1 /* bnx2x_cmn.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/etherdevice.h> 23 #include <linux/if_vlan.h> 24 #include <linux/interrupt.h> 25 #include <linux/ip.h> 26 #include <linux/crash_dump.h> 27 #include <net/tcp.h> 28 #include <net/ipv6.h> 29 #include <net/ip6_checksum.h> 30 #include <linux/prefetch.h> 31 #include "bnx2x_cmn.h" 32 #include "bnx2x_init.h" 33 #include "bnx2x_sp.h" 34 35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 38 static int bnx2x_poll(struct napi_struct *napi, int budget); 39 40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 41 { 42 int i; 43 44 /* Add NAPI objects */ 45 for_each_rx_queue_cnic(bp, i) { 46 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 47 bnx2x_poll, NAPI_POLL_WEIGHT); 48 } 49 } 50 51 static void bnx2x_add_all_napi(struct bnx2x *bp) 52 { 53 int i; 54 55 /* Add NAPI objects */ 56 for_each_eth_queue(bp, i) { 57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 58 bnx2x_poll, NAPI_POLL_WEIGHT); 59 } 60 } 61 62 static int bnx2x_calc_num_queues(struct bnx2x *bp) 63 { 64 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues(); 65 66 /* Reduce memory usage in kdump environment by using only one queue */ 67 if (is_kdump_kernel()) 68 nq = 1; 69 70 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp)); 71 return nq; 72 } 73 74 /** 75 * bnx2x_move_fp - move content of the fastpath structure. 76 * 77 * @bp: driver handle 78 * @from: source FP index 79 * @to: destination FP index 80 * 81 * Makes sure the contents of the bp->fp[to].napi is kept 82 * intact. This is done by first copying the napi struct from 83 * the target to the source, and then mem copying the entire 84 * source onto the target. Update txdata pointers and related 85 * content. 86 */ 87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 88 { 89 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 90 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 91 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 92 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 93 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 94 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 95 int old_max_eth_txqs, new_max_eth_txqs; 96 int old_txdata_index = 0, new_txdata_index = 0; 97 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 98 99 /* Copy the NAPI object as it has been already initialized */ 100 from_fp->napi = to_fp->napi; 101 102 /* Move bnx2x_fastpath contents */ 103 memcpy(to_fp, from_fp, sizeof(*to_fp)); 104 to_fp->index = to; 105 106 /* Retain the tpa_info of the original `to' version as we don't want 107 * 2 FPs to contain the same tpa_info pointer. 108 */ 109 to_fp->tpa_info = old_tpa_info; 110 111 /* move sp_objs contents as well, as their indices match fp ones */ 112 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 113 114 /* move fp_stats contents as well, as their indices match fp ones */ 115 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 116 117 /* Update txdata pointers in fp and move txdata content accordingly: 118 * Each fp consumes 'max_cos' txdata structures, so the index should be 119 * decremented by max_cos x delta. 120 */ 121 122 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 123 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 124 (bp)->max_cos; 125 if (from == FCOE_IDX(bp)) { 126 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 127 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 128 } 129 130 memcpy(&bp->bnx2x_txq[new_txdata_index], 131 &bp->bnx2x_txq[old_txdata_index], 132 sizeof(struct bnx2x_fp_txdata)); 133 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 134 } 135 136 /** 137 * bnx2x_fill_fw_str - Fill buffer with FW version string. 138 * 139 * @bp: driver handle 140 * @buf: character buffer to fill with the fw name 141 * @buf_len: length of the above buffer 142 * 143 */ 144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 145 { 146 if (IS_PF(bp)) { 147 u8 phy_fw_ver[PHY_FW_VER_LEN]; 148 149 phy_fw_ver[0] = '\0'; 150 bnx2x_get_ext_phy_fw_version(&bp->link_params, 151 phy_fw_ver, PHY_FW_VER_LEN); 152 strlcpy(buf, bp->fw_ver, buf_len); 153 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 154 "bc %d.%d.%d%s%s", 155 (bp->common.bc_ver & 0xff0000) >> 16, 156 (bp->common.bc_ver & 0xff00) >> 8, 157 (bp->common.bc_ver & 0xff), 158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 159 } else { 160 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 161 } 162 } 163 164 /** 165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 166 * 167 * @bp: driver handle 168 * @delta: number of eth queues which were not allocated 169 */ 170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 171 { 172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 173 174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 175 * backward along the array could cause memory to be overridden 176 */ 177 for (cos = 1; cos < bp->max_cos; cos++) { 178 for (i = 0; i < old_eth_num - delta; i++) { 179 struct bnx2x_fastpath *fp = &bp->fp[i]; 180 int new_idx = cos * (old_eth_num - delta) + i; 181 182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 183 sizeof(struct bnx2x_fp_txdata)); 184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 185 } 186 } 187 } 188 189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 190 191 /* free skb in the packet ring at pos idx 192 * return idx of last bd freed 193 */ 194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 195 u16 idx, unsigned int *pkts_compl, 196 unsigned int *bytes_compl) 197 { 198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 199 struct eth_tx_start_bd *tx_start_bd; 200 struct eth_tx_bd *tx_data_bd; 201 struct sk_buff *skb = tx_buf->skb; 202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 203 int nbd; 204 u16 split_bd_len = 0; 205 206 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 207 prefetch(&skb->end); 208 209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 210 txdata->txq_index, idx, tx_buf, skb); 211 212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 213 214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 215 #ifdef BNX2X_STOP_ON_ERROR 216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 217 BNX2X_ERR("BAD nbd!\n"); 218 bnx2x_panic(); 219 } 220 #endif 221 new_cons = nbd + tx_buf->first_bd; 222 223 /* Get the next bd */ 224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 225 226 /* Skip a parse bd... */ 227 --nbd; 228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 229 230 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { 231 /* Skip second parse bd... */ 232 --nbd; 233 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 234 } 235 236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 237 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 238 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 239 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 240 --nbd; 241 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 242 } 243 244 /* unmap first bd */ 245 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 246 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 247 DMA_TO_DEVICE); 248 249 /* now free frags */ 250 while (nbd > 0) { 251 252 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 253 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 254 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 255 if (--nbd) 256 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 257 } 258 259 /* release skb */ 260 WARN_ON(!skb); 261 if (likely(skb)) { 262 (*pkts_compl)++; 263 (*bytes_compl) += skb->len; 264 dev_kfree_skb_any(skb); 265 } 266 267 tx_buf->first_bd = 0; 268 tx_buf->skb = NULL; 269 270 return new_cons; 271 } 272 273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 274 { 275 struct netdev_queue *txq; 276 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 277 unsigned int pkts_compl = 0, bytes_compl = 0; 278 279 #ifdef BNX2X_STOP_ON_ERROR 280 if (unlikely(bp->panic)) 281 return -1; 282 #endif 283 284 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 285 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 286 sw_cons = txdata->tx_pkt_cons; 287 288 while (sw_cons != hw_cons) { 289 u16 pkt_cons; 290 291 pkt_cons = TX_BD(sw_cons); 292 293 DP(NETIF_MSG_TX_DONE, 294 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 295 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 296 297 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 298 &pkts_compl, &bytes_compl); 299 300 sw_cons++; 301 } 302 303 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 304 305 txdata->tx_pkt_cons = sw_cons; 306 txdata->tx_bd_cons = bd_cons; 307 308 /* Need to make the tx_bd_cons update visible to start_xmit() 309 * before checking for netif_tx_queue_stopped(). Without the 310 * memory barrier, there is a small possibility that 311 * start_xmit() will miss it and cause the queue to be stopped 312 * forever. 313 * On the other hand we need an rmb() here to ensure the proper 314 * ordering of bit testing in the following 315 * netif_tx_queue_stopped(txq) call. 316 */ 317 smp_mb(); 318 319 if (unlikely(netif_tx_queue_stopped(txq))) { 320 /* Taking tx_lock() is needed to prevent re-enabling the queue 321 * while it's empty. This could have happen if rx_action() gets 322 * suspended in bnx2x_tx_int() after the condition before 323 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 324 * 325 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 326 * sends some packets consuming the whole queue again-> 327 * stops the queue 328 */ 329 330 __netif_tx_lock(txq, smp_processor_id()); 331 332 if ((netif_tx_queue_stopped(txq)) && 333 (bp->state == BNX2X_STATE_OPEN) && 334 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 335 netif_tx_wake_queue(txq); 336 337 __netif_tx_unlock(txq); 338 } 339 return 0; 340 } 341 342 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 343 u16 idx) 344 { 345 u16 last_max = fp->last_max_sge; 346 347 if (SUB_S16(idx, last_max) > 0) 348 fp->last_max_sge = idx; 349 } 350 351 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 352 u16 sge_len, 353 struct eth_end_agg_rx_cqe *cqe) 354 { 355 struct bnx2x *bp = fp->bp; 356 u16 last_max, last_elem, first_elem; 357 u16 delta = 0; 358 u16 i; 359 360 if (!sge_len) 361 return; 362 363 /* First mark all used pages */ 364 for (i = 0; i < sge_len; i++) 365 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 366 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 367 368 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 369 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 370 371 /* Here we assume that the last SGE index is the biggest */ 372 prefetch((void *)(fp->sge_mask)); 373 bnx2x_update_last_max_sge(fp, 374 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 375 376 last_max = RX_SGE(fp->last_max_sge); 377 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 378 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 379 380 /* If ring is not full */ 381 if (last_elem + 1 != first_elem) 382 last_elem++; 383 384 /* Now update the prod */ 385 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 386 if (likely(fp->sge_mask[i])) 387 break; 388 389 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 390 delta += BIT_VEC64_ELEM_SZ; 391 } 392 393 if (delta > 0) { 394 fp->rx_sge_prod += delta; 395 /* clear page-end entries */ 396 bnx2x_clear_sge_mask_next_elems(fp); 397 } 398 399 DP(NETIF_MSG_RX_STATUS, 400 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 401 fp->last_max_sge, fp->rx_sge_prod); 402 } 403 404 /* Get Toeplitz hash value in the skb using the value from the 405 * CQE (calculated by HW). 406 */ 407 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 408 const struct eth_fast_path_rx_cqe *cqe, 409 enum pkt_hash_types *rxhash_type) 410 { 411 /* Get Toeplitz hash from CQE */ 412 if ((bp->dev->features & NETIF_F_RXHASH) && 413 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 414 enum eth_rss_hash_type htype; 415 416 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 417 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 418 (htype == TCP_IPV6_HASH_TYPE)) ? 419 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 420 421 return le32_to_cpu(cqe->rss_hash_result); 422 } 423 *rxhash_type = PKT_HASH_TYPE_NONE; 424 return 0; 425 } 426 427 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 428 u16 cons, u16 prod, 429 struct eth_fast_path_rx_cqe *cqe) 430 { 431 struct bnx2x *bp = fp->bp; 432 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 433 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 434 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 435 dma_addr_t mapping; 436 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 437 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 438 439 /* print error if current state != stop */ 440 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 441 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 442 443 /* Try to map an empty data buffer from the aggregation info */ 444 mapping = dma_map_single(&bp->pdev->dev, 445 first_buf->data + NET_SKB_PAD, 446 fp->rx_buf_size, DMA_FROM_DEVICE); 447 /* 448 * ...if it fails - move the skb from the consumer to the producer 449 * and set the current aggregation state as ERROR to drop it 450 * when TPA_STOP arrives. 451 */ 452 453 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 454 /* Move the BD from the consumer to the producer */ 455 bnx2x_reuse_rx_data(fp, cons, prod); 456 tpa_info->tpa_state = BNX2X_TPA_ERROR; 457 return; 458 } 459 460 /* move empty data from pool to prod */ 461 prod_rx_buf->data = first_buf->data; 462 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 463 /* point prod_bd to new data */ 464 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 465 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 466 467 /* move partial skb from cons to pool (don't unmap yet) */ 468 *first_buf = *cons_rx_buf; 469 470 /* mark bin state as START */ 471 tpa_info->parsing_flags = 472 le16_to_cpu(cqe->pars_flags.flags); 473 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 474 tpa_info->tpa_state = BNX2X_TPA_START; 475 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 476 tpa_info->placement_offset = cqe->placement_offset; 477 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 478 if (fp->mode == TPA_MODE_GRO) { 479 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 480 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 481 tpa_info->gro_size = gro_size; 482 } 483 484 #ifdef BNX2X_STOP_ON_ERROR 485 fp->tpa_queue_used |= (1 << queue); 486 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 487 fp->tpa_queue_used); 488 #endif 489 } 490 491 /* Timestamp option length allowed for TPA aggregation: 492 * 493 * nop nop kind length echo val 494 */ 495 #define TPA_TSTAMP_OPT_LEN 12 496 /** 497 * bnx2x_set_gro_params - compute GRO values 498 * 499 * @skb: packet skb 500 * @parsing_flags: parsing flags from the START CQE 501 * @len_on_bd: total length of the first packet for the 502 * aggregation. 503 * @pkt_len: length of all segments 504 * 505 * Approximate value of the MSS for this aggregation calculated using 506 * the first packet of it. 507 * Compute number of aggregated segments, and gso_type. 508 */ 509 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 510 u16 len_on_bd, unsigned int pkt_len, 511 u16 num_of_coalesced_segs) 512 { 513 /* TPA aggregation won't have either IP options or TCP options 514 * other than timestamp or IPv6 extension headers. 515 */ 516 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 517 518 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 519 PRS_FLAG_OVERETH_IPV6) { 520 hdrs_len += sizeof(struct ipv6hdr); 521 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 522 } else { 523 hdrs_len += sizeof(struct iphdr); 524 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 525 } 526 527 /* Check if there was a TCP timestamp, if there is it's will 528 * always be 12 bytes length: nop nop kind length echo val. 529 * 530 * Otherwise FW would close the aggregation. 531 */ 532 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 533 hdrs_len += TPA_TSTAMP_OPT_LEN; 534 535 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 536 537 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 538 * to skb_shinfo(skb)->gso_segs 539 */ 540 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 541 } 542 543 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 544 u16 index, gfp_t gfp_mask) 545 { 546 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 547 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 548 struct bnx2x_alloc_pool *pool = &fp->page_pool; 549 dma_addr_t mapping; 550 551 if (!pool->page) { 552 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 553 if (unlikely(!pool->page)) 554 return -ENOMEM; 555 556 pool->offset = 0; 557 } 558 559 mapping = dma_map_page(&bp->pdev->dev, pool->page, 560 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE); 561 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 562 BNX2X_ERR("Can't map sge\n"); 563 return -ENOMEM; 564 } 565 566 sw_buf->page = pool->page; 567 sw_buf->offset = pool->offset; 568 569 dma_unmap_addr_set(sw_buf, mapping, mapping); 570 571 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 572 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 573 574 pool->offset += SGE_PAGE_SIZE; 575 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE) 576 get_page(pool->page); 577 else 578 pool->page = NULL; 579 return 0; 580 } 581 582 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 583 struct bnx2x_agg_info *tpa_info, 584 u16 pages, 585 struct sk_buff *skb, 586 struct eth_end_agg_rx_cqe *cqe, 587 u16 cqe_idx) 588 { 589 struct sw_rx_page *rx_pg, old_rx_pg; 590 u32 i, frag_len, frag_size; 591 int err, j, frag_id = 0; 592 u16 len_on_bd = tpa_info->len_on_bd; 593 u16 full_page = 0, gro_size = 0; 594 595 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 596 597 if (fp->mode == TPA_MODE_GRO) { 598 gro_size = tpa_info->gro_size; 599 full_page = tpa_info->full_page; 600 } 601 602 /* This is needed in order to enable forwarding support */ 603 if (frag_size) 604 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 605 le16_to_cpu(cqe->pkt_len), 606 le16_to_cpu(cqe->num_of_coalesced_segs)); 607 608 #ifdef BNX2X_STOP_ON_ERROR 609 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 610 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 611 pages, cqe_idx); 612 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 613 bnx2x_panic(); 614 return -EINVAL; 615 } 616 #endif 617 618 /* Run through the SGL and compose the fragmented skb */ 619 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 620 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 621 622 /* FW gives the indices of the SGE as if the ring is an array 623 (meaning that "next" element will consume 2 indices) */ 624 if (fp->mode == TPA_MODE_GRO) 625 frag_len = min_t(u32, frag_size, (u32)full_page); 626 else /* LRO */ 627 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 628 629 rx_pg = &fp->rx_page_ring[sge_idx]; 630 old_rx_pg = *rx_pg; 631 632 /* If we fail to allocate a