1 /* bnx2x.h: Broadcom Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 * 9 * Maintained by: Eilon Greenstein <eilong@broadcom.com> 10 * Written by: Eliezer Tamir 11 * Based on code from Michael Chan's bnx2 driver 12 */ 13 14 #ifndef BNX2X_H 15 #define BNX2X_H 16 17 #include <linux/pci.h> 18 #include <linux/netdevice.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/types.h> 21 #include <linux/pci_regs.h> 22 23 /* compilation time flags */ 24 25 /* define this to make the driver freeze on error to allow getting debug info 26 * (you will need to reboot afterwards) */ 27 /* #define BNX2X_STOP_ON_ERROR */ 28 29 #define DRV_MODULE_VERSION "1.78.19-0" 30 #define DRV_MODULE_RELDATE "2014/02/10" 31 #define BNX2X_BC_VER 0x040200 32 33 #if defined(CONFIG_DCB) 34 #define BCM_DCBNL 35 #endif 36 37 #include "bnx2x_hsi.h" 38 39 #include "../cnic_if.h" 40 41 #define BNX2X_MIN_MSIX_VEC_CNT(bp) ((bp)->min_msix_vec_cnt) 42 43 #include <linux/mdio.h> 44 45 #include "bnx2x_reg.h" 46 #include "bnx2x_fw_defs.h" 47 #include "bnx2x_mfw_req.h" 48 #include "bnx2x_link.h" 49 #include "bnx2x_sp.h" 50 #include "bnx2x_dcb.h" 51 #include "bnx2x_stats.h" 52 #include "bnx2x_vfpf.h" 53 54 enum bnx2x_int_mode { 55 BNX2X_INT_MODE_MSIX, 56 BNX2X_INT_MODE_INTX, 57 BNX2X_INT_MODE_MSI 58 }; 59 60 /* error/debug prints */ 61 62 #define DRV_MODULE_NAME "bnx2x" 63 64 /* for messages that are currently off */ 65 #define BNX2X_MSG_OFF 0x0 66 #define BNX2X_MSG_MCP 0x0010000 /* was: NETIF_MSG_HW */ 67 #define BNX2X_MSG_STATS 0x0020000 /* was: NETIF_MSG_TIMER */ 68 #define BNX2X_MSG_NVM 0x0040000 /* was: NETIF_MSG_HW */ 69 #define BNX2X_MSG_DMAE 0x0080000 /* was: NETIF_MSG_HW */ 70 #define BNX2X_MSG_SP 0x0100000 /* was: NETIF_MSG_INTR */ 71 #define BNX2X_MSG_FP 0x0200000 /* was: NETIF_MSG_INTR */ 72 #define BNX2X_MSG_IOV 0x0800000 73 #define BNX2X_MSG_IDLE 0x2000000 /* used for idle check*/ 74 #define BNX2X_MSG_ETHTOOL 0x4000000 75 #define BNX2X_MSG_DCB 0x8000000 76 77 /* regular debug print */ 78 #define DP_INNER(fmt, ...) \ 79 pr_notice("[%s:%d(%s)]" fmt, \ 80 __func__, __LINE__, \ 81 bp->dev ? (bp->dev->name) : "?", \ 82 ##__VA_ARGS__); 83 84 #define DP(__mask, fmt, ...) \ 85 do { \ 86 if (unlikely(bp->msg_enable & (__mask))) \ 87 DP_INNER(fmt, ##__VA_ARGS__); \ 88 } while (0) 89 90 #define DP_AND(__mask, fmt, ...) \ 91 do { \ 92 if (unlikely((bp->msg_enable & (__mask)) == __mask)) \ 93 DP_INNER(fmt, ##__VA_ARGS__); \ 94 } while (0) 95 96 #define DP_CONT(__mask, fmt, ...) \ 97 do { \ 98 if (unlikely(bp->msg_enable & (__mask))) \ 99 pr_cont(fmt, ##__VA_ARGS__); \ 100 } while (0) 101 102 /* errors debug print */ 103 #define BNX2X_DBG_ERR(fmt, ...) \ 104 do { \ 105 if (unlikely(netif_msg_probe(bp))) \ 106 pr_err("[%s:%d(%s)]" fmt, \ 107 __func__, __LINE__, \ 108 bp->dev ? (bp->dev->name) : "?", \ 109 ##__VA_ARGS__); \ 110 } while (0) 111 112 /* for errors (never masked) */ 113 #define BNX2X_ERR(fmt, ...) \ 114 do { \ 115 pr_err("[%s:%d(%s)]" fmt, \ 116 __func__, __LINE__, \ 117 bp->dev ? (bp->dev->name) : "?", \ 118 ##__VA_ARGS__); \ 119 } while (0) 120 121 #define BNX2X_ERROR(fmt, ...) \ 122 pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__) 123 124 /* before we have a dev->name use dev_info() */ 125 #define BNX2X_DEV_INFO(fmt, ...) \ 126 do { \ 127 if (unlikely(netif_msg_probe(bp))) \ 128 dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__); \ 129 } while (0) 130 131 /* Error handling */ 132 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int); 133 #ifdef BNX2X_STOP_ON_ERROR 134 #define bnx2x_panic() \ 135 do { \ 136 bp->panic = 1; \ 137 BNX2X_ERR("driver assert\n"); \ 138 bnx2x_panic_dump(bp, true); \ 139 } while (0) 140 #else 141 #define bnx2x_panic() \ 142 do { \ 143 bp->panic = 1; \ 144 BNX2X_ERR("driver assert\n"); \ 145 bnx2x_panic_dump(bp, false); \ 146 } while (0) 147 #endif 148 149 #define bnx2x_mc_addr(ha) ((ha)->addr) 150 #define bnx2x_uc_addr(ha) ((ha)->addr) 151 152 #define U64_LO(x) ((u32)(((u64)(x)) & 0xffffffff)) 153 #define U64_HI(x) ((u32)(((u64)(x)) >> 32)) 154 #define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo)) 155 156 #define REG_ADDR(bp, offset) ((bp->regview) + (offset)) 157 158 #define REG_RD(bp, offset) readl(REG_ADDR(bp, offset)) 159 #define REG_RD8(bp, offset) readb(REG_ADDR(bp, offset)) 160 #define REG_RD16(bp, offset) readw(REG_ADDR(bp, offset)) 161 162 #define REG_WR(bp, offset, val) writel((u32)val, REG_ADDR(bp, offset)) 163 #define REG_WR8(bp, offset, val) writeb((u8)val, REG_ADDR(bp, offset)) 164 #define REG_WR16(bp, offset, val) writew((u16)val, REG_ADDR(bp, offset)) 165 166 #define REG_RD_IND(bp, offset) bnx2x_reg_rd_ind(bp, offset) 167 #define REG_WR_IND(bp, offset, val) bnx2x_reg_wr_ind(bp, offset, val) 168 169 #define REG_RD_DMAE(bp, offset, valp, len32) \ 170 do { \ 171 bnx2x_read_dmae(bp, offset, len32);\ 172 memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \ 173 } while (0) 174 175 #define REG_WR_DMAE(bp, offset, valp, len32) \ 176 do { \ 177 memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \ 178 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \ 179 offset, len32); \ 180 } while (0) 181 182 #define REG_WR_DMAE_LEN(bp, offset, valp, len32) \ 183 REG_WR_DMAE(bp, offset, valp, len32) 184 185 #define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \ 186 do { \ 187 memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \ 188 bnx2x_write_big_buf_wb(bp, addr, len32); \ 189 } while (0) 190 191 #define SHMEM_ADDR(bp, field) (bp->common.shmem_base + \ 192 offsetof(struct shmem_region, field)) 193 #define SHMEM_RD(bp, field) REG_RD(bp, SHMEM_ADDR(bp, field)) 194 #define SHMEM_WR(bp, field, val) REG_WR(bp, SHMEM_ADDR(bp, field), val) 195 196 #define SHMEM2_ADDR(bp, field) (bp->common.shmem2_base + \ 197 offsetof(struct shmem2_region, field)) 198 #define SHMEM2_RD(bp, field) REG_RD(bp, SHMEM2_ADDR(bp, field)) 199 #define SHMEM2_WR(bp, field, val) REG_WR(bp, SHMEM2_ADDR(bp, field), val) 200 #define MF_CFG_ADDR(bp, field) (bp->common.mf_cfg_base + \ 201 offsetof(struct mf_cfg, field)) 202 #define MF2_CFG_ADDR(bp, field) (bp->common.mf2_cfg_base + \ 203 offsetof(struct mf2_cfg, field)) 204 205 #define MF_CFG_RD(bp, field) REG_RD(bp, MF_CFG_ADDR(bp, field)) 206 #define MF_CFG_WR(bp, field, val) REG_WR(bp,\ 207 MF_CFG_ADDR(bp, field), (val)) 208 #define MF2_CFG_RD(bp, field) REG_RD(bp, MF2_CFG_ADDR(bp, field)) 209 210 #define SHMEM2_HAS(bp, field) ((bp)->common.shmem2_base && \ 211 (SHMEM2_RD((bp), size) > \ 212 offsetof(struct shmem2_region, field))) 213 214 #define EMAC_RD(bp, reg) REG_RD(bp, emac_base + reg) 215 #define EMAC_WR(bp, reg, val) REG_WR(bp, emac_base + reg, val) 216 217 /* SP SB indices */ 218 219 /* General SP events - stats query, cfc delete, etc */ 220 #define HC_SP_INDEX_ETH_DEF_CONS 3 221 222 /* EQ completions */ 223 #define HC_SP_INDEX_EQ_CONS 7 224 225 /* FCoE L2 connection completions */ 226 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6 227 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4 228 /* iSCSI L2 */ 229 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5 230 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1 231 232 /* Special clients parameters */ 233 234 /* SB indices */ 235 /* FCoE L2 */ 236 #define BNX2X_FCOE_L2_RX_INDEX \ 237 (&bp->def_status_blk->sp_sb.\ 238 index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS]) 239 240 #define BNX2X_FCOE_L2_TX_INDEX \ 241 (&bp->def_status_blk->sp_sb.\ 242 index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS]) 243 244 /** 245 * CIDs and CLIDs: 246 * CLIDs below is a CLID for func 0, then the CLID for other 247 * functions will be calculated by the formula: 248 * 249 * FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X 250 * 251 */ 252 enum { 253 BNX2X_ISCSI_ETH_CL_ID_IDX, 254 BNX2X_FCOE_ETH_CL_ID_IDX, 255 BNX2X_MAX_CNIC_ETH_CL_ID_IDX, 256 }; 257 258 /* use a value high enough to be above all the PFs, which has least significant 259 * nibble as 8, so when cnic needs to come up with a CID for UIO to use to 260 * calculate doorbell address according to old doorbell configuration scheme 261 * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number 262 * We must avoid coming up with cid 8 for iscsi since according to this method 263 * the designated UIO cid will come out 0 and it has a special handling for that 264 * case which doesn't suit us. Therefore will will cieling to closes cid which 265 * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18. 266 */ 267 268 #define BNX2X_1st_NON_L2_ETH_CID(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * \ 269 (bp)->max_cos) 270 /* amount of cids traversed by UIO's DPM addition to doorbell */ 271 #define UIO_DPM 8 272 /* roundup to DPM offset */ 273 #define UIO_ROUNDUP(bp) (roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \ 274 UIO_DPM)) 275 /* offset to nearest value which has lsb nibble matching DPM */ 276 #define UIO_CID_OFFSET(bp) ((UIO_ROUNDUP(bp) + UIO_DPM) % \ 277 (UIO_DPM * 2)) 278 /* add offset to rounded-up cid to get a value which could be used with UIO */ 279 #define UIO_DPM_ALIGN(bp) (UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp)) 280 /* but wait - avoid UIO special case for cid 0 */ 281 #define UIO_DPM_CID0_OFFSET(bp) ((UIO_DPM * 2) * \ 282 (UIO_DPM_ALIGN(bp) == UIO_DPM)) 283 /* Properly DPM aligned CID dajusted to cid 0 secal case */ 284 #define BNX2X_CNIC_START_ETH_CID(bp) (UIO_DPM_ALIGN(bp) + \ 285 (UIO_DPM_CID0_OFFSET(bp))) 286 /* how many cids were wasted - need this value for cid allocation */ 287 #define UIO_CID_PAD(bp) (BNX2X_CNIC_START_ETH_CID(bp) - \ 288 BNX2X_1st_NON_L2_ETH_CID(bp)) 289 /* iSCSI L2 */ 290 #define BNX2X_ISCSI_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp)) 291 /* FCoE L2 */ 292 #define BNX2X_FCOE_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp) + 1) 293 294 #define CNIC_SUPPORT(bp) ((bp)->cnic_support) 295 #define CNIC_ENABLED(bp) ((bp)->cnic_enabled) 296 #define CNIC_LOADED(bp) ((bp)->cnic_loaded) 297 #define FCOE_INIT(bp) ((bp)->fcoe_init) 298 299 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \ 300 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR 301 302 #define SM_RX_ID 0 303 #define SM_TX_ID 1 304 305 /* defines for multiple tx priority indices */ 306 #define FIRST_TX_ONLY_COS_INDEX 1 307 #define FIRST_TX_COS_INDEX 0 308 309 /* rules for calculating the cids of tx-only connections */ 310 #define CID_TO_FP(cid, bp) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp)) 311 #define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \ 312 (cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp)) 313 314 /* fp index inside class of service range */ 315 #define FP_COS_TO_TXQ(fp, cos, bp) \ 316 ((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp)) 317 318 /* Indexes for transmission queues array: 319 * txdata for RSS i CoS j is at location i + (j * num of RSS) 320 * txdata for FCoE (if exist) is at location max cos * num of RSS 321 * txdata for FWD (if exist) is one location after FCoE 322 * txdata for OOO (if exist) is one location after FWD 323 */ 324 enum { 325 FCOE_TXQ_IDX_OFFSET, 326 FWD_TXQ_IDX_OFFSET, 327 OOO_TXQ_IDX_OFFSET, 328 }; 329 #define MAX_ETH_TXQ_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos) 330 #define FCOE_TXQ_IDX(bp) (MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET) 331 332 /* fast path */ 333 /* 334 * This driver uses new build_skb() API : 335 * RX ring buffer contains pointer to kmalloc() data only, 336 * skb are built only after Hardware filled the frame. 