1 /* bnx2x.h: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 */ 15 16 #ifndef BNX2X_H 17 #define BNX2X_H 18 19 #include <linux/pci.h> 20 #include <linux/netdevice.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/types.h> 23 #include <linux/pci_regs.h> 24 25 #include <linux/ptp_clock_kernel.h> 26 #include <linux/net_tstamp.h> 27 #include <linux/timecounter.h> 28 29 /* compilation time flags */ 30 31 /* define this to make the driver freeze on error to allow getting debug info 32 * (you will need to reboot afterwards) */ 33 /* #define BNX2X_STOP_ON_ERROR */ 34 35 /* FIXME: Delete the DRV_MODULE_VERSION below, but please be warned 36 * that it is not an easy task because such change has all chances 37 * to break this driver due to amount of abuse of in-kernel interfaces 38 * between modules and FW. 39 * 40 * DO NOT UPDATE DRV_MODULE_VERSION below. 41 */ 42 #define DRV_MODULE_VERSION "1.713.36-0" 43 #define BNX2X_BC_VER 0x040200 44 45 #if defined(CONFIG_DCB) 46 #define BCM_DCBNL 47 #endif 48 49 #include "bnx2x_hsi.h" 50 51 #include "../cnic_if.h" 52 53 #define BNX2X_MIN_MSIX_VEC_CNT(bp) ((bp)->min_msix_vec_cnt) 54 55 #include <linux/mdio.h> 56 57 #include "bnx2x_reg.h" 58 #include "bnx2x_fw_defs.h" 59 #include "bnx2x_mfw_req.h" 60 #include "bnx2x_link.h" 61 #include "bnx2x_sp.h" 62 #include "bnx2x_dcb.h" 63 #include "bnx2x_stats.h" 64 #include "bnx2x_vfpf.h" 65 66 enum bnx2x_int_mode { 67 BNX2X_INT_MODE_MSIX, 68 BNX2X_INT_MODE_INTX, 69 BNX2X_INT_MODE_MSI 70 }; 71 72 /* error/debug prints */ 73 74 #define DRV_MODULE_NAME "bnx2x" 75 76 /* for messages that are currently off */ 77 #define BNX2X_MSG_OFF 0x0 78 #define BNX2X_MSG_MCP 0x0010000 /* was: NETIF_MSG_HW */ 79 #define BNX2X_MSG_STATS 0x0020000 /* was: NETIF_MSG_TIMER */ 80 #define BNX2X_MSG_NVM 0x0040000 /* was: NETIF_MSG_HW */ 81 #define BNX2X_MSG_DMAE 0x0080000 /* was: NETIF_MSG_HW */ 82 #define BNX2X_MSG_SP 0x0100000 /* was: NETIF_MSG_INTR */ 83 #define BNX2X_MSG_FP 0x0200000 /* was: NETIF_MSG_INTR */ 84 #define BNX2X_MSG_IOV 0x0800000 85 #define BNX2X_MSG_PTP 0x1000000 86 #define BNX2X_MSG_IDLE 0x2000000 /* used for idle check*/ 87 #define BNX2X_MSG_ETHTOOL 0x4000000 88 #define BNX2X_MSG_DCB 0x8000000 89 90 /* regular debug print */ 91 #define DP_INNER(fmt, ...) \ 92 pr_notice("[%s:%d(%s)]" fmt, \ 93 __func__, __LINE__, \ 94 bp->dev ? (bp->dev->name) : "?", \ 95 ##__VA_ARGS__); 96 97 #define DP(__mask, fmt, ...) \ 98 do { \ 99 if (unlikely(bp->msg_enable & (__mask))) \ 100 DP_INNER(fmt, ##__VA_ARGS__); \ 101 } while (0) 102 103 #define DP_AND(__mask, fmt, ...) \ 104 do { \ 105 if (unlikely((bp->msg_enable & (__mask)) == __mask)) \ 106 DP_INNER(fmt, ##__VA_ARGS__); \ 107 } while (0) 108 109 #define DP_CONT(__mask, fmt, ...) \ 110 do { \ 111 if (unlikely(bp->msg_enable & (__mask))) \ 112 pr_cont(fmt, ##__VA_ARGS__); \ 113 } while (0) 114 115 /* errors debug print */ 116 #define BNX2X_DBG_ERR(fmt, ...) \ 117 do { \ 118 if (unlikely(netif_msg_probe(bp))) \ 119 pr_err("[%s:%d(%s)]" fmt, \ 120 __func__, __LINE__, \ 121 bp->dev ? (bp->dev->name) : "?", \ 122 ##__VA_ARGS__); \ 123 } while (0) 124 125 /* for errors (never masked) */ 126 #define BNX2X_ERR(fmt, ...) \ 127 do { \ 128 pr_err("[%s:%d(%s)]" fmt, \ 129 __func__, __LINE__, \ 130 bp->dev ? (bp->dev->name) : "?", \ 131 ##__VA_ARGS__); \ 132 } while (0) 133 134 #define BNX2X_ERROR(fmt, ...) \ 135 pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__) 136 137 /* before we have a dev->name use dev_info() */ 138 #define BNX2X_DEV_INFO(fmt, ...) \ 139 do { \ 140 if (unlikely(netif_msg_probe(bp))) \ 141 dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__); \ 142 } while (0) 143 144 /* Error handling */ 145 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int); 146 #ifdef BNX2X_STOP_ON_ERROR 147 #define bnx2x_panic() \ 148 do { \ 149 bp->panic = 1; \ 150 BNX2X_ERR("driver assert\n"); \ 151 bnx2x_panic_dump(bp, true); \ 152 } while (0) 153 #else 154 #define bnx2x_panic() \ 155 do { \ 156 bp->panic = 1; \ 157 BNX2X_ERR("driver assert\n"); \ 158 bnx2x_panic_dump(bp, false); \ 159 } while (0) 160 #endif 161 162 #define bnx2x_mc_addr(ha) ((ha)->addr) 163 #define bnx2x_uc_addr(ha) ((ha)->addr) 164 165 #define U64_LO(x) ((u32)(((u64)(x)) & 0xffffffff)) 166 #define U64_HI(x) ((u32)(((u64)(x)) >> 32)) 167 #define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo)) 168 169 #define REG_ADDR(bp, offset) ((bp->regview) + (offset)) 170 171 #define REG_RD(bp, offset) readl(REG_ADDR(bp, offset)) 172 #define REG_RD8(bp, offset) readb(REG_ADDR(bp, offset)) 173 #define REG_RD16(bp, offset) readw(REG_ADDR(bp, offset)) 174 175 #define REG_WR_RELAXED(bp, offset, val) \ 176 writel_relaxed((u32)val, REG_ADDR(bp, offset)) 177 178 #define REG_WR16_RELAXED(bp, offset, val) \ 179 writew_relaxed((u16)val, REG_ADDR(bp, offset)) 180 181 #define REG_WR(bp, offset, val) writel((u32)val, REG_ADDR(bp, offset)) 182 #define REG_WR8(bp, offset, val) writeb((u8)val, REG_ADDR(bp, offset)) 183 #define REG_WR16(bp, offset, val) writew((u16)val, REG_ADDR(bp, offset)) 184 185 #define REG_RD_IND(bp, offset) bnx2x_reg_rd_ind(bp, offset) 186 #define REG_WR_IND(bp, offset, val) bnx2x_reg_wr_ind(bp, offset, val) 187 188 #define REG_RD_DMAE(bp, offset, valp, len32) \ 189 do { \ 190 bnx2x_read_dmae(bp, offset, len32);\ 191 memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \ 192 } while (0) 193 194 #define REG_WR_DMAE(bp, offset, valp, len32) \ 195 do { \ 196 memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \ 197 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \ 198 offset, len32); \ 199 } while (0) 200 201 #define REG_WR_DMAE_LEN(bp, offset, valp, len32) \ 202 REG_WR_DMAE(bp, offset, valp, len32) 203 204 #define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \ 205 do { \ 206 memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \ 207 bnx2x_write_big_buf_wb(bp, addr, len32); \ 208 } while (0) 209 210 #define SHMEM_ADDR(bp, field) (bp->common.shmem_base + \ 211 offsetof(struct shmem_region, field)) 212 #define SHMEM_RD(bp, field) REG_RD(bp, SHMEM_ADDR(bp, field)) 213 #define SHMEM_WR(bp, field, val) REG_WR(bp, SHMEM_ADDR(bp, field), val) 214 215 #define SHMEM2_ADDR(bp, field) (bp->common.shmem2_base + \ 216 offsetof(struct shmem2_region, field)) 217 #define SHMEM2_RD(bp, field) REG_RD(bp, SHMEM2_ADDR(bp, field)) 218 #define SHMEM2_WR(bp, field, val) REG_WR(bp, SHMEM2_ADDR(bp, field), val) 219 #define MF_CFG_ADDR(bp, field) (bp->common.mf_cfg_base + \ 220 offsetof(struct mf_cfg, field)) 221 #define MF2_CFG_ADDR(bp, field) (bp->common.mf2_cfg_base + \ 222 offsetof(struct mf2_cfg, field)) 223 224 #define MF_CFG_RD(bp, field) REG_RD(bp, MF_CFG_ADDR(bp, field)) 225 #define MF_CFG_WR(bp, field, val) REG_WR(bp,\ 226 MF_CFG_ADDR(bp, field), (val)) 227 #define MF2_CFG_RD(bp, field) REG_RD(bp, MF2_CFG_ADDR(bp, field)) 228 229 #define SHMEM2_HAS(bp, field) ((bp)->common.shmem2_base && \ 230 (SHMEM2_RD((bp), size) > \ 231 offsetof(struct shmem2_region, field))) 232 233 #define EMAC_RD(bp, reg) REG_RD(bp, emac_base + reg) 234 #define EMAC_WR(bp, reg, val) REG_WR(bp, emac_base + reg, val) 235 236 /* SP SB indices */ 237 238 /* General SP events - stats query, cfc delete, etc */ 239 #define HC_SP_INDEX_ETH_DEF_CONS 3 240 241 /* EQ completions */ 242 #define HC_SP_INDEX_EQ_CONS 7 243 244 /* FCoE L2 connection completions */ 245 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6 246 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4 247 /* iSCSI L2 */ 248 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5 249 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1 250 251 /* Special clients parameters */ 252 253 /* SB indices */ 254 /* FCoE L2 */ 255 #define BNX2X_FCOE_L2_RX_INDEX \ 256 (&bp->def_status_blk->sp_sb.\ 257 index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS]) 258 259 #define BNX2X_FCOE_L2_TX_INDEX \ 260 (&bp->def_status_blk->sp_sb.\ 261 index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS]) 262 263 /** 264 * CIDs and CLIDs: 265 * CLIDs below is a CLID for func 0, then the CLID for other 266 * functions will be calculated by the formula: 267 * 268 * FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X 269 * 270 */ 271 enum { 272 BNX2X_ISCSI_ETH_CL_ID_IDX, 273 BNX2X_FCOE_ETH_CL_ID_IDX, 274 BNX2X_MAX_CNIC_ETH_CL_ID_IDX, 275 }; 276 277 /* use a value high enough to be above all the PFs, which has least significant 278 * nibble as 8, so when cnic needs to come up with a CID for UIO to use to 279 * calculate doorbell address according to old doorbell configuration scheme 280 * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number 281 * We must avoid coming up with cid 8 for iscsi since according to this method 282 * the designated UIO cid will come out 0 and it has a special handling for that 283 * case which doesn't suit us. Therefore will will cieling to closes cid which 284 * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18. 285 */ 286 287 #define BNX2X_1st_NON_L2_ETH_CID(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * \ 288 (bp)->max_cos) 289 /* amount of cids traversed by UIO's DPM addition to doorbell */ 290 #define UIO_DPM 8 291 /* roundup to DPM offset */ 292 #define UIO_ROUNDUP(bp) (roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \ 293 UIO_DPM)) 294 /* offset to nearest value which has lsb nibble matching DPM */ 295 #define UIO_CID_OFFSET(bp) ((UIO_ROUNDUP(bp) + UIO_DPM) % \ 296 (UIO_DPM * 2)) 297 /* add offset to rounded-up cid to get a value which could be used with UIO */ 298 #define UIO_DPM_ALIGN(bp) (UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp)) 299 /* but wait - avoid UIO special case for cid 0 */ 300 #define UIO_DPM_CID0_OFFSET(bp) ((UIO_DPM * 2) * \ 301 (UIO_DPM_ALIGN(bp) == UIO_DPM)) 302 /* Properly DPM aligned CID dajusted to cid 0 secal case */ 303 #define BNX2X_CNIC_START_ETH_CID(bp) (UIO_DPM_ALIGN(bp) + \ 304 (UIO_DPM_CID0_OFFSET(bp))) 305 /* how many cids were wasted - need this value for cid allocation */ 306 #define UIO_CID_PAD(bp) (BNX2X_CNIC_START_ETH_CID(bp) - \ 307 BNX2X_1st_NON_L2_ETH_CID(bp)) 308 /* iSCSI L2 */ 309 #define BNX2X_ISCSI_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp)) 310 /* FCoE L2 */ 311 #define BNX2X_FCOE_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp) + 1) 312 313 #define CNIC_SUPPORT(bp) ((bp)->cnic_support) 314 #define CNIC_ENABLED(bp) ((bp)->cnic_enabled) 315 #define CNIC_LOADED(bp) ((bp)->cnic_loaded) 316 #define FCOE_INIT(bp) ((bp)->fcoe_init) 317 318 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \ 319 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR 320 321 #define SM_RX_ID 0 322 #define SM_TX_ID 1 323 324 /* defines for multiple tx priority indices */ 325 #define FIRST_TX_ONLY_COS_INDEX 1 326 #define FIRST_TX_COS_INDEX 0 327 328 /* rules for calculating the cids of tx-only connections */ 329 #define CID_TO_FP(cid, bp) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp)) 330 #define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \ 331 (cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp)) 332 333 /* fp index inside class of service range */ 334 #define FP_COS_TO_TXQ(fp, cos, bp) \ 335 ((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp)) 336 337 /* Indexes for transmission queues array: 338 * txdata for RSS i CoS j is at location i + (j * num of RSS) 339 * txdata for FCoE (if exist) is at location max cos * num of RSS 340 * txdata for FWD (if exist) is one location after FCoE 341 * txdata for OOO (if exist) is one location after FWD 342 */ 343 enum { 344 FCOE_TXQ_IDX_OFFSET, 345 FWD_TXQ_IDX_OFFSET, 346 OOO_TXQ_IDX_OFFSET, 347 }; 348 #define MAX_ETH_TXQ_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos) 349 #define FCOE_TXQ_IDX(bp) (MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET) 350 351 /* fast path */ 352 /* 353 * This driver uses new build_skb() API : 354 * RX ring buffer contains pointer to kmalloc() data only, 355 * skb are built only after Hardware filled the frame. 