_FROM_DEVICE); 646 /* Add one frag and update the appropriate fields in the skb */ 647 if (fp->mode == TPA_MODE_LRO) 648 skb_fill_page_desc(skb, j, old_rx_pg.page, 649 old_rx_pg.offset, frag_len); 650 else { /* GRO */ 651 int rem; 652 int offset = 0; 653 for (rem = frag_len; rem > 0; rem -= gro_size) { 654 int len = rem > gro_size ? gro_size : rem; 655 skb_fill_page_desc(skb, frag_id++, 656 old_rx_pg.page, 657 old_rx_pg.offset + offset, 658 len); 659 if (offset) 660 get_page(old_rx_pg.page); 661 offset += len; 662 } 663 } 664 665 skb->data_len += frag_len; 666 skb->truesize += SGE_PAGES; 667 skb->len += frag_len; 668 669 frag_size -= frag_len; 670 } 671 672 return 0; 673 } 674 675 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 676 { 677 if (fp->rx_frag_size) 678 skb_free_frag(data); 679 else 680 kfree(data); 681 } 682 683 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 684 { 685 if (fp->rx_frag_size) { 686 /* GFP_KERNEL allocations are used only during initialization */ 687 if (unlikely(gfpflags_allow_blocking(gfp_mask))) 688 return (void *)__get_free_page(gfp_mask); 689 690 return napi_alloc_frag(fp->rx_frag_size); 691 } 692 693 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 694 } 695 696 #ifdef CONFIG_INET 697 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 698 { 699 const struct iphdr *iph = ip_hdr(skb); 700 struct tcphdr *th; 701 702 skb_set_transport_header(skb, sizeof(struct iphdr)); 703 th = tcp_hdr(skb); 704 705 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 706 iph->saddr, iph->daddr, 0); 707 } 708 709 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 710 { 711 struct ipv6hdr *iph = ipv6_hdr(skb); 712 struct tcphdr *th; 713 714 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 715 th = tcp_hdr(skb); 716 717 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 718 &iph->saddr, &iph->daddr, 0); 719 } 720 721 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 722 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 723 { 724 skb_reset_network_header(skb); 725 gro_func(bp, skb); 726 tcp_gro_complete(skb); 727 } 728 #endif 729 730 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 731 struct sk_buff *skb) 732 { 733 #ifdef CONFIG_INET 734 if (skb_shinfo(skb)->gso_size) { 735 switch (be16_to_cpu(skb->protocol)) { 736 case ETH_P_IP: 737 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 738 break; 739 case ETH_P_IPV6: 740 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 741 break; 742 default: 743 netdev_WARN_ONCE(bp->dev, 744 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 745 be16_to_cpu(skb->protocol)); 746 } 747 } 748 #endif 749 skb_record_rx_queue(skb, fp->rx_queue); 750 napi_gro_receive(&fp->napi, skb); 751 } 752 753 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 754 struct bnx2x_agg_info *tpa_info, 755 u16 pages, 756 struct eth_end_agg_rx_cqe *cqe, 757 u16 cqe_idx) 758 { 759 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 760 u8 pad = tpa_info->placement_offset; 761 u16 len = tpa_info->len_on_bd; 762 struct sk_buff *skb = NULL; 763 u8 *new_data, *data = rx_buf->data; 764 u8 old_tpa_state = tpa_info->tpa_state; 765 766 tpa_info->tpa_state = BNX2X_TPA_STOP; 767 768 /* If we there was an error during the handling of the TPA_START - 769 * drop this aggregation. 770 */ 771 if (old_tpa_state == BNX2X_TPA_ERROR) 772 goto drop; 773 774 /* Try to allocate the new data */ 775 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 776 /* Unmap skb in the pool anyway, as we are going to change 777 pool entry status to BNX2X_TPA_STOP even if new skb allocation 778 fails. */ 779 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 780 fp->rx_buf_size, DMA_FROM_DEVICE); 781 if (likely(new_data)) 782 skb = build_skb(data, fp->rx_frag_size); 783 784 if (likely(skb)) { 785 #ifdef BNX2X_STOP_ON_ERROR 786 if (pad + len > fp->rx_buf_size) { 787 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 788 pad, len, fp->rx_buf_size); 789 bnx2x_panic(); 790 return; 791 } 792 #endif 793 794 skb_reserve(skb, pad + NET_SKB_PAD); 795 skb_put(skb, len); 796 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 797 798 skb->protocol = eth_type_trans(skb, bp->dev); 799 skb->ip_summed = CHECKSUM_UNNECESSARY; 800 801 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 802 skb, cqe, cqe_idx)) { 803 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 804 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 805 bnx2x_gro_receive(bp, fp, skb); 806 } else { 807 DP(NETIF_MSG_RX_STATUS, 808 "Failed to allocate new pages - dropping packet!\n"); 809 dev_kfree_skb_any(skb); 810 } 811 812 /* put new data in bin */ 813 rx_buf->data = new_data; 814 815 return; 816 } 817 if (new_data) 818 bnx2x_frag_free(fp, new_data); 819 drop: 820 /* drop the packet and keep the buffer in the bin */ 821 DP(NETIF_MSG_RX_STATUS, 822 "Failed to allocate or map a new skb - dropping packet!\n"); 823 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 824 } 825 826 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 827 u16 index, gfp_t gfp_mask) 828 { 829 u8 *data; 830 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 831 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 832 dma_addr_t mapping; 833 834 data = bnx2x_frag_alloc(fp, gfp_mask); 835 if (unlikely(data == NULL)) 836 return -ENOMEM; 837 838 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 839 fp->rx_buf_size, 840 DMA_FROM_DEVICE); 841 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 842 bnx2x_frag_free(fp, data); 843 BNX2X_ERR("Can't map rx data\n"); 844 return -ENOMEM; 845 } 846 847 rx_buf->data = data; 848 dma_unmap_addr_set(rx_buf, mapping, mapping); 849 850 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 851 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 852 853 return 0; 854 } 855 856 static 857 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 858 struct bnx2x_fastpath *fp, 859 struct bnx2x_eth_q_stats *qstats) 860 { 861 /* Do nothing if no L4 csum validation was done. 862 * We do not check whether IP csum was validated. For IPv4 we assume 863 * that if the card got as far as validating the L4 csum, it also 864 * validated the IP csum. IPv6 has no IP csum. 865 */ 866 if (cqe->fast_path_cqe.status_flags & 867 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 868 return; 869 870 /* If L4 validation was done, check if an error was found. */ 871 872 if (cqe->fast_path_cqe.type_error_flags & 873 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 874 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 875 qstats->hw_csum_err++; 876 else 877 skb->ip_summed = CHECKSUM_UNNECESSARY; 878 } 879 880 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 881 { 882 struct bnx2x *bp = fp->bp; 883 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 884 u16 sw_comp_cons, sw_comp_prod; 885 int rx_pkt = 0; 886 union eth_rx_cqe *cqe; 887 struct eth_fast_path_rx_cqe *cqe_fp; 888 889 #ifdef BNX2X_STOP_ON_ERROR 890 if (unlikely(bp->panic)) 891 return 0; 892 #endif 893 if (budget <= 0) 894 return rx_pkt; 895 896 bd_cons = fp->rx_bd_cons; 897 bd_prod = fp->rx_bd_prod; 898 bd_prod_fw = bd_prod; 899 sw_comp_cons = fp->rx_comp_cons; 900 sw_comp_prod = fp->rx_comp_prod; 901 902 comp_ring_cons = RCQ_BD(sw_comp_cons); 903 cqe = &fp->rx_comp_ring[comp_ring_cons]; 904 cqe_fp = &cqe->fast_path_cqe; 905 906 DP(NETIF_MSG_RX_STATUS, 907 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 908 909 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 910 struct sw_rx_bd *rx_buf = NULL; 911 struct sk_buff *skb; 912 u8 cqe_fp_flags; 913 enum eth_rx_cqe_type cqe_fp_type; 914 u16 len, pad, queue; 915 u8 *data; 916 u32 rxhash; 917 enum pkt_hash_types rxhash_type; 918 919 #ifdef BNX2X_STOP_ON_ERROR 920 if (unlikely(bp->panic)) 921 return 0; 922 #endif 923 924 bd_prod = RX_BD(bd_prod); 925 bd_cons = RX_BD(bd_cons); 926 927 /* A rmb() is required to ensure that the CQE is not read 928 * before it is written by the adapter DMA. PCI ordering 929 * rules will make sure the other fields are written before 930 * the marker at the end of struct eth_fast_path_rx_cqe 931 * but without rmb() a weakly ordered processor can process 932 * stale data. Without the barrier TPA state-machine might 933 * enter inconsistent state and kernel stack might be 934 * provided with incorrect packet description - these lead 935 * to various kernel crashed. 936 */ 937 rmb(); 938 939 cqe_fp_flags = cqe_fp->type_error_flags; 940 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 941 942 DP(NETIF_MSG_RX_STATUS, 943 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 944 CQE_TYPE(cqe_fp_flags), 945 cqe_fp_flags, cqe_fp->status_flags, 946 le32_to_cpu(cqe_fp->rss_hash_result), 947 le16_to_cpu(cqe_fp->vlan_tag), 948 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 949 950 /* is this a slowpath msg? */ 951 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 952 bnx2x_sp_event(fp, cqe); 953 goto next_cqe; 954 } 955 956 rx_buf = &fp->rx_buf_ring[bd_cons]; 957 data = rx_buf->data; 958 959 if (!CQE_TYPE_FAST(cqe_fp_type)) { 960 struct bnx2x_agg_info *tpa_info; 961 u16 frag_size, pages; 962 #ifdef BNX2X_STOP_ON_ERROR 963 /* sanity check */ 964 if (fp->mode == TPA_MODE_DISABLED && 965 (CQE_TYPE_START(cqe_fp_type) || 966 CQE_TYPE_STOP(cqe_fp_type))) 967 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n", 968 CQE_TYPE(cqe_fp_type)); 969 #endif 970 971 if (CQE_TYPE_START(cqe_fp_type)) { 972 u16 queue = cqe_fp->queue_index; 973 DP(NETIF_MSG_RX_STATUS, 974 "calling tpa_start on queue %d\n", 975 queue); 976 977 bnx2x_tpa_start(fp, queue, 978 bd_cons, bd_prod, 979 cqe_fp); 980 981 goto next_rx; 982 } 983 queue = cqe->end_agg_cqe.queue_index; 984 tpa_info = &fp->tpa_info[queue]; 985 DP(NETIF_MSG_RX_STATUS, 986 "calling tpa_stop on queue %d\n", 987 queue); 988 989 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 990 tpa_info->len_on_bd; 991 992 if (fp->mode == TPA_MODE_GRO) 993 pages = (frag_size + tpa_info->full_page - 1) / 994 tpa_info->full_page; 995 else 996 pages = SGE_PAGE_ALIGN(frag_size) >> 997 SGE_PAGE_SHIFT; 998 999 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 1000 &cqe->end_agg_cqe, comp_ring_cons); 1001 #ifdef BNX2X_STOP_ON_ERROR 1002 if (bp->panic) 1003 return 0; 1004 #endif 1005 1006 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 1007 goto next_cqe; 1008 } 1009 /* non TPA */ 1010 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 1011 pad = cqe_fp->placement_offset; 1012 dma_sync_single_for_cpu(&bp->pdev->dev, 1013 dma_unmap_addr(rx_buf, mapping), 1014 pad + RX_COPY_THRESH, 1015 DMA_FROM_DEVICE); 1016 pad += NET_SKB_PAD; 1017 prefetch(data + pad); /* speedup eth_type_trans() */ 1018 /* is this an error packet? */ 1019 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 1020 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1021 "ERROR flags %x rx packet %u\n", 1022 cqe_fp_flags, sw_comp_cons); 1023 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 1024 goto reuse_rx; 1025 } 1026 1027 /* Since we don't have a jumbo ring 1028 * copy small packets if mtu > 1500 1029 */ 1030 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 1031 (len <= RX_COPY_THRESH)) { 1032 skb = napi_alloc_skb(&fp->napi, len); 1033 if (skb == NULL) { 1034 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1035 "ERROR packet dropped because of alloc failure\n"); 1036 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1037 goto reuse_rx; 1038 } 1039 memcpy(skb->data, data + pad, len); 1040 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1041 } else { 1042 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1043 GFP_ATOMIC) == 0)) { 1044 dma_unmap_single(&bp->pdev->dev, 1045 dma_unmap_addr(rx_buf, mapping), 1046 fp->rx_buf_size, 1047 DMA_FROM_DEVICE); 1048 skb = build_skb(data, fp->rx_frag_size); 1049 if (unlikely(!skb)) { 1050 bnx2x_frag_free(fp, data); 1051 bnx2x_fp_qstats(bp, fp)-> 1052 rx_skb_alloc_failed++; 1053 goto next_rx; 1054 } 1055 skb_reserve(skb, pad); 1056 } else { 1057 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1058 "ERROR packet dropped because of alloc failure\n"); 1059 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1060 reuse_rx: 1061 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1062 goto next_rx; 1063 } 1064 } 1065 1066 skb_put(skb, len); 1067 skb->protocol = eth_type_trans(skb, bp->dev); 1068 1069 /* Set Toeplitz hash for a none-LRO skb */ 1070 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1071 skb_set_hash(skb, rxhash, rxhash_type); 1072 1073 skb_checksum_none_assert(skb); 1074 1075 if (bp->dev->features & NETIF_F_RXCSUM) 1076 bnx2x_csum_validate(skb, cqe, fp, 1077 bnx2x_fp_qstats(bp, fp)); 1078 1079 skb_record_rx_queue(skb, fp->rx_queue); 1080 1081 /* Check if this packet was timestamped */ 1082 if (unlikely(cqe->fast_path_cqe.type_error_flags & 1083 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT))) 1084 bnx2x_set_rx_ts(bp, skb); 1085 1086 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1087 PARSING_FLAGS_VLAN) 1088 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1089 le16_to_cpu(cqe_fp->vlan_tag)); 1090 1091 napi_gro_receive(&fp->napi, skb); 1092 next_rx: 1093 rx_buf->data = NULL; 1094 1095 bd_cons = NEXT_RX_IDX(bd_cons); 1096 bd_prod = NEXT_RX_IDX(bd_prod); 1097 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1098 rx_pkt++; 1099 next_cqe: 1100 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1101 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1102 1103 /* mark CQE as free */ 1104 BNX2X_SEED_CQE(cqe_fp); 1105 1106 if (rx_pkt == budget) 1107 break; 1108 1109 comp_ring_cons = RCQ_BD(sw_comp_cons); 1110 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1111 cqe_fp = &cqe->fast_path_cqe; 1112 } /* while */ 1113 1114 fp->rx_bd_cons = bd_cons; 1115 fp->rx_bd_prod = bd_prod_fw; 1116 fp->rx_comp_cons = sw_comp_cons; 1117 fp->rx_comp_prod = sw_comp_prod; 1118 1119 /* Update producers */ 1120 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1121 fp->rx_sge_prod); 1122 1123 return rx_pkt; 1124 } 1125 1126 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1127 { 1128 struct bnx2x_fastpath *fp = fp_cookie; 1129 struct bnx2x *bp = fp->bp; 1130 u8 cos; 1131 1132 DP(NETIF_MSG_INTR, 1133 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1134 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1135 1136 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1137 1138 #ifdef BNX2X_STOP_ON_ERROR 1139 if (unlikely(bp->panic)) 1140 return IRQ_HANDLED; 1141 #endif 1142 1143 /* Handle Rx and Tx according to MSI-X vector */ 1144 for_each_cos_in_tx_queue(fp, cos) 1145 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1146 1147 prefetch(&fp->sb_running_index[SM_RX_ID]); 1148 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1149 1150 return IRQ_HANDLED; 1151 } 1152 1153 /* HW Lock for shared dual port PHYs */ 1154 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1155 { 1156 mutex_lock(&bp->port.phy_mutex); 1157 1158 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1159 } 1160 1161 void bnx2x_release_phy_lock(struct bnx2x *bp) 1162 { 1163 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1164 1165 mutex_unlock(&bp->port.phy_mutex); 1166 } 1167 1168 /* calculates MF speed according to current linespeed and MF configuration */ 1169 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1170 { 1171 u16 line_speed = bp->link_vars.line_speed; 1172 if (IS_MF(bp)) { 1173 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1174 bp->mf_config[BP_VN(bp)]); 1175 1176 /* Calculate the current MAX line speed limit for the MF 1177 * devices 1178 */ 1179 if (IS_MF_PERCENT_BW(bp)) 1180 line_speed = (line_speed * maxCfg) / 100; 1181 else { /* SD mode */ 1182 u16 vn_max_rate = maxCfg * 100; 1183 1184 if (vn_max_rate < line_speed) 1185 line_speed = vn_max_rate; 1186 } 1187 } 1188 1189 return line_speed; 1190 } 1191 1192 /** 1193 * bnx2x_fill_report_data - fill link report data to report 1194 * 1195 * @bp: driver handle 1196 * @data: link state to update 1197 * 1198 * It uses a none-atomic bit operations because is called under the mutex. 