337 */ 338 struct sw_rx_bd { 339 u8 *data; 340 DEFINE_DMA_UNMAP_ADDR(mapping); 341 }; 342 343 struct sw_tx_bd { 344 struct sk_buff *skb; 345 u16 first_bd; 346 u8 flags; 347 /* Set on the first BD descriptor when there is a split BD */ 348 #define BNX2X_TSO_SPLIT_BD (1<<0) 349 }; 350 351 struct sw_rx_page { 352 struct page *page; 353 DEFINE_DMA_UNMAP_ADDR(mapping); 354 }; 355 356 union db_prod { 357 struct doorbell_set_prod data; 358 u32 raw; 359 }; 360 361 /* dropless fc FW/HW related params */ 362 #define BRB_SIZE(bp) (CHIP_IS_E3(bp) ? 1024 : 512) 363 #define MAX_AGG_QS(bp) (CHIP_IS_E1(bp) ? \ 364 ETH_MAX_AGGREGATION_QUEUES_E1 :\ 365 ETH_MAX_AGGREGATION_QUEUES_E1H_E2) 366 #define FW_DROP_LEVEL(bp) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp)) 367 #define FW_PREFETCH_CNT 16 368 #define DROPLESS_FC_HEADROOM 100 369 370 /* MC hsi */ 371 #define BCM_PAGE_SHIFT 12 372 #define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT) 373 #define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1)) 374 #define BCM_PAGE_ALIGN(addr) (((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK) 375 376 #define PAGES_PER_SGE_SHIFT 0 377 #define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT) 378 #define SGE_PAGE_SIZE PAGE_SIZE 379 #define SGE_PAGE_SHIFT PAGE_SHIFT 380 #define SGE_PAGE_ALIGN(addr) PAGE_ALIGN((typeof(PAGE_SIZE))(addr)) 381 #define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE) 382 #define TPA_AGG_SIZE min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \ 383 SGE_PAGES), 0xffff) 384 385 /* SGE ring related macros */ 386 #define NUM_RX_SGE_PAGES 2 387 #define RX_SGE_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge)) 388 #define NEXT_PAGE_SGE_DESC_CNT 2 389 #define MAX_RX_SGE_CNT (RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT) 390 /* RX_SGE_CNT is promised to be a power of 2 */ 391 #define RX_SGE_MASK (RX_SGE_CNT - 1) 392 #define NUM_RX_SGE (RX_SGE_CNT * NUM_RX_SGE_PAGES) 393 #define MAX_RX_SGE (NUM_RX_SGE - 1) 394 #define NEXT_SGE_IDX(x) ((((x) & RX_SGE_MASK) == \ 395 (MAX_RX_SGE_CNT - 1)) ? \ 396 (x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \ 397 (x) + 1) 398 #define RX_SGE(x) ((x) & MAX_RX_SGE) 399 400 /* 401 * Number of required SGEs is the sum of two: 402 * 1. Number of possible opened aggregations (next packet for 403 * these aggregations will probably consume SGE immediately) 404 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only 405 * after placement on BD for new TPA aggregation) 406 * 407 * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page 408 */ 409 #define NUM_SGE_REQ (MAX_AGG_QS(bp) + \ 410 (BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2) 411 #define NUM_SGE_PG_REQ ((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \ 412 MAX_RX_SGE_CNT) 413 #define SGE_TH_LO(bp) (NUM_SGE_REQ + \ 414 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT) 415 #define SGE_TH_HI(bp) (SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM) 416 417 /* Manipulate a bit vector defined as an array of u64 */ 418 419 /* Number of bits in one sge_mask array element */ 420 #define BIT_VEC64_ELEM_SZ 64 421 #define BIT_VEC64_ELEM_SHIFT 6 422 #define BIT_VEC64_ELEM_MASK ((u64)BIT_VEC64_ELEM_SZ - 1) 423 424 #define __BIT_VEC64_SET_BIT(el, bit) \ 425 do { \ 426 el = ((el) | ((u64)0x1 << (bit))); \ 427 } while (0) 428 429 #define __BIT_VEC64_CLEAR_BIT(el, bit) \ 430 do { \ 431 el = ((el) & (~((u64)0x1 << (bit)))); \ 432 } while (0) 433 434 #define BIT_VEC64_SET_BIT(vec64, idx) \ 435 __BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \ 436 (idx) & BIT_VEC64_ELEM_MASK) 437 438 #define BIT_VEC64_CLEAR_BIT(vec64, idx) \ 439 __BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \ 440 (idx) & BIT_VEC64_ELEM_MASK) 441 442 #define BIT_VEC64_TEST_BIT(vec64, idx) \ 443 (((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \ 444 ((idx) & BIT_VEC64_ELEM_MASK)) & 0x1) 445 446 /* Creates a bitmask of all ones in less significant bits. 447 idx - index of the most significant bit in the created mask */ 448 #define BIT_VEC64_ONES_MASK(idx) \ 449 (((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1) 450 #define BIT_VEC64_ELEM_ONE_MASK ((u64)(~0)) 451 452 /*******************************************************/ 453 454 /* Number of u64 elements in SGE mask array */ 455 #define RX_SGE_MASK_LEN (NUM_RX_SGE / BIT_VEC64_ELEM_SZ) 456 #define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1) 457 #define NEXT_SGE_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK) 458 459 union host_hc_status_block { 460 /* pointer to fp status block e1x */ 461 struct host_hc_status_block_e1x *e1x_sb; 462 /* pointer to fp status block e2 */ 463 struct host_hc_status_block_e2 *e2_sb; 464 }; 465 466 struct bnx2x_agg_info { 467 /* 468 * First aggregation buffer is a data buffer, the following - are pages. 469 * We will preallocate the data buffer for each aggregation when 470 * we open the interface and will replace the BD at the consumer 471 * with this one when we receive the TPA_START CQE in order to 472 * keep the Rx BD ring consistent. 473 */ 474 struct sw_rx_bd first_buf; 475 u8 tpa_state; 476 #define BNX2X_TPA_START 1 477 #define BNX2X_TPA_STOP 2 478 #define BNX2X_TPA_ERROR 3 479 u8 placement_offset; 480 u16 parsing_flags; 481 u16 vlan_tag; 482 u16 len_on_bd; 483 u32 rxhash; 484 enum pkt_hash_types rxhash_type; 485 u16 gro_size; 486 u16 full_page; 487 }; 488 489 #define Q_STATS_OFFSET32(stat_name) \ 490 (offsetof(struct bnx2x_eth_q_stats, stat_name) / 4) 491 492 struct bnx2x_fp_txdata { 493 494 struct sw_tx_bd *tx_buf_ring; 495 496 union eth_tx_bd_types *tx_desc_ring; 497 dma_addr_t tx_desc_mapping; 498 499 u32 cid; 500 501 union db_prod tx_db; 502 503 u16 tx_pkt_prod; 504 u16 tx_pkt_cons; 505 u16 tx_bd_prod; 506 u16 tx_bd_cons; 507 508 unsigned long tx_pkt; 509 510 __le16 *tx_cons_sb; 511 512 int txq_index; 513 struct bnx2x_fastpath *parent_fp; 514 int tx_ring_size; 515 }; 516 517 enum bnx2x_tpa_mode_t { 518 TPA_MODE_LRO, 519 TPA_MODE_GRO 520 }; 521 522 struct bnx2x_fastpath { 523 struct bnx2x *bp; /* parent */ 524 525 struct napi_struct napi; 526 527 #ifdef CONFIG_NET_RX_BUSY_POLL 528 unsigned int state; 529 #define BNX2X_FP_STATE_IDLE 0 530 #define BNX2X_FP_STATE_NAPI (1 << 0) /* NAPI owns this FP */ 531 #define BNX2X_FP_STATE_POLL (1 << 1) /* poll owns this FP */ 532 #define BNX2X_FP_STATE_DISABLED (1 << 2) 533 #define BNX2X_FP_STATE_NAPI_YIELD (1 << 3) /* NAPI yielded this FP */ 534 #define BNX2X_FP_STATE_POLL_YIELD (1 << 4) /* poll yielded this FP */ 535 #define BNX2X_FP_OWNED (BNX2X_FP_STATE_NAPI | BNX2X_FP_STATE_POLL) 536 #define BNX2X_FP_YIELD (BNX2X_FP_STATE_NAPI_YIELD | BNX2X_FP_STATE_POLL_YIELD) 537 #define BNX2X_FP_LOCKED (BNX2X_FP_OWNED | BNX2X_FP_STATE_DISABLED) 538 #define BNX2X_FP_USER_PEND (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_POLL_YIELD) 539 /* protect state */ 540 spinlock_t lock; 541 #endif /* CONFIG_NET_RX_BUSY_POLL */ 542 543 union host_hc_status_block status_blk; 544 /* chip independent shortcuts into sb structure */ 545 __le16 *sb_index_values; 546 __le16 *sb_running_index; 547 /* chip independent shortcut into rx_prods_offset memory */ 548 u32 ustorm_rx_prods_offset; 549 550 u32 rx_buf_size; 551 u32 rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */ 552 dma_addr_t status_blk_mapping; 553 554 enum bnx2x_tpa_mode_t mode; 555 556 u8 max_cos; /* actual number of active tx coses */ 557 struct bnx2x_fp_txdata *txdata_ptr[BNX2X_MULTI_TX_COS]; 558 559 struct sw_rx_bd *rx_buf_ring; /* BDs mappings ring */ 560 struct sw_rx_page *rx_page_ring; /* SGE pages mappings ring */ 561 562 struct eth_rx_bd *rx_desc_ring; 563 dma_addr_t rx_desc_mapping; 564 565 union eth_rx_cqe *rx_comp_ring; 566 dma_addr_t rx_comp_mapping; 567 568 /* SGE ring */ 569 struct eth_rx_sge *rx_sge_ring; 570 dma_addr_t rx_sge_mapping; 571 572 u64 sge_mask[RX_SGE_MASK_LEN]; 573 574 u32 cid; 575 576 __le16 fp_hc_idx; 577 578 u8 index; /* number in fp array */ 579 u8 rx_queue; /* index for skb_record */ 580 u8 cl_id; /* eth client id */ 581 u8 cl_qzone_id; 582 u8 fw_sb_id; /* status block number in FW */ 583 u8 igu_sb_id; /* status block number in HW */ 584 585 u16 rx_bd_prod; 586 u16 rx_bd_cons; 587 u16 rx_comp_prod; 588 u16 rx_comp_cons; 589 u16 rx_sge_prod; 590 /* The last maximal completed SGE */ 591 u16 last_max_sge; 592 __le16 *rx_cons_sb; 593 unsigned long rx_pkt, 594 rx_calls; 595 596 /* TPA related */ 597 struct bnx2x_agg_info *tpa_info; 598 u8 disable_tpa; 599 #ifdef BNX2X_STOP_ON_ERROR 600 u64 tpa_queue_used; 601 #endif 602 /* The size is calculated using the following: 603 sizeof name field from netdev structure + 604 4 ('-Xx-' string) + 605 4 (for the digits and to make it DWORD aligned) */ 606 #define FP_NAME_SIZE (sizeof(((struct net_device *)0)->name) + 8) 607 char name[FP_NAME_SIZE]; 608 }; 609 610 #define bnx2x_fp(bp, nr, var) ((bp)->fp[(nr)].var) 611 #define bnx2x_sp_obj(bp, fp) ((bp)->sp_objs[(fp)->index]) 612 #define bnx2x_fp_stats(bp, fp) (&((bp)->fp_stats[(fp)->index])) 613 #define bnx2x_fp_qstats(bp, fp) (&((bp)->fp_stats[(fp)->index].eth_q_stats)) 614 615 #ifdef CONFIG_NET_RX_BUSY_POLL 616 static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp) 617 { 618 spin_lock_init(&fp->lock); 619 fp->state = BNX2X_FP_STATE_IDLE; 620 } 621 622 /* called from the device poll routine to get ownership of a FP */ 623 static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp) 624 { 625 bool rc = true; 626 627 spin_lock_bh(&fp->lock); 628 if (fp->state & BNX2X_FP_LOCKED) { 629 WARN_ON(fp->state & BNX2X_FP_STATE_NAPI); 630 fp->state |= BNX2X_FP_STATE_NAPI_YIELD; 631 rc = false; 632 } else { 633 /* we don't care if someone yielded */ 634 fp->state = BNX2X_FP_STATE_NAPI; 635 } 636 spin_unlock_bh(&fp->lock); 637 return rc; 638 } 639 640 /* returns true is someone tried to get the FP while napi had it */ 641 static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp) 642 { 643 bool rc = false; 644 645 spin_lock_bh(&fp->lock); 646 WARN_ON(fp->state & 647 (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_NAPI_YIELD)); 648 649 if (fp->state & BNX2X_FP_STATE_POLL_YIELD) 650 rc = true; 651 652 /* state ==> idle, unless currently disabled */ 653 fp->state &= BNX2X_FP_STATE_DISABLED; 654 spin_unlock_bh(&fp->lock); 655 return rc; 656 } 657 658 /* called from bnx2x_low_latency_poll() */ 659 static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp) 660 { 661 bool rc = true; 662 663 spin_lock_bh(&fp->lock); 664 if ((fp->state & BNX2X_FP_LOCKED)) { 665 fp->state |= BNX2X_FP_STATE_POLL_YIELD; 666 rc = false; 667 } else { 668 /* preserve yield marks */ 669 fp->state |= BNX2X_FP_STATE_POLL; 670 } 671 spin_unlock_bh(&fp->lock); 672 return rc; 673 } 674 675 /* returns true if someone tried to get the FP while it was locked */ 676 static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp) 677 { 678 bool rc = false; 679 680 spin_lock_bh(&fp->lock); 681 WARN_ON(fp->state & BNX2X_FP_STATE_NAPI); 682 683 if (fp->state & BNX2X_FP_STATE_POLL_YIELD) 684 rc = true; 685 686 /* state ==> idle, unless currently disabled */ 687 fp->state &= BNX2X_FP_STATE_DISABLED; 688 spin_unlock_bh(&fp->lock); 689 return rc; 690 } 691 692 /* true if a socket is polling, even if it did not get the lock */ 693 static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp) 694 { 695 WARN_ON(!