substitute page, we simply stop 633 where we are and drop the whole packet */ 634 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 635 if (unlikely(err)) { 636 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 637 return err; 638 } 639 640 dma_unmap_page(&bp->pdev->dev, 641 dma_unmap_addr(&old_rx_pg, mapping), 642 SGE_PAGE_SIZE, DMA_FROM_DEVICE); 643 /* Add one frag and update the appropriate fields in the skb */ 644 if (fp->mode == TPA_MODE_LRO) 645 skb_fill_page_desc(skb, j, old_rx_pg.page, 646 old_rx_pg.offset, frag_len); 647 else { /* GRO */ 648 int rem; 649 int offset = 0; 650 for (rem = frag_len; rem > 0; rem -= gro_size) { 651 int len = rem > gro_size ? gro_size : rem; 652 skb_fill_page_desc(skb, frag_id++, 653 old_rx_pg.page, 654 old_rx_pg.offset + offset, 655 len); 656 if (offset) 657 get_page(old_rx_pg.page); 658 offset += len; 659 } 660 } 661 662 skb->data_len += frag_len; 663 skb->truesize += SGE_PAGES; 664 skb->len += frag_len; 665 666 frag_size -= frag_len; 667 } 668 669 return 0; 670 } 671 672 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 673 { 674 if (fp->rx_frag_size) 675 skb_free_frag(data); 676 else 677 kfree(data); 678 } 679 680 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 681 { 682 if (fp->rx_frag_size) { 683 /* GFP_KERNEL allocations are used only during initialization */ 684 if (unlikely(gfpflags_allow_blocking(gfp_mask))) 685 return (void *)__get_free_page(gfp_mask); 686 687 return netdev_alloc_frag(fp->rx_frag_size); 688 } 689 690 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 691 } 692 693 #ifdef CONFIG_INET 694 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 695 { 696 const struct iphdr *iph = ip_hdr(skb); 697 struct tcphdr *th; 698 699 skb_set_transport_header(skb, sizeof(struct iphdr)); 700 th = tcp_hdr(skb); 701 702 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 703 iph->saddr, iph->daddr, 0); 704 } 705 706 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 707 { 708 struct ipv6hdr *iph = ipv6_hdr(skb); 709 struct tcphdr *th; 710 711 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 712 th = tcp_hdr(skb); 713 714 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 715 &iph->saddr, &iph->daddr, 0); 716 } 717 718 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 719 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 720 { 721 skb_reset_network_header(skb); 722 gro_func(bp, skb); 723 tcp_gro_complete(skb); 724 } 725 #endif 726 727 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 728 struct sk_buff *skb) 729 { 730 #ifdef CONFIG_INET 731 if (skb_shinfo(skb)->gso_size) { 732 switch (be16_to_cpu(skb->protocol)) { 733 case ETH_P_IP: 734 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 735 break; 736 case ETH_P_IPV6: 737 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 738 break; 739 default: 740 netdev_WARN_ONCE(bp->dev, 741 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 742 be16_to_cpu(skb->protocol)); 743 } 744 } 745 #endif 746 skb_record_rx_queue(skb, fp->rx_queue); 747 napi_gro_receive(&fp->napi, skb); 748 } 749 750 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 751 struct bnx2x_agg_info *tpa_info, 752 u16 pages, 753 struct eth_end_agg_rx_cqe *cqe, 754 u16 cqe_idx) 755 { 756 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 757 u8 pad = tpa_info->placement_offset; 758 u16 len = tpa_info->len_on_bd; 759 struct sk_buff *skb = NULL; 760 u8 *new_data, *data = rx_buf->data; 761 u8 old_tpa_state = tpa_info->tpa_state; 762 763 tpa_info->tpa_state = BNX2X_TPA_STOP; 764 765 /* If we there was an error during the handling of the TPA_START - 766 * drop this aggregation. 767 */ 768 if (old_tpa_state == BNX2X_TPA_ERROR) 769 goto drop; 770 771 /* Try to allocate the new data */ 772 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 773 /* Unmap skb in the pool anyway, as we are going to change 774 pool entry status to BNX2X_TPA_STOP even if new skb allocation 775 fails. */ 776 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 777 fp->rx_buf_size, DMA_FROM_DEVICE); 778 if (likely(new_data)) 779 skb = build_skb(data, fp->rx_frag_size); 780 781 if (likely(skb)) { 782 #ifdef BNX2X_STOP_ON_ERROR 783 if (pad + len > fp->rx_buf_size) { 784 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 785 pad, len, fp->rx_buf_size); 786 bnx2x_panic(); 787 return; 788 } 789 #endif 790 791 skb_reserve(skb, pad + NET_SKB_PAD); 792 skb_put(skb, len); 793 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 794 795 skb->protocol = eth_type_trans(skb, bp->dev); 796 skb->ip_summed = CHECKSUM_UNNECESSARY; 797 798 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 799 skb, cqe, cqe_idx)) { 800 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 801 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 802 bnx2x_gro_receive(bp, fp, skb); 803 } else { 804 DP(NETIF_MSG_RX_STATUS, 805 "Failed to allocate new pages - dropping packet!\n"); 806 dev_kfree_skb_any(skb); 807 } 808 809 /* put new data in bin */ 810 rx_buf->data = new_data; 811 812 return; 813 } 814 if (new_data) 815 bnx2x_frag_free(fp, new_data); 816 drop: 817 /* drop the packet and keep the buffer in the bin */ 818 DP(NETIF_MSG_RX_STATUS, 819 "Failed to allocate or map a new skb - dropping packet!\n"); 820 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 821 } 822 823 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 824 u16 index, gfp_t gfp_mask) 825 { 826 u8 *data; 827 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 828 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 829 dma_addr_t mapping; 830 831 data = bnx2x_frag_alloc(fp, gfp_mask); 832 if (unlikely(data == NULL)) 833 return -ENOMEM; 834 835 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 836 fp->rx_buf_size, 837 DMA_FROM_DEVICE); 838 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 839 bnx2x_frag_free(fp, data); 840 BNX2X_ERR("Can't map rx data\n"); 841 return -ENOMEM; 842 } 843 844 rx_buf->data = data; 845 dma_unmap_addr_set(rx_buf, mapping, mapping); 846 847 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 848 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 849 850 return 0; 851 } 852 853 static 854 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 855 struct bnx2x_fastpath *fp, 856 struct bnx2x_eth_q_stats *qstats) 857 { 858 /* Do nothing if no L4 csum validation was done. 859 * We do not check whether IP csum was validated. For IPv4 we assume 860 * that if the card got as far as validating the L4 csum, it also 861 * validated the IP csum. IPv6 has no IP csum. 862 */ 863 if (cqe->fast_path_cqe.status_flags & 864 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 865 return; 866 867 /* If L4 validation was done, check if an error was found. */ 868 869 if (cqe->fast_path_cqe.type_error_flags & 870 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 871 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 872 qstats->hw_csum_err++; 873 else 874 skb->ip_summed = CHECKSUM_UNNECESSARY; 875 } 876 877 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 878 { 879 struct bnx2x *bp = fp->bp; 880 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 881 u16 sw_comp_cons, sw_comp_prod; 882 int rx_pkt = 0; 883 union eth_rx_cqe *cqe; 884 struct eth_fast_path_rx_cqe *cqe_fp; 885 886 #ifdef BNX2X_STOP_ON_ERROR 887 if (unlikely(bp->panic)) 888 return 0; 889 #endif 890 if (budget <= 0) 891 return rx_pkt; 892 893 bd_cons = fp->rx_bd_cons; 894 bd_prod = fp->rx_bd_prod; 895 bd_prod_fw = bd_prod; 896 sw_comp_cons = fp->rx_comp_cons; 897 sw_comp_prod = fp->rx_comp_prod; 898 899 comp_ring_cons = RCQ_BD(sw_comp_cons); 900 cqe = &fp->rx_comp_ring[comp_ring_cons]; 901 cqe_fp = &cqe->fast_path_cqe; 902 903 DP(NETIF_MSG_RX_STATUS, 904 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 905 906 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 907 struct sw_rx_bd *rx_buf = NULL; 908 struct sk_buff *skb; 909 u8 cqe_fp_flags; 910 enum eth_rx_cqe_type cqe_fp_type; 911 u16 len, pad, queue; 912 u8 *data; 913 u32 rxhash; 914 enum pkt_hash_types rxhash_type; 915 916 #ifdef BNX2X_STOP_ON_ERROR 917 if (unlikely(bp->panic)) 918 return 0; 919 #endif 920 921 bd_prod = RX_BD(bd_prod); 922 bd_cons = RX_BD(bd_cons); 923 924 /* A rmb() is required to ensure that the CQE is not read 925 * before it is written by the adapter DMA. PCI ordering 926 * rules will make sure the other fields are written before 927 * the marker at the end of struct eth_fast_path_rx_cqe 928 * but without rmb() a weakly ordered processor can process 929 * stale data. Without the barrier TPA state-machine might 930 * enter inconsistent state and kernel stack might be 931 * provided with incorrect packet description - these lead 932 * to various kernel crashed. 933 */ 934 rmb(); 935 936 cqe_fp_flags = cqe_fp->type_error_flags; 937 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 938 939 DP(NETIF_MSG_RX_STATUS, 940 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 941 CQE_TYPE(cqe_fp_flags), 942 cqe_fp_flags, cqe_fp->status_flags, 943 le32_to_cpu(cqe_fp->rss_hash_result), 944 le16_to_cpu(cqe_fp->vlan_tag), 945 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 946 947 /* is this a slowpath msg? */ 948 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 949 bnx2x_sp_event(fp, cqe); 950 goto next_cqe; 951 } 952 953 rx_buf = &fp->rx_buf_ring[bd_cons]; 954 data = rx_buf->data; 955 956 if (!CQE_TYPE_FAST(cqe_fp_type)) { 957 struct bnx2x_agg_info *tpa_info; 958 u16 frag_size, pages; 959 #ifdef BNX2X_STOP_ON_ERROR 960 /* sanity check */ 961 if (fp->mode == TPA_MODE_DISABLED && 962 (CQE_TYPE_START(cqe_fp_type) || 963 CQE_TYPE_STOP(cqe_fp_type))) 964 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n", 965 CQE_TYPE(cqe_fp_type)); 966 #endif 967 968 if (CQE_TYPE_START(cqe_fp_type)) { 969 u16 queue = cqe_fp->queue_index; 970 DP(NETIF_MSG_RX_STATUS, 971 "calling tpa_start on queue %d\n", 972 queue); 973 974 bnx2x_tpa_start(fp, queue, 975 bd_cons, bd_prod, 976 cqe_fp); 977 978 goto next_rx; 979 } 980 queue = cqe->end_agg_cqe.queue_index; 981 tpa_info = &fp->tpa_info[queue]; 982 DP(NETIF_MSG_RX_STATUS, 983 "calling tpa_stop on queue %d\n", 984 queue); 985 986 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 987 tpa_info->len_on_bd; 988 989 if (fp->mode == TPA_MODE_GRO) 990 pages = (frag_size + tpa_info->full_page - 1) / 991 tpa_info->full_page; 992 else 993 pages = SGE_PAGE_ALIGN(frag_size) >> 994 SGE_PAGE_SHIFT; 995 996 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 997 &cqe->end_agg_cqe, comp_ring_cons); 998 #ifdef BNX2X_STOP_ON_ERROR 999 if (bp->panic) 1000 return 0; 1001 #endif 1002 1003 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 1004 goto next_cqe; 1005 } 1006 /* non TPA */ 1007 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 1008 pad = cqe_fp->placement_offset; 1009 dma_sync_single_for_cpu(&bp->pdev->dev, 1010 dma_unmap_addr(rx_buf, mapping), 1011 pad + RX_COPY_THRESH, 1012 DMA_FROM_DEVICE); 1013 pad += NET_SKB_PAD; 1014 prefetch(data + pad); /* speedup eth_type_trans() */ 1015 /* is this an error packet? */ 1016 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 1017 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1018 "ERROR flags %x rx packet %u\n", 1019 cqe_fp_flags, sw_comp_cons); 1020 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 1021 goto reuse_rx; 1022 } 1023 1024 /* Since we don't have a jumbo ring 1025 * copy small packets if mtu > 1500 1026 */ 1027 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 1028 (len <= RX_COPY_THRESH)) { 1029 skb = napi_alloc_skb(&fp->napi, len); 1030 if (skb == NULL) { 1031 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1032 "ERROR packet dropped because of alloc failure\n"); 1033 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1034 goto reuse_rx; 1035 } 1036 memcpy(skb->data, data + pad, len); 1037 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1038 } else { 1039 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1040 GFP_ATOMIC) == 0)) { 1041 dma_unmap_single(&bp->pdev->dev, 1042 dma_unmap_addr(rx_buf, mapping), 1043 fp->rx_buf_size, 1044 DMA_FROM_DEVICE); 1045 skb = build_skb(data, fp->rx_frag_size); 1046 if (unlikely(!skb)) { 1047 bnx2x_frag_free(fp, data); 1048 bnx2x_fp_qstats(bp, fp)-> 1049 rx_skb_alloc_failed++; 1050 goto next_rx; 1051 } 1052 skb_reserve(skb, pad); 1053 } else { 1054 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1055 "ERROR packet dropped because of alloc failure\n"); 1056 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1057 reuse_rx: 1058 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1059 goto next_rx; 1060 } 1061 } 1062 1063 skb_put(skb, len); 1064 skb->protocol = eth_type_trans(skb, bp->dev); 1065 1066 /* Set Toeplitz hash for a none-LRO skb */ 1067 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1068 skb_set_hash(skb, rxhash, rxhash_type); 1069 1070 skb_checksum_none_assert(skb); 1071 1072 if (bp->dev->features & NETIF_F_RXCSUM) 1073 bnx2x_csum_validate(skb, cqe, fp, 1074 bnx2x_fp_qstats(bp, fp)); 1075 1076 skb_record_rx_queue(skb, fp->rx_queue); 1077 1078 /* Check if this packet was timestamped */ 1079 if (unlikely(cqe->fast_path_cqe.type_error_flags & 1080 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT))) 1081 bnx2x_set_rx_ts(bp, skb); 1082 1083 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1084 PARSING_FLAGS_VLAN) 1085 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1086 le16_to_cpu(cqe_fp->vlan_tag)); 1087 1088 napi_gro_receive(&fp->napi, skb); 1089 next_rx: 1090 rx_buf->data = NULL; 1091 1092 bd_cons = NEXT_RX_IDX(bd_cons); 1093 bd_prod = NEXT_RX_IDX(bd_prod); 1094 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1095 rx_pkt++; 1096 next_cqe: 1097 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1098 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1099 1100 /* mark CQE as free */ 1101 BNX2X_SEED_CQE(cqe_fp); 1102 1103 if (rx_pkt == budget) 1104 break; 1105 1106 comp_ring_cons = RCQ_BD(sw_comp_cons); 1107 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1108 cqe_fp = &cqe->fast_path_cqe; 1109 } /* while */ 1110 1111 fp->rx_bd_cons = bd_cons; 1112 fp->rx_bd_prod = bd_prod_fw; 1113 fp->rx_comp_cons = sw_comp_cons; 1114 fp->rx_comp_prod = sw_comp_prod; 1115 1116 /* Update producers */ 1117 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1118 fp->rx_sge_prod); 1119 1120 return rx_pkt; 1121 } 1122 1123 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1124 { 1125 struct bnx2x_fastpath *fp = fp_cookie; 1126 struct bnx2x *bp = fp->bp; 1127 u8 cos; 1128 1129 DP(NETIF_MSG_INTR, 1130 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1131 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1132 1133 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1134 1135 #ifdef BNX2X_STOP_ON_ERROR 1136 if (unlikely(bp->panic)) 1137 return IRQ_HANDLED; 1138 #endif 1139 1140 /* Handle Rx and Tx according to MSI-X vector */ 1141 for_each_cos_in_tx_queue(fp, cos) 1142 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1143 1144 prefetch(&fp->sb_running_index[SM_RX_ID]); 1145 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1146 1147 return IRQ_HANDLED; 1148 } 1149 1150 /* HW Lock for shared dual port PHYs */ 1151 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1152 { 1153 mutex_lock(&bp->port.phy_mutex); 1154 1155 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1156 } 1157 1158 void bnx2x_release_phy_lock(struct bnx2x *bp) 1159 { 1160 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1161 1162 mutex_unlock(&bp->port.phy_mutex); 1163 } 1164 1165 /* calculates MF speed according to current linespeed and MF configuration */ 1166 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1167 { 1168 u16 line_speed = bp->link_vars.line_speed; 1169 if (IS_MF(bp)) { 1170 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1171 bp->mf_config[BP_VN(bp)]); 1172 1173 /* Calculate the current MAX line speed limit for the MF 1174 * devices 1175 */ 1176 if (IS_MF_PERCENT_BW(bp)) 1177 line_speed = (line_speed * maxCfg) / 100; 1178 else { /* SD mode */ 1179 u16 vn_max_rate = maxCfg * 100; 1180 1181 if (vn_max_rate < line_speed) 1182 line_speed = vn_max_rate; 1183 } 1184 } 1185 1186 return line_speed; 1187 } 1188 1189 /** 1190 * bnx2x_fill_report_data - fill link report data to report 1191 * 1192 * @bp: driver handle 1193 * @data: link state to update 1194 * 1195 * It uses a none-atomic bit operations because is called under the mutex. 1196 */ 1197 static void bnx2x_fill_report_data(struct bnx2x *bp, 1198 struct bnx2x_link_report_data *data) 1199 { 1200 memset(data, 0, sizeof(*data)); 1201 1202 if (IS_PF(bp)) { 1203 /* Fill the report data: effective line speed */ 1204 data->line_speed = bnx2x_get_mf_speed(bp); 1205 1206 /* Link is down */ 1207 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1208 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1209 &data->link_report_flags); 1210 1211 if (!BNX2X_NUM_ETH_QUEUES(bp)) 1212 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1213 &data->link_report_flags); 1214 1215 /* Full DUPLEX */ 1216 if (bp->link_vars.duplex == DUPLEX_FULL) 1217 __set_bit(BNX2X_LINK_REPORT_FD, 1218 &data->link_report_flags); 1219 1220 /* Rx Flow Control is ON */ 1221 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1222 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1223 &data->link_report_flags); 1224 1225 /* Tx Flow Control is ON */ 1226 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1227 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1228 &data->link_report_flags); 1229 } else { /* VF */ 1230 *data = bp->vf_link_vars; 1231 } 1232 } 1233 1234 /** 1235 * bnx2x_link_report - report link status to OS. 1236 * 1237 * @bp: driver handle 1238 * 1239 * Calls the __bnx2x_link_report() under the same locking scheme 1240 * as a link/PHY state managing code to ensure a consistent link 1241 * reporting. 1242 */ 1243 1244 void bnx2x_link_report(struct bnx2x *bp) 1245 { 1246 bnx2x_acquire_phy_lock(bp); 1247 __bnx2x_link_report(bp); 1248 bnx2x_release_phy_lock(bp); 1249 } 1250 1251 /** 1252 * __bnx2x_link_report - report link status to OS. 1253 * 1254 * @bp: driver handle 1255 * 1256 * None atomic implementation. 1257 * Should be called under the phy_lock. 1258 */ 1259 void __bnx2x_link_report(struct bnx2x *bp) 1260 { 1261 struct bnx2x_link_report_data cur_data; 1262 1263 if (bp->force_link_down) { 1264 bp->link_vars.link_up = 0; 1265 return; 1266 } 1267 1268 /* reread mf_cfg */ 1269 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1270 bnx2x_read_mf_cfg(bp); 1271 1272 /* Read the current link report info */ 1273 bnx2x_fill_report_data(bp, &cur_data); 1274 1275 /* Don't report link down or exactly the same link status twice */ 1276 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1277 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1278 &bp->last_reported_link.link_report_flags) && 1279 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1280 &cur_data.link_report_flags))) 1281 return; 1282 1283 bp->link_cnt++; 1284 1285 /* We are going to report a new link parameters now - 1286 * remember the current data for the next time. 1287 */ 1288 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1289 1290 /* propagate status to VFs */ 1291 if (IS_PF(bp)) 1292 bnx2x_iov_link_update(bp); 1293 1294 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1295 &cur_data.link_report_flags)) { 1296 netif_carrier_off(bp->dev); 1297 netdev_err(bp->dev, "NIC Link is Down\n"); 1298 return; 1299 } else { 1300 const char *duplex; 1301 const char *flow; 1302 1303 netif_carrier_on(bp->dev); 1304 1305 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1306 &cur_data.link_report_flags)) 1307 duplex = "full"; 1308 else 1309 duplex = "half"; 1310 1311 /* Handle the FC at the end so that only these flags would be 1312 * possibly set. This way we may easily check if there is no FC 1313 * enabled. 