1 /* bnx2x_cmn.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/etherdevice.h> 23 #include <linux/if_vlan.h> 24 #include <linux/interrupt.h> 25 #include <linux/ip.h> 26 #include <linux/crash_dump.h> 27 #include <net/tcp.h> 28 #include <net/ipv6.h> 29 #include <net/ip6_checksum.h> 30 #include <net/busy_poll.h> 31 #include <linux/prefetch.h> 32 #include "bnx2x_cmn.h" 33 #include "bnx2x_init.h" 34 #include "bnx2x_sp.h" 35 36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 39 static int bnx2x_poll(struct napi_struct *napi, int budget); 40 41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 42 { 43 int i; 44 45 /* Add NAPI objects */ 46 for_each_rx_queue_cnic(bp, i) { 47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 48 bnx2x_poll, NAPI_POLL_WEIGHT); 49 } 50 } 51 52 static void bnx2x_add_all_napi(struct bnx2x *bp) 53 { 54 int i; 55 56 /* Add NAPI objects */ 57 for_each_eth_queue(bp, i) { 58 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 59 bnx2x_poll, NAPI_POLL_WEIGHT); 60 } 61 } 62 63 static int bnx2x_calc_num_queues(struct bnx2x *bp) 64 { 65 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues(); 66 67 /* Reduce memory usage in kdump environment by using only one queue */ 68 if (is_kdump_kernel()) 69 nq = 1; 70 71 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp)); 72 return nq; 73 } 74 75 /** 76 * bnx2x_move_fp - move content of the fastpath structure. 77 * 78 * @bp: driver handle 79 * @from: source FP index 80 * @to: destination FP index 81 * 82 * Makes sure the contents of the bp->fp[to].napi is kept 83 * intact. This is done by first copying the napi struct from 84 * the target to the source, and then mem copying the entire 85 * source onto the target. Update txdata pointers and related 86 * content. 87 */ 88 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 89 { 90 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 91 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 92 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 93 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 94 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 95 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 96 int old_max_eth_txqs, new_max_eth_txqs; 97 int old_txdata_index = 0, new_txdata_index = 0; 98 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 99 100 /* Copy the NAPI object as it has been already initialized */ 101 from_fp->napi = to_fp->napi; 102 103 /* Move bnx2x_fastpath contents */ 104 memcpy(to_fp, from_fp, sizeof(*to_fp)); 105 to_fp->index = to; 106 107 /* Retain the tpa_info of the original `to' version as we don't want 108 * 2 FPs to contain the same tpa_info pointer. 109 */ 110 to_fp->tpa_info = old_tpa_info; 111 112 /* move sp_objs contents as well, as their indices match fp ones */ 113 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 114 115 /* move fp_stats contents as well, as their indices match fp ones */ 116 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 117 118 /* Update txdata pointers in fp and move txdata content accordingly: 119 * Each fp consumes 'max_cos' txdata structures, so the index should be 120 * decremented by max_cos x delta. 121 */ 122 123 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 124 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 125 (bp)->max_cos; 126 if (from == FCOE_IDX(bp)) { 127 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 128 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 129 } 130 131 memcpy(&bp->bnx2x_txq[new_txdata_index], 132 &bp->bnx2x_txq[old_txdata_index], 133 sizeof(struct bnx2x_fp_txdata)); 134 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 135 } 136 137 /** 138 * bnx2x_fill_fw_str - Fill buffer with FW version string. 139 * 140 * @bp: driver handle 141 * @buf: character buffer to fill with the fw name 142 * @buf_len: length of the above buffer 143 * 144 */ 145 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 146 { 147 if (IS_PF(bp)) { 148 u8 phy_fw_ver[PHY_FW_VER_LEN]; 149 150 phy_fw_ver[0] = '\0'; 151 bnx2x_get_ext_phy_fw_version(&bp->link_params, 152 phy_fw_ver, PHY_FW_VER_LEN); 153 strlcpy(buf, bp->fw_ver, buf_len); 154 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 155 "bc %d.%d.%d%s%s", 156 (bp->common.bc_ver & 0xff0000) >> 16, 157 (bp->common.bc_ver & 0xff00) >> 8, 158 (bp->common.bc_ver & 0xff), 159 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 160 } else { 161 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 162 } 163 } 164 165 /** 166 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 167 * 168 * @bp: driver handle 169 * @delta: number of eth queues which were not allocated 170 */ 171 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 172 { 173 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 174 175 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 176 * backward along the array could cause memory to be overridden 177 */ 178 for (cos = 1; cos < bp->max_cos; cos++) { 179 for (i = 0; i < old_eth_num - delta; i++) { 180 struct bnx2x_fastpath *fp = &bp->fp[i]; 181 int new_idx = cos * (old_eth_num - delta) + i; 182 183 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 184 sizeof(struct bnx2x_fp_txdata)); 185 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 186 } 187 } 188 } 189 190 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 191 192 /* free skb in the packet ring at pos idx 193 * return idx of last bd freed 194 */ 195 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 196 u16 idx, unsigned int *pkts_compl, 197 unsigned int *bytes_compl) 198 { 199 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 200 struct eth_tx_start_bd *tx_start_bd; 201 struct eth_tx_bd *tx_data_bd; 202 struct sk_buff *skb = tx_buf->skb; 203 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 204 int nbd; 205 u16 split_bd_len = 0; 206 207 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 208 prefetch(&skb->end); 209 210 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 211 txdata->txq_index, idx, tx_buf, skb); 212 213 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 214 215 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 216 #ifdef BNX2X_STOP_ON_ERROR 217 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 218 BNX2X_ERR("BAD nbd!\n"); 219 bnx2x_panic(); 220 } 221 #endif 222 new_cons = nbd + tx_buf->first_bd; 223 224 /* Get the next bd */ 225 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 226 227 /* Skip a parse bd... */ 228 --nbd; 229 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 230 231 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { 232 /* Skip second parse bd... */ 233 --nbd; 234 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 235 } 236 237 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 238 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 239 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 240 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 241 --nbd; 242 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 243 } 244 245 /* unmap first bd */ 246 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 247 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 248 DMA_TO_DEVICE); 249 250 /* now free frags */ 251 while (nbd > 0) { 252 253 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 254 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 255 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 256 if (--nbd) 257 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 258 } 259 260 /* release skb */ 261 WARN_ON(!skb); 262 if (likely(skb)) { 263 (*pkts_compl)++; 264 (*bytes_compl) += skb->len; 265 dev_kfree_skb_any(skb); 266 } 267 268 tx_buf->first_bd = 0; 269 tx_buf->skb = NULL; 270 271 return new_cons; 272 } 273 274 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 275 { 276 struct netdev_queue *txq; 277 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 278 unsigned int pkts_compl = 0, bytes_compl = 0; 279 280 #ifdef BNX2X_STOP_ON_ERROR 281 if (unlikely(bp->panic)) 282 return -1; 283 #endif 284 285 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 286 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 287 sw_cons = txdata->tx_pkt_cons; 288 289 while (sw_cons != hw_cons) { 290 u16 pkt_cons; 291 292 pkt_cons = TX_BD(sw_cons); 293 294 DP(NETIF_MSG_TX_DONE, 295 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 296 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 297 298 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 299 &pkts_compl, &bytes_compl); 300 301 sw_cons++; 302 } 303 304 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 305 306 txdata->tx_pkt_cons = sw_cons; 307 txdata->tx_bd_cons = bd_cons; 308 309 /* Need to make the tx_bd_cons update visible to start_xmit() 310 * before checking for netif_tx_queue_stopped(). Without the 311 * memory barrier, there is a small possibility that 312 * start_xmit() will miss it and cause the queue to be stopped 313 * forever. 314 * On the other hand we need an rmb() here to ensure the proper 315 * ordering of bit testing in the following 316 * netif_tx_queue_stopped(txq) call. 317 */ 318 smp_mb(); 319 320 if (unlikely(netif_tx_queue_stopped(txq))) { 321 /* Taking tx_lock() is needed to prevent re-enabling the queue 322 * while it's empty. This could have happen if rx_action() gets 323 * suspended in bnx2x_tx_int() after the condition before 324 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 325 * 326 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 327 * sends some packets consuming the whole queue again-> 328 * stops the queue 329 */ 330 331 __netif_tx_lock(txq, smp_processor_id()); 332 333 if ((netif_tx_queue_stopped(txq)) && 334 (bp->state == BNX2X_STATE_OPEN) && 335 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 336 netif_tx_wake_queue(txq); 337 338 __netif_tx_unlock(txq); 339 } 340 return 0; 341 } 342 343 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 344 u16 idx) 345 { 346 u16 last_max = fp->last_max_sge; 347 348 if (SUB_S16(idx, last_max) > 0) 349 fp->last_max_sge = idx; 350 } 351 352 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 353 u16 sge_len, 354 struct eth_end_agg_rx_cqe *cqe) 355 { 356 struct bnx2x *bp = fp->bp; 357 u16 last_max, last_elem, first_elem; 358 u16 delta = 0; 359 u16 i; 360 361 if (!sge_len) 362 return; 363 364 /* First mark all used pages */ 365 for (i = 0; i < sge_len; i++) 366 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 367 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 368 369 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 370 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 371 372 /* Here we assume that the last SGE index is the biggest */ 373 prefetch((void *)(fp->sge_mask)); 374 bnx2x_update_last_max_sge(fp, 375 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 376 377 last_max = RX_SGE(fp->last_max_sge); 378 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 379 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 380 381 /* If ring is not full */ 382 if (last_elem + 1 != first_elem) 383 last_elem++; 384 385 /* Now update the prod */ 386 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 387 if (likely(fp->sge_mask[i])) 388 break; 389 390 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 391 delta += BIT_VEC64_ELEM_SZ; 392 } 393 394 if (delta > 0) { 395 fp->rx_sge_prod += delta; 396 /* clear page-end entries */ 397 bnx2x_clear_sge_mask_next_elems(fp); 398 } 399 400 DP(NETIF_MSG_RX_STATUS, 401 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 402 fp->last_max_sge, fp->rx_sge_prod); 403 } 404 405 /* Get Toeplitz hash value in the skb using the value from the 406 * CQE (calculated by HW). 407 */ 408 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 409 const struct eth_fast_path_rx_cqe *cqe, 410 enum pkt_hash_types *rxhash_type) 411 { 412 /* Get Toeplitz hash from CQE */ 413 if ((bp->dev->features & NETIF_F_RXHASH) && 414 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 415 enum eth_rss_hash_type htype; 416 417 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 418 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 419 (htype == TCP_IPV6_HASH_TYPE)) ? 420 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 421 422 return le32_to_cpu(cqe->rss_hash_result); 423 } 424 *rxhash_type = PKT_HASH_TYPE_NONE; 425 return 0; 426 } 427 428 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 429 u16 cons, u16 prod, 430 struct eth_fast_path_rx_cqe *cqe) 431 { 432 struct bnx2x *bp = fp->bp; 433 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 434 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 435 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 436 dma_addr_t mapping; 437 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 438 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 439 440 /* print error if current state != stop */ 441 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 442 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 443 444 /* Try to map an empty data buffer from the aggregation info */ 445 mapping = dma_map_single(&bp->pdev->dev, 446 first_buf->data + NET_SKB_PAD, 447 fp->rx_buf_size, DMA_FROM_DEVICE); 448 /* 449 * ...if it fails - move the skb from the consumer to the producer 450 * and set the current aggregation state as ERROR to drop it 451 * when TPA_STOP arrives. 452 */ 453 454 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 455 /* Move the BD from the consumer to the producer */ 456 bnx2x_reuse_rx_data(fp, cons, prod); 457 tpa_info->tpa_state = BNX2X_TPA_ERROR; 458 return; 459 } 460 461 /* move empty data from pool to prod */ 462 prod_rx_buf->data = first_buf->data; 463 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 464 /* point prod_bd to new data */ 465 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 466 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 467 468 /* move partial skb from cons to pool (don't unmap yet) */ 469 *first_buf = *cons_rx_buf; 470 471 /* mark bin state as START */ 472 tpa_info->parsing_flags = 473 le16_to_cpu(cqe->pars_flags.flags); 474 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 475 tpa_info->tpa_state = BNX2X_TPA_START; 476 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 477 tpa_info->placement_offset = cqe->placement_offset; 478 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 479 if (fp->mode == TPA_MODE_GRO) { 480 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 481 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 482 tpa_info->gro_size = gro_size; 483 } 484 485 #ifdef BNX2X_STOP_ON_ERROR 486 fp->tpa_queue_used |= (1 << queue); 487 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 488 fp->tpa_queue_used); 489 #endif 490 } 491 492 /* Timestamp option length allowed for TPA aggregation: 493 * 494 * nop nop kind length echo val 495 */ 496 #define TPA_TSTAMP_OPT_LEN 12 497 /** 498 * bnx2x_set_gro_params - compute GRO values 499 * 500 * @skb: packet skb 501 * @parsing_flags: parsing flags from the START CQE 502 * @len_on_bd: total length of the first packet for the 503 * aggregation. 504 * @pkt_len: length of all segments 505 * 506 * Approximate value of the MSS for this aggregation calculated using 507 * the first packet of it. 508 * Compute number of aggregated segments, and gso_type. 509 */ 510 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 511 u16 len_on_bd, unsigned int pkt_len, 512 u16 num_of_coalesced_segs) 513 { 514 /* TPA aggregation won't have either IP options or TCP options 515 * other than timestamp or IPv6 extension headers. 516 */ 517 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 518 519 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 520 PRS_FLAG_OVERETH_IPV6) { 521 hdrs_len += sizeof(struct ipv6hdr); 522 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 523 } else { 524 hdrs_len += sizeof(struct iphdr); 525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 526 } 527 528 /* Check if there was a TCP timestamp, if there is it's will 529 * always be 12 bytes length: nop nop kind length echo val. 530 * 531 * Otherwise FW would close the aggregation. 532 */ 533 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 534 hdrs_len += TPA_TSTAMP_OPT_LEN; 535 536 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 537 538 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 539 * to skb_shinfo(skb)->gso_segs 540 */ 541 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 542 } 543 544 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 545 u16 index, gfp_t gfp_mask) 546 { 547 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 548 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 549 struct bnx2x_alloc_pool *pool = &fp->page_pool; 550 dma_addr_t mapping; 551 552 if (!pool->page || (PAGE_SIZE - pool->offset) < SGE_PAGE_SIZE) { 553 554 /* put page reference used by the memory pool, since we 555 * won't be using this page as the mempool anymore. 