1 /* bnx2x.h: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  */
13 
14 #ifndef BNX2X_H
15 #define BNX2X_H
16 
17 #include <linux/pci.h>
18 #include <linux/netdevice.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/types.h>
21 #include <linux/pci_regs.h>
22 
23 /* compilation time flags */
24 
25 /* define this to make the driver freeze on error to allow getting debug info
26  * (you will need to reboot afterwards) */
27 /* #define BNX2X_STOP_ON_ERROR */
28 
29 #define DRV_MODULE_VERSION      "1.78.17-0"
30 #define DRV_MODULE_RELDATE      "2013/04/11"
31 #define BNX2X_BC_VER            0x040200
32 
33 #if defined(CONFIG_DCB)
34 #define BCM_DCBNL
35 #endif
36 
37 #include "bnx2x_hsi.h"
38 
39 #include "../cnic_if.h"
40 
41 #define BNX2X_MIN_MSIX_VEC_CNT(bp)		((bp)->min_msix_vec_cnt)
42 
43 #include <linux/mdio.h>
44 
45 #include "bnx2x_reg.h"
46 #include "bnx2x_fw_defs.h"
47 #include "bnx2x_mfw_req.h"
48 #include "bnx2x_link.h"
49 #include "bnx2x_sp.h"
50 #include "bnx2x_dcb.h"
51 #include "bnx2x_stats.h"
52 #include "bnx2x_vfpf.h"
53 
54 enum bnx2x_int_mode {
55 	BNX2X_INT_MODE_MSIX,
56 	BNX2X_INT_MODE_INTX,
57 	BNX2X_INT_MODE_MSI
58 };
59 
60 /* error/debug prints */
61 
62 #define DRV_MODULE_NAME		"bnx2x"
63 
64 /* for messages that are currently off */
65 #define BNX2X_MSG_OFF			0x0
66 #define BNX2X_MSG_MCP			0x0010000 /* was: NETIF_MSG_HW */
67 #define BNX2X_MSG_STATS			0x0020000 /* was: NETIF_MSG_TIMER */
68 #define BNX2X_MSG_NVM			0x0040000 /* was: NETIF_MSG_HW */
69 #define BNX2X_MSG_DMAE			0x0080000 /* was: NETIF_MSG_HW */
70 #define BNX2X_MSG_SP			0x0100000 /* was: NETIF_MSG_INTR */
71 #define BNX2X_MSG_FP			0x0200000 /* was: NETIF_MSG_INTR */
72 #define BNX2X_MSG_IOV			0x0800000
73 #define BNX2X_MSG_IDLE			0x2000000 /* used for idle check*/
74 #define BNX2X_MSG_ETHTOOL		0x4000000
75 #define BNX2X_MSG_DCB			0x8000000
76 
77 /* regular debug print */
78 #define DP(__mask, fmt, ...)					\
79 do {								\
80 	if (unlikely(bp->msg_enable & (__mask)))		\
81 		pr_notice("[%s:%d(%s)]" fmt,			\
82 			  __func__, __LINE__,			\
83 			  bp->dev ? (bp->dev->name) : "?",	\
84 			  ##__VA_ARGS__);			\
85 } while (0)
86 
87 #define DP_CONT(__mask, fmt, ...)				\
88 do {								\
89 	if (unlikely(bp->msg_enable & (__mask)))		\
90 		pr_cont(fmt, ##__VA_ARGS__);			\
91 } while (0)
92 
93 /* errors debug print */
94 #define BNX2X_DBG_ERR(fmt, ...)					\
95 do {								\
96 	if (unlikely(netif_msg_probe(bp)))			\
97 		pr_err("[%s:%d(%s)]" fmt,			\
98 		       __func__, __LINE__,			\
99 		       bp->dev ? (bp->dev->name) : "?",		\
100 		       ##__VA_ARGS__);				\
101 } while (0)
102 
103 /* for errors (never masked) */
104 #define BNX2X_ERR(fmt, ...)					\
105 do {								\
106 	pr_err("[%s:%d(%s)]" fmt,				\
107 	       __func__, __LINE__,				\
108 	       bp->dev ? (bp->dev->name) : "?",			\
109 	       ##__VA_ARGS__);					\
110 } while (0)
111 
112 #define BNX2X_ERROR(fmt, ...)					\
113 	pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__)
114 
115 /* before we have a dev->name use dev_info() */
116 #define BNX2X_DEV_INFO(fmt, ...)				 \
117 do {								 \
118 	if (unlikely(netif_msg_probe(bp)))			 \
119 		dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__);	 \
120 } while (0)
121 
122 /* Error handling */
123 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int);
124 #ifdef BNX2X_STOP_ON_ERROR
125 #define bnx2x_panic()				\
126 do {						\
127 	bp->panic = 1;				\
128 	BNX2X_ERR("driver assert\n");		\
129 	bnx2x_panic_dump(bp, true);		\
130 } while (0)
131 #else
132 #define bnx2x_panic()				\
133 do {						\
134 	bp->panic = 1;				\
135 	BNX2X_ERR("driver assert\n");		\
136 	bnx2x_panic_dump(bp, false);		\
137 } while (0)
138 #endif
139 
140 #define bnx2x_mc_addr(ha)      ((ha)->addr)
141 #define bnx2x_uc_addr(ha)      ((ha)->addr)
142 
143 #define U64_LO(x)			((u32)(((u64)(x)) & 0xffffffff))
144 #define U64_HI(x)			((u32)(((u64)(x)) >> 32))
145 #define HILO_U64(hi, lo)		((((u64)(hi)) << 32) + (lo))
146 
147 #define REG_ADDR(bp, offset)		((bp->regview) + (offset))
148 
149 #define REG_RD(bp, offset)		readl(REG_ADDR(bp, offset))
150 #define REG_RD8(bp, offset)		readb(REG_ADDR(bp, offset))
151 #define REG_RD16(bp, offset)		readw(REG_ADDR(bp, offset))
152 
153 #define REG_WR(bp, offset, val)		writel((u32)val, REG_ADDR(bp, offset))
154 #define REG_WR8(bp, offset, val)	writeb((u8)val, REG_ADDR(bp, offset))
155 #define REG_WR16(bp, offset, val)	writew((u16)val, REG_ADDR(bp, offset))
156 
157 #define REG_RD_IND(bp, offset)		bnx2x_reg_rd_ind(bp, offset)
158 #define REG_WR_IND(bp, offset, val)	bnx2x_reg_wr_ind(bp, offset, val)
159 
160 #define REG_RD_DMAE(bp, offset, valp, len32) \
161 	do { \
162 		bnx2x_read_dmae(bp, offset, len32);\
163 		memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \
164 	} while (0)
165 
166 #define REG_WR_DMAE(bp, offset, valp, len32) \
167 	do { \
168 		memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \
169 		bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \
170 				 offset, len32); \
171 	} while (0)
172 
173 #define REG_WR_DMAE_LEN(bp, offset, valp, len32) \
174 	REG_WR_DMAE(bp, offset, valp, len32)
175 
176 #define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \
177 	do { \
178 		memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \
179 		bnx2x_write_big_buf_wb(bp, addr, len32); \
180 	} while (0)
181 
182 #define SHMEM_ADDR(bp, field)		(bp->common.shmem_base + \
183 					 offsetof(struct shmem_region, field))
184 #define SHMEM_RD(bp, field)		REG_RD(bp, SHMEM_ADDR(bp, field))
185 #define SHMEM_WR(bp, field, val)	REG_WR(bp, SHMEM_ADDR(bp, field), val)
186 
187 #define SHMEM2_ADDR(bp, field)		(bp->common.shmem2_base + \
188 					 offsetof(struct shmem2_region, field))
189 #define SHMEM2_RD(bp, field)		REG_RD(bp, SHMEM2_ADDR(bp, field))
190 #define SHMEM2_WR(bp, field, val)	REG_WR(bp, SHMEM2_ADDR(bp, field), val)
191 #define MF_CFG_ADDR(bp, field)		(bp->common.mf_cfg_base + \
192 					 offsetof(struct mf_cfg, field))
193 #define MF2_CFG_ADDR(bp, field)		(bp->common.mf2_cfg_base + \
194 					 offsetof(struct mf2_cfg, field))
195 
196 #define MF_CFG_RD(bp, field)		REG_RD(bp, MF_CFG_ADDR(bp, field))
197 #define MF_CFG_WR(bp, field, val)	REG_WR(bp,\
198 					       MF_CFG_ADDR(bp, field), (val))
199 #define MF2_CFG_RD(bp, field)		REG_RD(bp, MF2_CFG_ADDR(bp, field))
200 
201 #define SHMEM2_HAS(bp, field)		((bp)->common.shmem2_base &&	\
202 					 (SHMEM2_RD((bp), size) >	\
203 					 offsetof(struct shmem2_region, field)))
204 
205 #define EMAC_RD(bp, reg)		REG_RD(bp, emac_base + reg)
206 #define EMAC_WR(bp, reg, val)		REG_WR(bp, emac_base + reg, val)
207 
208 /* SP SB indices */
209 
210 /* General SP events - stats query, cfc delete, etc  */
211 #define HC_SP_INDEX_ETH_DEF_CONS		3
212 
213 /* EQ completions */
214 #define HC_SP_INDEX_EQ_CONS			7
215 
216 /* FCoE L2 connection completions */
217 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS		6
218 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS		4
219 /* iSCSI L2 */
220 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS		5
221 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS	1
222 
223 /* Special clients parameters */
224 
225 /* SB indices */
226 /* FCoE L2 */
227 #define BNX2X_FCOE_L2_RX_INDEX \
228 	(&bp->def_status_blk->sp_sb.\
229 	index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS])
230 
231 #define BNX2X_FCOE_L2_TX_INDEX \
232 	(&bp->def_status_blk->sp_sb.\
233 	index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS])
234 
235 /**
236  *  CIDs and CLIDs:
237  *  CLIDs below is a CLID for func 0, then the CLID for other
238  *  functions will be calculated by the formula:
239  *
240  *  FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X
241  *
242  */
243 enum {
244 	BNX2X_ISCSI_ETH_CL_ID_IDX,
245 	BNX2X_FCOE_ETH_CL_ID_IDX,
246 	BNX2X_MAX_CNIC_ETH_CL_ID_IDX,
247 };
248 
249 /* use a value high enough to be above all the PFs, which has least significant
250  * nibble as 8, so when cnic needs to come up with a CID for UIO to use to
251  * calculate doorbell address according to old doorbell configuration scheme
252  * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number
253  * We must avoid coming up with cid 8 for iscsi since according to this method
254  * the designated UIO cid will come out 0 and it has a special handling for that
255  * case which doesn't suit us. Therefore will will cieling to closes cid which
256  * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18.
257  */
258 
259 #define BNX2X_1st_NON_L2_ETH_CID(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) * \
260 					 (bp)->max_cos)
261 /* amount of cids traversed by UIO's DPM addition to doorbell */
262 #define UIO_DPM				8
263 /* roundup to DPM offset */
264 #define UIO_ROUNDUP(bp)			(roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \
265 					 UIO_DPM))
266 /* offset to nearest value which has lsb nibble matching DPM */
267 #define UIO_CID_OFFSET(bp)		((UIO_ROUNDUP(bp) + UIO_DPM) % \
268 					 (UIO_DPM * 2))
269 /* add offset to rounded-up cid to get a value which could be used with UIO */
270 #define UIO_DPM_ALIGN(bp)		(UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp))
271 /* but wait - avoid UIO special case for cid 0 */
272 #define UIO_DPM_CID0_OFFSET(bp)		((UIO_DPM * 2) * \
273 					 (UIO_DPM_ALIGN(bp) == UIO_DPM))
274 /* Properly DPM aligned CID dajusted to cid 0 secal case */
275 #define BNX2X_CNIC_START_ETH_CID(bp)	(UIO_DPM_ALIGN(bp) + \
276 					 (UIO_DPM_CID0_OFFSET(bp)))
277 /* how many cids were wasted  - need this value for cid allocation */
278 #define UIO_CID_PAD(bp)			(BNX2X_CNIC_START_ETH_CID(bp) - \
279 					 BNX2X_1st_NON_L2_ETH_CID(bp))
280 	/* iSCSI L2 */
281 #define	BNX2X_ISCSI_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp))
282 	/* FCoE L2 */
283 #define	BNX2X_FCOE_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp) + 1)
284 
285 #define CNIC_SUPPORT(bp)		((bp)->cnic_support)
286 #define CNIC_ENABLED(bp)		((bp)->cnic_enabled)
287 #define CNIC_LOADED(bp)			((bp)->cnic_loaded)
288 #define FCOE_INIT(bp)			((bp)->fcoe_init)
289 
290 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
291 	AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
292 
293 #define SM_RX_ID			0
294 #define SM_TX_ID			1
295 
296 /* defines for multiple tx priority indices */
297 #define FIRST_TX_ONLY_COS_INDEX		1
298 #define FIRST_TX_COS_INDEX		0
299 
300 /* rules for calculating the cids of tx-only connections */
301 #define CID_TO_FP(cid, bp)		((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp))
302 #define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \
303 				(cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
304 
305 /* fp index inside class of service range */
306 #define FP_COS_TO_TXQ(fp, cos, bp) \
307 			((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
308 
309 /* Indexes for transmission queues array:
310  * txdata for RSS i CoS j is at location i + (j * num of RSS)
311  * txdata for FCoE (if exist) is at location max cos * num of RSS
312  * txdata for FWD (if exist) is one location after FCoE
313  * txdata for OOO (if exist) is one location after FWD
314  */
315 enum {
316 	FCOE_TXQ_IDX_OFFSET,
317 	FWD_TXQ_IDX_OFFSET,
318 	OOO_TXQ_IDX_OFFSET,
319 };
320 #define MAX_ETH_TXQ_IDX(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos)
321 #define FCOE_TXQ_IDX(bp)	(MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET)
322 
323 /* fast path */
324 /*
325  * This driver uses new build_skb() API :
326  * RX ring buffer contains pointer to kmalloc() data only,
327  * skb are built only after Hardware filled the frame.