(fp->state & BNX2X_FP_OWNED)); 696 return fp->state & BNX2X_FP_USER_PEND; 697 } 698 699 /* false if fp is currently owned */ 700 static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp) 701 { 702 int rc = true; 703 704 spin_lock_bh(&fp->lock); 705 if (fp->state & BNX2X_FP_OWNED) 706 rc = false; 707 fp->state |= BNX2X_FP_STATE_DISABLED; 708 spin_unlock_bh(&fp->lock); 709 710 return rc; 711 } 712 #else 713 static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp) 714 { 715 } 716 717 static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp) 718 { 719 return true; 720 } 721 722 static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp) 723 { 724 return false; 725 } 726 727 static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp) 728 { 729 return false; 730 } 731 732 static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp) 733 { 734 return false; 735 } 736 737 static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp) 738 { 739 return false; 740 } 741 static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp) 742 { 743 return true; 744 } 745 #endif /* CONFIG_NET_RX_BUSY_POLL */ 746 747 /* Use 2500 as a mini-jumbo MTU for FCoE */ 748 #define BNX2X_FCOE_MINI_JUMBO_MTU 2500 749 750 #define FCOE_IDX_OFFSET 0 751 752 #define FCOE_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) + \ 753 FCOE_IDX_OFFSET) 754 #define bnx2x_fcoe_fp(bp) (&bp->fp[FCOE_IDX(bp)]) 755 #define bnx2x_fcoe(bp, var) (bnx2x_fcoe_fp(bp)->var) 756 #define bnx2x_fcoe_inner_sp_obj(bp) (&bp->sp_objs[FCOE_IDX(bp)]) 757 #define bnx2x_fcoe_sp_obj(bp, var) (bnx2x_fcoe_inner_sp_obj(bp)->var) 758 #define bnx2x_fcoe_tx(bp, var) (bnx2x_fcoe_fp(bp)-> \ 759 txdata_ptr[FIRST_TX_COS_INDEX] \ 760 ->var) 761 762 #define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp)) 763 #define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->bp)) 764 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(bp)) 765 766 /* MC hsi */ 767 #define MAX_FETCH_BD 13 /* HW max BDs per packet */ 768 #define RX_COPY_THRESH 92 769 770 #define NUM_TX_RINGS 16 771 #define TX_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types)) 772 #define NEXT_PAGE_TX_DESC_CNT 1 773 #define MAX_TX_DESC_CNT (TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT) 774 #define NUM_TX_BD (TX_DESC_CNT * NUM_TX_RINGS) 775 #define MAX_TX_BD (NUM_TX_BD - 1) 776 #define MAX_TX_AVAIL (MAX_TX_DESC_CNT * NUM_TX_RINGS - 2) 777 #define NEXT_TX_IDX(x) ((((x) & MAX_TX_DESC_CNT) == \ 778 (MAX_TX_DESC_CNT - 1)) ? \ 779 (x) + 1 + NEXT_PAGE_TX_DESC_CNT : \ 780 (x) + 1) 781 #define TX_BD(x) ((x) & MAX_TX_BD) 782 #define TX_BD_POFF(x) ((x) & MAX_TX_DESC_CNT) 783 784 /* number of NEXT_PAGE descriptors may be required during placement */ 785 #define NEXT_CNT_PER_TX_PKT(bds) \ 786 (((bds) + MAX_TX_DESC_CNT - 1) / \ 787 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT) 788 /* max BDs per tx packet w/o next_pages: 789 * START_BD - describes packed 790 * START_BD(splitted) - includes unpaged data segment for GSO 791 * PARSING_BD - for TSO and CSUM data 792 * PARSING_BD2 - for encapsulation data 793 * Frag BDs - describes pages for frags 794 */ 795 #define BDS_PER_TX_PKT 4 796 #define MAX_BDS_PER_TX_PKT (MAX_SKB_FRAGS + BDS_PER_TX_PKT) 797 /* max BDs per tx packet including next pages */ 798 #define MAX_DESC_PER_TX_PKT (MAX_BDS_PER_TX_PKT + \ 799 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT)) 800 801 /* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */ 802 #define NUM_RX_RINGS 8 803 #define RX_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd)) 804 #define NEXT_PAGE_RX_DESC_CNT 2 805 #define MAX_RX_DESC_CNT (RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT) 806 #define RX_DESC_MASK (RX_DESC_CNT - 1) 807 #define NUM_RX_BD (RX_DESC_CNT * NUM_RX_RINGS) 808 #define MAX_RX_BD (NUM_RX_BD - 1) 809 #define MAX_RX_AVAIL (MAX_RX_DESC_CNT * NUM_RX_RINGS - 2) 810 811 /* dropless fc calculations for BDs 812 * 813 * Number of BDs should as number of buffers in BRB: 814 * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT 815 * "next" elements on each page 816 */ 817 #define NUM_BD_REQ BRB_SIZE(bp) 818 #define NUM_BD_PG_REQ ((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \ 819 MAX_RX_DESC_CNT) 820 #define BD_TH_LO(bp) (NUM_BD_REQ + \ 821 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \ 822 FW_DROP_LEVEL(bp)) 823 #define BD_TH_HI(bp) (BD_TH_LO(bp) + DROPLESS_FC_HEADROOM) 824 825 #define MIN_RX_AVAIL ((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128) 826 827 #define MIN_RX_SIZE_TPA_HW (CHIP_IS_E1(bp) ? \ 828 ETH_MIN_RX_CQES_WITH_TPA_E1 : \ 829 ETH_MIN_RX_CQES_WITH_TPA_E1H_E2) 830 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA 831 #define MIN_RX_SIZE_TPA (max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL)) 832 #define MIN_RX_SIZE_NONTPA (max_t(u32, MIN_RX_SIZE_NONTPA_HW,\ 833 MIN_RX_AVAIL)) 834 835 #define NEXT_RX_IDX(x) ((((x) & RX_DESC_MASK) == \ 836 (MAX_RX_DESC_CNT - 1)) ? \ 837 (x) + 1 + NEXT_PAGE_RX_DESC_CNT : \ 838 (x) + 1) 839 #define RX_BD(x) ((x) & MAX_RX_BD) 840 841 /* 842 * As long as CQE is X times bigger than BD entry we have to allocate X times 843 * more pages for CQ ring in order to keep it balanced with BD ring 844 */ 845 #define CQE_BD_REL (sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd)) 846 #define NUM_RCQ_RINGS (NUM_RX_RINGS * CQE_BD_REL) 847 #define RCQ_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe)) 848 #define NEXT_PAGE_RCQ_DESC_CNT 1 849 #define MAX_RCQ_DESC_CNT (RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT) 850 #define NUM_RCQ_BD (RCQ_DESC_CNT * NUM_RCQ_RINGS) 851 #define MAX_RCQ_BD (NUM_RCQ_BD - 1) 852 #define MAX_RCQ_AVAIL (MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2) 853 #define NEXT_RCQ_IDX(x) ((((x) & MAX_RCQ_DESC_CNT) == \ 854 (MAX_RCQ_DESC_CNT - 1)) ? \ 855 (x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \ 856 (x) + 1) 857 #define RCQ_BD(x) ((x) & MAX_RCQ_BD) 858 859 /* dropless fc calculations for RCQs 860 * 861 * Number of RCQs should be as number of buffers in BRB: 862 * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT 863 * "next" elements on each page 864 */ 865 #define NUM_RCQ_REQ BRB_SIZE(bp) 866 #define NUM_RCQ_PG_REQ ((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \ 867 MAX_RCQ_DESC_CNT) 868 #define RCQ_TH_LO(bp) (NUM_RCQ_REQ + \ 869 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \ 870 FW_DROP_LEVEL(bp)) 871 #define RCQ_TH_HI(bp) (RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM) 872 873 /* This is needed for determining of last_max */ 874 #define SUB_S16(a, b) (s16)((s16)(a) - (s16)(b)) 875 #define SUB_S32(a, b) (s32)((s32)(a) - (s32)(b)) 876 877 #define BNX2X_SWCID_SHIFT 17 878 #define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1) 879 880 /* used on a CID received from the HW */ 881 #define SW_CID(x) (le32_to_cpu(x) & BNX2X_SWCID_MASK) 882 #define CQE_CMD(x) (le32_to_cpu(x) >> \ 883 COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT) 884 885 #define BD_UNMAP_ADDR(bd) HILO_U64(le32_to_cpu((bd)->addr_hi), \ 886 le32_to_cpu((bd)->addr_lo)) 887 #define BD_UNMAP_LEN(bd) (le16_to_cpu((bd)->nbytes)) 888 889 #define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */ 890 #define BNX2X_DB_SHIFT 3 /* 8 bytes*/ 891 #if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT) 892 #error "Min DB doorbell stride is 8" 893 #endif 894 #define DOORBELL(bp, cid, val) \ 895 do { \ 896 writel((u32)(val), bp->doorbells + (bp->db_size * (cid))); \ 897 } while (0) 898 899 /* TX CSUM helpers */ 900 #define SKB_CS_OFF(skb) (offsetof(struct tcphdr, check) - \ 901 skb->csum_offset) 902 #define SKB_CS(skb) (*(u16 *)(skb_transport_header(skb) + \ 903 skb->csum_offset)) 904 905 #define pbd_tcp_flags(tcp_hdr) (ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff) 906 907 #define XMIT_PLAIN 0 908 #define XMIT_CSUM_V4 (1 << 0) 909 #define XMIT_CSUM_V6 (1 << 1) 910 #define XMIT_CSUM_TCP (1 << 2) 911 #define XMIT_GSO_V4 (1 << 3) 912 #define XMIT_GSO_V6 (1 << 4) 913 #define XMIT_CSUM_ENC_V4 (1 << 5) 914 #define XMIT_CSUM_ENC_V6 (1 << 6) 915 #define XMIT_GSO_ENC_V4 (1 << 7) 916 #define XMIT_GSO_ENC_V6 (1 << 8) 917 918 #define XMIT_CSUM_ENC (XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6) 919 #define XMIT_GSO_ENC (XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6) 920 921 #define XMIT_CSUM (XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC) 922 #define XMIT_GSO (XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC) 923 924 /* stuff added to make the code fit 80Col */ 925 #define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE) 926 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG) 927 #define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG) 928 #define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD) 929 #define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH) 930 931 #define ETH_RX_ERROR_FALGS ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG 932 933 #define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \ 934 (((le16_to_cpu(flags) & \ 935 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \ 936 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \ 937 == PRS_FLAG_OVERETH_IPV4) 938 #define BNX2X_RX_SUM_FIX(cqe) \ 939 BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags) 940 941 #define FP_USB_FUNC_OFF \ 942 offsetof(struct cstorm_status_block_u, func) 943 #define FP_CSB_FUNC_OFF \ 944 offsetof(struct cstorm_status_block_c, func) 945 946 #define HC_INDEX_ETH_RX_CQ_CONS 1 947 948 #define HC_INDEX_OOO_TX_CQ_CONS 4 949 950 #define HC_INDEX_ETH_TX_CQ_CONS_COS0 5 951 952 #define HC_INDEX_ETH_TX_CQ_CONS_COS1 6 953 954 #define HC_INDEX_ETH_TX_CQ_CONS_COS2 7 955 956 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0 957 958 #define BNX2X_RX_SB_INDEX \ 959 (&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]) 960 961 #define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0 962 963 #define BNX2X_TX_SB_INDEX_COS0 \ 964 (&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]) 965 966 /* end of fast path */ 967 968 /* common */ 969 970 struct bnx2x_common { 971 972 u32 chip_id; 973 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 974 #define CHIP_ID(bp) (bp->common.chip_id & 0xfffffff0) 975 976 #define CHIP_NUM(bp) (bp->common.chip_id >> 16) 977 #define CHIP_NUM_57710 0x164e 978 #define CHIP_NUM_57711 0x164f 979 #define CHIP_NUM_57711E 0x1650 980 #define CHIP_NUM_57712 0x1662 981 #define CHIP_NUM_57712_MF 0x1663 982 #define CHIP_NUM_57712_VF 0x166f 983 #define CHIP_NUM_57713 0x1651 984 #define CHIP_NUM_57713E 0x1652 985 #define CHIP_NUM_57800 0x168a 986 #define CHIP_NUM_57800_MF 0x16a5 987 #define CHIP_NUM_57800_VF 0x16a9 988 #define CHIP_NUM_57810 0x168e 989 #define CHIP_NUM_57810_MF 0x16ae 990 #define CHIP_NUM_57810_VF 0x16af 991 #define CHIP_NUM_57811 0x163d 992 #define CHIP_NUM_57811_MF 0x163e 993 #define CHIP_NUM_57811_VF 0x163f 994 #define CHIP_NUM_57840_OBSOLETE 0x168d 995 #define CHIP_NUM_57840_MF_OBSOLETE 0x16ab 996 #define CHIP_NUM_57840_4_10 0x16a1 997 #define CHIP_NUM_57840_2_20 0x16a2 998 #define CHIP_NUM_57840_MF 0x16a4 999 #define CHIP_NUM_57840_VF 0x16ad 1000 #define CHIP_IS_E1(bp) (CHIP_NUM(bp) == CHIP_NUM_57710) 1001 #define CHIP_IS_57711(bp) (CHIP_NUM(bp) == CHIP_NUM_57711) 1002 #define CHIP_IS_57711E(bp) (CHIP_NUM(bp) == CHIP_NUM_57711E) 1003 #define CHIP_IS_57712(bp) (CHIP_NUM(bp) == CHIP_NUM_57712) 1004 #define CHIP_IS_57712_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_VF) 1005 #define CHIP_IS_57712_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_MF) 1006 #define CHIP_IS_57800(bp) (CHIP_NUM(bp) == CHIP_NUM_57800) 1007 #define CHIP_IS_57800_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_MF) 1008 #define CHIP_IS_57800_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_VF) 1009 #define CHIP_IS_57810(bp) (CHIP_NUM(bp) == CHIP_NUM_57810) 1010 #define CHIP_IS_57810_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_MF) 1011 #define CHIP_IS_57810_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_VF) 1012 #define CHIP_IS_57811(bp) (CHIP_NUM(bp) == CHIP_NUM_57811) 1013 #define CHIP_IS_57811_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_MF) 1014 #define CHIP_IS_57811_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_VF) 1015 #define CHIP_IS_57840(bp) \ 1016 ((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \ 1017 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \ 1018 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE)) 1019 #define CHIP_IS_57840_MF(bp) ((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \ 1020 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE)) 1021 #define CHIP_IS_57840_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57840_VF) 1022 #define CHIP_IS_E1H(bp) (CHIP_IS_57711(bp) || \ 1023 CHIP_IS_57711E(bp)) 1024 #define CHIP_IS_57811xx(bp) (CHIP_IS_57811(bp) || \ 1025 CHIP_IS_57811_MF(bp) || \ 1026 CHIP_IS_57811_VF(bp)) 1027 #define CHIP_IS_E2(bp) (CHIP_IS_57712(bp) || \ 1028 CHIP_IS_57712_MF(bp) || \ 1029 CHIP_IS_57712_VF(bp)) 1030 #define CHIP_IS_E3(bp) (CHIP_IS_57800(bp) || \ 1031 CHIP_IS_57800_MF(bp) || \ 1032 CHIP_IS_57800_VF(bp) || \ 1033 CHIP_IS_57810(bp) || \ 1034 CHIP_IS_57810_MF(bp) || \ 1035 CHIP_IS_57810_VF(bp) || \ 1036 CHIP_IS_57811xx(bp) || \ 1037 CHIP_IS_57840(bp) || \ 1038 CHIP_IS_57840_MF(bp) || \ 1039 CHIP_IS_57840_VF(bp)) 1040 #define CHIP_IS_E1x(bp) (CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp))) 1041 #define USES_WARPCORE(bp) (CHIP_IS_E3(bp)) 1042 #define IS_E1H_OFFSET (!CHIP_IS_E1(bp)) 1043 1044 #define CHIP_REV_SHIFT 12 1045 #define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT) 1046 #define CHIP_REV_VAL(bp) (bp->common.chip_id & CHIP_REV_MASK) 1047 #define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT) 1048 #define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT) 1049 /* assume maximum 5 revisions */ 1050 #define CHIP_REV_IS_SLOW(bp) (CHIP_REV_VAL(bp) > 0x00005000) 1051 /* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */ 1052 #define CHIP_REV_IS_EMUL(bp) ((CHIP_REV_IS_SLOW(bp)) && \ 1053 !(CHIP_REV_VAL(bp) & 0x00001000)) 1054 /* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */ 1055 #define CHIP_REV_IS_FPGA(bp) ((CHIP_REV_IS_SLOW(bp)) && \ 1056 (CHIP_REV_VAL(bp) & 0x00001000)) 1057 1058 #define CHIP_TIME(bp) ((CHIP_REV_IS_EMUL(bp)) ? 2000 : \ 1059 ((CHIP_REV_IS_FPGA(bp)) ? 200 : 1)) 1060 1061 #define CHIP_METAL(bp) (bp->common.chip_id & 0x00000ff0) 1062 #define CHIP_BOND_ID(bp) (bp->common.chip_id & 0x0000000f) 1063 #define CHIP_REV_SIM(bp) (((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\ 1064 (CHIP_REV_SHIFT + 1)) \ 1065 << CHIP_REV_SHIFT) 1066 #define CHIP_REV(bp) (CHIP_REV_IS_SLOW(bp) ? \ 1067 CHIP_REV_SIM(bp) :\ 1068 CHIP_REV_VAL(bp)) 1069 #define CHIP_IS_E3B0(bp) (CHIP_IS_E3(bp) && \ 1070 (CHIP_REV(bp) == CHIP_REV_Bx)) 1071 #define CHIP_IS_E3A0(bp) (CHIP_IS_E3(bp) && \ 1072 (CHIP_REV(bp) == CHIP_REV_Ax)) 1073 /* This define is used in two main places: 1074 * 1. In the early stages of nic_load, to know if to configure Parser / Searcher 1075 * to nic-only mode or to offload mode. Offload mode is configured if either the 1076 * chip is E1x (where MIC_MODE register is not applicable), or if cnic already 1077 * registered for this port (which means that the user wants storage services). 1078 * 2. During cnic-related load, to know if offload mode is already configured in 1079 * the HW or needs to be configured. 1080 * Since the transition from nic-mode to offload-mode in HW causes traffic 1081 * corruption, nic-mode is configured only in ports on which storage services 1082 * where never requested. 1083 */ 1084 #define CONFIGURE_NIC_MODE(bp) (!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp)) 1085 1086 int flash_size; 1087 #define BNX2X_NVRAM_1MB_SIZE 0x20000 /* 1M bit in bytes */ 1088 #define BNX2X_NVRAM_TIMEOUT_COUNT 30000 1089 #define BNX2X_NVRAM_PAGE_SIZE 256 1090 1091 u32 shmem_base; 1092 u32 shmem2_base; 1093 u32 mf_cfg_base; 1094 u32 mf2_cfg_base; 1095 1096 u32 hw_config; 1097 1098 u32 bc_ver; 1099 1100 u8 int_block; 1101 #define INT_BLOCK_HC 0 1102 #define INT_BLOCK_IGU 1 1103 #define INT_BLOCK_MODE_NORMAL 0 1104 #define INT_BLOCK_MODE_BW_COMP 2 1105 #define CHIP_INT_MODE_IS_NBC(bp) \ 1106 (!CHIP_IS_E1x(bp) && \ 1107 !((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP)) 1108 #define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp)) 1109 1110 u8 chip_port_mode; 1111 #define CHIP_4_PORT_MODE 0x0 1112 #define CHIP_2_PORT_MODE 0x1 1113 #define CHIP_PORT_MODE_NONE 0x2 1114 #define CHIP_MODE(bp) (bp->common.chip_port_mode) 1115 #define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE) 1116 1117 u32 boot_mode; 1118 }; 1119 1120 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */ 1121 #define BNX2X_IGU_STAS_MSG_VF_CNT 64 1122 #define BNX2X_IGU_STAS_MSG_PF_CNT 4 1123 1124 #define MAX_IGU_ATTN_ACK_TO 100 1125 /* end of common */ 1126 1127 /* port */ 1128 1129 struct bnx2x_port { 1130 u32 pmf; 1131 1132 u32 link_config[LINK_CONFIG_SIZE]; 1133 1134 u32 supported[LINK_CONFIG_SIZE]; 1135 /* link settings - missing defines */ 1136 #define SUPPORTED_2500baseX_Full (1 << 15) 1137 1138 u32 advertising[LINK_CONFIG_SIZE]; 1139 /* link settings - missing defines */ 1140 #define ADVERTISED_2500baseX_Full (1 << 15) 1141 1142 u32 phy_addr; 1143 1144 /* used to synchronize phy accesses */ 1145 struct mutex phy_mutex; 1146 1147 u32 port_stx; 1148 1149 struct nig_stats old_nig_stats; 1150 }; 1151 1152 /* end of port */ 1153 1154 #define STATS_OFFSET32(stat_name) \ 1155 (offsetof(struct bnx2x_eth_stats, stat_name) / 4) 1156 1157 /* slow path */ 1158 #define BNX2X_MAX_NUM_OF_VFS 64 1159 #define BNX2X_VF_CID_WND 4 /* log num of queues per VF. HW config. */ 1160 #define BNX2X_CIDS_PER_VF (1 << BNX2X_VF_CID_WND) 1161 1162 /* We need to reserve doorbell addresses for all VF and queue combinations */ 1163 #define BNX2X_VF_CIDS (BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF) 1164 1165 /* The doorbell is configured to have the same number of CIDs for PFs and for 1166 * VFs. For this reason the PF CID zone is as large as the VF zone. 1167 */ 1168 #define BNX2X_FIRST_VF_CID BNX2X_VF_CIDS 1169 #define BNX2X_MAX_NUM_VF_QUEUES 64 1170 #define BNX2X_VF_ID_INVALID 0xFF 1171 1172 /* the number of VF CIDS multiplied by the amount of bytes reserved for each 1173 * cid must not exceed the size of the VF doorbell 1174 */ 1175 #define BNX2X_VF_BAR_SIZE 512 1176 #if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT)) 1177 #error "VF doorbell bar size is 512" 1178 #endif 1179 1180 /* 1181 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is 1182 * control by the number of fast-path status blocks supported by the 1183 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default 1184 * status block represents an independent interrupts context that can 1185 * serve a regular L2 networking queue. However special L2 queues such 1186 * as the FCoE queue do not require a FP-SB and other components like 1187 * the CNIC may consume FP-SB reducing the number of possible L2 queues 1188 * 1189 * If the maximum number of FP-SB available is X then: 1190 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of 1191 * regular L2 queues is Y=X-1 1192 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor) 1193 * c. If the FCoE L2 queue is supported the actual number of L2 queues 1194 * is Y+1 1195 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for 1196 * slow-path interrupts) or Y+2 if CNIC is supported (one additional 1197 * FP interrupt context for the CNIC). 1198 * e. The number of HW context (CID count) is always X or X+1 if FCoE 1199 * L2 queue is supported. The cid for the FCoE L2 queue is always X. 1200 */ 1201 1202 /* fast-path interrupt contexts E1x */ 1203 #define FP_SB_MAX_E1x 16 1204 /* fast-path interrupt contexts E2 */ 1205 #define FP_SB_MAX_E2 HC_SB_MAX_SB_E2 1206 1207 union cdu_context { 1208 struct eth_context eth; 1209 char pad[1024]; 1210 }; 1211 1212 /* CDU host DB constants */ 1213 #define CDU_ILT_PAGE_SZ_HW 2 1214 #define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */ 1215 #define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context)) 1216 1217 #define CNIC_ISCSI_CID_MAX 256 1218 #define CNIC_FCOE_CID_MAX 2048 1219 #define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX) 1220 #define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS) 1221 1222 #define QM_ILT_PAGE_SZ_HW 0 1223 #define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */ 1224 #define QM_CID_ROUND 1024 1225 1226 /* TM (timers) host DB constants */ 1227 #define TM_ILT_PAGE_SZ_HW 0 1228 #define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */ 1229 #define TM_CONN_NUM (BNX2X_FIRST_VF_CID + \ 1230 BNX2X_VF_CIDS + \ 1231 CNIC_ISCSI_CID_MAX) 1232 #define TM_ILT_SZ (8 * TM_CONN_NUM) 1233 #define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ) 1234 1235 /* SRC (Searcher) host DB constants */ 1236 #define SRC_ILT_PAGE_SZ_HW 0 1237 #define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */ 1238 #define SRC_HASH_BITS 10 1239 #define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */ 1240 #define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM) 1241 #define SRC_T2_SZ SRC_ILT_SZ 1242 #define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ) 1243 1244 #define MAX_DMAE_C 8 1245 1246 /* DMA memory not used in fastpath */ 1247 struct bnx2x_slowpath { 1248 union { 1249 struct mac_configuration_cmd e1x; 1250 struct eth_classify_rules_ramrod_data e2; 1251 } mac_rdata; 1252 1253 union { 1254 struct tstorm_eth_mac_filter_config e1x; 1255 struct eth_filter_rules_ramrod_data e2; 1256 } rx_mode_rdata; 1257 1258 union { 1259 struct mac_configuration_cmd e1; 1260 struct eth_multicast_rules_ramrod_data e2; 1261 } mcast_rdata; 1262 1263 struct eth_rss_update_ramrod_data rss_rdata; 1264 1265 /* Queue State related ramrods are always sent under rtnl_lock */ 1266 union { 1267 struct client_init_ramrod_data init_data; 1268 struct client_update_ramrod_data update_data; 1269 struct tpa_update_ramrod_data tpa_data; 1270 } q_rdata; 1271 1272 union { 1273 struct function_start_data func_start; 1274 /* pfc configuration for DCBX ramrod */ 1275 struct flow_control_configuration pfc_config; 1276 } func_rdata; 1277 1278 /* afex ramrod can not be a part of func_rdata union because these 1279 * events might arrive in parallel to other events from func_rdata. 