356 */ 357 struct sw_rx_bd { 358 u8 *data; 359 DEFINE_DMA_UNMAP_ADDR(mapping); 360 }; 361 362 struct sw_tx_bd { 363 struct sk_buff *skb; 364 u16 first_bd; 365 u8 flags; 366 /* Set on the first BD descriptor when there is a split BD */ 367 #define BNX2X_TSO_SPLIT_BD (1<<0) 368 #define BNX2X_HAS_SECOND_PBD (1<<1) 369 }; 370 371 struct sw_rx_page { 372 struct page *page; 373 DEFINE_DMA_UNMAP_ADDR(mapping); 374 unsigned int offset; 375 }; 376 377 union db_prod { 378 struct doorbell_set_prod data; 379 u32 raw; 380 }; 381 382 /* dropless fc FW/HW related params */ 383 #define BRB_SIZE(bp) (CHIP_IS_E3(bp) ? 1024 : 512) 384 #define MAX_AGG_QS(bp) (CHIP_IS_E1(bp) ? \ 385 ETH_MAX_AGGREGATION_QUEUES_E1 :\ 386 ETH_MAX_AGGREGATION_QUEUES_E1H_E2) 387 #define FW_DROP_LEVEL(bp) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp)) 388 #define FW_PREFETCH_CNT 16 389 #define DROPLESS_FC_HEADROOM 100 390 391 /* MC hsi */ 392 #define BCM_PAGE_SHIFT 12 393 #define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT) 394 #define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1)) 395 #define BCM_PAGE_ALIGN(addr) (((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK) 396 397 #define PAGES_PER_SGE_SHIFT 0 398 #define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT) 399 #define SGE_PAGE_SHIFT 12 400 #define SGE_PAGE_SIZE (1 << SGE_PAGE_SHIFT) 401 #define SGE_PAGE_MASK (~(SGE_PAGE_SIZE - 1)) 402 #define SGE_PAGE_ALIGN(addr) (((addr) + SGE_PAGE_SIZE - 1) & SGE_PAGE_MASK) 403 #define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE) 404 #define TPA_AGG_SIZE min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \ 405 SGE_PAGES), 0xffff) 406 407 /* SGE ring related macros */ 408 #define NUM_RX_SGE_PAGES 2 409 #define RX_SGE_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge)) 410 #define NEXT_PAGE_SGE_DESC_CNT 2 411 #define MAX_RX_SGE_CNT (RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT) 412 /* RX_SGE_CNT is promised to be a power of 2 */ 413 #define RX_SGE_MASK (RX_SGE_CNT - 1) 414 #define NUM_RX_SGE (RX_SGE_CNT * NUM_RX_SGE_PAGES) 415 #define MAX_RX_SGE (NUM_RX_SGE - 1) 416 #define NEXT_SGE_IDX(x) ((((x) & RX_SGE_MASK) == \ 417 (MAX_RX_SGE_CNT - 1)) ? \ 418 (x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \ 419 (x) + 1) 420 #define RX_SGE(x) ((x) & MAX_RX_SGE) 421 422 /* 423 * Number of required SGEs is the sum of two: 424 * 1. Number of possible opened aggregations (next packet for 425 * these aggregations will probably consume SGE immediately) 426 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only 427 * after placement on BD for new TPA aggregation) 428 * 429 * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page 430 */ 431 #define NUM_SGE_REQ (MAX_AGG_QS(bp) + \ 432 (BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2) 433 #define NUM_SGE_PG_REQ ((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \ 434 MAX_RX_SGE_CNT) 435 #define SGE_TH_LO(bp) (NUM_SGE_REQ + \ 436 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT) 437 #define SGE_TH_HI(bp) (SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM) 438 439 /* Manipulate a bit vector defined as an array of u64 */ 440 441 /* Number of bits in one sge_mask array element */ 442 #define BIT_VEC64_ELEM_SZ 64 443 #define BIT_VEC64_ELEM_SHIFT 6 444 #define BIT_VEC64_ELEM_MASK ((u64)BIT_VEC64_ELEM_SZ - 1) 445 446 #define __BIT_VEC64_SET_BIT(el, bit) \ 447 do { \ 448 el = ((el) | ((u64)0x1 << (bit))); \ 449 } while (0) 450 451 #define __BIT_VEC64_CLEAR_BIT(el, bit) \ 452 do { \ 453 el = ((el) & (~((u64)0x1 << (bit)))); \ 454 } while (0) 455 456 #define BIT_VEC64_SET_BIT(vec64, idx) \ 457 __BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \ 458 (idx) & BIT_VEC64_ELEM_MASK) 459 460 #define BIT_VEC64_CLEAR_BIT(vec64, idx) \ 461 __BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \ 462 (idx) & BIT_VEC64_ELEM_MASK) 463 464 #define BIT_VEC64_TEST_BIT(vec64, idx) \ 465 (((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \ 466 ((idx) & BIT_VEC64_ELEM_MASK)) & 0x1) 467 468 /* Creates a bitmask of all ones in less significant bits. 469 idx - index of the most significant bit in the created mask */ 470 #define BIT_VEC64_ONES_MASK(idx) \ 471 (((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1) 472 #define BIT_VEC64_ELEM_ONE_MASK ((u64)(~0)) 473 474 /*******************************************************/ 475 476 /* Number of u64 elements in SGE mask array */ 477 #define RX_SGE_MASK_LEN (NUM_RX_SGE / BIT_VEC64_ELEM_SZ) 478 #define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1) 479 #define NEXT_SGE_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK) 480 481 union host_hc_status_block { 482 /* pointer to fp status block e1x */ 483 struct host_hc_status_block_e1x *e1x_sb; 484 /* pointer to fp status block e2 */ 485 struct host_hc_status_block_e2 *e2_sb; 486 }; 487 488 struct bnx2x_agg_info { 489 /* 490 * First aggregation buffer is a data buffer, the following - are pages. 491 * We will preallocate the data buffer for each aggregation when 492 * we open the interface and will replace the BD at the consumer 493 * with this one when we receive the TPA_START CQE in order to 494 * keep the Rx BD ring consistent. 495 */ 496 struct sw_rx_bd first_buf; 497 u8 tpa_state; 498 #define BNX2X_TPA_START 1 499 #define BNX2X_TPA_STOP 2 500 #define BNX2X_TPA_ERROR 3 501 u8 placement_offset; 502 u16 parsing_flags; 503 u16 vlan_tag; 504 u16 len_on_bd; 505 u32 rxhash; 506 enum pkt_hash_types rxhash_type; 507 u16 gro_size; 508 u16 full_page; 509 }; 510 511 #define Q_STATS_OFFSET32(stat_name) \ 512 (offsetof(struct bnx2x_eth_q_stats, stat_name) / 4) 513 514 struct bnx2x_fp_txdata { 515 516 struct sw_tx_bd *tx_buf_ring; 517 518 union eth_tx_bd_types *tx_desc_ring; 519 dma_addr_t tx_desc_mapping; 520 521 u32 cid; 522 523 union db_prod tx_db; 524 525 u16 tx_pkt_prod; 526 u16 tx_pkt_cons; 527 u16 tx_bd_prod; 528 u16 tx_bd_cons; 529 530 unsigned long tx_pkt; 531 532 __le16 *tx_cons_sb; 533 534 int txq_index; 535 struct bnx2x_fastpath *parent_fp; 536 int tx_ring_size; 537 }; 538 539 enum bnx2x_tpa_mode_t { 540 TPA_MODE_DISABLED, 541 TPA_MODE_LRO, 542 TPA_MODE_GRO 543 }; 544 545 struct bnx2x_alloc_pool { 546 struct page *page; 547 unsigned int offset; 548 }; 549 550 struct bnx2x_fastpath { 551 struct bnx2x *bp; /* parent */ 552 553 struct napi_struct napi; 554 555 union host_hc_status_block status_blk; 556 /* chip independent shortcuts into sb structure */ 557 __le16 *sb_index_values; 558 __le16 *sb_running_index; 559 /* chip independent shortcut into rx_prods_offset memory */ 560 u32 ustorm_rx_prods_offset; 561 562 u32 rx_buf_size; 563 u32 rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */ 564 dma_addr_t status_blk_mapping; 565 566 enum bnx2x_tpa_mode_t mode; 567 568 u8 max_cos; /* actual number of active tx coses */ 569 struct bnx2x_fp_txdata *txdata_ptr[BNX2X_MULTI_TX_COS]; 570 571 struct sw_rx_bd *rx_buf_ring; /* BDs mappings ring */ 572 struct sw_rx_page *rx_page_ring; /* SGE pages mappings ring */ 573 574 struct eth_rx_bd *rx_desc_ring; 575 dma_addr_t rx_desc_mapping; 576 577 union eth_rx_cqe *rx_comp_ring; 578 dma_addr_t rx_comp_mapping; 579 580 /* SGE ring */ 581 struct eth_rx_sge *rx_sge_ring; 582 dma_addr_t rx_sge_mapping; 583 584 u64 sge_mask[RX_SGE_MASK_LEN]; 585 586 u32 cid; 587 588 __le16 fp_hc_idx; 589 590 u8 index; /* number in fp array */ 591 u8 rx_queue; /* index for skb_record */ 592 u8 cl_id; /* eth client id */ 593 u8 cl_qzone_id; 594 u8 fw_sb_id; /* status block number in FW */ 595 u8 igu_sb_id; /* status block number in HW */ 596 597 u16 rx_bd_prod; 598 u16 rx_bd_cons; 599 u16 rx_comp_prod; 600 u16 rx_comp_cons; 601 u16 rx_sge_prod; 602 /* The last maximal completed SGE */ 603 u16 last_max_sge; 604 __le16 *rx_cons_sb; 605 606 /* TPA related */ 607 struct bnx2x_agg_info *tpa_info; 608 #ifdef BNX2X_STOP_ON_ERROR 609 u64 tpa_queue_used; 610 #endif 611 /* The size is calculated using the following: 612 sizeof name field from netdev structure + 613 4 ('-Xx-' string) + 614 4 (for the digits and to make it DWORD aligned) */ 615 #define FP_NAME_SIZE (sizeof(((struct net_device *)0)->name) + 8) 616 char name[FP_NAME_SIZE]; 617 618 struct bnx2x_alloc_pool page_pool; 619 }; 620 621 #define bnx2x_fp(bp, nr, var) ((bp)->fp[(nr)].var) 622 #define bnx2x_sp_obj(bp, fp) ((bp)->sp_objs[(fp)->index]) 623 #define bnx2x_fp_stats(bp, fp) (&((bp)->fp_stats[(fp)->index])) 624 #define bnx2x_fp_qstats(bp, fp) (&((bp)->fp_stats[(fp)->index].eth_q_stats)) 625 626 /* Use 2500 as a mini-jumbo MTU for FCoE */ 627 #define BNX2X_FCOE_MINI_JUMBO_MTU 2500 628 629 #define FCOE_IDX_OFFSET 0 630 631 #define FCOE_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) + \ 632 FCOE_IDX_OFFSET) 633 #define bnx2x_fcoe_fp(bp) (&bp->fp[FCOE_IDX(bp)]) 634 #define bnx2x_fcoe(bp, var) (bnx2x_fcoe_fp(bp)->var) 635 #define bnx2x_fcoe_inner_sp_obj(bp) (&bp->sp_objs[FCOE_IDX(bp)]) 636 #define bnx2x_fcoe_sp_obj(bp, var) (bnx2x_fcoe_inner_sp_obj(bp)->var) 637 #define bnx2x_fcoe_tx(bp, var) (bnx2x_fcoe_fp(bp)-> \ 638 txdata_ptr[FIRST_TX_COS_INDEX] \ 639 ->var) 640 641 #define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp)) 642 #define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->bp)) 643 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(bp)) 644 645 /* MC hsi */ 646 #define MAX_FETCH_BD 13 /* HW max BDs per packet */ 647 #define RX_COPY_THRESH 92 648 649 #define NUM_TX_RINGS 16 650 #define TX_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types)) 651 #define NEXT_PAGE_TX_DESC_CNT 1 652 #define MAX_TX_DESC_CNT (TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT) 653 #define NUM_TX_BD (TX_DESC_CNT * NUM_TX_RINGS) 654 #define MAX_TX_BD (NUM_TX_BD - 1) 655 #define MAX_TX_AVAIL (MAX_TX_DESC_CNT * NUM_TX_RINGS - 2) 656 #define NEXT_TX_IDX(x) ((((x) & MAX_TX_DESC_CNT) == \ 657 (MAX_TX_DESC_CNT - 1)) ? \ 658 (x) + 1 + NEXT_PAGE_TX_DESC_CNT : \ 659 (x) + 1) 660 #define TX_BD(x) ((x) & MAX_TX_BD) 661 #define TX_BD_POFF(x) ((x) & MAX_TX_DESC_CNT) 662 663 /* number of