328  */
329 struct sw_rx_bd {
330 	u8		*data;
331 	DEFINE_DMA_UNMAP_ADDR(mapping);
332 };
333 
334 struct sw_tx_bd {
335 	struct sk_buff	*skb;
336 	u16		first_bd;
337 	u8		flags;
338 /* Set on the first BD descriptor when there is a split BD */
339 #define BNX2X_TSO_SPLIT_BD		(1<<0)
340 };
341 
342 struct sw_rx_page {
343 	struct page	*page;
344 	DEFINE_DMA_UNMAP_ADDR(mapping);
345 };
346 
347 union db_prod {
348 	struct doorbell_set_prod data;
349 	u32		raw;
350 };
351 
352 /* dropless fc FW/HW related params */
353 #define BRB_SIZE(bp)		(CHIP_IS_E3(bp) ? 1024 : 512)
354 #define MAX_AGG_QS(bp)		(CHIP_IS_E1(bp) ? \
355 					ETH_MAX_AGGREGATION_QUEUES_E1 :\
356 					ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
357 #define FW_DROP_LEVEL(bp)	(3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp))
358 #define FW_PREFETCH_CNT		16
359 #define DROPLESS_FC_HEADROOM	100
360 
361 /* MC hsi */
362 #define BCM_PAGE_SHIFT		12
363 #define BCM_PAGE_SIZE		(1 << BCM_PAGE_SHIFT)
364 #define BCM_PAGE_MASK		(~(BCM_PAGE_SIZE - 1))
365 #define BCM_PAGE_ALIGN(addr)	(((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
366 
367 #define PAGES_PER_SGE_SHIFT	0
368 #define PAGES_PER_SGE		(1 << PAGES_PER_SGE_SHIFT)
369 #define SGE_PAGE_SIZE		PAGE_SIZE
370 #define SGE_PAGE_SHIFT		PAGE_SHIFT
371 #define SGE_PAGE_ALIGN(addr)	PAGE_ALIGN((typeof(PAGE_SIZE))(addr))
372 #define SGE_PAGES		(SGE_PAGE_SIZE * PAGES_PER_SGE)
373 #define TPA_AGG_SIZE		min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \
374 					    SGE_PAGES), 0xffff)
375 
376 /* SGE ring related macros */
377 #define NUM_RX_SGE_PAGES	2
378 #define RX_SGE_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
379 #define NEXT_PAGE_SGE_DESC_CNT	2
380 #define MAX_RX_SGE_CNT		(RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT)
381 /* RX_SGE_CNT is promised to be a power of 2 */
382 #define RX_SGE_MASK		(RX_SGE_CNT - 1)
383 #define NUM_RX_SGE		(RX_SGE_CNT * NUM_RX_SGE_PAGES)
384 #define MAX_RX_SGE		(NUM_RX_SGE - 1)
385 #define NEXT_SGE_IDX(x)		((((x) & RX_SGE_MASK) == \
386 				  (MAX_RX_SGE_CNT - 1)) ? \
387 					(x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \
388 					(x) + 1)
389 #define RX_SGE(x)		((x) & MAX_RX_SGE)
390 
391 /*
392  * Number of required  SGEs is the sum of two:
393  * 1. Number of possible opened aggregations (next packet for
394  *    these aggregations will probably consume SGE immediately)
395  * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
396  *    after placement on BD for new TPA aggregation)
397  *
398  * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page
399  */
400 #define NUM_SGE_REQ		(MAX_AGG_QS(bp) + \
401 					(BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2)
402 #define NUM_SGE_PG_REQ		((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \
403 						MAX_RX_SGE_CNT)
404 #define SGE_TH_LO(bp)		(NUM_SGE_REQ + \
405 				 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT)
406 #define SGE_TH_HI(bp)		(SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM)
407 
408 /* Manipulate a bit vector defined as an array of u64 */
409 
410 /* Number of bits in one sge_mask array element */
411 #define BIT_VEC64_ELEM_SZ		64
412 #define BIT_VEC64_ELEM_SHIFT		6
413 #define BIT_VEC64_ELEM_MASK		((u64)BIT_VEC64_ELEM_SZ - 1)
414 
415 #define __BIT_VEC64_SET_BIT(el, bit) \
416 	do { \
417 		el = ((el) | ((u64)0x1 << (bit))); \
418 	} while (0)
419 
420 #define __BIT_VEC64_CLEAR_BIT(el, bit) \
421 	do { \
422 		el = ((el) & (~((u64)0x1 << (bit)))); \
423 	} while (0)
424 
425 #define BIT_VEC64_SET_BIT(vec64, idx) \
426 	__BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
427 			   (idx) & BIT_VEC64_ELEM_MASK)
428 
429 #define BIT_VEC64_CLEAR_BIT(vec64, idx) \
430 	__BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
431 			     (idx) & BIT_VEC64_ELEM_MASK)
432 
433 #define BIT_VEC64_TEST_BIT(vec64, idx) \
434 	(((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \
435 	((idx) & BIT_VEC64_ELEM_MASK)) & 0x1)
436 
437 /* Creates a bitmask of all ones in less significant bits.
438    idx - index of the most significant bit in the created mask */
439 #define BIT_VEC64_ONES_MASK(idx) \
440 		(((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1)
441 #define BIT_VEC64_ELEM_ONE_MASK	((u64)(~0))
442 
443 /*******************************************************/
444 
445 /* Number of u64 elements in SGE mask array */
446 #define RX_SGE_MASK_LEN			(NUM_RX_SGE / BIT_VEC64_ELEM_SZ)
447 #define RX_SGE_MASK_LEN_MASK		(RX_SGE_MASK_LEN - 1)
448 #define NEXT_SGE_MASK_ELEM(el)		(((el) + 1) & RX_SGE_MASK_LEN_MASK)
449 
450 union host_hc_status_block {
451 	/* pointer to fp status block e1x */
452 	struct host_hc_status_block_e1x *e1x_sb;
453 	/* pointer to fp status block e2 */
454 	struct host_hc_status_block_e2  *e2_sb;
455 };
456 
457 struct bnx2x_agg_info {
458 	/*
459 	 * First aggregation buffer is a data buffer, the following - are pages.
460 	 * We will preallocate the data buffer for each aggregation when
461 	 * we open the interface and will replace the BD at the consumer
462 	 * with this one when we receive the TPA_START CQE in order to
463 	 * keep the Rx BD ring consistent.
464 	 */
465 	struct sw_rx_bd		first_buf;
466 	u8			tpa_state;
467 #define BNX2X_TPA_START			1
468 #define BNX2X_TPA_STOP			2
469 #define BNX2X_TPA_ERROR			3
470 	u8			placement_offset;
471 	u16			parsing_flags;
472 	u16			vlan_tag;
473 	u16			len_on_bd;
474 	u32			rxhash;
475 	bool			l4_rxhash;
476 	u16			gro_size;
477 	u16			full_page;
478 };
479 
480 #define Q_STATS_OFFSET32(stat_name) \
481 			(offsetof(struct bnx2x_eth_q_stats, stat_name) / 4)
482 
483 struct bnx2x_fp_txdata {
484 
485 	struct sw_tx_bd		*tx_buf_ring;
486 
487 	union eth_tx_bd_types	*tx_desc_ring;
488 	dma_addr_t		tx_desc_mapping;
489 
490 	u32			cid;
491 
492 	union db_prod		tx_db;
493 
494 	u16			tx_pkt_prod;
495 	u16			tx_pkt_cons;
496 	u16			tx_bd_prod;
497 	u16			tx_bd_cons;
498 
499 	unsigned long		tx_pkt;
500 
501 	__le16			*tx_cons_sb;
502 
503 	int			txq_index;
504 	struct bnx2x_fastpath	*parent_fp;
505 	int			tx_ring_size;
506 };
507 
508 enum bnx2x_tpa_mode_t {
509 	TPA_MODE_LRO,
510 	TPA_MODE_GRO
511 };
512 
513 struct bnx2x_fastpath {
514 	struct bnx2x		*bp; /* parent */
515 
516 	struct napi_struct	napi;
517 
518 #ifdef CONFIG_NET_RX_BUSY_POLL
519 	unsigned int state;
520 #define BNX2X_FP_STATE_IDLE		      0
521 #define BNX2X_FP_STATE_NAPI		(1 << 0)    /* NAPI owns this FP */
522 #define BNX2X_FP_STATE_POLL		(1 << 1)    /* poll owns this FP */
523 #define BNX2X_FP_STATE_NAPI_YIELD	(1 << 2)    /* NAPI yielded this FP */
524 #define BNX2X_FP_STATE_POLL_YIELD	(1 << 3)    /* poll yielded this FP */
525 #define BNX2X_FP_YIELD	(BNX2X_FP_STATE_NAPI_YIELD | BNX2X_FP_STATE_POLL_YIELD)
526 #define BNX2X_FP_LOCKED	(BNX2X_FP_STATE_NAPI | BNX2X_FP_STATE_POLL)
527 #define BNX2X_FP_USER_PEND (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_POLL_YIELD)
528 	/* protect state */
529 	spinlock_t lock;
530 #endif /* CONFIG_NET_RX_BUSY_POLL */
531 
532 	union host_hc_status_block	status_blk;
533 	/* chip independent shortcuts into sb structure */
534 	__le16			*sb_index_values;
535 	__le16			*sb_running_index;
536 	/* chip independent shortcut into rx_prods_offset memory */
537 	u32			ustorm_rx_prods_offset;
538 
539 	u32			rx_buf_size;
540 	u32			rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */
541 	dma_addr_t		status_blk_mapping;
542 
543 	enum bnx2x_tpa_mode_t	mode;
544 
545 	u8			max_cos; /* actual number of active tx coses */
546 	struct bnx2x_fp_txdata	*txdata_ptr[BNX2X_MULTI_TX_COS];
547 
548 	struct sw_rx_bd		*rx_buf_ring;	/* BDs mappings ring */
549 	struct sw_rx_page	*rx_page_ring;	/* SGE pages mappings ring */
550 
551 	struct eth_rx_bd	*rx_desc_ring;
552 	dma_addr_t		rx_desc_mapping;
553 
554 	union eth_rx_cqe	*rx_comp_ring;
555 	dma_addr_t		rx_comp_mapping;
556 
557 	/* SGE ring */
558 	struct eth_rx_sge	*rx_sge_ring;
559 	dma_addr_t		rx_sge_mapping;
560 
561 	u64			sge_mask[RX_SGE_MASK_LEN];
562 
563 	u32			cid;
564 
565 	__le16			fp_hc_idx;
566 
567 	u8			index;		/* number in fp array */
568 	u8			rx_queue;	/* index for skb_record */
569 	u8			cl_id;		/* eth client id */
570 	u8			cl_qzone_id;
571 	u8			fw_sb_id;	/* status block number in FW */
572 	u8			igu_sb_id;	/* status block number in HW */
573 
574 	u16			rx_bd_prod;
575 	u16			rx_bd_cons;
576 	u16			rx_comp_prod;
577 	u16			rx_comp_cons;
578 	u16			rx_sge_prod;
579 	/* The last maximal completed SGE */
580 	u16			last_max_sge;
581 	__le16			*rx_cons_sb;
582 	unsigned long		rx_pkt,
583 				rx_calls;
584 
585 	/* TPA related */
586 	struct bnx2x_agg_info	*tpa_info;
587 	u8			disable_tpa;
588 #ifdef BNX2X_STOP_ON_ERROR
589 	u64			tpa_queue_used;
590 #endif
591 	/* The size is calculated using the following:
592 	     sizeof name field from netdev structure +
593 	     4 ('-Xx-' string) +
594 	     4 (for the digits and to make it DWORD aligned) */
595 #define FP_NAME_SIZE		(sizeof(((struct net_device *)0)->name) + 8)
596 	char			name[FP_NAME_SIZE];
597 };
598 
599 #define bnx2x_fp(bp, nr, var)	((bp)->fp[(nr)].var)
600 #define bnx2x_sp_obj(bp, fp)	((bp)->sp_objs[(fp)->index])
601 #define bnx2x_fp_stats(bp, fp)	(&((bp)->fp_stats[(fp)->index]))
602 #define bnx2x_fp_qstats(bp, fp)	(&((bp)->fp_stats[(fp)->index].eth_q_stats))
603 
604 #ifdef CONFIG_NET_RX_BUSY_POLL
605 static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
606 {
607 	spin_lock_init(&fp->lock);
608 	fp->state = BNX2X_FP_STATE_IDLE;
609 }
610 
611 /* called from the device poll routine to get ownership of a FP */
612 static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
613 {
614 	bool rc = true;
615 
616 	spin_lock(&fp->lock);
617 	if (fp->state & BNX2X_FP_LOCKED) {
618 		WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
619 		fp->state |= BNX2X_FP_STATE_NAPI_YIELD;
620 		rc = false;
621 	} else {
622 		/* we don't care if someone yielded */
623 		fp->state = BNX2X_FP_STATE_NAPI;
624 	}
625 	spin_unlock(&fp->lock);
626 	return rc;
627 }
628 
629 /* returns true is someone tried to get the FP while napi had it */
630 static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
631 {
632 	bool rc = false;
633 
634 	spin_lock(&fp->lock);
635 	WARN_ON(fp->state &
636 		(BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_NAPI_YIELD));
637 
638 	if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
639 		rc = true;
640 	fp->state = BNX2X_FP_STATE_IDLE;
641 	spin_unlock(&fp->lock);
642 	return rc;
643 }
644 
645 /* called from bnx2x_low_latency_poll() */
646 static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
647 {
648 	bool rc = true;
649 
650 	spin_lock_bh(&fp->lock);
651 	if ((fp->state & BNX2X_FP_LOCKED)) {
652 		fp->state |= BNX2X_FP_STATE_POLL_YIELD;
653 		rc = false;
654 	} else {
655 		/* preserve yield marks */
656 		fp->state |= BNX2X_FP_STATE_POLL;
657 	}
658 	spin_unlock_bh(&fp->lock);
659 	return rc;
660 }
661 
662 /* returns true if someone tried to get the FP while it was locked */
663 static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
664 {
665 	bool rc = false;
666 
667 	spin_lock_bh(&fp->lock);
668 	WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
669 
670 	if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
671 		rc = true;
672 	fp->state = BNX2X_FP_STATE_IDLE;
673 	spin_unlock_bh(&fp->lock);
674 	return rc;
675 }
676 
677 /* true if a socket is polling, even if it did not get the lock */
678 static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
