1 /* bnx2x.h: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  */
13 
14 #ifndef BNX2X_H
15 #define BNX2X_H
16 
17 #include <linux/pci.h>
18 #include <linux/netdevice.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/types.h>
21 #include <linux/pci_regs.h>
22 
23 /* compilation time flags */
24 
25 /* define this to make the driver freeze on error to allow getting debug info
26  * (you will need to reboot afterwards) */
27 /* #define BNX2X_STOP_ON_ERROR */
28 
29 #define DRV_MODULE_VERSION      "1.78.17-0"
30 #define DRV_MODULE_RELDATE      "2013/04/11"
31 #define BNX2X_BC_VER            0x040200
32 
33 #if defined(CONFIG_DCB)
34 #define BCM_DCBNL
35 #endif
36 
37 #include "bnx2x_hsi.h"
38 
39 #include "../cnic_if.h"
40 
41 #define BNX2X_MIN_MSIX_VEC_CNT(bp)		((bp)->min_msix_vec_cnt)
42 
43 #include <linux/mdio.h>
44 
45 #include "bnx2x_reg.h"
46 #include "bnx2x_fw_defs.h"
47 #include "bnx2x_mfw_req.h"
48 #include "bnx2x_link.h"
49 #include "bnx2x_sp.h"
50 #include "bnx2x_dcb.h"
51 #include "bnx2x_stats.h"
52 #include "bnx2x_vfpf.h"
53 
54 enum bnx2x_int_mode {
55 	BNX2X_INT_MODE_MSIX,
56 	BNX2X_INT_MODE_INTX,
57 	BNX2X_INT_MODE_MSI
58 };
59 
60 /* error/debug prints */
61 
62 #define DRV_MODULE_NAME		"bnx2x"
63 
64 /* for messages that are currently off */
65 #define BNX2X_MSG_OFF			0x0
66 #define BNX2X_MSG_MCP			0x0010000 /* was: NETIF_MSG_HW */
67 #define BNX2X_MSG_STATS			0x0020000 /* was: NETIF_MSG_TIMER */
68 #define BNX2X_MSG_NVM			0x0040000 /* was: NETIF_MSG_HW */
69 #define BNX2X_MSG_DMAE			0x0080000 /* was: NETIF_MSG_HW */
70 #define BNX2X_MSG_SP			0x0100000 /* was: NETIF_MSG_INTR */
71 #define BNX2X_MSG_FP			0x0200000 /* was: NETIF_MSG_INTR */
72 #define BNX2X_MSG_IOV			0x0800000
73 #define BNX2X_MSG_IDLE			0x2000000 /* used for idle check*/
74 #define BNX2X_MSG_ETHTOOL		0x4000000
75 #define BNX2X_MSG_DCB			0x8000000
76 
77 /* regular debug print */
78 #define DP(__mask, fmt, ...)					\
79 do {								\
80 	if (unlikely(bp->msg_enable & (__mask)))		\
81 		pr_notice("[%s:%d(%s)]" fmt,			\
82 			  __func__, __LINE__,			\
83 			  bp->dev ? (bp->dev->name) : "?",	\
84 			  ##__VA_ARGS__);			\
85 } while (0)
86 
87 #define DP_CONT(__mask, fmt, ...)				\
88 do {								\
89 	if (unlikely(bp->msg_enable & (__mask)))		\
90 		pr_cont(fmt, ##__VA_ARGS__);			\
91 } while (0)
92 
93 /* errors debug print */
94 #define BNX2X_DBG_ERR(fmt, ...)					\
95 do {								\
96 	if (unlikely(netif_msg_probe(bp)))			\
97 		pr_err("[%s:%d(%s)]" fmt,			\
98 		       __func__, __LINE__,			\
99 		       bp->dev ? (bp->dev->name) : "?",		\
100 		       ##__VA_ARGS__);				\
101 } while (0)
102 
103 /* for errors (never masked) */
104 #define BNX2X_ERR(fmt, ...)					\
105 do {								\
106 	pr_err("[%s:%d(%s)]" fmt,				\
107 	       __func__, __LINE__,				\
108 	       bp->dev ? (bp->dev->name) : "?",			\
109 	       ##__VA_ARGS__);					\
110 } while (0)
111 
112 #define BNX2X_ERROR(fmt, ...)					\
113 	pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__)
114 
115 /* before we have a dev->name use dev_info() */
116 #define BNX2X_DEV_INFO(fmt, ...)				 \
117 do {								 \
118 	if (unlikely(netif_msg_probe(bp)))			 \
119 		dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__);	 \
120 } while (0)
121 
122 /* Error handling */
123 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int);
124 #ifdef BNX2X_STOP_ON_ERROR
125 #define bnx2x_panic()				\
126 do {						\
127 	bp->panic = 1;				\
128 	BNX2X_ERR("driver assert\n");		\
129 	bnx2x_panic_dump(bp, true);		\
130 } while (0)
131 #else
132 #define bnx2x_panic()				\
133 do {						\
134 	bp->panic = 1;				\
135 	BNX2X_ERR("driver assert\n");		\
136 	bnx2x_panic_dump(bp, false);		\
137 } while (0)
138 #endif
139 
140 #define bnx2x_mc_addr(ha)      ((ha)->addr)
141 #define bnx2x_uc_addr(ha)      ((ha)->addr)
142 
143 #define U64_LO(x)			((u32)(((u64)(x)) & 0xffffffff))
144 #define U64_HI(x)			((u32)(((u64)(x)) >> 32))
145 #define HILO_U64(hi, lo)		((((u64)(hi)) << 32) + (lo))
146 
147 #define REG_ADDR(bp, offset)		((bp->regview) + (offset))
148 
149 #define REG_RD(bp, offset)		readl(REG_ADDR(bp, offset))
150 #define REG_RD8(bp, offset)		readb(REG_ADDR(bp, offset))
151 #define REG_RD16(bp, offset)		readw(REG_ADDR(bp, offset))
152 
153 #define REG_WR(bp, offset, val)		writel((u32)val, REG_ADDR(bp, offset))
154 #define REG_WR8(bp, offset, val)	writeb((u8)val, REG_ADDR(bp, offset))
155 #define REG_WR16(bp, offset, val)	writew((u16)val, REG_ADDR(bp, offset))
156 
157 #define REG_RD_IND(bp, offset)		bnx2x_reg_rd_ind(bp, offset)
158 #define REG_WR_IND(bp, offset, val)	bnx2x_reg_wr_ind(bp, offset, val)
159 
160 #define REG_RD_DMAE(bp, offset, valp, len32) \
161 	do { \
162 		bnx2x_read_dmae(bp, offset, len32);\
163 		memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \
164 	} while (0)
165 
166 #define REG_WR_DMAE(bp, offset, valp, len32) \
167 	do { \
168 		memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \
169 		bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \
170 				 offset, len32); \
171 	} while (0)
172 
173 #define REG_WR_DMAE_LEN(bp, offset, valp, len32) \
174 	REG_WR_DMAE(bp, offset, valp, len32)
175 
176 #define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \
177 	do { \
178 		memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \
179 		bnx2x_write_big_buf_wb(bp, addr, len32); \
180 	} while (0)
181 
182 #define SHMEM_ADDR(bp, field)		(bp->common.shmem_base + \
183 					 offsetof(struct shmem_region, field))
184 #define SHMEM_RD(bp, field)		REG_RD(bp, SHMEM_ADDR(bp, field))
185 #define SHMEM_WR(bp, field, val)	REG_WR(bp, SHMEM_ADDR(bp, field), val)
186 
187 #define SHMEM2_ADDR(bp, field)		(bp->common.shmem2_base + \
188 					 offsetof(struct shmem2_region, field))
189 #define SHMEM2_RD(bp, field)		REG_RD(bp, SHMEM2_ADDR(bp, field))
190 #define SHMEM2_WR(bp, field, val)	REG_WR(bp, SHMEM2_ADDR(bp, field), val)
191 #define MF_CFG_ADDR(bp, field)		(bp->common.mf_cfg_base + \
192 					 offsetof(struct mf_cfg, field))
193 #define MF2_CFG_ADDR(bp, field)		(bp->common.mf2_cfg_base + \
194 					 offsetof(struct mf2_cfg, field))
195 
196 #define MF_CFG_RD(bp, field)		REG_RD(bp, MF_CFG_ADDR(bp, field))
197 #define MF_CFG_WR(bp, field, val)	REG_WR(bp,\
198 					       MF_CFG_ADDR(bp, field), (val))
199 #define MF2_CFG_RD(bp, field)		REG_RD(bp, MF2_CFG_ADDR(bp, field))
200 
201 #define SHMEM2_HAS(bp, field)		((bp)->common.shmem2_base &&	\
202 					 (SHMEM2_RD((bp), size) >	\
203 					 offsetof(struct shmem2_region, field)))
204 
205 #define EMAC_RD(bp, reg)		REG_RD(bp, emac_base + reg)
206 #define EMAC_WR(bp, reg, val)		REG_WR(bp, emac_base + reg, val)
207 
208 /* SP SB indices */
209 
210 /* General SP events - stats query, cfc delete, etc  */
211 #define HC_SP_INDEX_ETH_DEF_CONS		3
212 
213 /* EQ completions */
214 #define HC_SP_INDEX_EQ_CONS			7
215 
216 /* FCoE L2 connection completions */
217 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS		6
218 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS		4
219 /* iSCSI L2 */
220 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS		5
221 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS	1
222 
223 /* Special clients parameters */
224 
225 /* SB indices */
226 /* FCoE L2 */
227 #define BNX2X_FCOE_L2_RX_INDEX \
228 	(&bp->def_status_blk->sp_sb.\
229 	index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS])
230 
231 #define BNX2X_FCOE_L2_TX_INDEX \
232 	(&bp->def_status_blk->sp_sb.\
233 	index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS])
234 
235 /**
236  *  CIDs and CLIDs:
237  *  CLIDs below is a CLID for func 0, then the CLID for other
238  *  functions will be calculated by the formula:
239  *
240  *  FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X
241  *
242  */
243 enum {
244 	BNX2X_ISCSI_ETH_CL_ID_IDX,
245 	BNX2X_FCOE_ETH_CL_ID_IDX,
246 	BNX2X_MAX_CNIC_ETH_CL_ID_IDX,
247 };
248 
249 #define BNX2X_CNIC_START_ETH_CID(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) *\
250 					 (bp)->max_cos)
251 	/* iSCSI L2 */
252 #define	BNX2X_ISCSI_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp))
253 	/* FCoE L2 */
254 #define	BNX2X_FCOE_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp) + 1)
255 
256 #define CNIC_SUPPORT(bp)		((bp)->cnic_support)
257 #define CNIC_ENABLED(bp)		((bp)->cnic_enabled)
258 #define CNIC_LOADED(bp)			((bp)->cnic_loaded)
259 #define FCOE_INIT(bp)			((bp)->fcoe_init)
260 
261 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
262 	AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
263 
264 #define SM_RX_ID			0
265 #define SM_TX_ID			1
266 
267 /* defines for multiple tx priority indices */
268 #define FIRST_TX_ONLY_COS_INDEX		1
269 #define FIRST_TX_COS_INDEX		0
270 
271 /* rules for calculating the cids of tx-only connections */
272 #define CID_TO_FP(cid, bp)		((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp))
273 #define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \
274 				(cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
275 
276 /* fp index inside class of service range */
277 #define FP_COS_TO_TXQ(fp, cos, bp) \
278 			((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
279 
280 /* Indexes for transmission queues array:
281  * txdata for RSS i CoS j is at location i + (j * num of RSS)
282  * txdata for FCoE (if exist) is at location max cos * num of RSS
283  * txdata for FWD (if exist) is one location after FCoE
284  * txdata for OOO (if exist) is one location after FWD
285  */
286 enum {
287 	FCOE_TXQ_IDX_OFFSET,
288 	FWD_TXQ_IDX_OFFSET,
289 	OOO_TXQ_IDX_OFFSET,
290 };
291 #define MAX_ETH_TXQ_IDX(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos)
292 #define FCOE_TXQ_IDX(bp)	(MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET)
293 
294 /* fast path */
295 /*
296  * This driver uses new build_skb() API :
297  * RX ring buffer contains pointer to kmalloc() data only,
298  * skb are built only after Hardware filled the frame.