1199 */ 1200 static void bnx2x_fill_report_data(struct bnx2x *bp, 1201 struct bnx2x_link_report_data *data) 1202 { 1203 memset(data, 0, sizeof(*data)); 1204 1205 if (IS_PF(bp)) { 1206 /* Fill the report data: effective line speed */ 1207 data->line_speed = bnx2x_get_mf_speed(bp); 1208 1209 /* Link is down */ 1210 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1211 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1212 &data->link_report_flags); 1213 1214 if (!BNX2X_NUM_ETH_QUEUES(bp)) 1215 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1216 &data->link_report_flags); 1217 1218 /* Full DUPLEX */ 1219 if (bp->link_vars.duplex == DUPLEX_FULL) 1220 __set_bit(BNX2X_LINK_REPORT_FD, 1221 &data->link_report_flags); 1222 1223 /* Rx Flow Control is ON */ 1224 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1225 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1226 &data->link_report_flags); 1227 1228 /* Tx Flow Control is ON */ 1229 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1230 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1231 &data->link_report_flags); 1232 } else { /* VF */ 1233 *data = bp->vf_link_vars; 1234 } 1235 } 1236 1237 /** 1238 * bnx2x_link_report - report link status to OS. 1239 * 1240 * @bp: driver handle 1241 * 1242 * Calls the __bnx2x_link_report() under the same locking scheme 1243 * as a link/PHY state managing code to ensure a consistent link 1244 * reporting. 1245 */ 1246 1247 void bnx2x_link_report(struct bnx2x *bp) 1248 { 1249 bnx2x_acquire_phy_lock(bp); 1250 __bnx2x_link_report(bp); 1251 bnx2x_release_phy_lock(bp); 1252 } 1253 1254 /** 1255 * __bnx2x_link_report - report link status to OS. 1256 * 1257 * @bp: driver handle 1258 * 1259 * None atomic implementation. 1260 * Should be called under the phy_lock. 1261 */ 1262 void __bnx2x_link_report(struct bnx2x *bp) 1263 { 1264 struct bnx2x_link_report_data cur_data; 1265 1266 if (bp->force_link_down) { 1267 bp->link_vars.link_up = 0; 1268 return; 1269 } 1270 1271 /* reread mf_cfg */ 1272 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1273 bnx2x_read_mf_cfg(bp); 1274 1275 /* Read the current link report info */ 1276 bnx2x_fill_report_data(bp, &cur_data); 1277 1278 /* Don't report link down or exactly the same link status twice */ 1279 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1280 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1281 &bp->last_reported_link.link_report_flags) && 1282 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1283 &cur_data.link_report_flags))) 1284 return; 1285 1286 bp->link_cnt++; 1287 1288 /* We are going to report a new link parameters now - 1289 * remember the current data for the next time. 1290 */ 1291 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1292 1293 /* propagate status to VFs */ 1294 if (IS_PF(bp)) 1295 bnx2x_iov_link_update(bp); 1296 1297 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1298 &cur_data.link_report_flags)) { 1299 netif_carrier_off(bp->dev); 1300 netdev_err(bp->dev, "NIC Link is Down\n"); 1301 return; 1302 } else { 1303 const char *duplex; 1304 const char *flow; 1305 1306 netif_carrier_on(bp->dev); 1307 1308 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1309 &cur_data.link_report_flags)) 1310 duplex = "full"; 1311 else 1312 duplex = "half"; 1313 1314 /* Handle the FC at the end so that only these flags would be 1315 * possibly set. This way we may easily check if there is no FC 1316 * enabled. 1317 */ 1318 if (cur_data.link_report_flags) { 1319 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1320 &cur_data.link_report_flags)) { 1321 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1322 &cur_data.link_report_flags)) 1323 flow = "ON - receive & transmit"; 1324 else 1325 flow = "ON - receive"; 1326 } else { 1327 flow = "ON - transmit"; 1328 } 1329 } else { 1330 flow = "none"; 1331 } 1332 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1333 cur_data.line_speed, duplex, flow); 1334 } 1335 } 1336 1337 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1338 { 1339 int i; 1340 1341 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1342 struct eth_rx_sge *sge; 1343 1344 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1345 sge->addr_hi = 1346 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1347 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1348 1349 sge->addr_lo = 1350 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1351 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1352 } 1353 } 1354 1355 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1356 struct bnx2x_fastpath *fp, int last) 1357 { 1358 int i; 1359 1360 for (i = 0; i < last; i++) { 1361 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1362 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1363 u8 *data = first_buf->data; 1364 1365 if (data == NULL) { 1366 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1367 continue; 1368 } 1369 if (tpa_info->tpa_state == BNX2X_TPA_START) 1370 dma_unmap_single(&bp->pdev->dev, 1371 dma_unmap_addr(first_buf, mapping), 1372 fp->rx_buf_size, DMA_FROM_DEVICE); 1373 bnx2x_frag_free(fp, data); 1374 first_buf->data = NULL; 1375 } 1376 } 1377 1378 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1379 { 1380 int j; 1381 1382 for_each_rx_queue_cnic(bp, j) { 1383 struct bnx2x_fastpath *fp = &bp->fp[j]; 1384 1385 fp->rx_bd_cons = 0; 1386 1387 /* Activate BD ring */ 1388 /* Warning! 1389 * this will generate an interrupt (to the TSTORM) 1390 * must only be done after chip is initialized 1391 */ 1392 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1393 fp->rx_sge_prod); 1394 } 1395 } 1396 1397 void bnx2x_init_rx_rings(struct bnx2x *bp) 1398 { 1399 int func = BP_FUNC(bp); 1400 u16 ring_prod; 1401 int i, j; 1402 1403 /* Allocate TPA resources */ 1404 for_each_eth_queue(bp, j) { 1405 struct bnx2x_fastpath *fp = &bp->fp[j]; 1406 1407 DP(NETIF_MSG_IFUP, 1408 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1409 1410 if (fp->mode != TPA_MODE_DISABLED) { 1411 /* Fill the per-aggregation pool */ 1412 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1413 struct bnx2x_agg_info *tpa_info = 1414 &fp->tpa_info[i]; 1415 struct sw_rx_bd *first_buf = 1416 &tpa_info->first_buf; 1417 1418 first_buf->data = 1419 bnx2x_frag_alloc(fp, GFP_KERNEL); 1420 if (!first_buf->data) { 1421 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1422 j); 1423 bnx2x_free_tpa_pool(bp, fp, i); 1424 fp->mode = TPA_MODE_DISABLED; 1425 break; 1426 } 1427 dma_unmap_addr_set(first_buf, mapping, 0); 1428 tpa_info->tpa_state = BNX2X_TPA_STOP; 1429 } 1430 1431 /* "next page" elements initialization */ 1432 bnx2x_set_next_page_sgl(fp); 1433 1434 /* set SGEs bit mask */ 1435 bnx2x_init_sge_ring_bit_mask(fp); 1436 1437 /* Allocate SGEs and initialize the ring elements */ 1438 for (i = 0, ring_prod = 0; 1439 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1440 1441 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1442 GFP_KERNEL) < 0) { 1443 BNX2X_ERR("was only able to allocate %d rx sges\n", 1444 i); 1445 BNX2X_ERR("disabling TPA for queue[%d]\n", 1446 j); 1447 /* Cleanup already allocated elements */ 1448 bnx2x_free_rx_sge_range(bp, fp, 1449 ring_prod); 1450 bnx2x_free_tpa_pool(bp, fp, 1451 MAX_AGG_QS(bp)); 1452 fp->mode = TPA_MODE_DISABLED; 1453 ring_prod = 0; 1454 break; 1455 } 1456 ring_prod = NEXT_SGE_IDX(ring_prod); 1457 } 1458 1459 fp->rx_sge_prod = ring_prod; 1460 } 1461 } 1462 1463 for_each_eth_queue(bp, j) { 1464 struct bnx2x_fastpath *fp = &bp->fp[j]; 1465 1466 fp->rx_bd_cons = 0; 1467 1468 /* Activate BD ring */ 1469 /* Warning! 1470 * this will generate an interrupt (to the TSTORM) 1471 * must only be done after chip is initialized 1472 */ 1473 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1474 fp->rx_sge_prod); 1475 1476 if (j != 0) 1477 continue; 1478 1479 if (CHIP_IS_E1(bp)) { 1480 REG_WR(bp, BAR_USTRORM_INTMEM + 1481 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1482 U64_LO(fp->rx_comp_mapping)); 1483 REG_WR(bp, BAR_USTRORM_INTMEM + 1484 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1485 U64_HI(fp->rx_comp_mapping)); 1486 } 1487 } 1488 } 1489 1490 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1491 { 1492 u8 cos; 1493 struct bnx2x *bp = fp->bp; 1494 1495 for_each_cos_in_tx_queue(fp, cos) { 1496 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1497 unsigned pkts_compl = 0, bytes_compl = 0; 1498 1499 u16 sw_prod = txdata->tx_pkt_prod; 1500 u16 sw_cons = txdata->tx_pkt_cons; 1501 1502 while (sw_cons != sw_prod) { 1503 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1504 &pkts_compl, &bytes_compl); 1505 sw_cons++; 1506 } 1507 1508 netdev_tx_reset_queue( 1509 netdev_get_tx_queue(bp->dev, 1510 txdata->txq_index)); 1511 } 1512 } 1513 1514 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1515 { 1516 int i; 1517 1518 for_each_tx_queue_cnic(bp, i) { 1519 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1520 } 1521 } 1522 1523 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1524 { 1525 int i; 1526 1527 for_each_eth_queue(bp, i) { 1528 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1529 } 1530 } 1531 1532 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1533 { 1534 struct bnx2x *bp = fp->bp; 1535 int i; 1536 1537 /* ring wasn't allocated */ 1538 if (fp->rx_buf_ring == NULL) 1539 return; 1540 1541 for (i = 0; i < NUM_RX_BD; i++) { 1542 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1543 u8 *data = rx_buf->data; 1544 1545 if (data == NULL) 1546 continue; 1547 dma_unmap_single(&bp->pdev->dev, 1548 dma_unmap_addr(rx_buf, mapping), 1549 fp->rx_buf_size, DMA_FROM_DEVICE); 1550 1551 rx_buf->data = NULL; 1552 bnx2x_frag_free(fp, data); 1553 } 1554 } 1555 1556 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1557 { 1558 int j; 1559 1560 for_each_rx_queue_cnic(bp, j) { 1561 bnx2x_free_rx_bds(&bp->fp[j]); 1562 } 1563 } 1564 1565 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1566 { 1567 int j; 1568 1569 for_each_eth_queue(bp, j) { 1570 struct bnx2x_fastpath *fp = &bp->fp[j]; 1571 1572 bnx2x_free_rx_bds(fp); 1573 1574 if (fp->mode != TPA_MODE_DISABLED) 1575 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1576 } 1577 } 1578 1579 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1580 { 1581 bnx2x_free_tx_skbs_cnic(bp); 1582 bnx2x_free_rx_skbs_cnic(bp); 1583 } 1584 1585 void bnx2x_free_skbs(struct bnx2x *bp) 1586 { 1587 bnx2x_free_tx_skbs(bp); 1588 bnx2x_free_rx_skbs(bp); 1589 } 1590 1591 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1592 { 1593 /* load old values */ 1594 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1595 1596 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1597 /* leave all but MAX value */ 1598 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1599 1600 /* set new MAX value */ 1601 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1602 & FUNC_MF_CFG_MAX_BW_MASK; 1603 1604 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1605 } 1606 } 1607 1608 /** 1609 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1610 * 1611 * @bp: driver handle 1612 * @nvecs: number of vectors to be released 1613 */ 1614 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1615 { 1616 int i, offset = 0; 1617 1618 if (nvecs == offset) 1619 return; 1620 1621 /* VFs don't have a default SB */ 1622 if (IS_PF(bp)) { 1623 free_irq(bp->msix_table[offset].vector, bp->dev); 1624 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1625 bp->msix_table[offset].vector); 1626 offset++; 1627 } 1628 1629 if (CNIC_SUPPORT(bp)) { 1630 if (nvecs == offset) 1631 return; 1632 offset++; 1633 } 1634 1635 for_each_eth_queue(bp, i) { 1636 if (nvecs == offset) 1637 return; 1638 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1639 i, bp->msix_table[offset].vector); 1640 1641 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1642 } 1643 } 1644 1645 void bnx2x_free_irq(struct bnx2x *bp) 1646 { 1647 if (bp->flags & USING_MSIX_FLAG && 1648 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1649 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1650 1651 /* vfs don't have a default status block */ 1652 if (IS_PF(bp)) 1653 nvecs++; 1654 1655 bnx2x_free_msix_irqs(bp, nvecs); 1656 } else { 1657 free_irq(bp->dev->irq, bp->dev); 1658 } 1659 } 1660 1661 int bnx2x_enable_msix(struct bnx2x *bp) 1662 { 1663 int msix_vec = 0, i, rc; 1664 1665 /* VFs don't have a default status block */ 1666 if (IS_PF(bp)) { 1667 bp->msix_table[msix_vec].entry = msix_vec; 1668 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1669 bp->msix_table[0].entry); 1670 msix_vec++; 1671 } 1672 1673 /* Cnic requires an msix vector for itself */ 1674 if (CNIC_SUPPORT(bp)) { 1675 bp->msix_table[msix_vec].entry = msix_vec; 1676 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1677 msix_vec, bp->msix_table[msix_vec].entry); 1678 msix_vec++; 1679 } 1680 1681 /* We need separate vectors for ETH queues only (not FCoE) */ 1682 for_each_eth_queue(bp, i) { 1683 bp->msix_table[msix_vec].entry = msix_vec; 1684 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1685 msix_vec, msix_vec, i); 1686 msix_vec++; 1687 } 1688 1689 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1690 msix_vec); 1691 1692 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1693 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); 1694 /* 1695 * reconfigure number of tx/rx queues according to available 1696 * MSI-X vectors 1697 */ 1698 if (rc == -ENOSPC) { 1699 /* Get by with single vector */ 1700 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); 1701 if (rc < 0) { 1702 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1703 rc); 1704 goto no_msix; 1705 } 1706 1707 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1708 bp->flags |= USING_SINGLE_MSIX_FLAG; 1709 1710 BNX2X_DEV_INFO("set number of queues to 1\n"); 1711 bp->num_ethernet_queues = 1; 1712 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1713 } else if (rc < 0) { 1714 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1715 goto no_msix; 1716 } else if (rc < msix_vec) { 1717 /* how less vectors we will have? */ 1718 int diff = msix_vec - rc; 1719 1720 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1721 1722 /* 1723 * decrease number of queues by number of unallocated entries 1724 */ 1725 bp->num_ethernet_queues -= diff; 1726 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1727 1728 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1729 bp->num_queues); 1730 } 1731 1732 bp->flags |= USING_MSIX_FLAG; 1733 1734 return 0; 1735 1736 no_msix: 1737 /* fall to INTx if not enough memory */ 1738 if (rc == -ENOMEM) 1739 bp->flags |= DISABLE_MSI_FLAG; 1740 1741 return rc; 1742 } 1743 1744 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1745 { 1746 int i, rc, offset = 0; 1747 1748 /* no default status block for vf */ 1749 if (IS_PF(bp)) { 1750 rc = request_irq(bp->msix_table[offset++].vector, 1751 bnx2x_msix_sp_int, 0, 1752 bp->dev->name, bp->dev); 1753 if (rc) { 1754 BNX2X_ERR("request sp irq failed\n"); 1755 return -EBUSY; 1756 } 1757 } 1758 1759 if (CNIC_SUPPORT(bp)) 1760 offset++; 1761 1762 for_each_eth_queue(bp, i) { 1763 struct bnx2x_fastpath *fp = &bp->fp[i]; 1764 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1765 bp->dev->name, i); 1766 1767 rc = request_irq(bp->msix_table[offset].vector, 1768 bnx2x_msix_fp_int, 0, fp->name, fp); 1769 if (rc) { 1770 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1771 bp->msix_table[offset].vector, rc); 1772 bnx2x_free_msix_irqs(bp, offset); 1773 return -EBUSY; 1774 } 1775 1776 offset++; 1777 } 1778 1779 i = BNX2X_NUM_ETH_QUEUES(bp); 1780 if (IS_PF(bp)) { 1781 offset = 1 + CNIC_SUPPORT(bp); 1782 netdev_info(bp->dev, 1783 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1784 bp->msix_table[0].vector, 1785 0, bp->msix_table[offset].vector, 1786 i - 1, bp->msix_table[offset + i - 1].vector); 1787 } else { 1788 offset = CNIC_SUPPORT(bp); 1789 netdev_info(bp->dev, 1790 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1791 0, bp->msix_table[offset].vector, 1792 i - 1, bp->msix_table[offset + i - 1].vector); 1793 } 1794 return 0; 1795 } 1796 1797 int bnx2x_enable_msi(struct bnx2x *bp) 1798 { 1799 int rc; 1800 1801 rc = pci_enable_msi(bp->pdev); 1802 if (rc) { 1803 BNX2X_DEV_INFO("MSI is not attainable\n"); 1804 return -1; 1805 } 1806 bp->flags |= USING_MSI_FLAG; 1807 1808 return 0; 1809 } 1810 1811 static int bnx2x_req_irq(struct bnx2x *bp) 1812 { 1813 unsigned long flags; 1814 unsigned int irq; 1815 1816 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1817 flags = 0; 1818 else 1819 flags = IRQF_SHARED; 1820 1821 if (bp->flags & USING_MSIX_FLAG) 1822 irq = bp->msix_table[0].vector; 1823 else 1824 irq = bp->pdev->irq; 1825 1826 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1827 } 1828 1829 static int bnx2x_setup_irqs(struct bnx2x *bp) 1830 { 1831 int rc = 0; 1832 if (bp->flags & USING_MSIX_FLAG && 1833 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1834 rc = bnx2x_req_msix_irqs(bp); 1835 if (rc) 1836 return rc; 1837 } else { 1838 rc = bnx2x_req_irq(bp); 1839 if (rc) { 1840 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1841 return rc; 1842 } 1843 if (bp->flags & USING_MSI_FLAG) { 1844 bp->dev->irq = bp->pdev->irq; 1845 netdev_info(bp->dev, "using MSI IRQ %d\n", 1846 bp->dev->irq); 1847 } 1848 if (bp->flags & USING_MSIX_FLAG) { 1849 bp->dev->irq = bp->msix_table[0].vector; 1850 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1851 bp->dev->irq); 1852 } 1853 } 1854 1855 return 0; 1856 } 1857 1858 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1859 { 1860 int i; 1861 1862 for_each_rx_queue_cnic(bp, i) { 1863 napi_enable(&bnx2x_fp(bp, i, napi)); 1864 } 1865 } 1866 1867 static void bnx2x_napi_enable(struct bnx2x *bp) 1868 { 1869 int i; 1870 1871 for_each_eth_queue(bp, i) { 1872 napi_enable(&bnx2x_fp(bp, i, napi)); 1873 } 1874 } 1875 1876 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1877 { 1878 int i; 1879 1880 for_each_rx_queue_cnic(bp, i) { 1881 napi_disable(&bnx2x_fp(bp, i, napi)); 1882 } 1883 } 1884 1885 static void bnx2x_napi_disable(struct bnx2x *bp) 1886 { 1887 int i; 1888 1889 for_each_eth_queue(bp, i) { 1890 napi_disable(&bnx2x_fp(bp, i, napi)); 1891 } 1892 } 1893 1894 void bnx2x_netif_start(struct bnx2x *bp) 1895 { 1896 if (netif_running(bp->dev)) { 1897 bnx2x_napi_enable(bp); 1898 if (CNIC_LOADED(bp)) 1899 bnx2x_napi_enable_cnic(bp); 1900 bnx2x_int_enable(bp); 1901 if (bp->state == BNX2X_STATE_OPEN) 1902 netif_tx_wake_all_queues(bp->dev); 1903 } 1904 } 1905 1906 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1907 { 1908 bnx2x_int_disable_sync(bp, disable_hw); 1909 bnx2x_napi_disable(bp); 1910 if (CNIC_LOADED(bp)) 1911 bnx2x_napi_disable_cnic(bp); 1912 } 1913 1914 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1915 struct net_device *sb_dev) 1916 { 1917 struct bnx2x *bp = netdev_priv(dev); 1918 1919 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1920 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1921 u16 ether_type = ntohs(hdr->h_proto); 1922 1923 /* Skip VLAN tag if present */ 1924 if (ether_type == ETH_P_8021Q) { 1925 struct vlan_ethhdr *vhdr = 1926 (struct vlan_ethhdr *)skb->data; 1927 1928 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1929 } 1930 1931 /* If ethertype is FCoE or FIP - use FCoE ring */ 1932 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1933 return bnx2x_fcoe_tx(bp, txq_index); 1934 } 1935 1936 /* select a non-FCoE queue */ 1937 return netdev_pick_tx(dev, skb, NULL) % (BNX2X_NUM_ETH_QUEUES(bp)); 1938 } 1939 1940 void bnx2x_set_num_queues(struct bnx2x *bp) 1941 { 1942 /* RSS queues */ 1943 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1944 1945 /* override in STORAGE SD modes */ 1946 if (IS_MF_STORAGE_ONLY(bp)) 1947 bp->num_ethernet_queues = 1; 1948 1949 /* Add special queues */ 1950 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1951 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1952 1953 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1954 } 1955 1956 /** 1957 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1958 * 1959 * @bp: Driver handle 1960 * 1961 * We currently support for at most 16 Tx queues for each CoS thus we will 1962 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1963 * bp->max_cos. 1964 * 1965 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1966 * index after all ETH L2 indices. 1967 * 1968 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1969 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1970 * 16..31,...) with indices that are not coupled with any real Tx queue. 1971 * 1972 * The proper configuration of skb->queue_mapping is handled by 1973 * bnx2x_select_queue() and __skb_tx_hash(). 1974 * 1975 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1976 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1977 */ 1978 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1979 { 1980 int rc, tx, rx; 1981 1982 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1983 rx = BNX2X_NUM_ETH_QUEUES(bp); 1984 1985 /* account for fcoe queue */ 1986 if (include_cnic && !NO_FCOE(bp)) { 1987 rx++; 1988 tx++; 1989 } 1990 1991 rc = netif_set_real_num_tx_queues(bp->dev, tx); 1992 if (rc) { 1993 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 1994 return rc; 1995 } 1996 rc = netif_set_real_num_rx_queues(bp->dev, rx); 1997 if (rc) { 1998 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 1999 return rc; 2000 } 2001 2002 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 2003 tx, rx); 2004 2005 return rc; 2006 } 2007 2008 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 2009 { 2010 int i; 2011 2012 for_each_queue(bp, i) { 2013 struct bnx2x_fastpath *fp = &bp->fp[i]; 2014 u32 mtu; 2015 2016 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 2017 if (IS_FCOE_IDX(i)) 2018 /* 2019 * Although there are no IP frames expected to arrive to 2020 * this ring we still want to add an 2021 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 2022 * overrun attack. 2023 */ 2024 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 2025 else 2026 mtu = bp->dev->mtu; 2027 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 2028 IP_HEADER_ALIGNMENT_PADDING + 2029 ETH_OVERHEAD + 2030 mtu + 2031 BNX2X_FW_RX_ALIGN_END; 2032 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size); 2033 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 2034 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 2035 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 2036 else 2037 fp->rx_frag_size = 0; 2038 } 2039 } 2040 2041 static int bnx2x_init_rss(struct bnx2x *bp) 2042 { 2043 int i; 2044 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2045 2046 /* Prepare the initial contents for the indirection table if RSS is 2047 * enabled 2048 */ 2049 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2050 bp->rss_conf_obj.ind_table[i] = 2051 bp->fp->cl_id + 2052 ethtool_rxfh_indir_default(i, num_eth_queues); 2053 2054 /* 2055 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2056 * per-port, so if explicit configuration is needed , do it only 2057 * for a PMF. 2058 * 2059 * For 57712 and newer on the other hand it's a per-function 2060 * configuration. 2061 */ 2062 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2063 } 2064 2065 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2066 bool config_hash, bool enable) 2067 { 2068 struct bnx2x_config_rss_params params = {NULL}; 2069 2070 /* Although RSS is meaningless when there is a single HW queue we 2071 * still need it enabled in order to have HW Rx hash generated. 2072 * 2073 * if (!is_eth_multi(bp)) 2074 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2075 */ 2076 2077 params.rss_obj = rss_obj; 2078 2079 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2080 2081 if (enable) { 2082 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2083 2084 /* RSS configuration */ 2085 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2086 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2087 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2088 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2089 if (rss_obj->udp_rss_v4) 2090 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2091 if (rss_obj->udp_rss_v6) 2092 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2093 2094 if (!CHIP_IS_E1x(bp)) { 2095 /* valid only for TUNN_MODE_VXLAN tunnel mode */ 2096 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags); 2097 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags); 2098 2099 /* valid only for TUNN_MODE_GRE tunnel mode */ 2100 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags); 2101 } 2102 } else { 2103 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2104 } 2105 2106 /* Hash bits */ 2107 params.rss_result_mask = MULTI_MASK; 2108 2109 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2110 2111 if (config_hash) { 2112 /* RSS keys */ 2113 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4); 2114 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2115 } 2116 2117 if (IS_PF(bp)) 2118 return bnx2x_config_rss(bp, ¶ms); 2119 else 2120 return bnx2x_vfpf_config_rss(bp, ¶ms); 2121 } 2122 2123 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2124 { 2125 struct bnx2x_func_state_params func_params = {NULL}; 2126 2127 /* Prepare parameters for function state transitions */ 2128 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2129 2130 func_params.f_obj = &bp->func_obj; 2131 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2132 2133 func_params.params.hw_init.load_phase = load_code; 2134 2135 return bnx2x_func_state_change(bp, &func_params); 2136 } 2137 2138 /* 2139 * Cleans the object that have internal lists without sending 2140 * ramrods. Should be run when interrupts are disabled. 2141 */ 2142 void bnx2x_squeeze_objects(struct bnx2x *bp) 2143 { 2144 int rc; 2145 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2146 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2147 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2148 2149 /***************** Cleanup MACs' object first *************************/ 2150 2151 /* Wait for completion of requested */ 2152 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2153 /* Perform a dry cleanup */ 2154 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2155 2156 /* Clean ETH primary MAC */ 2157 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2158 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2159 &ramrod_flags); 2160 if (rc != 0) 2161 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2162 2163 /* Cleanup UC list */ 2164 vlan_mac_flags = 0; 2165 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2166 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2167 &ramrod_flags); 2168 if (rc != 0) 2169 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2170 2171 /***************** Now clean mcast object *****************************/ 2172 rparam.mcast_obj = &bp->mcast_obj; 2173 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2174 2175 /* Add a DEL command... - Since we're doing a driver cleanup only, 2176 * we take a lock surrounding both the initial send and the CONTs, 2177 * as we don't want a true completion to disrupt us in the middle. 2178 */ 2179 netif_addr_lock_bh(bp->dev); 2180 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2181 if (rc < 0) 2182 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2183 rc); 2184 2185 /* ...and wait until all pending commands are cleared */ 2186 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2187 while (rc != 0) { 2188 if (rc < 0) { 2189 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2190 rc); 2191 netif_addr_unlock_bh(bp->dev); 2192 return; 2193 } 2194 2195 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2196 } 2197 netif_addr_unlock_bh(bp->dev); 2198 } 2199 2200 #ifndef BNX2X_STOP_ON_ERROR 2201 #define LOAD_ERROR_EXIT(bp, label) \ 2202 do { \ 2203 (bp)->state = BNX2X_STATE_ERROR; \ 2204 goto label; \ 2205 } while (0) 2206 2207 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2208 do { \ 2209 bp->cnic_loaded = false; \ 2210 goto label; \ 2211 } while (0) 2212 #else /*BNX2X_STOP_ON_ERROR*/ 2213 #define LOAD_ERROR_EXIT(bp, label) \ 2214 do { \ 2215 (bp)->state = BNX2X_STATE_ERROR; \ 2216 (bp)->panic = 1; \ 2217 return -EBUSY; \ 2218 } while (0) 2219 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2220 do { \ 2221 bp->cnic_loaded = false; \ 2222 (bp)->panic = 1; \ 2223 return -EBUSY; \ 2224 } while (0) 2225 #endif /*BNX2X_STOP_ON_ERROR*/ 2226 2227 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2228 { 2229 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2230 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2231 return; 2232 } 2233 2234 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2235 { 2236 int num_groups, vf_headroom = 0; 2237 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2238 2239 /* number of queues for statistics is number of eth queues + FCoE */ 2240 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2241 2242 /* Total number of FW statistics requests = 2243 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2244 * and fcoe l2 queue) stats + num of queues (which includes another 1 2245 * for fcoe l2 queue if applicable) 2246 */ 2247 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2248 2249 /* vf stats appear in the request list, but their data is allocated by 2250 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2251 * it is used to determine where to place the vf stats queries in the 2252 * request struct 2253 */ 2254 if (IS_SRIOV(bp)) 2255 vf_headroom = bnx2x_vf_headroom(bp); 2256 2257 /* Request is built from stats_query_header and an array of 2258 * stats_query_cmd_group each of which contains 2259 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2260 * configured in the stats_query_header. 2261 */ 2262 num_groups = 2263 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2264 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2265 1 : 0)); 2266 2267 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2268 bp->fw_stats_num, vf_headroom, num_groups); 2269 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2270 num_groups * sizeof(struct stats_query_cmd_group); 2271 2272 /* Data for statistics requests + stats_counter 2273 * stats_counter holds per-STORM counters that are incremented 2274 * when STORM has finished with the current request. 2275 * memory for FCoE offloaded statistics are counted anyway, 2276 * even if they will not be sent. 2277 * VF stats are not accounted for here as the data of VF stats is stored 2278 * in memory allocated by the VF, not here. 2279 */ 2280 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2281 sizeof(struct per_pf_stats) + 2282 sizeof(struct fcoe_statistics_params) + 2283 sizeof(struct per_queue_stats) * num_queue_stats + 2284 sizeof(struct stats_counter); 2285 2286 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, 2287 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2288 if (!bp->fw_stats) 2289 goto alloc_mem_err; 2290 2291 /* Set shortcuts */ 2292 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2293 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2294 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2295 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2296 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2297 bp->fw_stats_req_sz; 2298 2299 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2300 U64_HI(bp->fw_stats_req_mapping), 2301 U64_LO(bp->fw_stats_req_mapping)); 2302 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2303 U64_HI(bp->fw_stats_data_mapping), 2304 U64_LO(bp->fw_stats_data_mapping)); 2305 return 0; 2306 2307 alloc_mem_err: 2308 bnx2x_free_fw_stats_mem(bp); 2309 BNX2X_ERR("Can't allocate FW stats memory\n"); 2310 return -ENOMEM; 2311 } 2312 2313 /* send load request to mcp and analyze response */ 2314 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2315 { 2316 u32 param; 2317 2318 /* init fw_seq */ 2319 bp->fw_seq = 2320 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2321 DRV_MSG_SEQ_NUMBER_MASK); 2322 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2323 2324 /* Get current FW pulse sequence */ 2325 bp->fw_drv_pulse_wr_seq = 2326 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2327 DRV_PULSE_SEQ_MASK); 2328 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2329 2330 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2331 2332 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2333 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2334 2335 /* load request */ 2336 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2337 2338 /* if mcp fails to respond we must abort */ 2339 if (!