NEXT_PAGE descriptors may be required during placement */ 664 #define NEXT_CNT_PER_TX_PKT(bds) \ 665 (((bds) + MAX_TX_DESC_CNT - 1) / \ 666 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT) 667 /* max BDs per tx packet w/o next_pages: 668 * START_BD - describes packed 669 * START_BD(splitted) - includes unpaged data segment for GSO 670 * PARSING_BD - for TSO and CSUM data 671 * PARSING_BD2 - for encapsulation data 672 * Frag BDs - describes pages for frags 673 */ 674 #define BDS_PER_TX_PKT 4 675 #define MAX_BDS_PER_TX_PKT (MAX_SKB_FRAGS + BDS_PER_TX_PKT) 676 /* max BDs per tx packet including next pages */ 677 #define MAX_DESC_PER_TX_PKT (MAX_BDS_PER_TX_PKT + \ 678 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT)) 679 680 /* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */ 681 #define NUM_RX_RINGS 8 682 #define RX_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd)) 683 #define NEXT_PAGE_RX_DESC_CNT 2 684 #define MAX_RX_DESC_CNT (RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT) 685 #define RX_DESC_MASK (RX_DESC_CNT - 1) 686 #define NUM_RX_BD (RX_DESC_CNT * NUM_RX_RINGS) 687 #define MAX_RX_BD (NUM_RX_BD - 1) 688 #define MAX_RX_AVAIL (MAX_RX_DESC_CNT * NUM_RX_RINGS - 2) 689 690 /* dropless fc calculations for BDs 691 * 692 * Number of BDs should as number of buffers in BRB: 693 * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT 694 * "next" elements on each page 695 */ 696 #define NUM_BD_REQ BRB_SIZE(bp) 697 #define NUM_BD_PG_REQ ((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \ 698 MAX_RX_DESC_CNT) 699 #define BD_TH_LO(bp) (NUM_BD_REQ + \ 700 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \ 701 FW_DROP_LEVEL(bp)) 702 #define BD_TH_HI(bp) (BD_TH_LO(bp) + DROPLESS_FC_HEADROOM) 703 704 #define MIN_RX_AVAIL ((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128) 705 706 #define MIN_RX_SIZE_TPA_HW (CHIP_IS_E1(bp) ? \ 707 ETH_MIN_RX_CQES_WITH_TPA_E1 : \ 708 ETH_MIN_RX_CQES_WITH_TPA_E1H_E2) 709 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA 710 #define MIN_RX_SIZE_TPA (max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL)) 711 #define MIN_RX_SIZE_NONTPA (max_t(u32, MIN_RX_SIZE_NONTPA_HW,\ 712 MIN_RX_AVAIL)) 713 714 #define NEXT_RX_IDX(x) ((((x) & RX_DESC_MASK) == \ 715 (MAX_RX_DESC_CNT - 1)) ? \ 716 (x) + 1 + NEXT_PAGE_RX_DESC_CNT : \ 717 (x) + 1) 718 #define RX_BD(x) ((x) & MAX_RX_BD) 719 720 /* 721 * As long as CQE is X times bigger than BD entry we have to allocate X times 722 * more pages for CQ ring in order to keep it balanced with BD ring 723 */ 724 #define CQE_BD_REL (sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd)) 725 #define NUM_RCQ_RINGS (NUM_RX_RINGS * CQE_BD_REL) 726 #define RCQ_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe)) 727 #define NEXT_PAGE_RCQ_DESC_CNT 1 728 #define MAX_RCQ_DESC_CNT (RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT) 729 #define NUM_RCQ_BD (RCQ_DESC_CNT * NUM_RCQ_RINGS) 730 #define MAX_RCQ_BD (NUM_RCQ_BD - 1) 731 #define MAX_RCQ_AVAIL (MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2) 732 #define NEXT_RCQ_IDX(x) ((((x) & MAX_RCQ_DESC_CNT) == \ 733 (MAX_RCQ_DESC_CNT - 1)) ? \ 734 (x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \ 735 (x) + 1) 736 #define RCQ_BD(x) ((x) & MAX_RCQ_BD) 737 738 /* dropless fc calculations for RCQs 739 * 740 * Number of RCQs should be as number of buffers in BRB: 741 * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT 742 * "next" elements on each page 743 */ 744 #define NUM_RCQ_REQ BRB_SIZE(bp) 745 #define NUM_RCQ_PG_REQ ((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \ 746 MAX_RCQ_DESC_CNT) 747 #define RCQ_TH_LO(bp) (NUM_RCQ_REQ + \ 748 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \ 749 FW_DROP_LEVEL(bp)) 750 #define RCQ_TH_HI(bp) (RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM) 751 752 /* This is needed for determining of last_max */ 753 #define SUB_S16(a, b) (s16)((s16)(a) - (s16)(b)) 754 #define SUB_S32(a, b) (s32)((s32)(a) - (s32)(b)) 755 756 #define BNX2X_SWCID_SHIFT 17 757 #define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1) 758 759 /* used on a CID received from the HW */ 760 #define SW_CID(x) (le32_to_cpu(x) & BNX2X_SWCID_MASK) 761 #define CQE_CMD(x) (le32_to_cpu(x) >> \ 762 COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT) 763 764 #define BD_UNMAP_ADDR(bd) HILO_U64(le32_to_cpu((bd)->addr_hi), \ 765 le32_to_cpu((bd)->addr_lo)) 766 #define BD_UNMAP_LEN(bd) (le16_to_cpu((bd)->nbytes)) 767 768 #define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */ 769 #define BNX2X_DB_SHIFT 3 /* 8 bytes*/ 770 #if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT) 771 #error "Min DB doorbell stride is 8" 772 #endif 773 #define DOORBELL_RELAXED(bp, cid, val) \ 774 writel_relaxed((u32)(val), (bp)->doorbells + ((bp)->db_size * (cid))) 775 776 /* TX CSUM helpers */ 777 #define SKB_CS_OFF(skb) (offsetof(struct tcphdr, check) - \ 778 skb->csum_offset) 779 #define SKB_CS(skb) (*(u16 *)(skb_transport_header(skb) + \ 780 skb->csum_offset)) 781 782 #define pbd_tcp_flags(tcp_hdr) (ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff) 783 784 #define XMIT_PLAIN 0 785 #define XMIT_CSUM_V4 (1 << 0) 786 #define XMIT_CSUM_V6 (1 << 1) 787 #define XMIT_CSUM_TCP (1 << 2) 788 #define XMIT_GSO_V4 (1 << 3) 789 #define XMIT_GSO_V6 (1 << 4) 790 #define XMIT_CSUM_ENC_V4 (1 << 5) 791 #define XMIT_CSUM_ENC_V6 (1 << 6) 792 #define XMIT_GSO_ENC_V4 (1 << 7) 793 #define XMIT_GSO_ENC_V6 (1 << 8) 794 795 #define XMIT_CSUM_ENC (XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6) 796 #define XMIT_GSO_ENC (XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6) 797 798 #define XMIT_CSUM (XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC) 799 #define XMIT_GSO (XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC) 800 801 /* stuff added to make the code fit 80Col */ 802 #define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE) 803 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG) 804 #define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG) 805 #define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD) 806 #define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH) 807 808 #define ETH_RX_ERROR_FALGS ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG 809 810 #define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \ 811 (((le16_to_cpu(flags) & \ 812 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \ 813 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \ 814 == PRS_FLAG_OVERETH_IPV4) 815 #define BNX2X_RX_SUM_FIX(cqe) \ 816 BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags) 817 818 #define FP_USB_FUNC_OFF \ 819 offsetof(struct cstorm_status_block_u, func) 820 #define FP_CSB_FUNC_OFF \ 821 offsetof(struct cstorm_status_block_c, func) 822 823 #define HC_INDEX_ETH_RX_CQ_CONS 1 824 825 #define HC_INDEX_OOO_TX_CQ_CONS 4 826 827 #define HC_INDEX_ETH_TX_CQ_CONS_COS0 5 828 829 #define HC_INDEX_ETH_TX_CQ_CONS_COS1 6 830 831 #define HC_INDEX_ETH_TX_CQ_CONS_COS2 7 832 833 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0 834 835 #define BNX2X_RX_SB_INDEX \ 836 (&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]) 837 838 #define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0 839 840 #define BNX2X_TX_SB_INDEX_COS0 \ 841 (&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]) 842 843 /* end of fast path */ 844 845 /* common */ 846 847 struct bnx2x_common { 848 849 u32 chip_id; 850 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 851 #define CHIP_ID(bp) (bp->common.chip_id & 0xfffffff0) 852 853 #define CHIP_NUM(bp) (bp->common.chip_id >> 16) 854 #define CHIP_NUM_57710 0x164e 855 #define CHIP_NUM_57711 0x164f 856 #define CHIP_NUM_57711E 0x1650 857 #define CHIP_NUM_57712 0x1662 858 #define CHIP_NUM_57712_MF 0x1663 859 #define CHIP_NUM_57712_VF 0x166f 860 #define CHIP_NUM_57713 0x1651 861 #define CHIP_NUM_57713E 0x1652 862 #define CHIP_NUM_57800 0x168a 863 #define CHIP_NUM_57800_MF 0x16a5 864 #define CHIP_NUM_57800_VF 0x16a9 865 #define CHIP_NUM_57810 0x168e 866 #define CHIP_NUM_57810_MF 0x16ae 867 #define CHIP_NUM_57810_VF 0x16af 868 #define CHIP_NUM_57811 0x163d 869 #define CHIP_NUM_57811_MF 0x163e 870 #define CHIP_NUM_57811_VF 0x163f 871 #define CHIP_NUM_57840_OBSOLETE 0x168d 872 #define CHIP_NUM_57840_MF_OBSOLETE 0x16ab 873 #define CHIP_NUM_57840_4_10 0x16a1 874 #define CHIP_NUM_57840_2_20 0x16a2 875 #define CHIP_NUM_57840_MF 0x16a4 876 #define CHIP_NUM_57840_VF 0x16ad 877 #define CHIP_IS_E1(bp) (CHIP_NUM(bp) == CHIP_NUM_57710) 878 #define CHIP_IS_57711(bp) (CHIP_NUM(bp) == CHIP_NUM_57711) 879 #define CHIP_IS_57711E(bp) (CHIP_NUM(bp) == CHIP_NUM_57711E) 880 #define CHIP_IS_57712(bp) (CHIP_NUM(bp) == CHIP_NUM_57712) 881 #define CHIP_IS_57712_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_VF) 882 #define CHIP_IS_57712_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_MF) 883 #define CHIP_IS_57800(bp) (CHIP_NUM(bp) == CHIP_NUM_57800) 884 #define CHIP_IS_57800_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_MF) 885 #define CHIP_IS_57800_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_VF) 886 #define CHIP_IS_57810(bp) (CHIP_NUM(bp) == CHIP_NUM_57810) 887 #define CHIP_IS_57810_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_MF) 888 #define CHIP_IS_57810_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_VF) 889 #define CHIP_IS_57811(bp) (CHIP_NUM(bp) == CHIP_NUM_57811) 890 #define CHIP_IS_57811_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_MF) 891 #define CHIP_IS_57811_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_VF) 892 #define CHIP_IS_57840(bp) \ 893 ((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \ 894 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \ 895 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE)) 896 #define CHIP_IS_57840_MF(bp) ((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \ 897 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE)) 898 #define CHIP_IS_57840_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57840_VF) 899 #define CHIP_IS_E1H(bp) (CHIP_IS_57711(bp) || \ 900 CHIP_IS_57711E(bp)) 901 #define CHIP_IS_57811xx(bp) (CHIP_IS_57811(bp) || \ 902 CHIP_IS_57811_MF(bp) || \ 903 CHIP_IS_57811_VF(bp)) 904 #define CHIP_IS_E2(bp) (CHIP_IS_57712(bp) || \ 905 CHIP_IS_57712_MF(bp) || \ 906 CHIP_IS_57712_VF(bp)) 907 #define CHIP_IS_E3(bp) (CHIP_IS_57800(bp) || \ 908 CHIP_IS_57800_MF(bp) || \ 909 CHIP_IS_57800_VF(bp) || \ 910 CHIP_IS_57810(bp) || \ 911 CHIP_IS_57810_MF(bp) || \ 912 CHIP_IS_57810_VF(bp) || \ 913 CHIP_IS_57811xx(bp) || \ 914 CHIP_IS_57840(bp) || \ 915 CHIP_IS_57840_MF(bp) || \ 916 CHIP_IS_57840_VF(bp)) 917 #define CHIP_IS_E1x(bp) (CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp))) 918 #define USES_WARPCORE(bp) (CHIP_IS_E3(bp)) 919 #define IS_E1H_OFFSET (!CHIP_IS_E1(bp)) 920 921 #define CHIP_REV_SHIFT 12 922 #define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT) 923 #define CHIP_REV_VAL(bp) (bp->common.chip_id & CHIP_REV_MASK) 924 #define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT) 925 #define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT) 926 /* assume maximum 5 revisions */ 927 #define CHIP_REV_IS_SLOW(bp) (CHIP_REV_VAL(bp) > 0x00005000) 928 /* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */ 929 #define CHIP_REV_IS_EMUL(bp) ((CHIP_REV_IS_SLOW(bp)) && \ 930 !