299  */
300 struct sw_rx_bd {
301 	u8		*data;
302 	DEFINE_DMA_UNMAP_ADDR(mapping);
303 };
304 
305 struct sw_tx_bd {
306 	struct sk_buff	*skb;
307 	u16		first_bd;
308 	u8		flags;
309 /* Set on the first BD descriptor when there is a split BD */
310 #define BNX2X_TSO_SPLIT_BD		(1<<0)
311 };
312 
313 struct sw_rx_page {
314 	struct page	*page;
315 	DEFINE_DMA_UNMAP_ADDR(mapping);
316 };
317 
318 union db_prod {
319 	struct doorbell_set_prod data;
320 	u32		raw;
321 };
322 
323 /* dropless fc FW/HW related params */
324 #define BRB_SIZE(bp)		(CHIP_IS_E3(bp) ? 1024 : 512)
325 #define MAX_AGG_QS(bp)		(CHIP_IS_E1(bp) ? \
326 					ETH_MAX_AGGREGATION_QUEUES_E1 :\
327 					ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
328 #define FW_DROP_LEVEL(bp)	(3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp))
329 #define FW_PREFETCH_CNT		16
330 #define DROPLESS_FC_HEADROOM	100
331 
332 /* MC hsi */
333 #define BCM_PAGE_SHIFT		12
334 #define BCM_PAGE_SIZE		(1 << BCM_PAGE_SHIFT)
335 #define BCM_PAGE_MASK		(~(BCM_PAGE_SIZE - 1))
336 #define BCM_PAGE_ALIGN(addr)	(((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
337 
338 #define PAGES_PER_SGE_SHIFT	0
339 #define PAGES_PER_SGE		(1 << PAGES_PER_SGE_SHIFT)
340 #define SGE_PAGE_SIZE		PAGE_SIZE
341 #define SGE_PAGE_SHIFT		PAGE_SHIFT
342 #define SGE_PAGE_ALIGN(addr)	PAGE_ALIGN((typeof(PAGE_SIZE))(addr))
343 #define SGE_PAGES		(SGE_PAGE_SIZE * PAGES_PER_SGE)
344 #define TPA_AGG_SIZE		min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \
345 					    SGE_PAGES), 0xffff)
346 
347 /* SGE ring related macros */
348 #define NUM_RX_SGE_PAGES	2
349 #define RX_SGE_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
350 #define NEXT_PAGE_SGE_DESC_CNT	2
351 #define MAX_RX_SGE_CNT		(RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT)
352 /* RX_SGE_CNT is promised to be a power of 2 */
353 #define RX_SGE_MASK		(RX_SGE_CNT - 1)
354 #define NUM_RX_SGE		(RX_SGE_CNT * NUM_RX_SGE_PAGES)
355 #define MAX_RX_SGE		(NUM_RX_SGE - 1)
356 #define NEXT_SGE_IDX(x)		((((x) & RX_SGE_MASK) == \
357 				  (MAX_RX_SGE_CNT - 1)) ? \
358 					(x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \
359 					(x) + 1)
360 #define RX_SGE(x)		((x) & MAX_RX_SGE)
361 
362 /*
363  * Number of required  SGEs is the sum of two:
364  * 1. Number of possible opened aggregations (next packet for
365  *    these aggregations will probably consume SGE immediately)
366  * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
367  *    after placement on BD for new TPA aggregation)
368  *
369  * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page
370  */
371 #define NUM_SGE_REQ		(MAX_AGG_QS(bp) + \
372 					(BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2)
373 #define NUM_SGE_PG_REQ		((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \
374 						MAX_RX_SGE_CNT)
375 #define SGE_TH_LO(bp)		(NUM_SGE_REQ + \
376 				 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT)
377 #define SGE_TH_HI(bp)		(SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM)
378 
379 /* Manipulate a bit vector defined as an array of u64 */
380 
381 /* Number of bits in one sge_mask array element */
382 #define BIT_VEC64_ELEM_SZ		64
383 #define BIT_VEC64_ELEM_SHIFT		6
384 #define BIT_VEC64_ELEM_MASK		((u64)BIT_VEC64_ELEM_SZ - 1)
385 
386 #define __BIT_VEC64_SET_BIT(el, bit) \
387 	do { \
388 		el = ((el) | ((u64)0x1 << (bit))); \
389 	} while (0)
390 
391 #define __BIT_VEC64_CLEAR_BIT(el, bit) \
392 	do { \
393 		el = ((el) & (~((u64)0x1 << (bit)))); \
394 	} while (0)
395 
396 #define BIT_VEC64_SET_BIT(vec64, idx) \
397 	__BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
398 			   (idx) & BIT_VEC64_ELEM_MASK)
399 
400 #define BIT_VEC64_CLEAR_BIT(vec64, idx) \
401 	__BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
402 			     (idx) & BIT_VEC64_ELEM_MASK)
403 
404 #define BIT_VEC64_TEST_BIT(vec64, idx) \
405 	(((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \
406 	((idx) & BIT_VEC64_ELEM_MASK)) & 0x1)
407 
408 /* Creates a bitmask of all ones in less significant bits.
409    idx - index of the most significant bit in the created mask */
410 #define BIT_VEC64_ONES_MASK(idx) \
411 		(((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1)
412 #define BIT_VEC64_ELEM_ONE_MASK	((u64)(~0))
413 
414 /*******************************************************/
415 
416 /* Number of u64 elements in SGE mask array */
417 #define RX_SGE_MASK_LEN			(NUM_RX_SGE / BIT_VEC64_ELEM_SZ)
418 #define RX_SGE_MASK_LEN_MASK		(RX_SGE_MASK_LEN - 1)
419 #define NEXT_SGE_MASK_ELEM(el)		(((el) + 1) & RX_SGE_MASK_LEN_MASK)
420 
421 union host_hc_status_block {
422 	/* pointer to fp status block e1x */
423 	struct host_hc_status_block_e1x *e1x_sb;
424 	/* pointer to fp status block e2 */
425 	struct host_hc_status_block_e2  *e2_sb;
426 };
427 
428 struct bnx2x_agg_info {
429 	/*
430 	 * First aggregation buffer is a data buffer, the following - are pages.
431 	 * We will preallocate the data buffer for each aggregation when
432 	 * we open the interface and will replace the BD at the consumer
433 	 * with this one when we receive the TPA_START CQE in order to
434 	 * keep the Rx BD ring consistent.
435 	 */
436 	struct sw_rx_bd		first_buf;
437 	u8			tpa_state;
438 #define BNX2X_TPA_START			1
439 #define BNX2X_TPA_STOP			2
440 #define BNX2X_TPA_ERROR			3
441 	u8			placement_offset;
442 	u16			parsing_flags;
443 	u16			vlan_tag;
444 	u16			len_on_bd;
445 	u32			rxhash;
446 	bool			l4_rxhash;
447 	u16			gro_size;
448 	u16			full_page;
449 };
450 
451 #define Q_STATS_OFFSET32(stat_name) \
452 			(offsetof(struct bnx2x_eth_q_stats, stat_name) / 4)
453 
454 struct bnx2x_fp_txdata {
455 
456 	struct sw_tx_bd		*tx_buf_ring;
457 
458 	union eth_tx_bd_types	*tx_desc_ring;
459 	dma_addr_t		tx_desc_mapping;
460 
461 	u32			cid;
462 
463 	union db_prod		tx_db;
464 
465 	u16			tx_pkt_prod;
466 	u16			tx_pkt_cons;
467 	u16			tx_bd_prod;
468 	u16			tx_bd_cons;
469 
470 	unsigned long		tx_pkt;
471 
472 	__le16			*tx_cons_sb;
473 
474 	int			txq_index;
475 	struct bnx2x_fastpath	*parent_fp;
476 	int			tx_ring_size;
477 };
478 
479 enum bnx2x_tpa_mode_t {
480 	TPA_MODE_LRO,
481 	TPA_MODE_GRO
482 };
483 
484 struct bnx2x_fastpath {
485 	struct bnx2x		*bp; /* parent */
486 
487 	struct napi_struct	napi;
488 
489 #ifdef CONFIG_NET_RX_BUSY_POLL
490 	unsigned int state;
491 #define BNX2X_FP_STATE_IDLE		      0
492 #define BNX2X_FP_STATE_NAPI		(1 << 0)    /* NAPI owns this FP */
493 #define BNX2X_FP_STATE_POLL		(1 << 1)    /* poll owns this FP */
494 #define BNX2X_FP_STATE_NAPI_YIELD	(1 << 2)    /* NAPI yielded this FP */
495 #define BNX2X_FP_STATE_POLL_YIELD	(1 << 3)    /* poll yielded this FP */
496 #define BNX2X_FP_YIELD	(BNX2X_FP_STATE_NAPI_YIELD | BNX2X_FP_STATE_POLL_YIELD)
497 #define BNX2X_FP_LOCKED	(BNX2X_FP_STATE_NAPI | BNX2X_FP_STATE_POLL)
498 #define BNX2X_FP_USER_PEND (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_POLL_YIELD)
499 	/* protect state */
500 	spinlock_t lock;
501 #endif /* CONFIG_NET_RX_BUSY_POLL */
502 
503 	union host_hc_status_block	status_blk;
504 	/* chip independent shortcuts into sb structure */
505 	__le16			*sb_index_values;
506 	__le16			*sb_running_index;
507 	/* chip independent shortcut into rx_prods_offset memory */
508 	u32			ustorm_rx_prods_offset;
509 
510 	u32			rx_buf_size;
511 	u32			rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */
512 	dma_addr_t		status_blk_mapping;
513 
514 	enum bnx2x_tpa_mode_t	mode;
515 
516 	u8			max_cos; /* actual number of active tx coses */
517 	struct bnx2x_fp_txdata	*txdata_ptr[BNX2X_MULTI_TX_COS];
518 
519 	struct sw_rx_bd		*rx_buf_ring;	/* BDs mappings ring */
520 	struct sw_rx_page	*rx_page_ring;	/* SGE pages mappings ring */
521 
522 	struct eth_rx_bd	*rx_desc_ring;
523 	dma_addr_t		rx_desc_mapping;
524 
525 	union eth_rx_cqe	*rx_comp_ring;
526 	dma_addr_t		rx_comp_mapping;
527 
528 	/* SGE ring */
529 	struct eth_rx_sge	*rx_sge_ring;
530 	dma_addr_t		rx_sge_mapping;
531 
532 	u64			sge_mask[RX_SGE_MASK_LEN];
533 
534 	u32			cid;
535 
536 	__le16			fp_hc_idx;
537 
538 	u8			index;		/* number in fp array */
539 	u8			rx_queue;	/* index for skb_record */
540 	u8			cl_id;		/* eth client id */
541 	u8			cl_qzone_id;
542 	u8			fw_sb_id;	/* status block number in FW */
543 	u8			igu_sb_id;	/* status block number in HW */
544 
545 	u16			rx_bd_prod;
546 	u16			rx_bd_cons;
547 	u16			rx_comp_prod;
548 	u16			rx_comp_cons;
549 	u16			rx_sge_prod;
550 	/* The last maximal completed SGE */
551 	u16			last_max_sge;
552 	__le16			*rx_cons_sb;
553 	unsigned long		rx_pkt,
554 				rx_calls;
555 
556 	/* TPA related */
557 	struct bnx2x_agg_info	*tpa_info;
558 	u8			disable_tpa;
559 #ifdef BNX2X_STOP_ON_ERROR
560 	u64			tpa_queue_used;
561 #endif
562 	/* The size is calculated using the following:
563 	     sizeof name field from netdev structure +
564 	     4 ('-Xx-' string) +
565 	     4 (for the digits and to make it DWORD aligned) */
566 #define FP_NAME_SIZE		(sizeof(((struct net_device *)0)->name) + 8)
567 	char			name[FP_NAME_SIZE];
568 };
569 
570 #define bnx2x_fp(bp, nr, var)	((bp)->fp[(nr)].var)
571 #define bnx2x_sp_obj(bp, fp)	((bp)->sp_objs[(fp)->index])
572 #define bnx2x_fp_stats(bp, fp)	(&((bp)->fp_stats[(fp)->index]))
573 #define bnx2x_fp_qstats(bp, fp)	(&((bp)->fp_stats[(fp)->index].eth_q_stats))
574 
575 #ifdef CONFIG_NET_RX_BUSY_POLL
576 static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
577 {
578 	spin_lock_init(&fp->lock);
579 	fp->state = BNX2X_FP_STATE_IDLE;
580 }
581 
582 /* called from the device poll routine to get ownership of a FP */
583 static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
584 {
585 	bool rc = true;
586 
587 	spin_lock(&fp->lock);
588 	if (fp->state & BNX2X_FP_LOCKED) {
589 		WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
590 		fp->state |= BNX2X_FP_STATE_NAPI_YIELD;
591 		rc = false;
592 	} else {
593 		/* we don't care if someone yielded */
594 		fp->state = BNX2X_FP_STATE_NAPI;
595 	}
596 	spin_unlock(&fp->lock);
597 	return rc;
598 }
599 
600 /* returns true is someone tried to get the FP while napi had it */
601 static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
602 {
603 	bool rc = false;
604 
605 	spin_lock(&fp->lock);
606 	WARN_ON(fp->state &
607 		(BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_NAPI_YIELD));
608 
609 	if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
610 		rc = true;
611 	fp->state = BNX2X_FP_STATE_IDLE;
612 	spin_unlock(&fp->lock);
613 	return rc;
614 }
615 
616 /* called from bnx2x_low_latency_poll() */
617 static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
618 {
619 	bool rc = true;
620 
621 	spin_lock_bh(&fp->lock);
622 	if ((fp->state & BNX2X_FP_LOCKED)) {
623 		fp->state |= BNX2X_FP_STATE_POLL_YIELD;
624 		rc = false;
625 	} else {
626 		/* preserve yield marks */
627 		fp->state |= BNX2X_FP_STATE_POLL;
628 	}
629 	spin_unlock_bh(&fp->lock);
630 	return rc;
631 }
632 
633 /* returns true if someone tried to get the FP while it was locked */
634 static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
635 {
636 	bool rc = false;
637 
638 	spin_lock_bh(&fp->lock);
639 	WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
640 
641 	if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
642 		rc = true;
643 	fp->state = BNX2X_FP_STATE_IDLE;
644 	spin_unlock_bh(&fp->lock);
645 	return rc;
646 }
647 
648 /* true if a socket is polling, even if it did not get the lock */
649 static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