556 */ 557 if (pool->page) 558 put_page(pool->page); 559 560 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 561 if (unlikely(!pool->page)) { 562 BNX2X_ERR("Can't alloc sge\n"); 563 return -ENOMEM; 564 } 565 566 pool->offset = 0; 567 } 568 569 mapping = dma_map_page(&bp->pdev->dev, pool->page, 570 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE); 571 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 572 BNX2X_ERR("Can't map sge\n"); 573 return -ENOMEM; 574 } 575 576 get_page(pool->page); 577 sw_buf->page = pool->page; 578 sw_buf->offset = pool->offset; 579 580 dma_unmap_addr_set(sw_buf, mapping, mapping); 581 582 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 583 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 584 585 pool->offset += SGE_PAGE_SIZE; 586 587 return 0; 588 } 589 590 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 591 struct bnx2x_agg_info *tpa_info, 592 u16 pages, 593 struct sk_buff *skb, 594 struct eth_end_agg_rx_cqe *cqe, 595 u16 cqe_idx) 596 { 597 struct sw_rx_page *rx_pg, old_rx_pg; 598 u32 i, frag_len, frag_size; 599 int err, j, frag_id = 0; 600 u16 len_on_bd = tpa_info->len_on_bd; 601 u16 full_page = 0, gro_size = 0; 602 603 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 604 605 if (fp->mode == TPA_MODE_GRO) { 606 gro_size = tpa_info->gro_size; 607 full_page = tpa_info->full_page; 608 } 609 610 /* This is needed in order to enable forwarding support */ 611 if (frag_size) 612 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 613 le16_to_cpu(cqe->pkt_len), 614 le16_to_cpu(cqe->num_of_coalesced_segs)); 615 616 #ifdef BNX2X_STOP_ON_ERROR 617 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 618 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 619 pages, cqe_idx); 620 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 621 bnx2x_panic(); 622 return -EINVAL; 623 } 624 #endif 625 626 /* Run through the SGL and compose the fragmented skb */ 627 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 628 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 629 630 /* FW gives the indices of the SGE as if the ring is an array 631 (meaning that "next" element will consume 2 indices) */ 632 if (fp->mode == TPA_MODE_GRO) 633 frag_len = min_t(u32, frag_size, (u32)full_page); 634 else /* LRO */ 635 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 636 637 rx_pg = &fp->rx_page_ring[sge_idx]; 638 old_rx_pg = *rx_pg; 639 640 /* If we fail to allocate a substitute page, we simply stop 641 where we are and drop the whole packet */ 642 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 643 if (unlikely(err)) { 644 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 645 return err; 646 } 647 648 dma_unmap_page(&bp->pdev->dev, 649 dma_unmap_addr(&old_rx_pg, mapping), 650 SGE_PAGE_SIZE, DMA_FROM_DEVICE); 651 /* Add one frag and update the appropriate fields in the skb */ 652 if (fp->mode == TPA_MODE_LRO) 653 skb_fill_page_desc(skb, j, old_rx_pg.page, 654 old_rx_pg.offset, frag_len); 655 else { /* GRO */ 656 int rem; 657 int offset = 0; 658 for (rem = frag_len; rem > 0; rem -= gro_size) { 659 int len = rem > gro_size ? gro_size : rem; 660 skb_fill_page_desc(skb, frag_id++, 661 old_rx_pg.page, 662 old_rx_pg.offset + offset, 663 len); 664 if (offset) 665 get_page(old_rx_pg.page); 666 offset += len; 667 } 668 } 669 670 skb->data_len += frag_len; 671 skb->truesize += SGE_PAGES; 672 skb->len += frag_len; 673 674 frag_size -= frag_len; 675 } 676 677 return 0; 678 } 679 680 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 681 { 682 if (fp->rx_frag_size) 683 skb_free_frag(data); 684 else 685 kfree(data); 686 } 687 688 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 689 { 690 if (fp->rx_frag_size) { 691 /* GFP_KERNEL allocations are used only during initialization */ 692 if (unlikely(gfpflags_allow_blocking(gfp_mask))) 693 return (void *)__get_free_page(gfp_mask); 694 695 return netdev_alloc_frag(fp->rx_frag_size); 696 } 697 698 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 699 } 700 701 #ifdef CONFIG_INET 702 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 703 { 704 const struct iphdr *iph = ip_hdr(skb); 705 struct tcphdr *th; 706 707 skb_set_transport_header(skb, sizeof(struct iphdr)); 708 th = tcp_hdr(skb); 709 710 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 711 iph->saddr, iph->daddr, 0); 712 } 713 714 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 715 { 716 struct ipv6hdr *iph = ipv6_hdr(skb); 717 struct tcphdr *th; 718 719 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 720 th = tcp_hdr(skb); 721 722 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 723 &iph->saddr, &iph->daddr, 0); 724 } 725 726 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 727 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 728 { 729 skb_set_network_header(skb, 0); 730 gro_func(bp, skb); 731 tcp_gro_complete(skb); 732 } 733 #endif 734 735 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 736 struct sk_buff *skb) 737 { 738 #ifdef CONFIG_INET 739 if (skb_shinfo(skb)->gso_size) { 740 switch (be16_to_cpu(skb->protocol)) { 741 case ETH_P_IP: 742 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 743 break; 744 case ETH_P_IPV6: 745 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 746 break; 747 default: 748 BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 749 be16_to_cpu(skb->protocol)); 750 } 751 } 752 #endif 753 skb_record_rx_queue(skb, fp->rx_queue); 754 napi_gro_receive(&fp->napi, skb); 755 } 756 757 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 758 struct bnx2x_agg_info *tpa_info, 759 u16 pages, 760 struct eth_end_agg_rx_cqe *cqe, 761 u16 cqe_idx) 762 { 763 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 764 u8 pad = tpa_info->placement_offset; 765 u16 len = tpa_info->len_on_bd; 766 struct sk_buff *skb = NULL; 767 u8 *new_data, *data = rx_buf->data; 768 u8 old_tpa_state = tpa_info->tpa_state; 769 770 tpa_info->tpa_state = BNX2X_TPA_STOP; 771 772 /* If we there was an error during the handling of the TPA_START - 773 * drop this aggregation. 774 */ 775 if (old_tpa_state == BNX2X_TPA_ERROR) 776 goto drop; 777 778 /* Try to allocate the new data */ 779 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 780 /* Unmap skb in the pool anyway, as we are going to change 781 pool entry status to BNX2X_TPA_STOP even if new skb allocation 782 fails. */ 783 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 784 fp->rx_buf_size, DMA_FROM_DEVICE); 785 if (likely(new_data)) 786 skb = build_skb(data, fp->rx_frag_size); 787 788 if (likely(skb)) { 789 #ifdef BNX2X_STOP_ON_ERROR 790 if (pad + len > fp->rx_buf_size) { 791 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 792 pad, len, fp->rx_buf_size); 793 bnx2x_panic(); 794 return; 795 } 796 #endif 797 798 skb_reserve(skb, pad + NET_SKB_PAD); 799 skb_put(skb, len); 800 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 801 802 skb->protocol = eth_type_trans(skb, bp->dev); 803 skb->ip_summed = CHECKSUM_UNNECESSARY; 804 805 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 806 skb, cqe, cqe_idx)) { 807 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 808 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 809 bnx2x_gro_receive(bp, fp, skb); 810 } else { 811 DP(NETIF_MSG_RX_STATUS, 812 "Failed to allocate new pages - dropping packet!\n"); 813 dev_kfree_skb_any(skb); 814 } 815 816 /* put new data in bin */ 817 rx_buf->data = new_data; 818 819 return; 820 } 821 if (new_data) 822 bnx2x_frag_free(fp, new_data); 823 drop: 824 /* drop the packet and keep the buffer in the bin */ 825 DP(NETIF_MSG_RX_STATUS, 826 "Failed to allocate or map a new skb - dropping packet!\n"); 827 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 828 } 829 830 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 831 u16 index, gfp_t gfp_mask) 832 { 833 u8 *data; 834 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 835 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 836 dma_addr_t mapping; 837 838 data = bnx2x_frag_alloc(fp, gfp_mask); 839 if (unlikely(data == NULL)) 840 return -ENOMEM; 841 842 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 843 fp->rx_buf_size, 844 DMA_FROM_DEVICE); 845 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 846 bnx2x_frag_free(fp, data); 847 BNX2X_ERR("Can't map rx data\n"); 848 return -ENOMEM; 849 } 850 851 rx_buf->data = data; 852 dma_unmap_addr_set(rx_buf, mapping, mapping); 853 854 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 855 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 856 857 return 0; 858 } 859 860 static 861 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 862 struct bnx2x_fastpath *fp, 863 struct bnx2x_eth_q_stats *qstats) 864 { 865 /* Do nothing if no L4 csum validation was done. 866 * We do not check whether IP csum was validated. For IPv4 we assume 867 * that if the card got as far as validating the L4 csum, it also 868 * validated the IP csum. IPv6 has no IP csum. 869 */ 870 if (cqe->fast_path_cqe.status_flags & 871 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 872 return; 873 874 /* If L4 validation was done, check if an error was found. */ 875 876 if (cqe->fast_path_cqe.type_error_flags & 877 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 878 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 879 qstats->hw_csum_err++; 880 else 881 skb->ip_summed = CHECKSUM_UNNECESSARY; 882 } 883 884 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 885 { 886 struct bnx2x *bp = fp->bp; 887 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 888 u16 sw_comp_cons, sw_comp_prod; 889 int rx_pkt = 0; 890 union eth_rx_cqe *cqe; 891 struct eth_fast_path_rx_cqe *cqe_fp; 892 893 #ifdef BNX2X_STOP_ON_ERROR 894 if (unlikely(bp->panic)) 895 return 0; 896 #endif 897 if (budget <= 0) 898 return rx_pkt; 899 900 bd_cons = fp->rx_bd_cons; 901 bd_prod = fp->rx_bd_prod; 902 bd_prod_fw = bd_prod; 903 sw_comp_cons = fp->rx_comp_cons; 904 sw_comp_prod = fp->rx_comp_prod; 905 906 comp_ring_cons = RCQ_BD(sw_comp_cons); 907 cqe = &fp->rx_comp_ring[comp_ring_cons]; 908 cqe_fp = &cqe->fast_path_cqe; 909 910 DP(NETIF_MSG_RX_STATUS, 911 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 912 913 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 914 struct sw_rx_bd *rx_buf = NULL; 915 struct sk_buff *skb; 916 u8 cqe_fp_flags; 917 enum eth_rx_cqe_type cqe_fp_type; 918 u16 len, pad, queue; 919 u8 *data; 920 u32 rxhash; 921 enum pkt_hash_types rxhash_type; 922 923 #ifdef BNX2X_STOP_ON_ERROR 924 if (unlikely(bp->panic)) 925 return 0; 926 #endif 927 928 bd_prod = RX_BD(bd_prod); 929 bd_cons = RX_BD(bd_cons); 930 931 /* A rmb() is required to ensure that the CQE is not read 932 * before it is written by the adapter DMA. PCI ordering 933 * rules will make sure the other fields are written before 934 * the marker at the end of struct eth_fast_path_rx_cqe 935 * but without rmb() a weakly ordered processor can process 936 * stale data. Without the barrier TPA state-machine might 937 * enter inconsistent state and kernel stack might be 938 * provided with incorrect packet description - these lead 939 * to various kernel crashed. 940 */ 941 rmb(); 942 943 cqe_fp_flags = cqe_fp->type_error_flags; 944 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 945 946 DP(NETIF_MSG_RX_STATUS, 947 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 948 CQE_TYPE(cqe_fp_flags), 949 cqe_fp_flags, cqe_fp->status_flags, 950 le32_to_cpu(cqe_fp->rss_hash_result), 951 le16_to_cpu(cqe_fp->vlan_tag), 952 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 953 954 /* is this a slowpath msg? */ 955 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 956 bnx2x_sp_event(fp, cqe); 957 goto next_cqe; 958 } 959 960 rx_buf = &fp->rx_buf_ring[bd_cons]; 961 data = rx_buf->data; 962 963 if (!CQE_TYPE_FAST(cqe_fp_type)) { 964 struct bnx2x_agg_info *tpa_info; 965 u16 frag_size, pages; 966 #ifdef BNX2X_STOP_ON_ERROR 967 /* sanity check */ 968 if (fp->mode == TPA_MODE_DISABLED && 969 (CQE_TYPE_START(cqe_fp_type) || 970 CQE_TYPE_STOP(cqe_fp_type))) 971 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n", 972 CQE_TYPE(cqe_fp_type)); 973 #endif 974 975 if (CQE_TYPE_START(cqe_fp_type)) { 976 u16 queue = cqe_fp->queue_index; 977 DP(NETIF_MSG_RX_STATUS, 978 "calling tpa_start on queue %d\n", 979 queue); 980 981 bnx2x_tpa_start(fp, queue, 982 bd_cons, bd_prod, 983 cqe_fp); 984 985 goto next_rx; 986 } 987 queue = cqe->end_agg_cqe.queue_index; 988 tpa_info = &fp->tpa_info[queue]; 989 DP(NETIF_MSG_RX_STATUS, 990 "calling tpa_stop on queue %d\n", 991 queue); 992 993 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 994 tpa_info->len_on_bd; 995 996 if (fp->mode == TPA_MODE_GRO) 997 pages = (frag_size + tpa_info->full_page - 1) / 998 tpa_info->full_page; 999 else 1000 pages = SGE_PAGE_ALIGN(frag_size) >> 1001 SGE_PAGE_SHIFT; 1002 1003 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 1004 &cqe->end_agg_cqe, comp_ring_cons); 1005 #ifdef BNX2X_STOP_ON_ERROR 1006 if (bp->panic) 1007 return 0; 1008 #endif 1009 1010 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 1011 goto next_cqe; 1012 } 1013 /* non TPA */ 1014 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 1015 pad = cqe_fp->placement_offset; 1016 dma_sync_single_for_cpu(&bp->pdev->dev, 1017 dma_unmap_addr(rx_buf, mapping), 1018 pad + RX_COPY_THRESH, 1019 DMA_FROM_DEVICE); 1020 pad += NET_SKB_PAD; 1021 prefetch(data + pad); /* speedup eth_type_trans() */ 1022 /* is this an error packet? */ 1023 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 1024 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1025 "ERROR flags %x rx packet %u\n", 1026 cqe_fp_flags, sw_comp_cons); 1027 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 1028 goto reuse_rx; 1029 } 1030 1031 /* Since we don't have a jumbo ring 1032 * copy small packets if mtu > 1500 1033 */ 1034 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 1035 (len <= RX_COPY_THRESH)) { 1036 skb = napi_alloc_skb(&fp->napi, len); 1037 if (skb == NULL) { 1038 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1039 "ERROR packet dropped because of alloc failure\n"); 1040 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1041 goto reuse_rx; 1042 } 1043 memcpy(skb->data, data + pad, len); 1044 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1045 } else { 1046 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1047 GFP_ATOMIC) == 0)) { 1048 dma_unmap_single(&bp->pdev->dev, 1049 dma_unmap_addr(rx_buf, mapping), 1050 fp->rx_buf_size, 1051 DMA_FROM_DEVICE); 1052 skb = build_skb(data, fp->rx_frag_size); 1053 if (unlikely(!skb)) { 1054 bnx2x_frag_free(fp, data); 1055 bnx2x_fp_qstats(bp, fp)-> 1056 rx_skb_alloc_failed++; 1057 goto next_rx; 1058 } 1059 skb_reserve(skb, pad); 1060 } else { 1061 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1062 "ERROR packet dropped because of alloc failure\n"); 1063 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1064 reuse_rx: 1065 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1066 goto next_rx; 1067 } 1068 } 1069 1070 skb_put(skb, len); 1071 skb->protocol = eth_type_trans(skb, bp->dev); 1072 1073 /* Set Toeplitz hash for a none-LRO skb */ 1074 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1075 skb_set_hash(skb, rxhash, rxhash_type); 1076 1077 skb_checksum_none_assert(skb); 1078 1079 if (bp->dev->features & NETIF_F_RXCSUM) 1080 bnx2x_csum_validate(skb, cqe, fp, 1081 bnx2x_fp_qstats(bp, fp)); 1082 1083 skb_record_rx_queue(skb, fp->rx_queue); 1084 1085 /* Check if this packet was timestamped */ 1086 if (unlikely(cqe->fast_path_cqe.type_error_flags & 1087 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT))) 1088 bnx2x_set_rx_ts(bp, skb); 1089 1090 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1091 PARSING_FLAGS_VLAN) 1092 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1093 le16_to_cpu(cqe_fp->vlan_tag)); 1094 1095 napi_gro_receive(&fp->napi, skb); 1096 next_rx: 1097 rx_buf->data = NULL; 1098 1099 bd_cons = NEXT_RX_IDX(bd_cons); 1100 bd_prod = NEXT_RX_IDX(bd_prod); 1101 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1102 rx_pkt++; 1103 next_cqe: 1104 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1105 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1106 1107 /* mark CQE as free */ 1108 BNX2X_SEED_CQE(cqe_fp); 1109 1110 if (rx_pkt == budget) 1111 break; 1112 1113 comp_ring_cons = RCQ_BD(sw_comp_cons); 1114 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1115 cqe_fp = &cqe->fast_path_cqe; 1116 } /* while */ 1117 1118 fp->rx_bd_cons = bd_cons; 1119 fp->rx_bd_prod = bd_prod_fw; 1120 fp->rx_comp_cons = sw_comp_cons; 1121 fp->rx_comp_prod = sw_comp_prod; 1122 1123 /* Update producers */ 1124 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1125 fp->rx_sge_prod); 1126 1127 fp->rx_pkt += rx_pkt; 1128 fp->rx_calls++; 1129 1130 return rx_pkt; 1131 } 1132 1133 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1134 { 1135 struct bnx2x_fastpath *fp = fp_cookie; 1136 struct bnx2x *bp = fp->bp; 1137 u8 cos; 1138 1139 DP(NETIF_MSG_INTR, 1140 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1141 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1142 1143 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1144 1145 #ifdef BNX2X_STOP_ON_ERROR 1146 if (unlikely(bp->panic)) 1147 return IRQ_HANDLED; 1148 #endif 1149 1150 /* Handle Rx and Tx according to MSI-X vector */ 1151 for_each_cos_in_tx_queue(fp, cos) 1152 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1153 1154 prefetch(&fp->sb_running_index[SM_RX_ID]); 1155 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1156 1157 return IRQ_HANDLED; 1158 } 1159 1160 /* HW Lock for shared dual port PHYs */ 1161 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1162 { 1163 mutex_lock(&bp->port.phy_mutex); 1164 1165 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1166 } 1167 1168 void bnx2x_release_phy_lock(struct bnx2x *bp) 1169 { 1170 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1171 1172 mutex_unlock(&bp->port.phy_mutex); 1173 } 1174 1175 /* calculates MF speed according to current linespeed and MF configuration */ 1176 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1177 { 1178 u16 line_speed = bp->link_vars.line_speed; 1179 if (IS_MF(bp)) { 1180 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1181 bp->mf_config[BP_VN(bp)]); 1182 1183 /* Calculate the current MAX line speed limit for the MF 1184 * devices 1185 */ 1186 if (IS_MF_PERCENT_BW(bp)) 1187 line_speed = (line_speed * maxCfg) / 100; 1188 else { /* SD mode */ 1189 u16 vn_max_rate = maxCfg * 100; 1190 1191 if (vn_max_rate < line_speed) 1192 line_speed = vn_max_rate; 1193 } 1194 } 1195 1196 return line_speed; 1197 } 1198 1199 /** 1200 * bnx2x_fill_report_data - fill link report data to report 1201 * 1202 * @bp: driver handle 1203 * @data: link state to update 1204 * 1205 * It uses a none-atomic bit operations because is called under the mutex. 1206 */ 1207 static void bnx2x_fill_report_data(struct bnx2x *bp, 1208 struct bnx2x_link_report_data *data) 1209 { 1210 memset(data, 0, sizeof(*data)); 1211 1212 if (IS_PF(bp)) { 1213 /* Fill the report data: effective line speed */ 1214 data->line_speed = bnx2x_get_mf_speed(bp); 1215 1216 /* Link is down */ 1217 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1218 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1219 &data->link_report_flags); 1220 1221 if (!BNX2X_NUM_ETH_QUEUES(bp)) 1222 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1223 &data->link_report_flags); 1224 1225 /* Full DUPLEX */ 1226 if (bp->link_vars.duplex == DUPLEX_FULL) 1227 __set_bit(BNX2X_LINK_REPORT_FD, 1228 &data->link_report_flags); 1229 1230 /* Rx Flow Control is ON */ 1231 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1232 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1233 &data->link_report_flags); 1234 1235 /* Tx Flow Control is ON */ 1236 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1237 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1238 &data->link_report_flags); 1239 } else { /* VF */ 1240 *data = bp->vf_link_vars; 1241 } 1242 } 1243 1244 /** 1245 * bnx2x_link_report - report link status to OS. 1246 * 1247 * @bp: driver handle 1248 * 1249 * Calls the __bnx2x_link_report() under the same locking scheme 1250 * as a link/PHY state managing code to ensure a consistent link 1251 * reporting. 1252 */ 1253 1254 void bnx2x_link_report(struct bnx2x *bp) 1255 { 1256 bnx2x_acquire_phy_lock(bp); 1257 __bnx2x_link_report(bp); 1258 bnx2x_release_phy_lock(bp); 1259 } 1260 1261 /** 1262 * __bnx2x_link_report - report link status to OS. 1263 * 1264 * @bp: driver handle 1265 * 1266 * None atomic implementation. 