1314 */ 1315 if (cur_data.link_report_flags) { 1316 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1317 &cur_data.link_report_flags)) { 1318 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1319 &cur_data.link_report_flags)) 1320 flow = "ON - receive & transmit"; 1321 else 1322 flow = "ON - receive"; 1323 } else { 1324 flow = "ON - transmit"; 1325 } 1326 } else { 1327 flow = "none"; 1328 } 1329 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1330 cur_data.line_speed, duplex, flow); 1331 } 1332 } 1333 1334 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1335 { 1336 int i; 1337 1338 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1339 struct eth_rx_sge *sge; 1340 1341 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1342 sge->addr_hi = 1343 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1344 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1345 1346 sge->addr_lo = 1347 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1348 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1349 } 1350 } 1351 1352 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1353 struct bnx2x_fastpath *fp, int last) 1354 { 1355 int i; 1356 1357 for (i = 0; i < last; i++) { 1358 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1359 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1360 u8 *data = first_buf->data; 1361 1362 if (data == NULL) { 1363 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1364 continue; 1365 } 1366 if (tpa_info->tpa_state == BNX2X_TPA_START) 1367 dma_unmap_single(&bp->pdev->dev, 1368 dma_unmap_addr(first_buf, mapping), 1369 fp->rx_buf_size, DMA_FROM_DEVICE); 1370 bnx2x_frag_free(fp, data); 1371 first_buf->data = NULL; 1372 } 1373 } 1374 1375 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1376 { 1377 int j; 1378 1379 for_each_rx_queue_cnic(bp, j) { 1380 struct bnx2x_fastpath *fp = &bp->fp[j]; 1381 1382 fp->rx_bd_cons = 0; 1383 1384 /* Activate BD ring */ 1385 /* Warning! 1386 * this will generate an interrupt (to the TSTORM) 1387 * must only be done after chip is initialized 1388 */ 1389 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1390 fp->rx_sge_prod); 1391 } 1392 } 1393 1394 void bnx2x_init_rx_rings(struct bnx2x *bp) 1395 { 1396 int func = BP_FUNC(bp); 1397 u16 ring_prod; 1398 int i, j; 1399 1400 /* Allocate TPA resources */ 1401 for_each_eth_queue(bp, j) { 1402 struct bnx2x_fastpath *fp = &bp->fp[j]; 1403 1404 DP(NETIF_MSG_IFUP, 1405 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1406 1407 if (fp->mode != TPA_MODE_DISABLED) { 1408 /* Fill the per-aggregation pool */ 1409 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1410 struct bnx2x_agg_info *tpa_info = 1411 &fp->tpa_info[i]; 1412 struct sw_rx_bd *first_buf = 1413 &tpa_info->first_buf; 1414 1415 first_buf->data = 1416 bnx2x_frag_alloc(fp, GFP_KERNEL); 1417 if (!first_buf->data) { 1418 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1419 j); 1420 bnx2x_free_tpa_pool(bp, fp, i); 1421 fp->mode = TPA_MODE_DISABLED; 1422 break; 1423 } 1424 dma_unmap_addr_set(first_buf, mapping, 0); 1425 tpa_info->tpa_state = BNX2X_TPA_STOP; 1426 } 1427 1428 /* "next page" elements initialization */ 1429 bnx2x_set_next_page_sgl(fp); 1430 1431 /* set SGEs bit mask */ 1432 bnx2x_init_sge_ring_bit_mask(fp); 1433 1434 /* Allocate SGEs and initialize the ring elements */ 1435 for (i = 0, ring_prod = 0; 1436 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1437 1438 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1439 GFP_KERNEL) < 0) { 1440 BNX2X_ERR("was only able to allocate %d rx sges\n", 1441 i); 1442 BNX2X_ERR("disabling TPA for queue[%d]\n", 1443 j); 1444 /* Cleanup already allocated elements */ 1445 bnx2x_free_rx_sge_range(bp, fp, 1446 ring_prod); 1447 bnx2x_free_tpa_pool(bp, fp, 1448 MAX_AGG_QS(bp)); 1449 fp->mode = TPA_MODE_DISABLED; 1450 ring_prod = 0; 1451 break; 1452 } 1453 ring_prod = NEXT_SGE_IDX(ring_prod); 1454 } 1455 1456 fp->rx_sge_prod = ring_prod; 1457 } 1458 } 1459 1460 for_each_eth_queue(bp, j) { 1461 struct bnx2x_fastpath *fp = &bp->fp[j]; 1462 1463 fp->rx_bd_cons = 0; 1464 1465 /* Activate BD ring */ 1466 /* Warning! 1467 * this will generate an interrupt (to the TSTORM) 1468 * must only be done after chip is initialized 1469 */ 1470 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1471 fp->rx_sge_prod); 1472 1473 if (j != 0) 1474 continue; 1475 1476 if (CHIP_IS_E1(bp)) { 1477 REG_WR(bp, BAR_USTRORM_INTMEM + 1478 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1479 U64_LO(fp->rx_comp_mapping)); 1480 REG_WR(bp, BAR_USTRORM_INTMEM + 1481 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1482 U64_HI(fp->rx_comp_mapping)); 1483 } 1484 } 1485 } 1486 1487 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1488 { 1489 u8 cos; 1490 struct bnx2x *bp = fp->bp; 1491 1492 for_each_cos_in_tx_queue(fp, cos) { 1493 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1494 unsigned pkts_compl = 0, bytes_compl = 0; 1495 1496 u16 sw_prod = txdata->tx_pkt_prod; 1497 u16 sw_cons = txdata->tx_pkt_cons; 1498 1499 while (sw_cons != sw_prod) { 1500 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1501 &pkts_compl, &bytes_compl); 1502 sw_cons++; 1503 } 1504 1505 netdev_tx_reset_queue( 1506 netdev_get_tx_queue(bp->dev, 1507 txdata->txq_index)); 1508 } 1509 } 1510 1511 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1512 { 1513 int i; 1514 1515 for_each_tx_queue_cnic(bp, i) { 1516 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1517 } 1518 } 1519 1520 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1521 { 1522 int i; 1523 1524 for_each_eth_queue(bp, i) { 1525 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1526 } 1527 } 1528 1529 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1530 { 1531 struct bnx2x *bp = fp->bp; 1532 int i; 1533 1534 /* ring wasn't allocated */ 1535 if (fp->rx_buf_ring == NULL) 1536 return; 1537 1538 for (i = 0; i < NUM_RX_BD; i++) { 1539 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1540 u8 *data = rx_buf->data; 1541 1542 if (data == NULL) 1543 continue; 1544 dma_unmap_single(&bp->pdev->dev, 1545 dma_unmap_addr(rx_buf, mapping), 1546 fp->rx_buf_size, DMA_FROM_DEVICE); 1547 1548 rx_buf->data = NULL; 1549 bnx2x_frag_free(fp, data); 1550 } 1551 } 1552 1553 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1554 { 1555 int j; 1556 1557 for_each_rx_queue_cnic(bp, j) { 1558 bnx2x_free_rx_bds(&bp->fp[j]); 1559 } 1560 } 1561 1562 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1563 { 1564 int j; 1565 1566 for_each_eth_queue(bp, j) { 1567 struct bnx2x_fastpath *fp = &bp->fp[j]; 1568 1569 bnx2x_free_rx_bds(fp); 1570 1571 if (fp->mode != TPA_MODE_DISABLED) 1572 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1573 } 1574 } 1575 1576 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1577 { 1578 bnx2x_free_tx_skbs_cnic(bp); 1579 bnx2x_free_rx_skbs_cnic(bp); 1580 } 1581 1582 void bnx2x_free_skbs(struct bnx2x *bp) 1583 { 1584 bnx2x_free_tx_skbs(bp); 1585 bnx2x_free_rx_skbs(bp); 1586 } 1587 1588 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1589 { 1590 /* load old values */ 1591 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1592 1593 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1594 /* leave all but MAX value */ 1595 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1596 1597 /* set new MAX value */ 1598 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1599 & FUNC_MF_CFG_MAX_BW_MASK; 1600 1601 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1602 } 1603 } 1604 1605 /** 1606 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1607 * 1608 * @bp: driver handle 1609 * @nvecs: number of vectors to be released 1610 */ 1611 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1612 { 1613 int i, offset = 0; 1614 1615 if (nvecs == offset) 1616 return; 1617 1618 /* VFs don't have a default SB */ 1619 if (IS_PF(bp)) { 1620 free_irq(bp->msix_table[offset].vector, bp->dev); 1621 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1622 bp->msix_table[offset].vector); 1623 offset++; 1624 } 1625 1626 if (CNIC_SUPPORT(bp)) { 1627 if (nvecs == offset) 1628 return; 1629 offset++; 1630 } 1631 1632 for_each_eth_queue(bp, i) { 1633 if (nvecs == offset) 1634 return; 1635 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1636 i, bp->msix_table[offset].vector); 1637 1638 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1639 } 1640 } 1641 1642 void bnx2x_free_irq(struct bnx2x *bp) 1643 { 1644 if (bp->flags & USING_MSIX_FLAG && 1645 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1646 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1647 1648 /* vfs don't have a default status block */ 1649 if (IS_PF(bp)) 1650 nvecs++; 1651 1652 bnx2x_free_msix_irqs(bp, nvecs); 1653 } else { 1654 free_irq(bp->dev->irq, bp->dev); 1655 } 1656 } 1657 1658 int bnx2x_enable_msix(struct bnx2x *bp) 1659 { 1660 int msix_vec = 0, i, rc; 1661 1662 /* VFs don't have a default status block */ 1663 if (IS_PF(bp)) { 1664 bp->msix_table[msix_vec].entry = msix_vec; 1665 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1666 bp->msix_table[0].entry); 1667 msix_vec++; 1668 } 1669 1670 /* Cnic requires an msix vector for itself */ 1671 if (CNIC_SUPPORT(bp)) { 1672 bp->msix_table[msix_vec].entry = msix_vec; 1673 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1674 msix_vec, bp->msix_table[msix_vec].entry); 1675 msix_vec++; 1676 } 1677 1678 /* We need separate vectors for ETH queues only (not FCoE) */ 1679 for_each_eth_queue(bp, i) { 1680 bp->msix_table[msix_vec].entry = msix_vec; 1681 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1682 msix_vec, msix_vec, i); 1683 msix_vec++; 1684 } 1685 1686 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1687 msix_vec); 1688 1689 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1690 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); 1691 /* 1692 * reconfigure number of tx/rx queues according to available 1693 * MSI-X vectors 1694 */ 1695 if (rc == -ENOSPC) { 1696 /* Get by with single vector */ 1697 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); 1698 if (rc < 0) { 1699 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1700 rc); 1701 goto no_msix; 1702 } 1703 1704 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1705 bp->flags |= USING_SINGLE_MSIX_FLAG; 1706 1707 BNX2X_DEV_INFO("set number of queues to 1\n"); 1708 bp->num_ethernet_queues = 1; 1709 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1710 } else if (rc < 0) { 1711 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1712 goto no_msix; 1713 } else if (rc < msix_vec) { 1714 /* how less vectors we will have? */ 1715 int diff = msix_vec - rc; 1716 1717 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1718 1719 /* 1720 * decrease number of queues by number of unallocated entries 1721 */ 1722 bp->num_ethernet_queues -= diff; 1723 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1724 1725 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1726 bp->num_queues); 1727 } 1728 1729 bp->flags |= USING_MSIX_FLAG; 1730 1731 return 0; 1732 1733 no_msix: 1734 /* fall to INTx if not enough memory */ 1735 if (rc == -ENOMEM) 1736 bp->flags |= DISABLE_MSI_FLAG; 1737 1738 return rc; 1739 } 1740 1741 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1742 { 1743 int i, rc, offset = 0; 1744 1745 /* no default status block for vf */ 1746 if (IS_PF(bp)) { 1747 rc = request_irq(bp->msix_table[offset++].vector, 1748 bnx2x_msix_sp_int, 0, 1749 bp->dev->name, bp->dev); 1750 if (rc) { 1751 BNX2X_ERR("request sp irq failed\n"); 1752 return -EBUSY; 1753 } 1754 } 1755 1756 if (CNIC_SUPPORT(bp)) 1757 offset++; 1758 1759 for_each_eth_queue(bp, i) { 1760 struct bnx2x_fastpath *fp = &bp->fp[i]; 1761 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1762 bp->dev->name, i); 1763 1764 rc = request_irq(bp->msix_table[offset].vector, 1765 bnx2x_msix_fp_int, 0, fp->name, fp); 1766 if (rc) { 1767 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1768 bp->msix_table[offset].vector, rc); 1769 bnx2x_free_msix_irqs(bp, offset); 1770 return -EBUSY; 1771 } 1772 1773 offset++; 1774 } 1775 1776 i = BNX2X_NUM_ETH_QUEUES(bp); 1777 if (IS_PF(bp)) { 1778 offset = 1 + CNIC_SUPPORT(bp); 1779 netdev_info(bp->dev, 1780 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1781 bp->msix_table[0].vector, 1782 0, bp->msix_table[offset].vector, 1783 i - 1, bp->msix_table[offset + i - 1].vector); 1784 } else { 1785 offset = CNIC_SUPPORT(bp); 1786 netdev_info(bp->dev, 1787 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1788 0, bp->msix_table[offset].vector, 1789 i - 1, bp->msix_table[offset + i - 1].vector); 1790 } 1791 return 0; 1792 } 1793 1794 int bnx2x_enable_msi(struct bnx2x *bp) 1795 { 1796 int rc; 1797 1798 rc = pci_enable_msi(bp->pdev); 1799 if (rc) { 1800 BNX2X_DEV_INFO("MSI is not attainable\n"); 1801 return -1; 1802 } 1803 bp->flags |= USING_MSI_FLAG; 1804 1805 return 0; 1806 } 1807 1808 static int bnx2x_req_irq(struct bnx2x *bp) 1809 { 1810 unsigned long flags; 1811 unsigned int irq; 1812 1813 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1814 flags = 0; 1815 else 1816 flags = IRQF_SHARED; 1817 1818 if (bp->flags & USING_MSIX_FLAG) 1819 irq = bp->msix_table[0].vector; 1820 else 1821 irq = bp->pdev->irq; 1822 1823 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1824 } 1825 1826 static int bnx2x_setup_irqs(struct bnx2x *bp) 1827 { 1828 int rc = 0; 1829 if (bp->flags & USING_MSIX_FLAG && 1830 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1831 rc = bnx2x_req_msix_irqs(bp); 1832 if (rc) 1833 return rc; 1834 } else { 1835 rc = bnx2x_req_irq(bp); 1836 if (rc) { 1837 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1838 return rc; 1839 } 1840 if (bp->flags & USING_MSI_FLAG) { 1841 bp->dev->irq = bp->pdev->irq; 1842 netdev_info(bp->dev, "using MSI IRQ %d\n", 1843 bp->dev->irq); 1844 } 1845 if (bp->flags & USING_MSIX_FLAG) { 1846 bp->dev->irq = bp->msix_table[0].vector; 1847 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1848 bp->dev->irq); 1849 } 1850 } 1851 1852 return 0; 1853 } 1854 1855 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1856 { 1857 int i; 1858 1859 for_each_rx_queue_cnic(bp, i) { 1860 napi_enable(&bnx2x_fp(bp, i, napi)); 1861 } 1862 } 1863 1864 static void bnx2x_napi_enable(struct bnx2x *bp) 1865 { 1866 int i; 1867 1868 for_each_eth_queue(bp, i) { 1869 napi_enable(&bnx2x_fp(bp, i, napi)); 1870 } 1871 } 1872 1873 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1874 { 1875 int i; 1876 1877 for_each_rx_queue_cnic(bp, i) { 1878 napi_disable(&bnx2x_fp(bp, i, napi)); 1879 } 1880 } 1881 1882 static void bnx2x_napi_disable(struct bnx2x *bp) 1883 { 1884 int i; 1885 1886 for_each_eth_queue(bp, i) { 1887 napi_disable(&bnx2x_fp(bp, i, napi)); 1888 } 1889 } 1890 1891 void bnx2x_netif_start(struct bnx2x *bp) 1892 { 1893 if (netif_running(bp->dev)) { 1894 bnx2x_napi_enable(bp); 1895 if (CNIC_LOADED(bp)) 1896 bnx2x_napi_enable_cnic(bp); 1897 bnx2x_int_enable(bp); 1898 if (bp->state == BNX2X_STATE_OPEN) 1899 netif_tx_wake_all_queues(bp->dev); 1900 } 1901 } 1902 1903 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1904 { 1905 bnx2x_int_disable_sync(bp, disable_hw); 1906 bnx2x_napi_disable(bp); 1907 if (CNIC_LOADED(bp)) 1908 bnx2x_napi_disable_cnic(bp); 1909 } 1910 1911 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1912 struct net_device *sb_dev, 1913 select_queue_fallback_t fallback) 1914 { 1915 struct bnx2x *bp = netdev_priv(dev); 1916 1917 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1918 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1919 u16 ether_type = ntohs(hdr->h_proto); 1920 1921 /* Skip VLAN tag if present */ 1922 if (ether_type == ETH_P_8021Q) { 1923 struct vlan_ethhdr *vhdr = 1924 (struct vlan_ethhdr *)skb->data; 1925 1926 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1927 } 1928 1929 /* If ethertype is FCoE or FIP - use FCoE ring */ 1930 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1931 return bnx2x_fcoe_tx(bp, txq_index); 1932 } 1933 1934 /* select a non-FCoE queue */ 1935 return fallback(dev, skb, NULL) % 1936 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos); 1937 } 1938 1939 void bnx2x_set_num_queues(struct bnx2x *bp) 1940 { 1941 /* RSS queues */ 1942 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1943 1944 /* override in STORAGE SD modes */ 1945 if (IS_MF_STORAGE_ONLY(bp)) 1946 bp->num_ethernet_queues = 1; 1947 1948 /* Add special queues */ 1949 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1950 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1951 1952 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1953 } 1954 1955 /** 1956 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1957 * 1958 * @bp: Driver handle 1959 * 1960 * We currently support for at most 16 Tx queues for each CoS thus we will 1961 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1962 * bp->max_cos. 1963 * 1964 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1965 * index after all ETH L2 indices. 1966 * 1967 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1968 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1969 * 16..31,...) with indices that are not coupled with any real Tx queue. 1970 * 1971 * The proper configuration of skb->queue_mapping is handled by 1972 * bnx2x_select_queue() and __skb_tx_hash(). 1973 * 1974 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1975 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1976 */ 1977 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1978 { 1979 int rc, tx, rx; 1980 1981 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1982 rx = BNX2X_NUM_ETH_QUEUES(bp); 1983 1984 /* account for fcoe queue */ 1985 if (include_cnic && !NO_FCOE(bp)) { 1986 rx++; 1987 tx++; 1988 } 1989 1990 rc = netif_set_real_num_tx_queues(bp->dev, tx); 1991 if (rc) { 1992 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 1993 return rc; 1994 } 1995 rc = netif_set_real_num_rx_queues(bp->dev, rx); 1996 if (rc) { 1997 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 1998 return rc; 1999 } 2000 2001 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 2002 tx, rx); 2003 2004 return rc; 2005 } 2006 2007 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 2008 { 2009 int i; 2010 2011 for_each_queue(bp, i) { 2012 struct bnx2x_fastpath *fp = &bp->fp[i]; 2013 u32 mtu; 2014 2015 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 2016 if (IS_FCOE_IDX(i)) 2017 /* 2018 * Although there are no IP frames expected to arrive to 2019 * this ring we still want to add an 2020 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 2021 * overrun attack. 