(*load_code)) { 2340 BNX2X_ERR("MCP response failure, aborting\n"); 2341 return -EBUSY; 2342 } 2343 2344 /* If mcp refused (e.g. other port is in diagnostic mode) we 2345 * must abort 2346 */ 2347 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2348 BNX2X_ERR("MCP refused load request, aborting\n"); 2349 return -EBUSY; 2350 } 2351 return 0; 2352 } 2353 2354 /* check whether another PF has already loaded FW to chip. In 2355 * virtualized environments a pf from another VM may have already 2356 * initialized the device including loading FW 2357 */ 2358 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2359 { 2360 /* is another pf loaded on this engine? */ 2361 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2362 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2363 /* build my FW version dword */ 2364 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) + 2365 (BCM_5710_FW_MINOR_VERSION << 8) + 2366 (BCM_5710_FW_REVISION_VERSION << 16) + 2367 (BCM_5710_FW_ENGINEERING_VERSION << 24); 2368 2369 /* read loaded FW from chip */ 2370 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2371 2372 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", 2373 loaded_fw, my_fw); 2374 2375 /* abort nic load if version mismatch */ 2376 if (my_fw != loaded_fw) { 2377 if (print_err) 2378 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", 2379 loaded_fw, my_fw); 2380 else 2381 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n", 2382 loaded_fw, my_fw); 2383 return -EBUSY; 2384 } 2385 } 2386 return 0; 2387 } 2388 2389 /* returns the "mcp load_code" according to global load_count array */ 2390 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2391 { 2392 int path = BP_PATH(bp); 2393 2394 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2395 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2396 bnx2x_load_count[path][2]); 2397 bnx2x_load_count[path][0]++; 2398 bnx2x_load_count[path][1 + port]++; 2399 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2400 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2401 bnx2x_load_count[path][2]); 2402 if (bnx2x_load_count[path][0] == 1) 2403 return FW_MSG_CODE_DRV_LOAD_COMMON; 2404 else if (bnx2x_load_count[path][1 + port] == 1) 2405 return FW_MSG_CODE_DRV_LOAD_PORT; 2406 else 2407 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2408 } 2409 2410 /* mark PMF if applicable */ 2411 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2412 { 2413 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2414 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2415 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2416 bp->port.pmf = 1; 2417 /* We need the barrier to ensure the ordering between the 2418 * writing to bp->port.pmf here and reading it from the 2419 * bnx2x_periodic_task(). 2420 */ 2421 smp_mb(); 2422 } else { 2423 bp->port.pmf = 0; 2424 } 2425 2426 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2427 } 2428 2429 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2430 { 2431 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2432 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2433 (bp->common.shmem2_base)) { 2434 if (SHMEM2_HAS(bp, dcc_support)) 2435 SHMEM2_WR(bp, dcc_support, 2436 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2437 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2438 if (SHMEM2_HAS(bp, afex_driver_support)) 2439 SHMEM2_WR(bp, afex_driver_support, 2440 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2441 } 2442 2443 /* Set AFEX default VLAN tag to an invalid value */ 2444 bp->afex_def_vlan_tag = -1; 2445 } 2446 2447 /** 2448 * bnx2x_bz_fp - zero content of the fastpath structure. 2449 * 2450 * @bp: driver handle 2451 * @index: fastpath index to be zeroed 2452 * 2453 * Makes sure the contents of the bp->fp[index].napi is kept 2454 * intact. 2455 */ 2456 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2457 { 2458 struct bnx2x_fastpath *fp = &bp->fp[index]; 2459 int cos; 2460 struct napi_struct orig_napi = fp->napi; 2461 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2462 2463 /* bzero bnx2x_fastpath contents */ 2464 if (fp->tpa_info) 2465 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2466 sizeof(struct bnx2x_agg_info)); 2467 memset(fp, 0, sizeof(*fp)); 2468 2469 /* Restore the NAPI object as it has been already initialized */ 2470 fp->napi = orig_napi; 2471 fp->tpa_info = orig_tpa_info; 2472 fp->bp = bp; 2473 fp->index = index; 2474 if (IS_ETH_FP(fp)) 2475 fp->max_cos = bp->max_cos; 2476 else 2477 /* Special queues support only one CoS */ 2478 fp->max_cos = 1; 2479 2480 /* Init txdata pointers */ 2481 if (IS_FCOE_FP(fp)) 2482 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2483 if (IS_ETH_FP(fp)) 2484 for_each_cos_in_tx_queue(fp, cos) 2485 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2486 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2487 2488 /* set the tpa flag for each queue. The tpa flag determines the queue 2489 * minimal size so it must be set prior to queue memory allocation 2490 */ 2491 if (bp->dev->features & NETIF_F_LRO) 2492 fp->mode = TPA_MODE_LRO; 2493 else if (bp->dev->features & NETIF_F_GRO_HW) 2494 fp->mode = TPA_MODE_GRO; 2495 else 2496 fp->mode = TPA_MODE_DISABLED; 2497 2498 /* We don't want TPA if it's disabled in bp 2499 * or if this is an FCoE L2 ring. 2500 */ 2501 if (bp->disable_tpa || IS_FCOE_FP(fp)) 2502 fp->mode = TPA_MODE_DISABLED; 2503 } 2504 2505 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state) 2506 { 2507 u32 cur; 2508 2509 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp)) 2510 return; 2511 2512 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]); 2513 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n", 2514 cur, state); 2515 2516 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state); 2517 } 2518 2519 int bnx2x_load_cnic(struct bnx2x *bp) 2520 { 2521 int i, rc, port = BP_PORT(bp); 2522 2523 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2524 2525 mutex_init(&bp->cnic_mutex); 2526 2527 if (IS_PF(bp)) { 2528 rc = bnx2x_alloc_mem_cnic(bp); 2529 if (rc) { 2530 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2531 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2532 } 2533 } 2534 2535 rc = bnx2x_alloc_fp_mem_cnic(bp); 2536 if (rc) { 2537 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2538 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2539 } 2540 2541 /* Update the number of queues with the cnic queues */ 2542 rc = bnx2x_set_real_num_queues(bp, 1); 2543 if (rc) { 2544 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2545 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2546 } 2547 2548 /* Add all CNIC NAPI objects */ 2549 bnx2x_add_all_napi_cnic(bp); 2550 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2551 bnx2x_napi_enable_cnic(bp); 2552 2553 rc = bnx2x_init_hw_func_cnic(bp); 2554 if (rc) 2555 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2556 2557 bnx2x_nic_init_cnic(bp); 2558 2559 if (IS_PF(bp)) { 2560 /* Enable Timer scan */ 2561 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2562 2563 /* setup cnic queues */ 2564 for_each_cnic_queue(bp, i) { 2565 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2566 if (rc) { 2567 BNX2X_ERR("Queue setup failed\n"); 2568 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2569 } 2570 } 2571 } 2572 2573 /* Initialize Rx filter. */ 2574 bnx2x_set_rx_mode_inner(bp); 2575 2576 /* re-read iscsi info */ 2577 bnx2x_get_iscsi_info(bp); 2578 bnx2x_setup_cnic_irq_info(bp); 2579 bnx2x_setup_cnic_info(bp); 2580 bp->cnic_loaded = true; 2581 if (bp->state == BNX2X_STATE_OPEN) 2582 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2583 2584 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2585 2586 return 0; 2587 2588 #ifndef BNX2X_STOP_ON_ERROR 2589 load_error_cnic2: 2590 /* Disable Timer scan */ 2591 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2592 2593 load_error_cnic1: 2594 bnx2x_napi_disable_cnic(bp); 2595 /* Update the number of queues without the cnic queues */ 2596 if (bnx2x_set_real_num_queues(bp, 0)) 2597 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2598 load_error_cnic0: 2599 BNX2X_ERR("CNIC-related load failed\n"); 2600 bnx2x_free_fp_mem_cnic(bp); 2601 bnx2x_free_mem_cnic(bp); 2602 return rc; 2603 #endif /* ! BNX2X_STOP_ON_ERROR */ 2604 } 2605 2606 /* must be called with rtnl_lock */ 2607 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2608 { 2609 int port = BP_PORT(bp); 2610 int i, rc = 0, load_code = 0; 2611 2612 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2613 DP(NETIF_MSG_IFUP, 2614 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2615 2616 #ifdef BNX2X_STOP_ON_ERROR 2617 if (unlikely(bp->panic)) { 2618 BNX2X_ERR("Can't load NIC when there is panic\n"); 2619 return -EPERM; 2620 } 2621 #endif 2622 2623 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2624 2625 /* zero the structure w/o any lock, before SP handler is initialized */ 2626 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2627 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2628 &bp->last_reported_link.link_report_flags); 2629 2630 if (IS_PF(bp)) 2631 /* must be called before memory allocation and HW init */ 2632 bnx2x_ilt_set_info(bp); 2633 2634 /* 2635 * Zero fastpath structures preserving invariants like napi, which are 2636 * allocated only once, fp index, max_cos, bp pointer. 2637 * Also set fp->mode and txdata_ptr. 2638 */ 2639 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2640 for_each_queue(bp, i) 2641 bnx2x_bz_fp(bp, i); 2642 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2643 bp->num_cnic_queues) * 2644 sizeof(struct bnx2x_fp_txdata)); 2645 2646 bp->fcoe_init = false; 2647 2648 /* Set the receive queues buffer size */ 2649 bnx2x_set_rx_buf_size(bp); 2650 2651 if (IS_PF(bp)) { 2652 rc = bnx2x_alloc_mem(bp); 2653 if (rc) { 2654 BNX2X_ERR("Unable to allocate bp memory\n"); 2655 return rc; 2656 } 2657 } 2658 2659 /* need to be done after alloc mem, since it's self adjusting to amount 2660 * of memory available for RSS queues 2661 */ 2662 rc = bnx2x_alloc_fp_mem(bp); 2663 if (rc) { 2664 BNX2X_ERR("Unable to allocate memory for fps\n"); 2665 LOAD_ERROR_EXIT(bp, load_error0); 2666 } 2667 2668 /* Allocated memory for FW statistics */ 2669 if (bnx2x_alloc_fw_stats_mem(bp)) 2670 LOAD_ERROR_EXIT(bp, load_error0); 2671 2672 /* request pf to initialize status blocks */ 2673 if (IS_VF(bp)) { 2674 rc = bnx2x_vfpf_init(bp); 2675 if (rc) 2676 LOAD_ERROR_EXIT(bp, load_error0); 2677 } 2678 2679 /* As long as bnx2x_alloc_mem() may possibly update 2680 * bp->num_queues, bnx2x_set_real_num_queues() should always 2681 * come after it. At this stage cnic queues are not counted. 2682 */ 2683 rc = bnx2x_set_real_num_queues(bp, 0); 2684 if (rc) { 2685 BNX2X_ERR("Unable to set real_num_queues\n"); 2686 LOAD_ERROR_EXIT(bp, load_error0); 2687 } 2688 2689 /* configure multi cos mappings in kernel. 2690 * this configuration may be overridden by a multi class queue 2691 * discipline or by a dcbx negotiation result. 2692 */ 2693 bnx2x_setup_tc(bp->dev, bp->max_cos); 2694 2695 /* Add all NAPI objects */ 2696 bnx2x_add_all_napi(bp); 2697 DP(NETIF_MSG_IFUP, "napi added\n"); 2698 bnx2x_napi_enable(bp); 2699 2700 if (IS_PF(bp)) { 2701 /* set pf load just before approaching the MCP */ 2702 bnx2x_set_pf_load(bp); 2703 2704 /* if mcp exists send load request and analyze response */ 2705 if (!BP_NOMCP(bp)) { 2706 /* attempt to load pf */ 2707 rc = bnx2x_nic_load_request(bp, &load_code); 2708 if (rc) 2709 LOAD_ERROR_EXIT(bp, load_error1); 2710 2711 /* what did mcp say? */ 2712 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2713 if (rc) { 2714 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2715 LOAD_ERROR_EXIT(bp, load_error2); 2716 } 2717 } else { 2718 load_code = bnx2x_nic_load_no_mcp(bp, port); 2719 } 2720 2721 /* mark pmf if applicable */ 2722 bnx2x_nic_load_pmf(bp, load_code); 2723 2724 /* Init Function state controlling object */ 2725 bnx2x__init_func_obj(bp); 2726 2727 /* Initialize HW */ 2728 rc = bnx2x_init_hw(bp, load_code); 2729 if (rc) { 2730 BNX2X_ERR("HW init failed, aborting\n"); 2731 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2732 LOAD_ERROR_EXIT(bp, load_error2); 2733 } 2734 } 2735 2736 bnx2x_pre_irq_nic_init(bp); 2737 2738 /* Connect to IRQs */ 2739 rc = bnx2x_setup_irqs(bp); 2740 if (rc) { 2741 BNX2X_ERR("setup irqs failed\n"); 2742 if (IS_PF(bp)) 2743 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2744 LOAD_ERROR_EXIT(bp, load_error2); 2745 } 2746 2747 /* Init per-function objects */ 2748 if (IS_PF(bp)) { 2749 /* Setup NIC internals and enable interrupts */ 2750 bnx2x_post_irq_nic_init(bp, load_code); 2751 2752 bnx2x_init_bp_objs(bp); 2753 bnx2x_iov_nic_init(bp); 2754 2755 /* Set AFEX default VLAN tag to an invalid value */ 2756 bp->afex_def_vlan_tag = -1; 2757 bnx2x_nic_load_afex_dcc(bp, load_code); 2758 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2759 rc = bnx2x_func_start(bp); 2760 if (rc) { 2761 BNX2X_ERR("Function start failed!\n"); 2762 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2763 2764 LOAD_ERROR_EXIT(bp, load_error3); 2765 } 2766 2767 /* Send LOAD_DONE command to MCP */ 2768 if (!BP_NOMCP(bp)) { 2769 load_code = bnx2x_fw_command(bp, 2770 DRV_MSG_CODE_LOAD_DONE, 0); 2771 if (!load_code) { 2772 BNX2X_ERR("MCP response failure, aborting\n"); 2773 rc = -EBUSY; 2774 LOAD_ERROR_EXIT(bp, load_error3); 2775 } 2776 } 2777 2778 /* initialize FW coalescing state machines in RAM */ 2779 bnx2x_update_coalesce(bp); 2780 } 2781 2782 /* setup the leading queue */ 2783 rc = bnx2x_setup_leading(bp); 2784 if (rc) { 2785 BNX2X_ERR("Setup leading failed!\n"); 2786 LOAD_ERROR_EXIT(bp, load_error3); 2787 } 2788 2789 /* set up the rest of the queues */ 2790 for_each_nondefault_eth_queue(bp, i) { 2791 if (IS_PF(bp)) 2792 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2793 else /* VF */ 2794 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2795 if (rc) { 2796 BNX2X_ERR("Queue %d setup failed\n", i); 2797 LOAD_ERROR_EXIT(bp, load_error3); 2798 } 2799 } 2800 2801 /* setup rss */ 2802 rc = bnx2x_init_rss(bp); 2803 if (rc) { 2804 BNX2X_ERR("PF RSS init failed\n"); 2805 LOAD_ERROR_EXIT(bp, load_error3); 2806 } 2807 2808 /* Now when Clients are configured we are ready to work */ 2809 bp->state = BNX2X_STATE_OPEN; 2810 2811 /* Configure a ucast MAC */ 2812 if (IS_PF(bp)) 2813 rc = bnx2x_set_eth_mac(bp, true); 2814 else /* vf */ 2815 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2816 true); 2817 if (rc) { 2818 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2819 LOAD_ERROR_EXIT(bp, load_error3); 2820 } 2821 2822 if (IS_PF(bp) && bp->pending_max) { 2823 bnx2x_update_max_mf_config(bp, bp->pending_max); 2824 bp->pending_max = 0; 2825 } 2826 2827 bp->force_link_down = false; 2828 if (bp->port.pmf) { 2829 rc = bnx2x_initial_phy_init(bp, load_mode); 2830 if (rc) 2831 LOAD_ERROR_EXIT(bp, load_error3); 2832 } 2833 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2834 2835 /* Start fast path */ 2836 2837 /* Re-configure vlan filters */ 2838 rc = bnx2x_vlan_reconfigure_vid(bp); 2839 if (rc) 2840 LOAD_ERROR_EXIT(bp, load_error3); 2841 2842 /* Initialize Rx filter. */ 2843 bnx2x_set_rx_mode_inner(bp); 2844 2845 if (bp->flags & PTP_SUPPORTED) { 2846 bnx2x_register_phc(bp); 2847 bnx2x_init_ptp(bp); 2848 bnx2x_configure_ptp_filters(bp); 2849 } 2850 /* Start Tx */ 2851 switch (load_mode) { 2852 case LOAD_NORMAL: 2853 /* Tx queue should be only re-enabled */ 2854 netif_tx_wake_all_queues(bp->dev); 2855 break; 2856 2857 case LOAD_OPEN: 2858 netif_tx_start_all_queues(bp->dev); 2859 smp_mb__after_atomic(); 2860 break; 2861 2862 case LOAD_DIAG: 2863 case LOAD_LOOPBACK_EXT: 2864 bp->state = BNX2X_STATE_DIAG; 2865 break; 2866 2867 default: 2868 break; 2869 } 2870 2871 if (bp->port.pmf) 2872 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2873 else 2874 bnx2x__link_status_update(bp); 2875 2876 /* start the timer */ 2877 mod_timer(&bp->timer, jiffies + bp->current_interval); 2878 2879 if (CNIC_ENABLED(bp)) 2880 bnx2x_load_cnic(bp); 2881 2882 if (IS_PF(bp)) 2883 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 2884 2885 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2886 /* mark driver is loaded in shmem2 */ 2887 u32 val; 2888 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2889 val &= ~DRV_FLAGS_MTU_MASK; 2890 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT); 2891 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2892 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2893 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2894 } 2895 2896 /* Wait for all pending SP commands to complete */ 2897 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2898 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2899 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2900 return -EBUSY; 2901 } 2902 2903 /* Update driver data for On-Chip MFW dump. */ 2904 if (IS_PF(bp)) 2905 bnx2x_update_mfw_dump(bp); 2906 2907 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2908 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2909 bnx2x_dcbx_init(bp, false); 2910 2911 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2912 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE); 2913 2914 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2915 2916 return 0; 2917 2918 #ifndef BNX2X_STOP_ON_ERROR 2919 load_error3: 2920 if (IS_PF(bp)) { 2921 bnx2x_int_disable_sync(bp, 1); 2922 2923 /* Clean queueable objects */ 2924 bnx2x_squeeze_objects(bp); 2925 } 2926 2927 /* Free SKBs, SGEs, TPA pool and driver internals */ 2928 bnx2x_free_skbs(bp); 2929 for_each_rx_queue(bp, i) 2930 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2931 2932 /* Release IRQs */ 2933 bnx2x_free_irq(bp); 2934 load_error2: 2935 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2936 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2937 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2938 } 2939 2940 bp->port.pmf = 0; 2941 load_error1: 2942 bnx2x_napi_disable(bp); 2943 bnx2x_del_all_napi(bp); 2944 2945 /* clear pf_load status, as it was already set */ 2946 if (IS_PF(bp)) 2947 bnx2x_clear_pf_load(bp); 2948 load_error0: 2949 bnx2x_free_fw_stats_mem(bp); 2950 bnx2x_free_fp_mem(bp); 2951 bnx2x_free_mem(bp); 2952 2953 return rc; 2954 #endif /* ! BNX2X_STOP_ON_ERROR */ 2955 } 2956 2957 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2958 { 2959 u8 rc = 0, cos, i; 2960 2961 /* Wait until tx fastpath tasks complete */ 2962 for_each_tx_queue(bp, i) { 2963 struct bnx2x_fastpath *fp = &bp->fp[i]; 2964 2965 for_each_cos_in_tx_queue(fp, cos) 2966 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2967 if (rc) 2968 return rc; 2969 } 2970 return 0; 2971 } 2972 2973 /* must be called with rtnl_lock */ 2974 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2975 { 2976 int i; 2977 bool global = false; 2978 2979 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 2980 2981 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2982 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 2983 2984 /* mark driver is unloaded in shmem2 */ 2985 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2986 u32 val; 2987 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2988 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2989 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 2990 } 2991 2992 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 2993 (bp->state == BNX2X_STATE_CLOSED || 2994 bp->state == BNX2X_STATE_ERROR)) { 2995 /* We can get here if the driver has been unloaded 2996 * during parity error recovery and is either waiting for a 2997 * leader to complete or for other functions to unload and 2998 * then ifdown has been issued. In this case we want to 2999 * unload and let other functions to complete a recovery 3000 * process. 