679 {
680 	WARN_ON(!(fp->state & BNX2X_FP_LOCKED));
681 	return fp->state & BNX2X_FP_USER_PEND;
682 }
683 #else
684 static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
685 {
686 }
687 
688 static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
689 {
690 	return true;
691 }
692 
693 static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
694 {
695 	return false;
696 }
697 
698 static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
699 {
700 	return false;
701 }
702 
703 static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
704 {
705 	return false;
706 }
707 
708 static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
709 {
710 	return false;
711 }
712 #endif /* CONFIG_NET_RX_BUSY_POLL */
713 
714 /* Use 2500 as a mini-jumbo MTU for FCoE */
715 #define BNX2X_FCOE_MINI_JUMBO_MTU	2500
716 
717 #define	FCOE_IDX_OFFSET		0
718 
719 #define FCOE_IDX(bp)		(BNX2X_NUM_NON_CNIC_QUEUES(bp) + \
720 				 FCOE_IDX_OFFSET)
721 #define bnx2x_fcoe_fp(bp)	(&bp->fp[FCOE_IDX(bp)])
722 #define bnx2x_fcoe(bp, var)	(bnx2x_fcoe_fp(bp)->var)
723 #define bnx2x_fcoe_inner_sp_obj(bp)	(&bp->sp_objs[FCOE_IDX(bp)])
724 #define bnx2x_fcoe_sp_obj(bp, var)	(bnx2x_fcoe_inner_sp_obj(bp)->var)
725 #define bnx2x_fcoe_tx(bp, var)	(bnx2x_fcoe_fp(bp)-> \
726 						txdata_ptr[FIRST_TX_COS_INDEX] \
727 						->var)
728 
729 #define IS_ETH_FP(fp)		((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp))
730 #define IS_FCOE_FP(fp)		((fp)->index == FCOE_IDX((fp)->bp))
731 #define IS_FCOE_IDX(idx)	((idx) == FCOE_IDX(bp))
732 
733 /* MC hsi */
734 #define MAX_FETCH_BD		13	/* HW max BDs per packet */
735 #define RX_COPY_THRESH		92
736 
737 #define NUM_TX_RINGS		16
738 #define TX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
739 #define NEXT_PAGE_TX_DESC_CNT	1
740 #define MAX_TX_DESC_CNT		(TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT)
741 #define NUM_TX_BD		(TX_DESC_CNT * NUM_TX_RINGS)
742 #define MAX_TX_BD		(NUM_TX_BD - 1)
743 #define MAX_TX_AVAIL		(MAX_TX_DESC_CNT * NUM_TX_RINGS - 2)
744 #define NEXT_TX_IDX(x)		((((x) & MAX_TX_DESC_CNT) == \
745 				  (MAX_TX_DESC_CNT - 1)) ? \
746 					(x) + 1 + NEXT_PAGE_TX_DESC_CNT : \
747 					(x) + 1)
748 #define TX_BD(x)		((x) & MAX_TX_BD)
749 #define TX_BD_POFF(x)		((x) & MAX_TX_DESC_CNT)
750 
751 /* number of NEXT_PAGE descriptors may be required during placement */
752 #define NEXT_CNT_PER_TX_PKT(bds)	\
753 				(((bds) + MAX_TX_DESC_CNT - 1) / \
754 				 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT)
755 /* max BDs per tx packet w/o next_pages:
756  * START_BD		- describes packed
757  * START_BD(splitted)	- includes unpaged data segment for GSO
758  * PARSING_BD		- for TSO and CSUM data
759  * PARSING_BD2		- for encapsulation data
760  * Frag BDs		- describes pages for frags
761  */
762 #define BDS_PER_TX_PKT		4
763 #define MAX_BDS_PER_TX_PKT	(MAX_SKB_FRAGS + BDS_PER_TX_PKT)
764 /* max BDs per tx packet including next pages */
765 #define MAX_DESC_PER_TX_PKT	(MAX_BDS_PER_TX_PKT + \
766 				 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))
767 
768 /* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */
769 #define NUM_RX_RINGS		8
770 #define RX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
771 #define NEXT_PAGE_RX_DESC_CNT	2
772 #define MAX_RX_DESC_CNT		(RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT)
773 #define RX_DESC_MASK		(RX_DESC_CNT - 1)
774 #define NUM_RX_BD		(RX_DESC_CNT * NUM_RX_RINGS)
775 #define MAX_RX_BD		(NUM_RX_BD - 1)
776 #define MAX_RX_AVAIL		(MAX_RX_DESC_CNT * NUM_RX_RINGS - 2)
777 
778 /* dropless fc calculations for BDs
779  *
780  * Number of BDs should as number of buffers in BRB:
781  * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT
782  * "next" elements on each page
783  */
784 #define NUM_BD_REQ		BRB_SIZE(bp)
785 #define NUM_BD_PG_REQ		((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \
786 					      MAX_RX_DESC_CNT)
787 #define BD_TH_LO(bp)		(NUM_BD_REQ + \
788 				 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \
789 				 FW_DROP_LEVEL(bp))
790 #define BD_TH_HI(bp)		(BD_TH_LO(bp) + DROPLESS_FC_HEADROOM)
791 
792 #define MIN_RX_AVAIL		((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128)
793 
794 #define MIN_RX_SIZE_TPA_HW	(CHIP_IS_E1(bp) ? \
795 					ETH_MIN_RX_CQES_WITH_TPA_E1 : \
796 					ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
797 #define MIN_RX_SIZE_NONTPA_HW   ETH_MIN_RX_CQES_WITHOUT_TPA
798 #define MIN_RX_SIZE_TPA		(max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL))
799 #define MIN_RX_SIZE_NONTPA	(max_t(u32, MIN_RX_SIZE_NONTPA_HW,\
800 								MIN_RX_AVAIL))
801 
802 #define NEXT_RX_IDX(x)		((((x) & RX_DESC_MASK) == \
803 				  (MAX_RX_DESC_CNT - 1)) ? \
804 					(x) + 1 + NEXT_PAGE_RX_DESC_CNT : \
805 					(x) + 1)
806 #define RX_BD(x)		((x) & MAX_RX_BD)
807 
808 /*
809  * As long as CQE is X times bigger than BD entry we have to allocate X times
810  * more pages for CQ ring in order to keep it balanced with BD ring
811  */
812 #define CQE_BD_REL	(sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
813 #define NUM_RCQ_RINGS		(NUM_RX_RINGS * CQE_BD_REL)
814 #define RCQ_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
815 #define NEXT_PAGE_RCQ_DESC_CNT	1
816 #define MAX_RCQ_DESC_CNT	(RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT)
817 #define NUM_RCQ_BD		(RCQ_DESC_CNT * NUM_RCQ_RINGS)
818 #define MAX_RCQ_BD		(NUM_RCQ_BD - 1)
819 #define MAX_RCQ_AVAIL		(MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2)
820 #define NEXT_RCQ_IDX(x)		((((x) & MAX_RCQ_DESC_CNT) == \
821 				  (MAX_RCQ_DESC_CNT - 1)) ? \
822 					(x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \
823 					(x) + 1)
824 #define RCQ_BD(x)		((x) & MAX_RCQ_BD)
825 
826 /* dropless fc calculations for RCQs
827  *
828  * Number of RCQs should be as number of buffers in BRB:
829  * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT
830  * "next" elements on each page
831  */
832 #define NUM_RCQ_REQ		BRB_SIZE(bp)
833 #define NUM_RCQ_PG_REQ		((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \
834 					      MAX_RCQ_DESC_CNT)
835 #define RCQ_TH_LO(bp)		(NUM_RCQ_REQ + \
836 				 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \
837 				 FW_DROP_LEVEL(bp))
838 #define RCQ_TH_HI(bp)		(RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM)
839 
840 /* This is needed for determining of last_max */
841 #define SUB_S16(a, b)		(s16)((s16)(a) - (s16)(b))
842 #define SUB_S32(a, b)		(s32)((s32)(a) - (s32)(b))
843 
844 #define BNX2X_SWCID_SHIFT	17
845 #define BNX2X_SWCID_MASK	((0x1 << BNX2X_SWCID_SHIFT) - 1)
846 
847 /* used on a CID received from the HW */
848 #define SW_CID(x)			(le32_to_cpu(x) & BNX2X_SWCID_MASK)
849 #define CQE_CMD(x)			(le32_to_cpu(x) >> \
850 					COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
851 
852 #define BD_UNMAP_ADDR(bd)		HILO_U64(le32_to_cpu((bd)->addr_hi), \
853 						 le32_to_cpu((bd)->addr_lo))
854 #define BD_UNMAP_LEN(bd)		(le16_to_cpu((bd)->nbytes))
855 
856 #define BNX2X_DB_MIN_SHIFT		3	/* 8 bytes */
857 #define BNX2X_DB_SHIFT			3	/* 8 bytes*/
858 #if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
859 #error "Min DB doorbell stride is 8"
860 #endif
861 #define DOORBELL(bp, cid, val) \
862 	do { \
863 		writel((u32)(val), bp->doorbells + (bp->db_size * (cid))); \
864 	} while (0)
865 
866 /* TX CSUM helpers */
867 #define SKB_CS_OFF(skb)		(offsetof(struct tcphdr, check) - \
868 				 skb->csum_offset)
869 #define SKB_CS(skb)		(*(u16 *)(skb_transport_header(skb) + \
870 					  skb->csum_offset))
871 
872 #define pbd_tcp_flags(tcp_hdr)	(ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff)
873 
874 #define XMIT_PLAIN		0
875 #define XMIT_CSUM_V4		(1 << 0)
876 #define XMIT_CSUM_V6		(1 << 1)
877 #define XMIT_CSUM_TCP		(1 << 2)
878 #define XMIT_GSO_V4		(1 << 3)
879 #define XMIT_GSO_V6		(1 << 4)
880 #define XMIT_CSUM_ENC_V4	(1 << 5)
881 #define XMIT_CSUM_ENC_V6	(1 << 6)
882 #define XMIT_GSO_ENC_V4		(1 << 7)
883 #define XMIT_GSO_ENC_V6		(1 << 8)
884 
885 #define XMIT_CSUM_ENC		(XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6)
886 #define XMIT_GSO_ENC		(XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6)
887 
888 #define XMIT_CSUM		(XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC)
889 #define XMIT_GSO		(XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC)
890 
891 /* stuff added to make the code fit 80Col */
892 #define CQE_TYPE(cqe_fp_flags)	 ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
893 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
894 #define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
895 #define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
896 #define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
897 
898 #define ETH_RX_ERROR_FALGS		ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG
899 
900 #define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \
901 				(((le16_to_cpu(flags) & \
902 				   PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \
903 				  PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \
904 				 == PRS_FLAG_OVERETH_IPV4)
905 #define BNX2X_RX_SUM_FIX(cqe) \
906 	BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags)
907 
908 #define FP_USB_FUNC_OFF	\
909 			offsetof(struct cstorm_status_block_u, func)
910 #define FP_CSB_FUNC_OFF	\
911 			offsetof(struct cstorm_status_block_c, func)
912 
913 #define HC_INDEX_ETH_RX_CQ_CONS		1
914 
915 #define HC_INDEX_OOO_TX_CQ_CONS		4
916 
917 #define HC_INDEX_ETH_TX_CQ_CONS_COS0	5
918 
919 #define HC_INDEX_ETH_TX_CQ_CONS_COS1	6
920 
921 #define HC_INDEX_ETH_TX_CQ_CONS_COS2	7
922 
923 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS	HC_INDEX_ETH_TX_CQ_CONS_COS0
924 
925 #define BNX2X_RX_SB_INDEX \
926 	(&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS])
927 
928 #define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0
929 
930 #define BNX2X_TX_SB_INDEX_COS0 \
931 	(&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0])
932 
933 /* end of fast path */
934 
935 /* common */
936 
937 struct bnx2x_common {
938 
939 	u32			chip_id;
940 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
941 #define CHIP_ID(bp)			(bp->common.chip_id & 0xfffffff0)
942 
943 #define CHIP_NUM(bp)			(bp->common.chip_id >> 16)
944 #define CHIP_NUM_57710			0x164e
945 #define CHIP_NUM_57711			0x164f
946 #define CHIP_NUM_57711E			0x1650
947 #define CHIP_NUM_57712			0x1662
948 #define CHIP_NUM_57712_MF		0x1663
949 #define CHIP_NUM_57712_VF		0x166f
950 #define CHIP_NUM_57713			0x1651
951 #define CHIP_NUM_57713E			0x1652
952 #define CHIP_NUM_57800			0x168a
953 #define CHIP_NUM_57800_MF		0x16a5
954 #define CHIP_NUM_57800_VF		0x16a9
955 #define CHIP_NUM_57810			0x168e
956 #define CHIP_NUM_57810_MF		0x16ae
957 #define CHIP_NUM_57810_VF		0x16af
958 #define CHIP_NUM_57811			0x163d
959 #define CHIP_NUM_57811_MF		0x163e
960 #define CHIP_NUM_57811_VF		0x163f
961 #define CHIP_NUM_57840_OBSOLETE		0x168d
962 #define CHIP_NUM_57840_MF_OBSOLETE	0x16ab
963 #define CHIP_NUM_57840_4_10		0x16a1
964 #define CHIP_NUM_57840_2_20		0x16a2
965 #define CHIP_NUM_57840_MF		0x16a4
966 #define CHIP_NUM_57840_VF		0x16ad
967 #define CHIP_IS_E1(bp)			(CHIP_NUM(bp) == CHIP_NUM_57710)
968 #define CHIP_IS_57711(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711)
969 #define CHIP_IS_57711E(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711E)
970 #define CHIP_IS_57712(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712)
971 #define CHIP_IS_57712_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_VF)