(CHIP_REV_VAL(bp) & 0x00001000)) 931 /* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */ 932 #define CHIP_REV_IS_FPGA(bp) ((CHIP_REV_IS_SLOW(bp)) && \ 933 (CHIP_REV_VAL(bp) & 0x00001000)) 934 935 #define CHIP_TIME(bp) ((CHIP_REV_IS_EMUL(bp)) ? 2000 : \ 936 ((CHIP_REV_IS_FPGA(bp)) ? 200 : 1)) 937 938 #define CHIP_METAL(bp) (bp->common.chip_id & 0x00000ff0) 939 #define CHIP_BOND_ID(bp) (bp->common.chip_id & 0x0000000f) 940 #define CHIP_REV_SIM(bp) (((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\ 941 (CHIP_REV_SHIFT + 1)) \ 942 << CHIP_REV_SHIFT) 943 #define CHIP_REV(bp) (CHIP_REV_IS_SLOW(bp) ? \ 944 CHIP_REV_SIM(bp) :\ 945 CHIP_REV_VAL(bp)) 946 #define CHIP_IS_E3B0(bp) (CHIP_IS_E3(bp) && \ 947 (CHIP_REV(bp) == CHIP_REV_Bx)) 948 #define CHIP_IS_E3A0(bp) (CHIP_IS_E3(bp) && \ 949 (CHIP_REV(bp) == CHIP_REV_Ax)) 950 /* This define is used in two main places: 951 * 1. In the early stages of nic_load, to know if to configure Parser / Searcher 952 * to nic-only mode or to offload mode. Offload mode is configured if either the 953 * chip is E1x (where MIC_MODE register is not applicable), or if cnic already 954 * registered for this port (which means that the user wants storage services). 955 * 2. During cnic-related load, to know if offload mode is already configured in 956 * the HW or needs to be configured. 957 * Since the transition from nic-mode to offload-mode in HW causes traffic 958 * corruption, nic-mode is configured only in ports on which storage services 959 * where never requested. 960 */ 961 #define CONFIGURE_NIC_MODE(bp) (!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp)) 962 963 int flash_size; 964 #define BNX2X_NVRAM_1MB_SIZE 0x20000 /* 1M bit in bytes */ 965 #define BNX2X_NVRAM_TIMEOUT_COUNT 30000 966 #define BNX2X_NVRAM_PAGE_SIZE 256 967 968 u32 shmem_base; 969 u32 shmem2_base; 970 u32 mf_cfg_base; 971 u32 mf2_cfg_base; 972 973 u32 hw_config; 974 975 u32 bc_ver; 976 977 u8 int_block; 978 #define INT_BLOCK_HC 0 979 #define INT_BLOCK_IGU 1 980 #define INT_BLOCK_MODE_NORMAL 0 981 #define INT_BLOCK_MODE_BW_COMP 2 982 #define CHIP_INT_MODE_IS_NBC(bp) \ 983 (!CHIP_IS_E1x(bp) && \ 984 !((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP)) 985 #define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp)) 986 987 u8 chip_port_mode; 988 #define CHIP_4_PORT_MODE 0x0 989 #define CHIP_2_PORT_MODE 0x1 990 #define CHIP_PORT_MODE_NONE 0x2 991 #define CHIP_MODE(bp) (bp->common.chip_port_mode) 992 #define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE) 993 994 u32 boot_mode; 995 }; 996 997 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */ 998 #define BNX2X_IGU_STAS_MSG_VF_CNT 64 999 #define BNX2X_IGU_STAS_MSG_PF_CNT 4 1000 1001 #define MAX_IGU_ATTN_ACK_TO 100 1002 /* end of common */ 1003 1004 /* port */ 1005 1006 struct bnx2x_port { 1007 u32 pmf; 1008 1009 u32 link_config[LINK_CONFIG_SIZE]; 1010 1011 u32 supported[LINK_CONFIG_SIZE]; 1012 1013 u32 advertising[LINK_CONFIG_SIZE]; 1014 1015 u32 phy_addr; 1016 1017 /* used to synchronize phy accesses */ 1018 struct mutex phy_mutex; 1019 1020 u32 port_stx; 1021 1022 struct nig_stats old_nig_stats; 1023 }; 1024 1025 /* end of port */ 1026 1027 #define STATS_OFFSET32(stat_name) \ 1028 (offsetof(struct bnx2x_eth_stats, stat_name) / 4) 1029 1030 /* slow path */ 1031 #define BNX2X_MAX_NUM_OF_VFS 64 1032 #define BNX2X_VF_CID_WND 4 /* log num of queues per VF. HW config. */ 1033 #define BNX2X_CIDS_PER_VF (1 << BNX2X_VF_CID_WND) 1034 1035 /* We need to reserve doorbell addresses for all VF and queue combinations */ 1036 #define BNX2X_VF_CIDS (BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF) 1037 1038 /* The doorbell is configured to have the same number of CIDs for PFs and for 1039 * VFs. For this reason the PF CID zone is as large as the VF zone. 1040 */ 1041 #define BNX2X_FIRST_VF_CID BNX2X_VF_CIDS 1042 #define BNX2X_MAX_NUM_VF_QUEUES 64 1043 #define BNX2X_VF_ID_INVALID 0xFF 1044 1045 /* the number of VF CIDS multiplied by the amount of bytes reserved for each 1046 * cid must not exceed the size of the VF doorbell 1047 */ 1048 #define BNX2X_VF_BAR_SIZE 512 1049 #if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT)) 1050 #error "VF doorbell bar size is 512" 1051 #endif 1052 1053 /* 1054 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is 1055 * control by the number of fast-path status blocks supported by the 1056 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default 1057 * status block represents an independent interrupts context that can 1058 * serve a regular L2 networking queue. However special L2 queues such 1059 * as the FCoE queue do not require a FP-SB and other components like 1060 * the CNIC may consume FP-SB reducing the number of possible L2 queues 1061 * 1062 * If the maximum number of FP-SB available is X then: 1063 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of 1064 * regular L2 queues is Y=X-1 1065 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor) 1066 * c. If the FCoE L2 queue is supported the actual number of L2 queues 1067 * is Y+1 1068 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for 1069 * slow-path interrupts) or Y+2 if CNIC is supported (one additional 1070 * FP interrupt context for the CNIC). 1071 * e. The number of HW context (CID count) is always X or X+1 if FCoE 1072 * L2 queue is supported. The cid for the FCoE L2 queue is always X. 1073 */ 1074 1075 /* fast-path interrupt contexts E1x */ 1076 #define FP_SB_MAX_E1x 16 1077 /* fast-path interrupt contexts E2 */ 1078 #define FP_SB_MAX_E2 HC_SB_MAX_SB_E2 1079 1080 union cdu_context { 1081 struct eth_context eth; 1082 char pad[1024]; 1083 }; 1084 1085 /* CDU host DB constants */ 1086 #define CDU_ILT_PAGE_SZ_HW 2 1087 #define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */ 1088 #define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context)) 1089 1090 #define CNIC_ISCSI_CID_MAX 256 1091 #define CNIC_FCOE_CID_MAX 2048 1092 #define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX) 1093 #define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS) 1094 1095 #define QM_ILT_PAGE_SZ_HW 0 1096 #define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */ 1097 #define QM_CID_ROUND 1024 1098 1099 /* TM (timers) host DB constants */ 1100 #define TM_ILT_PAGE_SZ_HW 0 1101 #define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */ 1102 #define TM_CONN_NUM (BNX2X_FIRST_VF_CID + \ 1103 BNX2X_VF_CIDS + \ 1104 CNIC_ISCSI_CID_MAX) 1105 #define TM_ILT_SZ (8 * TM_CONN_NUM) 1106 #define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ) 1107 1108 /* SRC (Searcher) host DB constants */ 1109 #define SRC_ILT_PAGE_SZ_HW 0 1110 #define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */ 1111 #define SRC_HASH_BITS 10 1112 #define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */ 1113 #define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM) 1114 #define SRC_T2_SZ SRC_ILT_SZ 1115 #define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ) 1116 1117 #define MAX_DMAE_C 8 1118 1119 /* DMA memory not used in fastpath */ 1120 struct bnx2x_slowpath { 1121 union { 1122 struct mac_configuration_cmd e1x; 1123 struct eth_classify_rules_ramrod_data e2; 1124 } mac_rdata; 1125 1126 union { 1127 struct eth_classify_rules_ramrod_data e2; 1128 } vlan_rdata; 1129 1130 union { 1131 struct tstorm_eth_mac_filter_config e1x; 1132 struct eth_filter_rules_ramrod_data e2; 1133 } rx_mode_rdata; 1134 1135 union { 1136 struct mac_configuration_cmd e1; 1137 struct eth_multicast_rules_ramrod_data e2; 1138 } mcast_rdata; 1139 1140 struct eth_rss_update_ramrod_data rss_rdata; 1141 1142 /* Queue State related ramrods are always sent under rtnl_lock */ 1143 union { 1144 struct client_init_ramrod_data init_data; 1145 struct client_update_ramrod_data update_data; 1146 struct tpa_update_ramrod_data tpa_data; 1147 } q_rdata; 1148 1149 union { 1150 struct function_start_data func_start; 1151 /* pfc configuration for DCBX ramrod */ 1152 struct flow_control_configuration pfc_config; 1153 } func_rdata; 1154 1155 /* afex ramrod can not be a part of func_rdata union because these 1156 * events might arrive in parallel to other events from func_rdata. 1157 * Therefore, if they would have been defined in the same union, 1158 * data can get corrupted. 1159 */ 1160 union { 1161 struct afex_vif_list_ramrod_data viflist_data; 1162 struct function_update_data func_update; 1163 } func_afex_rdata; 1164 1165 /* used by dmae command executer */ 1166 struct dmae_command dmae[MAX_DMAE_C]; 1167 1168 u32 stats_comp; 1169 union mac_stats mac_stats; 1170 struct nig_stats nig_stats; 1171 struct host_port_stats port_stats; 1172 struct host_func_stats func_stats; 1173 1174 u32 wb_comp; 1175 u32 wb_data[4]; 1176 1177 union drv_info_to_mcp drv_info_to_mcp; 1178 }; 1179 1180 #define bnx2x_sp(bp, var) (&bp->slowpath->var) 1181 #define bnx2x_sp_mapping(bp, var) \ 1182 (bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var)) 1183 1184 /* attn group wiring */ 1185 #define MAX_DYNAMIC_ATTN_GRPS 8 1186 1187 struct attn_route { 1188 u32 sig[5]; 1189 }; 1190 1191 struct iro { 1192 u32 base; 1193 u16 m1; 1194 u16 m2; 1195 u16 m3; 1196 u16 size; 1197 }; 1198 1199 struct hw_context { 1200 union cdu_context *vcxt; 1201 dma_addr_t cxt_mapping; 1202 size_t size; 1203 }; 1204 1205 /* forward */ 1206 struct bnx2x_ilt; 1207 1208 struct bnx2x_vfdb; 1209 1210 enum bnx2x_recovery_state { 1211 BNX2X_RECOVERY_DONE, 1212 BNX2X_RECOVERY_INIT, 1213 BNX2X_RECOVERY_WAIT, 1214 BNX2X_RECOVERY_FAILED, 1215 BNX2X_RECOVERY_NIC_LOADING 1216 }; 1217 1218 /* 1219 * Event queue (EQ or event ring) MC hsi 1220 * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2 1221 */ 1222 #define NUM_EQ_PAGES 1 1223 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem)) 1224 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1) 1225 #define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES) 1226 #define EQ_DESC_MASK (NUM_EQ_DESC - 1) 1227 #define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2) 1228 1229 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */ 1230 #define NEXT_EQ_IDX(x) ((((x) & EQ_DESC_MAX_PAGE) == \ 1231 (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1) 1232 1233 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */ 1234 #define EQ_DESC(x) ((x) & EQ_DESC_MASK) 1235 1236 #define BNX2X_EQ_INDEX \ 1237 (&bp->def_status_blk->sp_sb.\ 1238 index_values[HC_SP_INDEX_EQ_CONS]) 1239 1240 /* This is a data that will be used to create a link report message. 1241 * We will keep the data used for the last link report in order 1242 * to prevent reporting the same link parameters twice. 