3001 */ 3002 bp->recovery_state = BNX2X_RECOVERY_DONE; 3003 bp->is_leader = 0; 3004 bnx2x_release_leader_lock(bp); 3005 smp_mb(); 3006 3007 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 3008 BNX2X_ERR("Can't unload in closed or error state\n"); 3009 return -EINVAL; 3010 } 3011 3012 /* Nothing to do during unload if previous bnx2x_nic_load() 3013 * have not completed successfully - all resources are released. 3014 * 3015 * we can get here only after unsuccessful ndo_* callback, during which 3016 * dev->IFF_UP flag is still on. 3017 */ 3018 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 3019 return 0; 3020 3021 /* It's important to set the bp->state to the value different from 3022 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 3023 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 3024 */ 3025 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 3026 smp_mb(); 3027 3028 /* indicate to VFs that the PF is going down */ 3029 bnx2x_iov_channel_down(bp); 3030 3031 if (CNIC_LOADED(bp)) 3032 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 3033 3034 /* Stop Tx */ 3035 bnx2x_tx_disable(bp); 3036 netdev_reset_tc(bp->dev); 3037 3038 bp->rx_mode = BNX2X_RX_MODE_NONE; 3039 3040 del_timer_sync(&bp->timer); 3041 3042 if (IS_PF(bp) && !BP_NOMCP(bp)) { 3043 /* Set ALWAYS_ALIVE bit in shmem */ 3044 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 3045 bnx2x_drv_pulse(bp); 3046 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 3047 bnx2x_save_statistics(bp); 3048 } 3049 3050 /* wait till consumers catch up with producers in all queues. 3051 * If we're recovering, FW can't write to host so no reason 3052 * to wait for the queues to complete all Tx. 3053 */ 3054 if (unload_mode != UNLOAD_RECOVERY) 3055 bnx2x_drain_tx_queues(bp); 3056 3057 /* if VF indicate to PF this function is going down (PF will delete sp 3058 * elements and clear initializations 3059 */ 3060 if (IS_VF(bp)) 3061 bnx2x_vfpf_close_vf(bp); 3062 else if (unload_mode != UNLOAD_RECOVERY) 3063 /* if this is a normal/close unload need to clean up chip*/ 3064 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 3065 else { 3066 /* Send the UNLOAD_REQUEST to the MCP */ 3067 bnx2x_send_unload_req(bp, unload_mode); 3068 3069 /* Prevent transactions to host from the functions on the 3070 * engine that doesn't reset global blocks in case of global 3071 * attention once global blocks are reset and gates are opened 3072 * (the engine which leader will perform the recovery 3073 * last). 3074 */ 3075 if (!CHIP_IS_E1x(bp)) 3076 bnx2x_pf_disable(bp); 3077 3078 /* Disable HW interrupts, NAPI */ 3079 bnx2x_netif_stop(bp, 1); 3080 /* Delete all NAPI objects */ 3081 bnx2x_del_all_napi(bp); 3082 if (CNIC_LOADED(bp)) 3083 bnx2x_del_all_napi_cnic(bp); 3084 /* Release IRQs */ 3085 bnx2x_free_irq(bp); 3086 3087 /* Report UNLOAD_DONE to MCP */ 3088 bnx2x_send_unload_done(bp, false); 3089 } 3090 3091 /* 3092 * At this stage no more interrupts will arrive so we may safely clean 3093 * the queueable objects here in case they failed to get cleaned so far. 3094 */ 3095 if (IS_PF(bp)) 3096 bnx2x_squeeze_objects(bp); 3097 3098 /* There should be no more pending SP commands at this stage */ 3099 bp->sp_state = 0; 3100 3101 bp->port.pmf = 0; 3102 3103 /* clear pending work in rtnl task */ 3104 bp->sp_rtnl_state = 0; 3105 smp_mb(); 3106 3107 /* Free SKBs, SGEs, TPA pool and driver internals */ 3108 bnx2x_free_skbs(bp); 3109 if (CNIC_LOADED(bp)) 3110 bnx2x_free_skbs_cnic(bp); 3111 for_each_rx_queue(bp, i) 3112 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3113 3114 bnx2x_free_fp_mem(bp); 3115 if (CNIC_LOADED(bp)) 3116 bnx2x_free_fp_mem_cnic(bp); 3117 3118 if (IS_PF(bp)) { 3119 if (CNIC_LOADED(bp)) 3120 bnx2x_free_mem_cnic(bp); 3121 } 3122 bnx2x_free_mem(bp); 3123 3124 bp->state = BNX2X_STATE_CLOSED; 3125 bp->cnic_loaded = false; 3126 3127 /* Clear driver version indication in shmem */ 3128 if (IS_PF(bp) && !BP_NOMCP(bp)) 3129 bnx2x_update_mng_version(bp); 3130 3131 /* Check if there are pending parity attentions. If there are - set 3132 * RECOVERY_IN_PROGRESS. 3133 */ 3134 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3135 bnx2x_set_reset_in_progress(bp); 3136 3137 /* Set RESET_IS_GLOBAL if needed */ 3138 if (global) 3139 bnx2x_set_reset_global(bp); 3140 } 3141 3142 /* The last driver must disable a "close the gate" if there is no 3143 * parity attention or "process kill" pending. 3144 */ 3145 if (IS_PF(bp) && 3146 !bnx2x_clear_pf_load(bp) && 3147 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3148 bnx2x_disable_close_the_gate(bp); 3149 3150 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3151 3152 return 0; 3153 } 3154 3155 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3156 { 3157 u16 pmcsr; 3158 3159 /* If there is no power capability, silently succeed */ 3160 if (!bp->pdev->pm_cap) { 3161 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3162 return 0; 3163 } 3164 3165 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3166 3167 switch (state) { 3168 case PCI_D0: 3169 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3170 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3171 PCI_PM_CTRL_PME_STATUS)); 3172 3173 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3174 /* delay required during transition out of D3hot */ 3175 msleep(20); 3176 break; 3177 3178 case PCI_D3hot: 3179 /* If there are other clients above don't 3180 shut down the power */ 3181 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3182 return 0; 3183 /* Don't shut down the power for emulation and FPGA */ 3184 if (CHIP_REV_IS_SLOW(bp)) 3185 return 0; 3186 3187 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3188 pmcsr |= 3; 3189 3190 if (bp->wol) 3191 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3192 3193 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3194 pmcsr); 3195 3196 /* No more memory access after this point until 3197 * device is brought back to D0. 3198 */ 3199 break; 3200 3201 default: 3202 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3203 return -EINVAL; 3204 } 3205 return 0; 3206 } 3207 3208 /* 3209 * net_device service functions 3210 */ 3211 static int bnx2x_poll(struct napi_struct *napi, int budget) 3212 { 3213 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3214 napi); 3215 struct bnx2x *bp = fp->bp; 3216 int rx_work_done; 3217 u8 cos; 3218 3219 #ifdef BNX2X_STOP_ON_ERROR 3220 if (unlikely(bp->panic)) { 3221 napi_complete(napi); 3222 return 0; 3223 } 3224 #endif 3225 for_each_cos_in_tx_queue(fp, cos) 3226 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3227 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3228 3229 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0; 3230 3231 if (rx_work_done < budget) { 3232 /* No need to update SB for FCoE L2 ring as long as 3233 * it's connected to the default SB and the SB 3234 * has been updated when NAPI was scheduled. 3235 */ 3236 if (IS_FCOE_FP(fp)) { 3237 napi_complete_done(napi, rx_work_done); 3238 } else { 3239 bnx2x_update_fpsb_idx(fp); 3240 /* bnx2x_has_rx_work() reads the status block, 3241 * thus we need to ensure that status block indices 3242 * have been actually read (bnx2x_update_fpsb_idx) 3243 * prior to this check (bnx2x_has_rx_work) so that 3244 * we won't write the "newer" value of the status block 3245 * to IGU (if there was a DMA right after 3246 * bnx2x_has_rx_work and if there is no rmb, the memory 3247 * reading (bnx2x_update_fpsb_idx) may be postponed 3248 * to right before bnx2x_ack_sb). In this case there 3249 * will never be another interrupt until there is 3250 * another update of the status block, while there 3251 * is still unhandled work. 3252 */ 3253 rmb(); 3254 3255 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3256 if (napi_complete_done(napi, rx_work_done)) { 3257 /* Re-enable interrupts */ 3258 DP(NETIF_MSG_RX_STATUS, 3259 "Update index to %d\n", fp->fp_hc_idx); 3260 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3261 le16_to_cpu(fp->fp_hc_idx), 3262 IGU_INT_ENABLE, 1); 3263 } 3264 } else { 3265 rx_work_done = budget; 3266 } 3267 } 3268 } 3269 3270 return rx_work_done; 3271 } 3272 3273 /* we split the first BD into headers and data BDs 3274 * to ease the pain of our fellow microcode engineers 3275 * we use one mapping for both BDs 3276 */ 3277 static u16 bnx2x_tx_split(struct bnx2x *bp, 3278 struct bnx2x_fp_txdata *txdata, 3279 struct sw_tx_bd *tx_buf, 3280 struct eth_tx_start_bd **tx_bd, u16 hlen, 3281 u16 bd_prod) 3282 { 3283 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3284 struct eth_tx_bd *d_tx_bd; 3285 dma_addr_t mapping; 3286 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3287 3288 /* first fix first BD */ 3289 h_tx_bd->nbytes = cpu_to_le16(hlen); 3290 3291 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3292 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3293 3294 /* now get a new data BD 3295 * (after the pbd) and fill it */ 3296 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3297 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3298 3299 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3300 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3301 3302 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3303 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3304 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3305 3306 /* this marks the BD as one that has no individual mapping */ 3307 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3308 3309 DP(NETIF_MSG_TX_QUEUED, 3310 "TSO split data size is %d (%x:%x)\n", 3311 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3312 3313 /* update tx_bd */ 3314 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3315 3316 return bd_prod; 3317 } 3318 3319 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3320 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3321 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3322 { 3323 __sum16 tsum = (__force __sum16) csum; 3324 3325 if (fix > 0) 3326 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3327 csum_partial(t_header - fix, fix, 0))); 3328 3329 else if (fix < 0) 3330 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3331 csum_partial(t_header, -fix, 0))); 3332 3333 return bswab16(tsum); 3334 } 3335 3336 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3337 { 3338 u32 rc; 3339 __u8 prot = 0; 3340 __be16 protocol; 3341 3342 if (skb->ip_summed != CHECKSUM_PARTIAL) 3343 return XMIT_PLAIN; 3344 3345 protocol = vlan_get_protocol(skb); 3346 if (protocol == htons(ETH_P_IPV6)) { 3347 rc = XMIT_CSUM_V6; 3348 prot = ipv6_hdr(skb)->nexthdr; 3349 } else { 3350 rc = XMIT_CSUM_V4; 3351 prot = ip_hdr(skb)->protocol; 3352 } 3353 3354 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3355 if (inner_ip_hdr(skb)->version == 6) { 3356 rc |= XMIT_CSUM_ENC_V6; 3357 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3358 rc |= XMIT_CSUM_TCP; 3359 } else { 3360 rc |= XMIT_CSUM_ENC_V4; 3361 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3362 rc |= XMIT_CSUM_TCP; 3363 } 3364 } 3365 if (prot == IPPROTO_TCP) 3366 rc |= XMIT_CSUM_TCP; 3367 3368 if (skb_is_gso(skb)) { 3369 if (skb_is_gso_v6(skb)) { 3370 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3371 if (rc & XMIT_CSUM_ENC) 3372 rc |= XMIT_GSO_ENC_V6; 3373 } else { 3374 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3375 if (rc & XMIT_CSUM_ENC) 3376 rc |= XMIT_GSO_ENC_V4; 3377 } 3378 } 3379 3380 return rc; 3381 } 3382 3383 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */ 3384 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4 3385 3386 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3387 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3 3388 3389 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3390 /* check if packet requires linearization (packet is too fragmented) 3391 no need to check fragmentation if page size > 8K (there will be no 3392 violation to FW restrictions) */ 3393 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3394 u32 xmit_type) 3395 { 3396 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS; 3397 int to_copy = 0, hlen = 0; 3398 3399 if (xmit_type & XMIT_GSO_ENC) 3400 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS; 3401 3402 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) { 3403 if (xmit_type & XMIT_GSO) { 3404 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3405 int wnd_size = MAX_FETCH_BD - num_tso_win_sub; 3406 /* Number of windows to check */ 3407 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3408 int wnd_idx = 0; 3409 int frag_idx = 0; 3410 u32 wnd_sum = 0; 3411 3412 /* Headers length */ 3413 if (xmit_type & XMIT_GSO_ENC) 3414 hlen = (int)(skb_inner_transport_header(skb) - 3415 skb->data) + 3416 inner_tcp_hdrlen(skb); 3417 else 3418 hlen = (int)(skb_transport_header(skb) - 3419 skb->data) + tcp_hdrlen(skb); 3420 3421 /* Amount of data (w/o headers) on linear part of SKB*/ 3422 first_bd_sz = skb_headlen(skb) - hlen; 3423 3424 wnd_sum = first_bd_sz; 3425 3426 /* Calculate the first sum - it's special */ 3427 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3428 wnd_sum += 3429 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3430 3431 /* If there was data on linear skb data - check it */ 3432 if (first_bd_sz > 0) { 3433 if (unlikely(wnd_sum < lso_mss)) { 3434 to_copy = 1; 3435 goto exit_lbl; 3436 } 3437 3438 wnd_sum -= first_bd_sz; 3439 } 3440 3441 /* Others are easier: run through the frag list and 3442 check all windows */ 3443 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3444 wnd_sum += 3445 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3446 3447 if (unlikely(wnd_sum < lso_mss)) { 3448 to_copy = 1; 3449 break; 3450 } 3451 wnd_sum -= 3452 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3453 } 3454 } else { 3455 /* in non-LSO too fragmented packet should always 3456 be linearized */ 3457 to_copy = 1; 3458 } 3459 } 3460 3461 exit_lbl: 3462 if (unlikely(to_copy)) 3463 DP(NETIF_MSG_TX_QUEUED, 3464 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3465 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3466 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3467 3468 return to_copy; 3469 } 3470 #endif 3471 3472 /** 3473 * bnx2x_set_pbd_gso - update PBD in GSO case. 3474 * 3475 * @skb: packet skb 3476 * @pbd: parse BD 3477 * @xmit_type: xmit flags 3478 */ 3479 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3480 struct eth_tx_parse_bd_e1x *pbd, 3481 u32 xmit_type) 3482 { 3483 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3484 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3485 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3486 3487 if (xmit_type & XMIT_GSO_V4) { 3488 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3489 pbd->tcp_pseudo_csum = 3490 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3491 ip_hdr(skb)->daddr, 3492 0, IPPROTO_TCP, 0)); 3493 } else { 3494 pbd->tcp_pseudo_csum = 3495 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3496 &ipv6_hdr(skb)->daddr, 3497 0, IPPROTO_TCP, 0)); 3498 } 3499 3500 pbd->global_data |= 3501 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3502 } 3503 3504 /** 3505 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3506 * 3507 * @bp: driver handle 3508 * @skb: packet skb 3509 * @parsing_data: data to be updated 3510 * @xmit_type: xmit flags 3511 * 3512 * 57712/578xx related, when skb has encapsulation 3513 */ 3514 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3515 u32 *parsing_data, u32 xmit_type) 3516 { 3517 *parsing_data |= 3518 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3519 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3520 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3521 3522 if (xmit_type & XMIT_CSUM_TCP) { 3523 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3524 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3525 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3526 3527 return skb_inner_transport_header(skb) + 3528 inner_tcp_hdrlen(skb) - skb->data; 3529 } 3530 3531 /* We support checksum offload for TCP and UDP only. 3532 * No need to pass the UDP header length - it's a constant. 