1280 * Therefore, if they would have been defined in the same union, 1281 * data can get corrupted. 1282 */ 1283 union { 1284 struct afex_vif_list_ramrod_data viflist_data; 1285 struct function_update_data func_update; 1286 } func_afex_rdata; 1287 1288 /* used by dmae command executer */ 1289 struct dmae_command dmae[MAX_DMAE_C]; 1290 1291 u32 stats_comp; 1292 union mac_stats mac_stats; 1293 struct nig_stats nig_stats; 1294 struct host_port_stats port_stats; 1295 struct host_func_stats func_stats; 1296 1297 u32 wb_comp; 1298 u32 wb_data[4]; 1299 1300 union drv_info_to_mcp drv_info_to_mcp; 1301 }; 1302 1303 #define bnx2x_sp(bp, var) (&bp->slowpath->var) 1304 #define bnx2x_sp_mapping(bp, var) \ 1305 (bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var)) 1306 1307 /* attn group wiring */ 1308 #define MAX_DYNAMIC_ATTN_GRPS 8 1309 1310 struct attn_route { 1311 u32 sig[5]; 1312 }; 1313 1314 struct iro { 1315 u32 base; 1316 u16 m1; 1317 u16 m2; 1318 u16 m3; 1319 u16 size; 1320 }; 1321 1322 struct hw_context { 1323 union cdu_context *vcxt; 1324 dma_addr_t cxt_mapping; 1325 size_t size; 1326 }; 1327 1328 /* forward */ 1329 struct bnx2x_ilt; 1330 1331 struct bnx2x_vfdb; 1332 1333 enum bnx2x_recovery_state { 1334 BNX2X_RECOVERY_DONE, 1335 BNX2X_RECOVERY_INIT, 1336 BNX2X_RECOVERY_WAIT, 1337 BNX2X_RECOVERY_FAILED, 1338 BNX2X_RECOVERY_NIC_LOADING 1339 }; 1340 1341 /* 1342 * Event queue (EQ or event ring) MC hsi 1343 * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2 1344 */ 1345 #define NUM_EQ_PAGES 1 1346 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem)) 1347 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1) 1348 #define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES) 1349 #define EQ_DESC_MASK (NUM_EQ_DESC - 1) 1350 #define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2) 1351 1352 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */ 1353 #define NEXT_EQ_IDX(x) ((((x) & EQ_DESC_MAX_PAGE) == \ 1354 (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1) 1355 1356 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */ 1357 #define EQ_DESC(x) ((x) & EQ_DESC_MASK) 1358 1359 #define BNX2X_EQ_INDEX \ 1360 (&bp->def_status_blk->sp_sb.\ 1361 index_values[HC_SP_INDEX_EQ_CONS]) 1362 1363 /* This is a data that will be used to create a link report message. 1364 * We will keep the data used for the last link report in order 1365 * to prevent reporting the same link parameters twice. 1366 */ 1367 struct bnx2x_link_report_data { 1368 u16 line_speed; /* Effective line speed */ 1369 unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */ 1370 }; 1371 1372 enum { 1373 BNX2X_LINK_REPORT_FD, /* Full DUPLEX */ 1374 BNX2X_LINK_REPORT_LINK_DOWN, 1375 BNX2X_LINK_REPORT_RX_FC_ON, 1376 BNX2X_LINK_REPORT_TX_FC_ON, 1377 }; 1378 1379 enum { 1380 BNX2X_PORT_QUERY_IDX, 1381 BNX2X_PF_QUERY_IDX, 1382 BNX2X_FCOE_QUERY_IDX, 1383 BNX2X_FIRST_QUEUE_QUERY_IDX, 1384 }; 1385 1386 struct bnx2x_fw_stats_req { 1387 struct stats_query_header hdr; 1388 struct stats_query_entry query[FP_SB_MAX_E1x+ 1389 BNX2X_FIRST_QUEUE_QUERY_IDX]; 1390 }; 1391 1392 struct bnx2x_fw_stats_data { 1393 struct stats_counter storm_counters; 1394 struct per_port_stats port; 1395 struct per_pf_stats pf; 1396 struct fcoe_statistics_params fcoe; 1397 struct per_queue_stats queue_stats[1]; 1398 }; 1399 1400 /* Public slow path states */ 1401 enum sp_rtnl_flag { 1402 BNX2X_SP_RTNL_SETUP_TC, 1403 BNX2X_SP_RTNL_TX_TIMEOUT, 1404 BNX2X_SP_RTNL_FAN_FAILURE, 1405 BNX2X_SP_RTNL_AFEX_F_UPDATE, 1406 BNX2X_SP_RTNL_ENABLE_SRIOV, 1407 BNX2X_SP_RTNL_VFPF_MCAST, 1408 BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 1409 BNX2X_SP_RTNL_RX_MODE, 1410 BNX2X_SP_RTNL_HYPERVISOR_VLAN, 1411 BNX2X_SP_RTNL_TX_STOP, 1412 BNX2X_SP_RTNL_GET_DRV_VERSION, 1413 }; 1414 1415 enum bnx2x_iov_flag { 1416 BNX2X_IOV_HANDLE_VF_MSG, 1417 BNX2X_IOV_HANDLE_FLR, 1418 }; 1419 1420 struct bnx2x_prev_path_list { 1421 struct list_head list; 1422 u8 bus; 1423 u8 slot; 1424 u8 path; 1425 u8 aer; 1426 u8 undi; 1427 }; 1428 1429 struct bnx2x_sp_objs { 1430 /* MACs object */ 1431 struct bnx2x_vlan_mac_obj mac_obj; 1432 1433 /* Queue State object */ 1434 struct bnx2x_queue_sp_obj q_obj; 1435 }; 1436 1437 struct bnx2x_fp_stats { 1438 struct tstorm_per_queue_stats old_tclient; 1439 struct ustorm_per_queue_stats old_uclient; 1440 struct xstorm_per_queue_stats old_xclient; 1441 struct bnx2x_eth_q_stats eth_q_stats; 1442 struct bnx2x_eth_q_stats_old eth_q_stats_old; 1443 }; 1444 1445 struct bnx2x { 1446 /* Fields used in the tx and intr/napi performance paths 1447 * are grouped together in the beginning of the structure 1448 */ 1449 struct bnx2x_fastpath *fp; 1450 struct bnx2x_sp_objs *sp_objs; 1451 struct bnx2x_fp_stats *fp_stats; 1452 struct bnx2x_fp_txdata *bnx2x_txq; 1453 void __iomem *regview; 1454 void __iomem *doorbells; 1455 u16 db_size; 1456 1457 u8 pf_num; /* absolute PF number */ 1458 u8 pfid; /* per-path PF number */ 1459 int base_fw_ndsb; /**/ 1460 #define BP_PATH(bp) (CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1)) 1461 #define BP_PORT(bp) (bp->pfid & 1) 1462 #define BP_FUNC(bp) (bp->pfid) 1463 #define BP_ABS_FUNC(bp) (bp->pf_num) 1464 #define BP_VN(bp) ((bp)->pfid >> 1) 1465 #define BP_MAX_VN_NUM(bp) (CHIP_MODE_IS_4_PORT(bp) ? 2 : 4) 1466 #define BP_L_ID(bp) (BP_VN(bp) << 2) 1467 #define BP_FW_MB_IDX_VN(bp, vn) (BP_PORT(bp) +\ 1468 (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2 : 1)) 1469 #define BP_FW_MB_IDX(bp) BP_FW_MB_IDX_VN(bp, BP_VN(bp)) 1470 1471 #ifdef CONFIG_BNX2X_SRIOV 1472 /* protects vf2pf mailbox from simultaneous access */ 1473 struct mutex vf2pf_mutex; 1474 /* vf pf channel mailbox contains request and response buffers */ 1475 struct bnx2x_vf_mbx_msg *vf2pf_mbox; 1476 dma_addr_t vf2pf_mbox_mapping; 1477 1478 /* we set aside a copy of the acquire response */ 1479 struct pfvf_acquire_resp_tlv acquire_resp; 1480 1481 /* bulletin board for messages from pf to vf */ 1482 union pf_vf_bulletin *pf2vf_bulletin; 1483 dma_addr_t pf2vf_bulletin_mapping; 1484 1485 struct pf_vf_bulletin_content old_bulletin; 1486 1487 u16 requested_nr_virtfn; 1488 #endif /* CONFIG_BNX2X_SRIOV */ 1489 1490 struct net_device *dev; 1491 struct pci_dev *pdev; 1492 1493 const struct iro *iro_arr; 1494 #define IRO (bp->iro_arr) 1495 1496 enum bnx2x_recovery_state recovery_state; 1497 int is_leader; 1498 struct msix_entry *msix_table; 1499 1500 int tx_ring_size; 1501 1502 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */ 1503 #define ETH_OVREHEAD (ETH_HLEN + 8 + 8) 1504 #define ETH_MIN_PACKET_SIZE 60 1505 #define ETH_MAX_PACKET_SIZE 1500 1506 #define ETH_MAX_JUMBO_PACKET_SIZE 9600 1507 /* TCP with Timestamp Option (32) + IPv6 (40) */ 1508 #define ETH_MAX_TPA_HEADER_SIZE 72 1509 1510 /* Max supported alignment is 256 (8 shift) */ 1511 #define BNX2X_RX_ALIGN_SHIFT min(8, L1_CACHE_SHIFT) 1512 1513 /* FW uses 2 Cache lines Alignment for start packet and size 1514 * 1515 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes 1516 * at the end of skb->data, to avoid wasting a full cache line. 1517 * This reduces memory use (skb->truesize). 1518 */ 1519 #define BNX2X_FW_RX_ALIGN_START (1UL << BNX2X_RX_ALIGN_SHIFT) 1520 1521 #define BNX2X_FW_RX_ALIGN_END \ 1522 max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT, \ 1523 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 1524 1525 #define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5) 1526 1527 struct host_sp_status_block *def_status_blk; 1528 #define DEF_SB_IGU_ID 16 1529 #define DEF_SB_ID HC_SP_SB_ID 1530 __le16 def_idx; 1531 __le16 def_att_idx; 1532 u32 attn_state; 1533 struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS]; 1534 1535 /* slow path ring */ 1536 struct eth_spe *spq; 1537 dma_addr_t spq_mapping; 1538 u16 spq_prod_idx; 1539 struct eth_spe *spq_prod_bd; 1540 struct eth_spe *spq_last_bd; 1541 __le16 *dsb_sp_prod; 1542 atomic_t cq_spq_left; /* ETH_XXX ramrods credit */ 1543 /* used to synchronize spq accesses */ 1544 spinlock_t spq_lock; 1545 1546 /* event queue */ 1547 union event_ring_elem *eq_ring; 1548 dma_addr_t eq_mapping; 1549 u16 eq_prod; 1550 u16 eq_cons; 1551 __le16 *eq_cons_sb; 1552 atomic_t eq_spq_left; /* COMMON_XXX ramrods credit */ 1553 1554 /* Counter for marking that there is a STAT_QUERY ramrod pending */ 1555 u16 stats_pending; 1556 /* Counter for completed statistics ramrods */ 1557 u16 stats_comp; 1558 1559 /* End of fields used in the performance code paths */ 1560 1561 int panic; 1562 int msg_enable; 1563 1564 u32 flags; 1565 #define PCIX_FLAG (1 << 0) 1566 #define PCI_32BIT_FLAG (1 << 1) 1567 #define ONE_PORT_FLAG (1 << 2) 1568 #define NO_WOL_FLAG (1 << 3) 1569 #define USING_MSIX_FLAG (1 << 5) 1570 #define USING_MSI_FLAG (1 << 6) 1571 #define DISABLE_MSI_FLAG (1 << 7) 1572 #define TPA_ENABLE_FLAG (1 << 8) 1573 #define NO_MCP_FLAG (1 << 9) 1574 #define GRO_ENABLE_FLAG (1 << 10) 1575 #define MF_FUNC_DIS (1 << 11) 1576 #define OWN_CNIC_IRQ (1 << 12) 1577 #define NO_ISCSI_OOO_FLAG (1 << 13) 1578 #define NO_ISCSI_FLAG (1 << 14) 1579 #define NO_FCOE_FLAG (1 << 15) 1580 #define BC_SUPPORTS_PFC_STATS (1 << 17) 1581 #define TX_SWITCHING (1 << 18) 1582 #define BC_SUPPORTS_FCOE_FEATURES (1 << 19) 1583 #define USING_SINGLE_MSIX_FLAG (1 << 20) 1584 #define BC_SUPPORTS_DCBX_MSG_NON_PMF (1 << 21) 1585 #define IS_VF_FLAG (1 << 22) 1586 #define INTERRUPTS_ENABLED_FLAG (1 << 23) 1587 #define BC_SUPPORTS_RMMOD_CMD (1 << 24) 1588 #define HAS_PHYS_PORT_ID (1 << 25) 1589 #define AER_ENABLED (1 << 26) 1590 1591 #define BP_NOMCP(bp) ((bp)->flags & NO_MCP_FLAG) 1592 1593 #ifdef CONFIG_BNX2X_SRIOV 1594 #define IS_VF(bp) ((bp)->flags & IS_VF_FLAG) 1595 #define IS_PF(bp) (!((bp)->flags & IS_VF_FLAG)) 1596 #else 1597 #define IS_VF(bp) false 1598 #define IS_PF(bp) true 1599 #endif 1600 1601 #define NO_ISCSI(bp) ((bp)->flags & NO_ISCSI_FLAG) 1602 #define NO_ISCSI_OOO(bp) ((bp)->flags & NO_ISCSI_OOO_FLAG) 1603 #define NO_FCOE(bp) ((bp)->flags & NO_FCOE_FLAG) 1604 1605 u8 cnic_support; 1606 bool cnic_enabled; 1607 bool cnic_loaded; 1608 struct cnic_eth_dev *(*cnic_probe)(struct net_device *); 1609 1610 /* Flag that indicates that we can start looking for FCoE L2 queue 1611 * completions in the default status block. 