650 {
651 	WARN_ON(!(fp->state & BNX2X_FP_LOCKED));
652 	return fp->state & BNX2X_FP_USER_PEND;
653 }
654 #else
655 static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
656 {
657 }
658 
659 static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
660 {
661 	return true;
662 }
663 
664 static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
665 {
666 	return false;
667 }
668 
669 static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
670 {
671 	return false;
672 }
673 
674 static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
675 {
676 	return false;
677 }
678 
679 static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
680 {
681 	return false;
682 }
683 #endif /* CONFIG_NET_RX_BUSY_POLL */
684 
685 /* Use 2500 as a mini-jumbo MTU for FCoE */
686 #define BNX2X_FCOE_MINI_JUMBO_MTU	2500
687 
688 #define	FCOE_IDX_OFFSET		0
689 
690 #define FCOE_IDX(bp)		(BNX2X_NUM_NON_CNIC_QUEUES(bp) + \
691 				 FCOE_IDX_OFFSET)
692 #define bnx2x_fcoe_fp(bp)	(&bp->fp[FCOE_IDX(bp)])
693 #define bnx2x_fcoe(bp, var)	(bnx2x_fcoe_fp(bp)->var)
694 #define bnx2x_fcoe_inner_sp_obj(bp)	(&bp->sp_objs[FCOE_IDX(bp)])
695 #define bnx2x_fcoe_sp_obj(bp, var)	(bnx2x_fcoe_inner_sp_obj(bp)->var)
696 #define bnx2x_fcoe_tx(bp, var)	(bnx2x_fcoe_fp(bp)-> \
697 						txdata_ptr[FIRST_TX_COS_INDEX] \
698 						->var)
699 
700 #define IS_ETH_FP(fp)		((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp))
701 #define IS_FCOE_FP(fp)		((fp)->index == FCOE_IDX((fp)->bp))
702 #define IS_FCOE_IDX(idx)	((idx) == FCOE_IDX(bp))
703 
704 /* MC hsi */
705 #define MAX_FETCH_BD		13	/* HW max BDs per packet */
706 #define RX_COPY_THRESH		92
707 
708 #define NUM_TX_RINGS		16
709 #define TX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
710 #define NEXT_PAGE_TX_DESC_CNT	1
711 #define MAX_TX_DESC_CNT		(TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT)
712 #define NUM_TX_BD		(TX_DESC_CNT * NUM_TX_RINGS)
713 #define MAX_TX_BD		(NUM_TX_BD - 1)
714 #define MAX_TX_AVAIL		(MAX_TX_DESC_CNT * NUM_TX_RINGS - 2)
715 #define NEXT_TX_IDX(x)		((((x) & MAX_TX_DESC_CNT) == \
716 				  (MAX_TX_DESC_CNT - 1)) ? \
717 					(x) + 1 + NEXT_PAGE_TX_DESC_CNT : \
718 					(x) + 1)
719 #define TX_BD(x)		((x) & MAX_TX_BD)
720 #define TX_BD_POFF(x)		((x) & MAX_TX_DESC_CNT)
721 
722 /* number of NEXT_PAGE descriptors may be required during placement */
723 #define NEXT_CNT_PER_TX_PKT(bds)	\
724 				(((bds) + MAX_TX_DESC_CNT - 1) / \
725 				 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT)
726 /* max BDs per tx packet w/o next_pages:
727  * START_BD		- describes packed
728  * START_BD(splitted)	- includes unpaged data segment for GSO
729  * PARSING_BD		- for TSO and CSUM data
730  * PARSING_BD2		- for encapsulation data
731  * Frag BDs		- describes pages for frags
732  */
733 #define BDS_PER_TX_PKT		4
734 #define MAX_BDS_PER_TX_PKT	(MAX_SKB_FRAGS + BDS_PER_TX_PKT)
735 /* max BDs per tx packet including next pages */
736 #define MAX_DESC_PER_TX_PKT	(MAX_BDS_PER_TX_PKT + \
737 				 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))
738 
739 /* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */
740 #define NUM_RX_RINGS		8
741 #define RX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
742 #define NEXT_PAGE_RX_DESC_CNT	2
743 #define MAX_RX_DESC_CNT		(RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT)
744 #define RX_DESC_MASK		(RX_DESC_CNT - 1)
745 #define NUM_RX_BD		(RX_DESC_CNT * NUM_RX_RINGS)
746 #define MAX_RX_BD		(NUM_RX_BD - 1)
747 #define MAX_RX_AVAIL		(MAX_RX_DESC_CNT * NUM_RX_RINGS - 2)
748 
749 /* dropless fc calculations for BDs
750  *
751  * Number of BDs should as number of buffers in BRB:
752  * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT
753  * "next" elements on each page
754  */
755 #define NUM_BD_REQ		BRB_SIZE(bp)
756 #define NUM_BD_PG_REQ		((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \
757 					      MAX_RX_DESC_CNT)
758 #define BD_TH_LO(bp)		(NUM_BD_REQ + \
759 				 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \
760 				 FW_DROP_LEVEL(bp))
761 #define BD_TH_HI(bp)		(BD_TH_LO(bp) + DROPLESS_FC_HEADROOM)
762 
763 #define MIN_RX_AVAIL		((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128)
764 
765 #define MIN_RX_SIZE_TPA_HW	(CHIP_IS_E1(bp) ? \
766 					ETH_MIN_RX_CQES_WITH_TPA_E1 : \
767 					ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
768 #define MIN_RX_SIZE_NONTPA_HW   ETH_MIN_RX_CQES_WITHOUT_TPA
769 #define MIN_RX_SIZE_TPA		(max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL))
770 #define MIN_RX_SIZE_NONTPA	(max_t(u32, MIN_RX_SIZE_NONTPA_HW,\
771 								MIN_RX_AVAIL))
772 
773 #define NEXT_RX_IDX(x)		((((x) & RX_DESC_MASK) == \
774 				  (MAX_RX_DESC_CNT - 1)) ? \
775 					(x) + 1 + NEXT_PAGE_RX_DESC_CNT : \
776 					(x) + 1)
777 #define RX_BD(x)		((x) & MAX_RX_BD)
778 
779 /*
780  * As long as CQE is X times bigger than BD entry we have to allocate X times
781  * more pages for CQ ring in order to keep it balanced with BD ring
782  */
783 #define CQE_BD_REL	(sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
784 #define NUM_RCQ_RINGS		(NUM_RX_RINGS * CQE_BD_REL)
785 #define RCQ_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
786 #define NEXT_PAGE_RCQ_DESC_CNT	1
787 #define MAX_RCQ_DESC_CNT	(RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT)
788 #define NUM_RCQ_BD		(RCQ_DESC_CNT * NUM_RCQ_RINGS)
789 #define MAX_RCQ_BD		(NUM_RCQ_BD - 1)
790 #define MAX_RCQ_AVAIL		(MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2)
791 #define NEXT_RCQ_IDX(x)		((((x) & MAX_RCQ_DESC_CNT) == \
792 				  (MAX_RCQ_DESC_CNT - 1)) ? \
793 					(x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \
794 					(x) + 1)
795 #define RCQ_BD(x)		((x) & MAX_RCQ_BD)
796 
797 /* dropless fc calculations for RCQs
798  *
799  * Number of RCQs should be as number of buffers in BRB:
800  * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT
801  * "next" elements on each page
802  */
803 #define NUM_RCQ_REQ		BRB_SIZE(bp)
804 #define NUM_RCQ_PG_REQ		((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \
805 					      MAX_RCQ_DESC_CNT)
806 #define RCQ_TH_LO(bp)		(NUM_RCQ_REQ + \
807 				 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \
808 				 FW_DROP_LEVEL(bp))
809 #define RCQ_TH_HI(bp)		(RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM)
810 
811 /* This is needed for determining of last_max */
812 #define SUB_S16(a, b)		(s16)((s16)(a) - (s16)(b))
813 #define SUB_S32(a, b)		(s32)((s32)(a) - (s32)(b))
814 
815 #define BNX2X_SWCID_SHIFT	17
816 #define BNX2X_SWCID_MASK	((0x1 << BNX2X_SWCID_SHIFT) - 1)
817 
818 /* used on a CID received from the HW */
819 #define SW_CID(x)			(le32_to_cpu(x) & BNX2X_SWCID_MASK)
820 #define CQE_CMD(x)			(le32_to_cpu(x) >> \
821 					COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
822 
823 #define BD_UNMAP_ADDR(bd)		HILO_U64(le32_to_cpu((bd)->addr_hi), \
824 						 le32_to_cpu((bd)->addr_lo))
825 #define BD_UNMAP_LEN(bd)		(le16_to_cpu((bd)->nbytes))
826 
827 #define BNX2X_DB_MIN_SHIFT		3	/* 8 bytes */
828 #define BNX2X_DB_SHIFT			3	/* 8 bytes*/
829 #if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
830 #error "Min DB doorbell stride is 8"
831 #endif
832 #define DOORBELL(bp, cid, val) \
833 	do { \
834 		writel((u32)(val), bp->doorbells + (bp->db_size * (cid))); \
835 	} while (0)
836 
837 /* TX CSUM helpers */
838 #define SKB_CS_OFF(skb)		(offsetof(struct tcphdr, check) - \
839 				 skb->csum_offset)
840 #define SKB_CS(skb)		(*(u16 *)(skb_transport_header(skb) + \
841 					  skb->csum_offset))
842 
843 #define pbd_tcp_flags(tcp_hdr)	(ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff)
844 
845 #define XMIT_PLAIN		0
846 #define XMIT_CSUM_V4		(1 << 0)
847 #define XMIT_CSUM_V6		(1 << 1)
848 #define XMIT_CSUM_TCP		(1 << 2)
849 #define XMIT_GSO_V4		(1 << 3)
850 #define XMIT_GSO_V6		(1 << 4)
851 #define XMIT_CSUM_ENC_V4	(1 << 5)
852 #define XMIT_CSUM_ENC_V6	(1 << 6)
853 #define XMIT_GSO_ENC_V4		(1 << 7)
854 #define XMIT_GSO_ENC_V6		(1 << 8)
855 
856 #define XMIT_CSUM_ENC		(XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6)
857 #define XMIT_GSO_ENC		(XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6)
858 
859 #define XMIT_CSUM		(XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC)
860 #define XMIT_GSO		(XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC)
861 
862 /* stuff added to make the code fit 80Col */
863 #define CQE_TYPE(cqe_fp_flags)	 ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
864 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
865 #define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
866 #define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
867 #define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
868 
869 #define ETH_RX_ERROR_FALGS		ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG
870 
871 #define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \
872 				(((le16_to_cpu(flags) & \
873 				   PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \
874 				  PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \
875 				 == PRS_FLAG_OVERETH_IPV4)
876 #define BNX2X_RX_SUM_FIX(cqe) \
877 	BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags)
878 
879 #define FP_USB_FUNC_OFF	\
880 			offsetof(struct cstorm_status_block_u, func)
881 #define FP_CSB_FUNC_OFF	\
882 			offsetof(struct cstorm_status_block_c, func)
883 
884 #define HC_INDEX_ETH_RX_CQ_CONS		1
885 
886 #define HC_INDEX_OOO_TX_CQ_CONS		4
887 
888 #define HC_INDEX_ETH_TX_CQ_CONS_COS0	5
889 
890 #define HC_INDEX_ETH_TX_CQ_CONS_COS1	6
891 
892 #define HC_INDEX_ETH_TX_CQ_CONS_COS2	7
893 
894 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS	HC_INDEX_ETH_TX_CQ_CONS_COS0
895 
896 #define BNX2X_RX_SB_INDEX \
897 	(&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS])
898 
899 #define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0
900 
901 #define BNX2X_TX_SB_INDEX_COS0 \
902 	(&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0])
903 
904 /* end of fast path */
905 
906 /* common */
907 
908 struct bnx2x_common {
909 
910 	u32			chip_id;
911 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
912 #define CHIP_ID(bp)			(bp->common.chip_id & 0xfffffff0)
913 
914 #define CHIP_NUM(bp)			(bp->common.chip_id >> 16)
915 #define CHIP_NUM_57710			0x164e
916 #define CHIP_NUM_57711			0x164f
917 #define CHIP_NUM_57711E			0x1650
918 #define CHIP_NUM_57712			0x1662
919 #define CHIP_NUM_57712_MF		0x1663
920 #define CHIP_NUM_57712_VF		0x166f
921 #define CHIP_NUM_57713			0x1651
922 #define CHIP_NUM_57713E			0x1652
923 #define CHIP_NUM_57800			0x168a
924 #define CHIP_NUM_57800_MF		0x16a5
925 #define CHIP_NUM_57800_VF		0x16a9
926 #define CHIP_NUM_57810			0x168e
927 #define CHIP_NUM_57810_MF		0x16ae
928 #define CHIP_NUM_57810_VF		0x16af
929 #define CHIP_NUM_57811			0x163d
930 #define CHIP_NUM_57811_MF		0x163e
931 #define CHIP_NUM_57811_VF		0x163f
932 #define CHIP_NUM_57840_OBSOLETE		0x168d
933 #define CHIP_NUM_57840_MF_OBSOLETE	0x16ab
934 #define CHIP_NUM_57840_4_10		0x16a1
935 #define CHIP_NUM_57840_2_20		0x16a2
936 #define CHIP_NUM_57840_MF		0x16a4
937 #define CHIP_NUM_57840_VF		0x16ad
938 #define CHIP_IS_E1(bp)			(CHIP_NUM(bp) == CHIP_NUM_57710)
939 #define CHIP_IS_57711(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711)
940 #define CHIP_IS_57711E(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711E)
941 #define CHIP_IS_57712(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712)
942 #define CHIP_IS_57712_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_VF)