972 #define CHIP_IS_57712_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_MF)
973 #define CHIP_IS_57800(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800)
974 #define CHIP_IS_57800_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_MF)
975 #define CHIP_IS_57800_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_VF)
976 #define CHIP_IS_57810(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810)
977 #define CHIP_IS_57810_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_MF)
978 #define CHIP_IS_57810_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_VF)
979 #define CHIP_IS_57811(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811)
980 #define CHIP_IS_57811_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_MF)
981 #define CHIP_IS_57811_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_VF)
982 #define CHIP_IS_57840(bp)		\
983 		((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \
984 		 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \
985 		 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE))
986 #define CHIP_IS_57840_MF(bp)	((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \
987 				 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE))
988 #define CHIP_IS_57840_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57840_VF)
989 #define CHIP_IS_E1H(bp)			(CHIP_IS_57711(bp) || \
990 					 CHIP_IS_57711E(bp))
991 #define CHIP_IS_57811xx(bp)		(CHIP_IS_57811(bp) || \
992 					 CHIP_IS_57811_MF(bp) || \
993 					 CHIP_IS_57811_VF(bp))
994 #define CHIP_IS_E2(bp)			(CHIP_IS_57712(bp) || \
995 					 CHIP_IS_57712_MF(bp) || \
996 					 CHIP_IS_57712_VF(bp))
997 #define CHIP_IS_E3(bp)			(CHIP_IS_57800(bp) || \
998 					 CHIP_IS_57800_MF(bp) || \
999 					 CHIP_IS_57800_VF(bp) || \
1000 					 CHIP_IS_57810(bp) || \
1001 					 CHIP_IS_57810_MF(bp) || \
1002 					 CHIP_IS_57810_VF(bp) || \
1003 					 CHIP_IS_57811xx(bp) || \
1004 					 CHIP_IS_57840(bp) || \
1005 					 CHIP_IS_57840_MF(bp) || \
1006 					 CHIP_IS_57840_VF(bp))
1007 #define CHIP_IS_E1x(bp)			(CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp)))
1008 #define USES_WARPCORE(bp)		(CHIP_IS_E3(bp))
1009 #define IS_E1H_OFFSET			(!CHIP_IS_E1(bp))
1010 
1011 #define CHIP_REV_SHIFT			12
1012 #define CHIP_REV_MASK			(0xF << CHIP_REV_SHIFT)
1013 #define CHIP_REV_VAL(bp)		(bp->common.chip_id & CHIP_REV_MASK)
1014 #define CHIP_REV_Ax			(0x0 << CHIP_REV_SHIFT)
1015 #define CHIP_REV_Bx			(0x1 << CHIP_REV_SHIFT)
1016 /* assume maximum 5 revisions */
1017 #define CHIP_REV_IS_SLOW(bp)		(CHIP_REV_VAL(bp) > 0x00005000)
1018 /* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */
1019 #define CHIP_REV_IS_EMUL(bp)		((CHIP_REV_IS_SLOW(bp)) && \
1020 					 !(CHIP_REV_VAL(bp) & 0x00001000))
1021 /* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */
1022 #define CHIP_REV_IS_FPGA(bp)		((CHIP_REV_IS_SLOW(bp)) && \
1023 					 (CHIP_REV_VAL(bp) & 0x00001000))
1024 
1025 #define CHIP_TIME(bp)			((CHIP_REV_IS_EMUL(bp)) ? 2000 : \
1026 					((CHIP_REV_IS_FPGA(bp)) ? 200 : 1))
1027 
1028 #define CHIP_METAL(bp)			(bp->common.chip_id & 0x00000ff0)
1029 #define CHIP_BOND_ID(bp)		(bp->common.chip_id & 0x0000000f)
1030 #define CHIP_REV_SIM(bp)		(((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\
1031 					   (CHIP_REV_SHIFT + 1)) \
1032 						<< CHIP_REV_SHIFT)
1033 #define CHIP_REV(bp)			(CHIP_REV_IS_SLOW(bp) ? \
1034 						CHIP_REV_SIM(bp) :\
1035 						CHIP_REV_VAL(bp))
1036 #define CHIP_IS_E3B0(bp)		(CHIP_IS_E3(bp) && \
1037 					 (CHIP_REV(bp) == CHIP_REV_Bx))
1038 #define CHIP_IS_E3A0(bp)		(CHIP_IS_E3(bp) && \
1039 					 (CHIP_REV(bp) == CHIP_REV_Ax))
1040 /* This define is used in two main places:
1041  * 1. In the early stages of nic_load, to know if to configure Parser / Searcher
1042  * to nic-only mode or to offload mode. Offload mode is configured if either the
1043  * chip is E1x (where MIC_MODE register is not applicable), or if cnic already
1044  * registered for this port (which means that the user wants storage services).
1045  * 2. During cnic-related load, to know if offload mode is already configured in
1046  * the HW or needs to be configured.
1047  * Since the transition from nic-mode to offload-mode in HW causes traffic
1048  * corruption, nic-mode is configured only in ports on which storage services
1049  * where never requested.
1050  */
1051 #define CONFIGURE_NIC_MODE(bp)		(!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp))
1052 
1053 	int			flash_size;
1054 #define BNX2X_NVRAM_1MB_SIZE			0x20000	/* 1M bit in bytes */
1055 #define BNX2X_NVRAM_TIMEOUT_COUNT		30000
1056 #define BNX2X_NVRAM_PAGE_SIZE			256
1057 
1058 	u32			shmem_base;
1059 	u32			shmem2_base;
1060 	u32			mf_cfg_base;
1061 	u32			mf2_cfg_base;
1062 
1063 	u32			hw_config;
1064 
1065 	u32			bc_ver;
1066 
1067 	u8			int_block;
1068 #define INT_BLOCK_HC			0
1069 #define INT_BLOCK_IGU			1
1070 #define INT_BLOCK_MODE_NORMAL		0
1071 #define INT_BLOCK_MODE_BW_COMP		2
1072 #define CHIP_INT_MODE_IS_NBC(bp)		\
1073 			(!CHIP_IS_E1x(bp) &&	\
1074 			!((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP))
1075 #define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp))
1076 
1077 	u8			chip_port_mode;
1078 #define CHIP_4_PORT_MODE			0x0
1079 #define CHIP_2_PORT_MODE			0x1
1080 #define CHIP_PORT_MODE_NONE			0x2
1081 #define CHIP_MODE(bp)			(bp->common.chip_port_mode)
1082 #define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE)
1083 
1084 	u32			boot_mode;
1085 };
1086 
1087 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
1088 #define BNX2X_IGU_STAS_MSG_VF_CNT 64
1089 #define BNX2X_IGU_STAS_MSG_PF_CNT 4
1090 
1091 #define MAX_IGU_ATTN_ACK_TO       100
1092 /* end of common */
1093 
1094 /* port */
1095 
1096 struct bnx2x_port {
1097 	u32			pmf;
1098 
1099 	u32			link_config[LINK_CONFIG_SIZE];
1100 
1101 	u32			supported[LINK_CONFIG_SIZE];
1102 /* link settings - missing defines */
1103 #define SUPPORTED_2500baseX_Full	(1 << 15)
1104 
1105 	u32			advertising[LINK_CONFIG_SIZE];
1106 /* link settings - missing defines */
1107 #define ADVERTISED_2500baseX_Full	(1 << 15)
1108 
1109 	u32			phy_addr;
1110 
1111 	/* used to synchronize phy accesses */
1112 	struct mutex		phy_mutex;
1113 
1114 	u32			port_stx;
1115 
1116 	struct nig_stats	old_nig_stats;
1117 };
1118 
1119 /* end of port */
1120 
1121 #define STATS_OFFSET32(stat_name) \
1122 			(offsetof(struct bnx2x_eth_stats, stat_name) / 4)
1123 
1124 /* slow path */
1125 
1126 /* slow path work-queue */
1127 extern struct workqueue_struct *bnx2x_wq;
1128 
1129 #define BNX2X_MAX_NUM_OF_VFS	64
1130 #define BNX2X_VF_CID_WND	4 /* log num of queues per VF. HW config. */
1131 #define BNX2X_CIDS_PER_VF	(1 << BNX2X_VF_CID_WND)
1132 
1133 /* We need to reserve doorbell addresses for all VF and queue combinations */
1134 #define BNX2X_VF_CIDS		(BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF)
1135 
1136 /* The doorbell is configured to have the same number of CIDs for PFs and for
1137  * VFs. For this reason the PF CID zone is as large as the VF zone.
1138  */
1139 #define BNX2X_FIRST_VF_CID	BNX2X_VF_CIDS
1140 #define BNX2X_MAX_NUM_VF_QUEUES	64
1141 #define BNX2X_VF_ID_INVALID	0xFF
1142 
1143 /* the number of VF CIDS multiplied by the amount of bytes reserved for each
1144  * cid must not exceed the size of the VF doorbell
1145  */
1146 #define BNX2X_VF_BAR_SIZE	512
1147 #if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT))
1148 #error "VF doorbell bar size is 512"
1149 #endif
1150 
1151 /*
1152  * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
1153  * control by the number of fast-path status blocks supported by the
1154  * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
1155  * status block represents an independent interrupts context that can
1156  * serve a regular L2 networking queue. However special L2 queues such
1157  * as the FCoE queue do not require a FP-SB and other components like
1158  * the CNIC may consume FP-SB reducing the number of possible L2 queues
1159  *
1160  * If the maximum number of FP-SB available is X then:
1161  * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
1162  *    regular L2 queues is Y=X-1
1163  * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
1164  * c. If the FCoE L2 queue is supported the actual number of L2 queues
1165  *    is Y+1
1166  * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
1167  *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
1168  *    FP interrupt context for the CNIC).
1169  * e. The number of HW context (CID count) is always X or X+1 if FCoE
1170  *    L2 queue is supported. The cid for the FCoE L2 queue is always X.
1171  */
1172 
1173 /* fast-path interrupt contexts E1x */
1174 #define FP_SB_MAX_E1x		16
1175 /* fast-path interrupt contexts E2 */
1176 #define FP_SB_MAX_E2		HC_SB_MAX_SB_E2
1177 
1178 union cdu_context {
1179 	struct eth_context eth;
1180 	char pad[1024];
1181 };
1182 
1183 /* CDU host DB constants */
1184 #define CDU_ILT_PAGE_SZ_HW	2
1185 #define CDU_ILT_PAGE_SZ		(8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
1186 #define ILT_PAGE_CIDS		(CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
1187 
1188 #define CNIC_ISCSI_CID_MAX	256
1189 #define CNIC_FCOE_CID_MAX	2048
1190 #define CNIC_CID_MAX		(CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
1191 #define CNIC_ILT_LINES		DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
1192 
1193 #define QM_ILT_PAGE_SZ_HW	0
1194 #define QM_ILT_PAGE_SZ		(4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
1195 #define QM_CID_ROUND		1024
1196 
1197 /* TM (timers) host DB constants */
1198 #define TM_ILT_PAGE_SZ_HW	0
1199 #define TM_ILT_PAGE_SZ		(4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
1200 /* #define TM_CONN_NUM		(CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
1201 #define TM_CONN_NUM		1024
1202 #define TM_ILT_SZ		(8 * TM_CONN_NUM)
1203 #define TM_ILT_LINES		DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
1204 
1205 /* SRC (Searcher) host DB constants */
1206 #define SRC_ILT_PAGE_SZ_HW	0
1207 #define SRC_ILT_PAGE_SZ		(4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
1208 #define SRC_HASH_BITS		10
1209 #define SRC_CONN_NUM		(1 << SRC_HASH_BITS) /* 1024 */
1210 #define SRC_ILT_SZ		(sizeof(struct src_ent) * SRC_CONN_NUM)
1211 #define SRC_T2_SZ		SRC_ILT_SZ
1212 #define SRC_ILT_LINES		DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
1213 
1214 #define MAX_DMAE_C		8
1215 
1216 /* DMA memory not used in fastpath */
1217 struct bnx2x_slowpath {
1218 	union {
1219 		struct mac_configuration_cmd		e1x;
1220 		struct eth_classify_rules_ramrod_data	e2;
1221 	} mac_rdata;
1222 
1223 	union {
1224 		struct tstorm_eth_mac_filter_config	e1x;
1225 		struct eth_filter_rules_ramrod_data	e2;
1226 	} rx_mode_rdata;
1227 
1228 	union {
1229 		struct mac_configuration_cmd		e1;
1230 		struct eth_multicast_rules_ramrod_data  e2;
1231 	} mcast_rdata;
1232 
1233 	struct eth_rss_update_ramrod_data	rss_rdata;
1234 
1235 	/* Queue State related ramrods are always sent under rtnl_lock */
1236 	union {
1237 		struct client_init_ramrod_data  init_data;
1238 		struct client_update_ramrod_data update_data;
1239 	} q_rdata;
1240 
1241 	union {
1242 		struct function_start_data	func_start;
1243 		/* pfc configuration for DCBX ramrod */
1244 		struct flow_control_configuration pfc_config;
1245 	} func_rdata;
1246 
1247 	/* afex ramrod can not be a part of func_rdata union because these
1248 	 * events might arrive in parallel to other events from func_rdata.