2022 */ 2023 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 2024 else 2025 mtu = bp->dev->mtu; 2026 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 2027 IP_HEADER_ALIGNMENT_PADDING + 2028 ETH_OVERHEAD + 2029 mtu + 2030 BNX2X_FW_RX_ALIGN_END; 2031 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size); 2032 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 2033 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 2034 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 2035 else 2036 fp->rx_frag_size = 0; 2037 } 2038 } 2039 2040 static int bnx2x_init_rss(struct bnx2x *bp) 2041 { 2042 int i; 2043 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2044 2045 /* Prepare the initial contents for the indirection table if RSS is 2046 * enabled 2047 */ 2048 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2049 bp->rss_conf_obj.ind_table[i] = 2050 bp->fp->cl_id + 2051 ethtool_rxfh_indir_default(i, num_eth_queues); 2052 2053 /* 2054 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2055 * per-port, so if explicit configuration is needed , do it only 2056 * for a PMF. 2057 * 2058 * For 57712 and newer on the other hand it's a per-function 2059 * configuration. 2060 */ 2061 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2062 } 2063 2064 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2065 bool config_hash, bool enable) 2066 { 2067 struct bnx2x_config_rss_params params = {NULL}; 2068 2069 /* Although RSS is meaningless when there is a single HW queue we 2070 * still need it enabled in order to have HW Rx hash generated. 2071 * 2072 * if (!is_eth_multi(bp)) 2073 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2074 */ 2075 2076 params.rss_obj = rss_obj; 2077 2078 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2079 2080 if (enable) { 2081 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2082 2083 /* RSS configuration */ 2084 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2085 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2086 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2087 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2088 if (rss_obj->udp_rss_v4) 2089 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2090 if (rss_obj->udp_rss_v6) 2091 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2092 2093 if (!CHIP_IS_E1x(bp)) { 2094 /* valid only for TUNN_MODE_VXLAN tunnel mode */ 2095 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags); 2096 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags); 2097 2098 /* valid only for TUNN_MODE_GRE tunnel mode */ 2099 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags); 2100 } 2101 } else { 2102 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2103 } 2104 2105 /* Hash bits */ 2106 params.rss_result_mask = MULTI_MASK; 2107 2108 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2109 2110 if (config_hash) { 2111 /* RSS keys */ 2112 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4); 2113 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2114 } 2115 2116 if (IS_PF(bp)) 2117 return bnx2x_config_rss(bp, ¶ms); 2118 else 2119 return bnx2x_vfpf_config_rss(bp, ¶ms); 2120 } 2121 2122 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2123 { 2124 struct bnx2x_func_state_params func_params = {NULL}; 2125 2126 /* Prepare parameters for function state transitions */ 2127 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2128 2129 func_params.f_obj = &bp->func_obj; 2130 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2131 2132 func_params.params.hw_init.load_phase = load_code; 2133 2134 return bnx2x_func_state_change(bp, &func_params); 2135 } 2136 2137 /* 2138 * Cleans the object that have internal lists without sending 2139 * ramrods. Should be run when interrupts are disabled. 2140 */ 2141 void bnx2x_squeeze_objects(struct bnx2x *bp) 2142 { 2143 int rc; 2144 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2145 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2146 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2147 2148 /***************** Cleanup MACs' object first *************************/ 2149 2150 /* Wait for completion of requested */ 2151 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2152 /* Perform a dry cleanup */ 2153 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2154 2155 /* Clean ETH primary MAC */ 2156 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2157 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2158 &ramrod_flags); 2159 if (rc != 0) 2160 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2161 2162 /* Cleanup UC list */ 2163 vlan_mac_flags = 0; 2164 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2165 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2166 &ramrod_flags); 2167 if (rc != 0) 2168 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2169 2170 /***************** Now clean mcast object *****************************/ 2171 rparam.mcast_obj = &bp->mcast_obj; 2172 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2173 2174 /* Add a DEL command... - Since we're doing a driver cleanup only, 2175 * we take a lock surrounding both the initial send and the CONTs, 2176 * as we don't want a true completion to disrupt us in the middle. 2177 */ 2178 netif_addr_lock_bh(bp->dev); 2179 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2180 if (rc < 0) 2181 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2182 rc); 2183 2184 /* ...and wait until all pending commands are cleared */ 2185 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2186 while (rc != 0) { 2187 if (rc < 0) { 2188 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2189 rc); 2190 netif_addr_unlock_bh(bp->dev); 2191 return; 2192 } 2193 2194 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2195 } 2196 netif_addr_unlock_bh(bp->dev); 2197 } 2198 2199 #ifndef BNX2X_STOP_ON_ERROR 2200 #define LOAD_ERROR_EXIT(bp, label) \ 2201 do { \ 2202 (bp)->state = BNX2X_STATE_ERROR; \ 2203 goto label; \ 2204 } while (0) 2205 2206 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2207 do { \ 2208 bp->cnic_loaded = false; \ 2209 goto label; \ 2210 } while (0) 2211 #else /*BNX2X_STOP_ON_ERROR*/ 2212 #define LOAD_ERROR_EXIT(bp, label) \ 2213 do { \ 2214 (bp)->state = BNX2X_STATE_ERROR; \ 2215 (bp)->panic = 1; \ 2216 return -EBUSY; \ 2217 } while (0) 2218 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2219 do { \ 2220 bp->cnic_loaded = false; \ 2221 (bp)->panic = 1; \ 2222 return -EBUSY; \ 2223 } while (0) 2224 #endif /*BNX2X_STOP_ON_ERROR*/ 2225 2226 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2227 { 2228 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2229 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2230 return; 2231 } 2232 2233 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2234 { 2235 int num_groups, vf_headroom = 0; 2236 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2237 2238 /* number of queues for statistics is number of eth queues + FCoE */ 2239 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2240 2241 /* Total number of FW statistics requests = 2242 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2243 * and fcoe l2 queue) stats + num of queues (which includes another 1 2244 * for fcoe l2 queue if applicable) 2245 */ 2246 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2247 2248 /* vf stats appear in the request list, but their data is allocated by 2249 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2250 * it is used to determine where to place the vf stats queries in the 2251 * request struct 2252 */ 2253 if (IS_SRIOV(bp)) 2254 vf_headroom = bnx2x_vf_headroom(bp); 2255 2256 /* Request is built from stats_query_header and an array of 2257 * stats_query_cmd_group each of which contains 2258 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2259 * configured in the stats_query_header. 2260 */ 2261 num_groups = 2262 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2263 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2264 1 : 0)); 2265 2266 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2267 bp->fw_stats_num, vf_headroom, num_groups); 2268 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2269 num_groups * sizeof(struct stats_query_cmd_group); 2270 2271 /* Data for statistics requests + stats_counter 2272 * stats_counter holds per-STORM counters that are incremented 2273 * when STORM has finished with the current request. 2274 * memory for FCoE offloaded statistics are counted anyway, 2275 * even if they will not be sent. 2276 * VF stats are not accounted for here as the data of VF stats is stored 2277 * in memory allocated by the VF, not here. 2278 */ 2279 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2280 sizeof(struct per_pf_stats) + 2281 sizeof(struct fcoe_statistics_params) + 2282 sizeof(struct per_queue_stats) * num_queue_stats + 2283 sizeof(struct stats_counter); 2284 2285 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, 2286 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2287 if (!bp->fw_stats) 2288 goto alloc_mem_err; 2289 2290 /* Set shortcuts */ 2291 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2292 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2293 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2294 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2295 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2296 bp->fw_stats_req_sz; 2297 2298 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2299 U64_HI(bp->fw_stats_req_mapping), 2300 U64_LO(bp->fw_stats_req_mapping)); 2301 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2302 U64_HI(bp->fw_stats_data_mapping), 2303 U64_LO(bp->fw_stats_data_mapping)); 2304 return 0; 2305 2306 alloc_mem_err: 2307 bnx2x_free_fw_stats_mem(bp); 2308 BNX2X_ERR("Can't allocate FW stats memory\n"); 2309 return -ENOMEM; 2310 } 2311 2312 /* send load request to mcp and analyze response */ 2313 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2314 { 2315 u32 param; 2316 2317 /* init fw_seq */ 2318 bp->fw_seq = 2319 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2320 DRV_MSG_SEQ_NUMBER_MASK); 2321 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2322 2323 /* Get current FW pulse sequence */ 2324 bp->fw_drv_pulse_wr_seq = 2325 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2326 DRV_PULSE_SEQ_MASK); 2327 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2328 2329 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2330 2331 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2332 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2333 2334 /* load request */ 2335 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2336 2337 /* if mcp fails to respond we must abort */ 2338 if (!(*load_code)) { 2339 BNX2X_ERR("MCP response failure, aborting\n"); 2340 return -EBUSY; 2341 } 2342 2343 /* If mcp refused (e.g. other port is in diagnostic mode) we 2344 * must abort 2345 */ 2346 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2347 BNX2X_ERR("MCP refused load request, aborting\n"); 2348 return -EBUSY; 2349 } 2350 return 0; 2351 } 2352 2353 /* check whether another PF has already loaded FW to chip. In 2354 * virtualized environments a pf from another VM may have already 2355 * initialized the device including loading FW 2356 */ 2357 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2358 { 2359 /* is another pf loaded on this engine? */ 2360 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2361 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2362 /* build my FW version dword */ 2363 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) + 2364 (BCM_5710_FW_MINOR_VERSION << 8) + 2365 (BCM_5710_FW_REVISION_VERSION << 16) + 2366 (BCM_5710_FW_ENGINEERING_VERSION << 24); 2367 2368 /* read loaded FW from chip */ 2369 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2370 2371 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", 2372 loaded_fw, my_fw); 2373 2374 /* abort nic load if version mismatch */ 2375 if (my_fw != loaded_fw) { 2376 if (print_err) 2377 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", 2378 loaded_fw, my_fw); 2379 else 2380 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n", 2381 loaded_fw, my_fw); 2382 return -EBUSY; 2383 } 2384 } 2385 return 0; 2386 } 2387 2388 /* returns the "mcp load_code" according to global load_count array */ 2389 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2390 { 2391 int path = BP_PATH(bp); 2392 2393 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2394 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2395 bnx2x_load_count[path][2]); 2396 bnx2x_load_count[path][0]++; 2397 bnx2x_load_count[path][1 + port]++; 2398 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2399 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2400 bnx2x_load_count[path][2]); 2401 if (bnx2x_load_count[path][0] == 1) 2402 return FW_MSG_CODE_DRV_LOAD_COMMON; 2403 else if (bnx2x_load_count[path][1 + port] == 1) 2404 return FW_MSG_CODE_DRV_LOAD_PORT; 2405 else 2406 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2407 } 2408 2409 /* mark PMF if applicable */ 2410 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2411 { 2412 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2413 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2414 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2415 bp->port.pmf = 1; 2416 /* We need the barrier to ensure the ordering between the 2417 * writing to bp->port.pmf here and reading it from the 2418 * bnx2x_periodic_task(). 2419 */ 2420 smp_mb(); 2421 } else { 2422 bp->port.pmf = 0; 2423 } 2424 2425 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2426 } 2427 2428 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2429 { 2430 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2431 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2432 (bp->common.shmem2_base)) { 2433 if (SHMEM2_HAS(bp, dcc_support)) 2434 SHMEM2_WR(bp, dcc_support, 2435 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2436 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2437 if (SHMEM2_HAS(bp, afex_driver_support)) 2438 SHMEM2_WR(bp, afex_driver_support, 2439 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2440 } 2441 2442 /* Set AFEX default VLAN tag to an invalid value */ 2443 bp->afex_def_vlan_tag = -1; 2444 } 2445 2446 /** 2447 * bnx2x_bz_fp - zero content of the fastpath structure. 2448 * 2449 * @bp: driver handle 2450 * @index: fastpath index to be zeroed 2451 * 2452 * Makes sure the contents of the bp->fp[index].napi is kept 2453 * intact. 2454 */ 2455 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2456 { 2457 struct bnx2x_fastpath *fp = &bp->fp[index]; 2458 int cos; 2459 struct napi_struct orig_napi = fp->napi; 2460 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2461 2462 /* bzero bnx2x_fastpath contents */ 2463 if (fp->tpa_info) 2464 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2465 sizeof(struct bnx2x_agg_info)); 2466 memset(fp, 0, sizeof(*fp)); 2467 2468 /* Restore the NAPI object as it has been already initialized */ 2469 fp->napi = orig_napi; 2470 fp->tpa_info = orig_tpa_info; 2471 fp->bp = bp; 2472 fp->index = index; 2473 if (IS_ETH_FP(fp)) 2474 fp->max_cos = bp->max_cos; 2475 else 2476 /* Special queues support only one CoS */ 2477 fp->max_cos = 1; 2478 2479 /* Init txdata pointers */ 2480 if (IS_FCOE_FP(fp)) 2481 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2482 if (IS_ETH_FP(fp)) 2483 for_each_cos_in_tx_queue(fp, cos) 2484 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2485 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2486 2487 /* set the tpa flag for each queue. The tpa flag determines the queue 2488 * minimal size so it must be set prior to queue memory allocation 2489 */ 2490 if (bp->dev->features & NETIF_F_LRO) 2491 fp->mode = TPA_MODE_LRO; 2492 else if (bp->dev->features & NETIF_F_GRO_HW) 2493 fp->mode = TPA_MODE_GRO; 2494 else 2495 fp->mode = TPA_MODE_DISABLED; 2496 2497 /* We don't want TPA if it's disabled in bp 2498 * or if this is an FCoE L2 ring. 2499 */ 2500 if (bp->disable_tpa || IS_FCOE_FP(fp)) 2501 fp->mode = TPA_MODE_DISABLED; 2502 } 2503 2504 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state) 2505 { 2506 u32 cur; 2507 2508 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp)) 2509 return; 2510 2511 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]); 2512 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n", 2513 cur, state); 2514 2515 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state); 2516 } 2517 2518 int bnx2x_load_cnic(struct bnx2x *bp) 2519 { 2520 int i, rc, port = BP_PORT(bp); 2521 2522 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2523 2524 mutex_init(&bp->cnic_mutex); 2525 2526 if (IS_PF(bp)) { 2527 rc = bnx2x_alloc_mem_cnic(bp); 2528 if (rc) { 2529 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2530 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2531 } 2532 } 2533 2534 rc = bnx2x_alloc_fp_mem_cnic(bp); 2535 if (rc) { 2536 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2537 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2538 } 2539 2540 /* Update the number of queues with the cnic queues */ 2541 rc = bnx2x_set_real_num_queues(bp, 1); 2542 if (rc) { 2543 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2544 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2545 } 2546 2547 /* Add all CNIC NAPI objects */ 2548 bnx2x_add_all_napi_cnic(bp); 2549 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2550 bnx2x_napi_enable_cnic(bp); 2551 2552 rc = bnx2x_init_hw_func_cnic(bp); 2553 if (rc) 2554 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2555 2556 bnx2x_nic_init_cnic(bp); 2557 2558 if (IS_PF(bp)) { 2559 /* Enable Timer scan */ 2560 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2561 2562 /* setup cnic queues */ 2563 for_each_cnic_queue(bp, i) { 2564 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2565 if (rc) { 2566 BNX2X_ERR("Queue setup failed\n"); 2567 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2568 } 2569 } 2570 } 2571 2572 /* Initialize Rx filter. */ 2573 bnx2x_set_rx_mode_inner(bp); 2574 2575 /* re-read iscsi info */ 2576 bnx2x_get_iscsi_info(bp); 2577 bnx2x_setup_cnic_irq_info(bp); 2578 bnx2x_setup_cnic_info(bp); 2579 bp->cnic_loaded = true; 2580 if (bp->state == BNX2X_STATE_OPEN) 2581 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2582 2583 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2584 2585 return 0; 2586 2587 #ifndef BNX2X_STOP_ON_ERROR 2588 load_error_cnic2: 2589 /* Disable Timer scan */ 2590 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2591 2592 load_error_cnic1: 2593 bnx2x_napi_disable_cnic(bp); 2594 /* Update the number of queues without the cnic queues */ 2595 if (bnx2x_set_real_num_queues(bp, 0)) 2596 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2597 load_error_cnic0: 2598 BNX2X_ERR("CNIC-related load failed\n"); 2599 bnx2x_free_fp_mem_cnic(bp); 2600 bnx2x_free_mem_cnic(bp); 2601 return rc; 2602 #endif /* ! BNX2X_STOP_ON_ERROR */ 2603 } 2604 2605 /* must be called with rtnl_lock */ 2606 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2607 { 2608 int port = BP_PORT(bp); 2609 int i, rc = 0, load_code = 0; 2610 2611 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2612 DP(NETIF_MSG_IFUP, 2613 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2614 2615 #ifdef BNX2X_STOP_ON_ERROR 2616 if (unlikely(bp->panic)) { 2617 BNX2X_ERR("Can't load NIC when there is panic\n"); 2618 return -EPERM; 2619 } 2620 #endif 2621 2622 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2623 2624 /* zero the structure w/o any lock, before SP handler is initialized */ 2625 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2626 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2627 &bp->last_reported_link.link_report_flags); 2628 2629 if (IS_PF(bp)) 2630 /* must be called before memory allocation and HW init */ 2631 bnx2x_ilt_set_info(bp); 2632 2633 /* 2634 * Zero fastpath structures preserving invariants like napi, which are 2635 * allocated only once, fp index, max_cos, bp pointer. 