3533 */ 3534 return skb_inner_transport_header(skb) + 3535 sizeof(struct udphdr) - skb->data; 3536 } 3537 3538 /** 3539 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3540 * 3541 * @bp: driver handle 3542 * @skb: packet skb 3543 * @parsing_data: data to be updated 3544 * @xmit_type: xmit flags 3545 * 3546 * 57712/578xx related 3547 */ 3548 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3549 u32 *parsing_data, u32 xmit_type) 3550 { 3551 *parsing_data |= 3552 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3553 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3554 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3555 3556 if (xmit_type & XMIT_CSUM_TCP) { 3557 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3558 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3559 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3560 3561 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; 3562 } 3563 /* We support checksum offload for TCP and UDP only. 3564 * No need to pass the UDP header length - it's a constant. 3565 */ 3566 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; 3567 } 3568 3569 /* set FW indication according to inner or outer protocols if tunneled */ 3570 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3571 struct eth_tx_start_bd *tx_start_bd, 3572 u32 xmit_type) 3573 { 3574 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3575 3576 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3577 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3578 3579 if (!(xmit_type & XMIT_CSUM_TCP)) 3580 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3581 } 3582 3583 /** 3584 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3585 * 3586 * @bp: driver handle 3587 * @skb: packet skb 3588 * @pbd: parse BD to be updated 3589 * @xmit_type: xmit flags 3590 */ 3591 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3592 struct eth_tx_parse_bd_e1x *pbd, 3593 u32 xmit_type) 3594 { 3595 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3596 3597 /* for now NS flag is not used in Linux */ 3598 pbd->global_data = 3599 cpu_to_le16(hlen | 3600 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3601 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3602 3603 pbd->ip_hlen_w = (skb_transport_header(skb) - 3604 skb_network_header(skb)) >> 1; 3605 3606 hlen += pbd->ip_hlen_w; 3607 3608 /* We support checksum offload for TCP and UDP only */ 3609 if (xmit_type & XMIT_CSUM_TCP) 3610 hlen += tcp_hdrlen(skb) / 2; 3611 else 3612 hlen += sizeof(struct udphdr) / 2; 3613 3614 pbd->total_hlen_w = cpu_to_le16(hlen); 3615 hlen = hlen*2; 3616 3617 if (xmit_type & XMIT_CSUM_TCP) { 3618 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3619 3620 } else { 3621 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3622 3623 DP(NETIF_MSG_TX_QUEUED, 3624 "hlen %d fix %d csum before fix %x\n", 3625 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3626 3627 /* HW bug: fixup the CSUM */ 3628 pbd->tcp_pseudo_csum = 3629 bnx2x_csum_fix(skb_transport_header(skb), 3630 SKB_CS(skb), fix); 3631 3632 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3633 pbd->tcp_pseudo_csum); 3634 } 3635 3636 return hlen; 3637 } 3638 3639 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3640 struct eth_tx_parse_bd_e2 *pbd_e2, 3641 struct eth_tx_parse_2nd_bd *pbd2, 3642 u16 *global_data, 3643 u32 xmit_type) 3644 { 3645 u16 hlen_w = 0; 3646 u8 outerip_off, outerip_len = 0; 3647 3648 /* from outer IP to transport */ 3649 hlen_w = (skb_inner_transport_header(skb) - 3650 skb_network_header(skb)) >> 1; 3651 3652 /* transport len */ 3653 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3654 3655 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3656 3657 /* outer IP header info */ 3658 if (xmit_type & XMIT_CSUM_V4) { 3659 struct iphdr *iph = ip_hdr(skb); 3660 u32 csum = (__force u32)(~iph->check) - 3661 (__force u32)iph->tot_len - 3662 (__force u32)iph->frag_off; 3663 3664 outerip_len = iph->ihl << 1; 3665 3666 pbd2->fw_ip_csum_wo_len_flags_frag = 3667 bswab16(csum_fold((__force __wsum)csum)); 3668 } else { 3669 pbd2->fw_ip_hdr_to_payload_w = 3670 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3671 pbd_e2->data.tunnel_data.flags |= 3672 ETH_TUNNEL_DATA_IPV6_OUTER; 3673 } 3674 3675 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3676 3677 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3678 3679 /* inner IP header info */ 3680 if (xmit_type & XMIT_CSUM_ENC_V4) { 3681 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3682 3683 pbd_e2->data.tunnel_data.pseudo_csum = 3684 bswab16(~csum_tcpudp_magic( 3685 inner_ip_hdr(skb)->saddr, 3686 inner_ip_hdr(skb)->daddr, 3687 0, IPPROTO_TCP, 0)); 3688 } else { 3689 pbd_e2->data.tunnel_data.pseudo_csum = 3690 bswab16(~csum_ipv6_magic( 3691 &inner_ipv6_hdr(skb)->saddr, 3692 &inner_ipv6_hdr(skb)->daddr, 3693 0, IPPROTO_TCP, 0)); 3694 } 3695 3696 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3697 3698 *global_data |= 3699 outerip_off | 3700 (outerip_len << 3701 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3702 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3703 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3704 3705 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3706 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3707 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3708 } 3709 } 3710 3711 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data, 3712 u32 xmit_type) 3713 { 3714 struct ipv6hdr *ipv6; 3715 3716 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6))) 3717 return; 3718 3719 if (xmit_type & XMIT_GSO_ENC_V6) 3720 ipv6 = inner_ipv6_hdr(skb); 3721 else /* XMIT_GSO_V6 */ 3722 ipv6 = ipv6_hdr(skb); 3723 3724 if (ipv6->nexthdr == NEXTHDR_IPV6) 3725 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3726 } 3727 3728 /* called with netif_tx_lock 3729 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3730 * netif_wake_queue() 3731 */ 3732 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3733 { 3734 struct bnx2x *bp = netdev_priv(dev); 3735 3736 struct netdev_queue *txq; 3737 struct bnx2x_fp_txdata *txdata; 3738 struct sw_tx_bd *tx_buf; 3739 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3740 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3741 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3742 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3743 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3744 u32 pbd_e2_parsing_data = 0; 3745 u16 pkt_prod, bd_prod; 3746 int nbd, txq_index; 3747 dma_addr_t mapping; 3748 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3749 int i; 3750 u8 hlen = 0; 3751 __le16 pkt_size = 0; 3752 struct ethhdr *eth; 3753 u8 mac_type = UNICAST_ADDRESS; 3754 3755 #ifdef BNX2X_STOP_ON_ERROR 3756 if (unlikely(bp->panic)) 3757 return NETDEV_TX_BUSY; 3758 #endif 3759 3760 txq_index = skb_get_queue_mapping(skb); 3761 txq = netdev_get_tx_queue(dev, txq_index); 3762 3763 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3764 3765 txdata = &bp->bnx2x_txq[txq_index]; 3766 3767 /* enable this debug print to view the transmission queue being used 3768 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3769 txq_index, fp_index, txdata_index); */ 3770 3771 /* enable this debug print to view the transmission details 3772 DP(NETIF_MSG_TX_QUEUED, 3773 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3774 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3775 3776 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3777 skb_shinfo(skb)->nr_frags + 3778 BDS_PER_TX_PKT + 3779 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3780 /* Handle special storage cases separately */ 3781 if (txdata->tx_ring_size == 0) { 3782 struct bnx2x_eth_q_stats *q_stats = 3783 bnx2x_fp_qstats(bp, txdata->parent_fp); 3784 q_stats->driver_filtered_tx_pkt++; 3785 dev_kfree_skb(skb); 3786 return NETDEV_TX_OK; 3787 } 3788 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3789 netif_tx_stop_queue(txq); 3790 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3791 3792 return NETDEV_TX_BUSY; 3793 } 3794 3795 DP(NETIF_MSG_TX_QUEUED, 3796 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3797 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3798 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3799 skb->len); 3800 3801 eth = (struct ethhdr *)skb->data; 3802 3803 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3804 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3805 if (is_broadcast_ether_addr(eth->h_dest)) 3806 mac_type = BROADCAST_ADDRESS; 3807 else 3808 mac_type = MULTICAST_ADDRESS; 3809 } 3810 3811 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3812 /* First, check if we need to linearize the skb (due to FW 3813 restrictions). No need to check fragmentation if page size > 8K 3814 (there will be no violation to FW restrictions) */ 3815 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3816 /* Statistics of linearization */ 3817 bp->lin_cnt++; 3818 if (skb_linearize(skb) != 0) { 3819 DP(NETIF_MSG_TX_QUEUED, 3820 "SKB linearization failed - silently dropping this SKB\n"); 3821 dev_kfree_skb_any(skb); 3822 return NETDEV_TX_OK; 3823 } 3824 } 3825 #endif 3826 /* Map skb linear data for DMA */ 3827 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3828 skb_headlen(skb), DMA_TO_DEVICE); 3829 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3830 DP(NETIF_MSG_TX_QUEUED, 3831 "SKB mapping failed - silently dropping this SKB\n"); 3832 dev_kfree_skb_any(skb); 3833 return NETDEV_TX_OK; 3834 } 3835 /* 3836 Please read carefully. First we use one BD which we mark as start, 3837 then we have a parsing info BD (used for TSO or xsum), 3838 and only then we have the rest of the TSO BDs. 3839 (don't forget to mark the last one as last, 3840 and to unmap only AFTER you write to the BD ...) 3841 And above all, all pdb sizes are in words - NOT DWORDS! 3842 */ 3843 3844 /* get current pkt produced now - advance it just before sending packet 3845 * since mapping of pages may fail and cause packet to be dropped 3846 */ 3847 pkt_prod = txdata->tx_pkt_prod; 3848 bd_prod = TX_BD(txdata->tx_bd_prod); 3849 3850 /* get a tx_buf and first BD 3851 * tx_start_bd may be changed during SPLIT, 3852 * but first_bd will always stay first 3853 */ 3854 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3855 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3856 first_bd = tx_start_bd; 3857 3858 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3859 3860 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3861 if (!(bp->flags & TX_TIMESTAMPING_EN)) { 3862 bp->eth_stats.ptp_skip_tx_ts++; 3863 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n"); 3864 } else if (bp->ptp_tx_skb) { 3865 bp->eth_stats.ptp_skip_tx_ts++; 3866 netdev_err_once(bp->dev, 3867 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n"); 3868 } else { 3869 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3870 /* schedule check for Tx timestamp */ 3871 bp->ptp_tx_skb = skb_get(skb); 3872 bp->ptp_tx_start = jiffies; 3873 schedule_work(&bp->ptp_task); 3874 } 3875 } 3876 3877 /* header nbd: indirectly zero other flags! */ 3878 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3879 3880 /* remember the first BD of the packet */ 3881 tx_buf->first_bd = txdata->tx_bd_prod; 3882 tx_buf->skb = skb; 3883 tx_buf->flags = 0; 3884 3885 DP(NETIF_MSG_TX_QUEUED, 3886 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3887 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3888 3889 if (skb_vlan_tag_present(skb)) { 3890 tx_start_bd->vlan_or_ethertype = 3891 cpu_to_le16(skb_vlan_tag_get(skb)); 3892 tx_start_bd->bd_flags.as_bitfield |= 3893 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3894 } else { 3895 /* when transmitting in a vf, start bd must hold the ethertype 3896 * for fw to enforce it 3897 */ 3898 u16 vlan_tci = 0; 3899 #ifndef BNX2X_STOP_ON_ERROR 3900 if (IS_VF(bp)) { 3901 #endif 3902 /* Still need to consider inband vlan for enforced */ 3903 if (__vlan_get_tag(skb, &vlan_tci)) { 3904 tx_start_bd->vlan_or_ethertype = 3905 cpu_to_le16(ntohs(eth->h_proto)); 3906 } else { 3907 tx_start_bd->bd_flags.as_bitfield |= 3908 (X_ETH_INBAND_VLAN << 3909 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3910 tx_start_bd->vlan_or_ethertype = 3911 cpu_to_le16(vlan_tci); 3912 } 3913 #ifndef BNX2X_STOP_ON_ERROR 3914 } else { 3915 /* used by FW for packet accounting */ 3916 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3917 } 3918 #endif 3919 } 3920 3921 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3922 3923 /* turn on parsing and get a BD */ 3924 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3925 3926 if (xmit_type & XMIT_CSUM) 3927 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3928 3929 if (!CHIP_IS_E1x(bp)) { 3930 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3931 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3932 3933 if (xmit_type & XMIT_CSUM_ENC) { 3934 u16 global_data = 0; 3935 3936 /* Set PBD in enc checksum offload case */ 3937 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3938 &pbd_e2_parsing_data, 3939 xmit_type); 3940 3941 /* turn on 2nd parsing and get a BD */ 3942 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3943 3944 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3945 3946 memset(pbd2, 0, sizeof(*pbd2)); 3947 3948 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3949 (skb_inner_network_header(skb) - 3950 skb->data) >> 1; 3951 3952 if (xmit_type & XMIT_GSO_ENC) 3953 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3954 &global_data, 3955 xmit_type); 3956 3957 pbd2->global_data = cpu_to_le16(global_data); 3958 3959 /* add addition parse BD indication to start BD */ 3960 SET_FLAG(tx_start_bd->general_data, 3961 ETH_TX_START_BD_PARSE_NBDS, 1); 3962 /* set encapsulation flag in start BD */ 3963 SET_FLAG(tx_start_bd->general_data, 3964 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3965 3966 tx_buf->flags |= BNX2X_HAS_SECOND_PBD; 3967 3968 nbd++; 3969 } else if (xmit_type & XMIT_CSUM) { 3970 /* Set PBD in checksum offload case w/o encapsulation */ 3971 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3972 &pbd_e2_parsing_data, 3973 xmit_type); 3974 } 3975 3976 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type); 3977 /* Add the macs to the parsing BD if this is a vf or if 3978 * Tx Switching is enabled. 