1 /* bnx2x.h: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 */ 15 16 #ifndef BNX2X_H 17 #define BNX2X_H 18 19 #include <linux/pci.h> 20 #include <linux/netdevice.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/types.h> 23 #include <linux/pci_regs.h> 24 25 #include <linux/ptp_clock_kernel.h> 26 #include <linux/net_tstamp.h> 27 #include <linux/timecounter.h> 28 29 /* compilation time flags */ 30 31 /* define this to make the driver freeze on error to allow getting debug info 32 * (you will need to reboot afterwards) */ 33 /* #define BNX2X_STOP_ON_ERROR */ 34 35 #define DRV_MODULE_VERSION "1.712.30-0" 36 #define DRV_MODULE_RELDATE "2014/02/10" 37 #define BNX2X_BC_VER 0x040200 38 39 #if defined(CONFIG_DCB) 40 #define BCM_DCBNL 41 #endif 42 43 #include "bnx2x_hsi.h" 44 45 #include "../cnic_if.h" 46 47 #define BNX2X_MIN_MSIX_VEC_CNT(bp) ((bp)->min_msix_vec_cnt) 48 49 #include <linux/mdio.h> 50 51 #include "bnx2x_reg.h" 52 #include "bnx2x_fw_defs.h" 53 #include "bnx2x_mfw_req.h" 54 #include "bnx2x_link.h" 55 #include "bnx2x_sp.h" 56 #include "bnx2x_dcb.h" 57 #include "bnx2x_stats.h" 58 #include "bnx2x_vfpf.h" 59 60 enum bnx2x_int_mode { 61 BNX2X_INT_MODE_MSIX, 62 BNX2X_INT_MODE_INTX, 63 BNX2X_INT_MODE_MSI 64 }; 65 66 /* error/debug prints */ 67 68 #define DRV_MODULE_NAME "bnx2x" 69 70 /* for messages that are currently off */ 71 #define BNX2X_MSG_OFF 0x0 72 #define BNX2X_MSG_MCP 0x0010000 /* was: NETIF_MSG_HW */ 73 #define BNX2X_MSG_STATS 0x0020000 /* was: NETIF_MSG_TIMER */ 74 #define BNX2X_MSG_NVM 0x0040000 /* was: NETIF_MSG_HW */ 75 #define BNX2X_MSG_DMAE 0x0080000 /* was: NETIF_MSG_HW */ 76 #define BNX2X_MSG_SP 0x0100000 /* was: NETIF_MSG_INTR */ 77 #define BNX2X_MSG_FP 0x0200000 /* was: NETIF_MSG_INTR */ 78 #define BNX2X_MSG_IOV 0x0800000 79 #define BNX2X_MSG_PTP 0x1000000 80 #define BNX2X_MSG_IDLE 0x2000000 /* used for idle check*/ 81 #define BNX2X_MSG_ETHTOOL 0x4000000 82 #define BNX2X_MSG_DCB 0x8000000 83 84 /* regular debug print */ 85 #define DP_INNER(fmt, ...) \ 86 pr_notice("[%s:%d(%s)]" fmt, \ 87 __func__, __LINE__, \ 88 bp->dev ? (bp->dev->name) : "?", \ 89 ##__VA_ARGS__); 90 91 #define DP(__mask, fmt, ...) \ 92 do { \ 93 if (unlikely(bp->msg_enable & (__mask))) \ 94 DP_INNER(fmt, ##__VA_ARGS__); \ 95 } while (0) 96 97 #define DP_AND(__mask, fmt, ...) \ 98 do { \ 99 if (unlikely((bp->msg_enable & (__mask)) == __mask)) \ 100 DP_INNER(fmt, ##__VA_ARGS__); \ 101 } while (0) 102 103 #define DP_CONT(__mask, fmt, ...) \ 104 do { \ 105 if (unlikely(bp->msg_enable & (__mask))) \ 106 pr_cont(fmt, ##__VA_ARGS__); \ 107 } while (0) 108 109 /* errors debug print */ 110 #define BNX2X_DBG_ERR(fmt, ...) \ 111 do { \ 112 if (unlikely(netif_msg_probe(bp))) \ 113 pr_err("[%s:%d(%s)]" fmt, \ 114 __func__, __LINE__, \ 115 bp->dev ? (bp->dev->name) : "?", \ 116 ##__VA_ARGS__); \ 117 } while (0) 118 119 /* for errors (never masked) */ 120 #define BNX2X_ERR(fmt, ...) \ 121 do { \ 122 pr_err("[%s:%d(%s)]" fmt, \ 123 __func__, __LINE__, \ 124 bp->dev ? (bp->dev->name) : "?", \ 125 ##__VA_ARGS__); \ 126 } while (0) 127 128 #define BNX2X_ERROR(fmt, ...) \ 129 pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__) 130 131 /* before we have a dev->name use dev_info() */ 132 #define BNX2X_DEV_INFO(fmt, ...) \ 133 do { \ 134 if (unlikely(netif_msg_probe(bp))) \ 135 dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__); \ 136 } while (0) 137 138 /* Error handling */ 139 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int); 140 #ifdef BNX2X_STOP_ON_ERROR 141 #define bnx2x_panic() \ 142 do { \ 143 bp->panic = 1; \ 144 BNX2X_ERR("driver assert\n"); \ 145 bnx2x_panic_dump(bp, true); \ 146 } while (0) 147 #else 148 #define bnx2x_panic() \ 149 do { \ 150 bp->panic = 1; \ 151 