2636 * Also set fp->mode and txdata_ptr. 2637 */ 2638 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2639 for_each_queue(bp, i) 2640 bnx2x_bz_fp(bp, i); 2641 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2642 bp->num_cnic_queues) * 2643 sizeof(struct bnx2x_fp_txdata)); 2644 2645 bp->fcoe_init = false; 2646 2647 /* Set the receive queues buffer size */ 2648 bnx2x_set_rx_buf_size(bp); 2649 2650 if (IS_PF(bp)) { 2651 rc = bnx2x_alloc_mem(bp); 2652 if (rc) { 2653 BNX2X_ERR("Unable to allocate bp memory\n"); 2654 return rc; 2655 } 2656 } 2657 2658 /* need to be done after alloc mem, since it's self adjusting to amount 2659 * of memory available for RSS queues 2660 */ 2661 rc = bnx2x_alloc_fp_mem(bp); 2662 if (rc) { 2663 BNX2X_ERR("Unable to allocate memory for fps\n"); 2664 LOAD_ERROR_EXIT(bp, load_error0); 2665 } 2666 2667 /* Allocated memory for FW statistics */ 2668 if (bnx2x_alloc_fw_stats_mem(bp)) 2669 LOAD_ERROR_EXIT(bp, load_error0); 2670 2671 /* request pf to initialize status blocks */ 2672 if (IS_VF(bp)) { 2673 rc = bnx2x_vfpf_init(bp); 2674 if (rc) 2675 LOAD_ERROR_EXIT(bp, load_error0); 2676 } 2677 2678 /* As long as bnx2x_alloc_mem() may possibly update 2679 * bp->num_queues, bnx2x_set_real_num_queues() should always 2680 * come after it. At this stage cnic queues are not counted. 2681 */ 2682 rc = bnx2x_set_real_num_queues(bp, 0); 2683 if (rc) { 2684 BNX2X_ERR("Unable to set real_num_queues\n"); 2685 LOAD_ERROR_EXIT(bp, load_error0); 2686 } 2687 2688 /* configure multi cos mappings in kernel. 2689 * this configuration may be overridden by a multi class queue 2690 * discipline or by a dcbx negotiation result. 2691 */ 2692 bnx2x_setup_tc(bp->dev, bp->max_cos); 2693 2694 /* Add all NAPI objects */ 2695 bnx2x_add_all_napi(bp); 2696 DP(NETIF_MSG_IFUP, "napi added\n"); 2697 bnx2x_napi_enable(bp); 2698 2699 if (IS_PF(bp)) { 2700 /* set pf load just before approaching the MCP */ 2701 bnx2x_set_pf_load(bp); 2702 2703 /* if mcp exists send load request and analyze response */ 2704 if (!BP_NOMCP(bp)) { 2705 /* attempt to load pf */ 2706 rc = bnx2x_nic_load_request(bp, &load_code); 2707 if (rc) 2708 LOAD_ERROR_EXIT(bp, load_error1); 2709 2710 /* what did mcp say? */ 2711 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2712 if (rc) { 2713 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2714 LOAD_ERROR_EXIT(bp, load_error2); 2715 } 2716 } else { 2717 load_code = bnx2x_nic_load_no_mcp(bp, port); 2718 } 2719 2720 /* mark pmf if applicable */ 2721 bnx2x_nic_load_pmf(bp, load_code); 2722 2723 /* Init Function state controlling object */ 2724 bnx2x__init_func_obj(bp); 2725 2726 /* Initialize HW */ 2727 rc = bnx2x_init_hw(bp, load_code); 2728 if (rc) { 2729 BNX2X_ERR("HW init failed, aborting\n"); 2730 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2731 LOAD_ERROR_EXIT(bp, load_error2); 2732 } 2733 } 2734 2735 bnx2x_pre_irq_nic_init(bp); 2736 2737 /* Connect to IRQs */ 2738 rc = bnx2x_setup_irqs(bp); 2739 if (rc) { 2740 BNX2X_ERR("setup irqs failed\n"); 2741 if (IS_PF(bp)) 2742 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2743 LOAD_ERROR_EXIT(bp, load_error2); 2744 } 2745 2746 /* Init per-function objects */ 2747 if (IS_PF(bp)) { 2748 /* Setup NIC internals and enable interrupts */ 2749 bnx2x_post_irq_nic_init(bp, load_code); 2750 2751 bnx2x_init_bp_objs(bp); 2752 bnx2x_iov_nic_init(bp); 2753 2754 /* Set AFEX default VLAN tag to an invalid value */ 2755 bp->afex_def_vlan_tag = -1; 2756 bnx2x_nic_load_afex_dcc(bp, load_code); 2757 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2758 rc = bnx2x_func_start(bp); 2759 if (rc) { 2760 BNX2X_ERR("Function start failed!\n"); 2761 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2762 2763 LOAD_ERROR_EXIT(bp, load_error3); 2764 } 2765 2766 /* Send LOAD_DONE command to MCP */ 2767 if (!BP_NOMCP(bp)) { 2768 load_code = bnx2x_fw_command(bp, 2769 DRV_MSG_CODE_LOAD_DONE, 0); 2770 if (!load_code) { 2771 BNX2X_ERR("MCP response failure, aborting\n"); 2772 rc = -EBUSY; 2773 LOAD_ERROR_EXIT(bp, load_error3); 2774 } 2775 } 2776 2777 /* initialize FW coalescing state machines in RAM */ 2778 bnx2x_update_coalesce(bp); 2779 } 2780 2781 /* setup the leading queue */ 2782 rc = bnx2x_setup_leading(bp); 2783 if (rc) { 2784 BNX2X_ERR("Setup leading failed!\n"); 2785 LOAD_ERROR_EXIT(bp, load_error3); 2786 } 2787 2788 /* set up the rest of the queues */ 2789 for_each_nondefault_eth_queue(bp, i) { 2790 if (IS_PF(bp)) 2791 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2792 else /* VF */ 2793 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2794 if (rc) { 2795 BNX2X_ERR("Queue %d setup failed\n", i); 2796 LOAD_ERROR_EXIT(bp, load_error3); 2797 } 2798 } 2799 2800 /* setup rss */ 2801 rc = bnx2x_init_rss(bp); 2802 if (rc) { 2803 BNX2X_ERR("PF RSS init failed\n"); 2804 LOAD_ERROR_EXIT(bp, load_error3); 2805 } 2806 2807 /* Now when Clients are configured we are ready to work */ 2808 bp->state = BNX2X_STATE_OPEN; 2809 2810 /* Configure a ucast MAC */ 2811 if (IS_PF(bp)) 2812 rc = bnx2x_set_eth_mac(bp, true); 2813 else /* vf */ 2814 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2815 true); 2816 if (rc) { 2817 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2818 LOAD_ERROR_EXIT(bp, load_error3); 2819 } 2820 2821 if (IS_PF(bp) && bp->pending_max) { 2822 bnx2x_update_max_mf_config(bp, bp->pending_max); 2823 bp->pending_max = 0; 2824 } 2825 2826 bp->force_link_down = false; 2827 if (bp->port.pmf) { 2828 rc = bnx2x_initial_phy_init(bp, load_mode); 2829 if (rc) 2830 LOAD_ERROR_EXIT(bp, load_error3); 2831 } 2832 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2833 2834 /* Start fast path */ 2835 2836 /* Re-configure vlan filters */ 2837 rc = bnx2x_vlan_reconfigure_vid(bp); 2838 if (rc) 2839 LOAD_ERROR_EXIT(bp, load_error3); 2840 2841 /* Initialize Rx filter. */ 2842 bnx2x_set_rx_mode_inner(bp); 2843 2844 if (bp->flags & PTP_SUPPORTED) { 2845 bnx2x_register_phc(bp); 2846 bnx2x_init_ptp(bp); 2847 bnx2x_configure_ptp_filters(bp); 2848 } 2849 /* Start Tx */ 2850 switch (load_mode) { 2851 case LOAD_NORMAL: 2852 /* Tx queue should be only re-enabled */ 2853 netif_tx_wake_all_queues(bp->dev); 2854 break; 2855 2856 case LOAD_OPEN: 2857 netif_tx_start_all_queues(bp->dev); 2858 smp_mb__after_atomic(); 2859 break; 2860 2861 case LOAD_DIAG: 2862 case LOAD_LOOPBACK_EXT: 2863 bp->state = BNX2X_STATE_DIAG; 2864 break; 2865 2866 default: 2867 break; 2868 } 2869 2870 if (bp->port.pmf) 2871 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2872 else 2873 bnx2x__link_status_update(bp); 2874 2875 /* start the timer */ 2876 mod_timer(&bp->timer, jiffies + bp->current_interval); 2877 2878 if (CNIC_ENABLED(bp)) 2879 bnx2x_load_cnic(bp); 2880 2881 if (IS_PF(bp)) 2882 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 2883 2884 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2885 /* mark driver is loaded in shmem2 */ 2886 u32 val; 2887 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2888 val &= ~DRV_FLAGS_MTU_MASK; 2889 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT); 2890 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2891 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2892 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2893 } 2894 2895 /* Wait for all pending SP commands to complete */ 2896 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2897 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2898 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2899 return -EBUSY; 2900 } 2901 2902 /* Update driver data for On-Chip MFW dump. */ 2903 if (IS_PF(bp)) 2904 bnx2x_update_mfw_dump(bp); 2905 2906 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2907 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2908 bnx2x_dcbx_init(bp, false); 2909 2910 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2911 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE); 2912 2913 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2914 2915 return 0; 2916 2917 #ifndef BNX2X_STOP_ON_ERROR 2918 load_error3: 2919 if (IS_PF(bp)) { 2920 bnx2x_int_disable_sync(bp, 1); 2921 2922 /* Clean queueable objects */ 2923 bnx2x_squeeze_objects(bp); 2924 } 2925 2926 /* Free SKBs, SGEs, TPA pool and driver internals */ 2927 bnx2x_free_skbs(bp); 2928 for_each_rx_queue(bp, i) 2929 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2930 2931 /* Release IRQs */ 2932 bnx2x_free_irq(bp); 2933 load_error2: 2934 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2935 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2936 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2937 } 2938 2939 bp->port.pmf = 0; 2940 load_error1: 2941 bnx2x_napi_disable(bp); 2942 bnx2x_del_all_napi(bp); 2943 2944 /* clear pf_load status, as it was already set */ 2945 if (IS_PF(bp)) 2946 bnx2x_clear_pf_load(bp); 2947 load_error0: 2948 bnx2x_free_fw_stats_mem(bp); 2949 bnx2x_free_fp_mem(bp); 2950 bnx2x_free_mem(bp); 2951 2952 return rc; 2953 #endif /* ! BNX2X_STOP_ON_ERROR */ 2954 } 2955 2956 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2957 { 2958 u8 rc = 0, cos, i; 2959 2960 /* Wait until tx fastpath tasks complete */ 2961 for_each_tx_queue(bp, i) { 2962 struct bnx2x_fastpath *fp = &bp->fp[i]; 2963 2964 for_each_cos_in_tx_queue(fp, cos) 2965 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2966 if (rc) 2967 return rc; 2968 } 2969 return 0; 2970 } 2971 2972 /* must be called with rtnl_lock */ 2973 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2974 { 2975 int i; 2976 bool global = false; 2977 2978 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 2979 2980 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2981 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 2982 2983 /* mark driver is unloaded in shmem2 */ 2984 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2985 u32 val; 2986 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2987 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2988 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 2989 } 2990 2991 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 2992 (bp->state == BNX2X_STATE_CLOSED || 2993 bp->state == BNX2X_STATE_ERROR)) { 2994 /* We can get here if the driver has been unloaded 2995 * during parity error recovery and is either waiting for a 2996 * leader to complete or for other functions to unload and 2997 * then ifdown has been issued. In this case we want to 2998 * unload and let other functions to complete a recovery 2999 * process. 3000 */ 3001 bp->recovery_state = BNX2X_RECOVERY_DONE; 3002 bp->is_leader = 0; 3003 bnx2x_release_leader_lock(bp); 3004 smp_mb(); 3005 3006 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 3007 BNX2X_ERR("Can't unload in closed or error state\n"); 3008 return -EINVAL; 3009 } 3010 3011 /* Nothing to do during unload if previous bnx2x_nic_load() 3012 * have not completed successfully - all resources are released. 3013 * 3014 * we can get here only after unsuccessful ndo_* callback, during which 3015 * dev->IFF_UP flag is still on. 3016 */ 3017 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 3018 return 0; 3019 3020 /* It's important to set the bp->state to the value different from 3021 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 3022 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 3023 */ 3024 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 3025 smp_mb(); 3026 3027 /* indicate to VFs that the PF is going down */ 3028 bnx2x_iov_channel_down(bp); 3029 3030 if (CNIC_LOADED(bp)) 3031 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 3032 3033 /* Stop Tx */ 3034 bnx2x_tx_disable(bp); 3035 netdev_reset_tc(bp->dev); 3036 3037 bp->rx_mode = BNX2X_RX_MODE_NONE; 3038 3039 del_timer_sync(&bp->timer); 3040 3041 if (IS_PF(bp) && !BP_NOMCP(bp)) { 3042 /* Set ALWAYS_ALIVE bit in shmem */ 3043 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 3044 bnx2x_drv_pulse(bp); 3045 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 3046 bnx2x_save_statistics(bp); 3047 } 3048 3049 /* wait till consumers catch up with producers in all queues. 3050 * If we're recovering, FW can't write to host so no reason 3051 * to wait for the queues to complete all Tx. 3052 */ 3053 if (unload_mode != UNLOAD_RECOVERY) 3054 bnx2x_drain_tx_queues(bp); 3055 3056 /* if VF indicate to PF this function is going down (PF will delete sp 3057 * elements and clear initializations 3058 */ 3059 if (IS_VF(bp)) 3060 bnx2x_vfpf_close_vf(bp); 3061 else if (unload_mode != UNLOAD_RECOVERY) 3062 /* if this is a normal/close unload need to clean up chip*/ 3063 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 3064 else { 3065 /* Send the UNLOAD_REQUEST to the MCP */ 3066 bnx2x_send_unload_req(bp, unload_mode); 3067 3068 /* Prevent transactions to host from the functions on the 3069 * engine that doesn't reset global blocks in case of global 3070 * attention once global blocks are reset and gates are opened 3071 * (the engine which leader will perform the recovery 3072 * last). 3073 */ 3074 if (!CHIP_IS_E1x(bp)) 3075 bnx2x_pf_disable(bp); 3076 3077 /* Disable HW interrupts, NAPI */ 3078 bnx2x_netif_stop(bp, 1); 3079 /* Delete all NAPI objects */ 3080 bnx2x_del_all_napi(bp); 3081 if (CNIC_LOADED(bp)) 3082 bnx2x_del_all_napi_cnic(bp); 3083 /* Release IRQs */ 3084 bnx2x_free_irq(bp); 3085 3086 /* Report UNLOAD_DONE to MCP */ 3087 bnx2x_send_unload_done(bp, false); 3088 } 3089 3090 /* 3091 * At this stage no more interrupts will arrive so we may safely clean 3092 * the queueable objects here in case they failed to get cleaned so far. 3093 */ 3094 if (IS_PF(bp)) 3095 bnx2x_squeeze_objects(bp); 3096 3097 /* There should be no more pending SP commands at this stage */ 3098 bp->sp_state = 0; 3099 3100 bp->port.pmf = 0; 3101 3102 /* clear pending work in rtnl task */ 3103 bp->sp_rtnl_state = 0; 3104 smp_mb(); 3105 3106 /* Free SKBs, SGEs, TPA pool and driver internals */ 3107 bnx2x_free_skbs(bp); 3108 if (CNIC_LOADED(bp)) 3109 bnx2x_free_skbs_cnic(bp); 3110 for_each_rx_queue(bp, i) 3111 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3112 3113 bnx2x_free_fp_mem(bp); 3114 if (CNIC_LOADED(bp)) 3115 bnx2x_free_fp_mem_cnic(bp); 3116 3117 if (IS_PF(bp)) { 3118 if (CNIC_LOADED(bp)) 3119 bnx2x_free_mem_cnic(bp); 3120 } 3121 bnx2x_free_mem(bp); 3122 3123 bp->state = BNX2X_STATE_CLOSED; 3124 bp->cnic_loaded = false; 3125 3126 /* Clear driver version indication in shmem */ 3127 if (IS_PF(bp) && !BP_NOMCP(bp)) 3128 bnx2x_update_mng_version(bp); 3129 3130 /* Check if there are pending parity attentions. If there are - set 3131 * RECOVERY_IN_PROGRESS. 3132 */ 3133 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3134 bnx2x_set_reset_in_progress(bp); 3135 3136 /* Set RESET_IS_GLOBAL if needed */ 3137 if (global) 3138 bnx2x_set_reset_global(bp); 3139 } 3140 3141 /* The last driver must disable a "close the gate" if there is no 3142 * parity attention or "process kill" pending. 3143 */ 3144 if (IS_PF(bp) && 3145 !bnx2x_clear_pf_load(bp) && 3146 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3147 bnx2x_disable_close_the_gate(bp); 3148 3149 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3150 3151 return 0; 3152 } 3153 3154 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3155 { 3156 u16 pmcsr; 3157 3158 /* If there is no power capability, silently succeed */ 3159 if (!bp->pdev->pm_cap) { 3160 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3161 return 0; 3162 } 3163 3164 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3165 3166 switch (state) { 3167 case PCI_D0: 3168 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3169 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3170 PCI_PM_CTRL_PME_STATUS)); 3171 3172 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3173 /* delay required during transition out of D3hot */ 3174 msleep(20); 3175 break; 3176 3177 case PCI_D3hot: 3178 /* If there are other clients above don't 3179 shut down the power */ 3180 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3181 return 0; 3182 /* Don't shut down the power for emulation and FPGA */ 3183 if (CHIP_REV_IS_SLOW(bp)) 3184 return 0; 3185 3186 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3187 pmcsr |= 3; 3188 3189 if (bp->wol) 3190 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3191 3192 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3193 pmcsr); 3194 3195 /* No more memory access after this point until 3196 * device is brought back to D0. 3197 */ 3198 break; 3199 3200 default: 3201 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3202 return -EINVAL; 3203 } 3204 return 0; 3205 } 3206 3207 /* 3208 * net_device service functions 3209 */ 3210 static int bnx2x_poll(struct napi_struct *napi, int budget) 3211 { 3212 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3213 napi); 3214 struct bnx2x *bp = fp->bp; 3215 int rx_work_done; 3216 u8 cos; 3217 3218 #ifdef BNX2X_STOP_ON_ERROR 3219 if (unlikely(bp->panic)) { 3220 napi_complete(napi); 3221 return 0; 3222 } 3223 #endif 3224 for_each_cos_in_tx_queue(fp, cos) 3225 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3226 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3227 3228 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0; 3229 3230 if (rx_work_done < budget) { 3231 /* No need to update SB for FCoE L2 ring as long as 3232 * it's connected to the default SB and the SB 3233 * has been updated when NAPI was scheduled. 