3979 */ 3980 if (IS_VF(bp)) { 3981 /* override GRE parameters in BD */ 3982 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3983 &pbd_e2->data.mac_addr.src_mid, 3984 &pbd_e2->data.mac_addr.src_lo, 3985 eth->h_source); 3986 3987 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 3988 &pbd_e2->data.mac_addr.dst_mid, 3989 &pbd_e2->data.mac_addr.dst_lo, 3990 eth->h_dest); 3991 } else { 3992 if (bp->flags & TX_SWITCHING) 3993 bnx2x_set_fw_mac_addr( 3994 &pbd_e2->data.mac_addr.dst_hi, 3995 &pbd_e2->data.mac_addr.dst_mid, 3996 &pbd_e2->data.mac_addr.dst_lo, 3997 eth->h_dest); 3998 #ifdef BNX2X_STOP_ON_ERROR 3999 /* Enforce security is always set in Stop on Error - 4000 * source mac should be present in the parsing BD 4001 */ 4002 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 4003 &pbd_e2->data.mac_addr.src_mid, 4004 &pbd_e2->data.mac_addr.src_lo, 4005 eth->h_source); 4006 #endif 4007 } 4008 4009 SET_FLAG(pbd_e2_parsing_data, 4010 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 4011 } else { 4012 u16 global_data = 0; 4013 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 4014 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 4015 /* Set PBD in checksum offload case */ 4016 if (xmit_type & XMIT_CSUM) 4017 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 4018 4019 SET_FLAG(global_data, 4020 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 4021 pbd_e1x->global_data |= cpu_to_le16(global_data); 4022 } 4023 4024 /* Setup the data pointer of the first BD of the packet */ 4025 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4026 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4027 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 4028 pkt_size = tx_start_bd->nbytes; 4029 4030 DP(NETIF_MSG_TX_QUEUED, 4031 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 4032 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 4033 le16_to_cpu(tx_start_bd->nbytes), 4034 tx_start_bd->bd_flags.as_bitfield, 4035 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 4036 4037 if (xmit_type & XMIT_GSO) { 4038 4039 DP(NETIF_MSG_TX_QUEUED, 4040 "TSO packet len %d hlen %d total len %d tso size %d\n", 4041 skb->len, hlen, skb_headlen(skb), 4042 skb_shinfo(skb)->gso_size); 4043 4044 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 4045 4046 if (unlikely(skb_headlen(skb) > hlen)) { 4047 nbd++; 4048 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 4049 &tx_start_bd, hlen, 4050 bd_prod); 4051 } 4052 if (!CHIP_IS_E1x(bp)) 4053 pbd_e2_parsing_data |= 4054 (skb_shinfo(skb)->gso_size << 4055 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 4056 ETH_TX_PARSE_BD_E2_LSO_MSS; 4057 else 4058 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); 4059 } 4060 4061 /* Set the PBD's parsing_data field if not zero 4062 * (for the chips newer than 57711). 4063 */ 4064 if (pbd_e2_parsing_data) 4065 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 4066 4067 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 4068 4069 /* Handle fragmented skb */ 4070 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4071 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4072 4073 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 4074 skb_frag_size(frag), DMA_TO_DEVICE); 4075 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 4076 unsigned int pkts_compl = 0, bytes_compl = 0; 4077 4078 DP(NETIF_MSG_TX_QUEUED, 4079 "Unable to map page - dropping packet...\n"); 4080 4081 /* we need unmap all buffers already mapped 4082 * for this SKB; 4083 * first_bd->nbd need to be properly updated 4084 * before call to bnx2x_free_tx_pkt 4085 */ 4086 first_bd->nbd = cpu_to_le16(nbd); 4087 bnx2x_free_tx_pkt(bp, txdata, 4088 TX_BD(txdata->tx_pkt_prod), 4089 &pkts_compl, &bytes_compl); 4090 return NETDEV_TX_OK; 4091 } 4092 4093 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4094 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4095 if (total_pkt_bd == NULL) 4096 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4097 4098 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4099 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4100 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 4101 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 4102 nbd++; 4103 4104 DP(NETIF_MSG_TX_QUEUED, 4105 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 4106 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 4107 le16_to_cpu(tx_data_bd->nbytes)); 4108 } 4109 4110 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 4111 4112 /* update with actual num BDs */ 4113 first_bd->nbd = cpu_to_le16(nbd); 4114 4115 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4116 4117 /* now send a tx doorbell, counting the next BD 4118 * if the packet contains or ends with it 4119 */ 4120 if (TX_BD_POFF(bd_prod) < nbd) 4121 nbd++; 4122 4123 /* total_pkt_bytes should be set on the first data BD if 4124 * it's not an LSO packet and there is more than one 4125 * data BD. In this case pkt_size is limited by an MTU value. 4126 * However we prefer to set it for an LSO packet (while we don't 4127 * have to) in order to save some CPU cycles in a none-LSO 4128 * case, when we much more care about them. 4129 */ 4130 if (total_pkt_bd != NULL) 4131 total_pkt_bd->total_pkt_bytes = pkt_size; 4132 4133 if (pbd_e1x) 4134 DP(NETIF_MSG_TX_QUEUED, 4135 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4136 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4137 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4138 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4139 le16_to_cpu(pbd_e1x->total_hlen_w)); 4140 if (pbd_e2) 4141 DP(NETIF_MSG_TX_QUEUED, 4142 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4143 pbd_e2, 4144 pbd_e2->data.mac_addr.dst_hi, 4145 pbd_e2->data.mac_addr.dst_mid, 4146 pbd_e2->data.mac_addr.dst_lo, 4147 pbd_e2->data.mac_addr.src_hi, 4148 pbd_e2->data.mac_addr.src_mid, 4149 pbd_e2->data.mac_addr.src_lo, 4150 pbd_e2->parsing_data); 4151 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4152 4153 netdev_tx_sent_queue(txq, skb->len); 4154 4155 skb_tx_timestamp(skb); 4156 4157 txdata->tx_pkt_prod++; 4158 /* 4159 * Make sure that the BD data is updated before updating the producer 4160 * since FW might read the BD right after the producer is updated. 4161 * This is only applicable for weak-ordered memory model archs such 4162 * as IA-64. The following barrier is also mandatory since FW will 4163 * assumes packets must have BDs. 4164 */ 4165 wmb(); 4166 4167 txdata->tx_db.data.prod += nbd; 4168 /* make sure descriptor update is observed by HW */ 4169 wmb(); 4170 4171 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw); 4172 4173 txdata->tx_bd_prod += nbd; 4174 4175 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4176 netif_tx_stop_queue(txq); 4177 4178 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4179 * ordering of set_bit() in netif_tx_stop_queue() and read of 4180 * fp->bd_tx_cons */ 4181 smp_mb(); 4182 4183 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4184 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4185 netif_tx_wake_queue(txq); 4186 } 4187 txdata->tx_pkt++; 4188 4189 return NETDEV_TX_OK; 4190 } 4191 4192 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default) 4193 { 4194 int mfw_vn = BP_FW_MB_IDX(bp); 4195 u32 tmp; 4196 4197 /* If the shmem shouldn't affect configuration, reflect */ 4198 if (!IS_MF_BD(bp)) { 4199 int i; 4200 4201 for (i = 0; i < BNX2X_MAX_PRIORITY; i++) 4202 c2s_map[i] = i; 4203 *c2s_default = 0; 4204 4205 return; 4206 } 4207 4208 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]); 4209 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4210 c2s_map[0] = tmp & 0xff; 4211 c2s_map[1] = (tmp >> 8) & 0xff; 4212 c2s_map[2] = (tmp >> 16) & 0xff; 4213 c2s_map[3] = (tmp >> 24) & 0xff; 4214 4215 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]); 4216 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4217 c2s_map[4] = tmp & 0xff; 4218 c2s_map[5] = (tmp >> 8) & 0xff; 4219 c2s_map[6] = (tmp >> 16) & 0xff; 4220 c2s_map[7] = (tmp >> 24) & 0xff; 4221 4222 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]); 4223 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4224 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff; 4225 } 4226 4227 /** 4228 * bnx2x_setup_tc - routine to configure net_device for multi tc 4229 * 4230 * @netdev: net device to configure 4231 * @tc: number of traffic classes to enable 4232 * 4233 * callback connected to the ndo_setup_tc function pointer 4234 */ 4235 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4236 { 4237 struct bnx2x *bp = netdev_priv(dev); 4238 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def; 4239 int cos, prio, count, offset; 4240 4241 /* setup tc must be called under rtnl lock */ 4242 ASSERT_RTNL(); 4243 4244 /* no traffic classes requested. Aborting */ 4245 if (!num_tc) { 4246 netdev_reset_tc(dev); 4247 return 0; 4248 } 4249 4250 /* requested to support too many traffic classes */ 4251 if (num_tc > bp->max_cos) { 4252 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4253 num_tc, bp->max_cos); 4254 return -EINVAL; 4255 } 4256 4257 /* declare amount of supported traffic classes */ 4258 if (netdev_set_num_tc(dev, num_tc)) { 4259 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4260 return -EINVAL; 4261 } 4262 4263 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def); 4264 4265 /* configure priority to traffic class mapping */ 4266 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4267 int outer_prio = c2s_map[prio]; 4268 4269 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]); 4270 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4271 "mapping priority %d to tc %d\n", 4272 outer_prio, bp->prio_to_cos[outer_prio]); 4273 } 4274 4275 /* Use this configuration to differentiate tc0 from other COSes 4276 This can be used for ets or pfc, and save the effort of setting 4277 up a multio class queue disc or negotiating DCBX with a switch 4278 netdev_set_prio_tc_map(dev, 0, 0); 4279 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4280 for (prio = 1; prio < 16; prio++) { 4281 netdev_set_prio_tc_map(dev, prio, 1); 4282 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4283 } */ 4284 4285 /* configure traffic class to transmission queue mapping */ 4286 for (cos = 0; cos < bp->max_cos; cos++) { 4287 count = BNX2X_NUM_ETH_QUEUES(bp); 4288 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4289 netdev_set_tc_queue(dev, cos, count, offset); 4290 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4291 "mapping tc %d to offset %d count %d\n", 4292 cos, offset, count); 4293 } 4294 4295 return 0; 4296 } 4297 4298 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type, 4299 void *type_data) 4300 { 4301 struct tc_mqprio_qopt *mqprio = type_data; 4302 4303 if (type != TC_SETUP_QDISC_MQPRIO) 4304 return -EOPNOTSUPP; 4305 4306 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 4307 4308 return bnx2x_setup_tc(dev, mqprio->num_tc); 4309 } 4310 4311 /* called with rtnl_lock */ 4312 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4313 { 4314 struct sockaddr *addr = p; 4315 struct bnx2x *bp = netdev_priv(dev); 4316 int rc = 0; 4317 4318 if (!is_valid_ether_addr(addr->sa_data)) { 4319 BNX2X_ERR("Requested MAC address is not valid\n"); 4320 return -EINVAL; 4321 } 4322 4323 if (IS_MF_STORAGE_ONLY(bp)) { 4324 BNX2X_ERR("Can't change address on STORAGE ONLY function\n"); 4325 return -EINVAL; 4326 } 4327 4328 if (netif_running(dev)) { 4329 rc = bnx2x_set_eth_mac(bp, false); 4330 if (rc) 4331 return rc; 4332 } 4333 4334 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4335 4336 if (netif_running(dev)) 4337 rc = bnx2x_set_eth_mac(bp, true); 4338 4339 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4340 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4341 4342 return rc; 4343 } 4344 4345 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4346 { 4347 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4348 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4349 u8 cos; 4350 4351 /* Common */ 4352 4353 if (IS_FCOE_IDX(fp_index)) { 4354 memset(sb, 0, sizeof(union host_hc_status_block)); 4355 fp->status_blk_mapping = 0; 4356 } else { 4357 /* status blocks */ 4358 if (!CHIP_IS_E1x(bp)) 4359 BNX2X_PCI_FREE(sb->e2_sb, 4360 bnx2x_fp(bp, fp_index, 4361 status_blk_mapping), 4362 sizeof(struct host_hc_status_block_e2)); 4363 else 4364 BNX2X_PCI_FREE(sb->e1x_sb, 4365 bnx2x_fp(bp, fp_index, 4366 status_blk_mapping), 4367 sizeof(struct host_hc_status_block_e1x)); 4368 } 4369 4370 /* Rx */ 4371 if (!skip_rx_queue(bp, fp_index)) { 4372 bnx2x_free_rx_bds(fp); 4373 4374 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4375 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4376 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4377 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4378 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4379 4380 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4381 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4382 sizeof(struct eth_fast_path_rx_cqe) * 4383 NUM_RCQ_BD); 4384 4385 /* SGE ring */ 4386 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4387 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4388 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4389 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4390 } 4391 4392 /* Tx */ 4393 if (!skip_tx_queue(bp, fp_index)) { 4394 /* fastpath tx rings: tx_buf tx_desc */ 4395 for_each_cos_in_tx_queue(fp, cos) { 4396 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4397 4398 DP(NETIF_MSG_IFDOWN, 4399 "freeing tx memory of fp %d cos %d cid %d\n", 4400 fp_index, cos, txdata->cid); 4401 4402 BNX2X_FREE(txdata->tx_buf_ring); 4403 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4404 txdata->tx_desc_mapping, 4405 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4406 } 4407 } 4408 /* end of fastpath */ 4409 } 4410 4411 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4412 { 4413 int i; 4414 for_each_cnic_queue(bp, i) 4415 bnx2x_free_fp_mem_at(bp, i); 4416 } 4417 4418 void bnx2x_free_fp_mem(struct bnx2x *bp) 4419 { 4420 int i; 4421 for_each_eth_queue(bp, i) 4422 bnx2x_free_fp_mem_at(bp, i); 4423 } 4424 4425 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4426 { 4427 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4428 if (!CHIP_IS_E1x(bp)) { 4429 bnx2x_fp(bp, index, sb_index_values) = 4430 (__le16 *)status_blk.e2_sb->sb.index_values; 4431 bnx2x_fp(bp, index, sb_running_index) = 4432 (__le16 *)status_blk.e2_sb->sb.running_index; 4433 } else { 4434 bnx2x_fp(bp, index, sb_index_values) = 4435 (__le16 *)status_blk.e1x_sb->sb.index_values; 4436 bnx2x_fp(bp, index, sb_running_index) = 4437 (__le16 *)status_blk.e1x_sb->sb.running_index; 4438 } 4439 } 4440 4441 /* Returns the number of actually allocated BDs */ 4442 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4443 int rx_ring_size) 4444 { 4445 struct bnx2x *bp = fp->bp; 4446 u16 ring_prod, cqe_ring_prod; 4447 int i, failure_cnt = 0; 4448 4449 fp->rx_comp_cons = 0; 4450 cqe_ring_prod = ring_prod = 0; 4451 4452 /* This routine is called only during fo init so 4453 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4454 */ 4455 for (i = 0; i < rx_ring_size; i++) { 4456 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4457 failure_cnt++; 4458 continue; 4459 } 4460 ring_prod = NEXT_RX_IDX(ring_prod); 4461 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4462 WARN_ON(ring_prod <= (i - failure_cnt)); 4463 } 4464 4465 if (failure_cnt) 4466 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4467 i - failure_cnt, fp->index); 4468 4469 fp->rx_bd_prod = ring_prod; 4470 /* Limit the CQE producer by the CQE ring size */ 4471 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4472 cqe_ring_prod); 4473 4474 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4475 4476 return i - failure_cnt; 4477 } 4478 4479 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4480 { 4481 int i; 4482 4483 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4484 struct eth_rx_cqe_next_page *nextpg; 4485 4486 nextpg = (struct eth_rx_cqe_next_page *) 4487 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4488 nextpg->addr_hi = 4489 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4490 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4491 nextpg->addr_lo = 4492 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4493 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4494 } 4495 } 4496 4497 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4498 { 4499 union host_hc_status_block *sb; 4500 struct bnx2x_fastpath *fp = &bp->fp[index]; 4501 int ring_size = 0; 4502 u8 cos; 4503 int rx_ring_size = 0; 4504 4505 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) { 4506 rx_ring_size = MIN_RX_SIZE_NONTPA; 4507 bp->rx_ring_size = rx_ring_size; 4508 } else if (!bp->rx_ring_size) { 4509 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4510 4511 if (CHIP_IS_E3(bp)) { 4512 u32 cfg = SHMEM_RD(bp, 4513 dev_info.port_hw_config[BP_PORT(bp)]. 