1612 */ 1613 bool fcoe_init; 1614 1615 int mrrs; 1616 1617 struct delayed_work sp_task; 1618 struct delayed_work iov_task; 1619 1620 atomic_t interrupt_occurred; 1621 struct delayed_work sp_rtnl_task; 1622 1623 struct delayed_work period_task; 1624 struct timer_list timer; 1625 int current_interval; 1626 1627 u16 fw_seq; 1628 u16 fw_drv_pulse_wr_seq; 1629 u32 func_stx; 1630 1631 struct link_params link_params; 1632 struct link_vars link_vars; 1633 u32 link_cnt; 1634 struct bnx2x_link_report_data last_reported_link; 1635 1636 struct mdio_if_info mdio; 1637 1638 struct bnx2x_common common; 1639 struct bnx2x_port port; 1640 1641 struct cmng_init cmng; 1642 1643 u32 mf_config[E1HVN_MAX]; 1644 u32 mf_ext_config; 1645 u32 path_has_ovlan; /* E3 */ 1646 u16 mf_ov; 1647 u8 mf_mode; 1648 #define IS_MF(bp) (bp->mf_mode != 0) 1649 #define IS_MF_SI(bp) (bp->mf_mode == MULTI_FUNCTION_SI) 1650 #define IS_MF_SD(bp) (bp->mf_mode == MULTI_FUNCTION_SD) 1651 #define IS_MF_AFEX(bp) (bp->mf_mode == MULTI_FUNCTION_AFEX) 1652 1653 u8 wol; 1654 1655 int rx_ring_size; 1656 1657 u16 tx_quick_cons_trip_int; 1658 u16 tx_quick_cons_trip; 1659 u16 tx_ticks_int; 1660 u16 tx_ticks; 1661 1662 u16 rx_quick_cons_trip_int; 1663 u16 rx_quick_cons_trip; 1664 u16 rx_ticks_int; 1665 u16 rx_ticks; 1666 /* Maximal coalescing timeout in us */ 1667 #define BNX2X_MAX_COALESCE_TOUT (0xff*BNX2X_BTR) 1668 1669 u32 lin_cnt; 1670 1671 u16 state; 1672 #define BNX2X_STATE_CLOSED 0 1673 #define BNX2X_STATE_OPENING_WAIT4_LOAD 0x1000 1674 #define BNX2X_STATE_OPENING_WAIT4_PORT 0x2000 1675 #define BNX2X_STATE_OPEN 0x3000 1676 #define BNX2X_STATE_CLOSING_WAIT4_HALT 0x4000 1677 #define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000 1678 1679 #define BNX2X_STATE_DIAG 0xe000 1680 #define BNX2X_STATE_ERROR 0xf000 1681 1682 #define BNX2X_MAX_PRIORITY 8 1683 #define BNX2X_MAX_ENTRIES_PER_PRI 16 1684 #define BNX2X_MAX_COS 3 1685 #define BNX2X_MAX_TX_COS 2 1686 int num_queues; 1687 uint num_ethernet_queues; 1688 uint num_cnic_queues; 1689 int num_napi_queues; 1690 int disable_tpa; 1691 1692 u32 rx_mode; 1693 #define BNX2X_RX_MODE_NONE 0 1694 #define BNX2X_RX_MODE_NORMAL 1 1695 #define BNX2X_RX_MODE_ALLMULTI 2 1696 #define BNX2X_RX_MODE_PROMISC 3 1697 #define BNX2X_MAX_MULTICAST 64 1698 1699 u8 igu_dsb_id; 1700 u8 igu_base_sb; 1701 u8 igu_sb_cnt; 1702 u8 min_msix_vec_cnt; 1703 1704 u32 igu_base_addr; 1705 dma_addr_t def_status_blk_mapping; 1706 1707 struct bnx2x_slowpath *slowpath; 1708 dma_addr_t slowpath_mapping; 1709 1710 /* Mechanism protecting the drv_info_to_mcp */ 1711 struct mutex drv_info_mutex; 1712 bool drv_info_mng_owner; 1713 1714 /* Total number of FW statistics requests */ 1715 u8 fw_stats_num; 1716 1717 /* 1718 * This is a memory buffer that will contain both statistics 1719 * ramrod request and data. 1720 */ 1721 void *fw_stats; 1722 dma_addr_t fw_stats_mapping; 1723 1724 /* 1725 * FW statistics request shortcut (points at the 1726 * beginning of fw_stats buffer). 1727 */ 1728 struct bnx2x_fw_stats_req *fw_stats_req; 1729 dma_addr_t fw_stats_req_mapping; 1730 int fw_stats_req_sz; 1731 1732 /* 1733 * FW statistics data shortcut (points at the beginning of 1734 * fw_stats buffer + fw_stats_req_sz). 1735 */ 1736 struct bnx2x_fw_stats_data *fw_stats_data; 1737 dma_addr_t fw_stats_data_mapping; 1738 int fw_stats_data_sz; 1739 1740 /* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB 1741 * context size we need 8 ILT entries. 1742 */ 1743 #define ILT_MAX_L2_LINES 32 1744 struct hw_context context[ILT_MAX_L2_LINES]; 1745 1746 struct bnx2x_ilt *ilt; 1747 #define BP_ILT(bp) ((bp)->ilt) 1748 #define ILT_MAX_LINES 256 1749 /* 1750 * Maximum supported number of RSS queues: number of IGU SBs minus one that goes 1751 * to CNIC. 1752 */ 1753 #define BNX2X_MAX_RSS_COUNT(bp) ((bp)->igu_sb_cnt - CNIC_SUPPORT(bp)) 1754 1755 /* 1756 * Maximum CID count that might be required by the bnx2x: 1757 * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI 1758 */ 1759 1760 #define BNX2X_L2_CID_COUNT(bp) (BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \ 1761 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp))) 1762 #define BNX2X_L2_MAX_CID(bp) (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \ 1763 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp))) 1764 #define L2_ILT_LINES(bp) (DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\ 1765 ILT_PAGE_CIDS)) 1766 1767 int qm_cid_count; 1768 1769 bool dropless_fc; 1770 1771 void *t2; 1772 dma_addr_t t2_mapping; 1773 struct cnic_ops __rcu *cnic_ops; 1774 void *cnic_data; 1775 u32 cnic_tag; 1776 struct cnic_eth_dev cnic_eth_dev; 1777 union host_hc_status_block cnic_sb; 1778 dma_addr_t cnic_sb_mapping; 1779 struct eth_spe *cnic_kwq; 1780 struct eth_spe *cnic_kwq_prod; 1781 struct eth_spe *cnic_kwq_cons; 1782 struct eth_spe *cnic_kwq_last; 1783 u16 cnic_kwq_pending; 1784 u16 cnic_spq_pending; 1785 u8 fip_mac[ETH_ALEN]; 1786 struct mutex cnic_mutex; 1787 struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj; 1788 1789 /* Start index of the "special" (CNIC related) L2 clients */ 1790 u8 cnic_base_cl_id; 1791 1792 int dmae_ready; 1793 /* used to synchronize dmae accesses */ 1794 spinlock_t dmae_lock; 1795 1796 /* used to protect the FW mail box */ 1797 struct mutex fw_mb_mutex; 1798 1799 /* used to synchronize stats collecting */ 1800 int stats_state; 1801 1802 /* used for synchronization of concurrent threads statistics handling */ 1803 spinlock_t stats_lock; 1804 1805 /* used by dmae command loader */ 1806 struct dmae_command stats_dmae; 1807 int executer_idx; 1808 1809 u16 stats_counter; 1810 struct bnx2x_eth_stats eth_stats; 1811 struct host_func_stats func_stats; 1812 struct bnx2x_eth_stats_old eth_stats_old; 1813 struct bnx2x_net_stats_old net_stats_old; 1814 struct bnx2x_fw_port_stats_old fw_stats_old; 1815 bool stats_init; 1816 1817 struct z_stream_s *strm; 1818 void *gunzip_buf; 1819 dma_addr_t gunzip_mapping; 1820 int gunzip_outlen; 1821 #define FW_BUF_SIZE 0x8000 1822 #define GUNZIP_BUF(bp) (bp->gunzip_buf) 1823 #define GUNZIP_PHYS(bp) (bp->gunzip_mapping) 1824 #define GUNZIP_OUTLEN(bp) (bp->gunzip_outlen) 1825 1826 struct raw_op *init_ops; 1827 /* Init blocks offsets inside init_ops */ 1828 u16 *init_ops_offsets; 1829 /* Data blob - has 32 bit granularity */ 1830 u32 *init_data; 1831 u32 init_mode_flags; 1832 #define INIT_MODE_FLAGS(bp) (bp->init_mode_flags) 1833 /* Zipped PRAM blobs - raw data */ 1834 const u8 *tsem_int_table_data; 1835 const u8 *tsem_pram_data; 1836 const u8 *usem_int_table_data; 1837 const u8 *usem_pram_data; 1838 const u8 *xsem_int_table_data; 1839 const u8 *xsem_pram_data; 1840 const u8 *csem_int_table_data; 1841 const u8 *csem_pram_data; 1842 #define INIT_OPS(bp) (bp->init_ops) 1843 #define INIT_OPS_OFFSETS(bp) (bp->init_ops_offsets) 1844 #define INIT_DATA(bp) (bp->init_data) 1845 #define INIT_TSEM_INT_TABLE_DATA(bp) (bp->tsem_int_table_data) 1846 #define INIT_TSEM_PRAM_DATA(bp) (bp->tsem_pram_data) 1847 #define INIT_USEM_INT_TABLE_DATA(bp) (bp->usem_int_table_data) 1848 #define INIT_USEM_PRAM_DATA(bp) (bp->usem_pram_data) 1849 #define INIT_XSEM_INT_TABLE_DATA(bp) (bp->xsem_int_table_data) 1850 #define INIT_XSEM_PRAM_DATA(bp) (bp->xsem_pram_data) 1851 #define INIT_CSEM_INT_TABLE_DATA(bp) (bp->csem_int_table_data) 1852 #define INIT_CSEM_PRAM_DATA(bp) (bp->csem_pram_data) 1853 1854 #define PHY_FW_VER_LEN 20 1855 char fw_ver[32]; 1856 const struct firmware *firmware; 1857 1858 struct bnx2x_vfdb *vfdb; 1859 #define IS_SRIOV(bp) ((bp)->vfdb) 1860 1861 /* DCB support on/off */ 1862 u16 dcb_state; 1863 #define BNX2X_DCB_STATE_OFF 0 1864 #define BNX2X_DCB_STATE_ON 1 1865 1866 /* DCBX engine mode */ 1867 int dcbx_enabled; 1868 #define BNX2X_DCBX_ENABLED_OFF 0 1869 #define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1 1870 #define BNX2X_DCBX_ENABLED_ON_NEG_ON 2 1871 #define BNX2X_DCBX_ENABLED_INVALID (-1) 1872 1873 bool dcbx_mode_uset; 1874 1875 struct bnx2x_config_dcbx_params dcbx_config_params; 1876 struct bnx2x_dcbx_port_params dcbx_port_params; 1877 int dcb_version; 1878 1879 /* CAM credit pools */ 1880 1881 /* used only in sriov */ 1882 struct bnx2x_credit_pool_obj vlans_pool; 1883 1884 struct bnx2x_credit_pool_obj macs_pool; 1885 1886 /* RX_MODE object */ 1887 struct bnx2x_rx_mode_obj rx_mode_obj; 1888 1889 /* MCAST object */ 1890 struct bnx2x_mcast_obj mcast_obj; 1891 1892 /* RSS configuration object */ 1893 struct bnx2x_rss_config_obj rss_conf_obj; 1894 1895 /* Function State controlling object */ 1896 struct bnx2x_func_sp_obj func_obj; 1897 1898 unsigned long sp_state; 1899 1900 /* operation indication for the sp_rtnl task */ 1901 unsigned long sp_rtnl_state; 1902 1903 /* Indication of the IOV tasks */ 1904 unsigned long iov_task_state; 1905 1906 /* DCBX Negotiation results */ 1907 struct dcbx_features dcbx_local_feat; 1908 u32 dcbx_error; 1909 1910 #ifdef BCM_DCBNL 1911 struct dcbx_features dcbx_remote_feat; 1912 u32 dcbx_remote_flags; 1913 #endif 1914 /* AFEX: store default vlan used */ 1915 int afex_def_vlan_tag; 1916 enum mf_cfg_afex_vlan_mode afex_vlan_mode; 1917 u32 pending_max; 1918 1919 /* multiple tx classes of service */ 1920 u8 max_cos; 1921 1922 /* priority to cos mapping */ 1923 u8 prio_to_cos[8]; 1924 1925 int fp_array_size; 1926 u32 dump_preset_idx; 1927 bool stats_started; 1928 struct semaphore stats_sema; 1929 1930 u8 phys_port_id[ETH_ALEN]; 1931 }; 1932 1933 /* Tx queues may be less or equal to Rx queues */ 1934 extern int num_queues; 1935 #define BNX2X_NUM_QUEUES(bp) (bp->num_queues) 1936 #define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues) 1937 #define BNX2X_NUM_NON_CNIC_QUEUES(bp) (BNX2X_NUM_QUEUES(bp) - \ 1938 (bp)->num_cnic_queues) 1939 #define BNX2X_NUM_RX_QUEUES(bp) BNX2X_NUM_QUEUES(bp) 1940 1941 #define is_multi(bp) (BNX2X_NUM_QUEUES(bp) > 1) 1942 1943 #define BNX2X_MAX_QUEUES(bp) BNX2X_MAX_RSS_COUNT(bp) 1944 /* #define is_eth_multi(bp) (BNX2X_NUM_ETH_QUEUES(bp) > 1) */ 1945 1946 #define RSS_IPV4_CAP_MASK \ 1947 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY 1948 1949 #define RSS_IPV4_TCP_CAP_MASK \ 1950 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY 1951 1952 #define RSS_IPV6_CAP_MASK \ 1953 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY 1954 1955 #define RSS_IPV6_TCP_CAP_MASK \ 1956 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY 1957 1958 /* func init flags */ 1959 #define FUNC_FLG_RSS 0x0001 1960 #define FUNC_FLG_STATS 0x0002 1961 /* removed FUNC_FLG_UNMATCHED 0x0004 */ 1962 #define FUNC_FLG_TPA 0x0008 1963 #define FUNC_FLG_SPQ 0x0010 1964 #define FUNC_FLG_LEADING 0x0020 /* PF only */ 1965 #define FUNC_FLG_LEADING_STATS 0x0040 1966 struct bnx2x_func_init_params { 1967 /* dma */ 1968 dma_addr_t fw_stat_map; /* valid iff FUNC_FLG_STATS */ 1969 dma_addr_t spq_map; /* valid