3234 */ 3235 if (IS_FCOE_FP(fp)) { 3236 napi_complete_done(napi, rx_work_done); 3237 } else { 3238 bnx2x_update_fpsb_idx(fp); 3239 /* bnx2x_has_rx_work() reads the status block, 3240 * thus we need to ensure that status block indices 3241 * have been actually read (bnx2x_update_fpsb_idx) 3242 * prior to this check (bnx2x_has_rx_work) so that 3243 * we won't write the "newer" value of the status block 3244 * to IGU (if there was a DMA right after 3245 * bnx2x_has_rx_work and if there is no rmb, the memory 3246 * reading (bnx2x_update_fpsb_idx) may be postponed 3247 * to right before bnx2x_ack_sb). In this case there 3248 * will never be another interrupt until there is 3249 * another update of the status block, while there 3250 * is still unhandled work. 3251 */ 3252 rmb(); 3253 3254 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3255 if (napi_complete_done(napi, rx_work_done)) { 3256 /* Re-enable interrupts */ 3257 DP(NETIF_MSG_RX_STATUS, 3258 "Update index to %d\n", fp->fp_hc_idx); 3259 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3260 le16_to_cpu(fp->fp_hc_idx), 3261 IGU_INT_ENABLE, 1); 3262 } 3263 } else { 3264 rx_work_done = budget; 3265 } 3266 } 3267 } 3268 3269 return rx_work_done; 3270 } 3271 3272 /* we split the first BD into headers and data BDs 3273 * to ease the pain of our fellow microcode engineers 3274 * we use one mapping for both BDs 3275 */ 3276 static u16 bnx2x_tx_split(struct bnx2x *bp, 3277 struct bnx2x_fp_txdata *txdata, 3278 struct sw_tx_bd *tx_buf, 3279 struct eth_tx_start_bd **tx_bd, u16 hlen, 3280 u16 bd_prod) 3281 { 3282 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3283 struct eth_tx_bd *d_tx_bd; 3284 dma_addr_t mapping; 3285 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3286 3287 /* first fix first BD */ 3288 h_tx_bd->nbytes = cpu_to_le16(hlen); 3289 3290 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3291 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3292 3293 /* now get a new data BD 3294 * (after the pbd) and fill it */ 3295 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3296 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3297 3298 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3299 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3300 3301 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3302 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3303 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3304 3305 /* this marks the BD as one that has no individual mapping */ 3306 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3307 3308 DP(NETIF_MSG_TX_QUEUED, 3309 "TSO split data size is %d (%x:%x)\n", 3310 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3311 3312 /* update tx_bd */ 3313 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3314 3315 return bd_prod; 3316 } 3317 3318 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3319 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3320 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3321 { 3322 __sum16 tsum = (__force __sum16) csum; 3323 3324 if (fix > 0) 3325 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3326 csum_partial(t_header - fix, fix, 0))); 3327 3328 else if (fix < 0) 3329 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3330 csum_partial(t_header, -fix, 0))); 3331 3332 return bswab16(tsum); 3333 } 3334 3335 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3336 { 3337 u32 rc; 3338 __u8 prot = 0; 3339 __be16 protocol; 3340 3341 if (skb->ip_summed != CHECKSUM_PARTIAL) 3342 return XMIT_PLAIN; 3343 3344 protocol = vlan_get_protocol(skb); 3345 if (protocol == htons(ETH_P_IPV6)) { 3346 rc = XMIT_CSUM_V6; 3347 prot = ipv6_hdr(skb)->nexthdr; 3348 } else { 3349 rc = XMIT_CSUM_V4; 3350 prot = ip_hdr(skb)->protocol; 3351 } 3352 3353 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3354 if (inner_ip_hdr(skb)->version == 6) { 3355 rc |= XMIT_CSUM_ENC_V6; 3356 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3357 rc |= XMIT_CSUM_TCP; 3358 } else { 3359 rc |= XMIT_CSUM_ENC_V4; 3360 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3361 rc |= XMIT_CSUM_TCP; 3362 } 3363 } 3364 if (prot == IPPROTO_TCP) 3365 rc |= XMIT_CSUM_TCP; 3366 3367 if (skb_is_gso(skb)) { 3368 if (skb_is_gso_v6(skb)) { 3369 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3370 if (rc & XMIT_CSUM_ENC) 3371 rc |= XMIT_GSO_ENC_V6; 3372 } else { 3373 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3374 if (rc & XMIT_CSUM_ENC) 3375 rc |= XMIT_GSO_ENC_V4; 3376 } 3377 } 3378 3379 return rc; 3380 } 3381 3382 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */ 3383 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4 3384 3385 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3386 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3 3387 3388 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3389 /* check if packet requires linearization (packet is too fragmented) 3390 no need to check fragmentation if page size > 8K (there will be no 3391 violation to FW restrictions) */ 3392 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3393 u32 xmit_type) 3394 { 3395 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS; 3396 int to_copy = 0, hlen = 0; 3397 3398 if (xmit_type & XMIT_GSO_ENC) 3399 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS; 3400 3401 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) { 3402 if (xmit_type & XMIT_GSO) { 3403 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3404 int wnd_size = MAX_FETCH_BD - num_tso_win_sub; 3405 /* Number of windows to check */ 3406 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3407 int wnd_idx = 0; 3408 int frag_idx = 0; 3409 u32 wnd_sum = 0; 3410 3411 /* Headers length */ 3412 if (xmit_type & XMIT_GSO_ENC) 3413 hlen = (int)(skb_inner_transport_header(skb) - 3414 skb->data) + 3415 inner_tcp_hdrlen(skb); 3416 else 3417 hlen = (int)(skb_transport_header(skb) - 3418 skb->data) + tcp_hdrlen(skb); 3419 3420 /* Amount of data (w/o headers) on linear part of SKB*/ 3421 first_bd_sz = skb_headlen(skb) - hlen; 3422 3423 wnd_sum = first_bd_sz; 3424 3425 /* Calculate the first sum - it's special */ 3426 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3427 wnd_sum += 3428 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3429 3430 /* If there was data on linear skb data - check it */ 3431 if (first_bd_sz > 0) { 3432 if (unlikely(wnd_sum < lso_mss)) { 3433 to_copy = 1; 3434 goto exit_lbl; 3435 } 3436 3437 wnd_sum -= first_bd_sz; 3438 } 3439 3440 /* Others are easier: run through the frag list and 3441 check all windows */ 3442 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3443 wnd_sum += 3444 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3445 3446 if (unlikely(wnd_sum < lso_mss)) { 3447 to_copy = 1; 3448 break; 3449 } 3450 wnd_sum -= 3451 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3452 } 3453 } else { 3454 /* in non-LSO too fragmented packet should always 3455 be linearized */ 3456 to_copy = 1; 3457 } 3458 } 3459 3460 exit_lbl: 3461 if (unlikely(to_copy)) 3462 DP(NETIF_MSG_TX_QUEUED, 3463 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3464 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3465 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3466 3467 return to_copy; 3468 } 3469 #endif 3470 3471 /** 3472 * bnx2x_set_pbd_gso - update PBD in GSO case. 3473 * 3474 * @skb: packet skb 3475 * @pbd: parse BD 3476 * @xmit_type: xmit flags 3477 */ 3478 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3479 struct eth_tx_parse_bd_e1x *pbd, 3480 u32 xmit_type) 3481 { 3482 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3483 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3484 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3485 3486 if (xmit_type & XMIT_GSO_V4) { 3487 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3488 pbd->tcp_pseudo_csum = 3489 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3490 ip_hdr(skb)->daddr, 3491 0, IPPROTO_TCP, 0)); 3492 } else { 3493 pbd->tcp_pseudo_csum = 3494 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3495 &ipv6_hdr(skb)->daddr, 3496 0, IPPROTO_TCP, 0)); 3497 } 3498 3499 pbd->global_data |= 3500 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3501 } 3502 3503 /** 3504 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3505 * 3506 * @bp: driver handle 3507 * @skb: packet skb 3508 * @parsing_data: data to be updated 3509 * @xmit_type: xmit flags 3510 * 3511 * 57712/578xx related, when skb has encapsulation 3512 */ 3513 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3514 u32 *parsing_data, u32 xmit_type) 3515 { 3516 *parsing_data |= 3517 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3518 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3519 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3520 3521 if (xmit_type & XMIT_CSUM_TCP) { 3522 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3523 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3524 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3525 3526 return skb_inner_transport_header(skb) + 3527 inner_tcp_hdrlen(skb) - skb->data; 3528 } 3529 3530 /* We support checksum offload for TCP and UDP only. 3531 * No need to pass the UDP header length - it's a constant. 3532 */ 3533 return skb_inner_transport_header(skb) + 3534 sizeof(struct udphdr) - skb->data; 3535 } 3536 3537 /** 3538 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3539 * 3540 * @bp: driver handle 3541 * @skb: packet skb 3542 * @parsing_data: data to be updated 3543 * @xmit_type: xmit flags 3544 * 3545 * 57712/578xx related 3546 */ 3547 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3548 u32 *parsing_data, u32 xmit_type) 3549 { 3550 *parsing_data |= 3551 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3552 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3553 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3554 3555 if (xmit_type & XMIT_CSUM_TCP) { 3556 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3557 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3558 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3559 3560 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; 3561 } 3562 /* We support checksum offload for TCP and UDP only. 3563 * No need to pass the UDP header length - it's a constant. 3564 */ 3565 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; 3566 } 3567 3568 /* set FW indication according to inner or outer protocols if tunneled */ 3569 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3570 struct eth_tx_start_bd *tx_start_bd, 3571 u32 xmit_type) 3572 { 3573 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3574 3575 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3576 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3577 3578 if (!(xmit_type & XMIT_CSUM_TCP)) 3579 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3580 } 3581 3582 /** 3583 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3584 * 3585 * @bp: driver handle 3586 * @skb: packet skb 3587 * @pbd: parse BD to be updated 3588 * @xmit_type: xmit flags 3589 */ 3590 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3591 struct eth_tx_parse_bd_e1x *pbd, 3592 u32 xmit_type) 3593 { 3594 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3595 3596 /* for now NS flag is not used in Linux */ 3597 pbd->global_data = 3598 cpu_to_le16(hlen | 3599 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3600 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3601 3602 pbd->ip_hlen_w = (skb_transport_header(skb) - 3603 skb_network_header(skb)) >> 1; 3604 3605 hlen += pbd->ip_hlen_w; 3606 3607 /* We support checksum offload for TCP and UDP only */ 3608 if (xmit_type & XMIT_CSUM_TCP) 3609 hlen += tcp_hdrlen(skb) / 2; 3610 else 3611 hlen += sizeof(struct udphdr) / 2; 3612 3613 pbd->total_hlen_w = cpu_to_le16(hlen); 3614 hlen = hlen*2; 3615 3616 if (xmit_type & XMIT_CSUM_TCP) { 3617 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3618 3619 } else { 3620 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3621 3622 DP(NETIF_MSG_TX_QUEUED, 3623 "hlen %d fix %d csum before fix %x\n", 3624 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3625 3626 /* HW bug: fixup the CSUM */ 3627 pbd->tcp_pseudo_csum = 3628 bnx2x_csum_fix(skb_transport_header(skb), 3629 SKB_CS(skb), fix); 3630 3631 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3632 pbd->tcp_pseudo_csum); 3633 } 3634 3635 return hlen; 3636 } 3637 3638 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3639 struct eth_tx_parse_bd_e2 *pbd_e2, 3640 struct eth_tx_parse_2nd_bd *pbd2, 3641 u16 *global_data, 3642 u32 xmit_type) 3643 { 3644 u16 hlen_w = 0; 3645 u8 outerip_off, outerip_len = 0; 3646 3647 /* from outer IP to transport */ 3648 hlen_w = (skb_inner_transport_header(skb) - 3649 skb_network_header(skb)) >> 1; 3650 3651 /* transport len */ 3652 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3653 3654 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3655 3656 /* outer IP header info */ 3657 if (xmit_type & XMIT_CSUM_V4) { 3658 struct iphdr *iph = ip_hdr(skb); 3659 u32 csum = (__force u32)(~iph->check) - 3660 (__force u32)iph->tot_len - 3661 (__force u32)iph->frag_off; 3662 3663 outerip_len = iph->ihl << 1; 3664 3665 pbd2->fw_ip_csum_wo_len_flags_frag = 3666 bswab16(csum_fold((__force __wsum)csum)); 3667 } else { 3668 pbd2->fw_ip_hdr_to_payload_w = 3669 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3670 pbd_e2->data.tunnel_data.flags |= 3671 ETH_TUNNEL_DATA_IPV6_OUTER; 3672 } 3673 3674 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3675 3676 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3677 3678 /* inner IP header info */ 3679 if (xmit_type & XMIT_CSUM_ENC_V4) { 3680 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3681 3682 pbd_e2->data.tunnel_data.pseudo_csum = 3683 bswab16(~csum_tcpudp_magic( 3684 inner_ip_hdr(skb)->saddr, 3685 inner_ip_hdr(skb)->daddr, 3686 0, IPPROTO_TCP, 0)); 3687 } else { 3688 pbd_e2->data.tunnel_data.pseudo_csum = 3689 bswab16(~csum_ipv6_magic( 3690 &inner_ipv6_hdr(skb)->saddr, 3691 &inner_ipv6_hdr(skb)->daddr, 3692 0, IPPROTO_TCP, 0)); 3693 } 3694 3695 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3696 3697 *global_data |= 3698 outerip_off | 3699 (outerip_len << 3700 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3701 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3702 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3703 3704 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3705 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3706 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3707 } 3708 } 3709 3710 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data, 3711 u32 xmit_type) 3712 { 3713 struct ipv6hdr *ipv6; 3714 3715 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6))) 3716 return; 3717 3718 if (xmit_type & XMIT_GSO_ENC_V6) 3719 ipv6 = inner_ipv6_hdr(skb); 3720 else /* XMIT_GSO_V6 */ 3721 ipv6 = ipv6_hdr(skb); 3722 3723 if (ipv6->nexthdr == NEXTHDR_IPV6) 3724 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3725 } 3726 3727 /* called with netif_tx_lock 3728 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3729 * netif_wake_queue() 3730 */ 3731 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3732 { 3733 struct bnx2x *bp = netdev_priv(dev); 3734 3735 struct netdev_queue *txq; 3736 struct bnx2x_fp_txdata *txdata; 3737 struct sw_tx_bd *tx_buf; 3738 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3739 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3740 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3741 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3742 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3743 u32 pbd_e2_parsing_data = 0; 3744 u16 pkt_prod, bd_prod; 3745 int nbd, txq_index; 3746 dma_addr_t mapping; 3747 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3748 int i; 3749 u8 hlen = 0; 3750 __le16 pkt_size = 0; 3751 struct ethhdr *eth; 3752 u8 mac_type = UNICAST_ADDRESS; 3753 3754 #ifdef BNX2X_STOP_ON_ERROR 3755 if (unlikely(bp->panic)) 3756 return NETDEV_TX_BUSY; 3757 #endif 3758 3759 txq_index = skb_get_queue_mapping(skb); 3760 txq = netdev_get_tx_queue(dev, txq_index); 3761 3762 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3763 3764 txdata = &bp->bnx2x_txq[txq_index]; 3765 3766 /* enable this debug print to view the transmission queue being used 3767 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3768 txq_index, fp_index, txdata_index); */ 3769 3770 /* enable this debug print to view the transmission details 3771 DP(NETIF_MSG_TX_QUEUED, 3772 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3773 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3774 3775 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3776 skb_shinfo(skb)->nr_frags + 3777 BDS_PER_TX_PKT + 3778 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3779 /* Handle special storage cases separately */ 3780 if (txdata->tx_ring_size == 0) { 3781 struct bnx2x_eth_q_stats *q_stats = 3782 bnx2x_fp_qstats(bp, txdata->parent_fp); 3783 q_stats->driver_filtered_tx_pkt++; 3784 dev_kfree_skb(skb); 3785 return NETDEV_TX_OK; 3786 } 3787 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3788 netif_tx_stop_queue(txq); 3789 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3790 3791 return NETDEV_TX_BUSY; 3792 } 3793 3794 DP(NETIF_MSG_TX_QUEUED, 3795 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3796 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3797 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3798 skb->len); 3799 3800 eth = (struct ethhdr *)skb->data; 3801 3802 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3803 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3804 if (is_broadcast_ether_addr(eth->h_dest)) 3805 mac_type = BROADCAST_ADDRESS; 3806 else 3807 mac_type = MULTICAST_ADDRESS; 3808 } 3809 3810 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3811 /* First, check if we need to linearize the skb (due to FW 3812 restrictions). No need to check fragmentation if page size > 8K 3813 (there will be no violation to FW restrictions) */ 3814 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3815 /* Statistics of linearization */ 3816 bp->lin_cnt++; 3817 if (skb_linearize(skb) != 0) { 3818 DP(NETIF_MSG_TX_QUEUED, 3819 "SKB linearization failed - silently dropping this SKB\n"); 3820 dev_kfree_skb_any(skb); 3821 return NETDEV_TX_OK; 3822 } 3823 } 3824 #endif 3825 /* Map skb linear data for DMA */ 3826 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3827 skb_headlen(skb), DMA_TO_DEVICE); 3828 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3829 DP(NETIF_MSG_TX_QUEUED, 3830 "SKB mapping failed - silently dropping this SKB\n"); 3831 dev_kfree_skb_any(skb); 3832 return NETDEV_TX_OK; 3833 } 3834 /* 3835 Please read carefully. First we use one BD which we mark as start, 3836 then we have a parsing info BD (used for TSO or xsum), 3837 and only then we have the rest of the TSO BDs. 3838 (don't forget to mark the last one as last, 3839 and to unmap only AFTER you write to the BD ...) 3840 And above all, all pdb sizes are in words - NOT DWORDS! 3841 */ 3842 3843 /* get current pkt produced now - advance it just before sending packet 3844 * since mapping of pages may fail and cause packet to be dropped 3845 */ 3846 pkt_prod = txdata->tx_pkt_prod; 3847 bd_prod = TX_BD(txdata->tx_bd_prod); 3848 3849 /* get a tx_buf and first BD 3850 * tx_start_bd may be changed during SPLIT, 3851 * but first_bd will always stay first 3852 */ 3853 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3854 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3855 first_bd = tx_start_bd; 3856 3857 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3858 3859 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3860 if (!