1249 	 * Therefore, if they would have been defined in the same union,
1250 	 * data can get corrupted.
1251 	 */
1252 	struct afex_vif_list_ramrod_data func_afex_rdata;
1253 
1254 	/* used by dmae command executer */
1255 	struct dmae_command		dmae[MAX_DMAE_C];
1256 
1257 	u32				stats_comp;
1258 	union mac_stats			mac_stats;
1259 	struct nig_stats		nig_stats;
1260 	struct host_port_stats		port_stats;
1261 	struct host_func_stats		func_stats;
1262 
1263 	u32				wb_comp;
1264 	u32				wb_data[4];
1265 
1266 	union drv_info_to_mcp		drv_info_to_mcp;
1267 };
1268 
1269 #define bnx2x_sp(bp, var)		(&bp->slowpath->var)
1270 #define bnx2x_sp_mapping(bp, var) \
1271 		(bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var))
1272 
1273 /* attn group wiring */
1274 #define MAX_DYNAMIC_ATTN_GRPS		8
1275 
1276 struct attn_route {
1277 	u32 sig[5];
1278 };
1279 
1280 struct iro {
1281 	u32 base;
1282 	u16 m1;
1283 	u16 m2;
1284 	u16 m3;
1285 	u16 size;
1286 };
1287 
1288 struct hw_context {
1289 	union cdu_context *vcxt;
1290 	dma_addr_t cxt_mapping;
1291 	size_t size;
1292 };
1293 
1294 /* forward */
1295 struct bnx2x_ilt;
1296 
1297 struct bnx2x_vfdb;
1298 
1299 enum bnx2x_recovery_state {
1300 	BNX2X_RECOVERY_DONE,
1301 	BNX2X_RECOVERY_INIT,
1302 	BNX2X_RECOVERY_WAIT,
1303 	BNX2X_RECOVERY_FAILED,
1304 	BNX2X_RECOVERY_NIC_LOADING
1305 };
1306 
1307 /*
1308  * Event queue (EQ or event ring) MC hsi
1309  * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2
1310  */
1311 #define NUM_EQ_PAGES		1
1312 #define EQ_DESC_CNT_PAGE	(BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1313 #define EQ_DESC_MAX_PAGE	(EQ_DESC_CNT_PAGE - 1)
1314 #define NUM_EQ_DESC		(EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1315 #define EQ_DESC_MASK		(NUM_EQ_DESC - 1)
1316 #define MAX_EQ_AVAIL		(EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1317 
1318 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1319 #define NEXT_EQ_IDX(x)		((((x) & EQ_DESC_MAX_PAGE) == \
1320 				  (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1)
1321 
1322 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1323 #define EQ_DESC(x)		((x) & EQ_DESC_MASK)
1324 
1325 #define BNX2X_EQ_INDEX \
1326 	(&bp->def_status_blk->sp_sb.\
1327 	index_values[HC_SP_INDEX_EQ_CONS])
1328 
1329 /* This is a data that will be used to create a link report message.
1330  * We will keep the data used for the last link report in order
1331  * to prevent reporting the same link parameters twice.
1332  */
1333 struct bnx2x_link_report_data {
1334 	u16 line_speed;			/* Effective line speed */
1335 	unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */
1336 };
1337 
1338 enum {
1339 	BNX2X_LINK_REPORT_FD,		/* Full DUPLEX */
1340 	BNX2X_LINK_REPORT_LINK_DOWN,
1341 	BNX2X_LINK_REPORT_RX_FC_ON,
1342 	BNX2X_LINK_REPORT_TX_FC_ON,
1343 };
1344 
1345 enum {
1346 	BNX2X_PORT_QUERY_IDX,
1347 	BNX2X_PF_QUERY_IDX,
1348 	BNX2X_FCOE_QUERY_IDX,
1349 	BNX2X_FIRST_QUEUE_QUERY_IDX,
1350 };
1351 
1352 struct bnx2x_fw_stats_req {
1353 	struct stats_query_header hdr;
1354 	struct stats_query_entry query[FP_SB_MAX_E1x+
1355 		BNX2X_FIRST_QUEUE_QUERY_IDX];
1356 };
1357 
1358 struct bnx2x_fw_stats_data {
1359 	struct stats_counter		storm_counters;
1360 	struct per_port_stats		port;
1361 	struct per_pf_stats		pf;
1362 	struct fcoe_statistics_params	fcoe;
1363 	struct per_queue_stats		queue_stats[1];
1364 };
1365 
1366 /* Public slow path states */
1367 enum {
1368 	BNX2X_SP_RTNL_SETUP_TC,
1369 	BNX2X_SP_RTNL_TX_TIMEOUT,
1370 	BNX2X_SP_RTNL_FAN_FAILURE,
1371 	BNX2X_SP_RTNL_AFEX_F_UPDATE,
1372 	BNX2X_SP_RTNL_ENABLE_SRIOV,
1373 	BNX2X_SP_RTNL_VFPF_MCAST,
1374 	BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
1375 	BNX2X_SP_RTNL_RX_MODE,
1376 	BNX2X_SP_RTNL_HYPERVISOR_VLAN,
1377 	BNX2X_SP_RTNL_TX_STOP,
1378 	BNX2X_SP_RTNL_TX_RESUME,
1379 };
1380 
1381 struct bnx2x_prev_path_list {
1382 	struct list_head list;
1383 	u8 bus;
1384 	u8 slot;
1385 	u8 path;
1386 	u8 aer;
1387 	u8 undi;
1388 };
1389 
1390 struct bnx2x_sp_objs {
1391 	/* MACs object */
1392 	struct bnx2x_vlan_mac_obj mac_obj;
1393 
1394 	/* Queue State object */
1395 	struct bnx2x_queue_sp_obj q_obj;
1396 };
1397 
1398 struct bnx2x_fp_stats {
1399 	struct tstorm_per_queue_stats old_tclient;
1400 	struct ustorm_per_queue_stats old_uclient;
1401 	struct xstorm_per_queue_stats old_xclient;
1402 	struct bnx2x_eth_q_stats eth_q_stats;
1403 	struct bnx2x_eth_q_stats_old eth_q_stats_old;
1404 };
1405 
1406 struct bnx2x {
1407 	/* Fields used in the tx and intr/napi performance paths
1408 	 * are grouped together in the beginning of the structure
1409 	 */
1410 	struct bnx2x_fastpath	*fp;
1411 	struct bnx2x_sp_objs	*sp_objs;
1412 	struct bnx2x_fp_stats	*fp_stats;
1413 	struct bnx2x_fp_txdata	*bnx2x_txq;
1414 	void __iomem		*regview;
1415 	void __iomem		*doorbells;
1416 	u16			db_size;
1417 
1418 	u8			pf_num;	/* absolute PF number */
1419 	u8			pfid;	/* per-path PF number */
1420 	int			base_fw_ndsb; /**/
1421 #define BP_PATH(bp)			(CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1))
1422 #define BP_PORT(bp)			(bp->pfid & 1)
1423 #define BP_FUNC(bp)			(bp->pfid)
1424 #define BP_ABS_FUNC(bp)			(bp->pf_num)
1425 #define BP_VN(bp)			((bp)->pfid >> 1)
1426 #define BP_MAX_VN_NUM(bp)		(CHIP_MODE_IS_4_PORT(bp) ? 2 : 4)
1427 #define BP_L_ID(bp)			(BP_VN(bp) << 2)
1428 #define BP_FW_MB_IDX_VN(bp, vn)		(BP_PORT(bp) +\
1429 	  (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2  : 1))
1430 #define BP_FW_MB_IDX(bp)		BP_FW_MB_IDX_VN(bp, BP_VN(bp))
1431 
1432 #ifdef CONFIG_BNX2X_SRIOV
1433 	/* protects vf2pf mailbox from simultaneous access */
1434 	struct mutex		vf2pf_mutex;
1435 	/* vf pf channel mailbox contains request and response buffers */
1436 	struct bnx2x_vf_mbx_msg	*vf2pf_mbox;
1437 	dma_addr_t		vf2pf_mbox_mapping;
1438 
1439 	/* we set aside a copy of the acquire response */
1440 	struct pfvf_acquire_resp_tlv acquire_resp;
1441 
1442 	/* bulletin board for messages from pf to vf */
1443 	union pf_vf_bulletin   *pf2vf_bulletin;
1444 	dma_addr_t		pf2vf_bulletin_mapping;
1445 
1446 	struct pf_vf_bulletin_content	old_bulletin;
1447 
1448 	u16 requested_nr_virtfn;
1449 #endif /* CONFIG_BNX2X_SRIOV */
1450 
1451 	struct net_device	*dev;
1452 	struct pci_dev		*pdev;
1453 
1454 	const struct iro	*iro_arr;
1455 #define IRO (bp->iro_arr)
1456 
1457 	enum bnx2x_recovery_state recovery_state;
1458 	int			is_leader;
1459 	struct msix_entry	*msix_table;
1460 
1461 	int			tx_ring_size;
1462 
1463 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
1464 #define ETH_OVREHEAD		(ETH_HLEN + 8 + 8)
1465 #define ETH_MIN_PACKET_SIZE		60
1466 #define ETH_MAX_PACKET_SIZE		1500
1467 #define ETH_MAX_JUMBO_PACKET_SIZE	9600
1468 /* TCP with Timestamp Option (32) + IPv6 (40) */
1469 #define ETH_MAX_TPA_HEADER_SIZE		72
1470 
1471 	/* Max supported alignment is 256 (8 shift) */
1472 #define BNX2X_RX_ALIGN_SHIFT		min(8, L1_CACHE_SHIFT)
1473 
1474 	/* FW uses 2 Cache lines Alignment for start packet and size
1475 	 *
1476 	 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes
1477 	 * at the end of skb->data, to avoid wasting a full cache line.
1478 	 * This reduces memory use (skb->truesize).
1479 	 */
1480 #define BNX2X_FW_RX_ALIGN_START	(1UL << BNX2X_RX_ALIGN_SHIFT)
1481 
1482 #define BNX2X_FW_RX_ALIGN_END					\
1483 	max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT,			\
1484 	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
1485 
1486 #define BNX2X_PXP_DRAM_ALIGN		(BNX2X_RX_ALIGN_SHIFT - 5)
1487 
1488 	struct host_sp_status_block *def_status_blk;
1489 #define DEF_SB_IGU_ID			16
1490 #define DEF_SB_ID			HC_SP_SB_ID
1491 	__le16			def_idx;
1492 	__le16			def_att_idx;
1493 	u32			attn_state;
1494 	struct attn_route	attn_group[MAX_DYNAMIC_ATTN_GRPS];
1495 
1496 	/* slow path ring */
1497 	struct eth_spe		*spq;
1498 	dma_addr_t		spq_mapping;
1499 	u16			spq_prod_idx;
1500 	struct eth_spe		*spq_prod_bd;
1501 	struct eth_spe		*spq_last_bd;
1502 	__le16			*dsb_sp_prod;
1503 	atomic_t		cq_spq_left; /* ETH_XXX ramrods credit */
1504 	/* used to synchronize spq accesses */
1505 	spinlock_t		spq_lock;
1506 
1507 	/* event queue */
1508 	union event_ring_elem	*eq_ring;
1509 	dma_addr_t		eq_mapping;
1510 	u16			eq_prod;
1511 	u16			eq_cons;
1512 	__le16			*eq_cons_sb;
1513 	atomic_t		eq_spq_left; /* COMMON_XXX ramrods credit */
1514 
1515 	/* Counter for marking that there is a STAT_QUERY ramrod pending */
1516 	u16			stats_pending;
1517 	/*  Counter for completed statistics ramrods */
1518 	u16			stats_comp;
1519 
1520 	/* End of fields used in the performance code paths */
1521 
1522 	int			panic;
1523 	int			msg_enable;
1524 
1525 	u32			flags;
1526 #define PCIX_FLAG			(1 << 0)
1527 #define PCI_32BIT_FLAG			(1 << 1)
1528 #define ONE_PORT_FLAG			(1 << 2)
1529 #define NO_WOL_FLAG			(1 << 3)
1530 #define USING_DAC_FLAG			(1 << 4)
1531 #define USING_MSIX_FLAG			(1 << 5)
1532 #define USING_MSI_FLAG			(1 << 6)
1533 #define DISABLE_MSI_FLAG		(1 << 7)
1534 #define TPA_ENABLE_FLAG			(1 << 8)
1535 #define NO_MCP_FLAG			(1 << 9)
1536 #define GRO_ENABLE_FLAG			(1 << 10)
1537 #define MF_FUNC_DIS			(1 << 11)
1538 #define OWN_CNIC_IRQ			(1 << 12)
1539 #define NO_ISCSI_OOO_FLAG		(1 << 13)
1540 #define NO_ISCSI_FLAG			(1 << 14)
1541 #define NO_FCOE_FLAG			(1 << 15)
1542 #define BC_SUPPORTS_PFC_STATS		(1 << 17)
1543 #define BC_SUPPORTS_FCOE_FEATURES	(1 << 19)
1544 #define USING_SINGLE_MSIX_FLAG		(1 << 20)
1545 #define BC_SUPPORTS_DCBX_MSG_NON_PMF	(1 << 21)
1546 #define IS_VF_FLAG			(1 << 22)
1547 #define INTERRUPTS_ENABLED_FLAG		(1 << 23)
1548 #define BC_SUPPORTS_RMMOD_CMD		(1 << 24)
1549 
1550 #define BP_NOMCP(bp)			((bp)->flags & NO_MCP_FLAG)
1551 
1552 #ifdef CONFIG_BNX2X_SRIOV
1553 #define IS_VF(bp)			((bp)->flags & IS_VF_FLAG)
1554 #define IS_PF(bp)			(!((bp)->flags & IS_VF_FLAG))
1555 #else
1556 #define IS_VF(bp)			false
1557 #define IS_PF(bp)			true
1558 #endif
1559 
1560 #define NO_ISCSI(bp)		((bp)->flags & NO_ISCSI_FLAG)
1561 #define NO_ISCSI_OOO(bp)	((bp)->flags & NO_ISCSI_OOO_FLAG)
1562 #define NO_FCOE(bp)		((bp)->flags & NO_FCOE_FLAG)
1563 
1564 	u8			cnic_support;
1565 	bool			cnic_enabled;
1566 	bool			cnic_loaded;
1567 	struct cnic_eth_dev	*(*cnic_probe)(struct net_device *);
1568 
1569 	/* Flag that indicates that we can start looking for FCoE L2 queue
1570 	 * completions in the default status block.