iff FUNC_FLG_SPQ */ 1970 1971 u16 func_flgs; 1972 u16 func_id; /* abs fid */ 1973 u16 pf_id; 1974 u16 spq_prod; /* valid iff FUNC_FLG_SPQ */ 1975 }; 1976 1977 #define for_each_cnic_queue(bp, var) \ 1978 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 1979 (var)++) \ 1980 if (skip_queue(bp, var)) \ 1981 continue; \ 1982 else 1983 1984 #define for_each_eth_queue(bp, var) \ 1985 for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++) 1986 1987 #define for_each_nondefault_eth_queue(bp, var) \ 1988 for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++) 1989 1990 #define for_each_queue(bp, var) \ 1991 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1992 if (skip_queue(bp, var)) \ 1993 continue; \ 1994 else 1995 1996 /* Skip forwarding FP */ 1997 #define for_each_valid_rx_queue(bp, var) \ 1998 for ((var) = 0; \ 1999 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \ 2000 BNX2X_NUM_ETH_QUEUES(bp)); \ 2001 (var)++) \ 2002 if (skip_rx_queue(bp, var)) \ 2003 continue; \ 2004 else 2005 2006 #define for_each_rx_queue_cnic(bp, var) \ 2007 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 2008 (var)++) \ 2009 if (skip_rx_queue(bp, var)) \ 2010 continue; \ 2011 else 2012 2013 #define for_each_rx_queue(bp, var) \ 2014 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 2015 if (skip_rx_queue(bp, var)) \ 2016 continue; \ 2017 else 2018 2019 /* Skip OOO FP */ 2020 #define for_each_valid_tx_queue(bp, var) \ 2021 for ((var) = 0; \ 2022 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \ 2023 BNX2X_NUM_ETH_QUEUES(bp)); \ 2024 (var)++) \ 2025 if (skip_tx_queue(bp, var)) \ 2026 continue; \ 2027 else 2028 2029 #define for_each_tx_queue_cnic(bp, var) \ 2030 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 2031 (var)++) \ 2032 if (skip_tx_queue(bp, var)) \ 2033 continue; \ 2034 else 2035 2036 #define for_each_tx_queue(bp, var) \ 2037 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 2038 if (skip_tx_queue(bp, var)) \ 2039 continue; \ 2040 else 2041 2042 #define for_each_nondefault_queue(bp, var) \ 2043 for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 2044 if (skip_queue(bp, var)) \ 2045 continue; \ 2046 else 2047 2048 #define for_each_cos_in_tx_queue(fp, var) \ 2049 for ((var) = 0; (var) < (fp)->max_cos; (var)++) 2050 2051 /* skip rx queue 2052 * if FCOE l2 support is disabled and this is the fcoe L2 queue 2053 */ 2054 #define skip_rx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 2055 2056 /* skip tx queue 2057 * if FCOE l2 support is disabled and this is the fcoe L2 queue 2058 */ 2059 #define skip_tx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 2060 2061 #define skip_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 2062 2063 /** 2064 * bnx2x_set_mac_one - configure a single MAC address 2065 * 2066 * @bp: driver handle 2067 * @mac: MAC to configure 2068 * @obj: MAC object handle 2069 * @set: if 'true' add a new MAC, otherwise - delete 2070 * @mac_type: the type of the MAC to configure (e.g. ETH, UC list) 2071 * @ramrod_flags: RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT) 2072 * 2073 * Configures one MAC according to provided parameters or continues the 2074 * execution of previously scheduled commands if RAMROD_CONT is set in 2075 * ramrod_flags. 2076 * 2077 * Returns zero if operation has successfully completed, a positive value if the 2078 * operation has been successfully scheduled and a negative - if a requested 2079 * operations has failed. 2080 */ 2081 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 2082 struct bnx2x_vlan_mac_obj *obj, bool set, 2083 int mac_type, unsigned long *ramrod_flags); 2084 /** 2085 * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object 2086 * 2087 * @bp: driver handle 2088 * @mac_obj: MAC object handle 2089 * @mac_type: type of the MACs to clear (BNX2X_XXX_MAC) 2090 * @wait_for_comp: if 'true' block until completion 2091 * 2092 * Deletes all MACs of the specific type (e.g. ETH, UC list). 2093 * 2094 * Returns zero if operation has successfully completed, a positive value if the 2095 * operation has been successfully scheduled and a negative - if a requested 2096 * operations has failed. 2097 */ 2098 int bnx2x_del_all_macs(struct bnx2x *bp, 2099 struct bnx2x_vlan_mac_obj *mac_obj, 2100 int mac_type, bool wait_for_comp); 2101 2102 /* Init Function API */ 2103 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p); 2104 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 2105 u8 vf_valid, int fw_sb_id, int igu_sb_id); 2106 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port); 2107 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); 2108 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode); 2109 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); 2110 void bnx2x_read_mf_cfg(struct bnx2x *bp); 2111 2112 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val); 2113 2114 /* dmae */ 2115 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32); 2116 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 2117 u32 len32); 2118 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx); 2119 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type); 2120 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode); 2121 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 2122 bool with_comp, u8 comp_type); 2123 2124 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 2125 u8 src_type, u8 dst_type); 2126 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 2127 u32 *comp); 2128 2129 /* FLR related routines */ 2130 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp); 2131 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count); 2132 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt); 2133 u8 bnx2x_is_pcie_pending(struct pci_dev *dev); 2134 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 2135 char *msg, u32 poll_cnt); 2136 2137 void bnx2x_calc_fc_adv(struct bnx2x *bp); 2138 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 2139 u32 data_hi, u32 data_lo, int cmd_type); 2140 void bnx2x_update_coalesce(struct bnx2x *bp); 2141 int bnx2x_get_cur_phy_idx(struct bnx2x *bp); 2142 2143 bool bnx2x_port_after_undi(struct bnx2x *bp); 2144 2145 static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms, 2146 int wait) 2147 { 2148 u32 val; 2149 2150 do { 2151 val = REG_RD(bp, reg); 2152 if (val == expected) 2153 break; 2154 ms -= wait; 2155 msleep(wait); 2156 2157 } while (ms > 0); 2158 2159 return val; 2160 } 2161 2162 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, 2163 bool is_pf); 2164 2165 #define BNX2X_ILT_ZALLOC(x, y, size) \ 2166 x = dma_zalloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL) 2167 2168 #define BNX2X_ILT_FREE(x, y, size) \ 2169 do { \ 2170 if (x) { \ 2171 dma_free_coherent(&bp->pdev->dev, size, x, y); \ 2172 x = NULL; \ 2173 y = 0; \ 2174 } \ 2175 } while (0) 2176 2177 #define ILOG2(x) (ilog2((x))) 2178 2179 #define ILT_NUM_PAGE_ENTRIES (3072) 2180 /* In 57710/11 we use whole table since we have 8 func 2181 * In 57712 we have only 4 func, but use same size per func, then only half of 2182 * the table in use 2183 */ 2184 #define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES/8) 2185 2186 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC) 2187 /* 2188 * the phys address is shifted right 12 bits and has an added 2189 * 1=valid bit added to the 53rd bit 2190 * then since this is a wide register(TM) 2191 * we split it into two 32 bit writes 2192 */ 2193 #define ONCHIP_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF)) 2194 #define ONCHIP_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44))) 2195 2196 /* load/unload mode */ 2197 #define LOAD_NORMAL 0 2198 #define LOAD_OPEN 1 2199 #define LOAD_DIAG 2 2200 #define LOAD_LOOPBACK_EXT 3 2201 #define UNLOAD_NORMAL 0 2202 #define UNLOAD_CLOSE 1 2203 #define UNLOAD_RECOVERY 2 2204 2205 /* DMAE command defines */ 2206 #define DMAE_TIMEOUT -1 2207 #define DMAE_PCI_ERROR -2 /* E2 and onward */ 2208 #define DMAE_NOT_RDY -3 2209 #define DMAE_PCI_ERR_FLAG 0x80000000 2210 2211 #define DMAE_SRC_PCI 0 2212 #define DMAE_SRC_GRC 1 2213 2214 #define DMAE_DST_NONE 0 2215 #define DMAE_DST_PCI 1 2216 #define DMAE_DST_GRC 2 2217 2218 #define DMAE_COMP_PCI 0 2219 #define DMAE_COMP_GRC 1 2220 2221 /* E2 and onward - PCI error handling in the completion */ 2222 2223 #define DMAE_COMP_REGULAR 0 2224 #define DMAE_COM_SET_ERR 1 2225 2226 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << \ 2227 DMAE_COMMAND_SRC_SHIFT) 2228 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << \ 2229 DMAE_COMMAND_SRC_SHIFT) 2230 2231 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << \ 2232 DMAE_COMMAND_DST_SHIFT) 2233 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << \ 2234 DMAE_COMMAND_DST_SHIFT) 2235 2236 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << \ 2237 DMAE_COMMAND_C_DST_SHIFT) 2238 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << \ 2239 DMAE_COMMAND_C_DST_SHIFT) 2240 2241 #define DMAE_CMD_C_ENABLE DMAE_COMMAND_C_TYPE_ENABLE 2242 2243 #define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT) 2244 #define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT) 2245 #define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT) 2246 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT) 2247 2248 #define DMAE_CMD_PORT_0 0 2249 #define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT 2250 2251 #define DMAE_CMD_SRC_RESET DMAE_COMMAND_SRC_RESET 2252 #define DMAE_CMD_DST_RESET DMAE_COMMAND_DST_RESET 2253 #define DMAE_CMD_E1HVN_SHIFT DMAE_COMMAND_E1HVN_SHIFT 2254 2255 #define DMAE_SRC_PF 0 2256 #define DMAE_SRC_VF 1 2257 2258 #define DMAE_DST_PF 0 2259 #define DMAE_DST_VF 1 2260 2261 #define DMAE_C_SRC 0 2262 #define DMAE_C_DST 1 2263 2264 #define DMAE_LEN32_RD_MAX 0x80 2265 #define DMAE_LEN32_WR_MAX(bp) (CHIP_IS_E1(bp) ? 0x400 : 0x2000) 2266 2267 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and on - upper bit 2268 * indicates error 2269 */ 2270 2271 #define MAX_DMAE_C_PER_PORT 8 2272 #define INIT_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \ 2273 BP_VN(bp)) 2274 #define PMF_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \ 2275 E1HVN_MAX) 2276 2277 /* PCIE link and speed */ 2278 #define PCICFG_LINK_WIDTH 0x1f00000 2279 #define PCICFG_LINK_WIDTH_SHIFT 20 2280 #define PCICFG_LINK_SPEED 0xf0000 2281 #define PCICFG_LINK_SPEED_SHIFT 16 2282 2283 #define BNX2X_NUM_TESTS_SF 7 2284 #define BNX2X_NUM_TESTS_MF 3 2285 #define BNX2X_NUM_TESTS(bp) (IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \ 2286 IS_VF(bp) ? 