1267 * Should be called under the phy_lock. 1268 */ 1269 void __bnx2x_link_report(struct bnx2x *bp) 1270 { 1271 struct bnx2x_link_report_data cur_data; 1272 1273 /* reread mf_cfg */ 1274 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1275 bnx2x_read_mf_cfg(bp); 1276 1277 /* Read the current link report info */ 1278 bnx2x_fill_report_data(bp, &cur_data); 1279 1280 /* Don't report link down or exactly the same link status twice */ 1281 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1282 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1283 &bp->last_reported_link.link_report_flags) && 1284 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1285 &cur_data.link_report_flags))) 1286 return; 1287 1288 bp->link_cnt++; 1289 1290 /* We are going to report a new link parameters now - 1291 * remember the current data for the next time. 1292 */ 1293 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1294 1295 /* propagate status to VFs */ 1296 if (IS_PF(bp)) 1297 bnx2x_iov_link_update(bp); 1298 1299 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1300 &cur_data.link_report_flags)) { 1301 netif_carrier_off(bp->dev); 1302 netdev_err(bp->dev, "NIC Link is Down\n"); 1303 return; 1304 } else { 1305 const char *duplex; 1306 const char *flow; 1307 1308 netif_carrier_on(bp->dev); 1309 1310 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1311 &cur_data.link_report_flags)) 1312 duplex = "full"; 1313 else 1314 duplex = "half"; 1315 1316 /* Handle the FC at the end so that only these flags would be 1317 * possibly set. This way we may easily check if there is no FC 1318 * enabled. 1319 */ 1320 if (cur_data.link_report_flags) { 1321 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1322 &cur_data.link_report_flags)) { 1323 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1324 &cur_data.link_report_flags)) 1325 flow = "ON - receive & transmit"; 1326 else 1327 flow = "ON - receive"; 1328 } else { 1329 flow = "ON - transmit"; 1330 } 1331 } else { 1332 flow = "none"; 1333 } 1334 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1335 cur_data.line_speed, duplex, flow); 1336 } 1337 } 1338 1339 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1340 { 1341 int i; 1342 1343 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1344 struct eth_rx_sge *sge; 1345 1346 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1347 sge->addr_hi = 1348 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1349 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1350 1351 sge->addr_lo = 1352 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1353 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1354 } 1355 } 1356 1357 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1358 struct bnx2x_fastpath *fp, int last) 1359 { 1360 int i; 1361 1362 for (i = 0; i < last; i++) { 1363 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1364 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1365 u8 *data = first_buf->data; 1366 1367 if (data == NULL) { 1368 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1369 continue; 1370 } 1371 if (tpa_info->tpa_state == BNX2X_TPA_START) 1372 dma_unmap_single(&bp->pdev->dev, 1373 dma_unmap_addr(first_buf, mapping), 1374 fp->rx_buf_size, DMA_FROM_DEVICE); 1375 bnx2x_frag_free(fp, data); 1376 first_buf->data = NULL; 1377 } 1378 } 1379 1380 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1381 { 1382 int j; 1383 1384 for_each_rx_queue_cnic(bp, j) { 1385 struct bnx2x_fastpath *fp = &bp->fp[j]; 1386 1387 fp->rx_bd_cons = 0; 1388 1389 /* Activate BD ring */ 1390 /* Warning! 1391 * this will generate an interrupt (to the TSTORM) 1392 * must only be done after chip is initialized 1393 */ 1394 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1395 fp->rx_sge_prod); 1396 } 1397 } 1398 1399 void bnx2x_init_rx_rings(struct bnx2x *bp) 1400 { 1401 int func = BP_FUNC(bp); 1402 u16 ring_prod; 1403 int i, j; 1404 1405 /* Allocate TPA resources */ 1406 for_each_eth_queue(bp, j) { 1407 struct bnx2x_fastpath *fp = &bp->fp[j]; 1408 1409 DP(NETIF_MSG_IFUP, 1410 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1411 1412 if (fp->mode != TPA_MODE_DISABLED) { 1413 /* Fill the per-aggregation pool */ 1414 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1415 struct bnx2x_agg_info *tpa_info = 1416 &fp->tpa_info[i]; 1417 struct sw_rx_bd *first_buf = 1418 &tpa_info->first_buf; 1419 1420 first_buf->data = 1421 bnx2x_frag_alloc(fp, GFP_KERNEL); 1422 if (!first_buf->data) { 1423 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1424 j); 1425 bnx2x_free_tpa_pool(bp, fp, i); 1426 fp->mode = TPA_MODE_DISABLED; 1427 break; 1428 } 1429 dma_unmap_addr_set(first_buf, mapping, 0); 1430 tpa_info->tpa_state = BNX2X_TPA_STOP; 1431 } 1432 1433 /* "next page" elements initialization */ 1434 bnx2x_set_next_page_sgl(fp); 1435 1436 /* set SGEs bit mask */ 1437 bnx2x_init_sge_ring_bit_mask(fp); 1438 1439 /* Allocate SGEs and initialize the ring elements */ 1440 for (i = 0, ring_prod = 0; 1441 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1442 1443 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1444 GFP_KERNEL) < 0) { 1445 BNX2X_ERR("was only able to allocate %d rx sges\n", 1446 i); 1447 BNX2X_ERR("disabling TPA for queue[%d]\n", 1448 j); 1449 /* Cleanup already allocated elements */ 1450 bnx2x_free_rx_sge_range(bp, fp, 1451 ring_prod); 1452 bnx2x_free_tpa_pool(bp, fp, 1453 MAX_AGG_QS(bp)); 1454 fp->mode = TPA_MODE_DISABLED; 1455 ring_prod = 0; 1456 break; 1457 } 1458 ring_prod = NEXT_SGE_IDX(ring_prod); 1459 } 1460 1461 fp->rx_sge_prod = ring_prod; 1462 } 1463 } 1464 1465 for_each_eth_queue(bp, j) { 1466 struct bnx2x_fastpath *fp = &bp->fp[j]; 1467 1468 fp->rx_bd_cons = 0; 1469 1470 /* Activate BD ring */ 1471 /* Warning! 1472 * this will generate an interrupt (to the TSTORM) 1473 * must only be done after chip is initialized 1474 */ 1475 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1476 fp->rx_sge_prod); 1477 1478 if (j != 0) 1479 continue; 1480 1481 if (CHIP_IS_E1(bp)) { 1482 REG_WR(bp, BAR_USTRORM_INTMEM + 1483 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1484 U64_LO(fp->rx_comp_mapping)); 1485 REG_WR(bp, BAR_USTRORM_INTMEM + 1486 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1487 U64_HI(fp->rx_comp_mapping)); 1488 } 1489 } 1490 } 1491 1492 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1493 { 1494 u8 cos; 1495 struct bnx2x *bp = fp->bp; 1496 1497 for_each_cos_in_tx_queue(fp, cos) { 1498 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1499 unsigned pkts_compl = 0, bytes_compl = 0; 1500 1501 u16 sw_prod = txdata->tx_pkt_prod; 1502 u16 sw_cons = txdata->tx_pkt_cons; 1503 1504 while (sw_cons != sw_prod) { 1505 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1506 &pkts_compl, &bytes_compl); 1507 sw_cons++; 1508 } 1509 1510 netdev_tx_reset_queue( 1511 netdev_get_tx_queue(bp->dev, 1512 txdata->txq_index)); 1513 } 1514 } 1515 1516 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1517 { 1518 int i; 1519 1520 for_each_tx_queue_cnic(bp, i) { 1521 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1522 } 1523 } 1524 1525 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1526 { 1527 int i; 1528 1529 for_each_eth_queue(bp, i) { 1530 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1531 } 1532 } 1533 1534 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1535 { 1536 struct bnx2x *bp = fp->bp; 1537 int i; 1538 1539 /* ring wasn't allocated */ 1540 if (fp->rx_buf_ring == NULL) 1541 return; 1542 1543 for (i = 0; i < NUM_RX_BD; i++) { 1544 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1545 u8 *data = rx_buf->data; 1546 1547 if (data == NULL) 1548 continue; 1549 dma_unmap_single(&bp->pdev->dev, 1550 dma_unmap_addr(rx_buf, mapping), 1551 fp->rx_buf_size, DMA_FROM_DEVICE); 1552 1553 rx_buf->data = NULL; 1554 bnx2x_frag_free(fp, data); 1555 } 1556 } 1557 1558 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1559 { 1560 int j; 1561 1562 for_each_rx_queue_cnic(bp, j) { 1563 bnx2x_free_rx_bds(&bp->fp[j]); 1564 } 1565 } 1566 1567 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1568 { 1569 int j; 1570 1571 for_each_eth_queue(bp, j) { 1572 struct bnx2x_fastpath *fp = &bp->fp[j]; 1573 1574 bnx2x_free_rx_bds(fp); 1575 1576 if (fp->mode != TPA_MODE_DISABLED) 1577 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1578 } 1579 } 1580 1581 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1582 { 1583 bnx2x_free_tx_skbs_cnic(bp); 1584 bnx2x_free_rx_skbs_cnic(bp); 1585 } 1586 1587 void bnx2x_free_skbs(struct bnx2x *bp) 1588 { 1589 bnx2x_free_tx_skbs(bp); 1590 bnx2x_free_rx_skbs(bp); 1591 } 1592 1593 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1594 { 1595 /* load old values */ 1596 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1597 1598 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1599 /* leave all but MAX value */ 1600 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1601 1602 /* set new MAX value */ 1603 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1604 & FUNC_MF_CFG_MAX_BW_MASK; 1605 1606 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1607 } 1608 } 1609 1610 /** 1611 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1612 * 1613 * @bp: driver handle 1614 * @nvecs: number of vectors to be released 1615 */ 1616 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1617 { 1618 int i, offset = 0; 1619 1620 if (nvecs == offset) 1621 return; 1622 1623 /* VFs don't have a default SB */ 1624 if (IS_PF(bp)) { 1625 free_irq(bp->msix_table[offset].vector, bp->dev); 1626 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1627 bp->msix_table[offset].vector); 1628 offset++; 1629 } 1630 1631 if (CNIC_SUPPORT(bp)) { 1632 if (nvecs == offset) 1633 return; 1634 offset++; 1635 } 1636 1637 for_each_eth_queue(bp, i) { 1638 if (nvecs == offset) 1639 return; 1640 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1641 i, bp->msix_table[offset].vector); 1642 1643 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1644 } 1645 } 1646 1647 void bnx2x_free_irq(struct bnx2x *bp) 1648 { 1649 if (bp->flags & USING_MSIX_FLAG && 1650 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1651 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1652 1653 /* vfs don't have a default status block */ 1654 if (IS_PF(bp)) 1655 nvecs++; 1656 1657 bnx2x_free_msix_irqs(bp, nvecs); 1658 } else { 1659 free_irq(bp->dev->irq, bp->dev); 1660 } 1661 } 1662 1663 int bnx2x_enable_msix(struct bnx2x *bp) 1664 { 1665 int msix_vec = 0, i, rc; 1666 1667 /* VFs don't have a default status block */ 1668 if (IS_PF(bp)) { 1669 bp->msix_table[msix_vec].entry = msix_vec; 1670 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1671 bp->msix_table[0].entry); 1672 msix_vec++; 1673 } 1674 1675 /* Cnic requires an msix vector for itself */ 1676 if (CNIC_SUPPORT(bp)) { 1677 bp->msix_table[msix_vec].entry = msix_vec; 1678 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1679 msix_vec, bp->msix_table[msix_vec].entry); 1680 msix_vec++; 1681 } 1682 1683 /* We need separate vectors for ETH queues only (not FCoE) */ 1684 for_each_eth_queue(bp, i) { 1685 bp->msix_table[msix_vec].entry = msix_vec; 1686 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1687 msix_vec, msix_vec, i); 1688 msix_vec++; 1689 } 1690 1691 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1692 msix_vec); 1693 1694 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1695 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); 1696 /* 1697 * reconfigure number of tx/rx queues according to available 1698 * MSI-X vectors 1699 */ 1700 if (rc == -ENOSPC) { 1701 /* Get by with single vector */ 1702 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); 1703 if (rc < 0) { 1704 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1705 rc); 1706 goto no_msix; 1707 } 1708 1709 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1710 bp->flags |= USING_SINGLE_MSIX_FLAG; 1711 1712 BNX2X_DEV_INFO("set number of queues to 1\n"); 1713 bp->num_ethernet_queues = 1; 1714 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1715 } else if (rc < 0) { 1716 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1717 goto no_msix; 1718 } else if (rc < msix_vec) { 1719 /* how less vectors we will have? */ 1720 int diff = msix_vec - rc; 1721 1722 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1723 1724 /* 1725 * decrease number of queues by number of unallocated entries 1726 */ 1727 bp->num_ethernet_queues -= diff; 1728 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1729 1730 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1731 bp->num_queues); 1732 } 1733 1734 bp->flags |= USING_MSIX_FLAG; 1735 1736 return 0; 1737 1738 no_msix: 1739 /* fall to INTx if not enough memory */ 1740 if (rc == -ENOMEM) 1741 bp->flags |= DISABLE_MSI_FLAG; 1742 1743 return rc; 1744 } 1745 1746 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1747 { 1748 int i, rc, offset = 0; 1749 1750 /* no default status block for vf */ 1751 if (IS_PF(bp)) { 1752 rc = request_irq(bp->msix_table[offset++].vector, 1753 bnx2x_msix_sp_int, 0, 1754 bp->dev->name, bp->dev); 1755 if (rc) { 1756 BNX2X_ERR("request sp irq failed\n"); 1757 return -EBUSY; 1758 } 1759 } 1760 1761 if (CNIC_SUPPORT(bp)) 1762 offset++; 1763 1764 for_each_eth_queue(bp, i) { 1765 struct bnx2x_fastpath *fp = &bp->fp[i]; 1766 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1767 bp->dev->name, i); 1768 1769 rc = request_irq(bp->msix_table[offset].vector, 1770 bnx2x_msix_fp_int, 0, fp->name, fp); 1771 if (rc) { 1772 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1773 bp->msix_table[offset].vector, rc); 1774 bnx2x_free_msix_irqs(bp, offset); 1775 return -EBUSY; 1776 } 1777 1778 offset++; 1779 } 1780 1781 i = BNX2X_NUM_ETH_QUEUES(bp); 1782 if (IS_PF(bp)) { 1783 offset = 1 + CNIC_SUPPORT(bp); 1784 netdev_info(bp->dev, 1785 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1786 bp->msix_table[0].vector, 1787 0, bp->msix_table[offset].vector, 1788 i - 1, bp->msix_table[offset + i - 1].vector); 1789 } else { 1790 offset = CNIC_SUPPORT(bp); 1791 netdev_info(bp->dev, 1792 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1793 0, bp->msix_table[offset].vector, 1794 i - 1, bp->msix_table[offset + i - 1].vector); 1795 } 1796 return 0; 1797 } 1798 1799 int bnx2x_enable_msi(struct bnx2x *bp) 1800 { 1801 int rc; 1802 1803 rc = pci_enable_msi(bp->pdev); 1804 if (rc) { 1805 BNX2X_DEV_INFO("MSI is not attainable\n"); 1806 return -1; 1807 } 1808 bp->flags |= USING_MSI_FLAG; 1809 1810 return 0; 1811 } 1812 1813 static int bnx2x_req_irq(struct bnx2x *bp) 1814 { 1815 unsigned long flags; 1816 unsigned int irq; 1817 1818 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1819 flags = 0; 1820 else 1821 flags = IRQF_SHARED; 1822 1823 if (bp->flags & USING_MSIX_FLAG) 1824 irq = bp->msix_table[0].vector; 1825 else 1826 irq = bp->pdev->irq; 1827 1828 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1829 } 1830 1831 static int bnx2x_setup_irqs(struct bnx2x *bp) 1832 { 1833 int rc = 0; 1834 if (bp->flags & USING_MSIX_FLAG && 1835 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1836 rc = bnx2x_req_msix_irqs(bp); 1837 if (rc) 1838 return rc; 1839 } else { 1840 rc = bnx2x_req_irq(bp); 1841 if (rc) { 1842 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1843 return rc; 1844 } 1845 if (bp->flags & USING_MSI_FLAG) { 1846 bp->dev->irq = bp->pdev->irq; 1847 netdev_info(bp->dev, "using MSI IRQ %d\n", 1848 bp->dev->irq); 1849 } 1850 if (bp->flags & USING_MSIX_FLAG) { 1851 bp->dev->irq = bp->msix_table[0].vector; 1852 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1853 bp->dev->irq); 1854 } 1855 } 1856 1857 return 0; 1858 } 1859 1860 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1861 { 1862 int i; 1863 1864 for_each_rx_queue_cnic(bp, i) { 1865 napi_enable(&bnx2x_fp(bp, i, napi)); 1866 } 1867 } 1868 1869 static void bnx2x_napi_enable(struct bnx2x *bp) 1870 { 1871 int i; 1872 1873 for_each_eth_queue(bp, i) { 1874 napi_enable(&bnx2x_fp(bp, i, napi)); 1875 } 1876 } 1877 1878 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1879 { 1880 int i; 1881 1882 for_each_rx_queue_cnic(bp, i) { 1883 napi_disable(&bnx2x_fp(bp, i, napi)); 1884 } 1885 } 1886 1887 static void bnx2x_napi_disable(struct bnx2x *bp) 1888 { 1889 int i; 1890 1891 for_each_eth_queue(bp, i) { 1892 napi_disable(&bnx2x_fp(bp, i, napi)); 1893 } 1894 } 1895 1896 void bnx2x_netif_start(struct bnx2x *bp) 1897 { 1898 if (netif_running(bp->dev)) { 1899 bnx2x_napi_enable(bp); 1900 if (CNIC_LOADED(bp)) 1901 bnx2x_napi_enable_cnic(bp); 1902 bnx2x_int_enable(bp); 1903 if (bp->state == BNX2X_STATE_OPEN) 1904 netif_tx_wake_all_queues(bp->dev); 1905 } 1906 } 1907 1908 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1909 { 1910 bnx2x_int_disable_sync(bp, disable_hw); 1911 bnx2x_napi_disable(bp); 1912 if (CNIC_LOADED(bp)) 1913 bnx2x_napi_disable_cnic(bp); 1914 } 1915 1916 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1917 void *accel_priv, select_queue_fallback_t fallback) 1918 { 1919 struct bnx2x *bp = netdev_priv(dev); 1920 1921 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1922 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1923 u16 ether_type = ntohs(hdr->h_proto); 1924 1925 /* Skip VLAN tag if present */ 1926 if (ether_type == ETH_P_8021Q) { 1927 struct vlan_ethhdr *vhdr = 1928 (struct vlan_ethhdr *)skb->data; 1929 1930 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1931 } 1932 1933 /* If ethertype is FCoE or FIP - use FCoE ring */ 1934 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1935 return bnx2x_fcoe_tx(bp, txq_index); 1936 } 1937 1938 /* select a non-FCoE queue */ 1939 return fallback(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp); 1940 } 1941 1942 void bnx2x_set_num_queues(struct bnx2x *bp) 1943 { 1944 /* RSS queues */ 1945 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1946 1947 /* override in STORAGE SD modes */ 1948 if (IS_MF_STORAGE_ONLY(bp)) 1949 bp->num_ethernet_queues = 1; 1950 1951 /* Add special queues */ 1952 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1953 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1954 1955 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1956 } 1957 1958 /** 1959 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1960 * 1961 * @bp: Driver handle 1962 * 1963 * We currently support for at most 16 Tx queues for each CoS thus we will 1964 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1965 * bp->max_cos. 1966 * 1967 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1968 * index after all ETH L2 indices. 1969 * 1970 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1971 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1972 * 16..31,...) with indices that are not coupled with any real Tx queue. 1973 * 1974 * The proper configuration of skb->queue_mapping is handled by 1975 * bnx2x_select_queue() and __skb_tx_hash(). 