4514 default_cfg); 4515 4516 /* Decrease ring size for 1G functions */ 4517 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4518 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4519 rx_ring_size /= 10; 4520 } 4521 4522 /* allocate at least number of buffers required by FW */ 4523 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4524 MIN_RX_SIZE_TPA, rx_ring_size); 4525 4526 bp->rx_ring_size = rx_ring_size; 4527 } else /* if rx_ring_size specified - use it */ 4528 rx_ring_size = bp->rx_ring_size; 4529 4530 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4531 4532 /* Common */ 4533 sb = &bnx2x_fp(bp, index, status_blk); 4534 4535 if (!IS_FCOE_IDX(index)) { 4536 /* status blocks */ 4537 if (!CHIP_IS_E1x(bp)) { 4538 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4539 sizeof(struct host_hc_status_block_e2)); 4540 if (!sb->e2_sb) 4541 goto alloc_mem_err; 4542 } else { 4543 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4544 sizeof(struct host_hc_status_block_e1x)); 4545 if (!sb->e1x_sb) 4546 goto alloc_mem_err; 4547 } 4548 } 4549 4550 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4551 * set shortcuts for it. 4552 */ 4553 if (!IS_FCOE_IDX(index)) 4554 set_sb_shortcuts(bp, index); 4555 4556 /* Tx */ 4557 if (!skip_tx_queue(bp, index)) { 4558 /* fastpath tx rings: tx_buf tx_desc */ 4559 for_each_cos_in_tx_queue(fp, cos) { 4560 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4561 4562 DP(NETIF_MSG_IFUP, 4563 "allocating tx memory of fp %d cos %d\n", 4564 index, cos); 4565 4566 txdata->tx_buf_ring = kcalloc(NUM_TX_BD, 4567 sizeof(struct sw_tx_bd), 4568 GFP_KERNEL); 4569 if (!txdata->tx_buf_ring) 4570 goto alloc_mem_err; 4571 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, 4572 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4573 if (!txdata->tx_desc_ring) 4574 goto alloc_mem_err; 4575 } 4576 } 4577 4578 /* Rx */ 4579 if (!skip_rx_queue(bp, index)) { 4580 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4581 bnx2x_fp(bp, index, rx_buf_ring) = 4582 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL); 4583 if (!bnx2x_fp(bp, index, rx_buf_ring)) 4584 goto alloc_mem_err; 4585 bnx2x_fp(bp, index, rx_desc_ring) = 4586 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), 4587 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4588 if (!bnx2x_fp(bp, index, rx_desc_ring)) 4589 goto alloc_mem_err; 4590 4591 /* Seed all CQEs by 1s */ 4592 bnx2x_fp(bp, index, rx_comp_ring) = 4593 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), 4594 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); 4595 if (!bnx2x_fp(bp, index, rx_comp_ring)) 4596 goto alloc_mem_err; 4597 4598 /* SGE ring */ 4599 bnx2x_fp(bp, index, rx_page_ring) = 4600 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page), 4601 GFP_KERNEL); 4602 if (!bnx2x_fp(bp, index, rx_page_ring)) 4603 goto alloc_mem_err; 4604 bnx2x_fp(bp, index, rx_sge_ring) = 4605 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), 4606 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4607 if (!bnx2x_fp(bp, index, rx_sge_ring)) 4608 goto alloc_mem_err; 4609 /* RX BD ring */ 4610 bnx2x_set_next_page_rx_bd(fp); 4611 4612 /* CQ ring */ 4613 bnx2x_set_next_page_rx_cq(fp); 4614 4615 /* BDs */ 4616 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4617 if (ring_size < rx_ring_size) 4618 goto alloc_mem_err; 4619 } 4620 4621 return 0; 4622 4623 /* handles low memory cases */ 4624 alloc_mem_err: 4625 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4626 index, ring_size); 4627 /* FW will drop all packets if queue is not big enough, 4628 * In these cases we disable the queue 4629 * Min size is different for OOO, TPA and non-TPA queues 4630 */ 4631 if (ring_size < (fp->mode == TPA_MODE_DISABLED ? 4632 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4633 /* release memory allocated for this queue */ 4634 bnx2x_free_fp_mem_at(bp, index); 4635 return -ENOMEM; 4636 } 4637 return 0; 4638 } 4639 4640 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4641 { 4642 if (!NO_FCOE(bp)) 4643 /* FCoE */ 4644 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4645 /* we will fail load process instead of mark 4646 * NO_FCOE_FLAG 4647 */ 4648 return -ENOMEM; 4649 4650 return 0; 4651 } 4652 4653 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4654 { 4655 int i; 4656 4657 /* 1. Allocate FP for leading - fatal if error 4658 * 2. Allocate RSS - fix number of queues if error 4659 */ 4660 4661 /* leading */ 4662 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4663 return -ENOMEM; 4664 4665 /* RSS */ 4666 for_each_nondefault_eth_queue(bp, i) 4667 if (bnx2x_alloc_fp_mem_at(bp, i)) 4668 break; 4669 4670 /* handle memory failures */ 4671 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4672 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4673 4674 WARN_ON(delta < 0); 4675 bnx2x_shrink_eth_fp(bp, delta); 4676 if (CNIC_SUPPORT(bp)) 4677 /* move non eth FPs next to last eth FP 4678 * must be done in that order 4679 * FCOE_IDX < FWD_IDX < OOO_IDX 4680 */ 4681 4682 /* move FCoE fp even NO_FCOE_FLAG is on */ 4683 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4684 bp->num_ethernet_queues -= delta; 4685 bp->num_queues = bp->num_ethernet_queues + 4686 bp->num_cnic_queues; 4687 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4688 bp->num_queues + delta, bp->num_queues); 4689 } 4690 4691 return 0; 4692 } 4693 4694 void bnx2x_free_mem_bp(struct bnx2x *bp) 4695 { 4696 int i; 4697 4698 for (i = 0; i < bp->fp_array_size; i++) 4699 kfree(bp->fp[i].tpa_info); 4700 kfree(bp->fp); 4701 kfree(bp->sp_objs); 4702 kfree(bp->fp_stats); 4703 kfree(bp->bnx2x_txq); 4704 kfree(bp->msix_table); 4705 kfree(bp->ilt); 4706 } 4707 4708 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4709 { 4710 struct bnx2x_fastpath *fp; 4711 struct msix_entry *tbl; 4712 struct bnx2x_ilt *ilt; 4713 int msix_table_size = 0; 4714 int fp_array_size, txq_array_size; 4715 int i; 4716 4717 /* 4718 * The biggest MSI-X table we might need is as a maximum number of fast 4719 * path IGU SBs plus default SB (for PF only). 4720 */ 4721 msix_table_size = bp->igu_sb_cnt; 4722 if (IS_PF(bp)) 4723 msix_table_size++; 4724 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4725 4726 /* fp array: RSS plus CNIC related L2 queues */ 4727 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4728 bp->fp_array_size = fp_array_size; 4729 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4730 4731 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4732 if (!fp) 4733 goto alloc_err; 4734 for (i = 0; i < bp->fp_array_size; i++) { 4735 fp[i].tpa_info = 4736 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4737 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4738 if (!(fp[i].tpa_info)) 4739 goto alloc_err; 4740 } 4741 4742 bp->fp = fp; 4743 4744 /* allocate sp objs */ 4745 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4746 GFP_KERNEL); 4747 if (!bp->sp_objs) 4748 goto alloc_err; 4749 4750 /* allocate fp_stats */ 4751 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4752 GFP_KERNEL); 4753 if (!bp->fp_stats) 4754 goto alloc_err; 4755 4756 /* Allocate memory for the transmission queues array */ 4757 txq_array_size = 4758 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4759 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4760 4761 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4762 GFP_KERNEL); 4763 if (!bp->bnx2x_txq) 4764 goto alloc_err; 4765 4766 /* msix table */ 4767 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4768 if (!tbl) 4769 goto alloc_err; 4770 bp->msix_table = tbl; 4771 4772 /* ilt */ 4773 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4774 if (!ilt) 4775 goto alloc_err; 4776 bp->ilt = ilt; 4777 4778 return 0; 4779 alloc_err: 4780 bnx2x_free_mem_bp(bp); 4781 return -ENOMEM; 4782 } 4783 4784 int bnx2x_reload_if_running(struct net_device *dev) 4785 { 4786 struct bnx2x *bp = netdev_priv(dev); 4787 4788 if (unlikely(!netif_running(dev))) 4789 return 0; 4790 4791 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4792 return bnx2x_nic_load(bp, LOAD_NORMAL); 4793 } 4794 4795 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4796 { 4797 u32 sel_phy_idx = 0; 4798 if (bp->link_params.num_phys <= 1) 4799 return INT_PHY; 4800 4801 if (bp->link_vars.link_up) { 4802 sel_phy_idx = EXT_PHY1; 4803 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4804 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4805 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4806 sel_phy_idx = EXT_PHY2; 4807 } else { 4808 4809 switch (bnx2x_phy_selection(&bp->link_params)) { 4810 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4811 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4812 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4813 sel_phy_idx = EXT_PHY1; 4814 break; 4815 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4816 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4817 sel_phy_idx = EXT_PHY2; 4818 break; 4819 } 4820 } 4821 4822 return sel_phy_idx; 4823 } 4824 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4825 { 4826 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4827 /* 4828 * The selected activated PHY is always after swapping (in case PHY 4829 * swapping is enabled). So when swapping is enabled, we need to reverse 4830 * the configuration 4831 */ 4832 4833 if (bp->link_params.multi_phy_config & 4834 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4835 if (sel_phy_idx == EXT_PHY1) 4836 sel_phy_idx = EXT_PHY2; 4837 else if (sel_phy_idx == EXT_PHY2) 4838 sel_phy_idx = EXT_PHY1; 4839 } 4840 return LINK_CONFIG_IDX(sel_phy_idx); 4841 } 4842 4843 #ifdef NETDEV_FCOE_WWNN 4844 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4845 { 4846 struct bnx2x *bp = netdev_priv(dev); 4847 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4848 4849 switch (type) { 4850 case NETDEV_FCOE_WWNN: 4851 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4852 cp->fcoe_wwn_node_name_lo); 4853 break; 4854 case NETDEV_FCOE_WWPN: 4855 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4856 cp->fcoe_wwn_port_name_lo); 4857 break; 4858 default: 4859 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4860 return -EINVAL; 4861 } 4862 4863 return 0; 4864 } 4865 #endif 4866 4867 /* called with rtnl_lock */ 4868 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4869 { 4870 struct bnx2x *bp = netdev_priv(dev); 4871 4872 if (pci_num_vf(bp->pdev)) { 4873 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n"); 4874 return -EPERM; 4875 } 4876 4877 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4878 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4879 return -EAGAIN; 4880 } 4881 4882 /* This does not race with packet allocation 4883 * because the actual alloc size is 4884 * only updated as part of load 4885 */ 4886 dev->mtu = new_mtu; 4887 4888 if (!bnx2x_mtu_allows_gro(new_mtu)) 4889 dev->features &= ~NETIF_F_GRO_HW; 4890 4891 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4892 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4893 4894 return bnx2x_reload_if_running(dev); 4895 } 4896 4897 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4898 netdev_features_t features) 4899 { 4900 struct bnx2x *bp = netdev_priv(dev); 4901 4902 if (pci_num_vf(bp->pdev)) { 4903 netdev_features_t changed = dev->features ^ features; 4904 4905 /* Revert the requested changes in features if they 4906 * would require internal reload of PF in bnx2x_set_features(). 4907 */ 4908 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) { 4909 features &= ~NETIF_F_RXCSUM; 4910 features |= dev->features & NETIF_F_RXCSUM; 4911 } 4912 4913 if (changed & NETIF_F_LOOPBACK) { 4914 features &= ~NETIF_F_LOOPBACK; 4915 features |= dev->features & NETIF_F_LOOPBACK; 4916 } 4917 } 4918 4919 /* TPA requires Rx CSUM offloading */ 4920 if (!(features & NETIF_F_RXCSUM)) 4921 features &= ~NETIF_F_LRO; 4922 4923 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu)) 4924 features &= ~NETIF_F_GRO_HW; 4925 if (features & NETIF_F_GRO_HW) 4926 features &= ~NETIF_F_LRO; 4927 4928 return features; 4929 } 4930 4931 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4932 { 4933 struct bnx2x *bp = netdev_priv(dev); 4934 netdev_features_t changes = features ^ dev->features; 4935 bool bnx2x_reload = false; 4936 int rc; 4937 4938 /* VFs or non SRIOV PFs should be able to change loopback feature */ 4939 if (!pci_num_vf(bp->pdev)) { 4940 if (features & NETIF_F_LOOPBACK) { 4941 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4942 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4943 bnx2x_reload = true; 4944 } 4945 } else { 4946 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4947 bp->link_params.loopback_mode = LOOPBACK_NONE; 4948 bnx2x_reload = true; 4949 } 4950 } 4951 } 4952 4953 /* Don't care about GRO changes */ 4954 changes &= ~NETIF_F_GRO; 4955 4956 if (changes) 4957 bnx2x_reload = true; 4958 4959 if (bnx2x_reload) { 4960 if (bp->recovery_state == BNX2X_RECOVERY_DONE) { 4961 dev->features = features; 4962 rc = bnx2x_reload_if_running(dev); 4963 return rc ? rc : 1; 4964 } 4965 /* else: bnx2x_nic_load() will be called at end of recovery */ 4966 } 4967 4968 return 0; 4969 } 4970 4971 void bnx2x_tx_timeout(struct net_device *dev) 4972 { 4973 struct bnx2x *bp = netdev_priv(dev); 4974 4975 /* We want the information of the dump logged, 4976 * but calling bnx2x_panic() would kill all chances of recovery. 4977 */ 4978 if (!bp->panic) 4979 #ifndef BNX2X_STOP_ON_ERROR 4980 bnx2x_panic_dump(bp, false); 4981 #else 4982 bnx2x_panic(); 4983 #endif 4984 4985 /* This allows the netif to be shutdown gracefully before resetting */ 4986 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); 4987 } 4988 4989 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) 4990 { 4991 struct net_device *dev = pci_get_drvdata(pdev); 4992 struct bnx2x *bp; 4993 4994 if (!dev) { 4995 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4996 return -ENODEV; 4997 } 4998 bp = netdev_priv(dev); 4999 5000 rtnl_lock(); 5001 5002 pci_save_state(pdev); 5003 5004 if (!netif_running(dev)) { 5005 rtnl_unlock(); 5006 return 0; 5007 } 5008 5009 netif_device_detach(dev); 5010 5011 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 5012 5013 bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); 5014 5015 rtnl_unlock(); 5016 5017 return 0; 5018 } 5019 5020 int bnx2x_resume(struct pci_dev *pdev) 5021 { 5022 struct net_device *dev = pci_get_drvdata(pdev); 5023 struct bnx2x *bp; 5024 int rc; 5025 5026 if (!dev) { 5027 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5028 return -ENODEV; 5029 } 5030 bp = netdev_priv(dev); 5031 5032 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 5033 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 5034 return -EAGAIN; 5035 } 5036 5037 rtnl_lock(); 5038 5039 pci_restore_state(pdev); 5040 5041 if (!netif_running(dev)) { 5042 rtnl_unlock(); 5043 return 0; 5044 } 5045 5046 bnx2x_set_power_state(bp, PCI_D0); 5047 netif_device_attach(dev); 5048 5049 rc = bnx2x_nic_load(bp, LOAD_OPEN); 5050 5051 rtnl_unlock(); 5052 5053 return rc; 5054 } 5055 5056 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 5057 u32 cid) 5058 { 5059 if (!cxt) { 5060 BNX2X_ERR("bad context pointer %p\n", cxt); 5061 return; 5062 } 5063 5064 /* ustorm cxt validation */ 5065 cxt->ustorm_ag_context.cdu_usage = 5066 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5067 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 5068 /* xcontext validation */ 5069 cxt->xstorm_ag_context.cdu_reserved = 5070 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5071 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 5072 } 5073 5074 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 5075 u8 fw_sb_id, u8 sb_index, 5076 u8 ticks) 5077 { 5078 u32 addr = BAR_CSTRORM_INTMEM + 5079 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 5080 REG_WR8(bp, addr, ticks); 5081 DP(NETIF_MSG_IFUP, 5082 "port %x fw_sb_id %d sb_index %d ticks %d\n", 5083 port, fw_sb_id, sb_index, ticks); 5084 } 5085 5086 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 5087 u16 fw_sb_id, u8 sb_index, 5088 u8 disable) 5089 { 5090 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 5091 u32 addr = BAR_CSTRORM_INTMEM + 5092 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 5093 u8 flags = REG_RD8(bp, addr); 5094 /* clear and set */ 5095 flags &= ~HC_INDEX_DATA_HC_ENABLED; 5096 flags |= enable_flag; 5097 REG_WR8(bp, addr, flags); 5098 DP(NETIF_MSG_IFUP, 5099 "port %x fw_sb_id %d sb_index %d disable %d\n", 5100 port, fw_sb_id, sb_index, disable); 5101 } 5102 5103 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 5104 u8 sb_index, u8 disable, u16 usec) 5105 { 5106 int port = BP_PORT(bp); 5107 u8 ticks = usec / BNX2X_BTR; 5108 5109 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 5110 5111 disable = disable ? 1 : (usec ? 0 : 1); 5112 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 5113 } 5114 5115 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, 5116 u32 verbose) 5117 { 5118 smp_mb__before_atomic(); 5119 set_bit(flag, &bp->sp_rtnl_state); 5120 smp_mb__after_atomic(); 5121 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", 5122 flag); 5123 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5124 } 5125