0 : BNX2X_NUM_TESTS_SF) 2287 2288 #define BNX2X_PHY_LOOPBACK 0 2289 #define BNX2X_MAC_LOOPBACK 1 2290 #define BNX2X_EXT_LOOPBACK 2 2291 #define BNX2X_PHY_LOOPBACK_FAILED 1 2292 #define BNX2X_MAC_LOOPBACK_FAILED 2 2293 #define BNX2X_EXT_LOOPBACK_FAILED 3 2294 #define BNX2X_LOOPBACK_FAILED (BNX2X_MAC_LOOPBACK_FAILED | \ 2295 BNX2X_PHY_LOOPBACK_FAILED) 2296 2297 #define STROM_ASSERT_ARRAY_SIZE 50 2298 2299 /* must be used on a CID before placing it on a HW ring */ 2300 #define HW_CID(bp, x) ((BP_PORT(bp) << 23) | \ 2301 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \ 2302 (x)) 2303 2304 #define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe)) 2305 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1) 2306 2307 #define BNX2X_BTR 4 2308 #define MAX_SPQ_PENDING 8 2309 2310 /* CMNG constants, as derived from system spec calculations */ 2311 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */ 2312 #define DEF_MIN_RATE 100 2313 /* resolution of the rate shaping timer - 400 usec */ 2314 #define RS_PERIODIC_TIMEOUT_USEC 400 2315 /* number of bytes in single QM arbitration cycle - 2316 * coefficient for calculating the fairness timer */ 2317 #define QM_ARB_BYTES 160000 2318 /* resolution of Min algorithm 1:100 */ 2319 #define MIN_RES 100 2320 /* how many bytes above threshold for the minimal credit of Min algorithm*/ 2321 #define MIN_ABOVE_THRESH 32768 2322 /* Fairness algorithm integration time coefficient - 2323 * for calculating the actual Tfair */ 2324 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) 2325 /* Memory of fairness algorithm . 2 cycles */ 2326 #define FAIR_MEM 2 2327 2328 #define ATTN_NIG_FOR_FUNC (1L << 8) 2329 #define ATTN_SW_TIMER_4_FUNC (1L << 9) 2330 #define GPIO_2_FUNC (1L << 10) 2331 #define GPIO_3_FUNC (1L << 11) 2332 #define GPIO_4_FUNC (1L << 12) 2333 #define ATTN_GENERAL_ATTN_1 (1L << 13) 2334 #define ATTN_GENERAL_ATTN_2 (1L << 14) 2335 #define ATTN_GENERAL_ATTN_3 (1L << 15) 2336 #define ATTN_GENERAL_ATTN_4 (1L << 13) 2337 #define ATTN_GENERAL_ATTN_5 (1L << 14) 2338 #define ATTN_GENERAL_ATTN_6 (1L << 15) 2339 2340 #define ATTN_HARD_WIRED_MASK 0xff00 2341 #define ATTENTION_ID 4 2342 2343 #define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_SD(bp) || \ 2344 IS_MF_FCOE_AFEX(bp)) 2345 2346 /* stuff added to make the code fit 80Col */ 2347 2348 #define BNX2X_PMF_LINK_ASSERT \ 2349 GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp)) 2350 2351 #define BNX2X_MC_ASSERT_BITS \ 2352 (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2353 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2354 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2355 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT)) 2356 2357 #define BNX2X_MCP_ASSERT \ 2358 GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT) 2359 2360 #define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC) 2361 #define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \ 2362 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \ 2363 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \ 2364 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \ 2365 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \ 2366 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC)) 2367 2368 #define HW_INTERRUT_ASSERT_SET_0 \ 2369 (AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \ 2370 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \ 2371 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \ 2372 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \ 2373 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT) 2374 #define HW_PRTY_ASSERT_SET_0 (AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \ 2375 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \ 2376 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \ 2377 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\ 2378 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\ 2379 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\ 2380 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR) 2381 #define HW_INTERRUT_ASSERT_SET_1 \ 2382 (AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \ 2383 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \ 2384 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \ 2385 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \ 2386 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \ 2387 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \ 2388 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \ 2389 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \ 2390 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \ 2391 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \ 2392 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT) 2393 #define HW_PRTY_ASSERT_SET_1 (AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\ 2394 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \ 2395 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\ 2396 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \ 2397 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\ 2398 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \ 2399 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\ 2400 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\ 2401 AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\ 2402 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \ 2403 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \ 2404 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\ 2405 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \ 2406 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \ 2407 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\ 2408 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR) 2409 #define HW_INTERRUT_ASSERT_SET_2 \ 2410 (AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \ 2411 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \ 2412 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \ 2413 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\ 2414 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT) 2415 #define HW_PRTY_ASSERT_SET_2 (AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \ 2416 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \ 2417 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\ 2418 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \ 2419 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \ 2420 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\ 2421 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \ 2422 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR) 2423 2424 #define HW_PRTY_ASSERT_SET_3 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \ 2425 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \ 2426 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \ 2427 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY) 2428 2429 #define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \ 2430 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR) 2431 2432 #define MULTI_MASK 0x7f 2433 2434 #define DEF_USB_FUNC_OFF offsetof(struct cstorm_def_status_block_u, func) 2435 #define DEF_CSB_FUNC_OFF offsetof(struct cstorm_def_status_block_c, func) 2436 #define DEF_XSB_FUNC_OFF offsetof(struct xstorm_def_status_block, func) 2437 #define DEF_TSB_FUNC_OFF offsetof(struct tstorm_def_status_block, func) 2438 2439 #define DEF_USB_IGU_INDEX_OFF \ 2440 offsetof(struct cstorm_def_status_block_u, igu_index) 2441 #define DEF_CSB_IGU_INDEX_OFF \ 2442 offsetof(struct cstorm_def_status_block_c, igu_index) 2443 #define DEF_XSB_IGU_INDEX_OFF \ 2444 offsetof(struct xstorm_def_status_block, igu_index) 2445 #define DEF_TSB_IGU_INDEX_OFF \ 2446 offsetof(struct tstorm_def_status_block, igu_index) 2447 2448 #define DEF_USB_SEGMENT_OFF \ 2449 offsetof(struct cstorm_def_status_block_u, segment) 2450 #define DEF_CSB_SEGMENT_OFF \ 2451 offsetof(struct cstorm_def_status_block_c, segment) 2452 #define DEF_XSB_SEGMENT_OFF \ 2453 offsetof(struct xstorm_def_status_block, segment) 2454 #define DEF_TSB_SEGMENT_OFF \ 2455 offsetof(struct tstorm_def_status_block, segment) 2456 2457 #define BNX2X_SP_DSB_INDEX \ 2458 (&bp->def_status_blk->sp_sb.\ 2459 index_values[HC_SP_INDEX_ETH_DEF_CONS]) 2460 2461 #define CAM_IS_INVALID(x) \ 2462 (GET_FLAG(x.flags, \ 2463 MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \ 2464 (T_ETH_MAC_COMMAND_INVALIDATE)) 2465 2466 /* Number of u32 elements in MC hash array */ 2467 #define MC_HASH_SIZE 8 2468 #define MC_HASH_OFFSET(bp, i) (BAR_TSTRORM_INTMEM + \ 2469 TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4) 2470 2471 #ifndef PXP2_REG_PXP2_INT_STS 2472 #define PXP2_REG_PXP2_INT_STS PXP2_REG_PXP2_INT_STS_0 2473 #endif 2474 2475 #ifndef ETH_MAX_RX_CLIENTS_E2 2476 #define ETH_MAX_RX_CLIENTS_E2 ETH_MAX_RX_CLIENTS_E1H 2477 #endif 2478 2479 #define BNX2X_VPD_LEN 128 2480 #define VENDOR_ID_LEN 4 2481 2482 #define VF_ACQUIRE_THRESH 3 2483 #define VF_ACQUIRE_MAC_FILTERS 1 2484 #define VF_ACQUIRE_MC_FILTERS 10 2485 2486 #define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \ 2487 (!((me_reg) & ME_REG_VF_ERR))) 2488 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err); 2489 2490 /* Congestion management fairness mode */ 2491 #define CMNG_FNS_NONE 0 2492 #define CMNG_FNS_MINMAX 1 2493 2494 #define HC_SEG_ACCESS_DEF 0 /*Driver decision 0-3*/ 2495 #define HC_SEG_ACCESS_ATTN 4 2496 #define HC_SEG_ACCESS_NORM 0 /*Driver decision 0-1*/ 2497 2498 static const u32 dmae_reg_go_c[] = { 2499 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3, 2500 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7, 2501 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11, 2502 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15 2503 }; 2504 2505 void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev); 2506 void bnx2x_notify_link_changed(struct bnx2x *bp); 2507 2508 #define BNX2X_MF_SD_PROTOCOL(bp) \ 2509 ((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK) 2510 2511 #define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \ 2512 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI) 2513 2514 #define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \ 2515 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE) 2516 2517 #define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) 2518 #define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) 2519 2520 #define BNX2X_MF_EXT_PROTOCOL_FCOE(bp) ((bp)->mf_ext_config & \ 2521 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2522 2523 #define IS_MF_FCOE_AFEX(bp) (IS_MF_AFEX(bp) && BNX2X_MF_EXT_PROTOCOL_FCOE(bp)) 2524 #define IS_MF_STORAGE_SD(bp) (IS_MF_SD(bp) && \ 2525 (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \ 2526 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 2527 2528 #define SET_FLAG(value, mask, flag) \ 2529 do {\ 2530 (value) &= ~(mask);\ 2531 (value) |= ((flag) << (mask##_SHIFT));\ 2532 } while (0) 2533 2534 #define GET_FLAG(value, mask) \ 2535 (((value) & (mask)) >> (mask##_SHIFT)) 2536 2537 #define GET_FIELD(value, fname) \ 2538 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 2539 2540 enum { 2541 SWITCH_UPDATE, 2542 AFEX_UPDATE, 2543 }; 2544 2545 #define NUM_MACS 8 2546 2547 void bnx2x_set_local_cmng(struct bnx2x *bp); 2548 2549 void bnx2x_update_mng_version(struct bnx2x *bp); 2550 2551 #define MCPR_SCRATCH_BASE(bp) \ 2552 (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH) 2553 2554 #define E1H_MAX_MF_SB_COUNT (HC_SB_MAX_SB_E1X/(E1HVN_MAX * PORT_MAX)) 2555 2556 #endif /* bnx2x.h */ 2557