1976 * 1977 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1978 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1979 */ 1980 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1981 { 1982 int rc, tx, rx; 1983 1984 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1985 rx = BNX2X_NUM_ETH_QUEUES(bp); 1986 1987 /* account for fcoe queue */ 1988 if (include_cnic && !NO_FCOE(bp)) { 1989 rx++; 1990 tx++; 1991 } 1992 1993 rc = netif_set_real_num_tx_queues(bp->dev, tx); 1994 if (rc) { 1995 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 1996 return rc; 1997 } 1998 rc = netif_set_real_num_rx_queues(bp->dev, rx); 1999 if (rc) { 2000 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 2001 return rc; 2002 } 2003 2004 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 2005 tx, rx); 2006 2007 return rc; 2008 } 2009 2010 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 2011 { 2012 int i; 2013 2014 for_each_queue(bp, i) { 2015 struct bnx2x_fastpath *fp = &bp->fp[i]; 2016 u32 mtu; 2017 2018 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 2019 if (IS_FCOE_IDX(i)) 2020 /* 2021 * Although there are no IP frames expected to arrive to 2022 * this ring we still want to add an 2023 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 2024 * overrun attack. 2025 */ 2026 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 2027 else 2028 mtu = bp->dev->mtu; 2029 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 2030 IP_HEADER_ALIGNMENT_PADDING + 2031 ETH_OVREHEAD + 2032 mtu + 2033 BNX2X_FW_RX_ALIGN_END; 2034 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 2035 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 2036 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 2037 else 2038 fp->rx_frag_size = 0; 2039 } 2040 } 2041 2042 static int bnx2x_init_rss(struct bnx2x *bp) 2043 { 2044 int i; 2045 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2046 2047 /* Prepare the initial contents for the indirection table if RSS is 2048 * enabled 2049 */ 2050 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2051 bp->rss_conf_obj.ind_table[i] = 2052 bp->fp->cl_id + 2053 ethtool_rxfh_indir_default(i, num_eth_queues); 2054 2055 /* 2056 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2057 * per-port, so if explicit configuration is needed , do it only 2058 * for a PMF. 2059 * 2060 * For 57712 and newer on the other hand it's a per-function 2061 * configuration. 2062 */ 2063 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2064 } 2065 2066 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2067 bool config_hash, bool enable) 2068 { 2069 struct bnx2x_config_rss_params params = {NULL}; 2070 2071 /* Although RSS is meaningless when there is a single HW queue we 2072 * still need it enabled in order to have HW Rx hash generated. 2073 * 2074 * if (!is_eth_multi(bp)) 2075 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2076 */ 2077 2078 params.rss_obj = rss_obj; 2079 2080 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2081 2082 if (enable) { 2083 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2084 2085 /* RSS configuration */ 2086 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2087 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2088 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2089 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2090 if (rss_obj->udp_rss_v4) 2091 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2092 if (rss_obj->udp_rss_v6) 2093 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2094 2095 if (!CHIP_IS_E1x(bp)) { 2096 /* valid only for TUNN_MODE_VXLAN tunnel mode */ 2097 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags); 2098 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags); 2099 2100 /* valid only for TUNN_MODE_GRE tunnel mode */ 2101 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags); 2102 } 2103 } else { 2104 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2105 } 2106 2107 /* Hash bits */ 2108 params.rss_result_mask = MULTI_MASK; 2109 2110 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2111 2112 if (config_hash) { 2113 /* RSS keys */ 2114 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4); 2115 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2116 } 2117 2118 if (IS_PF(bp)) 2119 return bnx2x_config_rss(bp, ¶ms); 2120 else 2121 return bnx2x_vfpf_config_rss(bp, ¶ms); 2122 } 2123 2124 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2125 { 2126 struct bnx2x_func_state_params func_params = {NULL}; 2127 2128 /* Prepare parameters for function state transitions */ 2129 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2130 2131 func_params.f_obj = &bp->func_obj; 2132 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2133 2134 func_params.params.hw_init.load_phase = load_code; 2135 2136 return bnx2x_func_state_change(bp, &func_params); 2137 } 2138 2139 /* 2140 * Cleans the object that have internal lists without sending 2141 * ramrods. Should be run when interrupts are disabled. 2142 */ 2143 void bnx2x_squeeze_objects(struct bnx2x *bp) 2144 { 2145 int rc; 2146 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2147 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2148 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2149 2150 /***************** Cleanup MACs' object first *************************/ 2151 2152 /* Wait for completion of requested */ 2153 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2154 /* Perform a dry cleanup */ 2155 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2156 2157 /* Clean ETH primary MAC */ 2158 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2159 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2160 &ramrod_flags); 2161 if (rc != 0) 2162 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2163 2164 /* Cleanup UC list */ 2165 vlan_mac_flags = 0; 2166 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2167 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2168 &ramrod_flags); 2169 if (rc != 0) 2170 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2171 2172 /***************** Now clean mcast object *****************************/ 2173 rparam.mcast_obj = &bp->mcast_obj; 2174 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2175 2176 /* Add a DEL command... - Since we're doing a driver cleanup only, 2177 * we take a lock surrounding both the initial send and the CONTs, 2178 * as we don't want a true completion to disrupt us in the middle. 2179 */ 2180 netif_addr_lock_bh(bp->dev); 2181 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2182 if (rc < 0) 2183 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2184 rc); 2185 2186 /* ...and wait until all pending commands are cleared */ 2187 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2188 while (rc != 0) { 2189 if (rc < 0) { 2190 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2191 rc); 2192 netif_addr_unlock_bh(bp->dev); 2193 return; 2194 } 2195 2196 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2197 } 2198 netif_addr_unlock_bh(bp->dev); 2199 } 2200 2201 #ifndef BNX2X_STOP_ON_ERROR 2202 #define LOAD_ERROR_EXIT(bp, label) \ 2203 do { \ 2204 (bp)->state = BNX2X_STATE_ERROR; \ 2205 goto label; \ 2206 } while (0) 2207 2208 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2209 do { \ 2210 bp->cnic_loaded = false; \ 2211 goto label; \ 2212 } while (0) 2213 #else /*BNX2X_STOP_ON_ERROR*/ 2214 #define LOAD_ERROR_EXIT(bp, label) \ 2215 do { \ 2216 (bp)->state = BNX2X_STATE_ERROR; \ 2217 (bp)->panic = 1; \ 2218 return -EBUSY; \ 2219 } while (0) 2220 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2221 do { \ 2222 bp->cnic_loaded = false; \ 2223 (bp)->panic = 1; \ 2224 return -EBUSY; \ 2225 } while (0) 2226 #endif /*BNX2X_STOP_ON_ERROR*/ 2227 2228 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2229 { 2230 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2231 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2232 return; 2233 } 2234 2235 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2236 { 2237 int num_groups, vf_headroom = 0; 2238 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2239 2240 /* number of queues for statistics is number of eth queues + FCoE */ 2241 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2242 2243 /* Total number of FW statistics requests = 2244 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2245 * and fcoe l2 queue) stats + num of queues (which includes another 1 2246 * for fcoe l2 queue if applicable) 2247 */ 2248 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2249 2250 /* vf stats appear in the request list, but their data is allocated by 2251 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2252 * it is used to determine where to place the vf stats queries in the 2253 * request struct 2254 */ 2255 if (IS_SRIOV(bp)) 2256 vf_headroom = bnx2x_vf_headroom(bp); 2257 2258 /* Request is built from stats_query_header and an array of 2259 * stats_query_cmd_group each of which contains 2260 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2261 * configured in the stats_query_header. 2262 */ 2263 num_groups = 2264 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2265 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2266 1 : 0)); 2267 2268 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2269 bp->fw_stats_num, vf_headroom, num_groups); 2270 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2271 num_groups * sizeof(struct stats_query_cmd_group); 2272 2273 /* Data for statistics requests + stats_counter 2274 * stats_counter holds per-STORM counters that are incremented 2275 * when STORM has finished with the current request. 2276 * memory for FCoE offloaded statistics are counted anyway, 2277 * even if they will not be sent. 2278 * VF stats are not accounted for here as the data of VF stats is stored 2279 * in memory allocated by the VF, not here. 2280 */ 2281 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2282 sizeof(struct per_pf_stats) + 2283 sizeof(struct fcoe_statistics_params) + 2284 sizeof(struct per_queue_stats) * num_queue_stats + 2285 sizeof(struct stats_counter); 2286 2287 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, 2288 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2289 if (!bp->fw_stats) 2290 goto alloc_mem_err; 2291 2292 /* Set shortcuts */ 2293 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2294 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2295 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2296 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2297 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2298 bp->fw_stats_req_sz; 2299 2300 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2301 U64_HI(bp->fw_stats_req_mapping), 2302 U64_LO(bp->fw_stats_req_mapping)); 2303 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2304 U64_HI(bp->fw_stats_data_mapping), 2305 U64_LO(bp->fw_stats_data_mapping)); 2306 return 0; 2307 2308 alloc_mem_err: 2309 bnx2x_free_fw_stats_mem(bp); 2310 BNX2X_ERR("Can't allocate FW stats memory\n"); 2311 return -ENOMEM; 2312 } 2313 2314 /* send load request to mcp and analyze response */ 2315 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2316 { 2317 u32 param; 2318 2319 /* init fw_seq */ 2320 bp->fw_seq = 2321 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2322 DRV_MSG_SEQ_NUMBER_MASK); 2323 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2324 2325 /* Get current FW pulse sequence */ 2326 bp->fw_drv_pulse_wr_seq = 2327 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2328 DRV_PULSE_SEQ_MASK); 2329 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2330 2331 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2332 2333 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2334 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2335 2336 /* load request */ 2337 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2338 2339 /* if mcp fails to respond we must abort */ 2340 if (!(*load_code)) { 2341 BNX2X_ERR("MCP response failure, aborting\n"); 2342 return -EBUSY; 2343 } 2344 2345 /* If mcp refused (e.g. other port is in diagnostic mode) we 2346 * must abort 2347 */ 2348 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2349 BNX2X_ERR("MCP refused load request, aborting\n"); 2350 return -EBUSY; 2351 } 2352 return 0; 2353 } 2354 2355 /* check whether another PF has already loaded FW to chip. In 2356 * virtualized environments a pf from another VM may have already 2357 * initialized the device including loading FW 2358 */ 2359 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2360 { 2361 /* is another pf loaded on this engine? */ 2362 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2363 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2364 /* build my FW version dword */ 2365 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) + 2366 (BCM_5710_FW_MINOR_VERSION << 8) + 2367 (BCM_5710_FW_REVISION_VERSION << 16) + 2368 (BCM_5710_FW_ENGINEERING_VERSION << 24); 2369 2370 /* read loaded FW from chip */ 2371 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2372 2373 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", 2374 loaded_fw, my_fw); 2375 2376 /* abort nic load if version mismatch */ 2377 if (my_fw != loaded_fw) { 2378 if (print_err) 2379 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", 2380 loaded_fw, my_fw); 2381 else 2382 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n", 2383 loaded_fw, my_fw); 2384 return -EBUSY; 2385 } 2386 } 2387 return 0; 2388 } 2389 2390 /* returns the "mcp load_code" according to global load_count array */ 2391 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2392 { 2393 int path = BP_PATH(bp); 2394 2395 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2396 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2397 bnx2x_load_count[path][2]); 2398 bnx2x_load_count[path][0]++; 2399 bnx2x_load_count[path][1 + port]++; 2400 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2401 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2402 bnx2x_load_count[path][2]); 2403 if (bnx2x_load_count[path][0] == 1) 2404 return FW_MSG_CODE_DRV_LOAD_COMMON; 2405 else if (bnx2x_load_count[path][1 + port] == 1) 2406 return FW_MSG_CODE_DRV_LOAD_PORT; 2407 else 2408 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2409 } 2410 2411 /* mark PMF if applicable */ 2412 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2413 { 2414 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2415 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2416 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2417 bp->port.pmf = 1; 2418 /* We need the barrier to ensure the ordering between the 2419 * writing to bp->port.pmf here and reading it from the 2420 * bnx2x_periodic_task(). 2421 */ 2422 smp_mb(); 2423 } else { 2424 bp->port.pmf = 0; 2425 } 2426 2427 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2428 } 2429 2430 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2431 { 2432 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2433 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2434 (bp->common.shmem2_base)) { 2435 if (SHMEM2_HAS(bp, dcc_support)) 2436 SHMEM2_WR(bp, dcc_support, 2437 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2438 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2439 if (SHMEM2_HAS(bp, afex_driver_support)) 2440 SHMEM2_WR(bp, afex_driver_support, 2441 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2442 } 2443 2444 /* Set AFEX default VLAN tag to an invalid value */ 2445 bp->afex_def_vlan_tag = -1; 2446 } 2447 2448 /** 2449 * bnx2x_bz_fp - zero content of the fastpath structure. 2450 * 2451 * @bp: driver handle 2452 * @index: fastpath index to be zeroed 2453 * 2454 * Makes sure the contents of the bp->fp[index].napi is kept 2455 * intact. 2456 */ 2457 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2458 { 2459 struct bnx2x_fastpath *fp = &bp->fp[index]; 2460 int cos; 2461 struct napi_struct orig_napi = fp->napi; 2462 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2463 2464 /* bzero bnx2x_fastpath contents */ 2465 if (fp->tpa_info) 2466 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2467 sizeof(struct bnx2x_agg_info)); 2468 memset(fp, 0, sizeof(*fp)); 2469 2470 /* Restore the NAPI object as it has been already initialized */ 2471 fp->napi = orig_napi; 2472 fp->tpa_info = orig_tpa_info; 2473 fp->bp = bp; 2474 fp->index = index; 2475 if (IS_ETH_FP(fp)) 2476 fp->max_cos = bp->max_cos; 2477 else 2478 /* Special queues support only one CoS */ 2479 fp->max_cos = 1; 2480 2481 /* Init txdata pointers */ 2482 if (IS_FCOE_FP(fp)) 2483 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2484 if (IS_ETH_FP(fp)) 2485 for_each_cos_in_tx_queue(fp, cos) 2486 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2487 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2488 2489 /* set the tpa flag for each queue. The tpa flag determines the queue 2490 * minimal size so it must be set prior to queue memory allocation 2491 */ 2492 if (bp->dev->features & NETIF_F_LRO) 2493 fp->mode = TPA_MODE_LRO; 2494 else if (bp->dev->features & NETIF_F_GRO && 2495 bnx2x_mtu_allows_gro(bp->dev->mtu)) 2496 fp->mode = TPA_MODE_GRO; 2497 else 2498 fp->mode = TPA_MODE_DISABLED; 2499 2500 /* We don't want TPA if it's disabled in bp 2501 * or if this is an FCoE L2 ring. 2502 */ 2503 if (bp->disable_tpa || IS_FCOE_FP(fp)) 2504 fp->mode = TPA_MODE_DISABLED; 2505 } 2506 2507 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state) 2508 { 2509 u32 cur; 2510 2511 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp)) 2512 return; 2513 2514 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]); 2515 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n", 2516 cur, state); 2517 2518 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state); 2519 } 2520 2521 int bnx2x_load_cnic(struct bnx2x *bp) 2522 { 2523 int i, rc, port = BP_PORT(bp); 2524 2525 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2526 2527 mutex_init(&bp->cnic_mutex); 2528 2529 if (IS_PF(bp)) { 2530 rc = bnx2x_alloc_mem_cnic(bp); 2531 if (rc) { 2532 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2533 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2534 } 2535 } 2536 2537 rc = bnx2x_alloc_fp_mem_cnic(bp); 2538 if (rc) { 2539 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2540 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2541 } 2542 2543 /* Update the number of queues with the cnic queues */ 2544 rc = bnx2x_set_real_num_queues(bp, 1); 2545 if (rc) { 2546 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2547 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2548 } 2549 2550 /* Add all CNIC NAPI objects */ 2551 bnx2x_add_all_napi_cnic(bp); 2552 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2553 bnx2x_napi_enable_cnic(bp); 2554 2555 rc = bnx2x_init_hw_func_cnic(bp); 2556 if (rc) 2557 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2558 2559 bnx2x_nic_init_cnic(bp); 2560 2561 if (IS_PF(bp)) { 2562 /* Enable Timer scan */ 2563 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2564 2565 /* setup cnic queues */ 2566 for_each_cnic_queue(bp, i) { 2567 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2568 if (rc) { 2569 BNX2X_ERR("Queue setup failed\n"); 2570 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2571 } 2572 } 2573 } 2574 2575 /* Initialize Rx filter. */ 2576 bnx2x_set_rx_mode_inner(bp); 2577 2578 /* re-read iscsi info */ 2579 bnx2x_get_iscsi_info(bp); 2580 bnx2x_setup_cnic_irq_info(bp); 2581 bnx2x_setup_cnic_info(bp); 2582 bp->cnic_loaded = true; 2583 if (bp->state == BNX2X_STATE_OPEN) 2584 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2585 2586 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2587 2588 return 0; 2589 2590 #ifndef BNX2X_STOP_ON_ERROR 2591 load_error_cnic2: 2592 /* Disable Timer scan */ 2593 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2594 2595 load_error_cnic1: 2596 bnx2x_napi_disable_cnic(bp); 2597 /* Update the number of queues without the cnic queues */ 2598 if (bnx2x_set_real_num_queues(bp, 0)) 2599 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2600 load_error_cnic0: 2601 BNX2X_ERR("CNIC-related load failed\n"); 2602 bnx2x_free_fp_mem_cnic(bp); 2603 bnx2x_free_mem_cnic(bp); 2604 return rc; 2605 #endif /* ! BNX2X_STOP_ON_ERROR */ 2606 } 2607 2608 /* must be called with rtnl_lock */ 2609 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2610 { 2611 int port = BP_PORT(bp); 2612 int i, rc = 0, load_code = 0; 2613 2614 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2615 DP(NETIF_MSG_IFUP, 2616 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2617 2618 #ifdef BNX2X_STOP_ON_ERROR 2619 if (unlikely(bp->panic)) { 2620 BNX2X_ERR("Can't load NIC when there is panic\n"); 2621 return -EPERM; 2622 } 2623 #endif 2624 2625 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2626 2627 /* zero the structure w/o any lock, before SP handler is initialized */ 2628 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2629 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2630 &bp->last_reported_link.link_report_flags); 2631 2632 if (IS_PF(bp)) 2633 /* must be called before memory allocation and HW init */ 2634 bnx2x_ilt_set_info(bp); 2635 2636 /* 2637 * Zero fastpath structures preserving invariants like napi, which are 2638 * allocated only once, fp index, max_cos, bp pointer. 