1243 */ 1244 struct bnx2x_link_report_data { 1245 u16 line_speed; /* Effective line speed */ 1246 unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */ 1247 }; 1248 1249 enum { 1250 BNX2X_LINK_REPORT_FD, /* Full DUPLEX */ 1251 BNX2X_LINK_REPORT_LINK_DOWN, 1252 BNX2X_LINK_REPORT_RX_FC_ON, 1253 BNX2X_LINK_REPORT_TX_FC_ON, 1254 }; 1255 1256 enum { 1257 BNX2X_PORT_QUERY_IDX, 1258 BNX2X_PF_QUERY_IDX, 1259 BNX2X_FCOE_QUERY_IDX, 1260 BNX2X_FIRST_QUEUE_QUERY_IDX, 1261 }; 1262 1263 struct bnx2x_fw_stats_req { 1264 struct stats_query_header hdr; 1265 struct stats_query_entry query[FP_SB_MAX_E1x+ 1266 BNX2X_FIRST_QUEUE_QUERY_IDX]; 1267 }; 1268 1269 struct bnx2x_fw_stats_data { 1270 struct stats_counter storm_counters; 1271 struct per_port_stats port; 1272 struct per_pf_stats pf; 1273 struct fcoe_statistics_params fcoe; 1274 struct per_queue_stats queue_stats[]; 1275 }; 1276 1277 /* Public slow path states */ 1278 enum sp_rtnl_flag { 1279 BNX2X_SP_RTNL_SETUP_TC, 1280 BNX2X_SP_RTNL_TX_TIMEOUT, 1281 BNX2X_SP_RTNL_FAN_FAILURE, 1282 BNX2X_SP_RTNL_AFEX_F_UPDATE, 1283 BNX2X_SP_RTNL_ENABLE_SRIOV, 1284 BNX2X_SP_RTNL_VFPF_MCAST, 1285 BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 1286 BNX2X_SP_RTNL_RX_MODE, 1287 BNX2X_SP_RTNL_HYPERVISOR_VLAN, 1288 BNX2X_SP_RTNL_TX_STOP, 1289 BNX2X_SP_RTNL_GET_DRV_VERSION, 1290 BNX2X_SP_RTNL_UPDATE_SVID, 1291 }; 1292 1293 enum bnx2x_iov_flag { 1294 BNX2X_IOV_HANDLE_VF_MSG, 1295 BNX2X_IOV_HANDLE_FLR, 1296 }; 1297 1298 struct bnx2x_prev_path_list { 1299 struct list_head list; 1300 u8 bus; 1301 u8 slot; 1302 u8 path; 1303 u8 aer; 1304 u8 undi; 1305 }; 1306 1307 struct bnx2x_sp_objs { 1308 /* MACs object */ 1309 struct bnx2x_vlan_mac_obj mac_obj; 1310 1311 /* Queue State object */ 1312 struct bnx2x_queue_sp_obj q_obj; 1313 1314 /* VLANs object */ 1315 struct bnx2x_vlan_mac_obj vlan_obj; 1316 }; 1317 1318 struct bnx2x_fp_stats { 1319 struct tstorm_per_queue_stats old_tclient; 1320 struct ustorm_per_queue_stats old_uclient; 1321 struct xstorm_per_queue_stats old_xclient; 1322 struct bnx2x_eth_q_stats eth_q_stats; 1323 struct bnx2x_eth_q_stats_old eth_q_stats_old; 1324 }; 1325 1326 enum { 1327 SUB_MF_MODE_UNKNOWN = 0, 1328 SUB_MF_MODE_UFP, 1329 SUB_MF_MODE_NPAR1_DOT_5, 1330 SUB_MF_MODE_BD, 1331 }; 1332 1333 struct bnx2x_vlan_entry { 1334 struct list_head link; 1335 u16 vid; 1336 bool hw; 1337 }; 1338 1339 enum bnx2x_udp_port_type { 1340 BNX2X_UDP_PORT_VXLAN, 1341 BNX2X_UDP_PORT_GENEVE, 1342 BNX2X_UDP_PORT_MAX, 1343 }; 1344 1345 struct bnx2x { 1346 /* Fields used in the tx and intr/napi performance paths 1347 * are grouped together in the beginning of the structure 1348 */ 1349 struct bnx2x_fastpath *fp; 1350 struct bnx2x_sp_objs *sp_objs; 1351 struct bnx2x_fp_stats *fp_stats; 1352 struct bnx2x_fp_txdata *bnx2x_txq; 1353 void __iomem *regview; 1354 void __iomem *doorbells; 1355 u16 db_size; 1356 1357 u8 pf_num; /* absolute PF number */ 1358 u8 pfid; /* per-path PF number */ 1359 int base_fw_ndsb; /**/ 1360 #define BP_PATH(bp) (CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1)) 1361 #define BP_PORT(bp) (bp->pfid & 1) 1362 #define BP_FUNC(bp) (bp->pfid) 1363 #define BP_ABS_FUNC(bp) (bp->pf_num) 1364 #define BP_VN(bp) ((bp)->pfid >> 1) 1365 #define BP_MAX_VN_NUM(bp) (CHIP_MODE_IS_4_PORT(bp) ? 2 : 4) 1366 #define BP_L_ID(bp) (BP_VN(bp) << 2) 1367 #define BP_FW_MB_IDX_VN(bp, vn) (BP_PORT(bp) +\ 1368 (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2 : 1)) 1369 #define BP_FW_MB_IDX(bp) BP_FW_MB_IDX_VN(bp, BP_VN(bp)) 1370 1371 #ifdef CONFIG_BNX2X_SRIOV 1372 /* protects vf2pf mailbox from simultaneous access */ 1373 struct mutex vf2pf_mutex; 1374 /* vf pf channel mailbox contains request and response buffers */ 1375 struct bnx2x_vf_mbx_msg *vf2pf_mbox; 1376 dma_addr_t vf2pf_mbox_mapping; 1377 1378 /* we set aside a copy of the acquire response */ 1379 struct pfvf_acquire_resp_tlv acquire_resp; 1380 1381 /* bulletin board for messages from pf to vf */ 1382 union pf_vf_bulletin *pf2vf_bulletin; 1383 dma_addr_t pf2vf_bulletin_mapping; 1384 1385 union pf_vf_bulletin shadow_bulletin; 1386 struct pf_vf_bulletin_content old_bulletin; 1387 1388 u16 requested_nr_virtfn; 1389 #endif /* CONFIG_BNX2X_SRIOV */ 1390 1391 struct net_device *dev; 1392 struct pci_dev *pdev; 1393 1394 const struct iro *iro_arr; 1395 #define IRO (bp->iro_arr) 1396 1397 enum bnx2x_recovery_state recovery_state; 1398 int is_leader; 1399 struct msix_entry *msix_table; 1400 1401 int tx_ring_size; 1402 1403 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */ 1404 #define ETH_OVERHEAD (ETH_HLEN + 8 + 8) 1405 #define ETH_MIN_PACKET_SIZE (ETH_ZLEN - ETH_HLEN) 1406 #define ETH_MAX_PACKET_SIZE ETH_DATA_LEN 1407 #define ETH_MAX_JUMBO_PACKET_SIZE 9600 1408 /* TCP with Timestamp Option (32) + IPv6 (40) */ 1409 #define ETH_MAX_TPA_HEADER_SIZE 72 1410 1411 /* Max supported alignment is 256 (8 shift) 1412 * minimal alignment shift 6 is optimal for 57xxx HW performance 1413 */ 1414 #define BNX2X_RX_ALIGN_SHIFT max(6, min(8, L1_CACHE_SHIFT)) 1415 1416 /* FW uses 2 Cache lines Alignment for start packet and size 1417 * 1418 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes 1419 * at the end of skb->data, to avoid wasting a full cache line. 1420 * This reduces memory use (skb->truesize). 1421 */ 1422 #define BNX2X_FW_RX_ALIGN_START (1UL << BNX2X_RX_ALIGN_SHIFT) 1423 1424 #define BNX2X_FW_RX_ALIGN_END \ 1425 max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT, \ 1426 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 1427 1428 #define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5) 1429 1430 struct host_sp_status_block *def_status_blk; 1431 #define DEF_SB_IGU_ID 16 1432 #define DEF_SB_ID HC_SP_SB_ID 1433 __le16 def_idx; 1434 __le16 def_att_idx; 1435 u32 attn_state; 1436 struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS]; 1437 1438 /* slow path ring */ 1439 struct eth_spe *spq; 1440 dma_addr_t spq_mapping; 1441 u16 spq_prod_idx; 1442 struct eth_spe *spq_prod_bd; 1443 struct eth_spe *spq_last_bd; 1444 __le16 *dsb_sp_prod; 1445 atomic_t cq_spq_left; /* ETH_XXX ramrods credit */ 1446 /* used to synchronize spq accesses */ 1447 spinlock_t spq_lock; 1448 1449 /* event queue */ 1450 union event_ring_elem *eq_ring; 1451 dma_addr_t eq_mapping; 1452 u16 eq_prod; 1453 u16 eq_cons; 1454 __le16 *eq_cons_sb; 1455 atomic_t eq_spq_left; /* COMMON_XXX ramrods credit */ 1456 1457 /* Counter for marking that there is a STAT_QUERY ramrod pending */ 1458 u16 stats_pending; 1459 /* Counter for completed statistics ramrods */ 1460 u16 stats_comp; 1461 1462 /* End of fields used in the performance code paths */ 1463 1464 int panic; 1465 int msg_enable; 1466 1467 u32 flags; 1468 #define PCIX_FLAG (1 << 0) 1469 #define PCI_32BIT_FLAG (1 << 1) 1470 #define ONE_PORT_FLAG (1 << 2) 1471 #define NO_WOL_FLAG (1 << 3) 1472 #define USING_MSIX_FLAG (1 << 5) 1473 #define USING_MSI_FLAG (1 << 6) 1474 #define DISABLE_MSI_FLAG (1 << 7) 1475 #define NO_MCP_FLAG (1 << 9) 1476 #define MF_FUNC_DIS (1 << 11) 1477 #define OWN_CNIC_IRQ (1 << 12) 1478 #define NO_ISCSI_OOO_FLAG (1 << 13) 1479 #define NO_ISCSI_FLAG (1 << 14) 1480 #define NO_FCOE_FLAG (1 << 15) 1481 #define BC_SUPPORTS_PFC_STATS (1 << 17) 1482 #define TX_SWITCHING (1 << 18) 1483 #define BC_SUPPORTS_FCOE_FEATURES (1 << 19) 1484 #define USING_SINGLE_MSIX_FLAG (1 << 20) 1485 #define BC_SUPPORTS_DCBX_MSG_NON_PMF (1 << 21) 1486 #define IS_VF_FLAG (1 << 22) 1487 #define BC_SUPPORTS_RMMOD_CMD (1 << 23) 1488 #define HAS_PHYS_PORT_ID (1 << 24) 1489 #define PTP_SUPPORTED (1 << 26) 1490 #define TX_TIMESTAMPING_EN (1 << 27) 1491 1492 #define BP_NOMCP(bp) ((bp)->flags & NO_MCP_FLAG) 1493 1494 #ifdef CONFIG_BNX2X_SRIOV 1495 #define IS_VF(bp) ((bp)->flags & IS_VF_FLAG) 1496 #define IS_PF(bp) (!((bp)->flags & IS_VF_FLAG)) 1497 #else 1498 #define IS_VF(bp) false 1499 #define IS_PF(bp) true 1500 #endif 1501 1502 #define NO_ISCSI(bp) ((bp)->flags & NO_ISCSI_FLAG) 1503 #define NO_ISCSI_OOO(bp) ((bp)->flags & NO_ISCSI_OOO_FLAG) 1504 #define NO_FCOE(bp) ((bp)->flags & NO_FCOE_FLAG) 1505 1506 u8 cnic_support; 1507 bool cnic_enabled; 1508 bool cnic_loaded; 1509 struct cnic_eth_dev *(*cnic_probe)(struct net_device *); 1510 1511 /* Flag that indicates that we can start looking for FCoE L2 queue 1512 * completions in the default status block. 1513 */ 1514 bool fcoe_init; 1515 1516 int mrrs; 1517 1518 struct delayed_work sp_task; 1519 struct delayed_work iov_task; 1520 1521 atomic_t interrupt_occurred; 1522 struct delayed_work sp_rtnl_task; 1523 1524 struct delayed_work period_task; 1525 struct timer_list timer; 1526 int current_interval; 1527 1528 u16 fw_seq; 1529 u16 fw_drv_pulse_wr_seq; 1530 u32 func_stx; 1531 1532 struct link_params link_params; 1533 struct link_vars link_vars; 1534 u32 link_cnt; 1535 struct bnx2x_link_report_data last_reported_link; 1536 bool force_link_down; 1537 1538 struct mdio_if_info mdio; 1539 1540 struct bnx2x_common common; 1541 struct bnx2x_port port; 1542 1543 struct cmng_init cmng; 1544 1545 u32 mf_config[E1HVN_MAX]; 1546 u32 mf_ext_config; 1547 u32 path_has_ovlan; /* E3 */ 1548 u16 mf_ov; 1549 u8 mf_mode; 1550 #define IS_MF(bp) (bp->mf_mode != 0) 1551 #define IS_MF_SI(bp) (bp->mf_mode == MULTI_FUNCTION_SI) 1552 #define IS_MF_SD(bp) (bp->mf_mode == MULTI_FUNCTION_SD) 1553 #define IS_MF_AFEX(bp) (bp->mf_mode == MULTI_FUNCTION_AFEX) 1554 u8 mf_sub_mode; 1555 #define IS_MF_UFP(bp) (IS_MF_SD(bp) && \ 1556 bp->mf_sub_mode == SUB_MF_MODE_UFP) 1557 #define IS_MF_BD(bp) (IS_MF_SD(bp) && \ 1558 bp->mf_sub_mode == SUB_MF_MODE_BD) 1559 1560 u8 wol; 1561 1562 int rx_ring_size; 1563 1564 u16 tx_quick_cons_trip_int; 1565 u16 tx_quick_cons_trip; 1566 u16 tx_ticks_int; 1567 u16 tx_ticks; 1568 1569 u16 rx_quick_cons_trip_int; 1570 u16 rx_quick_cons_trip; 1571 u16 rx_ticks_int; 1572 u16 rx_ticks; 1573 /* Maximal coalescing timeout in us */ 1574 #define BNX2X_MAX_COALESCE_TOUT (0xff*BNX2X_BTR) 1575 1576 u32 lin_cnt; 1577 1578 u16 state; 1579 #define BNX2X_STATE_CLOSED 0 1580 #define BNX2X_STATE_OPENING_WAIT4_LOAD 0x1000 1581 #define BNX2X_STATE_OPENING_WAIT4_PORT 0x2000 1582 #define BNX2X_STATE_OPEN 0x3000 1583 #define BNX2X_STATE_CLOSING_WAIT4_HALT 0x4000 1584 #define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000 1585 1586 #define BNX2X_STATE_DIAG 0xe000 1587 #define BNX2X_STATE_ERROR 0xf000 1588 1589 #define BNX2X_MAX_PRIORITY 8 1590 int num_queues; 1591 uint num_ethernet_queues; 1592 uint num_cnic_queues; 1593 int disable_tpa; 1594 1595 u32 rx_mode; 1596 #define BNX2X_RX_MODE_NONE 0 1597 #define BNX2X_RX_MODE_NORMAL 1 1598 #define BNX2X_RX_MODE_ALLMULTI 2 1599 #define BNX2X_RX_MODE_PROMISC 3 1600 #define BNX2X_MAX_MULTICAST 64 1601 1602 u8 igu_dsb_id; 1603 u8 igu_base_sb; 1604 u8 igu_sb_cnt; 1605 u8 min_msix_vec_cnt; 1606 1607 u32 igu_base_addr; 1608 dma_addr_t def_status_blk_mapping; 1609 1610 struct bnx2x_slowpath *slowpath; 1611 dma_addr_t slowpath_mapping; 1612 1613 /* Mechanism protecting the drv_info_to_mcp */ 1614 struct mutex drv_info_mutex; 1615 bool drv_info_mng_owner; 1616 1617 /* Total number of FW statistics requests */ 1618 u8 fw_stats_num; 1619 1620 /* 1621 * This is a memory buffer that will contain both statistics 1622 * ramrod request and data. 1623 */ 1624 void *fw_stats; 1625 dma_addr_t fw_stats_mapping; 1626 1627 /* 1628 * FW statistics request shortcut (points at the 1629 * beginning of fw_stats buffer). 