(bp->flags & TX_TIMESTAMPING_EN)) { 3861 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n"); 3862 } else if (bp->ptp_tx_skb) { 3863 BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n"); 3864 } else { 3865 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3866 /* schedule check for Tx timestamp */ 3867 bp->ptp_tx_skb = skb_get(skb); 3868 bp->ptp_tx_start = jiffies; 3869 schedule_work(&bp->ptp_task); 3870 } 3871 } 3872 3873 /* header nbd: indirectly zero other flags! */ 3874 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3875 3876 /* remember the first BD of the packet */ 3877 tx_buf->first_bd = txdata->tx_bd_prod; 3878 tx_buf->skb = skb; 3879 tx_buf->flags = 0; 3880 3881 DP(NETIF_MSG_TX_QUEUED, 3882 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3883 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3884 3885 if (skb_vlan_tag_present(skb)) { 3886 tx_start_bd->vlan_or_ethertype = 3887 cpu_to_le16(skb_vlan_tag_get(skb)); 3888 tx_start_bd->bd_flags.as_bitfield |= 3889 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3890 } else { 3891 /* when transmitting in a vf, start bd must hold the ethertype 3892 * for fw to enforce it 3893 */ 3894 u16 vlan_tci = 0; 3895 #ifndef BNX2X_STOP_ON_ERROR 3896 if (IS_VF(bp)) { 3897 #endif 3898 /* Still need to consider inband vlan for enforced */ 3899 if (__vlan_get_tag(skb, &vlan_tci)) { 3900 tx_start_bd->vlan_or_ethertype = 3901 cpu_to_le16(ntohs(eth->h_proto)); 3902 } else { 3903 tx_start_bd->bd_flags.as_bitfield |= 3904 (X_ETH_INBAND_VLAN << 3905 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3906 tx_start_bd->vlan_or_ethertype = 3907 cpu_to_le16(vlan_tci); 3908 } 3909 #ifndef BNX2X_STOP_ON_ERROR 3910 } else { 3911 /* used by FW for packet accounting */ 3912 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3913 } 3914 #endif 3915 } 3916 3917 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3918 3919 /* turn on parsing and get a BD */ 3920 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3921 3922 if (xmit_type & XMIT_CSUM) 3923 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3924 3925 if (!CHIP_IS_E1x(bp)) { 3926 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3927 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3928 3929 if (xmit_type & XMIT_CSUM_ENC) { 3930 u16 global_data = 0; 3931 3932 /* Set PBD in enc checksum offload case */ 3933 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3934 &pbd_e2_parsing_data, 3935 xmit_type); 3936 3937 /* turn on 2nd parsing and get a BD */ 3938 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3939 3940 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3941 3942 memset(pbd2, 0, sizeof(*pbd2)); 3943 3944 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3945 (skb_inner_network_header(skb) - 3946 skb->data) >> 1; 3947 3948 if (xmit_type & XMIT_GSO_ENC) 3949 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3950 &global_data, 3951 xmit_type); 3952 3953 pbd2->global_data = cpu_to_le16(global_data); 3954 3955 /* add addition parse BD indication to start BD */ 3956 SET_FLAG(tx_start_bd->general_data, 3957 ETH_TX_START_BD_PARSE_NBDS, 1); 3958 /* set encapsulation flag in start BD */ 3959 SET_FLAG(tx_start_bd->general_data, 3960 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3961 3962 tx_buf->flags |= BNX2X_HAS_SECOND_PBD; 3963 3964 nbd++; 3965 } else if (xmit_type & XMIT_CSUM) { 3966 /* Set PBD in checksum offload case w/o encapsulation */ 3967 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3968 &pbd_e2_parsing_data, 3969 xmit_type); 3970 } 3971 3972 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type); 3973 /* Add the macs to the parsing BD if this is a vf or if 3974 * Tx Switching is enabled. 3975 */ 3976 if (IS_VF(bp)) { 3977 /* override GRE parameters in BD */ 3978 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3979 &pbd_e2->data.mac_addr.src_mid, 3980 &pbd_e2->data.mac_addr.src_lo, 3981 eth->h_source); 3982 3983 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 3984 &pbd_e2->data.mac_addr.dst_mid, 3985 &pbd_e2->data.mac_addr.dst_lo, 3986 eth->h_dest); 3987 } else { 3988 if (bp->flags & TX_SWITCHING) 3989 bnx2x_set_fw_mac_addr( 3990 &pbd_e2->data.mac_addr.dst_hi, 3991 &pbd_e2->data.mac_addr.dst_mid, 3992 &pbd_e2->data.mac_addr.dst_lo, 3993 eth->h_dest); 3994 #ifdef BNX2X_STOP_ON_ERROR 3995 /* Enforce security is always set in Stop on Error - 3996 * source mac should be present in the parsing BD 3997 */ 3998 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3999 &pbd_e2->data.mac_addr.src_mid, 4000 &pbd_e2->data.mac_addr.src_lo, 4001 eth->h_source); 4002 #endif 4003 } 4004 4005 SET_FLAG(pbd_e2_parsing_data, 4006 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 4007 } else { 4008 u16 global_data = 0; 4009 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 4010 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 4011 /* Set PBD in checksum offload case */ 4012 if (xmit_type & XMIT_CSUM) 4013 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 4014 4015 SET_FLAG(global_data, 4016 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 4017 pbd_e1x->global_data |= cpu_to_le16(global_data); 4018 } 4019 4020 /* Setup the data pointer of the first BD of the packet */ 4021 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4022 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4023 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 4024 pkt_size = tx_start_bd->nbytes; 4025 4026 DP(NETIF_MSG_TX_QUEUED, 4027 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 4028 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 4029 le16_to_cpu(tx_start_bd->nbytes), 4030 tx_start_bd->bd_flags.as_bitfield, 4031 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 4032 4033 if (xmit_type & XMIT_GSO) { 4034 4035 DP(NETIF_MSG_TX_QUEUED, 4036 "TSO packet len %d hlen %d total len %d tso size %d\n", 4037 skb->len, hlen, skb_headlen(skb), 4038 skb_shinfo(skb)->gso_size); 4039 4040 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 4041 4042 if (unlikely(skb_headlen(skb) > hlen)) { 4043 nbd++; 4044 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 4045 &tx_start_bd, hlen, 4046 bd_prod); 4047 } 4048 if (!CHIP_IS_E1x(bp)) 4049 pbd_e2_parsing_data |= 4050 (skb_shinfo(skb)->gso_size << 4051 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 4052 ETH_TX_PARSE_BD_E2_LSO_MSS; 4053 else 4054 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); 4055 } 4056 4057 /* Set the PBD's parsing_data field if not zero 4058 * (for the chips newer than 57711). 4059 */ 4060 if (pbd_e2_parsing_data) 4061 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 4062 4063 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 4064 4065 /* Handle fragmented skb */ 4066 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4067 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4068 4069 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 4070 skb_frag_size(frag), DMA_TO_DEVICE); 4071 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 4072 unsigned int pkts_compl = 0, bytes_compl = 0; 4073 4074 DP(NETIF_MSG_TX_QUEUED, 4075 "Unable to map page - dropping packet...\n"); 4076 4077 /* we need unmap all buffers already mapped 4078 * for this SKB; 4079 * first_bd->nbd need to be properly updated 4080 * before call to bnx2x_free_tx_pkt 4081 */ 4082 first_bd->nbd = cpu_to_le16(nbd); 4083 bnx2x_free_tx_pkt(bp, txdata, 4084 TX_BD(txdata->tx_pkt_prod), 4085 &pkts_compl, &bytes_compl); 4086 return NETDEV_TX_OK; 4087 } 4088 4089 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4090 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4091 if (total_pkt_bd == NULL) 4092 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4093 4094 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4095 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4096 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 4097 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 4098 nbd++; 4099 4100 DP(NETIF_MSG_TX_QUEUED, 4101 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 4102 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 4103 le16_to_cpu(tx_data_bd->nbytes)); 4104 } 4105 4106 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 4107 4108 /* update with actual num BDs */ 4109 first_bd->nbd = cpu_to_le16(nbd); 4110 4111 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4112 4113 /* now send a tx doorbell, counting the next BD 4114 * if the packet contains or ends with it 4115 */ 4116 if (TX_BD_POFF(bd_prod) < nbd) 4117 nbd++; 4118 4119 /* total_pkt_bytes should be set on the first data BD if 4120 * it's not an LSO packet and there is more than one 4121 * data BD. In this case pkt_size is limited by an MTU value. 4122 * However we prefer to set it for an LSO packet (while we don't 4123 * have to) in order to save some CPU cycles in a none-LSO 4124 * case, when we much more care about them. 4125 */ 4126 if (total_pkt_bd != NULL) 4127 total_pkt_bd->total_pkt_bytes = pkt_size; 4128 4129 if (pbd_e1x) 4130 DP(NETIF_MSG_TX_QUEUED, 4131 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4132 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4133 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4134 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4135 le16_to_cpu(pbd_e1x->total_hlen_w)); 4136 if (pbd_e2) 4137 DP(NETIF_MSG_TX_QUEUED, 4138 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4139 pbd_e2, 4140 pbd_e2->data.mac_addr.dst_hi, 4141 pbd_e2->data.mac_addr.dst_mid, 4142 pbd_e2->data.mac_addr.dst_lo, 4143 pbd_e2->data.mac_addr.src_hi, 4144 pbd_e2->data.mac_addr.src_mid, 4145 pbd_e2->data.mac_addr.src_lo, 4146 pbd_e2->parsing_data); 4147 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4148 4149 netdev_tx_sent_queue(txq, skb->len); 4150 4151 skb_tx_timestamp(skb); 4152 4153 txdata->tx_pkt_prod++; 4154 /* 4155 * Make sure that the BD data is updated before updating the producer 4156 * since FW might read the BD right after the producer is updated. 4157 * This is only applicable for weak-ordered memory model archs such 4158 * as IA-64. The following barrier is also mandatory since FW will 4159 * assumes packets must have BDs. 4160 */ 4161 wmb(); 4162 4163 txdata->tx_db.data.prod += nbd; 4164 /* make sure descriptor update is observed by HW */ 4165 wmb(); 4166 4167 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw); 4168 4169 mmiowb(); 4170 4171 txdata->tx_bd_prod += nbd; 4172 4173 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4174 netif_tx_stop_queue(txq); 4175 4176 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4177 * ordering of set_bit() in netif_tx_stop_queue() and read of 4178 * fp->bd_tx_cons */ 4179 smp_mb(); 4180 4181 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4182 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4183 netif_tx_wake_queue(txq); 4184 } 4185 txdata->tx_pkt++; 4186 4187 return NETDEV_TX_OK; 4188 } 4189 4190 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default) 4191 { 4192 int mfw_vn = BP_FW_MB_IDX(bp); 4193 u32 tmp; 4194 4195 /* If the shmem shouldn't affect configuration, reflect */ 4196 if (!IS_MF_BD(bp)) { 4197 int i; 4198 4199 for (i = 0; i < BNX2X_MAX_PRIORITY; i++) 4200 c2s_map[i] = i; 4201 *c2s_default = 0; 4202 4203 return; 4204 } 4205 4206 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]); 4207 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4208 c2s_map[0] = tmp & 0xff; 4209 c2s_map[1] = (tmp >> 8) & 0xff; 4210 c2s_map[2] = (tmp >> 16) & 0xff; 4211 c2s_map[3] = (tmp >> 24) & 0xff; 4212 4213 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]); 4214 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4215 c2s_map[4] = tmp & 0xff; 4216 c2s_map[5] = (tmp >> 8) & 0xff; 4217 c2s_map[6] = (tmp >> 16) & 0xff; 4218 c2s_map[7] = (tmp >> 24) & 0xff; 4219 4220 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]); 4221 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4222 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff; 4223 } 4224 4225 /** 4226 * bnx2x_setup_tc - routine to configure net_device for multi tc 4227 * 4228 * @netdev: net device to configure 4229 * @tc: number of traffic classes to enable 4230 * 4231 * callback connected to the ndo_setup_tc function pointer 4232 */ 4233 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4234 { 4235 struct bnx2x *bp = netdev_priv(dev); 4236 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def; 4237 int cos, prio, count, offset; 4238 4239 /* setup tc must be called under rtnl lock */ 4240 ASSERT_RTNL(); 4241 4242 /* no traffic classes requested. Aborting */ 4243 if (!num_tc) { 4244 netdev_reset_tc(dev); 4245 return 0; 4246 } 4247 4248 /* requested to support too many traffic classes */ 4249 if (num_tc > bp->max_cos) { 4250 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4251 num_tc, bp->max_cos); 4252 return -EINVAL; 4253 } 4254 4255 /* declare amount of supported traffic classes */ 4256 if (netdev_set_num_tc(dev, num_tc)) { 4257 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4258 return -EINVAL; 4259 } 4260 4261 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def); 4262 4263 /* configure priority to traffic class mapping */ 4264 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4265 int outer_prio = c2s_map[prio]; 4266 4267 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]); 4268 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4269 "mapping priority %d to tc %d\n", 4270 outer_prio, bp->prio_to_cos[outer_prio]); 4271 } 4272 4273 /* Use this configuration to differentiate tc0 from other COSes 4274 This can be used for ets or pfc, and save the effort of setting 4275 up a multio class queue disc or negotiating DCBX with a switch 4276 netdev_set_prio_tc_map(dev, 0, 0); 4277 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4278 for (prio = 1; prio < 16; prio++) { 4279 netdev_set_prio_tc_map(dev, prio, 1); 4280 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4281 } */ 4282 4283 /* configure traffic class to transmission queue mapping */ 4284 for (cos = 0; cos < bp->max_cos; cos++) { 4285 count = BNX2X_NUM_ETH_QUEUES(bp); 4286 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4287 netdev_set_tc_queue(dev, cos, count, offset); 4288 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4289 "mapping tc %d to offset %d count %d\n", 4290 cos, offset, count); 4291 } 4292 4293 return 0; 4294 } 4295 4296 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type, 4297 void *type_data) 4298 { 4299 struct tc_mqprio_qopt *mqprio = type_data; 4300 4301 if (type != TC_SETUP_QDISC_MQPRIO) 4302 return -EOPNOTSUPP; 4303 4304 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 4305 4306 return bnx2x_setup_tc(dev, mqprio->num_tc); 4307 } 4308 4309 /* called with rtnl_lock */ 4310 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4311 { 4312 struct sockaddr *addr = p; 4313 struct bnx2x *bp = netdev_priv(dev); 4314 int rc = 0; 4315 4316 if (!is_valid_ether_addr(addr->sa_data)) { 4317 BNX2X_ERR("Requested MAC address is not valid\n"); 4318 return -EINVAL; 4319 } 4320 4321 if (IS_MF_STORAGE_ONLY(bp)) { 4322 BNX2X_ERR("Can't change address on STORAGE ONLY function\n"); 4323 return -EINVAL; 4324 } 4325 4326 if (netif_running(dev)) { 4327 rc = bnx2x_set_eth_mac(bp, false); 4328 if (rc) 4329 return rc; 4330 } 4331 4332 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4333 4334 if (netif_running(dev)) 4335 rc = bnx2x_set_eth_mac(bp, true); 4336 4337 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4338 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4339 4340 return rc; 4341 } 4342 4343 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4344 { 4345 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4346 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4347 u8 cos; 4348 4349 /* Common */ 4350 4351 if (IS_FCOE_IDX(fp_index)) { 4352 memset(sb, 0, sizeof(union host_hc_status_block)); 4353 fp->status_blk_mapping = 0; 4354 } else { 4355 /* status blocks */ 4356 if (!CHIP_IS_E1x(bp)) 4357 BNX2X_PCI_FREE(sb->e2_sb, 4358 bnx2x_fp(bp, fp_index, 4359 status_blk_mapping), 4360 sizeof(struct host_hc_status_block_e2)); 4361 else 4362 BNX2X_PCI_FREE(sb->e1x_sb, 4363 bnx2x_fp(bp, fp_index, 4364 status_blk_mapping), 4365 sizeof(struct host_hc_status_block_e1x)); 4366 } 4367 4368 /* Rx */ 4369 if (!skip_rx_queue(bp, fp_index)) { 4370 bnx2x_free_rx_bds(fp); 4371 4372 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4373 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4374 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4375 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4376 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4377 4378 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4379 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4380 sizeof(struct eth_fast_path_rx_cqe) * 4381 NUM_RCQ_BD); 4382 4383 /* SGE ring */ 4384 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4385 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4386 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4387 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4388 } 4389 4390 /* Tx */ 4391 if (!skip_tx_queue(bp, fp_index)) { 4392 /* fastpath tx rings: tx_buf tx_desc */ 4393 for_each_cos_in_tx_queue(fp, cos) { 4394 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4395 4396 DP(NETIF_MSG_IFDOWN, 4397 "freeing tx memory of fp %d cos %d cid %d\n", 4398 fp_index, cos, txdata->cid); 4399 4400 BNX2X_FREE(txdata->tx_buf_ring); 4401 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4402 txdata->tx_desc_mapping, 4403 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4404 } 4405 } 4406 /* end of fastpath */ 4407 } 4408 4409 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4410 { 4411 int i; 4412 for_each_cnic_queue(bp, i) 4413 bnx2x_free_fp_mem_at(bp, i); 4414 } 4415 4416 void bnx2x_free_fp_mem(struct bnx2x *bp) 4417 { 4418 int i; 4419 for_each_eth_queue(bp, i) 4420 bnx2x_free_fp_mem_at(bp, i); 4421 } 4422 4423 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4424 { 4425 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4426 if (!CHIP_IS_E1x(bp)) { 4427 bnx2x_fp(bp, index, sb_index_values) = 4428 (__le16 *)status_blk.e2_sb->sb.index_values; 4429 bnx2x_fp(bp, index, sb_running_index) = 4430 (__le16 *)status_blk.e2_sb->sb.running_index; 4431 } else { 4432 bnx2x_fp(bp, index, sb_index_values) = 4433 (__le16 *)status_blk.e1x_sb->sb.index_values; 4434 bnx2x_fp(bp, index, sb_running_index) = 4435 (__le16 *)status_blk.e1x_sb->sb.running_index; 4436 } 4437 } 4438 4439 /* Returns the number of actually allocated BDs */ 4440 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4441 int rx_ring_size) 4442 { 4443 struct bnx2x *bp = fp->bp; 4444 u16 ring_prod, cqe_ring_prod; 4445 int i, failure_cnt = 0; 4446 4447 fp->rx_comp_cons = 0; 4448 cqe_ring_prod = ring_prod = 0; 4449 4450 /* This routine is called only during fo init so 4451 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4452 */ 4453 for (i = 0; i < rx_ring_size; i++) { 4454 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4455 failure_cnt++; 4456 continue; 4457 } 4458 ring_prod = NEXT_RX_IDX(ring_prod); 4459 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4460 WARN_ON(ring_prod <= (i - failure_cnt)); 4461 } 4462 4463 if (failure_cnt) 4464 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4465 i - failure_cnt, fp->index); 4466 4467 fp->rx_bd_prod = ring_prod; 4468 /* Limit the CQE producer by the CQE ring size */ 4469 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4470 cqe_ring_prod); 4471 4472 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4473 4474 return i - failure_cnt; 4475 } 4476 4477 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4478 { 4479 int i; 4480 4481 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4482 struct eth_rx_cqe_next_page *nextpg; 4483 4484 nextpg = (struct eth_rx_cqe_next_page *) 4485 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4486 nextpg->addr_hi = 4487 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4488 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4489 nextpg->addr_lo = 4490 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4491 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4492 } 4493 } 4494 4495 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4496 { 4497 union host_hc_status_block *sb; 4498 struct bnx2x_fastpath *fp = &bp->fp[index]; 4499 int ring_size = 0; 4500 u8 cos; 4501 int rx_ring_size = 0; 4502 4503 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) { 4504 rx_ring_size = MIN_RX_SIZE_NONTPA; 4505 bp->rx_ring_size = rx_ring_size; 4506 } else if (!bp->rx_ring_size) { 4507 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4508 4509 if (CHIP_IS_E3(bp)) { 4510 u32 cfg = SHMEM_RD(bp, 4511 dev_info.port_hw_config[BP_PORT(bp)]. 