2639 * Also set fp->mode and txdata_ptr. 2640 */ 2641 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2642 for_each_queue(bp, i) 2643 bnx2x_bz_fp(bp, i); 2644 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2645 bp->num_cnic_queues) * 2646 sizeof(struct bnx2x_fp_txdata)); 2647 2648 bp->fcoe_init = false; 2649 2650 /* Set the receive queues buffer size */ 2651 bnx2x_set_rx_buf_size(bp); 2652 2653 if (IS_PF(bp)) { 2654 rc = bnx2x_alloc_mem(bp); 2655 if (rc) { 2656 BNX2X_ERR("Unable to allocate bp memory\n"); 2657 return rc; 2658 } 2659 } 2660 2661 /* need to be done after alloc mem, since it's self adjusting to amount 2662 * of memory available for RSS queues 2663 */ 2664 rc = bnx2x_alloc_fp_mem(bp); 2665 if (rc) { 2666 BNX2X_ERR("Unable to allocate memory for fps\n"); 2667 LOAD_ERROR_EXIT(bp, load_error0); 2668 } 2669 2670 /* Allocated memory for FW statistics */ 2671 if (bnx2x_alloc_fw_stats_mem(bp)) 2672 LOAD_ERROR_EXIT(bp, load_error0); 2673 2674 /* request pf to initialize status blocks */ 2675 if (IS_VF(bp)) { 2676 rc = bnx2x_vfpf_init(bp); 2677 if (rc) 2678 LOAD_ERROR_EXIT(bp, load_error0); 2679 } 2680 2681 /* As long as bnx2x_alloc_mem() may possibly update 2682 * bp->num_queues, bnx2x_set_real_num_queues() should always 2683 * come after it. At this stage cnic queues are not counted. 2684 */ 2685 rc = bnx2x_set_real_num_queues(bp, 0); 2686 if (rc) { 2687 BNX2X_ERR("Unable to set real_num_queues\n"); 2688 LOAD_ERROR_EXIT(bp, load_error0); 2689 } 2690 2691 /* configure multi cos mappings in kernel. 2692 * this configuration may be overridden by a multi class queue 2693 * discipline or by a dcbx negotiation result. 2694 */ 2695 bnx2x_setup_tc(bp->dev, bp->max_cos); 2696 2697 /* Add all NAPI objects */ 2698 bnx2x_add_all_napi(bp); 2699 DP(NETIF_MSG_IFUP, "napi added\n"); 2700 bnx2x_napi_enable(bp); 2701 2702 if (IS_PF(bp)) { 2703 /* set pf load just before approaching the MCP */ 2704 bnx2x_set_pf_load(bp); 2705 2706 /* if mcp exists send load request and analyze response */ 2707 if (!BP_NOMCP(bp)) { 2708 /* attempt to load pf */ 2709 rc = bnx2x_nic_load_request(bp, &load_code); 2710 if (rc) 2711 LOAD_ERROR_EXIT(bp, load_error1); 2712 2713 /* what did mcp say? */ 2714 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2715 if (rc) { 2716 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2717 LOAD_ERROR_EXIT(bp, load_error2); 2718 } 2719 } else { 2720 load_code = bnx2x_nic_load_no_mcp(bp, port); 2721 } 2722 2723 /* mark pmf if applicable */ 2724 bnx2x_nic_load_pmf(bp, load_code); 2725 2726 /* Init Function state controlling object */ 2727 bnx2x__init_func_obj(bp); 2728 2729 /* Initialize HW */ 2730 rc = bnx2x_init_hw(bp, load_code); 2731 if (rc) { 2732 BNX2X_ERR("HW init failed, aborting\n"); 2733 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2734 LOAD_ERROR_EXIT(bp, load_error2); 2735 } 2736 } 2737 2738 bnx2x_pre_irq_nic_init(bp); 2739 2740 /* Connect to IRQs */ 2741 rc = bnx2x_setup_irqs(bp); 2742 if (rc) { 2743 BNX2X_ERR("setup irqs failed\n"); 2744 if (IS_PF(bp)) 2745 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2746 LOAD_ERROR_EXIT(bp, load_error2); 2747 } 2748 2749 /* Init per-function objects */ 2750 if (IS_PF(bp)) { 2751 /* Setup NIC internals and enable interrupts */ 2752 bnx2x_post_irq_nic_init(bp, load_code); 2753 2754 bnx2x_init_bp_objs(bp); 2755 bnx2x_iov_nic_init(bp); 2756 2757 /* Set AFEX default VLAN tag to an invalid value */ 2758 bp->afex_def_vlan_tag = -1; 2759 bnx2x_nic_load_afex_dcc(bp, load_code); 2760 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2761 rc = bnx2x_func_start(bp); 2762 if (rc) { 2763 BNX2X_ERR("Function start failed!\n"); 2764 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2765 2766 LOAD_ERROR_EXIT(bp, load_error3); 2767 } 2768 2769 /* Send LOAD_DONE command to MCP */ 2770 if (!BP_NOMCP(bp)) { 2771 load_code = bnx2x_fw_command(bp, 2772 DRV_MSG_CODE_LOAD_DONE, 0); 2773 if (!load_code) { 2774 BNX2X_ERR("MCP response failure, aborting\n"); 2775 rc = -EBUSY; 2776 LOAD_ERROR_EXIT(bp, load_error3); 2777 } 2778 } 2779 2780 /* initialize FW coalescing state machines in RAM */ 2781 bnx2x_update_coalesce(bp); 2782 } 2783 2784 /* setup the leading queue */ 2785 rc = bnx2x_setup_leading(bp); 2786 if (rc) { 2787 BNX2X_ERR("Setup leading failed!\n"); 2788 LOAD_ERROR_EXIT(bp, load_error3); 2789 } 2790 2791 /* set up the rest of the queues */ 2792 for_each_nondefault_eth_queue(bp, i) { 2793 if (IS_PF(bp)) 2794 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2795 else /* VF */ 2796 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2797 if (rc) { 2798 BNX2X_ERR("Queue %d setup failed\n", i); 2799 LOAD_ERROR_EXIT(bp, load_error3); 2800 } 2801 } 2802 2803 /* setup rss */ 2804 rc = bnx2x_init_rss(bp); 2805 if (rc) { 2806 BNX2X_ERR("PF RSS init failed\n"); 2807 LOAD_ERROR_EXIT(bp, load_error3); 2808 } 2809 2810 /* Now when Clients are configured we are ready to work */ 2811 bp->state = BNX2X_STATE_OPEN; 2812 2813 /* Configure a ucast MAC */ 2814 if (IS_PF(bp)) 2815 rc = bnx2x_set_eth_mac(bp, true); 2816 else /* vf */ 2817 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2818 true); 2819 if (rc) { 2820 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2821 LOAD_ERROR_EXIT(bp, load_error3); 2822 } 2823 2824 if (IS_PF(bp) && bp->pending_max) { 2825 bnx2x_update_max_mf_config(bp, bp->pending_max); 2826 bp->pending_max = 0; 2827 } 2828 2829 if (bp->port.pmf) { 2830 rc = bnx2x_initial_phy_init(bp, load_mode); 2831 if (rc) 2832 LOAD_ERROR_EXIT(bp, load_error3); 2833 } 2834 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2835 2836 /* Start fast path */ 2837 2838 /* Re-configure vlan filters */ 2839 rc = bnx2x_vlan_reconfigure_vid(bp); 2840 if (rc) 2841 LOAD_ERROR_EXIT(bp, load_error3); 2842 2843 /* Initialize Rx filter. */ 2844 bnx2x_set_rx_mode_inner(bp); 2845 2846 if (bp->flags & PTP_SUPPORTED) { 2847 bnx2x_init_ptp(bp); 2848 bnx2x_configure_ptp_filters(bp); 2849 } 2850 /* Start Tx */ 2851 switch (load_mode) { 2852 case LOAD_NORMAL: 2853 /* Tx queue should be only re-enabled */ 2854 netif_tx_wake_all_queues(bp->dev); 2855 break; 2856 2857 case LOAD_OPEN: 2858 netif_tx_start_all_queues(bp->dev); 2859 smp_mb__after_atomic(); 2860 break; 2861 2862 case LOAD_DIAG: 2863 case LOAD_LOOPBACK_EXT: 2864 bp->state = BNX2X_STATE_DIAG; 2865 break; 2866 2867 default: 2868 break; 2869 } 2870 2871 if (bp->port.pmf) 2872 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2873 else 2874 bnx2x__link_status_update(bp); 2875 2876 /* start the timer */ 2877 mod_timer(&bp->timer, jiffies + bp->current_interval); 2878 2879 if (CNIC_ENABLED(bp)) 2880 bnx2x_load_cnic(bp); 2881 2882 if (IS_PF(bp)) 2883 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 2884 2885 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2886 /* mark driver is loaded in shmem2 */ 2887 u32 val; 2888 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2889 val &= ~DRV_FLAGS_MTU_MASK; 2890 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT); 2891 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2892 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2893 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2894 } 2895 2896 /* Wait for all pending SP commands to complete */ 2897 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2898 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2899 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2900 return -EBUSY; 2901 } 2902 2903 /* Update driver data for On-Chip MFW dump. */ 2904 if (IS_PF(bp)) 2905 bnx2x_update_mfw_dump(bp); 2906 2907 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2908 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2909 bnx2x_dcbx_init(bp, false); 2910 2911 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2912 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE); 2913 2914 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2915 2916 return 0; 2917 2918 #ifndef BNX2X_STOP_ON_ERROR 2919 load_error3: 2920 if (IS_PF(bp)) { 2921 bnx2x_int_disable_sync(bp, 1); 2922 2923 /* Clean queueable objects */ 2924 bnx2x_squeeze_objects(bp); 2925 } 2926 2927 /* Free SKBs, SGEs, TPA pool and driver internals */ 2928 bnx2x_free_skbs(bp); 2929 for_each_rx_queue(bp, i) 2930 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2931 2932 /* Release IRQs */ 2933 bnx2x_free_irq(bp); 2934 load_error2: 2935 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2936 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2937 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2938 } 2939 2940 bp->port.pmf = 0; 2941 load_error1: 2942 bnx2x_napi_disable(bp); 2943 bnx2x_del_all_napi(bp); 2944 2945 /* clear pf_load status, as it was already set */ 2946 if (IS_PF(bp)) 2947 bnx2x_clear_pf_load(bp); 2948 load_error0: 2949 bnx2x_free_fw_stats_mem(bp); 2950 bnx2x_free_fp_mem(bp); 2951 bnx2x_free_mem(bp); 2952 2953 return rc; 2954 #endif /* ! BNX2X_STOP_ON_ERROR */ 2955 } 2956 2957 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2958 { 2959 u8 rc = 0, cos, i; 2960 2961 /* Wait until tx fastpath tasks complete */ 2962 for_each_tx_queue(bp, i) { 2963 struct bnx2x_fastpath *fp = &bp->fp[i]; 2964 2965 for_each_cos_in_tx_queue(fp, cos) 2966 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2967 if (rc) 2968 return rc; 2969 } 2970 return 0; 2971 } 2972 2973 /* must be called with rtnl_lock */ 2974 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2975 { 2976 int i; 2977 bool global = false; 2978 2979 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 2980 2981 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2982 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 2983 2984 /* mark driver is unloaded in shmem2 */ 2985 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2986 u32 val; 2987 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2988 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2989 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 2990 } 2991 2992 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 2993 (bp->state == BNX2X_STATE_CLOSED || 2994 bp->state == BNX2X_STATE_ERROR)) { 2995 /* We can get here if the driver has been unloaded 2996 * during parity error recovery and is either waiting for a 2997 * leader to complete or for other functions to unload and 2998 * then ifdown has been issued. In this case we want to 2999 * unload and let other functions to complete a recovery 3000 * process. 3001 */ 3002 bp->recovery_state = BNX2X_RECOVERY_DONE; 3003 bp->is_leader = 0; 3004 bnx2x_release_leader_lock(bp); 3005 smp_mb(); 3006 3007 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 3008 BNX2X_ERR("Can't unload in closed or error state\n"); 3009 return -EINVAL; 3010 } 3011 3012 /* Nothing to do during unload if previous bnx2x_nic_load() 3013 * have not completed successfully - all resources are released. 3014 * 3015 * we can get here only after unsuccessful ndo_* callback, during which 3016 * dev->IFF_UP flag is still on. 3017 */ 3018 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 3019 return 0; 3020 3021 /* It's important to set the bp->state to the value different from 3022 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 3023 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 3024 */ 3025 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 3026 smp_mb(); 3027 3028 /* indicate to VFs that the PF is going down */ 3029 bnx2x_iov_channel_down(bp); 3030 3031 if (CNIC_LOADED(bp)) 3032 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 3033 3034 /* Stop Tx */ 3035 bnx2x_tx_disable(bp); 3036 netdev_reset_tc(bp->dev); 3037 3038 bp->rx_mode = BNX2X_RX_MODE_NONE; 3039 3040 del_timer_sync(&bp->timer); 3041 3042 if (IS_PF(bp)) { 3043 /* Set ALWAYS_ALIVE bit in shmem */ 3044 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 3045 bnx2x_drv_pulse(bp); 3046 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 3047 bnx2x_save_statistics(bp); 3048 } 3049 3050 /* wait till consumers catch up with producers in all queues */ 3051 bnx2x_drain_tx_queues(bp); 3052 3053 /* if VF indicate to PF this function is going down (PF will delete sp 3054 * elements and clear initializations 3055 */ 3056 if (IS_VF(bp)) 3057 bnx2x_vfpf_close_vf(bp); 3058 else if (unload_mode != UNLOAD_RECOVERY) 3059 /* if this is a normal/close unload need to clean up chip*/ 3060 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 3061 else { 3062 /* Send the UNLOAD_REQUEST to the MCP */ 3063 bnx2x_send_unload_req(bp, unload_mode); 3064 3065 /* Prevent transactions to host from the functions on the 3066 * engine that doesn't reset global blocks in case of global 3067 * attention once global blocks are reset and gates are opened 3068 * (the engine which leader will perform the recovery 3069 * last). 3070 */ 3071 if (!CHIP_IS_E1x(bp)) 3072 bnx2x_pf_disable(bp); 3073 3074 /* Disable HW interrupts, NAPI */ 3075 bnx2x_netif_stop(bp, 1); 3076 /* Delete all NAPI objects */ 3077 bnx2x_del_all_napi(bp); 3078 if (CNIC_LOADED(bp)) 3079 bnx2x_del_all_napi_cnic(bp); 3080 /* Release IRQs */ 3081 bnx2x_free_irq(bp); 3082 3083 /* Report UNLOAD_DONE to MCP */ 3084 bnx2x_send_unload_done(bp, false); 3085 } 3086 3087 /* 3088 * At this stage no more interrupts will arrive so we may safely clean 3089 * the queueable objects here in case they failed to get cleaned so far. 3090 */ 3091 if (IS_PF(bp)) 3092 bnx2x_squeeze_objects(bp); 3093 3094 /* There should be no more pending SP commands at this stage */ 3095 bp->sp_state = 0; 3096 3097 bp->port.pmf = 0; 3098 3099 /* clear pending work in rtnl task */ 3100 bp->sp_rtnl_state = 0; 3101 smp_mb(); 3102 3103 /* Free SKBs, SGEs, TPA pool and driver internals */ 3104 bnx2x_free_skbs(bp); 3105 if (CNIC_LOADED(bp)) 3106 bnx2x_free_skbs_cnic(bp); 3107 for_each_rx_queue(bp, i) 3108 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3109 3110 bnx2x_free_fp_mem(bp); 3111 if (CNIC_LOADED(bp)) 3112 bnx2x_free_fp_mem_cnic(bp); 3113 3114 if (IS_PF(bp)) { 3115 if (CNIC_LOADED(bp)) 3116 bnx2x_free_mem_cnic(bp); 3117 } 3118 bnx2x_free_mem(bp); 3119 3120 bp->state = BNX2X_STATE_CLOSED; 3121 bp->cnic_loaded = false; 3122 3123 /* Clear driver version indication in shmem */ 3124 if (IS_PF(bp)) 3125 bnx2x_update_mng_version(bp); 3126 3127 /* Check if there are pending parity attentions. If there are - set 3128 * RECOVERY_IN_PROGRESS. 3129 */ 3130 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3131 bnx2x_set_reset_in_progress(bp); 3132 3133 /* Set RESET_IS_GLOBAL if needed */ 3134 if (global) 3135 bnx2x_set_reset_global(bp); 3136 } 3137 3138 /* The last driver must disable a "close the gate" if there is no 3139 * parity attention or "process kill" pending. 3140 */ 3141 if (IS_PF(bp) && 3142 !bnx2x_clear_pf_load(bp) && 3143 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3144 bnx2x_disable_close_the_gate(bp); 3145 3146 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3147 3148 return 0; 3149 } 3150 3151 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3152 { 3153 u16 pmcsr; 3154 3155 /* If there is no power capability, silently succeed */ 3156 if (!bp->pdev->pm_cap) { 3157 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3158 return 0; 3159 } 3160 3161 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3162 3163 switch (state) { 3164 case PCI_D0: 3165 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3166 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3167 PCI_PM_CTRL_PME_STATUS)); 3168 3169 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3170 /* delay required during transition out of D3hot */ 3171 msleep(20); 3172 break; 3173 3174 case PCI_D3hot: 3175 /* If there are other clients above don't 3176 shut down the power */ 3177 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3178 return 0; 3179 /* Don't shut down the power for emulation and FPGA */ 3180 if (CHIP_REV_IS_SLOW(bp)) 3181 return 0; 3182 3183 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3184 pmcsr |= 3; 3185 3186 if (bp->wol) 3187 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3188 3189 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3190 pmcsr); 3191 3192 /* No more memory access after this point until 3193 * device is brought back to D0. 3194 */ 3195 break; 3196 3197 default: 3198 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3199 return -EINVAL; 3200 } 3201 return 0; 3202 } 3203 3204 /* 3205 * net_device service functions 3206 */ 3207 static int bnx2x_poll(struct napi_struct *napi, int budget) 3208 { 3209 int work_done = 0; 3210 u8 cos; 3211 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3212 napi); 3213 struct bnx2x *bp = fp->bp; 3214 3215 while (1) { 3216 #ifdef BNX2X_STOP_ON_ERROR 3217 if (unlikely(bp->panic)) { 3218 napi_complete(napi); 3219 return 0; 3220 } 3221 #endif 3222 for_each_cos_in_tx_queue(fp, cos) 3223 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3224 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3225 3226 if (bnx2x_has_rx_work(fp)) { 3227 work_done += bnx2x_rx_int(fp, budget - work_done); 3228 3229 /* must not complete if we consumed full budget */ 3230 if (work_done >= budget) 3231 break; 3232 } 3233 3234 /* Fall out from the NAPI loop if needed */ 3235 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3236 3237 /* No need to update SB for FCoE L2 ring as long as 3238 * it's connected to the default SB and the SB 3239 * has been updated when NAPI was scheduled. 