943 #define CHIP_IS_57712_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_MF)
944 #define CHIP_IS_57800(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800)
945 #define CHIP_IS_57800_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_MF)
946 #define CHIP_IS_57800_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_VF)
947 #define CHIP_IS_57810(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810)
948 #define CHIP_IS_57810_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_MF)
949 #define CHIP_IS_57810_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_VF)
950 #define CHIP_IS_57811(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811)
951 #define CHIP_IS_57811_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_MF)
952 #define CHIP_IS_57811_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_VF)
953 #define CHIP_IS_57840(bp)		\
954 		((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \
955 		 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \
956 		 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE))
957 #define CHIP_IS_57840_MF(bp)	((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \
958 				 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE))
959 #define CHIP_IS_57840_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57840_VF)
960 #define CHIP_IS_E1H(bp)			(CHIP_IS_57711(bp) || \
961 					 CHIP_IS_57711E(bp))
962 #define CHIP_IS_57811xx(bp)		(CHIP_IS_57811(bp) || \
963 					 CHIP_IS_57811_MF(bp) || \
964 					 CHIP_IS_57811_VF(bp))
965 #define CHIP_IS_E2(bp)			(CHIP_IS_57712(bp) || \
966 					 CHIP_IS_57712_MF(bp) || \
967 					 CHIP_IS_57712_VF(bp))
968 #define CHIP_IS_E3(bp)			(CHIP_IS_57800(bp) || \
969 					 CHIP_IS_57800_MF(bp) || \
970 					 CHIP_IS_57800_VF(bp) || \
971 					 CHIP_IS_57810(bp) || \
972 					 CHIP_IS_57810_MF(bp) || \
973 					 CHIP_IS_57810_VF(bp) || \
974 					 CHIP_IS_57811xx(bp) || \
975 					 CHIP_IS_57840(bp) || \
976 					 CHIP_IS_57840_MF(bp) || \
977 					 CHIP_IS_57840_VF(bp))
978 #define CHIP_IS_E1x(bp)			(CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp)))
979 #define USES_WARPCORE(bp)		(CHIP_IS_E3(bp))
980 #define IS_E1H_OFFSET			(!CHIP_IS_E1(bp))
981 
982 #define CHIP_REV_SHIFT			12
983 #define CHIP_REV_MASK			(0xF << CHIP_REV_SHIFT)
984 #define CHIP_REV_VAL(bp)		(bp->common.chip_id & CHIP_REV_MASK)
985 #define CHIP_REV_Ax			(0x0 << CHIP_REV_SHIFT)
986 #define CHIP_REV_Bx			(0x1 << CHIP_REV_SHIFT)
987 /* assume maximum 5 revisions */
988 #define CHIP_REV_IS_SLOW(bp)		(CHIP_REV_VAL(bp) > 0x00005000)
989 /* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */
990 #define CHIP_REV_IS_EMUL(bp)		((CHIP_REV_IS_SLOW(bp)) && \
991 					 !(CHIP_REV_VAL(bp) & 0x00001000))
992 /* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */
993 #define CHIP_REV_IS_FPGA(bp)		((CHIP_REV_IS_SLOW(bp)) && \
994 					 (CHIP_REV_VAL(bp) & 0x00001000))
995 
996 #define CHIP_TIME(bp)			((CHIP_REV_IS_EMUL(bp)) ? 2000 : \
997 					((CHIP_REV_IS_FPGA(bp)) ? 200 : 1))
998 
999 #define CHIP_METAL(bp)			(bp->common.chip_id & 0x00000ff0)
1000 #define CHIP_BOND_ID(bp)		(bp->common.chip_id & 0x0000000f)
1001 #define CHIP_REV_SIM(bp)		(((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\
1002 					   (CHIP_REV_SHIFT + 1)) \
1003 						<< CHIP_REV_SHIFT)
1004 #define CHIP_REV(bp)			(CHIP_REV_IS_SLOW(bp) ? \
1005 						CHIP_REV_SIM(bp) :\
1006 						CHIP_REV_VAL(bp))
1007 #define CHIP_IS_E3B0(bp)		(CHIP_IS_E3(bp) && \
1008 					 (CHIP_REV(bp) == CHIP_REV_Bx))
1009 #define CHIP_IS_E3A0(bp)		(CHIP_IS_E3(bp) && \
1010 					 (CHIP_REV(bp) == CHIP_REV_Ax))
1011 /* This define is used in two main places:
1012  * 1. In the early stages of nic_load, to know if to configure Parser / Searcher
1013  * to nic-only mode or to offload mode. Offload mode is configured if either the
1014  * chip is E1x (where MIC_MODE register is not applicable), or if cnic already
1015  * registered for this port (which means that the user wants storage services).
1016  * 2. During cnic-related load, to know if offload mode is already configured in
1017  * the HW or needs to be configured.
1018  * Since the transition from nic-mode to offload-mode in HW causes traffic
1019  * corruption, nic-mode is configured only in ports on which storage services
1020  * where never requested.
1021  */
1022 #define CONFIGURE_NIC_MODE(bp)		(!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp))
1023 
1024 	int			flash_size;
1025 #define BNX2X_NVRAM_1MB_SIZE			0x20000	/* 1M bit in bytes */
1026 #define BNX2X_NVRAM_TIMEOUT_COUNT		30000
1027 #define BNX2X_NVRAM_PAGE_SIZE			256
1028 
1029 	u32			shmem_base;
1030 	u32			shmem2_base;
1031 	u32			mf_cfg_base;
1032 	u32			mf2_cfg_base;
1033 
1034 	u32			hw_config;
1035 
1036 	u32			bc_ver;
1037 
1038 	u8			int_block;
1039 #define INT_BLOCK_HC			0
1040 #define INT_BLOCK_IGU			1
1041 #define INT_BLOCK_MODE_NORMAL		0
1042 #define INT_BLOCK_MODE_BW_COMP		2
1043 #define CHIP_INT_MODE_IS_NBC(bp)		\
1044 			(!CHIP_IS_E1x(bp) &&	\
1045 			!((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP))
1046 #define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp))
1047 
1048 	u8			chip_port_mode;
1049 #define CHIP_4_PORT_MODE			0x0
1050 #define CHIP_2_PORT_MODE			0x1
1051 #define CHIP_PORT_MODE_NONE			0x2
1052 #define CHIP_MODE(bp)			(bp->common.chip_port_mode)
1053 #define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE)
1054 
1055 	u32			boot_mode;
1056 };
1057 
1058 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
1059 #define BNX2X_IGU_STAS_MSG_VF_CNT 64
1060 #define BNX2X_IGU_STAS_MSG_PF_CNT 4
1061 
1062 #define MAX_IGU_ATTN_ACK_TO       100
1063 /* end of common */
1064 
1065 /* port */
1066 
1067 struct bnx2x_port {
1068 	u32			pmf;
1069 
1070 	u32			link_config[LINK_CONFIG_SIZE];
1071 
1072 	u32			supported[LINK_CONFIG_SIZE];
1073 /* link settings - missing defines */
1074 #define SUPPORTED_2500baseX_Full	(1 << 15)
1075 
1076 	u32			advertising[LINK_CONFIG_SIZE];
1077 /* link settings - missing defines */
1078 #define ADVERTISED_2500baseX_Full	(1 << 15)
1079 
1080 	u32			phy_addr;
1081 
1082 	/* used to synchronize phy accesses */
1083 	struct mutex		phy_mutex;
1084 
1085 	u32			port_stx;
1086 
1087 	struct nig_stats	old_nig_stats;
1088 };
1089 
1090 /* end of port */
1091 
1092 #define STATS_OFFSET32(stat_name) \
1093 			(offsetof(struct bnx2x_eth_stats, stat_name) / 4)
1094 
1095 /* slow path */
1096 
1097 /* slow path work-queue */
1098 extern struct workqueue_struct *bnx2x_wq;
1099 
1100 #define BNX2X_MAX_NUM_OF_VFS	64
1101 #define BNX2X_VF_CID_WND	4 /* log num of queues per VF. HW config. */
1102 #define BNX2X_CIDS_PER_VF	(1 << BNX2X_VF_CID_WND)
1103 
1104 /* We need to reserve doorbell addresses for all VF and queue combinations */
1105 #define BNX2X_VF_CIDS		(BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF)
1106 
1107 /* The doorbell is configured to have the same number of CIDs for PFs and for
1108  * VFs. For this reason the PF CID zone is as large as the VF zone.
1109  */
1110 #define BNX2X_FIRST_VF_CID	BNX2X_VF_CIDS
1111 #define BNX2X_MAX_NUM_VF_QUEUES	64
1112 #define BNX2X_VF_ID_INVALID	0xFF
1113 
1114 /* the number of VF CIDS multiplied by the amount of bytes reserved for each
1115  * cid must not exceed the size of the VF doorbell
1116  */
1117 #define BNX2X_VF_BAR_SIZE	512
1118 #if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT))
1119 #error "VF doorbell bar size is 512"
1120 #endif
1121 
1122 /*
1123  * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
1124  * control by the number of fast-path status blocks supported by the
1125  * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
1126  * status block represents an independent interrupts context that can
1127  * serve a regular L2 networking queue. However special L2 queues such
1128  * as the FCoE queue do not require a FP-SB and other components like
1129  * the CNIC may consume FP-SB reducing the number of possible L2 queues
1130  *
1131  * If the maximum number of FP-SB available is X then:
1132  * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
1133  *    regular L2 queues is Y=X-1
1134  * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
1135  * c. If the FCoE L2 queue is supported the actual number of L2 queues
1136  *    is Y+1
1137  * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
1138  *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
1139  *    FP interrupt context for the CNIC).
1140  * e. The number of HW context (CID count) is always X or X+1 if FCoE
1141  *    L2 queue is supported. The cid for the FCoE L2 queue is always X.
1142  */
1143 
1144 /* fast-path interrupt contexts E1x */
1145 #define FP_SB_MAX_E1x		16
1146 /* fast-path interrupt contexts E2 */
1147 #define FP_SB_MAX_E2		HC_SB_MAX_SB_E2
1148 
1149 union cdu_context {
1150 	struct eth_context eth;
1151 	char pad[1024];
1152 };
1153 
1154 /* CDU host DB constants */
1155 #define CDU_ILT_PAGE_SZ_HW	2
1156 #define CDU_ILT_PAGE_SZ		(8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
1157 #define ILT_PAGE_CIDS		(CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
1158 
1159 #define CNIC_ISCSI_CID_MAX	256
1160 #define CNIC_FCOE_CID_MAX	2048
1161 #define CNIC_CID_MAX		(CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
1162 #define CNIC_ILT_LINES		DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
1163 
1164 #define QM_ILT_PAGE_SZ_HW	0
1165 #define QM_ILT_PAGE_SZ		(4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
1166 #define QM_CID_ROUND		1024
1167 
1168 /* TM (timers) host DB constants */
1169 #define TM_ILT_PAGE_SZ_HW	0
1170 #define TM_ILT_PAGE_SZ		(4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
1171 /* #define TM_CONN_NUM		(CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
1172 #define TM_CONN_NUM		1024
1173 #define TM_ILT_SZ		(8 * TM_CONN_NUM)
1174 #define TM_ILT_LINES		DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
1175 
1176 /* SRC (Searcher) host DB constants */
1177 #define SRC_ILT_PAGE_SZ_HW	0
1178 #define SRC_ILT_PAGE_SZ		(4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
1179 #define SRC_HASH_BITS		10
1180 #define SRC_CONN_NUM		(1 << SRC_HASH_BITS) /* 1024 */
1181 #define SRC_ILT_SZ		(sizeof(struct src_ent) * SRC_CONN_NUM)
1182 #define SRC_T2_SZ		SRC_ILT_SZ
1183 #define SRC_ILT_LINES		DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
1184 
1185 #define MAX_DMAE_C		8
1186 
1187 /* DMA memory not used in fastpath */
1188 struct bnx2x_slowpath {
1189 	union {
1190 		struct mac_configuration_cmd		e1x;
1191 		struct eth_classify_rules_ramrod_data	e2;
1192 	} mac_rdata;
1193 
1194 	union {
1195 		struct tstorm_eth_mac_filter_config	e1x;
1196 		struct eth_filter_rules_ramrod_data	e2;
1197 	} rx_mode_rdata;
1198 
1199 	union {
1200 		struct mac_configuration_cmd		e1;
1201 		struct eth_multicast_rules_ramrod_data  e2;
1202 	} mcast_rdata;
1203 
1204 	struct eth_rss_update_ramrod_data	rss_rdata;
1205 
1206 	/* Queue State related ramrods are always sent under rtnl_lock */
1207 	union {
1208 		struct client_init_ramrod_data  init_data;
1209 		struct client_update_ramrod_data update_data;
1210 	} q_rdata;
1211 
1212 	union {
1213 		struct function_start_data	func_start;
1214 		/* pfc configuration for DCBX ramrod */
1215 		struct flow_control_configuration pfc_config;
1216 	} func_rdata;
1217 
1218 	/* afex ramrod can not be a part of func_rdata union because these
1219 	 * events might arrive in parallel to other events from func_rdata.