1630 */ 1631 struct bnx2x_fw_stats_req *fw_stats_req; 1632 dma_addr_t fw_stats_req_mapping; 1633 int fw_stats_req_sz; 1634 1635 /* 1636 * FW statistics data shortcut (points at the beginning of 1637 * fw_stats buffer + fw_stats_req_sz). 1638 */ 1639 struct bnx2x_fw_stats_data *fw_stats_data; 1640 dma_addr_t fw_stats_data_mapping; 1641 int fw_stats_data_sz; 1642 1643 /* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB 1644 * context size we need 8 ILT entries. 1645 */ 1646 #define ILT_MAX_L2_LINES 32 1647 struct hw_context context[ILT_MAX_L2_LINES]; 1648 1649 struct bnx2x_ilt *ilt; 1650 #define BP_ILT(bp) ((bp)->ilt) 1651 #define ILT_MAX_LINES 256 1652 /* 1653 * Maximum supported number of RSS queues: number of IGU SBs minus one that goes 1654 * to CNIC. 1655 */ 1656 #define BNX2X_MAX_RSS_COUNT(bp) ((bp)->igu_sb_cnt - CNIC_SUPPORT(bp)) 1657 1658 /* 1659 * Maximum CID count that might be required by the bnx2x: 1660 * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI 1661 */ 1662 1663 #define BNX2X_L2_CID_COUNT(bp) (BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \ 1664 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp))) 1665 #define BNX2X_L2_MAX_CID(bp) (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \ 1666 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp))) 1667 #define L2_ILT_LINES(bp) (DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\ 1668 ILT_PAGE_CIDS)) 1669 1670 int qm_cid_count; 1671 1672 bool dropless_fc; 1673 1674 void *t2; 1675 dma_addr_t t2_mapping; 1676 struct cnic_ops __rcu *cnic_ops; 1677 void *cnic_data; 1678 u32 cnic_tag; 1679 struct cnic_eth_dev cnic_eth_dev; 1680 union host_hc_status_block cnic_sb; 1681 dma_addr_t cnic_sb_mapping; 1682 struct eth_spe *cnic_kwq; 1683 struct eth_spe *cnic_kwq_prod; 1684 struct eth_spe *cnic_kwq_cons; 1685 struct eth_spe *cnic_kwq_last; 1686 u16 cnic_kwq_pending; 1687 u16 cnic_spq_pending; 1688 u8 fip_mac[ETH_ALEN]; 1689 struct mutex cnic_mutex; 1690 struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj; 1691 1692 /* Start index of the "special" (CNIC related) L2 clients */ 1693 u8 cnic_base_cl_id; 1694 1695 int dmae_ready; 1696 /* used to synchronize dmae accesses */ 1697 spinlock_t dmae_lock; 1698 1699 /* used to protect the FW mail box */ 1700 struct mutex fw_mb_mutex; 1701 1702 /* used to synchronize stats collecting */ 1703 int stats_state; 1704 1705 /* used for synchronization of concurrent threads statistics handling */ 1706 struct semaphore stats_lock; 1707 1708 /* used by dmae command loader */ 1709 struct dmae_command stats_dmae; 1710 int executer_idx; 1711 1712 u16 stats_counter; 1713 struct bnx2x_eth_stats eth_stats; 1714 struct host_func_stats func_stats; 1715 struct bnx2x_eth_stats_old eth_stats_old; 1716 struct bnx2x_net_stats_old net_stats_old; 1717 struct bnx2x_fw_port_stats_old fw_stats_old; 1718 bool stats_init; 1719 1720 struct z_stream_s *strm; 1721 void *gunzip_buf; 1722 dma_addr_t gunzip_mapping; 1723 int gunzip_outlen; 1724 #define FW_BUF_SIZE 0x8000 1725 #define GUNZIP_BUF(bp) (bp->gunzip_buf) 1726 #define GUNZIP_PHYS(bp) (bp->gunzip_mapping) 1727 #define GUNZIP_OUTLEN(bp) (bp->gunzip_outlen) 1728 1729 struct raw_op *init_ops; 1730 /* Init blocks offsets inside init_ops */ 1731 u16 *init_ops_offsets; 1732 /* Data blob - has 32 bit granularity */ 1733 u32 *init_data; 1734 u32 init_mode_flags; 1735 #define INIT_MODE_FLAGS(bp) (bp->init_mode_flags) 1736 /* Zipped PRAM blobs - raw data */ 1737 const u8 *tsem_int_table_data; 1738 const u8 *tsem_pram_data; 1739 const u8 *usem_int_table_data; 1740 const u8 *usem_pram_data; 1741 const u8 *xsem_int_table_data; 1742 const u8 *xsem_pram_data; 1743 const u8 *csem_int_table_data; 1744 const u8 *csem_pram_data; 1745 #define INIT_OPS(bp) (bp->init_ops) 1746 #define INIT_OPS_OFFSETS(bp) (bp->init_ops_offsets) 1747 #define INIT_DATA(bp) (bp->init_data) 1748 #define INIT_TSEM_INT_TABLE_DATA(bp) (bp->tsem_int_table_data) 1749 #define INIT_TSEM_PRAM_DATA(bp) (bp->tsem_pram_data) 1750 #define INIT_USEM_INT_TABLE_DATA(bp) (bp->usem_int_table_data) 1751 #define INIT_USEM_PRAM_DATA(bp) (bp->usem_pram_data) 1752 #define INIT_XSEM_INT_TABLE_DATA(bp) (bp->xsem_int_table_data) 1753 #define INIT_XSEM_PRAM_DATA(bp) (bp->xsem_pram_data) 1754 #define INIT_CSEM_INT_TABLE_DATA(bp) (bp->csem_int_table_data) 1755 #define INIT_CSEM_PRAM_DATA(bp) (bp->csem_pram_data) 1756 1757 #define PHY_FW_VER_LEN 20 1758 char fw_ver[32]; 1759 const struct firmware *firmware; 1760 1761 struct bnx2x_vfdb *vfdb; 1762 #define IS_SRIOV(bp) ((bp)->vfdb) 1763 1764 /* DCB support on/off */ 1765 u16 dcb_state; 1766 #define BNX2X_DCB_STATE_OFF 0 1767 #define BNX2X_DCB_STATE_ON 1 1768 1769 /* DCBX engine mode */ 1770 int dcbx_enabled; 1771 #define BNX2X_DCBX_ENABLED_OFF 0 1772 #define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1 1773 #define BNX2X_DCBX_ENABLED_ON_NEG_ON 2 1774 #define BNX2X_DCBX_ENABLED_INVALID (-1) 1775 1776 bool dcbx_mode_uset; 1777 1778 struct bnx2x_config_dcbx_params dcbx_config_params; 1779 struct bnx2x_dcbx_port_params dcbx_port_params; 1780 int dcb_version; 1781 1782 /* CAM credit pools */ 1783 struct bnx2x_credit_pool_obj vlans_pool; 1784 1785 struct bnx2x_credit_pool_obj macs_pool; 1786 1787 /* RX_MODE object */ 1788 struct bnx2x_rx_mode_obj rx_mode_obj; 1789 1790 /* MCAST object */ 1791 struct bnx2x_mcast_obj mcast_obj; 1792 1793 /* RSS configuration object */ 1794 struct bnx2x_rss_config_obj rss_conf_obj; 1795 1796 /* Function State controlling object */ 1797 struct bnx2x_func_sp_obj func_obj; 1798 1799 unsigned long sp_state; 1800 1801 /* operation indication for the sp_rtnl task */ 1802 unsigned long sp_rtnl_state; 1803 1804 /* Indication of the IOV tasks */ 1805 unsigned long iov_task_state; 1806 1807 /* DCBX Negotiation results */ 1808 struct dcbx_features dcbx_local_feat; 1809 u32 dcbx_error; 1810 1811 #ifdef BCM_DCBNL 1812 struct dcbx_features dcbx_remote_feat; 1813 u32 dcbx_remote_flags; 1814 #endif 1815 /* AFEX: store default vlan used */ 1816 int afex_def_vlan_tag; 1817 enum mf_cfg_afex_vlan_mode afex_vlan_mode; 1818 u32 pending_max; 1819 1820 /* multiple tx classes of service */ 1821 u8 max_cos; 1822 1823 /* priority to cos mapping */ 1824 u8 prio_to_cos[8]; 1825 1826 int fp_array_size; 1827 u32 dump_preset_idx; 1828 1829 u8 phys_port_id[ETH_ALEN]; 1830 1831 /* PTP related context */ 1832 struct ptp_clock *ptp_clock; 1833 struct ptp_clock_info ptp_clock_info; 1834 struct work_struct ptp_task; 1835 struct cyclecounter cyclecounter; 1836 struct timecounter timecounter; 1837 bool timecounter_init_done; 1838 struct sk_buff *ptp_tx_skb; 1839 unsigned long ptp_tx_start; 1840 bool hwtstamp_ioctl_called; 1841 u16 tx_type; 1842 u16 rx_filter; 1843 1844 struct bnx2x_link_report_data vf_link_vars; 1845 struct list_head vlan_reg; 1846 u16 vlan_cnt; 1847 u16 vlan_credit; 1848 bool accept_any_vlan; 1849 1850 /* Vxlan/Geneve related information */ 1851 u16 udp_tunnel_ports[BNX2X_UDP_PORT_MAX]; 1852 1853 #define FW_CAP_INVALIDATE_VF_FP_HSI BIT(0) 1854 u32 fw_cap; 1855 1856 u32 fw_major; 1857 u32 fw_minor; 1858 u32 fw_rev; 1859 u32 fw_eng; 1860 }; 1861 1862 /* Tx queues may be less or equal to Rx queues */ 1863 extern int num_queues; 1864 #define BNX2X_NUM_QUEUES(bp) (bp->num_queues) 1865 #define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues) 1866 #define BNX2X_NUM_NON_CNIC_QUEUES(bp) (BNX2X_NUM_QUEUES(bp) - \ 1867 (bp)->num_cnic_queues) 1868 #define BNX2X_NUM_RX_QUEUES(bp) BNX2X_NUM_QUEUES(bp) 1869 1870 #define is_multi(bp) (BNX2X_NUM_QUEUES(bp) > 1) 1871 1872 #define BNX2X_MAX_QUEUES(bp) BNX2X_MAX_RSS_COUNT(bp) 1873 /* #define is_eth_multi(bp) (BNX2X_NUM_ETH_QUEUES(bp) > 1) */ 1874 1875 #define RSS_IPV4_CAP_MASK \ 1876 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY 1877 1878 #define RSS_IPV4_TCP_CAP_MASK \ 1879 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY 1880 1881 #define RSS_IPV6_CAP_MASK \ 1882 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY 1883 1884 #define RSS_IPV6_TCP_CAP_MASK \ 1885 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY 1886 1887 struct bnx2x_func_init_params { 1888 /* dma */ 1889 bool spq_active; 1890 dma_addr_t spq_map; 1891 u16 spq_prod; 1892 1893 u16 func_id; /* abs fid */ 1894 u16 pf_id; 1895 }; 1896 1897 #define for_each_cnic_queue(bp, var) \ 1898 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 1899 (var)++) \ 1900 if (skip_queue(bp, var)) \ 1901 continue; \ 1902 else 1903 1904 #define for_each_eth_queue(bp, var) \ 1905 for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++) 1906 1907 #define for_each_nondefault_eth_queue(bp, var) \ 1908 for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++) 1909 1910 #define for_each_queue(bp, var) \ 1911 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1912 if (skip_queue(bp, var)) \ 1913 continue; \ 1914 else 1915 1916 /* Skip forwarding FP */ 1917 #define for_each_valid_rx_queue(bp, var) \ 1918 for ((var) = 0; \ 1919 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \ 1920 BNX2X_NUM_ETH_QUEUES(bp)); \ 1921 (var)++) \ 1922 if (skip_rx_queue(bp, var)) \ 1923 continue; \ 1924 else 1925 1926 #define for_each_rx_queue_cnic(bp, var) \ 1927 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 1928 (var)++) \ 1929 if (skip_rx_queue(bp, var)) \ 1930 continue; \ 1931 else 1932 1933 #define for_each_rx_queue(bp, var) \ 1934 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1935 if (skip_rx_queue(bp, var)) \ 1936 continue; \ 1937 else 1938 1939 /* Skip OOO FP */ 1940 #define for_each_valid_tx_queue(bp, var) \ 1941 for ((var) = 0; \ 1942 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \ 1943 BNX2X_NUM_ETH_QUEUES(bp)); \ 1944 (var)++) \ 1945 if (skip_tx_queue(bp, var)) \ 1946 continue; \ 1947 else 1948 1949 #define for_each_tx_queue_cnic(bp, var) \ 1950 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 1951 (var)++) \ 1952 if (skip_tx_queue(bp, var)) \ 1953 continue; \ 1954 else 1955 1956 #define for_each_tx_queue(bp, var) \ 1957 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1958 if (skip_tx_queue(bp, var)) \ 1959 continue; \ 1960 else 1961 1962 #define for_each_nondefault_queue(bp, var) \ 1963 for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1964 if (skip_queue(bp, var)) \ 1965 continue; \ 1966 else 1967 1968 #define for_each_cos_in_tx_queue(fp, var) \ 1969 for ((var) = 0; (var) < (fp)->max_cos; (var)++) 1970 1971 /* skip rx queue 1972 * if FCOE l2 support is disabled and this is the fcoe L2 queue 1973 */ 1974 #define skip_rx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 1975 1976 /* skip tx queue 1977 * if FCOE l2 support is disabled and this is the fcoe L2 queue 1978 */ 1979 #define skip_tx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 1980 1981 #define skip_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 1982 1983 /*self test*/ 1984 int bnx2x_idle_chk(struct bnx2x *bp); 1985 1986 /** 1987 * bnx2x_set_mac_one - configure a single MAC address 1988 * 1989 * @bp: driver handle 1990 * @mac: MAC to configure 1991 * @obj: MAC object handle 1992 * @set: if 'true' add a new MAC, otherwise - delete 1993 * @mac_type: the type of the MAC to configure (e.g. ETH, UC list) 1994 * @ramrod_flags: RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT) 1995 * 1996 * Configures one MAC according to provided parameters or continues the 1997 * execution of previously scheduled commands if RAMROD_CONT is set in 1998 * ramrod_flags. 