3240 */ 3241 if (IS_FCOE_FP(fp)) { 3242 napi_complete(napi); 3243 break; 3244 } 3245 bnx2x_update_fpsb_idx(fp); 3246 /* bnx2x_has_rx_work() reads the status block, 3247 * thus we need to ensure that status block indices 3248 * have been actually read (bnx2x_update_fpsb_idx) 3249 * prior to this check (bnx2x_has_rx_work) so that 3250 * we won't write the "newer" value of the status block 3251 * to IGU (if there was a DMA right after 3252 * bnx2x_has_rx_work and if there is no rmb, the memory 3253 * reading (bnx2x_update_fpsb_idx) may be postponed 3254 * to right before bnx2x_ack_sb). In this case there 3255 * will never be another interrupt until there is 3256 * another update of the status block, while there 3257 * is still unhandled work. 3258 */ 3259 rmb(); 3260 3261 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3262 napi_complete(napi); 3263 /* Re-enable interrupts */ 3264 DP(NETIF_MSG_RX_STATUS, 3265 "Update index to %d\n", fp->fp_hc_idx); 3266 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3267 le16_to_cpu(fp->fp_hc_idx), 3268 IGU_INT_ENABLE, 1); 3269 break; 3270 } 3271 } 3272 } 3273 3274 return work_done; 3275 } 3276 3277 /* we split the first BD into headers and data BDs 3278 * to ease the pain of our fellow microcode engineers 3279 * we use one mapping for both BDs 3280 */ 3281 static u16 bnx2x_tx_split(struct bnx2x *bp, 3282 struct bnx2x_fp_txdata *txdata, 3283 struct sw_tx_bd *tx_buf, 3284 struct eth_tx_start_bd **tx_bd, u16 hlen, 3285 u16 bd_prod) 3286 { 3287 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3288 struct eth_tx_bd *d_tx_bd; 3289 dma_addr_t mapping; 3290 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3291 3292 /* first fix first BD */ 3293 h_tx_bd->nbytes = cpu_to_le16(hlen); 3294 3295 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3296 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3297 3298 /* now get a new data BD 3299 * (after the pbd) and fill it */ 3300 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3301 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3302 3303 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3304 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3305 3306 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3307 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3308 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3309 3310 /* this marks the BD as one that has no individual mapping */ 3311 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3312 3313 DP(NETIF_MSG_TX_QUEUED, 3314 "TSO split data size is %d (%x:%x)\n", 3315 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3316 3317 /* update tx_bd */ 3318 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3319 3320 return bd_prod; 3321 } 3322 3323 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3324 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3325 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3326 { 3327 __sum16 tsum = (__force __sum16) csum; 3328 3329 if (fix > 0) 3330 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3331 csum_partial(t_header - fix, fix, 0))); 3332 3333 else if (fix < 0) 3334 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3335 csum_partial(t_header, -fix, 0))); 3336 3337 return bswab16(tsum); 3338 } 3339 3340 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3341 { 3342 u32 rc; 3343 __u8 prot = 0; 3344 __be16 protocol; 3345 3346 if (skb->ip_summed != CHECKSUM_PARTIAL) 3347 return XMIT_PLAIN; 3348 3349 protocol = vlan_get_protocol(skb); 3350 if (protocol == htons(ETH_P_IPV6)) { 3351 rc = XMIT_CSUM_V6; 3352 prot = ipv6_hdr(skb)->nexthdr; 3353 } else { 3354 rc = XMIT_CSUM_V4; 3355 prot = ip_hdr(skb)->protocol; 3356 } 3357 3358 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3359 if (inner_ip_hdr(skb)->version == 6) { 3360 rc |= XMIT_CSUM_ENC_V6; 3361 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3362 rc |= XMIT_CSUM_TCP; 3363 } else { 3364 rc |= XMIT_CSUM_ENC_V4; 3365 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3366 rc |= XMIT_CSUM_TCP; 3367 } 3368 } 3369 if (prot == IPPROTO_TCP) 3370 rc |= XMIT_CSUM_TCP; 3371 3372 if (skb_is_gso(skb)) { 3373 if (skb_is_gso_v6(skb)) { 3374 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3375 if (rc & XMIT_CSUM_ENC) 3376 rc |= XMIT_GSO_ENC_V6; 3377 } else { 3378 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3379 if (rc & XMIT_CSUM_ENC) 3380 rc |= XMIT_GSO_ENC_V4; 3381 } 3382 } 3383 3384 return rc; 3385 } 3386 3387 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) 3388 /* check if packet requires linearization (packet is too fragmented) 3389 no need to check fragmentation if page size > 8K (there will be no 3390 violation to FW restrictions) */ 3391 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3392 u32 xmit_type) 3393 { 3394 int to_copy = 0; 3395 int hlen = 0; 3396 int first_bd_sz = 0; 3397 3398 /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3399 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) { 3400 3401 if (xmit_type & XMIT_GSO) { 3402 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3403 /* Check if LSO packet needs to be copied: 3404 3 = 1 (for headers BD) + 2 (for PBD and last BD) */ 3405 int wnd_size = MAX_FETCH_BD - 3; 3406 /* Number of windows to check */ 3407 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3408 int wnd_idx = 0; 3409 int frag_idx = 0; 3410 u32 wnd_sum = 0; 3411 3412 /* Headers length */ 3413 if (xmit_type & XMIT_GSO_ENC) 3414 hlen = (int)(skb_inner_transport_header(skb) - 3415 skb->data) + 3416 inner_tcp_hdrlen(skb); 3417 else 3418 hlen = (int)(skb_transport_header(skb) - 3419 skb->data) + tcp_hdrlen(skb); 3420 3421 /* Amount of data (w/o headers) on linear part of SKB*/ 3422 first_bd_sz = skb_headlen(skb) - hlen; 3423 3424 wnd_sum = first_bd_sz; 3425 3426 /* Calculate the first sum - it's special */ 3427 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3428 wnd_sum += 3429 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3430 3431 /* If there was data on linear skb data - check it */ 3432 if (first_bd_sz > 0) { 3433 if (unlikely(wnd_sum < lso_mss)) { 3434 to_copy = 1; 3435 goto exit_lbl; 3436 } 3437 3438 wnd_sum -= first_bd_sz; 3439 } 3440 3441 /* Others are easier: run through the frag list and 3442 check all windows */ 3443 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3444 wnd_sum += 3445 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3446 3447 if (unlikely(wnd_sum < lso_mss)) { 3448 to_copy = 1; 3449 break; 3450 } 3451 wnd_sum -= 3452 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3453 } 3454 } else { 3455 /* in non-LSO too fragmented packet should always 3456 be linearized */ 3457 to_copy = 1; 3458 } 3459 } 3460 3461 exit_lbl: 3462 if (unlikely(to_copy)) 3463 DP(NETIF_MSG_TX_QUEUED, 3464 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3465 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3466 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3467 3468 return to_copy; 3469 } 3470 #endif 3471 3472 /** 3473 * bnx2x_set_pbd_gso - update PBD in GSO case. 3474 * 3475 * @skb: packet skb 3476 * @pbd: parse BD 3477 * @xmit_type: xmit flags 3478 */ 3479 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3480 struct eth_tx_parse_bd_e1x *pbd, 3481 u32 xmit_type) 3482 { 3483 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3484 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3485 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3486 3487 if (xmit_type & XMIT_GSO_V4) { 3488 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3489 pbd->tcp_pseudo_csum = 3490 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3491 ip_hdr(skb)->daddr, 3492 0, IPPROTO_TCP, 0)); 3493 } else { 3494 pbd->tcp_pseudo_csum = 3495 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3496 &ipv6_hdr(skb)->daddr, 3497 0, IPPROTO_TCP, 0)); 3498 } 3499 3500 pbd->global_data |= 3501 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3502 } 3503 3504 /** 3505 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3506 * 3507 * @bp: driver handle 3508 * @skb: packet skb 3509 * @parsing_data: data to be updated 3510 * @xmit_type: xmit flags 3511 * 3512 * 57712/578xx related, when skb has encapsulation 3513 */ 3514 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3515 u32 *parsing_data, u32 xmit_type) 3516 { 3517 *parsing_data |= 3518 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3519 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3520 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3521 3522 if (xmit_type & XMIT_CSUM_TCP) { 3523 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3524 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3525 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3526 3527 return skb_inner_transport_header(skb) + 3528 inner_tcp_hdrlen(skb) - skb->data; 3529 } 3530 3531 /* We support checksum offload for TCP and UDP only. 3532 * No need to pass the UDP header length - it's a constant. 3533 */ 3534 return skb_inner_transport_header(skb) + 3535 sizeof(struct udphdr) - skb->data; 3536 } 3537 3538 /** 3539 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3540 * 3541 * @bp: driver handle 3542 * @skb: packet skb 3543 * @parsing_data: data to be updated 3544 * @xmit_type: xmit flags 3545 * 3546 * 57712/578xx related 3547 */ 3548 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3549 u32 *parsing_data, u32 xmit_type) 3550 { 3551 *parsing_data |= 3552 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3553 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3554 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3555 3556 if (xmit_type & XMIT_CSUM_TCP) { 3557 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3558 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3559 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3560 3561 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; 3562 } 3563 /* We support checksum offload for TCP and UDP only. 3564 * No need to pass the UDP header length - it's a constant. 3565 */ 3566 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; 3567 } 3568 3569 /* set FW indication according to inner or outer protocols if tunneled */ 3570 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3571 struct eth_tx_start_bd *tx_start_bd, 3572 u32 xmit_type) 3573 { 3574 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3575 3576 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3577 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3578 3579 if (!(xmit_type & XMIT_CSUM_TCP)) 3580 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3581 } 3582 3583 /** 3584 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3585 * 3586 * @bp: driver handle 3587 * @skb: packet skb 3588 * @pbd: parse BD to be updated 3589 * @xmit_type: xmit flags 3590 */ 3591 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3592 struct eth_tx_parse_bd_e1x *pbd, 3593 u32 xmit_type) 3594 { 3595 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3596 3597 /* for now NS flag is not used in Linux */ 3598 pbd->global_data = 3599 cpu_to_le16(hlen | 3600 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3601 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3602 3603 pbd->ip_hlen_w = (skb_transport_header(skb) - 3604 skb_network_header(skb)) >> 1; 3605 3606 hlen += pbd->ip_hlen_w; 3607 3608 /* We support checksum offload for TCP and UDP only */ 3609 if (xmit_type & XMIT_CSUM_TCP) 3610 hlen += tcp_hdrlen(skb) / 2; 3611 else 3612 hlen += sizeof(struct udphdr) / 2; 3613 3614 pbd->total_hlen_w = cpu_to_le16(hlen); 3615 hlen = hlen*2; 3616 3617 if (xmit_type & XMIT_CSUM_TCP) { 3618 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3619 3620 } else { 3621 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3622 3623 DP(NETIF_MSG_TX_QUEUED, 3624 "hlen %d fix %d csum before fix %x\n", 3625 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3626 3627 /* HW bug: fixup the CSUM */ 3628 pbd->tcp_pseudo_csum = 3629 bnx2x_csum_fix(skb_transport_header(skb), 3630 SKB_CS(skb), fix); 3631 3632 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3633 pbd->tcp_pseudo_csum); 3634 } 3635 3636 return hlen; 3637 } 3638 3639 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3640 struct eth_tx_parse_bd_e2 *pbd_e2, 3641 struct eth_tx_parse_2nd_bd *pbd2, 3642 u16 *global_data, 3643 u32 xmit_type) 3644 { 3645 u16 hlen_w = 0; 3646 u8 outerip_off, outerip_len = 0; 3647 3648 /* from outer IP to transport */ 3649 hlen_w = (skb_inner_transport_header(skb) - 3650 skb_network_header(skb)) >> 1; 3651 3652 /* transport len */ 3653 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3654 3655 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3656 3657 /* outer IP header info */ 3658 if (xmit_type & XMIT_CSUM_V4) { 3659 struct iphdr *iph = ip_hdr(skb); 3660 u32 csum = (__force u32)(~iph->check) - 3661 (__force u32)iph->tot_len - 3662 (__force u32)iph->frag_off; 3663 3664 outerip_len = iph->ihl << 1; 3665 3666 pbd2->fw_ip_csum_wo_len_flags_frag = 3667 bswab16(csum_fold((__force __wsum)csum)); 3668 } else { 3669 pbd2->fw_ip_hdr_to_payload_w = 3670 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3671 pbd_e2->data.tunnel_data.flags |= 3672 ETH_TUNNEL_DATA_IPV6_OUTER; 3673 } 3674 3675 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3676 3677 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3678 3679 /* inner IP header info */ 3680 if (xmit_type & XMIT_CSUM_ENC_V4) { 3681 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3682 3683 pbd_e2->data.tunnel_data.pseudo_csum = 3684 bswab16(~csum_tcpudp_magic( 3685 inner_ip_hdr(skb)->saddr, 3686 inner_ip_hdr(skb)->daddr, 3687 0, IPPROTO_TCP, 0)); 3688 } else { 3689 pbd_e2->data.tunnel_data.pseudo_csum = 3690 bswab16(~csum_ipv6_magic( 3691 &inner_ipv6_hdr(skb)->saddr, 3692 &inner_ipv6_hdr(skb)->daddr, 3693 0, IPPROTO_TCP, 0)); 3694 } 3695 3696 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3697 3698 *global_data |= 3699 outerip_off | 3700 (outerip_len << 3701 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3702 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3703 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3704 3705 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3706 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3707 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3708 } 3709 } 3710 3711 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data, 3712 u32 xmit_type) 3713 { 3714 struct ipv6hdr *ipv6; 3715 3716 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6))) 3717 return; 3718 3719 if (xmit_type & XMIT_GSO_ENC_V6) 3720 ipv6 = inner_ipv6_hdr(skb); 3721 else /* XMIT_GSO_V6 */ 3722 ipv6 = ipv6_hdr(skb); 3723 3724 if (ipv6->nexthdr == NEXTHDR_IPV6) 3725 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3726 } 3727 3728 /* called with netif_tx_lock 3729 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3730 * netif_wake_queue() 3731 */ 3732 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3733 { 3734 struct bnx2x *bp = netdev_priv(dev); 3735 3736 struct netdev_queue *txq; 3737 struct bnx2x_fp_txdata *txdata; 3738 struct sw_tx_bd *tx_buf; 3739 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3740 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3741 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3742 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3743 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3744 u32 pbd_e2_parsing_data = 0; 3745 u16 pkt_prod, bd_prod; 3746 int nbd, txq_index; 3747 dma_addr_t mapping; 3748 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3749 int i; 3750 u8 hlen = 0; 3751 __le16 pkt_size = 0; 3752 struct ethhdr *eth; 3753 u8 mac_type = UNICAST_ADDRESS; 3754 3755 #ifdef BNX2X_STOP_ON_ERROR 3756 if (unlikely(bp->panic)) 3757 return NETDEV_TX_BUSY; 3758 #endif 3759 3760 txq_index = skb_get_queue_mapping(skb); 3761 txq = netdev_get_tx_queue(dev, txq_index); 3762 3763 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3764 3765 txdata = &bp->bnx2x_txq[txq_index]; 3766 3767 /* enable this debug print to view the transmission queue being used 3768 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3769 txq_index, fp_index, txdata_index); */ 3770 3771 /* enable this debug print to view the transmission details 3772 DP(NETIF_MSG_TX_QUEUED, 3773 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3774 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3775 3776 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3777 skb_shinfo(skb)->nr_frags + 3778 BDS_PER_TX_PKT + 3779 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3780 /* Handle special storage cases separately */ 3781 if (txdata->tx_ring_size == 0) { 3782 struct bnx2x_eth_q_stats *q_stats = 3783 bnx2x_fp_qstats(bp, txdata->parent_fp); 3784 q_stats->driver_filtered_tx_pkt++; 3785 dev_kfree_skb(skb); 3786 return NETDEV_TX_OK; 3787 } 3788 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3789 netif_tx_stop_queue(txq); 3790 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3791 3792 return NETDEV_TX_BUSY; 3793 } 3794 3795 DP(NETIF_MSG_TX_QUEUED, 3796 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3797 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3798 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3799 skb->len); 3800 3801 eth = (struct ethhdr *)skb->data; 3802 3803 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3804 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3805 if (is_broadcast_ether_addr(eth->h_dest)) 3806 mac_type = BROADCAST_ADDRESS; 3807 else 3808 mac_type = MULTICAST_ADDRESS; 3809 } 3810 3811 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3812 /* First, check if we need to linearize the skb (due to FW 3813 restrictions). No need to check fragmentation if page size > 8K 3814 (there will be no violation to FW restrictions) */ 3815 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3816 /* Statistics of linearization */ 3817 bp->lin_cnt++; 3818 if (skb_linearize(skb) != 0) { 3819 DP(NETIF_MSG_TX_QUEUED, 3820 "SKB linearization failed - silently dropping this SKB\n"); 3821 dev_kfree_skb_any(skb); 3822 return NETDEV_TX_OK; 3823 } 3824 } 3825 #endif 3826 /* Map skb linear data for DMA */ 3827 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3828 skb_headlen(skb), DMA_TO_DEVICE); 3829 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3830 DP(NETIF_MSG_TX_QUEUED, 3831 "SKB mapping failed - silently dropping this SKB\n"); 3832 dev_kfree_skb_any(skb); 3833 return NETDEV_TX_OK; 3834 } 3835 /* 3836 Please read carefully. First we use one BD which we mark as start, 3837 then we have a parsing info BD (used for TSO or xsum), 3838 and only then we have the rest of the TSO BDs. 3839 (don't forget to mark the last one as last, 3840 and to unmap only AFTER you write to the BD ...) 3841 And above all, all pdb sizes are in words - NOT DWORDS! 