1220 	 * Therefore, if they would have been defined in the same union,
1221 	 * data can get corrupted.
1222 	 */
1223 	struct afex_vif_list_ramrod_data func_afex_rdata;
1224 
1225 	/* used by dmae command executer */
1226 	struct dmae_command		dmae[MAX_DMAE_C];
1227 
1228 	u32				stats_comp;
1229 	union mac_stats			mac_stats;
1230 	struct nig_stats		nig_stats;
1231 	struct host_port_stats		port_stats;
1232 	struct host_func_stats		func_stats;
1233 
1234 	u32				wb_comp;
1235 	u32				wb_data[4];
1236 
1237 	union drv_info_to_mcp		drv_info_to_mcp;
1238 };
1239 
1240 #define bnx2x_sp(bp, var)		(&bp->slowpath->var)
1241 #define bnx2x_sp_mapping(bp, var) \
1242 		(bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var))
1243 
1244 /* attn group wiring */
1245 #define MAX_DYNAMIC_ATTN_GRPS		8
1246 
1247 struct attn_route {
1248 	u32 sig[5];
1249 };
1250 
1251 struct iro {
1252 	u32 base;
1253 	u16 m1;
1254 	u16 m2;
1255 	u16 m3;
1256 	u16 size;
1257 };
1258 
1259 struct hw_context {
1260 	union cdu_context *vcxt;
1261 	dma_addr_t cxt_mapping;
1262 	size_t size;
1263 };
1264 
1265 /* forward */
1266 struct bnx2x_ilt;
1267 
1268 struct bnx2x_vfdb;
1269 
1270 enum bnx2x_recovery_state {
1271 	BNX2X_RECOVERY_DONE,
1272 	BNX2X_RECOVERY_INIT,
1273 	BNX2X_RECOVERY_WAIT,
1274 	BNX2X_RECOVERY_FAILED,
1275 	BNX2X_RECOVERY_NIC_LOADING
1276 };
1277 
1278 /*
1279  * Event queue (EQ or event ring) MC hsi
1280  * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2
1281  */
1282 #define NUM_EQ_PAGES		1
1283 #define EQ_DESC_CNT_PAGE	(BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1284 #define EQ_DESC_MAX_PAGE	(EQ_DESC_CNT_PAGE - 1)
1285 #define NUM_EQ_DESC		(EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1286 #define EQ_DESC_MASK		(NUM_EQ_DESC - 1)
1287 #define MAX_EQ_AVAIL		(EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1288 
1289 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1290 #define NEXT_EQ_IDX(x)		((((x) & EQ_DESC_MAX_PAGE) == \
1291 				  (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1)
1292 
1293 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1294 #define EQ_DESC(x)		((x) & EQ_DESC_MASK)
1295 
1296 #define BNX2X_EQ_INDEX \
1297 	(&bp->def_status_blk->sp_sb.\
1298 	index_values[HC_SP_INDEX_EQ_CONS])
1299 
1300 /* This is a data that will be used to create a link report message.
1301  * We will keep the data used for the last link report in order
1302  * to prevent reporting the same link parameters twice.
1303  */
1304 struct bnx2x_link_report_data {
1305 	u16 line_speed;			/* Effective line speed */
1306 	unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */
1307 };
1308 
1309 enum {
1310 	BNX2X_LINK_REPORT_FD,		/* Full DUPLEX */
1311 	BNX2X_LINK_REPORT_LINK_DOWN,
1312 	BNX2X_LINK_REPORT_RX_FC_ON,
1313 	BNX2X_LINK_REPORT_TX_FC_ON,
1314 };
1315 
1316 enum {
1317 	BNX2X_PORT_QUERY_IDX,
1318 	BNX2X_PF_QUERY_IDX,
1319 	BNX2X_FCOE_QUERY_IDX,
1320 	BNX2X_FIRST_QUEUE_QUERY_IDX,
1321 };
1322 
1323 struct bnx2x_fw_stats_req {
1324 	struct stats_query_header hdr;
1325 	struct stats_query_entry query[FP_SB_MAX_E1x+
1326 		BNX2X_FIRST_QUEUE_QUERY_IDX];
1327 };
1328 
1329 struct bnx2x_fw_stats_data {
1330 	struct stats_counter		storm_counters;
1331 	struct per_port_stats		port;
1332 	struct per_pf_stats		pf;
1333 	struct fcoe_statistics_params	fcoe;
1334 	struct per_queue_stats		queue_stats[1];
1335 };
1336 
1337 /* Public slow path states */
1338 enum {
1339 	BNX2X_SP_RTNL_SETUP_TC,
1340 	BNX2X_SP_RTNL_TX_TIMEOUT,
1341 	BNX2X_SP_RTNL_FAN_FAILURE,
1342 	BNX2X_SP_RTNL_AFEX_F_UPDATE,
1343 	BNX2X_SP_RTNL_ENABLE_SRIOV,
1344 	BNX2X_SP_RTNL_VFPF_MCAST,
1345 	BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
1346 	BNX2X_SP_RTNL_RX_MODE,
1347 	BNX2X_SP_RTNL_HYPERVISOR_VLAN,
1348 	BNX2X_SP_RTNL_TX_STOP,
1349 	BNX2X_SP_RTNL_TX_RESUME,
1350 };
1351 
1352 struct bnx2x_prev_path_list {
1353 	struct list_head list;
1354 	u8 bus;
1355 	u8 slot;
1356 	u8 path;
1357 	u8 aer;
1358 	u8 undi;
1359 };
1360 
1361 struct bnx2x_sp_objs {
1362 	/* MACs object */
1363 	struct bnx2x_vlan_mac_obj mac_obj;
1364 
1365 	/* Queue State object */
1366 	struct bnx2x_queue_sp_obj q_obj;
1367 };
1368 
1369 struct bnx2x_fp_stats {
1370 	struct tstorm_per_queue_stats old_tclient;
1371 	struct ustorm_per_queue_stats old_uclient;
1372 	struct xstorm_per_queue_stats old_xclient;
1373 	struct bnx2x_eth_q_stats eth_q_stats;
1374 	struct bnx2x_eth_q_stats_old eth_q_stats_old;
1375 };
1376 
1377 struct bnx2x {
1378 	/* Fields used in the tx and intr/napi performance paths
1379 	 * are grouped together in the beginning of the structure
1380 	 */
1381 	struct bnx2x_fastpath	*fp;
1382 	struct bnx2x_sp_objs	*sp_objs;
1383 	struct bnx2x_fp_stats	*fp_stats;
1384 	struct bnx2x_fp_txdata	*bnx2x_txq;
1385 	void __iomem		*regview;
1386 	void __iomem		*doorbells;
1387 	u16			db_size;
1388 
1389 	u8			pf_num;	/* absolute PF number */
1390 	u8			pfid;	/* per-path PF number */
1391 	int			base_fw_ndsb; /**/
1392 #define BP_PATH(bp)			(CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1))
1393 #define BP_PORT(bp)			(bp->pfid & 1)
1394 #define BP_FUNC(bp)			(bp->pfid)
1395 #define BP_ABS_FUNC(bp)			(bp->pf_num)
1396 #define BP_VN(bp)			((bp)->pfid >> 1)
1397 #define BP_MAX_VN_NUM(bp)		(CHIP_MODE_IS_4_PORT(bp) ? 2 : 4)
1398 #define BP_L_ID(bp)			(BP_VN(bp) << 2)
1399 #define BP_FW_MB_IDX_VN(bp, vn)		(BP_PORT(bp) +\
1400 	  (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2  : 1))
1401 #define BP_FW_MB_IDX(bp)		BP_FW_MB_IDX_VN(bp, BP_VN(bp))
1402 
1403 #ifdef CONFIG_BNX2X_SRIOV
1404 	/* protects vf2pf mailbox from simultaneous access */
1405 	struct mutex		vf2pf_mutex;
1406 	/* vf pf channel mailbox contains request and response buffers */
1407 	struct bnx2x_vf_mbx_msg	*vf2pf_mbox;
1408 	dma_addr_t		vf2pf_mbox_mapping;
1409 
1410 	/* we set aside a copy of the acquire response */
1411 	struct pfvf_acquire_resp_tlv acquire_resp;
1412 
1413 	/* bulletin board for messages from pf to vf */
1414 	union pf_vf_bulletin   *pf2vf_bulletin;
1415 	dma_addr_t		pf2vf_bulletin_mapping;
1416 
1417 	struct pf_vf_bulletin_content	old_bulletin;
1418 
1419 	u16 requested_nr_virtfn;
1420 #endif /* CONFIG_BNX2X_SRIOV */
1421 
1422 	struct net_device	*dev;
1423 	struct pci_dev		*pdev;
1424 
1425 	const struct iro	*iro_arr;
1426 #define IRO (bp->iro_arr)
1427 
1428 	enum bnx2x_recovery_state recovery_state;
1429 	int			is_leader;
1430 	struct msix_entry	*msix_table;
1431 
1432 	int			tx_ring_size;
1433 
1434 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
1435 #define ETH_OVREHEAD		(ETH_HLEN + 8 + 8)
1436 #define ETH_MIN_PACKET_SIZE		60
1437 #define ETH_MAX_PACKET_SIZE		1500
1438 #define ETH_MAX_JUMBO_PACKET_SIZE	9600
1439 /* TCP with Timestamp Option (32) + IPv6 (40) */
1440 #define ETH_MAX_TPA_HEADER_SIZE		72
1441 
1442 	/* Max supported alignment is 256 (8 shift) */
1443 #define BNX2X_RX_ALIGN_SHIFT		min(8, L1_CACHE_SHIFT)
1444 
1445 	/* FW uses 2 Cache lines Alignment for start packet and size
1446 	 *
1447 	 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes
1448 	 * at the end of skb->data, to avoid wasting a full cache line.
1449 	 * This reduces memory use (skb->truesize).
1450 	 */
1451 #define BNX2X_FW_RX_ALIGN_START	(1UL << BNX2X_RX_ALIGN_SHIFT)
1452 
1453 #define BNX2X_FW_RX_ALIGN_END					\
1454 	max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT,			\
1455 	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
1456 
1457 #define BNX2X_PXP_DRAM_ALIGN		(BNX2X_RX_ALIGN_SHIFT - 5)
1458 
1459 	struct host_sp_status_block *def_status_blk;
1460 #define DEF_SB_IGU_ID			16
1461 #define DEF_SB_ID			HC_SP_SB_ID
1462 	__le16			def_idx;
1463 	__le16			def_att_idx;
1464 	u32			attn_state;
1465 	struct attn_route	attn_group[MAX_DYNAMIC_ATTN_GRPS];
1466 
1467 	/* slow path ring */
1468 	struct eth_spe		*spq;
1469 	dma_addr_t		spq_mapping;
1470 	u16			spq_prod_idx;
1471 	struct eth_spe		*spq_prod_bd;
1472 	struct eth_spe		*spq_last_bd;
1473 	__le16			*dsb_sp_prod;
1474 	atomic_t		cq_spq_left; /* ETH_XXX ramrods credit */
1475 	/* used to synchronize spq accesses */
1476 	spinlock_t		spq_lock;
1477 
1478 	/* event queue */
1479 	union event_ring_elem	*eq_ring;
1480 	dma_addr_t		eq_mapping;
1481 	u16			eq_prod;
1482 	u16			eq_cons;
1483 	__le16			*eq_cons_sb;
1484 	atomic_t		eq_spq_left; /* COMMON_XXX ramrods credit */
1485 
1486 	/* Counter for marking that there is a STAT_QUERY ramrod pending */
1487 	u16			stats_pending;
1488 	/*  Counter for completed statistics ramrods */
1489 	u16			stats_comp;
1490 
1491 	/* End of fields used in the performance code paths */
1492 
1493 	int			panic;
1494 	int			msg_enable;
1495 
1496 	u32			flags;
1497 #define PCIX_FLAG			(1 << 0)
1498 #define PCI_32BIT_FLAG			(1 << 1)
1499 #define ONE_PORT_FLAG			(1 << 2)
1500 #define NO_WOL_FLAG			(1 << 3)
1501 #define USING_DAC_FLAG			(1 << 4)
1502 #define USING_MSIX_FLAG			(1 << 5)
1503 #define USING_MSI_FLAG			(1 << 6)
1504 #define DISABLE_MSI_FLAG		(1 << 7)
1505 #define TPA_ENABLE_FLAG			(1 << 8)
1506 #define NO_MCP_FLAG			(1 << 9)
1507 #define GRO_ENABLE_FLAG			(1 << 10)
1508 #define MF_FUNC_DIS			(1 << 11)
1509 #define OWN_CNIC_IRQ			(1 << 12)
1510 #define NO_ISCSI_OOO_FLAG		(1 << 13)
1511 #define NO_ISCSI_FLAG			(1 << 14)
1512 #define NO_FCOE_FLAG			(1 << 15)
1513 #define BC_SUPPORTS_PFC_STATS		(1 << 17)
1514 #define BC_SUPPORTS_FCOE_FEATURES	(1 << 19)
1515 #define USING_SINGLE_MSIX_FLAG		(1 << 20)
1516 #define BC_SUPPORTS_DCBX_MSG_NON_PMF	(1 << 21)
1517 #define IS_VF_FLAG			(1 << 22)
1518 #define INTERRUPTS_ENABLED_FLAG		(1 << 23)
1519 #define BC_SUPPORTS_RMMOD_CMD		(1 << 24)
1520 
1521 #define BP_NOMCP(bp)			((bp)->flags & NO_MCP_FLAG)
1522 
1523 #ifdef CONFIG_BNX2X_SRIOV
1524 #define IS_VF(bp)			((bp)->flags & IS_VF_FLAG)
1525 #define IS_PF(bp)			(!((bp)->flags & IS_VF_FLAG))
1526 #else
1527 #define IS_VF(bp)			false
1528 #define IS_PF(bp)			true
1529 #endif
1530 
1531 #define NO_ISCSI(bp)		((bp)->flags & NO_ISCSI_FLAG)
1532 #define NO_ISCSI_OOO(bp)	((bp)->flags & NO_ISCSI_OOO_FLAG)
1533 #define NO_FCOE(bp)		((bp)->flags & NO_FCOE_FLAG)
1534 
1535 	u8			cnic_support;
1536 	bool			cnic_enabled;
1537 	bool			cnic_loaded;
1538 	struct cnic_eth_dev	*(*cnic_probe)(struct net_device *);
1539 
1540 	/* Flag that indicates that we can start looking for FCoE L2 queue
1541 	 * completions in the default status block.