4512 default_cfg); 4513 4514 /* Decrease ring size for 1G functions */ 4515 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4516 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4517 rx_ring_size /= 10; 4518 } 4519 4520 /* allocate at least number of buffers required by FW */ 4521 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4522 MIN_RX_SIZE_TPA, rx_ring_size); 4523 4524 bp->rx_ring_size = rx_ring_size; 4525 } else /* if rx_ring_size specified - use it */ 4526 rx_ring_size = bp->rx_ring_size; 4527 4528 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4529 4530 /* Common */ 4531 sb = &bnx2x_fp(bp, index, status_blk); 4532 4533 if (!IS_FCOE_IDX(index)) { 4534 /* status blocks */ 4535 if (!CHIP_IS_E1x(bp)) { 4536 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4537 sizeof(struct host_hc_status_block_e2)); 4538 if (!sb->e2_sb) 4539 goto alloc_mem_err; 4540 } else { 4541 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4542 sizeof(struct host_hc_status_block_e1x)); 4543 if (!sb->e1x_sb) 4544 goto alloc_mem_err; 4545 } 4546 } 4547 4548 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4549 * set shortcuts for it. 4550 */ 4551 if (!IS_FCOE_IDX(index)) 4552 set_sb_shortcuts(bp, index); 4553 4554 /* Tx */ 4555 if (!skip_tx_queue(bp, index)) { 4556 /* fastpath tx rings: tx_buf tx_desc */ 4557 for_each_cos_in_tx_queue(fp, cos) { 4558 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4559 4560 DP(NETIF_MSG_IFUP, 4561 "allocating tx memory of fp %d cos %d\n", 4562 index, cos); 4563 4564 txdata->tx_buf_ring = kcalloc(NUM_TX_BD, 4565 sizeof(struct sw_tx_bd), 4566 GFP_KERNEL); 4567 if (!txdata->tx_buf_ring) 4568 goto alloc_mem_err; 4569 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, 4570 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4571 if (!txdata->tx_desc_ring) 4572 goto alloc_mem_err; 4573 } 4574 } 4575 4576 /* Rx */ 4577 if (!skip_rx_queue(bp, index)) { 4578 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4579 bnx2x_fp(bp, index, rx_buf_ring) = 4580 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL); 4581 if (!bnx2x_fp(bp, index, rx_buf_ring)) 4582 goto alloc_mem_err; 4583 bnx2x_fp(bp, index, rx_desc_ring) = 4584 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), 4585 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4586 if (!bnx2x_fp(bp, index, rx_desc_ring)) 4587 goto alloc_mem_err; 4588 4589 /* Seed all CQEs by 1s */ 4590 bnx2x_fp(bp, index, rx_comp_ring) = 4591 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), 4592 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); 4593 if (!bnx2x_fp(bp, index, rx_comp_ring)) 4594 goto alloc_mem_err; 4595 4596 /* SGE ring */ 4597 bnx2x_fp(bp, index, rx_page_ring) = 4598 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page), 4599 GFP_KERNEL); 4600 if (!bnx2x_fp(bp, index, rx_page_ring)) 4601 goto alloc_mem_err; 4602 bnx2x_fp(bp, index, rx_sge_ring) = 4603 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), 4604 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4605 if (!bnx2x_fp(bp, index, rx_sge_ring)) 4606 goto alloc_mem_err; 4607 /* RX BD ring */ 4608 bnx2x_set_next_page_rx_bd(fp); 4609 4610 /* CQ ring */ 4611 bnx2x_set_next_page_rx_cq(fp); 4612 4613 /* BDs */ 4614 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4615 if (ring_size < rx_ring_size) 4616 goto alloc_mem_err; 4617 } 4618 4619 return 0; 4620 4621 /* handles low memory cases */ 4622 alloc_mem_err: 4623 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4624 index, ring_size); 4625 /* FW will drop all packets if queue is not big enough, 4626 * In these cases we disable the queue 4627 * Min size is different for OOO, TPA and non-TPA queues 4628 */ 4629 if (ring_size < (fp->mode == TPA_MODE_DISABLED ? 4630 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4631 /* release memory allocated for this queue */ 4632 bnx2x_free_fp_mem_at(bp, index); 4633 return -ENOMEM; 4634 } 4635 return 0; 4636 } 4637 4638 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4639 { 4640 if (!NO_FCOE(bp)) 4641 /* FCoE */ 4642 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4643 /* we will fail load process instead of mark 4644 * NO_FCOE_FLAG 4645 */ 4646 return -ENOMEM; 4647 4648 return 0; 4649 } 4650 4651 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4652 { 4653 int i; 4654 4655 /* 1. Allocate FP for leading - fatal if error 4656 * 2. Allocate RSS - fix number of queues if error 4657 */ 4658 4659 /* leading */ 4660 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4661 return -ENOMEM; 4662 4663 /* RSS */ 4664 for_each_nondefault_eth_queue(bp, i) 4665 if (bnx2x_alloc_fp_mem_at(bp, i)) 4666 break; 4667 4668 /* handle memory failures */ 4669 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4670 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4671 4672 WARN_ON(delta < 0); 4673 bnx2x_shrink_eth_fp(bp, delta); 4674 if (CNIC_SUPPORT(bp)) 4675 /* move non eth FPs next to last eth FP 4676 * must be done in that order 4677 * FCOE_IDX < FWD_IDX < OOO_IDX 4678 */ 4679 4680 /* move FCoE fp even NO_FCOE_FLAG is on */ 4681 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4682 bp->num_ethernet_queues -= delta; 4683 bp->num_queues = bp->num_ethernet_queues + 4684 bp->num_cnic_queues; 4685 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4686 bp->num_queues + delta, bp->num_queues); 4687 } 4688 4689 return 0; 4690 } 4691 4692 void bnx2x_free_mem_bp(struct bnx2x *bp) 4693 { 4694 int i; 4695 4696 for (i = 0; i < bp->fp_array_size; i++) 4697 kfree(bp->fp[i].tpa_info); 4698 kfree(bp->fp); 4699 kfree(bp->sp_objs); 4700 kfree(bp->fp_stats); 4701 kfree(bp->bnx2x_txq); 4702 kfree(bp->msix_table); 4703 kfree(bp->ilt); 4704 } 4705 4706 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4707 { 4708 struct bnx2x_fastpath *fp; 4709 struct msix_entry *tbl; 4710 struct bnx2x_ilt *ilt; 4711 int msix_table_size = 0; 4712 int fp_array_size, txq_array_size; 4713 int i; 4714 4715 /* 4716 * The biggest MSI-X table we might need is as a maximum number of fast 4717 * path IGU SBs plus default SB (for PF only). 4718 */ 4719 msix_table_size = bp->igu_sb_cnt; 4720 if (IS_PF(bp)) 4721 msix_table_size++; 4722 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4723 4724 /* fp array: RSS plus CNIC related L2 queues */ 4725 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4726 bp->fp_array_size = fp_array_size; 4727 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4728 4729 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4730 if (!fp) 4731 goto alloc_err; 4732 for (i = 0; i < bp->fp_array_size; i++) { 4733 fp[i].tpa_info = 4734 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4735 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4736 if (!(fp[i].tpa_info)) 4737 goto alloc_err; 4738 } 4739 4740 bp->fp = fp; 4741 4742 /* allocate sp objs */ 4743 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4744 GFP_KERNEL); 4745 if (!bp->sp_objs) 4746 goto alloc_err; 4747 4748 /* allocate fp_stats */ 4749 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4750 GFP_KERNEL); 4751 if (!bp->fp_stats) 4752 goto alloc_err; 4753 4754 /* Allocate memory for the transmission queues array */ 4755 txq_array_size = 4756 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4757 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4758 4759 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4760 GFP_KERNEL); 4761 if (!bp->bnx2x_txq) 4762 goto alloc_err; 4763 4764 /* msix table */ 4765 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4766 if (!tbl) 4767 goto alloc_err; 4768 bp->msix_table = tbl; 4769 4770 /* ilt */ 4771 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4772 if (!ilt) 4773 goto alloc_err; 4774 bp->ilt = ilt; 4775 4776 return 0; 4777 alloc_err: 4778 bnx2x_free_mem_bp(bp); 4779 return -ENOMEM; 4780 } 4781 4782 int bnx2x_reload_if_running(struct net_device *dev) 4783 { 4784 struct bnx2x *bp = netdev_priv(dev); 4785 4786 if (unlikely(!netif_running(dev))) 4787 return 0; 4788 4789 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4790 return bnx2x_nic_load(bp, LOAD_NORMAL); 4791 } 4792 4793 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4794 { 4795 u32 sel_phy_idx = 0; 4796 if (bp->link_params.num_phys <= 1) 4797 return INT_PHY; 4798 4799 if (bp->link_vars.link_up) { 4800 sel_phy_idx = EXT_PHY1; 4801 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4802 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4803 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4804 sel_phy_idx = EXT_PHY2; 4805 } else { 4806 4807 switch (bnx2x_phy_selection(&bp->link_params)) { 4808 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4809 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4810 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4811 sel_phy_idx = EXT_PHY1; 4812 break; 4813 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4814 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4815 sel_phy_idx = EXT_PHY2; 4816 break; 4817 } 4818 } 4819 4820 return sel_phy_idx; 4821 } 4822 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4823 { 4824 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4825 /* 4826 * The selected activated PHY is always after swapping (in case PHY 4827 * swapping is enabled). So when swapping is enabled, we need to reverse 4828 * the configuration 4829 */ 4830 4831 if (bp->link_params.multi_phy_config & 4832 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4833 if (sel_phy_idx == EXT_PHY1) 4834 sel_phy_idx = EXT_PHY2; 4835 else if (sel_phy_idx == EXT_PHY2) 4836 sel_phy_idx = EXT_PHY1; 4837 } 4838 return LINK_CONFIG_IDX(sel_phy_idx); 4839 } 4840 4841 #ifdef NETDEV_FCOE_WWNN 4842 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4843 { 4844 struct bnx2x *bp = netdev_priv(dev); 4845 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4846 4847 switch (type) { 4848 case NETDEV_FCOE_WWNN: 4849 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4850 cp->fcoe_wwn_node_name_lo); 4851 break; 4852 case NETDEV_FCOE_WWPN: 4853 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4854 cp->fcoe_wwn_port_name_lo); 4855 break; 4856 default: 4857 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4858 return -EINVAL; 4859 } 4860 4861 return 0; 4862 } 4863 #endif 4864 4865 /* called with rtnl_lock */ 4866 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4867 { 4868 struct bnx2x *bp = netdev_priv(dev); 4869 4870 if (pci_num_vf(bp->pdev)) { 4871 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n"); 4872 return -EPERM; 4873 } 4874 4875 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4876 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4877 return -EAGAIN; 4878 } 4879 4880 /* This does not race with packet allocation 4881 * because the actual alloc size is 4882 * only updated as part of load 4883 */ 4884 dev->mtu = new_mtu; 4885 4886 if (!bnx2x_mtu_allows_gro(new_mtu)) 4887 dev->features &= ~NETIF_F_GRO_HW; 4888 4889 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4890 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4891 4892 return bnx2x_reload_if_running(dev); 4893 } 4894 4895 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4896 netdev_features_t features) 4897 { 4898 struct bnx2x *bp = netdev_priv(dev); 4899 4900 if (pci_num_vf(bp->pdev)) { 4901 netdev_features_t changed = dev->features ^ features; 4902 4903 /* Revert the requested changes in features if they 4904 * would require internal reload of PF in bnx2x_set_features(). 4905 */ 4906 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) { 4907 features &= ~NETIF_F_RXCSUM; 4908 features |= dev->features & NETIF_F_RXCSUM; 4909 } 4910 4911 if (changed & NETIF_F_LOOPBACK) { 4912 features &= ~NETIF_F_LOOPBACK; 4913 features |= dev->features & NETIF_F_LOOPBACK; 4914 } 4915 } 4916 4917 /* TPA requires Rx CSUM offloading */ 4918 if (!(features & NETIF_F_RXCSUM)) 4919 features &= ~NETIF_F_LRO; 4920 4921 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu)) 4922 features &= ~NETIF_F_GRO_HW; 4923 if (features & NETIF_F_GRO_HW) 4924 features &= ~NETIF_F_LRO; 4925 4926 return features; 4927 } 4928 4929 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4930 { 4931 struct bnx2x *bp = netdev_priv(dev); 4932 netdev_features_t changes = features ^ dev->features; 4933 bool bnx2x_reload = false; 4934 int rc; 4935 4936 /* VFs or non SRIOV PFs should be able to change loopback feature */ 4937 if (!pci_num_vf(bp->pdev)) { 4938 if (features & NETIF_F_LOOPBACK) { 4939 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4940 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4941 bnx2x_reload = true; 4942 } 4943 } else { 4944 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4945 bp->link_params.loopback_mode = LOOPBACK_NONE; 4946 bnx2x_reload = true; 4947 } 4948 } 4949 } 4950 4951 /* Don't care about GRO changes */ 4952 changes &= ~NETIF_F_GRO; 4953 4954 if (changes) 4955 bnx2x_reload = true; 4956 4957 if (bnx2x_reload) { 4958 if (bp->recovery_state == BNX2X_RECOVERY_DONE) { 4959 dev->features = features; 4960 rc = bnx2x_reload_if_running(dev); 4961 return rc ? rc : 1; 4962 } 4963 /* else: bnx2x_nic_load() will be called at end of recovery */ 4964 } 4965 4966 return 0; 4967 } 4968 4969 void bnx2x_tx_timeout(struct net_device *dev) 4970 { 4971 struct bnx2x *bp = netdev_priv(dev); 4972 4973 /* We want the information of the dump logged, 4974 * but calling bnx2x_panic() would kill all chances of recovery. 4975 */ 4976 if (!bp->panic) 4977 #ifndef BNX2X_STOP_ON_ERROR 4978 bnx2x_panic_dump(bp, false); 4979 #else 4980 bnx2x_panic(); 4981 #endif 4982 4983 /* This allows the netif to be shutdown gracefully before resetting */ 4984 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); 4985 } 4986 4987 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) 4988 { 4989 struct net_device *dev = pci_get_drvdata(pdev); 4990 struct bnx2x *bp; 4991 4992 if (!dev) { 4993 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4994 return -ENODEV; 4995 } 4996 bp = netdev_priv(dev); 4997 4998 rtnl_lock(); 4999 5000 pci_save_state(pdev); 5001 5002 if (!netif_running(dev)) { 5003 rtnl_unlock(); 5004 return 0; 5005 } 5006 5007 netif_device_detach(dev); 5008 5009 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 5010 5011 bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); 5012 5013 rtnl_unlock(); 5014 5015 return 0; 5016 } 5017 5018 int bnx2x_resume(struct pci_dev *pdev) 5019 { 5020 struct net_device *dev = pci_get_drvdata(pdev); 5021 struct bnx2x *bp; 5022 int rc; 5023 5024 if (!dev) { 5025 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5026 return -ENODEV; 5027 } 5028 bp = netdev_priv(dev); 5029 5030 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 5031 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 5032 return -EAGAIN; 5033 } 5034 5035 rtnl_lock(); 5036 5037 pci_restore_state(pdev); 5038 5039 if (!netif_running(dev)) { 5040 rtnl_unlock(); 5041 return 0; 5042 } 5043 5044 bnx2x_set_power_state(bp, PCI_D0); 5045 netif_device_attach(dev); 5046 5047 rc = bnx2x_nic_load(bp, LOAD_OPEN); 5048 5049 rtnl_unlock(); 5050 5051 return rc; 5052 } 5053 5054 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 5055 u32 cid) 5056 { 5057 if (!cxt) { 5058 BNX2X_ERR("bad context pointer %p\n", cxt); 5059 return; 5060 } 5061 5062 /* ustorm cxt validation */ 5063 cxt->ustorm_ag_context.cdu_usage = 5064 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5065 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 5066 /* xcontext validation */ 5067 cxt->xstorm_ag_context.cdu_reserved = 5068 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5069 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 5070 } 5071 5072 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 5073 u8 fw_sb_id, u8 sb_index, 5074 u8 ticks) 5075 { 5076 u32 addr = BAR_CSTRORM_INTMEM + 5077 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 5078 REG_WR8(bp, addr, ticks); 5079 DP(NETIF_MSG_IFUP, 5080 "port %x fw_sb_id %d sb_index %d ticks %d\n", 5081 port, fw_sb_id, sb_index, ticks); 5082 } 5083 5084 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 5085 u16 fw_sb_id, u8 sb_index, 5086 u8 disable) 5087 { 5088 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 5089 u32 addr = BAR_CSTRORM_INTMEM + 5090 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 5091 u8 flags = REG_RD8(bp, addr); 5092 /* clear and set */ 5093 flags &= ~HC_INDEX_DATA_HC_ENABLED; 5094 flags |= enable_flag; 5095 REG_WR8(bp, addr, flags); 5096 DP(NETIF_MSG_IFUP, 5097 "port %x fw_sb_id %d sb_index %d disable %d\n", 5098 port, fw_sb_id, sb_index, disable); 5099 } 5100 5101 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 5102 u8 sb_index, u8 disable, u16 usec) 5103 { 5104 int port = BP_PORT(bp); 5105 u8 ticks = usec / BNX2X_BTR; 5106 5107 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 5108 5109 disable = disable ? 1 : (usec ? 0 : 1); 5110 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 5111 } 5112 5113 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, 5114 u32 verbose) 5115 { 5116 smp_mb__before_atomic(); 5117 set_bit(flag, &bp->sp_rtnl_state); 5118 smp_mb__after_atomic(); 5119 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", 5120 flag); 5121 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5122 } 5123