3842 */ 3843 3844 /* get current pkt produced now - advance it just before sending packet 3845 * since mapping of pages may fail and cause packet to be dropped 3846 */ 3847 pkt_prod = txdata->tx_pkt_prod; 3848 bd_prod = TX_BD(txdata->tx_bd_prod); 3849 3850 /* get a tx_buf and first BD 3851 * tx_start_bd may be changed during SPLIT, 3852 * but first_bd will always stay first 3853 */ 3854 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3855 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3856 first_bd = tx_start_bd; 3857 3858 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3859 3860 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3861 if (!(bp->flags & TX_TIMESTAMPING_EN)) { 3862 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n"); 3863 } else if (bp->ptp_tx_skb) { 3864 BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n"); 3865 } else { 3866 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3867 /* schedule check for Tx timestamp */ 3868 bp->ptp_tx_skb = skb_get(skb); 3869 bp->ptp_tx_start = jiffies; 3870 schedule_work(&bp->ptp_task); 3871 } 3872 } 3873 3874 /* header nbd: indirectly zero other flags! */ 3875 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3876 3877 /* remember the first BD of the packet */ 3878 tx_buf->first_bd = txdata->tx_bd_prod; 3879 tx_buf->skb = skb; 3880 tx_buf->flags = 0; 3881 3882 DP(NETIF_MSG_TX_QUEUED, 3883 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3884 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3885 3886 if (skb_vlan_tag_present(skb)) { 3887 tx_start_bd->vlan_or_ethertype = 3888 cpu_to_le16(skb_vlan_tag_get(skb)); 3889 tx_start_bd->bd_flags.as_bitfield |= 3890 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3891 } else { 3892 /* when transmitting in a vf, start bd must hold the ethertype 3893 * for fw to enforce it 3894 */ 3895 #ifndef BNX2X_STOP_ON_ERROR 3896 if (IS_VF(bp)) 3897 #endif 3898 tx_start_bd->vlan_or_ethertype = 3899 cpu_to_le16(ntohs(eth->h_proto)); 3900 #ifndef BNX2X_STOP_ON_ERROR 3901 else 3902 /* used by FW for packet accounting */ 3903 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3904 #endif 3905 } 3906 3907 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3908 3909 /* turn on parsing and get a BD */ 3910 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3911 3912 if (xmit_type & XMIT_CSUM) 3913 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3914 3915 if (!CHIP_IS_E1x(bp)) { 3916 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3917 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3918 3919 if (xmit_type & XMIT_CSUM_ENC) { 3920 u16 global_data = 0; 3921 3922 /* Set PBD in enc checksum offload case */ 3923 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3924 &pbd_e2_parsing_data, 3925 xmit_type); 3926 3927 /* turn on 2nd parsing and get a BD */ 3928 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3929 3930 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3931 3932 memset(pbd2, 0, sizeof(*pbd2)); 3933 3934 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3935 (skb_inner_network_header(skb) - 3936 skb->data) >> 1; 3937 3938 if (xmit_type & XMIT_GSO_ENC) 3939 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3940 &global_data, 3941 xmit_type); 3942 3943 pbd2->global_data = cpu_to_le16(global_data); 3944 3945 /* add addition parse BD indication to start BD */ 3946 SET_FLAG(tx_start_bd->general_data, 3947 ETH_TX_START_BD_PARSE_NBDS, 1); 3948 /* set encapsulation flag in start BD */ 3949 SET_FLAG(tx_start_bd->general_data, 3950 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3951 3952 tx_buf->flags |= BNX2X_HAS_SECOND_PBD; 3953 3954 nbd++; 3955 } else if (xmit_type & XMIT_CSUM) { 3956 /* Set PBD in checksum offload case w/o encapsulation */ 3957 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3958 &pbd_e2_parsing_data, 3959 xmit_type); 3960 } 3961 3962 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type); 3963 /* Add the macs to the parsing BD if this is a vf or if 3964 * Tx Switching is enabled. 3965 */ 3966 if (IS_VF(bp)) { 3967 /* override GRE parameters in BD */ 3968 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3969 &pbd_e2->data.mac_addr.src_mid, 3970 &pbd_e2->data.mac_addr.src_lo, 3971 eth->h_source); 3972 3973 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 3974 &pbd_e2->data.mac_addr.dst_mid, 3975 &pbd_e2->data.mac_addr.dst_lo, 3976 eth->h_dest); 3977 } else { 3978 if (bp->flags & TX_SWITCHING) 3979 bnx2x_set_fw_mac_addr( 3980 &pbd_e2->data.mac_addr.dst_hi, 3981 &pbd_e2->data.mac_addr.dst_mid, 3982 &pbd_e2->data.mac_addr.dst_lo, 3983 eth->h_dest); 3984 #ifdef BNX2X_STOP_ON_ERROR 3985 /* Enforce security is always set in Stop on Error - 3986 * source mac should be present in the parsing BD 3987 */ 3988 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3989 &pbd_e2->data.mac_addr.src_mid, 3990 &pbd_e2->data.mac_addr.src_lo, 3991 eth->h_source); 3992 #endif 3993 } 3994 3995 SET_FLAG(pbd_e2_parsing_data, 3996 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 3997 } else { 3998 u16 global_data = 0; 3999 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 4000 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 4001 /* Set PBD in checksum offload case */ 4002 if (xmit_type & XMIT_CSUM) 4003 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 4004 4005 SET_FLAG(global_data, 4006 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 4007 pbd_e1x->global_data |= cpu_to_le16(global_data); 4008 } 4009 4010 /* Setup the data pointer of the first BD of the packet */ 4011 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4012 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4013 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 4014 pkt_size = tx_start_bd->nbytes; 4015 4016 DP(NETIF_MSG_TX_QUEUED, 4017 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 4018 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 4019 le16_to_cpu(tx_start_bd->nbytes), 4020 tx_start_bd->bd_flags.as_bitfield, 4021 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 4022 4023 if (xmit_type & XMIT_GSO) { 4024 4025 DP(NETIF_MSG_TX_QUEUED, 4026 "TSO packet len %d hlen %d total len %d tso size %d\n", 4027 skb->len, hlen, skb_headlen(skb), 4028 skb_shinfo(skb)->gso_size); 4029 4030 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 4031 4032 if (unlikely(skb_headlen(skb) > hlen)) { 4033 nbd++; 4034 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 4035 &tx_start_bd, hlen, 4036 bd_prod); 4037 } 4038 if (!CHIP_IS_E1x(bp)) 4039 pbd_e2_parsing_data |= 4040 (skb_shinfo(skb)->gso_size << 4041 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 4042 ETH_TX_PARSE_BD_E2_LSO_MSS; 4043 else 4044 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); 4045 } 4046 4047 /* Set the PBD's parsing_data field if not zero 4048 * (for the chips newer than 57711). 4049 */ 4050 if (pbd_e2_parsing_data) 4051 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 4052 4053 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 4054 4055 /* Handle fragmented skb */ 4056 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4057 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4058 4059 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 4060 skb_frag_size(frag), DMA_TO_DEVICE); 4061 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 4062 unsigned int pkts_compl = 0, bytes_compl = 0; 4063 4064 DP(NETIF_MSG_TX_QUEUED, 4065 "Unable to map page - dropping packet...\n"); 4066 4067 /* we need unmap all buffers already mapped 4068 * for this SKB; 4069 * first_bd->nbd need to be properly updated 4070 * before call to bnx2x_free_tx_pkt 4071 */ 4072 first_bd->nbd = cpu_to_le16(nbd); 4073 bnx2x_free_tx_pkt(bp, txdata, 4074 TX_BD(txdata->tx_pkt_prod), 4075 &pkts_compl, &bytes_compl); 4076 return NETDEV_TX_OK; 4077 } 4078 4079 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4080 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4081 if (total_pkt_bd == NULL) 4082 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4083 4084 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4085 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4086 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 4087 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 4088 nbd++; 4089 4090 DP(NETIF_MSG_TX_QUEUED, 4091 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 4092 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 4093 le16_to_cpu(tx_data_bd->nbytes)); 4094 } 4095 4096 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 4097 4098 /* update with actual num BDs */ 4099 first_bd->nbd = cpu_to_le16(nbd); 4100 4101 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4102 4103 /* now send a tx doorbell, counting the next BD 4104 * if the packet contains or ends with it 4105 */ 4106 if (TX_BD_POFF(bd_prod) < nbd) 4107 nbd++; 4108 4109 /* total_pkt_bytes should be set on the first data BD if 4110 * it's not an LSO packet and there is more than one 4111 * data BD. In this case pkt_size is limited by an MTU value. 4112 * However we prefer to set it for an LSO packet (while we don't 4113 * have to) in order to save some CPU cycles in a none-LSO 4114 * case, when we much more care about them. 4115 */ 4116 if (total_pkt_bd != NULL) 4117 total_pkt_bd->total_pkt_bytes = pkt_size; 4118 4119 if (pbd_e1x) 4120 DP(NETIF_MSG_TX_QUEUED, 4121 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4122 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4123 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4124 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4125 le16_to_cpu(pbd_e1x->total_hlen_w)); 4126 if (pbd_e2) 4127 DP(NETIF_MSG_TX_QUEUED, 4128 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4129 pbd_e2, 4130 pbd_e2->data.mac_addr.dst_hi, 4131 pbd_e2->data.mac_addr.dst_mid, 4132 pbd_e2->data.mac_addr.dst_lo, 4133 pbd_e2->data.mac_addr.src_hi, 4134 pbd_e2->data.mac_addr.src_mid, 4135 pbd_e2->data.mac_addr.src_lo, 4136 pbd_e2->parsing_data); 4137 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4138 4139 netdev_tx_sent_queue(txq, skb->len); 4140 4141 skb_tx_timestamp(skb); 4142 4143 txdata->tx_pkt_prod++; 4144 /* 4145 * Make sure that the BD data is updated before updating the producer 4146 * since FW might read the BD right after the producer is updated. 4147 * This is only applicable for weak-ordered memory model archs such 4148 * as IA-64. The following barrier is also mandatory since FW will 4149 * assumes packets must have BDs. 4150 */ 4151 wmb(); 4152 4153 txdata->tx_db.data.prod += nbd; 4154 barrier(); 4155 4156 DOORBELL(bp, txdata->cid, txdata->tx_db.raw); 4157 4158 mmiowb(); 4159 4160 txdata->tx_bd_prod += nbd; 4161 4162 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4163 netif_tx_stop_queue(txq); 4164 4165 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4166 * ordering of set_bit() in netif_tx_stop_queue() and read of 4167 * fp->bd_tx_cons */ 4168 smp_mb(); 4169 4170 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4171 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4172 netif_tx_wake_queue(txq); 4173 } 4174 txdata->tx_pkt++; 4175 4176 return NETDEV_TX_OK; 4177 } 4178 4179 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default) 4180 { 4181 int mfw_vn = BP_FW_MB_IDX(bp); 4182 u32 tmp; 4183 4184 /* If the shmem shouldn't affect configuration, reflect */ 4185 if (!IS_MF_BD(bp)) { 4186 int i; 4187 4188 for (i = 0; i < BNX2X_MAX_PRIORITY; i++) 4189 c2s_map[i] = i; 4190 *c2s_default = 0; 4191 4192 return; 4193 } 4194 4195 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]); 4196 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4197 c2s_map[0] = tmp & 0xff; 4198 c2s_map[1] = (tmp >> 8) & 0xff; 4199 c2s_map[2] = (tmp >> 16) & 0xff; 4200 c2s_map[3] = (tmp >> 24) & 0xff; 4201 4202 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]); 4203 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4204 c2s_map[4] = tmp & 0xff; 4205 c2s_map[5] = (tmp >> 8) & 0xff; 4206 c2s_map[6] = (tmp >> 16) & 0xff; 4207 c2s_map[7] = (tmp >> 24) & 0xff; 4208 4209 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]); 4210 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4211 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff; 4212 } 4213 4214 /** 4215 * bnx2x_setup_tc - routine to configure net_device for multi tc 4216 * 4217 * @netdev: net device to configure 4218 * @tc: number of traffic classes to enable 4219 * 4220 * callback connected to the ndo_setup_tc function pointer 4221 */ 4222 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4223 { 4224 struct bnx2x *bp = netdev_priv(dev); 4225 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def; 4226 int cos, prio, count, offset; 4227 4228 /* setup tc must be called under rtnl lock */ 4229 ASSERT_RTNL(); 4230 4231 /* no traffic classes requested. Aborting */ 4232 if (!num_tc) { 4233 netdev_reset_tc(dev); 4234 return 0; 4235 } 4236 4237 /* requested to support too many traffic classes */ 4238 if (num_tc > bp->max_cos) { 4239 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4240 num_tc, bp->max_cos); 4241 return -EINVAL; 4242 } 4243 4244 /* declare amount of supported traffic classes */ 4245 if (netdev_set_num_tc(dev, num_tc)) { 4246 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4247 return -EINVAL; 4248 } 4249 4250 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def); 4251 4252 /* configure priority to traffic class mapping */ 4253 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4254 int outer_prio = c2s_map[prio]; 4255 4256 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]); 4257 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4258 "mapping priority %d to tc %d\n", 4259 outer_prio, bp->prio_to_cos[outer_prio]); 4260 } 4261 4262 /* Use this configuration to differentiate tc0 from other COSes 4263 This can be used for ets or pfc, and save the effort of setting 4264 up a multio class queue disc or negotiating DCBX with a switch 4265 netdev_set_prio_tc_map(dev, 0, 0); 4266 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4267 for (prio = 1; prio < 16; prio++) { 4268 netdev_set_prio_tc_map(dev, prio, 1); 4269 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4270 } */ 4271 4272 /* configure traffic class to transmission queue mapping */ 4273 for (cos = 0; cos < bp->max_cos; cos++) { 4274 count = BNX2X_NUM_ETH_QUEUES(bp); 4275 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4276 netdev_set_tc_queue(dev, cos, count, offset); 4277 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4278 "mapping tc %d to offset %d count %d\n", 4279 cos, offset, count); 4280 } 4281 4282 return 0; 4283 } 4284 4285 /* called with rtnl_lock */ 4286 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4287 { 4288 struct sockaddr *addr = p; 4289 struct bnx2x *bp = netdev_priv(dev); 4290 int rc = 0; 4291 4292 if (!is_valid_ether_addr(addr->sa_data)) { 4293 BNX2X_ERR("Requested MAC address is not valid\n"); 4294 return -EINVAL; 4295 } 4296 4297 if (IS_MF_STORAGE_ONLY(bp)) { 4298 BNX2X_ERR("Can't change address on STORAGE ONLY function\n"); 4299 return -EINVAL; 4300 } 4301 4302 if (netif_running(dev)) { 4303 rc = bnx2x_set_eth_mac(bp, false); 4304 if (rc) 4305 return rc; 4306 } 4307 4308 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4309 4310 if (netif_running(dev)) 4311 rc = bnx2x_set_eth_mac(bp, true); 4312 4313 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4314 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4315 4316 return rc; 4317 } 4318 4319 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4320 { 4321 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4322 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4323 u8 cos; 4324 4325 /* Common */ 4326 4327 if (IS_FCOE_IDX(fp_index)) { 4328 memset(sb, 0, sizeof(union host_hc_status_block)); 4329 fp->status_blk_mapping = 0; 4330 } else { 4331 /* status blocks */ 4332 if (!CHIP_IS_E1x(bp)) 4333 BNX2X_PCI_FREE(sb->e2_sb, 4334 bnx2x_fp(bp, fp_index, 4335 status_blk_mapping), 4336 sizeof(struct host_hc_status_block_e2)); 4337 else 4338 BNX2X_PCI_FREE(sb->e1x_sb, 4339 bnx2x_fp(bp, fp_index, 4340 status_blk_mapping), 4341 sizeof(struct host_hc_status_block_e1x)); 4342 } 4343 4344 /* Rx */ 4345 if (!skip_rx_queue(bp, fp_index)) { 4346 bnx2x_free_rx_bds(fp); 4347 4348 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4349 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4350 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4351 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4352 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4353 4354 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4355 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4356 sizeof(struct eth_fast_path_rx_cqe) * 4357 NUM_RCQ_BD); 4358 4359 /* SGE ring */ 4360 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4361 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4362 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4363 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4364 } 4365 4366 /* Tx */ 4367 if (!skip_tx_queue(bp, fp_index)) { 4368 /* fastpath tx rings: tx_buf tx_desc */ 4369 for_each_cos_in_tx_queue(fp, cos) { 4370 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4371 4372 DP(NETIF_MSG_IFDOWN, 4373 "freeing tx memory of fp %d cos %d cid %d\n", 4374 fp_index, cos, txdata->cid); 4375 4376 BNX2X_FREE(txdata->tx_buf_ring); 4377 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4378 txdata->tx_desc_mapping, 4379 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4380 } 4381 } 4382 /* end of fastpath */ 4383 } 4384 4385 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4386 { 4387 int i; 4388 for_each_cnic_queue(bp, i) 4389 bnx2x_free_fp_mem_at(bp, i); 4390 } 4391 4392 void bnx2x_free_fp_mem(struct bnx2x *bp) 4393 { 4394 int i; 4395 for_each_eth_queue(bp, i) 4396 bnx2x_free_fp_mem_at(bp, i); 4397 } 4398 4399 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4400 { 4401 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4402 if (!CHIP_IS_E1x(bp)) { 4403 bnx2x_fp(bp, index, sb_index_values) = 4404 (__le16 *)status_blk.e2_sb->sb.index_values; 4405 bnx2x_fp(bp, index, sb_running_index) = 4406 (__le16 *)status_blk.e2_sb->sb.running_index; 4407 } else { 4408 bnx2x_fp(bp, index, sb_index_values) = 4409 (__le16 *)status_blk.e1x_sb->sb.index_values; 4410 bnx2x_fp(bp, index, sb_running_index) = 4411 (__le16 *)status_blk.e1x_sb->sb.running_index; 4412 } 4413 } 4414 4415 /* Returns the number of actually allocated BDs */ 4416 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4417 int rx_ring_size) 4418 { 4419 struct bnx2x *bp = fp->bp; 4420 u16 ring_prod, cqe_ring_prod; 4421 int i, failure_cnt = 0; 4422 4423 fp->rx_comp_cons = 0; 4424 cqe_ring_prod = ring_prod = 0; 4425 4426 /* This routine is called only during fo init so 4427 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4428 */ 4429 for (i = 0; i < rx_ring_size; i++) { 4430 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4431 failure_cnt++; 4432 continue; 4433 } 4434 ring_prod = NEXT_RX_IDX(ring_prod); 4435 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4436 WARN_ON(ring_prod <= (i - failure_cnt)); 4437 } 4438 4439 if (failure_cnt) 4440 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4441 i - failure_cnt, fp->index); 4442 4443 fp->rx_bd_prod = ring_prod; 4444 /* Limit the CQE producer by the CQE ring size */ 4445 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4446 cqe_ring_prod); 4447 fp->rx_pkt = fp->rx_calls = 0; 4448 4449 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4450 4451 return i - failure_cnt; 4452 } 4453 4454 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4455 { 4456 int i; 4457 4458 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4459 struct eth_rx_cqe_next_page *nextpg; 4460 4461 nextpg = (struct eth_rx_cqe_next_page *) 4462 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4463 nextpg->addr_hi = 4464 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4465 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4466 nextpg->addr_lo = 4467 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4468 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4469 } 4470 } 4471 4472 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4473 { 4474 union host_hc_status_block *sb; 4475 struct bnx2x_fastpath *fp = &bp->fp[index]; 4476 int ring_size = 0; 4477 u8 cos; 4478 int rx_ring_size = 0; 4479 4480 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) { 4481 rx_ring_size = MIN_RX_SIZE_NONTPA; 4482 bp->rx_ring_size = rx_ring_size; 4483 } else if (!bp->rx_ring_size) { 4484 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4485 4486 if (CHIP_IS_E3(bp)) { 4487 u32 cfg = SHMEM_RD(bp, 4488 dev_info.port_hw_config[BP_PORT(bp)]. 