1542 	 */
1543 	bool			fcoe_init;
1544 
1545 	int			pm_cap;
1546 	int			mrrs;
1547 
1548 	struct delayed_work	sp_task;
1549 	atomic_t		interrupt_occurred;
1550 	struct delayed_work	sp_rtnl_task;
1551 
1552 	struct delayed_work	period_task;
1553 	struct timer_list	timer;
1554 	int			current_interval;
1555 
1556 	u16			fw_seq;
1557 	u16			fw_drv_pulse_wr_seq;
1558 	u32			func_stx;
1559 
1560 	struct link_params	link_params;
1561 	struct link_vars	link_vars;
1562 	u32			link_cnt;
1563 	struct bnx2x_link_report_data last_reported_link;
1564 
1565 	struct mdio_if_info	mdio;
1566 
1567 	struct bnx2x_common	common;
1568 	struct bnx2x_port	port;
1569 
1570 	struct cmng_init	cmng;
1571 
1572 	u32			mf_config[E1HVN_MAX];
1573 	u32			mf_ext_config;
1574 	u32			path_has_ovlan; /* E3 */
1575 	u16			mf_ov;
1576 	u8			mf_mode;
1577 #define IS_MF(bp)		(bp->mf_mode != 0)
1578 #define IS_MF_SI(bp)		(bp->mf_mode == MULTI_FUNCTION_SI)
1579 #define IS_MF_SD(bp)		(bp->mf_mode == MULTI_FUNCTION_SD)
1580 #define IS_MF_AFEX(bp)		(bp->mf_mode == MULTI_FUNCTION_AFEX)
1581 
1582 	u8			wol;
1583 
1584 	int			rx_ring_size;
1585 
1586 	u16			tx_quick_cons_trip_int;
1587 	u16			tx_quick_cons_trip;
1588 	u16			tx_ticks_int;
1589 	u16			tx_ticks;
1590 
1591 	u16			rx_quick_cons_trip_int;
1592 	u16			rx_quick_cons_trip;
1593 	u16			rx_ticks_int;
1594 	u16			rx_ticks;
1595 /* Maximal coalescing timeout in us */
1596 #define BNX2X_MAX_COALESCE_TOUT		(0xf0*12)
1597 
1598 	u32			lin_cnt;
1599 
1600 	u16			state;
1601 #define BNX2X_STATE_CLOSED		0
1602 #define BNX2X_STATE_OPENING_WAIT4_LOAD	0x1000
1603 #define BNX2X_STATE_OPENING_WAIT4_PORT	0x2000
1604 #define BNX2X_STATE_OPEN		0x3000
1605 #define BNX2X_STATE_CLOSING_WAIT4_HALT	0x4000
1606 #define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000
1607 
1608 #define BNX2X_STATE_DIAG		0xe000
1609 #define BNX2X_STATE_ERROR		0xf000
1610 
1611 #define BNX2X_MAX_PRIORITY		8
1612 #define BNX2X_MAX_ENTRIES_PER_PRI	16
1613 #define BNX2X_MAX_COS			3
1614 #define BNX2X_MAX_TX_COS		2
1615 	int			num_queues;
1616 	uint			num_ethernet_queues;
1617 	uint			num_cnic_queues;
1618 	int			num_napi_queues;
1619 	int			disable_tpa;
1620 
1621 	u32			rx_mode;
1622 #define BNX2X_RX_MODE_NONE		0
1623 #define BNX2X_RX_MODE_NORMAL		1
1624 #define BNX2X_RX_MODE_ALLMULTI		2
1625 #define BNX2X_RX_MODE_PROMISC		3
1626 #define BNX2X_MAX_MULTICAST		64
1627 
1628 	u8			igu_dsb_id;
1629 	u8			igu_base_sb;
1630 	u8			igu_sb_cnt;
1631 	u8			min_msix_vec_cnt;
1632 
1633 	u32			igu_base_addr;
1634 	dma_addr_t		def_status_blk_mapping;
1635 
1636 	struct bnx2x_slowpath	*slowpath;
1637 	dma_addr_t		slowpath_mapping;
1638 
1639 	/* Total number of FW statistics requests */
1640 	u8			fw_stats_num;
1641 
1642 	/*
1643 	 * This is a memory buffer that will contain both statistics
1644 	 * ramrod request and data.
1645 	 */
1646 	void			*fw_stats;
1647 	dma_addr_t		fw_stats_mapping;
1648 
1649 	/*
1650 	 * FW statistics request shortcut (points at the
1651 	 * beginning of fw_stats buffer).
1652 	 */
1653 	struct bnx2x_fw_stats_req	*fw_stats_req;
1654 	dma_addr_t			fw_stats_req_mapping;
1655 	int				fw_stats_req_sz;
1656 
1657 	/*
1658 	 * FW statistics data shortcut (points at the beginning of
1659 	 * fw_stats buffer + fw_stats_req_sz).
1660 	 */
1661 	struct bnx2x_fw_stats_data	*fw_stats_data;
1662 	dma_addr_t			fw_stats_data_mapping;
1663 	int				fw_stats_data_sz;
1664 
1665 	/* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB
1666 	 * context size we need 8 ILT entries.
1667 	 */
1668 #define ILT_MAX_L2_LINES	32
1669 	struct hw_context	context[ILT_MAX_L2_LINES];
1670 
1671 	struct bnx2x_ilt	*ilt;
1672 #define BP_ILT(bp)		((bp)->ilt)
1673 #define ILT_MAX_LINES		256
1674 /*
1675  * Maximum supported number of RSS queues: number of IGU SBs minus one that goes
1676  * to CNIC.
1677  */
1678 #define BNX2X_MAX_RSS_COUNT(bp)	((bp)->igu_sb_cnt - CNIC_SUPPORT(bp))
1679 
1680 /*
1681  * Maximum CID count that might be required by the bnx2x:
1682  * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI
1683  */
1684 #define BNX2X_L2_CID_COUNT(bp)	(BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \
1685 				+ 2 * CNIC_SUPPORT(bp))
1686 #define BNX2X_L2_MAX_CID(bp)	(BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \
1687 				+ 2 * CNIC_SUPPORT(bp))
1688 #define L2_ILT_LINES(bp)	(DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\
1689 					ILT_PAGE_CIDS))
1690 
1691 	int			qm_cid_count;
1692 
1693 	bool			dropless_fc;
1694 
1695 	void			*t2;
1696 	dma_addr_t		t2_mapping;
1697 	struct cnic_ops	__rcu	*cnic_ops;
1698 	void			*cnic_data;
1699 	u32			cnic_tag;
1700 	struct cnic_eth_dev	cnic_eth_dev;
1701 	union host_hc_status_block cnic_sb;
1702 	dma_addr_t		cnic_sb_mapping;
1703 	struct eth_spe		*cnic_kwq;
1704 	struct eth_spe		*cnic_kwq_prod;
1705 	struct eth_spe		*cnic_kwq_cons;
1706 	struct eth_spe		*cnic_kwq_last;
1707 	u16			cnic_kwq_pending;
1708 	u16			cnic_spq_pending;
1709 	u8			fip_mac[ETH_ALEN];
1710 	struct mutex		cnic_mutex;
1711 	struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj;
1712 
1713 	/* Start index of the "special" (CNIC related) L2 clients */
1714 	u8				cnic_base_cl_id;
1715 
1716 	int			dmae_ready;
1717 	/* used to synchronize dmae accesses */
1718 	spinlock_t		dmae_lock;
1719 
1720 	/* used to protect the FW mail box */
1721 	struct mutex		fw_mb_mutex;
1722 
1723 	/* used to synchronize stats collecting */
1724 	int			stats_state;
1725 
1726 	/* used for synchronization of concurrent threads statistics handling */
1727 	spinlock_t		stats_lock;
1728 
1729 	/* used by dmae command loader */
1730 	struct dmae_command	stats_dmae;
1731 	int			executer_idx;
1732 
1733 	u16			stats_counter;
1734 	struct bnx2x_eth_stats	eth_stats;
1735 	struct host_func_stats		func_stats;
1736 	struct bnx2x_eth_stats_old	eth_stats_old;
1737 	struct bnx2x_net_stats_old	net_stats_old;
1738 	struct bnx2x_fw_port_stats_old	fw_stats_old;
1739 	bool			stats_init;
1740 
1741 	struct z_stream_s	*strm;
1742 	void			*gunzip_buf;
1743 	dma_addr_t		gunzip_mapping;
1744 	int			gunzip_outlen;
1745 #define FW_BUF_SIZE			0x8000
1746 #define GUNZIP_BUF(bp)			(bp->gunzip_buf)
1747 #define GUNZIP_PHYS(bp)			(bp->gunzip_mapping)
1748 #define GUNZIP_OUTLEN(bp)		(bp->gunzip_outlen)
1749 
1750 	struct raw_op		*init_ops;
1751 	/* Init blocks offsets inside init_ops */
1752 	u16			*init_ops_offsets;
1753 	/* Data blob - has 32 bit granularity */
1754 	u32			*init_data;
1755 	u32			init_mode_flags;
1756 #define INIT_MODE_FLAGS(bp)	(bp->init_mode_flags)
1757 	/* Zipped PRAM blobs - raw data */
1758 	const u8		*tsem_int_table_data;
1759 	const u8		*tsem_pram_data;
1760 	const u8		*usem_int_table_data;
1761 	const u8		*usem_pram_data;
1762 	const u8		*xsem_int_table_data;
1763 	const u8		*xsem_pram_data;
1764 	const u8		*csem_int_table_data;
1765 	const u8		*csem_pram_data;
1766 #define INIT_OPS(bp)			(bp->init_ops)
1767 #define INIT_OPS_OFFSETS(bp)		(bp->init_ops_offsets)
1768 #define INIT_DATA(bp)			(bp->init_data)
1769 #define INIT_TSEM_INT_TABLE_DATA(bp)	(bp->tsem_int_table_data)
1770 #define INIT_TSEM_PRAM_DATA(bp)		(bp->tsem_pram_data)
1771 #define INIT_USEM_INT_TABLE_DATA(bp)	(bp->usem_int_table_data)
1772 #define INIT_USEM_PRAM_DATA(bp)		(bp->usem_pram_data)
1773 #define INIT_XSEM_INT_TABLE_DATA(bp)	(bp->xsem_int_table_data)
1774 #define INIT_XSEM_PRAM_DATA(bp)		(bp->xsem_pram_data)
1775 #define INIT_CSEM_INT_TABLE_DATA(bp)	(bp->csem_int_table_data)
1776 #define INIT_CSEM_PRAM_DATA(bp)		(bp->csem_pram_data)
1777 
1778 #define PHY_FW_VER_LEN			20
1779 	char			fw_ver[32];
1780 	const struct firmware	*firmware;
1781 
1782 	struct bnx2x_vfdb	*vfdb;
1783 #define IS_SRIOV(bp)		((bp)->vfdb)
1784 
1785 	/* DCB support on/off */
1786 	u16 dcb_state;
1787 #define BNX2X_DCB_STATE_OFF			0
1788 #define BNX2X_DCB_STATE_ON			1
1789 
1790 	/* DCBX engine mode */
1791 	int dcbx_enabled;
1792 #define BNX2X_DCBX_ENABLED_OFF			0
1793 #define BNX2X_DCBX_ENABLED_ON_NEG_OFF		1
1794 #define BNX2X_DCBX_ENABLED_ON_NEG_ON		2
1795 #define BNX2X_DCBX_ENABLED_INVALID		(-1)
1796 
1797 	bool dcbx_mode_uset;
1798 
1799 	struct bnx2x_config_dcbx_params		dcbx_config_params;
1800 	struct bnx2x_dcbx_port_params		dcbx_port_params;
1801 	int					dcb_version;
1802 
1803 	/* CAM credit pools */
1804 
1805 	/* used only in sriov */
1806 	struct bnx2x_credit_pool_obj		vlans_pool;
1807 
1808 	struct bnx2x_credit_pool_obj		macs_pool;
1809 
1810 	/* RX_MODE object */
1811 	struct bnx2x_rx_mode_obj		rx_mode_obj;
1812 
1813 	/* MCAST object */
1814 	struct bnx2x_mcast_obj			mcast_obj;
1815 
1816 	/* RSS configuration object */
1817 	struct bnx2x_rss_config_obj		rss_conf_obj;
1818 
1819 	/* Function State controlling object */
1820 	struct bnx2x_func_sp_obj		func_obj;
1821 
1822 	unsigned long				sp_state;
1823 
1824 	/* operation indication for the sp_rtnl task */
1825 	unsigned long				sp_rtnl_state;
1826 
1827 	/* DCBX Negotiation results */
1828 	struct dcbx_features			dcbx_local_feat;
1829 	u32					dcbx_error;
1830 
1831 #ifdef BCM_DCBNL
1832 	struct dcbx_features			dcbx_remote_feat;
1833 	u32					dcbx_remote_flags;
1834 #endif
1835 	/* AFEX: store default vlan used */
1836 	int					afex_def_vlan_tag;
1837 	enum mf_cfg_afex_vlan_mode		afex_vlan_mode;
1838 	u32					pending_max;
1839 
1840 	/* multiple tx classes of service */
1841 	u8					max_cos;
1842 
1843 	/* priority to cos mapping */
1844 	u8					prio_to_cos[8];
1845 
1846 	int fp_array_size;
1847 	u32 dump_preset_idx;
1848 	bool					stats_started;
1849 	struct semaphore			stats_sema;
1850 };
1851 
1852 /* Tx queues may be less or equal to Rx queues */
1853 extern int num_queues;
1854 #define BNX2X_NUM_QUEUES(bp)	(bp->num_queues)
1855 #define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues)
1856 #define BNX2X_NUM_NON_CNIC_QUEUES(bp)	(BNX2X_NUM_QUEUES(bp) - \
1857 					 (bp)->num_cnic_queues)
1858 #define BNX2X_NUM_RX_QUEUES(bp)	BNX2X_NUM_QUEUES(bp)
1859 
1860 #define is_multi(bp)		(BNX2X_NUM_QUEUES(bp) > 1)
1861 
1862 #define BNX2X_MAX_QUEUES(bp)	BNX2X_MAX_RSS_COUNT(bp)
1863 /* #define is_eth_multi(bp)	(BNX2X_NUM_ETH_QUEUES(bp) > 1) */
1864 
1865 #define RSS_IPV4_CAP_MASK						\
1866 	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY
1867 
1868 #define RSS_IPV4_TCP_CAP_MASK						\
1869 	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY
1870 
1871 #define RSS_IPV6_CAP_MASK						\
1872 	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY
1873 
1874 #define RSS_IPV6_TCP_CAP_MASK						\
1875 	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY
1876 
1877 /* func init flags */
1878 #define FUNC_FLG_RSS		0x0001
1879 #define FUNC_FLG_STATS		0x0002
1880 /* removed  FUNC_FLG_UNMATCHED	0x0004 */
1881 #define FUNC_FLG_TPA		0x0008
1882 #define FUNC_FLG_SPQ		0x0010
1883 #define FUNC_FLG_LEADING	0x0020	/* PF only */
1884 #define FUNC_FLG_LEADING_STATS	0x0040
1885 struct bnx2x_func_init_params {
1886 	/* dma */
1887 	dma_addr_t	fw_stat_map;	/* valid iff FUNC_FLG_STATS */
1888 	dma_addr_t	spq_map;	/* valid iff FUNC_FLG_SPQ */
1889 
1890 	u16		func_flgs;
1891 	u16		func_id;	/* abs fid */
1892 	u16		pf_id;
1893 	u16		spq_prod;	/* valid iff FUNC_FLG_SPQ */
1894 };
1895 
1896 #define for_each_cnic_queue(bp, var) \
1897 	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1898 	     (var)++) \
1899 		if (skip_queue(bp, var))	\