1571 	 */
1572 	bool			fcoe_init;
1573 
1574 	int			mrrs;
1575 
1576 	struct delayed_work	sp_task;
1577 	atomic_t		interrupt_occurred;
1578 	struct delayed_work	sp_rtnl_task;
1579 
1580 	struct delayed_work	period_task;
1581 	struct timer_list	timer;
1582 	int			current_interval;
1583 
1584 	u16			fw_seq;
1585 	u16			fw_drv_pulse_wr_seq;
1586 	u32			func_stx;
1587 
1588 	struct link_params	link_params;
1589 	struct link_vars	link_vars;
1590 	u32			link_cnt;
1591 	struct bnx2x_link_report_data last_reported_link;
1592 
1593 	struct mdio_if_info	mdio;
1594 
1595 	struct bnx2x_common	common;
1596 	struct bnx2x_port	port;
1597 
1598 	struct cmng_init	cmng;
1599 
1600 	u32			mf_config[E1HVN_MAX];
1601 	u32			mf_ext_config;
1602 	u32			path_has_ovlan; /* E3 */
1603 	u16			mf_ov;
1604 	u8			mf_mode;
1605 #define IS_MF(bp)		(bp->mf_mode != 0)
1606 #define IS_MF_SI(bp)		(bp->mf_mode == MULTI_FUNCTION_SI)
1607 #define IS_MF_SD(bp)		(bp->mf_mode == MULTI_FUNCTION_SD)
1608 #define IS_MF_AFEX(bp)		(bp->mf_mode == MULTI_FUNCTION_AFEX)
1609 
1610 	u8			wol;
1611 
1612 	int			rx_ring_size;
1613 
1614 	u16			tx_quick_cons_trip_int;
1615 	u16			tx_quick_cons_trip;
1616 	u16			tx_ticks_int;
1617 	u16			tx_ticks;
1618 
1619 	u16			rx_quick_cons_trip_int;
1620 	u16			rx_quick_cons_trip;
1621 	u16			rx_ticks_int;
1622 	u16			rx_ticks;
1623 /* Maximal coalescing timeout in us */
1624 #define BNX2X_MAX_COALESCE_TOUT		(0xf0*12)
1625 
1626 	u32			lin_cnt;
1627 
1628 	u16			state;
1629 #define BNX2X_STATE_CLOSED		0
1630 #define BNX2X_STATE_OPENING_WAIT4_LOAD	0x1000
1631 #define BNX2X_STATE_OPENING_WAIT4_PORT	0x2000
1632 #define BNX2X_STATE_OPEN		0x3000
1633 #define BNX2X_STATE_CLOSING_WAIT4_HALT	0x4000
1634 #define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000
1635 
1636 #define BNX2X_STATE_DIAG		0xe000
1637 #define BNX2X_STATE_ERROR		0xf000
1638 
1639 #define BNX2X_MAX_PRIORITY		8
1640 #define BNX2X_MAX_ENTRIES_PER_PRI	16
1641 #define BNX2X_MAX_COS			3
1642 #define BNX2X_MAX_TX_COS		2
1643 	int			num_queues;
1644 	uint			num_ethernet_queues;
1645 	uint			num_cnic_queues;
1646 	int			num_napi_queues;
1647 	int			disable_tpa;
1648 
1649 	u32			rx_mode;
1650 #define BNX2X_RX_MODE_NONE		0
1651 #define BNX2X_RX_MODE_NORMAL		1
1652 #define BNX2X_RX_MODE_ALLMULTI		2
1653 #define BNX2X_RX_MODE_PROMISC		3
1654 #define BNX2X_MAX_MULTICAST		64
1655 
1656 	u8			igu_dsb_id;
1657 	u8			igu_base_sb;
1658 	u8			igu_sb_cnt;
1659 	u8			min_msix_vec_cnt;
1660 
1661 	u32			igu_base_addr;
1662 	dma_addr_t		def_status_blk_mapping;
1663 
1664 	struct bnx2x_slowpath	*slowpath;
1665 	dma_addr_t		slowpath_mapping;
1666 
1667 	/* Total number of FW statistics requests */
1668 	u8			fw_stats_num;
1669 
1670 	/*
1671 	 * This is a memory buffer that will contain both statistics
1672 	 * ramrod request and data.
1673 	 */
1674 	void			*fw_stats;
1675 	dma_addr_t		fw_stats_mapping;
1676 
1677 	/*
1678 	 * FW statistics request shortcut (points at the
1679 	 * beginning of fw_stats buffer).
1680 	 */
1681 	struct bnx2x_fw_stats_req	*fw_stats_req;
1682 	dma_addr_t			fw_stats_req_mapping;
1683 	int				fw_stats_req_sz;
1684 
1685 	/*
1686 	 * FW statistics data shortcut (points at the beginning of
1687 	 * fw_stats buffer + fw_stats_req_sz).
1688 	 */
1689 	struct bnx2x_fw_stats_data	*fw_stats_data;
1690 	dma_addr_t			fw_stats_data_mapping;
1691 	int				fw_stats_data_sz;
1692 
1693 	/* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB
1694 	 * context size we need 8 ILT entries.
1695 	 */
1696 #define ILT_MAX_L2_LINES	32
1697 	struct hw_context	context[ILT_MAX_L2_LINES];
1698 
1699 	struct bnx2x_ilt	*ilt;
1700 #define BP_ILT(bp)		((bp)->ilt)
1701 #define ILT_MAX_LINES		256
1702 /*
1703  * Maximum supported number of RSS queues: number of IGU SBs minus one that goes
1704  * to CNIC.
1705  */
1706 #define BNX2X_MAX_RSS_COUNT(bp)	((bp)->igu_sb_cnt - CNIC_SUPPORT(bp))
1707 
1708 /*
1709  * Maximum CID count that might be required by the bnx2x:
1710  * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI
1711  */
1712 
1713 #define BNX2X_L2_CID_COUNT(bp)	(BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \
1714 				+ CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1715 #define BNX2X_L2_MAX_CID(bp)	(BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \
1716 				+ CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1717 #define L2_ILT_LINES(bp)	(DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\
1718 					ILT_PAGE_CIDS))
1719 
1720 	int			qm_cid_count;
1721 
1722 	bool			dropless_fc;
1723 
1724 	void			*t2;
1725 	dma_addr_t		t2_mapping;
1726 	struct cnic_ops	__rcu	*cnic_ops;
1727 	void			*cnic_data;
1728 	u32			cnic_tag;
1729 	struct cnic_eth_dev	cnic_eth_dev;
1730 	union host_hc_status_block cnic_sb;
1731 	dma_addr_t		cnic_sb_mapping;
1732 	struct eth_spe		*cnic_kwq;
1733 	struct eth_spe		*cnic_kwq_prod;
1734 	struct eth_spe		*cnic_kwq_cons;
1735 	struct eth_spe		*cnic_kwq_last;
1736 	u16			cnic_kwq_pending;
1737 	u16			cnic_spq_pending;
1738 	u8			fip_mac[ETH_ALEN];
1739 	struct mutex		cnic_mutex;
1740 	struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj;
1741 
1742 	/* Start index of the "special" (CNIC related) L2 clients */
1743 	u8				cnic_base_cl_id;
1744 
1745 	int			dmae_ready;
1746 	/* used to synchronize dmae accesses */
1747 	spinlock_t		dmae_lock;
1748 
1749 	/* used to protect the FW mail box */
1750 	struct mutex		fw_mb_mutex;
1751 
1752 	/* used to synchronize stats collecting */
1753 	int			stats_state;
1754 
1755 	/* used for synchronization of concurrent threads statistics handling */
1756 	spinlock_t		stats_lock;
1757 
1758 	/* used by dmae command loader */
1759 	struct dmae_command	stats_dmae;
1760 	int			executer_idx;
1761 
1762 	u16			stats_counter;
1763 	struct bnx2x_eth_stats	eth_stats;
1764 	struct host_func_stats		func_stats;
1765 	struct bnx2x_eth_stats_old	eth_stats_old;
1766 	struct bnx2x_net_stats_old	net_stats_old;
1767 	struct bnx2x_fw_port_stats_old	fw_stats_old;
1768 	bool			stats_init;
1769 
1770 	struct z_stream_s	*strm;
1771 	void			*gunzip_buf;
1772 	dma_addr_t		gunzip_mapping;
1773 	int			gunzip_outlen;
1774 #define FW_BUF_SIZE			0x8000
1775 #define GUNZIP_BUF(bp)			(bp->gunzip_buf)
1776 #define GUNZIP_PHYS(bp)			(bp->gunzip_mapping)
1777 #define GUNZIP_OUTLEN(bp)		(bp->gunzip_outlen)
1778 
1779 	struct raw_op		*init_ops;
1780 	/* Init blocks offsets inside init_ops */
1781 	u16			*init_ops_offsets;
1782 	/* Data blob - has 32 bit granularity */
1783 	u32			*init_data;
1784 	u32			init_mode_flags;
1785 #define INIT_MODE_FLAGS(bp)	(bp->init_mode_flags)
1786 	/* Zipped PRAM blobs - raw data */
1787 	const u8		*tsem_int_table_data;
1788 	const u8		*tsem_pram_data;
1789 	const u8		*usem_int_table_data;
1790 	const u8		*usem_pram_data;
1791 	const u8		*xsem_int_table_data;
1792 	const u8		*xsem_pram_data;
1793 	const u8		*csem_int_table_data;
1794 	const u8		*csem_pram_data;
1795 #define INIT_OPS(bp)			(bp->init_ops)
1796 #define INIT_OPS_OFFSETS(bp)		(bp->init_ops_offsets)
1797 #define INIT_DATA(bp)			(bp->init_data)
1798 #define INIT_TSEM_INT_TABLE_DATA(bp)	(bp->tsem_int_table_data)
1799 #define INIT_TSEM_PRAM_DATA(bp)		(bp->tsem_pram_data)
1800 #define INIT_USEM_INT_TABLE_DATA(bp)	(bp->usem_int_table_data)
1801 #define INIT_USEM_PRAM_DATA(bp)		(bp->usem_pram_data)
1802 #define INIT_XSEM_INT_TABLE_DATA(bp)	(bp->xsem_int_table_data)
1803 #define INIT_XSEM_PRAM_DATA(bp)		(bp->xsem_pram_data)
1804 #define INIT_CSEM_INT_TABLE_DATA(bp)	(bp->csem_int_table_data)
1805 #define INIT_CSEM_PRAM_DATA(bp)		(bp->csem_pram_data)
1806 
1807 #define PHY_FW_VER_LEN			20
1808 	char			fw_ver[32];
1809 	const struct firmware	*firmware;
1810 
1811 	struct bnx2x_vfdb	*vfdb;
1812 #define IS_SRIOV(bp)		((bp)->vfdb)
1813 
1814 	/* DCB support on/off */
1815 	u16 dcb_state;
1816 #define BNX2X_DCB_STATE_OFF			0
1817 #define BNX2X_DCB_STATE_ON			1
1818 
1819 	/* DCBX engine mode */
1820 	int dcbx_enabled;
1821 #define BNX2X_DCBX_ENABLED_OFF			0
1822 #define BNX2X_DCBX_ENABLED_ON_NEG_OFF		1
1823 #define BNX2X_DCBX_ENABLED_ON_NEG_ON		2
1824 #define BNX2X_DCBX_ENABLED_INVALID		(-1)
1825 
1826 	bool dcbx_mode_uset;
1827 
1828 	struct bnx2x_config_dcbx_params		dcbx_config_params;
1829 	struct bnx2x_dcbx_port_params		dcbx_port_params;
1830 	int					dcb_version;
1831 
1832 	/* CAM credit pools */
1833 
1834 	/* used only in sriov */
1835 	struct bnx2x_credit_pool_obj		vlans_pool;
1836 
1837 	struct bnx2x_credit_pool_obj		macs_pool;
1838 
1839 	/* RX_MODE object */
1840 	struct bnx2x_rx_mode_obj		rx_mode_obj;
1841 
1842 	/* MCAST object */
1843 	struct bnx2x_mcast_obj			mcast_obj;
1844 
1845 	/* RSS configuration object */
1846 	struct bnx2x_rss_config_obj		rss_conf_obj;
1847 
1848 	/* Function State controlling object */
1849 	struct bnx2x_func_sp_obj		func_obj;
1850 
1851 	unsigned long				sp_state;
1852 
1853 	/* operation indication for the sp_rtnl task */
1854 	unsigned long				sp_rtnl_state;
1855 
1856 	/* DCBX Negotiation results */
1857 	struct dcbx_features			dcbx_local_feat;
1858 	u32					dcbx_error;
1859 
1860 #ifdef BCM_DCBNL
1861 	struct dcbx_features			dcbx_remote_feat;
1862 	u32					dcbx_remote_flags;
1863 #endif
1864 	/* AFEX: store default vlan used */
1865 	int					afex_def_vlan_tag;
1866 	enum mf_cfg_afex_vlan_mode		afex_vlan_mode;
1867 	u32					pending_max;
1868 
1869 	/* multiple tx classes of service */
1870 	u8					max_cos;
1871 
1872 	/* priority to cos mapping */
1873 	u8					prio_to_cos[8];
1874 
1875 	int fp_array_size;
1876 	u32 dump_preset_idx;
1877 	bool					stats_started;
1878 	struct semaphore			stats_sema;
1879 };
1880 
1881 /* Tx queues may be less or equal to Rx queues */
1882 extern int num_queues;
1883 #define BNX2X_NUM_QUEUES(bp)	(bp->num_queues)
1884 #define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues)
1885 #define BNX2X_NUM_NON_CNIC_QUEUES(bp)	(BNX2X_NUM_QUEUES(bp) - \
1886 					 (bp)->num_cnic_queues)
1887 #define BNX2X_NUM_RX_QUEUES(bp)	BNX2X_NUM_QUEUES(bp)
1888 
1889 #define is_multi(bp)		(BNX2X_NUM_QUEUES(bp) > 1)
1890 
1891 #define BNX2X_MAX_QUEUES(bp)	BNX2X_MAX_RSS_COUNT(bp)
1892 /* #define is_eth_multi(bp)	(BNX2X_NUM_ETH_QUEUES(bp) > 1) */
1893 
1894 #define RSS_IPV4_CAP_MASK						\
1895 	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY
1896 
1897 #define RSS_IPV4_TCP_CAP_MASK						\
1898 	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY
1899 
1900 #define RSS_IPV6_CAP_MASK						\
1901 	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY
1902 
1903 #define RSS_IPV6_TCP_CAP_MASK						\
1904 	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY
1905 
1906 /* func init flags */
1907 #define FUNC_FLG_RSS		0x0001
1908 #define FUNC_FLG_STATS		0x0002
1909 /* removed  FUNC_FLG_UNMATCHED	0x0004 */
1910 #define FUNC_FLG_TPA		0x0008
1911 #define FUNC_FLG_SPQ		0x0010
1912 #define FUNC_FLG_LEADING	0x0020	/* PF only */
1913 #define FUNC_FLG_LEADING_STATS	0x0040
1914 struct bnx2x_func_init_params {
1915 	/* dma */
1916 	dma_addr_t	fw_stat_map;	/* valid iff FUNC_FLG_STATS */
1917 	dma_addr_t	spq_map;	/* valid iff FUNC_FLG_SPQ */
1918 
1919 	u16		func_flgs;
1920 	u16		func_id;	/* abs fid */
1921 	u16		pf_id;
1922 	u16		spq_prod;	/* valid iff FUNC_FLG_SPQ */
1923 };
1924 
1925 #define for_each_cnic_queue(bp, var) \
1926 	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1927 	     (var)++) \