1999 * 2000 * Returns zero if operation has successfully completed, a positive value if the 2001 * operation has been successfully scheduled and a negative - if a requested 2002 * operations has failed. 2003 */ 2004 int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac, 2005 struct bnx2x_vlan_mac_obj *obj, bool set, 2006 int mac_type, unsigned long *ramrod_flags); 2007 2008 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan, 2009 struct bnx2x_vlan_mac_obj *obj, bool set, 2010 unsigned long *ramrod_flags); 2011 2012 /** 2013 * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object 2014 * 2015 * @bp: driver handle 2016 * @mac_obj: MAC object handle 2017 * @mac_type: type of the MACs to clear (BNX2X_XXX_MAC) 2018 * @wait_for_comp: if 'true' block until completion 2019 * 2020 * Deletes all MACs of the specific type (e.g. ETH, UC list). 2021 * 2022 * Returns zero if operation has successfully completed, a positive value if the 2023 * operation has been successfully scheduled and a negative - if a requested 2024 * operations has failed. 2025 */ 2026 int bnx2x_del_all_macs(struct bnx2x *bp, 2027 struct bnx2x_vlan_mac_obj *mac_obj, 2028 int mac_type, bool wait_for_comp); 2029 2030 /* Init Function API */ 2031 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p); 2032 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 2033 u8 vf_valid, int fw_sb_id, int igu_sb_id); 2034 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port); 2035 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); 2036 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode); 2037 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); 2038 void bnx2x_read_mf_cfg(struct bnx2x *bp); 2039 2040 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val); 2041 2042 /* dmae */ 2043 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32); 2044 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 2045 u32 len32); 2046 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx); 2047 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type); 2048 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode); 2049 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 2050 bool with_comp, u8 comp_type); 2051 2052 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 2053 u8 src_type, u8 dst_type); 2054 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 2055 u32 *comp); 2056 2057 /* FLR related routines */ 2058 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp); 2059 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count); 2060 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt); 2061 u8 bnx2x_is_pcie_pending(struct pci_dev *dev); 2062 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 2063 char *msg, u32 poll_cnt); 2064 2065 void bnx2x_calc_fc_adv(struct bnx2x *bp); 2066 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 2067 u32 data_hi, u32 data_lo, int cmd_type); 2068 void bnx2x_update_coalesce(struct bnx2x *bp); 2069 int bnx2x_get_cur_phy_idx(struct bnx2x *bp); 2070 2071 bool bnx2x_port_after_undi(struct bnx2x *bp); 2072 2073 static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms, 2074 int wait) 2075 { 2076 u32 val; 2077 2078 do { 2079 val = REG_RD(bp, reg); 2080 if (val == expected) 2081 break; 2082 ms -= wait; 2083 msleep(wait); 2084 2085 } while (ms > 0); 2086 2087 return val; 2088 } 2089 2090 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, 2091 bool is_pf); 2092 2093 #define BNX2X_ILT_ZALLOC(x, y, size) \ 2094 x = dma_alloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL) 2095 2096 #define BNX2X_ILT_FREE(x, y, size) \ 2097 do { \ 2098 if (x) { \ 2099 dma_free_coherent(&bp->pdev->dev, size, x, y); \ 2100 x = NULL; \ 2101 y = 0; \ 2102 } \ 2103 } while (0) 2104 2105 #define ILOG2(x) (ilog2((x))) 2106 2107 #define ILT_NUM_PAGE_ENTRIES (3072) 2108 /* In 57710/11 we use whole table since we have 8 func 2109 * In 57712 we have only 4 func, but use same size per func, then only half of 2110 * the table in use 2111 */ 2112 #define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES/8) 2113 2114 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC) 2115 /* 2116 * the phys address is shifted right 12 bits and has an added 2117 * 1=valid bit added to the 53rd bit 2118 * then since this is a wide register(TM) 2119 * we split it into two 32 bit writes 2120 */ 2121 #define ONCHIP_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF)) 2122 #define ONCHIP_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44))) 2123 2124 /* load/unload mode */ 2125 #define LOAD_NORMAL 0 2126 #define LOAD_OPEN 1 2127 #define LOAD_DIAG 2 2128 #define LOAD_LOOPBACK_EXT 3 2129 #define UNLOAD_NORMAL 0 2130 #define UNLOAD_CLOSE 1 2131 #define UNLOAD_RECOVERY 2 2132 2133 /* DMAE command defines */ 2134 #define DMAE_TIMEOUT -1 2135 #define DMAE_PCI_ERROR -2 /* E2 and onward */ 2136 #define DMAE_NOT_RDY -3 2137 #define DMAE_PCI_ERR_FLAG 0x80000000 2138 2139 #define DMAE_SRC_PCI 0 2140 #define DMAE_SRC_GRC 1 2141 2142 #define DMAE_DST_NONE 0 2143 #define DMAE_DST_PCI 1 2144 #define DMAE_DST_GRC 2 2145 2146 #define DMAE_COMP_PCI 0 2147 #define DMAE_COMP_GRC 1 2148 2149 /* E2 and onward - PCI error handling in the completion */ 2150 2151 #define DMAE_COMP_REGULAR 0 2152 #define DMAE_COM_SET_ERR 1 2153 2154 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << \ 2155 DMAE_COMMAND_SRC_SHIFT) 2156 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << \ 2157 DMAE_COMMAND_SRC_SHIFT) 2158 2159 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << \ 2160 DMAE_COMMAND_DST_SHIFT) 2161 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << \ 2162 DMAE_COMMAND_DST_SHIFT) 2163 2164 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << \ 2165 DMAE_COMMAND_C_DST_SHIFT) 2166 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << \ 2167 DMAE_COMMAND_C_DST_SHIFT) 2168 2169 #define DMAE_CMD_C_ENABLE DMAE_COMMAND_C_TYPE_ENABLE 2170 2171 #define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT) 2172 #define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT) 2173 #define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT) 2174 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT) 2175 2176 #define DMAE_CMD_PORT_0 0 2177 #define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT 2178 2179 #define DMAE_CMD_SRC_RESET DMAE_COMMAND_SRC_RESET 2180 #define DMAE_CMD_DST_RESET DMAE_COMMAND_DST_RESET 2181 #define DMAE_CMD_E1HVN_SHIFT DMAE_COMMAND_E1HVN_SHIFT 2182 2183 #define DMAE_SRC_PF 0 2184 #define DMAE_SRC_VF 1 2185 2186 #define DMAE_DST_PF 0 2187 #define DMAE_DST_VF 1 2188 2189 #define DMAE_C_SRC 0 2190 #define DMAE_C_DST 1 2191 2192 #define DMAE_LEN32_RD_MAX 0x80 2193 #define DMAE_LEN32_WR_MAX(bp) (CHIP_IS_E1(bp) ? 0x400 : 0x2000) 2194 2195 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and on - upper bit 2196 * indicates error 2197 */ 2198 2199 #define MAX_DMAE_C_PER_PORT 8 2200 #define INIT_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \ 2201 BP_VN(bp)) 2202 #define PMF_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \ 2203 E1HVN_MAX) 2204 2205 /* Following is the DMAE channel number allocation for the clients. 2206 * MFW: OCBB/OCSD implementations use DMAE channels 14/15 respectively. 2207 * Driver: 0-3 and 8-11 (for PF dmae operations) 2208 * 4 and 12 (for stats requests) 2209 */ 2210 #define BNX2X_FW_DMAE_C 13 /* Channel for FW DMAE operations */ 2211 2212 /* PCIE link and speed */ 2213 #define PCICFG_LINK_WIDTH 0x1f00000 2214 #define PCICFG_LINK_WIDTH_SHIFT 20 2215 #define PCICFG_LINK_SPEED 0xf0000 2216 #define PCICFG_LINK_SPEED_SHIFT 16 2217 2218 #define BNX2X_NUM_TESTS_SF 7 2219 #define BNX2X_NUM_TESTS_MF 3 2220 #define BNX2X_NUM_TESTS(bp) (IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \ 2221 IS_VF(bp) ? 0 : BNX2X_NUM_TESTS_SF) 2222 2223 #define BNX2X_PHY_LOOPBACK 0 2224 #define BNX2X_MAC_LOOPBACK 1 2225 #define BNX2X_EXT_LOOPBACK 2 2226 #define BNX2X_PHY_LOOPBACK_FAILED 1 2227 #define BNX2X_MAC_LOOPBACK_FAILED 2 2228 #define BNX2X_EXT_LOOPBACK_FAILED 3 2229 #define BNX2X_LOOPBACK_FAILED (BNX2X_MAC_LOOPBACK_FAILED | \ 2230 BNX2X_PHY_LOOPBACK_FAILED) 2231 2232 #define STROM_ASSERT_ARRAY_SIZE 50 2233 2234 /* must be used on a CID before placing it on a HW ring */ 2235 #define HW_CID(bp, x) ((BP_PORT(bp) << 23) | \ 2236 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \ 2237 (x)) 2238 2239 #define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe)) 2240 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1) 2241 2242 #define BNX2X_BTR 4 2243 #define MAX_SPQ_PENDING 8 2244 2245 /* CMNG constants, as derived from system spec calculations */ 2246 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */ 2247 #define DEF_MIN_RATE 100 2248 /* resolution of the rate shaping timer - 400 usec */ 2249 #define RS_PERIODIC_TIMEOUT_USEC 400 2250 /* number of bytes in single QM arbitration cycle - 2251 * coefficient for calculating the fairness timer */ 2252 #define QM_ARB_BYTES 160000 2253 /* resolution of Min algorithm 1:100 */ 2254 #define MIN_RES 100 2255 /* how many bytes above threshold for the minimal credit of Min algorithm*/ 2256 #define MIN_ABOVE_THRESH 32768 2257 /* Fairness algorithm integration time coefficient - 2258 * for calculating the actual Tfair */ 2259 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) 2260 /* Memory of fairness algorithm . 