1900 			continue;		\
1901 		else
1902 
1903 #define for_each_eth_queue(bp, var) \
1904 	for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1905 
1906 #define for_each_nondefault_eth_queue(bp, var) \
1907 	for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1908 
1909 #define for_each_queue(bp, var) \
1910 	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1911 		if (skip_queue(bp, var))	\
1912 			continue;		\
1913 		else
1914 
1915 /* Skip forwarding FP */
1916 #define for_each_valid_rx_queue(bp, var)			\
1917 	for ((var) = 0;						\
1918 	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
1919 		      BNX2X_NUM_ETH_QUEUES(bp));		\
1920 	     (var)++)						\
1921 		if (skip_rx_queue(bp, var))			\
1922 			continue;				\
1923 		else
1924 
1925 #define for_each_rx_queue_cnic(bp, var) \
1926 	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1927 	     (var)++) \
1928 		if (skip_rx_queue(bp, var))	\
1929 			continue;		\
1930 		else
1931 
1932 #define for_each_rx_queue(bp, var) \
1933 	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1934 		if (skip_rx_queue(bp, var))	\
1935 			continue;		\
1936 		else
1937 
1938 /* Skip OOO FP */
1939 #define for_each_valid_tx_queue(bp, var)			\
1940 	for ((var) = 0;						\
1941 	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
1942 		      BNX2X_NUM_ETH_QUEUES(bp));		\
1943 	     (var)++)						\
1944 		if (skip_tx_queue(bp, var))			\
1945 			continue;				\
1946 		else
1947 
1948 #define for_each_tx_queue_cnic(bp, var) \
1949 	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1950 	     (var)++) \
1951 		if (skip_tx_queue(bp, var))	\
1952 			continue;		\
1953 		else
1954 
1955 #define for_each_tx_queue(bp, var) \
1956 	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1957 		if (skip_tx_queue(bp, var))	\
1958 			continue;		\
1959 		else
1960 
1961 #define for_each_nondefault_queue(bp, var) \
1962 	for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1963 		if (skip_queue(bp, var))	\
1964 			continue;		\
1965 		else
1966 
1967 #define for_each_cos_in_tx_queue(fp, var) \
1968 	for ((var) = 0; (var) < (fp)->max_cos; (var)++)
1969 
1970 /* skip rx queue
1971  * if FCOE l2 support is disabled and this is the fcoe L2 queue
1972  */
1973 #define skip_rx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
1974 
1975 /* skip tx queue
1976  * if FCOE l2 support is disabled and this is the fcoe L2 queue
1977  */
1978 #define skip_tx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
1979 
1980 #define skip_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
1981 
1982 /**
1983  * bnx2x_set_mac_one - configure a single MAC address
1984  *
1985  * @bp:			driver handle
1986  * @mac:		MAC to configure
1987  * @obj:		MAC object handle
1988  * @set:		if 'true' add a new MAC, otherwise - delete
1989  * @mac_type:		the type of the MAC to configure (e.g. ETH, UC list)
1990  * @ramrod_flags:	RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT)
1991  *
1992  * Configures one MAC according to provided parameters or continues the
1993  * execution of previously scheduled commands if RAMROD_CONT is set in
1994  * ramrod_flags.
1995  *
1996  * Returns zero if operation has successfully completed, a positive value if the
1997  * operation has been successfully scheduled and a negative - if a requested
1998  * operations has failed.
1999  */
2000 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
2001 		      struct bnx2x_vlan_mac_obj *obj, bool set,
2002 		      int mac_type, unsigned long *ramrod_flags);
2003 /**
2004  * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object
2005  *
2006  * @bp:			driver handle
2007  * @mac_obj:		MAC object handle
2008  * @mac_type:		type of the MACs to clear (BNX2X_XXX_MAC)
2009  * @wait_for_comp:	if 'true' block until completion
2010  *
2011  * Deletes all MACs of the specific type (e.g. ETH, UC list).
2012  *
2013  * Returns zero if operation has successfully completed, a positive value if the
2014  * operation has been successfully scheduled and a negative - if a requested
2015  * operations has failed.
2016  */
2017 int bnx2x_del_all_macs(struct bnx2x *bp,
2018 		       struct bnx2x_vlan_mac_obj *mac_obj,
2019 		       int mac_type, bool wait_for_comp);
2020 
2021 /* Init Function API  */
2022 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p);
2023 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
2024 		    u8 vf_valid, int fw_sb_id, int igu_sb_id);
2025 u32 bnx2x_get_pretend_reg(struct bnx2x *bp);
2026 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port);
2027 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2028 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode);
2029 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2030 void bnx2x_read_mf_cfg(struct bnx2x *bp);
2031 
2032 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val);
2033 
2034 /* dmae */
2035 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32);
2036 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
2037 		      u32 len32);
2038 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx);
2039 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type);
2040 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode);
2041 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
2042 		      bool with_comp, u8 comp_type);
2043 
2044 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2045 			       u8 src_type, u8 dst_type);
2046 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae);
2047 
2048 /* FLR related routines */
2049 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp);
2050 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count);
2051 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt);
2052 u8 bnx2x_is_pcie_pending(struct pci_dev *dev);
2053 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
2054 				    char *msg, u32 poll_cnt);
2055 
2056 void bnx2x_calc_fc_adv(struct bnx2x *bp);
2057 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
2058 		  u32 data_hi, u32 data_lo, int cmd_type);
2059 void bnx2x_update_coalesce(struct bnx2x *bp);
2060 int bnx2x_get_cur_phy_idx(struct bnx2x *bp);
2061 
2062 bool bnx2x_port_after_undi(struct bnx2x *bp);
2063 
2064 static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms,
2065 			   int wait)
2066 {
2067 	u32 val;
2068 
2069 	do {
2070 		val = REG_RD(bp, reg);
2071 		if (val == expected)
2072 			break;
2073 		ms -= wait;
2074 		msleep(wait);
2075 
2076 	} while (ms > 0);
2077 
2078 	return val;
2079 }
2080 
2081 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id,
2082 			    bool is_pf);
2083 
2084 #define BNX2X_ILT_ZALLOC(x, y, size)					\
2085 	x = dma_zalloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL)
2086 
2087 #define BNX2X_ILT_FREE(x, y, size) \
2088 	do { \
2089 		if (x) { \
2090 			dma_free_coherent(&bp->pdev->dev, size, x, y); \
2091 			x = NULL; \
2092 			y = 0; \
2093 		} \
2094 	} while (0)
2095 
2096 #define ILOG2(x)	(ilog2((x)))
2097 
2098 #define ILT_NUM_PAGE_ENTRIES	(3072)
2099 /* In 57710/11 we use whole table since we have 8 func
2100  * In 57712 we have only 4 func, but use same size per func, then only half of
2101  * the table in use
2102  */
2103 #define ILT_PER_FUNC		(ILT_NUM_PAGE_ENTRIES/8)
2104 
2105 #define FUNC_ILT_BASE(func)	(func * ILT_PER_FUNC)
2106 /*
2107  * the phys address is shifted right 12 bits and has an added
2108  * 1=valid bit added to the 53rd bit
2109  * then since this is a wide register(TM)
2110  * we split it into two 32 bit writes
2111  */
2112 #define ONCHIP_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
2113 #define ONCHIP_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
2114 
2115 /* load/unload mode */
2116 #define LOAD_NORMAL			0
2117 #define LOAD_OPEN			1
2118 #define LOAD_DIAG			2
2119 #define LOAD_LOOPBACK_EXT		3
2120 #define UNLOAD_NORMAL			0
2121 #define UNLOAD_CLOSE			1
2122 #define UNLOAD_RECOVERY			2
2123 
2124 /* DMAE command defines */
2125 #define DMAE_TIMEOUT			-1
2126 #define DMAE_PCI_ERROR			-2	/* E2 and onward */
2127 #define DMAE_NOT_RDY			-3
2128 #define DMAE_PCI_ERR_FLAG		0x80000000
2129 
2130 #define DMAE_SRC_PCI			0
2131 #define DMAE_SRC_GRC			1
2132 
2133 #define DMAE_DST_NONE			0
2134 #define DMAE_DST_PCI			1
2135 #define DMAE_DST_GRC			2
2136 
2137 #define DMAE_COMP_PCI			0
2138 #define DMAE_COMP_GRC			1
2139 
2140 /* E2 and onward - PCI error handling in the completion */
2141 
2142 #define DMAE_COMP_REGULAR		0
2143 #define DMAE_COM_SET_ERR		1
2144 
2145 #define DMAE_CMD_SRC_PCI		(DMAE_SRC_PCI << \
2146 						DMAE_COMMAND_SRC_SHIFT)
2147 #define DMAE_CMD_SRC_GRC		(DMAE_SRC_GRC << \
2148 						DMAE_COMMAND_SRC_SHIFT)
2149 
2150 #define DMAE_CMD_DST_PCI		(DMAE_DST_PCI << \
2151 						DMAE_COMMAND_DST_SHIFT)
2152 #define DMAE_CMD_DST_GRC		(DMAE_DST_GRC << \
2153 						DMAE_COMMAND_DST_SHIFT)
2154 
2155 #define DMAE_CMD_C_DST_PCI		(DMAE_COMP_PCI << \
2156 						DMAE_COMMAND_C_DST_SHIFT)
2157 #define DMAE_CMD_C_DST_GRC		(DMAE_COMP_GRC << \
2158 						DMAE_COMMAND_C_DST_SHIFT)
2159 
2160 #define DMAE_CMD_C_ENABLE		DMAE_COMMAND_C_TYPE_ENABLE
2161 
2162 #define DMAE_CMD_ENDIANITY_NO_SWAP	(0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2163 #define DMAE_CMD_ENDIANITY_B_SWAP	(1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2164 #define DMAE_CMD_ENDIANITY_DW_SWAP	(2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2165 #define DMAE_CMD_ENDIANITY_B_DW_SWAP	(3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2166 
2167 #define DMAE_CMD_PORT_0			0
2168 #define DMAE_CMD_PORT_1			DMAE_COMMAND_PORT
2169 
2170 #define DMAE_CMD_SRC_RESET		DMAE_COMMAND_SRC_RESET
2171 #define DMAE_CMD_DST_RESET		DMAE_COMMAND_DST_RESET
2172 #define DMAE_CMD_E1HVN_SHIFT		DMAE_COMMAND_E1HVN_SHIFT
2173 
2174 #define DMAE_SRC_PF			0
2175 #define DMAE_SRC_VF			1
2176 
2177 #define DMAE_DST_PF			0
2178 #define DMAE_DST_VF			1
2179 
2180 #define DMAE_C_SRC			0
2181 #define DMAE_C_DST			1
2182 
2183 #define DMAE_LEN32_RD_MAX		0x80
2184 #define DMAE_LEN32_WR_MAX(bp)		(CHIP_IS_E1(bp) ? 0x400 : 0x2000)
2185 
2186 #define DMAE_COMP_VAL			0x60d0d0ae /* E2 and on - upper bit
2187 						    * indicates error
2188 						    */
2189 
2190 #define MAX_DMAE_C_PER_PORT		8
2191 #define INIT_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2192 					 BP_VN(bp))
2193 #define PMF_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2194 					 E1HVN_MAX)
2195 
2196 /* PCIE link and speed */
2197 #define PCICFG_LINK_WIDTH		0x1f00000
2198 #define PCICFG_LINK_WIDTH_SHIFT		20
2199 #define PCICFG_LINK_SPEED		0xf0000
2200 #define PCICFG_LINK_SPEED_SHIFT		16
2201 
2202 #define BNX2X_NUM_TESTS_SF		7
2203 #define BNX2X_NUM_TESTS_MF		3
2204 #define BNX2X_NUM_TESTS(bp)		(IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \
2205 						     BNX2X_NUM_TESTS_SF)
2206 
2207 #define BNX2X_PHY_LOOPBACK		0
2208 #define BNX2X_MAC_LOOPBACK		1
2209 #define BNX2X_EXT_LOOPBACK		2
2210 #define BNX2X_PHY_LOOPBACK_FAILED	1
2211 #define BNX2X_MAC_LOOPBACK_FAILED	2
2212 #define BNX2X_EXT_LOOPBACK_FAILED	3
2213 #define BNX2X_LOOPBACK_FAILED		(BNX2X_MAC_LOOPBACK_FAILED | \
2214 					 BNX2X_PHY_LOOPBACK_FAILED)
2215 
2216 #define STROM_ASSERT_ARRAY_SIZE		50
2217 
2218 /* must be used on a CID before placing it on a HW ring */
2219 #define HW_CID(bp, x)			((BP_PORT(bp) << 23) | \
2220 					 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \
2221 					 (x))
2222 
2223 #define SP_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_spe))
2224 #define MAX_SP_DESC_CNT			(SP_DESC_CNT - 1)
2225 
2226 #define BNX2X_BTR			4
2227 #define MAX_SPQ_PENDING			8
2228 
2229 /* CMNG constants, as derived from system spec calculations */
2230 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
2231 #define DEF_MIN_RATE					100
2232 /* resolution of the rate shaping timer - 400 usec */
2233 #define RS_PERIODIC_TIMEOUT_USEC			400
2234 /* number of bytes in single QM arbitration cycle -
2235  * coefficient for calculating the fairness timer */
2236 #define QM_ARB_BYTES					160000
2237 /* resolution of Min algorithm 1:100 */
2238 #define MIN_RES						100
2239 /* how many bytes above threshold for the minimal credit of Min algorithm*/
2240 #define MIN_ABOVE_THRESH				32768
2241 /* Fairness algorithm integration time coefficient -
2242  * for calculating the actual Tfair */
2243 #define T_FAIR_COEF	((MIN_ABOVE_THRESH +  QM_ARB_BYTES) * 8 * MIN_RES)
2244 /* Memory of fairness algorithm . 2 cycles */
2245 #define FAIR_MEM					2
2246 
2247 #define ATTN_NIG_FOR_FUNC		(1L << 8)
2248 #define ATTN_SW_TIMER_4_FUNC		(1L << 9)
2249 #define GPIO_2_FUNC			(1L << 10)
2250 #define GPIO_3_FUNC			(1L << 11)
2251 #define GPIO_4_FUNC			(1L << 12)
2252 #define ATTN_GENERAL_ATTN_1		(1L << 13)
2253 #define ATTN_GENERAL_ATTN_2		(1L << 14)
2254 #define ATTN_GENERAL_ATTN_3		(1L << 15)
2255 #define ATTN_GENERAL_ATTN_4		(1L << 13)
2256 #define ATTN_GENERAL_ATTN_5		(1L << 14)
2257 #define ATTN_GENERAL_ATTN_6		(1L << 15)
2258 
2259 #define ATTN_HARD_WIRED_MASK		0xff00
2260 #define ATTENTION_ID			4
2261 
2262 #define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_SD(bp) || \
2263 				 IS_MF_FCOE_AFEX(bp))
2264 
2265 /* stuff added to make the code fit 80Col */
2266 
2267 #define BNX2X_PMF_LINK_ASSERT \
2268 	GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp))
2269 
2270 #define BNX2X_MC_ASSERT_BITS \
2271 	(GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2272 	 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2273 	 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2274 	 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2275 
2276 #define BNX2X_MCP_ASSERT \
2277 	GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2278 
2279 #define BNX2X_GRC_TIMEOUT	GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2280 #define BNX2X_GRC_RSV		(GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2281 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2282 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2283 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2284 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2285 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2286 
2287 #define HW_INTERRUT_ASSERT_SET_0 \
2288 				(AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \
2289 				 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \
2290 				 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \
2291 				 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \
2292 				 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT)
2293 #define HW_PRTY_ASSERT_SET_0	(AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \
2294 				 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \
2295 				 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \
2296 				 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\
2297 				 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\
2298 				 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\
2299 				 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR)
2300 #define HW_INTERRUT_ASSERT_SET_1 \
2301 				(AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \
2302 				 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \
2303 				 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \
2304 				 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \
2305 				 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \
2306 				 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \
2307 				 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \
2308 				 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \
2309 				 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \
2310 				 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \
2311 				 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT)
2312 #define HW_PRTY_ASSERT_SET_1	(AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\
2313 				 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \
2314 				 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\
2315 				 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \
2316 				 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\
2317 				 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \
2318 				 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\
2319 				 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\
2320 			     AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\
2321 				 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \
2322 				 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \
2323 				 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\
2324 				 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \
2325 				 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \
2326 				 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\
2327 				 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR)
2328 #define HW_INTERRUT_ASSERT_SET_2 \
2329 				(AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \
2330 				 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \
2331 				 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \
2332 			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\
2333 				 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT)
2334 #define HW_PRTY_ASSERT_SET_2	(AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \
2335 				 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \
2336 			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\
2337 				 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \
2338 				 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \
2339 				 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\
2340 				 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \
2341 				 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR)
2342 
2343 #define HW_PRTY_ASSERT_SET_3 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
2344 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
2345 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
2346 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
2347 
2348 #define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \
2349 			      AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)
2350 
2351 #define MULTI_MASK			0x7f
2352 
2353 #define DEF_USB_FUNC_OFF	offsetof(struct cstorm_def_status_block_u, func)
2354 #define DEF_CSB_FUNC_OFF	offsetof(struct cstorm_def_status_block_c, func)
2355 #define DEF_XSB_FUNC_OFF	offsetof(struct xstorm_def_status_block, func)
2356 #define DEF_TSB_FUNC_OFF	offsetof(struct tstorm_def_status_block, func)
2357 
2358 #define DEF_USB_IGU_INDEX_OFF \
2359 			offsetof(struct cstorm_def_status_block_u, igu_index)
2360 #define DEF_CSB_IGU_INDEX_OFF \
2361 			offsetof(struct cstorm_def_status_block_c, igu_index)
2362 #define DEF_XSB_IGU_INDEX_OFF \
2363 			offsetof(struct xstorm_def_status_block, igu_index)
2364 #define DEF_TSB_IGU_INDEX_OFF \
2365 			offsetof(struct tstorm_def_status_block, igu_index)
2366 
2367 #define DEF_USB_SEGMENT_OFF \
2368 			offsetof(struct cstorm_def_status_block_u, segment)
2369 #define DEF_CSB_SEGMENT_OFF \
2370 			offsetof(struct cstorm_def_status_block_c, segment)
2371 #define DEF_XSB_SEGMENT_OFF \
2372 			offsetof(struct xstorm_def_status_block, segment)
2373 #define DEF_TSB_SEGMENT_OFF \
2374 			offsetof(struct tstorm_def_status_block, segment)
2375 
2376 #define BNX2X_SP_DSB_INDEX \
2377 		(&bp->def_status_blk->sp_sb.\
2378 					index_values[HC_SP_INDEX_ETH_DEF_CONS])
2379 
2380 #define CAM_IS_INVALID(x) \
2381 	(GET_FLAG(x.flags, \
2382 	MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \
2383 	(T_ETH_MAC_COMMAND_INVALIDATE))
2384 
2385 /* Number of u32 elements in MC hash array */
2386 #define MC_HASH_SIZE			8
2387 #define MC_HASH_OFFSET(bp, i)		(BAR_TSTRORM_INTMEM + \
2388 	TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4)
2389 
2390 #ifndef PXP2_REG_PXP2_INT_STS
2391 #define PXP2_REG_PXP2_INT_STS		PXP2_REG_PXP2_INT_STS_0
2392 #endif
2393 
2394 #ifndef ETH_MAX_RX_CLIENTS_E2
2395 #define ETH_MAX_RX_CLIENTS_E2		ETH_MAX_RX_CLIENTS_E1H
2396 #endif
2397 
2398 #define BNX2X_VPD_LEN			128
2399 #define VENDOR_ID_LEN			4
2400 
2401 #define VF_ACQUIRE_THRESH		3
2402 #define VF_ACQUIRE_MAC_FILTERS		1
2403 #define VF_ACQUIRE_MC_FILTERS		10
2404 
2405 #define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \
2406 			    (!((me_reg) & ME_REG_VF_ERR)))
2407 int bnx2x_nic_load_analyze_req(struct bnx2x *bp, u32 load_code);
2408 /* Congestion management fairness mode */
2409 #define CMNG_FNS_NONE			0
2410 #define CMNG_FNS_MINMAX			1
2411 
2412 #define HC_SEG_ACCESS_DEF		0   /*Driver decision 0-3*/
2413 #define HC_SEG_ACCESS_ATTN		4
2414 #define HC_SEG_ACCESS_NORM		0   /*Driver decision 0-1*/
2415 
2416 static const u32 dmae_reg_go_c[] = {
2417 	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
2418 	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
2419 	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2420 	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2421 };
2422 
2423 void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev);
2424 void bnx2x_notify_link_changed(struct bnx2x *bp);
2425 
2426 #define BNX2X_MF_SD_PROTOCOL(bp) \
2427 	((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK)
2428 
2429 #define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \
2430 	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI)
2431 
2432 #define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \
2433 	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE)
2434 
2435 #define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp))
2436 #define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))
2437 
2438 #define BNX2X_MF_EXT_PROTOCOL_FCOE(bp)  ((bp)->mf_ext_config & \
2439 					 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2440 
2441 #define IS_MF_FCOE_AFEX(bp) (IS_MF_AFEX(bp) && BNX2X_MF_EXT_PROTOCOL_FCOE(bp))
2442 #define IS_MF_STORAGE_SD(bp) (IS_MF_SD(bp) && \
2443 				(BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \
2444 				 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
2445 
2446 #define SET_FLAG(value, mask, flag) \
2447 	do {\
2448 		(value) &= ~(mask);\
2449 		(value) |= ((flag) << (mask##_SHIFT));\
2450 	} while (0)
2451 
2452 #define GET_FLAG(value, mask) \
2453 	(((value) & (mask)) >> (mask##_SHIFT))
2454 
2455 #define GET_FIELD(value, fname) \
2456 	(((value) & (fname##_MASK)) >> (fname##_SHIFT))
2457 
2458 enum {
2459 	SWITCH_UPDATE,
2460 	AFEX_UPDATE,
2461 };
2462 
2463 #define NUM_MACS	8
2464 
2465 enum bnx2x_pci_bus_speed {
2466 	BNX2X_PCI_LINK_SPEED_2500 = 2500,
2467 	BNX2X_PCI_LINK_SPEED_5000 = 5000,
2468 	BNX2X_PCI_LINK_SPEED_8000 = 8000
2469 };
2470 
2471 void bnx2x_set_local_cmng(struct bnx2x *bp);
2472 #endif /* bnx2x.h */
2473