1928 		if (skip_queue(bp, var))	\
1929 			continue;		\
1930 		else
1931 
1932 #define for_each_eth_queue(bp, var) \
1933 	for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1934 
1935 #define for_each_nondefault_eth_queue(bp, var) \
1936 	for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1937 
1938 #define for_each_queue(bp, var) \
1939 	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1940 		if (skip_queue(bp, var))	\
1941 			continue;		\
1942 		else
1943 
1944 /* Skip forwarding FP */
1945 #define for_each_valid_rx_queue(bp, var)			\
1946 	for ((var) = 0;						\
1947 	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
1948 		      BNX2X_NUM_ETH_QUEUES(bp));		\
1949 	     (var)++)						\
1950 		if (skip_rx_queue(bp, var))			\
1951 			continue;				\
1952 		else
1953 
1954 #define for_each_rx_queue_cnic(bp, var) \
1955 	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1956 	     (var)++) \
1957 		if (skip_rx_queue(bp, var))	\
1958 			continue;		\
1959 		else
1960 
1961 #define for_each_rx_queue(bp, var) \
1962 	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1963 		if (skip_rx_queue(bp, var))	\
1964 			continue;		\
1965 		else
1966 
1967 /* Skip OOO FP */
1968 #define for_each_valid_tx_queue(bp, var)			\
1969 	for ((var) = 0;						\
1970 	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
1971 		      BNX2X_NUM_ETH_QUEUES(bp));		\
1972 	     (var)++)						\
1973 		if (skip_tx_queue(bp, var))			\
1974 			continue;				\
1975 		else
1976 
1977 #define for_each_tx_queue_cnic(bp, var) \
1978 	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1979 	     (var)++) \
1980 		if (skip_tx_queue(bp, var))	\
1981 			continue;		\
1982 		else
1983 
1984 #define for_each_tx_queue(bp, var) \
1985 	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1986 		if (skip_tx_queue(bp, var))	\
1987 			continue;		\
1988 		else
1989 
1990 #define for_each_nondefault_queue(bp, var) \
1991 	for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1992 		if (skip_queue(bp, var))	\
1993 			continue;		\
1994 		else
1995 
1996 #define for_each_cos_in_tx_queue(fp, var) \
1997 	for ((var) = 0; (var) < (fp)->max_cos; (var)++)
1998 
1999 /* skip rx queue
2000  * if FCOE l2 support is disabled and this is the fcoe L2 queue
2001  */
2002 #define skip_rx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2003 
2004 /* skip tx queue
2005  * if FCOE l2 support is disabled and this is the fcoe L2 queue
2006  */
2007 #define skip_tx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2008 
2009 #define skip_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2010 
2011 /**
2012  * bnx2x_set_mac_one - configure a single MAC address
2013  *
2014  * @bp:			driver handle
2015  * @mac:		MAC to configure
2016  * @obj:		MAC object handle
2017  * @set:		if 'true' add a new MAC, otherwise - delete
2018  * @mac_type:		the type of the MAC to configure (e.g. ETH, UC list)
2019  * @ramrod_flags:	RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT)
2020  *
2021  * Configures one MAC according to provided parameters or continues the
2022  * execution of previously scheduled commands if RAMROD_CONT is set in
2023  * ramrod_flags.
2024  *
2025  * Returns zero if operation has successfully completed, a positive value if the
2026  * operation has been successfully scheduled and a negative - if a requested
2027  * operations has failed.
2028  */
2029 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
2030 		      struct bnx2x_vlan_mac_obj *obj, bool set,
2031 		      int mac_type, unsigned long *ramrod_flags);
2032 /**
2033  * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object
2034  *
2035  * @bp:			driver handle
2036  * @mac_obj:		MAC object handle
2037  * @mac_type:		type of the MACs to clear (BNX2X_XXX_MAC)
2038  * @wait_for_comp:	if 'true' block until completion
2039  *
2040  * Deletes all MACs of the specific type (e.g. ETH, UC list).
2041  *
2042  * Returns zero if operation has successfully completed, a positive value if the
2043  * operation has been successfully scheduled and a negative - if a requested
2044  * operations has failed.
2045  */
2046 int bnx2x_del_all_macs(struct bnx2x *bp,
2047 		       struct bnx2x_vlan_mac_obj *mac_obj,
2048 		       int mac_type, bool wait_for_comp);
2049 
2050 /* Init Function API  */
2051 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p);
2052 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
2053 		    u8 vf_valid, int fw_sb_id, int igu_sb_id);
2054 u32 bnx2x_get_pretend_reg(struct bnx2x *bp);
2055 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port);
2056 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2057 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode);
2058 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2059 void bnx2x_read_mf_cfg(struct bnx2x *bp);
2060 
2061 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val);
2062 
2063 /* dmae */
2064 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32);
2065 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
2066 		      u32 len32);
2067 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx);
2068 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type);
2069 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode);
2070 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
2071 		      bool with_comp, u8 comp_type);
2072 
2073 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2074 			       u8 src_type, u8 dst_type);
2075 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae);
2076 
2077 /* FLR related routines */
2078 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp);
2079 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count);
2080 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt);
2081 u8 bnx2x_is_pcie_pending(struct pci_dev *dev);
2082 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
2083 				    char *msg, u32 poll_cnt);
2084 
2085 void bnx2x_calc_fc_adv(struct bnx2x *bp);
2086 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
2087 		  u32 data_hi, u32 data_lo, int cmd_type);
2088 void bnx2x_update_coalesce(struct bnx2x *bp);
2089 int bnx2x_get_cur_phy_idx(struct bnx2x *bp);
2090 
2091 bool bnx2x_port_after_undi(struct bnx2x *bp);
2092 
2093 static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms,
2094 			   int wait)
2095 {
2096 	u32 val;
2097 
2098 	do {
2099 		val = REG_RD(bp, reg);
2100 		if (val == expected)
2101 			break;
2102 		ms -= wait;
2103 		msleep(wait);
2104 
2105 	} while (ms > 0);
2106 
2107 	return val;
2108 }
2109 
2110 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id,
2111 			    bool is_pf);
2112 
2113 #define BNX2X_ILT_ZALLOC(x, y, size)					\
2114 	x = dma_zalloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL)
2115 
2116 #define BNX2X_ILT_FREE(x, y, size) \
2117 	do { \
2118 		if (x) { \
2119 			dma_free_coherent(&bp->pdev->dev, size, x, y); \
2120 			x = NULL; \
2121 			y = 0; \
2122 		} \
2123 	} while (0)
2124 
2125 #define ILOG2(x)	(ilog2((x)))
2126 
2127 #define ILT_NUM_PAGE_ENTRIES	(3072)
2128 /* In 57710/11 we use whole table since we have 8 func
2129  * In 57712 we have only 4 func, but use same size per func, then only half of
2130  * the table in use
2131  */
2132 #define ILT_PER_FUNC		(ILT_NUM_PAGE_ENTRIES/8)
2133 
2134 #define FUNC_ILT_BASE(func)	(func * ILT_PER_FUNC)
2135 /*
2136  * the phys address is shifted right 12 bits and has an added
2137  * 1=valid bit added to the 53rd bit
2138  * then since this is a wide register(TM)
2139  * we split it into two 32 bit writes
2140  */
2141 #define ONCHIP_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
2142 #define ONCHIP_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
2143 
2144 /* load/unload mode */
2145 #define LOAD_NORMAL			0
2146 #define LOAD_OPEN			1
2147 #define LOAD_DIAG			2
2148 #define LOAD_LOOPBACK_EXT		3
2149 #define UNLOAD_NORMAL			0
2150 #define UNLOAD_CLOSE			1
2151 #define UNLOAD_RECOVERY			2
2152 
2153 /* DMAE command defines */
2154 #define DMAE_TIMEOUT			-1
2155 #define DMAE_PCI_ERROR			-2	/* E2 and onward */
2156 #define DMAE_NOT_RDY			-3
2157 #define DMAE_PCI_ERR_FLAG		0x80000000
2158 
2159 #define DMAE_SRC_PCI			0
2160 #define DMAE_SRC_GRC			1
2161 
2162 #define DMAE_DST_NONE			0
2163 #define DMAE_DST_PCI			1
2164 #define DMAE_DST_GRC			2
2165 
2166 #define DMAE_COMP_PCI			0
2167 #define DMAE_COMP_GRC			1
2168 
2169 /* E2 and onward - PCI error handling in the completion */
2170 
2171 #define DMAE_COMP_REGULAR		0
2172 #define DMAE_COM_SET_ERR		1
2173 
2174 #define DMAE_CMD_SRC_PCI		(DMAE_SRC_PCI << \
2175 						DMAE_COMMAND_SRC_SHIFT)
2176 #define DMAE_CMD_SRC_GRC		(DMAE_SRC_GRC << \
2177 						DMAE_COMMAND_SRC_SHIFT)
2178 
2179 #define DMAE_CMD_DST_PCI		(DMAE_DST_PCI << \
2180 						DMAE_COMMAND_DST_SHIFT)
2181 #define DMAE_CMD_DST_GRC		(DMAE_DST_GRC << \
2182 						DMAE_COMMAND_DST_SHIFT)
2183 
2184 #define DMAE_CMD_C_DST_PCI		(DMAE_COMP_PCI << \
2185 						DMAE_COMMAND_C_DST_SHIFT)
2186 #define DMAE_CMD_C_DST_GRC		(DMAE_COMP_GRC << \
2187 						DMAE_COMMAND_C_DST_SHIFT)
2188 
2189 #define DMAE_CMD_C_ENABLE		DMAE_COMMAND_C_TYPE_ENABLE
2190 
2191 #define DMAE_CMD_ENDIANITY_NO_SWAP	(0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2192 #define DMAE_CMD_ENDIANITY_B_SWAP	(1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2193 #define DMAE_CMD_ENDIANITY_DW_SWAP	(2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2194 #define DMAE_CMD_ENDIANITY_B_DW_SWAP	(3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2195 
2196 #define DMAE_CMD_PORT_0			0
2197 #define DMAE_CMD_PORT_1			DMAE_COMMAND_PORT
2198 
2199 #define DMAE_CMD_SRC_RESET		DMAE_COMMAND_SRC_RESET
2200 #define DMAE_CMD_DST_RESET		DMAE_COMMAND_DST_RESET
2201 #define DMAE_CMD_E1HVN_SHIFT		DMAE_COMMAND_E1HVN_SHIFT
2202 
2203 #define DMAE_SRC_PF			0
2204 #define DMAE_SRC_VF			1
2205 
2206 #define DMAE_DST_PF			0
2207 #define DMAE_DST_VF			1
2208 
2209 #define DMAE_C_SRC			0
2210 #define DMAE_C_DST			1
2211 
2212 #define DMAE_LEN32_RD_MAX		0x80
2213 #define DMAE_LEN32_WR_MAX(bp)		(CHIP_IS_E1(bp) ? 0x400 : 0x2000)
2214 
2215 #define DMAE_COMP_VAL			0x60d0d0ae /* E2 and on - upper bit
2216 						    * indicates error
2217 						    */
2218 
2219 #define MAX_DMAE_C_PER_PORT		8
2220 #define INIT_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2221 					 BP_VN(bp))
2222 #define PMF_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2223 					 E1HVN_MAX)
2224 
2225 /* PCIE link and speed */
2226 #define PCICFG_LINK_WIDTH		0x1f00000
2227 #define PCICFG_LINK_WIDTH_SHIFT		20
2228 #define PCICFG_LINK_SPEED		0xf0000
2229 #define PCICFG_LINK_SPEED_SHIFT		16
2230 
2231 #define BNX2X_NUM_TESTS_SF		7
2232 #define BNX2X_NUM_TESTS_MF		3
2233 #define BNX2X_NUM_TESTS(bp)		(IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \
2234 						     BNX2X_NUM_TESTS_SF)
2235 
2236 #define BNX2X_PHY_LOOPBACK		0
2237 #define BNX2X_MAC_LOOPBACK		1
2238 #define BNX2X_EXT_LOOPBACK		2
2239 #define BNX2X_PHY_LOOPBACK_FAILED	1
2240 #define BNX2X_MAC_LOOPBACK_FAILED	2
2241 #define BNX2X_EXT_LOOPBACK_FAILED	3
2242 #define BNX2X_LOOPBACK_FAILED		(BNX2X_MAC_LOOPBACK_FAILED | \
2243 					 BNX2X_PHY_LOOPBACK_FAILED)
2244 
2245 #define STROM_ASSERT_ARRAY_SIZE		50
2246 
2247 /* must be used on a CID before placing it on a HW ring */
2248 #define HW_CID(bp, x)			((BP_PORT(bp) << 23) | \
2249 					 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \
2250 					 (x))
2251 
2252 #define SP_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_spe))
2253 #define MAX_SP_DESC_CNT			(SP_DESC_CNT - 1)
2254 
2255 #define BNX2X_BTR			4
2256 #define MAX_SPQ_PENDING			8
2257 
2258 /* CMNG constants, as derived from system spec calculations */
2259 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
2260 #define DEF_MIN_RATE					100
2261 /* resolution of the rate shaping timer - 400 usec */
2262 #define RS_PERIODIC_TIMEOUT_USEC			400
2263 /* number of bytes in single QM arbitration cycle -
2264  * coefficient for calculating the fairness timer */
2265 #define QM_ARB_BYTES					160000
2266 /* resolution of Min algorithm 1:100 */
2267 #define MIN_RES						100
2268 /* how many bytes above threshold for the minimal credit of Min algorithm*/
2269 #define MIN_ABOVE_THRESH				32768
2270 /* Fairness algorithm integration time coefficient -
2271  * for calculating the actual Tfair */
2272 #define T_FAIR_COEF	((MIN_ABOVE_THRESH +  QM_ARB_BYTES) * 8 * MIN_RES)
2273 /* Memory of fairness algorithm . 2 cycles */
2274 #define FAIR_MEM					2
2275 
2276 #define ATTN_NIG_FOR_FUNC		(1L << 8)
2277 #define ATTN_SW_TIMER_4_FUNC		(1L << 9)
2278 #define GPIO_2_FUNC			(1L << 10)
2279 #define GPIO_3_FUNC			(1L << 11)
2280 #define GPIO_4_FUNC			(1L << 12)
2281 #define ATTN_GENERAL_ATTN_1		(1L << 13)
2282 #define ATTN_GENERAL_ATTN_2		(1L << 14)
2283 #define ATTN_GENERAL_ATTN_3		(1L << 15)
2284 #define ATTN_GENERAL_ATTN_4		(1L << 13)
2285 #define ATTN_GENERAL_ATTN_5		(1L << 14)
2286 #define ATTN_GENERAL_ATTN_6		(1L << 15)
2287 
2288 #define ATTN_HARD_WIRED_MASK		0xff00
2289 #define ATTENTION_ID			4
2290 
2291 #define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_SD(bp) || \
2292 				 IS_MF_FCOE_AFEX(bp))
2293 
2294 /* stuff added to make the code fit 80Col */
2295 
2296 #define BNX2X_PMF_LINK_ASSERT \
2297 	GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp))
2298 
2299 #define BNX2X_MC_ASSERT_BITS \
2300 	(GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2301 	 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2302 	 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2303 	 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2304 
2305 #define BNX2X_MCP_ASSERT \
2306 	GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2307 
2308 #define BNX2X_GRC_TIMEOUT	GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2309 #define BNX2X_GRC_RSV		(GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2310 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2311 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2312 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2313 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2314 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2315 
2316 #define HW_INTERRUT_ASSERT_SET_0 \
2317 				(AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \
2318 				 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \
2319 				 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \
2320 				 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \
2321 				 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT)
2322 #define HW_PRTY_ASSERT_SET_0	(AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \
2323 				 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \
2324 				 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \
2325 				 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\
2326 				 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\
2327 				 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\
2328 				 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR)
2329 #define HW_INTERRUT_ASSERT_SET_1 \
2330 				(AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \
2331 				 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \
2332 				 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \
2333 				 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \
2334 				 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \
2335 				 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \
2336 				 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \
2337 				 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \
2338 				 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \
2339 				 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \
2340 				 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT)
2341 #define HW_PRTY_ASSERT_SET_1	(AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\
2342 				 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \
2343 				 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\
2344 				 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \
2345 				 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\
2346 				 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \
2347 				 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\
2348 				 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\
2349 			     AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\
2350 				 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \
2351 				 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \
2352 				 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\
2353 				 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \
2354 				 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \
2355 				 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\
2356 				 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR)
2357 #define HW_INTERRUT_ASSERT_SET_2 \
2358 				(AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \
2359 				 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \
2360 				 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \
2361 			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\
2362 				 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT)
2363 #define HW_PRTY_ASSERT_SET_2	(AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \
2364 				 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \
2365 			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\
2366 				 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \
2367 				 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \
2368 				 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\
2369 				 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \
2370 				 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR)
2371 
2372 #define HW_PRTY_ASSERT_SET_3 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
2373 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
2374 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
2375 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
2376 
2377 #define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \
2378 			      AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)
2379 
2380 #define MULTI_MASK			0x7f
2381 
2382 #define DEF_USB_FUNC_OFF	offsetof(struct cstorm_def_status_block_u, func)
2383 #define DEF_CSB_FUNC_OFF	offsetof(struct cstorm_def_status_block_c, func)
2384 #define DEF_XSB_FUNC_OFF	offsetof(struct xstorm_def_status_block, func)
2385 #define DEF_TSB_FUNC_OFF	offsetof(struct tstorm_def_status_block, func)
2386 
2387 #define DEF_USB_IGU_INDEX_OFF \
2388 			offsetof(struct cstorm_def_status_block_u, igu_index)
2389 #define DEF_CSB_IGU_INDEX_OFF \
2390 			offsetof(struct cstorm_def_status_block_c, igu_index)
2391 #define DEF_XSB_IGU_INDEX_OFF \
2392 			offsetof(struct xstorm_def_status_block, igu_index)
2393 #define DEF_TSB_IGU_INDEX_OFF \
2394 			offsetof(struct tstorm_def_status_block, igu_index)
2395 
2396 #define DEF_USB_SEGMENT_OFF \
2397 			offsetof(struct cstorm_def_status_block_u, segment)
2398 #define DEF_CSB_SEGMENT_OFF \
2399 			offsetof(struct cstorm_def_status_block_c, segment)
2400 #define DEF_XSB_SEGMENT_OFF \
2401 			offsetof(struct xstorm_def_status_block, segment)
2402 #define DEF_TSB_SEGMENT_OFF \
2403 			offsetof(struct tstorm_def_status_block, segment)
2404 
2405 #define BNX2X_SP_DSB_INDEX \
2406 		(&bp->def_status_blk->sp_sb.\
2407 					index_values[HC_SP_INDEX_ETH_DEF_CONS])
2408 
2409 #define CAM_IS_INVALID(x) \
2410 	(GET_FLAG(x.flags, \
2411 	MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \
2412 	(T_ETH_MAC_COMMAND_INVALIDATE))
2413 
2414 /* Number of u32 elements in MC hash array */
2415 #define MC_HASH_SIZE			8
2416 #define MC_HASH_OFFSET(bp, i)		(BAR_TSTRORM_INTMEM + \
2417 	TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4)
2418 
2419 #ifndef PXP2_REG_PXP2_INT_STS
2420 #define PXP2_REG_PXP2_INT_STS		PXP2_REG_PXP2_INT_STS_0
2421 #endif
2422 
2423 #ifndef ETH_MAX_RX_CLIENTS_E2
2424 #define ETH_MAX_RX_CLIENTS_E2		ETH_MAX_RX_CLIENTS_E1H
2425 #endif
2426 
2427 #define BNX2X_VPD_LEN			128
2428 #define VENDOR_ID_LEN			4
2429 
2430 #define VF_ACQUIRE_THRESH		3
2431 #define VF_ACQUIRE_MAC_FILTERS		1
2432 #define VF_ACQUIRE_MC_FILTERS		10
2433 
2434 #define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \
2435 			    (!((me_reg) & ME_REG_VF_ERR)))
2436 int bnx2x_nic_load_analyze_req(struct bnx2x *bp, u32 load_code);
2437 /* Congestion management fairness mode */
2438 #define CMNG_FNS_NONE			0
2439 #define CMNG_FNS_MINMAX			1
2440 
2441 #define HC_SEG_ACCESS_DEF		0   /*Driver decision 0-3*/
2442 #define HC_SEG_ACCESS_ATTN		4
2443 #define HC_SEG_ACCESS_NORM		0   /*Driver decision 0-1*/
2444 
2445 static const u32 dmae_reg_go_c[] = {
2446 	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
2447 	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
2448 	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2449 	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2450 };
2451 
2452 void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev);
2453 void bnx2x_notify_link_changed(struct bnx2x *bp);
2454 
2455 #define BNX2X_MF_SD_PROTOCOL(bp) \
2456 	((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK)
2457 
2458 #define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \
2459 	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI)
2460 
2461 #define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \
2462 	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE)
2463 
2464 #define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp))
2465 #define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))
2466 
2467 #define BNX2X_MF_EXT_PROTOCOL_FCOE(bp)  ((bp)->mf_ext_config & \
2468 					 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2469 
2470 #define IS_MF_FCOE_AFEX(bp) (IS_MF_AFEX(bp) && BNX2X_MF_EXT_PROTOCOL_FCOE(bp))
2471 #define IS_MF_STORAGE_SD(bp) (IS_MF_SD(bp) && \
2472 				(BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \
2473 				 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
2474 
2475 #define SET_FLAG(value, mask, flag) \
2476 	do {\
2477 		(value) &= ~(mask);\
2478 		(value) |= ((flag) << (mask##_SHIFT));\
2479 	} while (0)
2480 
2481 #define GET_FLAG(value, mask) \
2482 	(((value) & (mask)) >> (mask##_SHIFT))
2483 
2484 #define GET_FIELD(value, fname) \
2485 	(((value) & (fname##_MASK)) >> (fname##_SHIFT))
2486 
2487 enum {
2488 	SWITCH_UPDATE,
2489 	AFEX_UPDATE,
2490 };
2491 
2492 #define NUM_MACS	8
2493 
2494 enum bnx2x_pci_bus_speed {
2495 	BNX2X_PCI_LINK_SPEED_2500 = 2500,
2496 	BNX2X_PCI_LINK_SPEED_5000 = 5000,
2497 	BNX2X_PCI_LINK_SPEED_8000 = 8000
2498 };
2499 
2500 void bnx2x_set_local_cmng(struct bnx2x *bp);
2501 #endif /* bnx2x.h */
2502