4489 default_cfg); 4490 4491 /* Decrease ring size for 1G functions */ 4492 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4493 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4494 rx_ring_size /= 10; 4495 } 4496 4497 /* allocate at least number of buffers required by FW */ 4498 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4499 MIN_RX_SIZE_TPA, rx_ring_size); 4500 4501 bp->rx_ring_size = rx_ring_size; 4502 } else /* if rx_ring_size specified - use it */ 4503 rx_ring_size = bp->rx_ring_size; 4504 4505 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4506 4507 /* Common */ 4508 sb = &bnx2x_fp(bp, index, status_blk); 4509 4510 if (!IS_FCOE_IDX(index)) { 4511 /* status blocks */ 4512 if (!CHIP_IS_E1x(bp)) { 4513 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4514 sizeof(struct host_hc_status_block_e2)); 4515 if (!sb->e2_sb) 4516 goto alloc_mem_err; 4517 } else { 4518 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4519 sizeof(struct host_hc_status_block_e1x)); 4520 if (!sb->e1x_sb) 4521 goto alloc_mem_err; 4522 } 4523 } 4524 4525 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4526 * set shortcuts for it. 4527 */ 4528 if (!IS_FCOE_IDX(index)) 4529 set_sb_shortcuts(bp, index); 4530 4531 /* Tx */ 4532 if (!skip_tx_queue(bp, index)) { 4533 /* fastpath tx rings: tx_buf tx_desc */ 4534 for_each_cos_in_tx_queue(fp, cos) { 4535 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4536 4537 DP(NETIF_MSG_IFUP, 4538 "allocating tx memory of fp %d cos %d\n", 4539 index, cos); 4540 4541 txdata->tx_buf_ring = kcalloc(NUM_TX_BD, 4542 sizeof(struct sw_tx_bd), 4543 GFP_KERNEL); 4544 if (!txdata->tx_buf_ring) 4545 goto alloc_mem_err; 4546 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, 4547 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4548 if (!txdata->tx_desc_ring) 4549 goto alloc_mem_err; 4550 } 4551 } 4552 4553 /* Rx */ 4554 if (!skip_rx_queue(bp, index)) { 4555 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4556 bnx2x_fp(bp, index, rx_buf_ring) = 4557 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL); 4558 if (!bnx2x_fp(bp, index, rx_buf_ring)) 4559 goto alloc_mem_err; 4560 bnx2x_fp(bp, index, rx_desc_ring) = 4561 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), 4562 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4563 if (!bnx2x_fp(bp, index, rx_desc_ring)) 4564 goto alloc_mem_err; 4565 4566 /* Seed all CQEs by 1s */ 4567 bnx2x_fp(bp, index, rx_comp_ring) = 4568 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), 4569 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); 4570 if (!bnx2x_fp(bp, index, rx_comp_ring)) 4571 goto alloc_mem_err; 4572 4573 /* SGE ring */ 4574 bnx2x_fp(bp, index, rx_page_ring) = 4575 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page), 4576 GFP_KERNEL); 4577 if (!bnx2x_fp(bp, index, rx_page_ring)) 4578 goto alloc_mem_err; 4579 bnx2x_fp(bp, index, rx_sge_ring) = 4580 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), 4581 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4582 if (!bnx2x_fp(bp, index, rx_sge_ring)) 4583 goto alloc_mem_err; 4584 /* RX BD ring */ 4585 bnx2x_set_next_page_rx_bd(fp); 4586 4587 /* CQ ring */ 4588 bnx2x_set_next_page_rx_cq(fp); 4589 4590 /* BDs */ 4591 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4592 if (ring_size < rx_ring_size) 4593 goto alloc_mem_err; 4594 } 4595 4596 return 0; 4597 4598 /* handles low memory cases */ 4599 alloc_mem_err: 4600 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4601 index, ring_size); 4602 /* FW will drop all packets if queue is not big enough, 4603 * In these cases we disable the queue 4604 * Min size is different for OOO, TPA and non-TPA queues 4605 */ 4606 if (ring_size < (fp->mode == TPA_MODE_DISABLED ? 4607 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4608 /* release memory allocated for this queue */ 4609 bnx2x_free_fp_mem_at(bp, index); 4610 return -ENOMEM; 4611 } 4612 return 0; 4613 } 4614 4615 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4616 { 4617 if (!NO_FCOE(bp)) 4618 /* FCoE */ 4619 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4620 /* we will fail load process instead of mark 4621 * NO_FCOE_FLAG 4622 */ 4623 return -ENOMEM; 4624 4625 return 0; 4626 } 4627 4628 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4629 { 4630 int i; 4631 4632 /* 1. Allocate FP for leading - fatal if error 4633 * 2. Allocate RSS - fix number of queues if error 4634 */ 4635 4636 /* leading */ 4637 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4638 return -ENOMEM; 4639 4640 /* RSS */ 4641 for_each_nondefault_eth_queue(bp, i) 4642 if (bnx2x_alloc_fp_mem_at(bp, i)) 4643 break; 4644 4645 /* handle memory failures */ 4646 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4647 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4648 4649 WARN_ON(delta < 0); 4650 bnx2x_shrink_eth_fp(bp, delta); 4651 if (CNIC_SUPPORT(bp)) 4652 /* move non eth FPs next to last eth FP 4653 * must be done in that order 4654 * FCOE_IDX < FWD_IDX < OOO_IDX 4655 */ 4656 4657 /* move FCoE fp even NO_FCOE_FLAG is on */ 4658 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4659 bp->num_ethernet_queues -= delta; 4660 bp->num_queues = bp->num_ethernet_queues + 4661 bp->num_cnic_queues; 4662 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4663 bp->num_queues + delta, bp->num_queues); 4664 } 4665 4666 return 0; 4667 } 4668 4669 void bnx2x_free_mem_bp(struct bnx2x *bp) 4670 { 4671 int i; 4672 4673 for (i = 0; i < bp->fp_array_size; i++) 4674 kfree(bp->fp[i].tpa_info); 4675 kfree(bp->fp); 4676 kfree(bp->sp_objs); 4677 kfree(bp->fp_stats); 4678 kfree(bp->bnx2x_txq); 4679 kfree(bp->msix_table); 4680 kfree(bp->ilt); 4681 } 4682 4683 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4684 { 4685 struct bnx2x_fastpath *fp; 4686 struct msix_entry *tbl; 4687 struct bnx2x_ilt *ilt; 4688 int msix_table_size = 0; 4689 int fp_array_size, txq_array_size; 4690 int i; 4691 4692 /* 4693 * The biggest MSI-X table we might need is as a maximum number of fast 4694 * path IGU SBs plus default SB (for PF only). 4695 */ 4696 msix_table_size = bp->igu_sb_cnt; 4697 if (IS_PF(bp)) 4698 msix_table_size++; 4699 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4700 4701 /* fp array: RSS plus CNIC related L2 queues */ 4702 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4703 bp->fp_array_size = fp_array_size; 4704 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4705 4706 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4707 if (!fp) 4708 goto alloc_err; 4709 for (i = 0; i < bp->fp_array_size; i++) { 4710 fp[i].tpa_info = 4711 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4712 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4713 if (!(fp[i].tpa_info)) 4714 goto alloc_err; 4715 } 4716 4717 bp->fp = fp; 4718 4719 /* allocate sp objs */ 4720 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4721 GFP_KERNEL); 4722 if (!bp->sp_objs) 4723 goto alloc_err; 4724 4725 /* allocate fp_stats */ 4726 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4727 GFP_KERNEL); 4728 if (!bp->fp_stats) 4729 goto alloc_err; 4730 4731 /* Allocate memory for the transmission queues array */ 4732 txq_array_size = 4733 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4734 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4735 4736 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4737 GFP_KERNEL); 4738 if (!bp->bnx2x_txq) 4739 goto alloc_err; 4740 4741 /* msix table */ 4742 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4743 if (!tbl) 4744 goto alloc_err; 4745 bp->msix_table = tbl; 4746 4747 /* ilt */ 4748 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4749 if (!ilt) 4750 goto alloc_err; 4751 bp->ilt = ilt; 4752 4753 return 0; 4754 alloc_err: 4755 bnx2x_free_mem_bp(bp); 4756 return -ENOMEM; 4757 } 4758 4759 int bnx2x_reload_if_running(struct net_device *dev) 4760 { 4761 struct bnx2x *bp = netdev_priv(dev); 4762 4763 if (unlikely(!netif_running(dev))) 4764 return 0; 4765 4766 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4767 return bnx2x_nic_load(bp, LOAD_NORMAL); 4768 } 4769 4770 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4771 { 4772 u32 sel_phy_idx = 0; 4773 if (bp->link_params.num_phys <= 1) 4774 return INT_PHY; 4775 4776 if (bp->link_vars.link_up) { 4777 sel_phy_idx = EXT_PHY1; 4778 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4779 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4780 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4781 sel_phy_idx = EXT_PHY2; 4782 } else { 4783 4784 switch (bnx2x_phy_selection(&bp->link_params)) { 4785 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4786 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4787 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4788 sel_phy_idx = EXT_PHY1; 4789 break; 4790 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4791 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4792 sel_phy_idx = EXT_PHY2; 4793 break; 4794 } 4795 } 4796 4797 return sel_phy_idx; 4798 } 4799 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4800 { 4801 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4802 /* 4803 * The selected activated PHY is always after swapping (in case PHY 4804 * swapping is enabled). So when swapping is enabled, we need to reverse 4805 * the configuration 4806 */ 4807 4808 if (bp->link_params.multi_phy_config & 4809 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4810 if (sel_phy_idx == EXT_PHY1) 4811 sel_phy_idx = EXT_PHY2; 4812 else if (sel_phy_idx == EXT_PHY2) 4813 sel_phy_idx = EXT_PHY1; 4814 } 4815 return LINK_CONFIG_IDX(sel_phy_idx); 4816 } 4817 4818 #ifdef NETDEV_FCOE_WWNN 4819 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4820 { 4821 struct bnx2x *bp = netdev_priv(dev); 4822 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4823 4824 switch (type) { 4825 case NETDEV_FCOE_WWNN: 4826 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4827 cp->fcoe_wwn_node_name_lo); 4828 break; 4829 case NETDEV_FCOE_WWPN: 4830 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4831 cp->fcoe_wwn_port_name_lo); 4832 break; 4833 default: 4834 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4835 return -EINVAL; 4836 } 4837 4838 return 0; 4839 } 4840 #endif 4841 4842 /* called with rtnl_lock */ 4843 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4844 { 4845 struct bnx2x *bp = netdev_priv(dev); 4846 4847 if (pci_num_vf(bp->pdev)) { 4848 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n"); 4849 return -EPERM; 4850 } 4851 4852 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4853 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4854 return -EAGAIN; 4855 } 4856 4857 if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || 4858 ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) { 4859 BNX2X_ERR("Can't support requested MTU size\n"); 4860 return -EINVAL; 4861 } 4862 4863 /* This does not race with packet allocation 4864 * because the actual alloc size is 4865 * only updated as part of load 4866 */ 4867 dev->mtu = new_mtu; 4868 4869 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4870 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4871 4872 return bnx2x_reload_if_running(dev); 4873 } 4874 4875 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4876 netdev_features_t features) 4877 { 4878 struct bnx2x *bp = netdev_priv(dev); 4879 4880 if (pci_num_vf(bp->pdev)) { 4881 netdev_features_t changed = dev->features ^ features; 4882 4883 /* Revert the requested changes in features if they 4884 * would require internal reload of PF in bnx2x_set_features(). 4885 */ 4886 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) { 4887 features &= ~NETIF_F_RXCSUM; 4888 features |= dev->features & NETIF_F_RXCSUM; 4889 } 4890 4891 if (changed & NETIF_F_LOOPBACK) { 4892 features &= ~NETIF_F_LOOPBACK; 4893 features |= dev->features & NETIF_F_LOOPBACK; 4894 } 4895 } 4896 4897 /* TPA requires Rx CSUM offloading */ 4898 if (!(features & NETIF_F_RXCSUM)) { 4899 features &= ~NETIF_F_LRO; 4900 features &= ~NETIF_F_GRO; 4901 } 4902 4903 return features; 4904 } 4905 4906 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4907 { 4908 struct bnx2x *bp = netdev_priv(dev); 4909 netdev_features_t changes = features ^ dev->features; 4910 bool bnx2x_reload = false; 4911 int rc; 4912 4913 /* VFs or non SRIOV PFs should be able to change loopback feature */ 4914 if (!pci_num_vf(bp->pdev)) { 4915 if (features & NETIF_F_LOOPBACK) { 4916 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4917 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4918 bnx2x_reload = true; 4919 } 4920 } else { 4921 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4922 bp->link_params.loopback_mode = LOOPBACK_NONE; 4923 bnx2x_reload = true; 4924 } 4925 } 4926 } 4927 4928 /* if GRO is changed while LRO is enabled, don't force a reload */ 4929 if ((changes & NETIF_F_GRO) && (features & NETIF_F_LRO)) 4930 changes &= ~NETIF_F_GRO; 4931 4932 /* if GRO is changed while HW TPA is off, don't force a reload */ 4933 if ((changes & NETIF_F_GRO) && bp->disable_tpa) 4934 changes &= ~NETIF_F_GRO; 4935 4936 if (changes) 4937 bnx2x_reload = true; 4938 4939 if (bnx2x_reload) { 4940 if (bp->recovery_state == BNX2X_RECOVERY_DONE) { 4941 dev->features = features; 4942 rc = bnx2x_reload_if_running(dev); 4943 return rc ? rc : 1; 4944 } 4945 /* else: bnx2x_nic_load() will be called at end of recovery */ 4946 } 4947 4948 return 0; 4949 } 4950 4951 void bnx2x_tx_timeout(struct net_device *dev) 4952 { 4953 struct bnx2x *bp = netdev_priv(dev); 4954 4955 #ifdef BNX2X_STOP_ON_ERROR 4956 if (!bp->panic) 4957 bnx2x_panic(); 4958 #endif 4959 4960 /* This allows the netif to be shutdown gracefully before resetting */ 4961 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); 4962 } 4963 4964 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) 4965 { 4966 struct net_device *dev = pci_get_drvdata(pdev); 4967 struct bnx2x *bp; 4968 4969 if (!dev) { 4970 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4971 return -ENODEV; 4972 } 4973 bp = netdev_priv(dev); 4974 4975 rtnl_lock(); 4976 4977 pci_save_state(pdev); 4978 4979 if (!netif_running(dev)) { 4980 rtnl_unlock(); 4981 return 0; 4982 } 4983 4984 netif_device_detach(dev); 4985 4986 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 4987 4988 bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); 4989 4990 rtnl_unlock(); 4991 4992 return 0; 4993 } 4994 4995 int bnx2x_resume(struct pci_dev *pdev) 4996 { 4997 struct net_device *dev = pci_get_drvdata(pdev); 4998 struct bnx2x *bp; 4999 int rc; 5000 5001 if (!dev) { 5002 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5003 return -ENODEV; 5004 } 5005 bp = netdev_priv(dev); 5006 5007 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 5008 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 5009 return -EAGAIN; 5010 } 5011 5012 rtnl_lock(); 5013 5014 pci_restore_state(pdev); 5015 5016 if (!netif_running(dev)) { 5017 rtnl_unlock(); 5018 return 0; 5019 } 5020 5021 bnx2x_set_power_state(bp, PCI_D0); 5022 netif_device_attach(dev); 5023 5024 rc = bnx2x_nic_load(bp, LOAD_OPEN); 5025 5026 rtnl_unlock(); 5027 5028 return rc; 5029 } 5030 5031 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 5032 u32 cid) 5033 { 5034 if (!cxt) { 5035 BNX2X_ERR("bad context pointer %p\n", cxt); 5036 return; 5037 } 5038 5039 /* ustorm cxt validation */ 5040 cxt->ustorm_ag_context.cdu_usage = 5041 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5042 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 5043 /* xcontext validation */ 5044 cxt->xstorm_ag_context.cdu_reserved = 5045 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5046 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 5047 } 5048 5049 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 5050 u8 fw_sb_id, u8 sb_index, 5051 u8 ticks) 5052 { 5053 u32 addr = BAR_CSTRORM_INTMEM + 5054 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 5055 REG_WR8(bp, addr, ticks); 5056 DP(NETIF_MSG_IFUP, 5057 "port %x fw_sb_id %d sb_index %d ticks %d\n", 5058 port, fw_sb_id, sb_index, ticks); 5059 } 5060 5061 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 5062 u16 fw_sb_id, u8 sb_index, 5063 u8 disable) 5064 { 5065 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 5066 u32 addr = BAR_CSTRORM_INTMEM + 5067 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 5068 u8 flags = REG_RD8(bp, addr); 5069 /* clear and set */ 5070 flags &= ~HC_INDEX_DATA_HC_ENABLED; 5071 flags |= enable_flag; 5072 REG_WR8(bp, addr, flags); 5073 DP(NETIF_MSG_IFUP, 5074 "port %x fw_sb_id %d sb_index %d disable %d\n", 5075 port, fw_sb_id, sb_index, disable); 5076 } 5077 5078 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 5079 u8 sb_index, u8 disable, u16 usec) 5080 { 5081 int port = BP_PORT(bp); 5082 u8 ticks = usec / BNX2X_BTR; 5083 5084 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 5085 5086 disable = disable ? 1 : (usec ? 0 : 1); 5087 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 5088 } 5089 5090 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, 5091 u32 verbose) 5092 { 5093 smp_mb__before_atomic(); 5094 set_bit(flag, &bp->sp_rtnl_state); 5095 smp_mb__after_atomic(); 5096 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", 5097 flag); 5098 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5099 } 5100 EXPORT_SYMBOL(bnx2x_schedule_sp_rtnl); 5101