2 cycles */ 2261 #define FAIR_MEM 2 2262 2263 #define ATTN_NIG_FOR_FUNC (1L << 8) 2264 #define ATTN_SW_TIMER_4_FUNC (1L << 9) 2265 #define GPIO_2_FUNC (1L << 10) 2266 #define GPIO_3_FUNC (1L << 11) 2267 #define GPIO_4_FUNC (1L << 12) 2268 #define ATTN_GENERAL_ATTN_1 (1L << 13) 2269 #define ATTN_GENERAL_ATTN_2 (1L << 14) 2270 #define ATTN_GENERAL_ATTN_3 (1L << 15) 2271 #define ATTN_GENERAL_ATTN_4 (1L << 13) 2272 #define ATTN_GENERAL_ATTN_5 (1L << 14) 2273 #define ATTN_GENERAL_ATTN_6 (1L << 15) 2274 2275 #define ATTN_HARD_WIRED_MASK 0xff00 2276 #define ATTENTION_ID 4 2277 2278 #define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_PERSONALITY_ONLY(bp) || \ 2279 IS_MF_FCOE_AFEX(bp)) 2280 2281 /* stuff added to make the code fit 80Col */ 2282 2283 #define BNX2X_PMF_LINK_ASSERT \ 2284 GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp)) 2285 2286 #define BNX2X_MC_ASSERT_BITS \ 2287 (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2288 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2289 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2290 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT)) 2291 2292 #define BNX2X_MCP_ASSERT \ 2293 GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT) 2294 2295 #define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC) 2296 #define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \ 2297 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \ 2298 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \ 2299 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \ 2300 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \ 2301 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC)) 2302 2303 #define HW_INTERRUPT_ASSERT_SET_0 \ 2304 (AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \ 2305 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \ 2306 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \ 2307 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \ 2308 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT) 2309 #define HW_PRTY_ASSERT_SET_0 (AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \ 2310 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \ 2311 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \ 2312 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\ 2313 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\ 2314 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\ 2315 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR) 2316 #define HW_INTERRUPT_ASSERT_SET_1 \ 2317 (AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \ 2318 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \ 2319 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \ 2320 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \ 2321 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \ 2322 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \ 2323 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \ 2324 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \ 2325 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \ 2326 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \ 2327 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT) 2328 #define HW_PRTY_ASSERT_SET_1 (AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\ 2329 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \ 2330 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\ 2331 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \ 2332 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\ 2333 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \ 2334 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\ 2335 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\ 2336 AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\ 2337 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \ 2338 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \ 2339 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\ 2340 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \ 2341 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \ 2342 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\ 2343 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR) 2344 #define HW_INTERRUPT_ASSERT_SET_2 \ 2345 (AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \ 2346 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \ 2347 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \ 2348 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\ 2349 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT) 2350 #define HW_PRTY_ASSERT_SET_2 (AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \ 2351 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \ 2352 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\ 2353 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \ 2354 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \ 2355 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\ 2356 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \ 2357 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR) 2358 2359 #define HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD \ 2360 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \ 2361 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \ 2362 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY) 2363 2364 #define HW_PRTY_ASSERT_SET_3 (HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD | \ 2365 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY) 2366 2367 #define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \ 2368 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR) 2369 2370 #define MULTI_MASK 0x7f 2371 2372 #define DEF_USB_FUNC_OFF offsetof(struct cstorm_def_status_block_u, func) 2373 #define DEF_CSB_FUNC_OFF offsetof(struct cstorm_def_status_block_c, func) 2374 #define DEF_XSB_FUNC_OFF offsetof(struct xstorm_def_status_block, func) 2375 #define DEF_TSB_FUNC_OFF offsetof(struct tstorm_def_status_block, func) 2376 2377 #define DEF_USB_IGU_INDEX_OFF \ 2378 offsetof(struct cstorm_def_status_block_u, igu_index) 2379 #define DEF_CSB_IGU_INDEX_OFF \ 2380 offsetof(struct cstorm_def_status_block_c, igu_index) 2381 #define DEF_XSB_IGU_INDEX_OFF \ 2382 offsetof(struct xstorm_def_status_block, igu_index) 2383 #define DEF_TSB_IGU_INDEX_OFF \ 2384 offsetof(struct tstorm_def_status_block, igu_index) 2385 2386 #define DEF_USB_SEGMENT_OFF \ 2387 offsetof(struct cstorm_def_status_block_u, segment) 2388 #define DEF_CSB_SEGMENT_OFF \ 2389 offsetof(struct cstorm_def_status_block_c, segment) 2390 #define DEF_XSB_SEGMENT_OFF \ 2391 offsetof(struct xstorm_def_status_block, segment) 2392 #define DEF_TSB_SEGMENT_OFF \ 2393 offsetof(struct tstorm_def_status_block, segment) 2394 2395 #define BNX2X_SP_DSB_INDEX \ 2396 (&bp->def_status_blk->sp_sb.\ 2397 index_values[HC_SP_INDEX_ETH_DEF_CONS]) 2398 2399 #define CAM_IS_INVALID(x) \ 2400 (GET_FLAG(x.flags, \ 2401 MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \ 2402 (T_ETH_MAC_COMMAND_INVALIDATE)) 2403 2404 /* Number of u32 elements in MC hash array */ 2405 #define MC_HASH_SIZE 8 2406 #define MC_HASH_OFFSET(bp, i) (BAR_TSTRORM_INTMEM + \ 2407 TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4) 2408 2409 #ifndef PXP2_REG_PXP2_INT_STS 2410 #define PXP2_REG_PXP2_INT_STS PXP2_REG_PXP2_INT_STS_0 2411 #endif 2412 2413 #ifndef ETH_MAX_RX_CLIENTS_E2 2414 #define ETH_MAX_RX_CLIENTS_E2 ETH_MAX_RX_CLIENTS_E1H 2415 #endif 2416 2417 #define VENDOR_ID_LEN 4 2418 2419 #define VF_ACQUIRE_THRESH 3 2420 #define VF_ACQUIRE_MAC_FILTERS 1 2421 #define VF_ACQUIRE_MC_FILTERS 10 2422 #define VF_ACQUIRE_VLAN_FILTERS 2 /* VLAN0 + 'real' VLAN */ 2423 2424 #define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \ 2425 (!((me_reg) & ME_REG_VF_ERR))) 2426 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err); 2427 2428 /* Congestion management fairness mode */ 2429 #define CMNG_FNS_NONE 0 2430 #define CMNG_FNS_MINMAX 1 2431 2432 #define HC_SEG_ACCESS_DEF 0 /*Driver decision 0-3*/ 2433 #define HC_SEG_ACCESS_ATTN 4 2434 #define HC_SEG_ACCESS_NORM 0 /*Driver decision 0-1*/ 2435 2436 void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev); 2437 void bnx2x_notify_link_changed(struct bnx2x *bp); 2438 2439 #define BNX2X_MF_SD_PROTOCOL(bp) \ 2440 ((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK) 2441 2442 #define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \ 2443 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI) 2444 2445 #define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \ 2446 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE) 2447 2448 #define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) 2449 #define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) 2450 #define IS_MF_ISCSI_SI(bp) (IS_MF_SI(bp) && BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp)) 2451 2452 #define IS_MF_ISCSI_ONLY(bp) (IS_MF_ISCSI_SD(bp) || IS_MF_ISCSI_SI(bp)) 2453 2454 #define BNX2X_MF_EXT_PROTOCOL_MASK \ 2455 (MACP_FUNC_CFG_FLAGS_ETHERNET | \ 2456 MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD | \ 2457 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2458 2459 #define BNX2X_MF_EXT_PROT(bp) ((bp)->mf_ext_config & \ 2460 BNX2X_MF_EXT_PROTOCOL_MASK) 2461 2462 #define BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp) \ 2463 (BNX2X_MF_EXT_PROT(bp) & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2464 2465 #define BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp) \ 2466 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2467 2468 #define BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) \ 2469 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) 2470 2471 #define IS_MF_FCOE_AFEX(bp) \ 2472 (IS_MF_AFEX(bp) && BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp)) 2473 2474 #define IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) \ 2475 (IS_MF_SD(bp) && \ 2476 (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \ 2477 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 2478 2479 #define IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp) \ 2480 (IS_MF_SI(bp) && \ 2481 (BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) || \ 2482 BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp))) 2483 2484 #define IS_MF_STORAGE_PERSONALITY_ONLY(bp) \ 2485 (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) || \ 2486 IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp)) 2487 2488 /* Determines whether BW configuration arrives in 100Mb units or in 2489 * percentages from actual physical link speed. 2490 */ 2491 #define IS_MF_PERCENT_BW(bp) (IS_MF_SI(bp) || IS_MF_UFP(bp) || IS_MF_BD(bp)) 2492 2493 #define SET_FLAG(value, mask, flag) \ 2494 do {\ 2495 (value) &= ~(mask);\ 2496 (value) |= ((flag) << (mask##_SHIFT));\ 2497 } while (0) 2498 2499 #define GET_FLAG(value, mask) \ 2500 (((value) & (mask)) >> (mask##_SHIFT)) 2501 2502 #define GET_FIELD(value, fname) \ 2503 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 2504 2505 enum { 2506 SWITCH_UPDATE, 2507 AFEX_UPDATE, 2508 }; 2509 2510 #define NUM_MACS 8 2511 2512 void bnx2x_set_local_cmng(struct bnx2x *bp); 2513 2514 void bnx2x_update_mng_version(struct bnx2x *bp); 2515 2516 void bnx2x_update_mfw_dump(struct bnx2x *bp); 2517 2518 #define MCPR_SCRATCH_BASE(bp) \ 2519 (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH) 2520 2521 #define E1H_MAX_MF_SB_COUNT (HC_SB_MAX_SB_E1X/(E1HVN_MAX * PORT_MAX)) 2522 2523 void bnx2x_init_ptp(struct bnx2x *bp); 2524 int bnx2x_configure_ptp_filters(struct bnx2x *bp); 2525 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb); 2526 void bnx2x_register_phc(struct bnx2x *bp); 2527 2528 #define BNX2X_MAX_PHC_DRIFT 31000000 2529 #define BNX2X_PTP_TX_TIMEOUT 2530 2531 /* Re-configure all previously configured vlan filters. 2532 * Meant for implicit re-load flows. 2533 */ 2534 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp); 2535 #endif /* bnx2x.h */ 2536