BNX2X_ERR("driver assert\n"); \ 152 bnx2x_panic_dump(bp, false); \ 153 } while (0) 154 #endif 155 156 #define bnx2x_mc_addr(ha) ((ha)->addr) 157 #define bnx2x_uc_addr(ha) ((ha)->addr) 158 159 #define U64_LO(x) ((u32)(((u64)(x)) & 0xffffffff)) 160 #define U64_HI(x) ((u32)(((u64)(x)) >> 32)) 161 #define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo)) 162 163 #define REG_ADDR(bp, offset) ((bp->regview) + (offset)) 164 165 #define REG_RD(bp, offset) readl(REG_ADDR(bp, offset)) 166 #define REG_RD8(bp, offset) readb(REG_ADDR(bp, offset)) 167 #define REG_RD16(bp, offset) readw(REG_ADDR(bp, offset)) 168 169 #define REG_WR_RELAXED(bp, offset, val) \ 170 writel_relaxed((u32)val, REG_ADDR(bp, offset)) 171 172 #define REG_WR16_RELAXED(bp, offset, val) \ 173 writew_relaxed((u16)val, REG_ADDR(bp, offset)) 174 175 #define REG_WR(bp, offset, val) writel((u32)val, REG_ADDR(bp, offset)) 176 #define REG_WR8(bp, offset, val) writeb((u8)val, REG_ADDR(bp, offset)) 177 #define REG_WR16(bp, offset, val) writew((u16)val, REG_ADDR(bp, offset)) 178 179 #define REG_RD_IND(bp, offset) bnx2x_reg_rd_ind(bp, offset) 180 #define REG_WR_IND(bp, offset, val) bnx2x_reg_wr_ind(bp, offset, val) 181 182 #define REG_RD_DMAE(bp, offset, valp, len32) \ 183 do { \ 184 bnx2x_read_dmae(bp, offset, len32);\ 185 memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \ 186 } while (0) 187 188 #define REG_WR_DMAE(bp, offset, valp, len32) \ 189 do { \ 190 memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \ 191 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \ 192 offset, len32); \ 193 } while (0) 194 195 #define REG_WR_DMAE_LEN(bp, offset, valp, len32) \ 196 REG_WR_DMAE(bp, offset, valp, len32) 197 198 #define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \ 199 do { \ 200 memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \ 201 bnx2x_write_big_buf_wb(bp, addr, len32); \ 202 } while (0) 203 204 #define SHMEM_ADDR(bp, field) (bp->common.shmem_base + \ 205 offsetof(struct shmem_region, field)) 206 #define SHMEM_RD(bp, field) REG_RD(bp, SHMEM_ADDR(bp, field)) 207 #define SHMEM_WR(bp, field, val) REG_WR(bp, SHMEM_ADDR(bp, field), val) 208 209 #define SHMEM2_ADDR(bp, field) (bp->common.shmem2_base + \ 210 offsetof(struct shmem2_region, field)) 211 #define SHMEM2_RD(bp, field) REG_RD(bp, SHMEM2_ADDR(bp, field)) 212 #define SHMEM2_WR(bp, field, val) REG_WR(bp, SHMEM2_ADDR(bp, field), val) 213 #define MF_CFG_ADDR(bp, field) (bp->common.mf_cfg_base + \ 214 offsetof(struct mf_cfg, field)) 215 #define MF2_CFG_ADDR(bp, field) (bp->common.mf2_cfg_base + \ 216 offsetof(struct mf2_cfg, field)) 217 218 #define MF_CFG_RD(bp, field) REG_RD(bp, MF_CFG_ADDR(bp, field)) 219 #define MF_CFG_WR(bp, field, val) REG_WR(bp,\ 220 MF_CFG_ADDR(bp, field), (val)) 221 #define MF2_CFG_RD(bp, field) REG_RD(bp, MF2_CFG_ADDR(bp, field)) 222 223 #define SHMEM2_HAS(bp, field) ((bp)->common.shmem2_base && \ 224 (SHMEM2_RD((bp), size) > \ 225 offsetof(struct shmem2_region, field))) 226 227 #define EMAC_RD(bp, reg) REG_RD(bp, emac_base + reg) 228 #define EMAC_WR(bp, reg, val) REG_WR(bp, emac_base + reg, val) 229 230 /* SP SB indices */ 231 232 /* General SP events - stats query, cfc delete, etc */ 233 #define HC_SP_INDEX_ETH_DEF_CONS 3 234 235 /* EQ completions */ 236 #define HC_SP_INDEX_EQ_CONS 7 237 238 /* FCoE L2 connection completions */ 239 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6 240 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4 241 /* iSCSI L2 */ 242 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5 243 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1 244 245 /* Special clients parameters */ 246 247 /* SB indices */ 248 /* FCoE L2 */ 249 #define BNX2X_FCOE_L2_RX_INDEX \ 250 (&bp->def_status_blk->sp_sb.\ 251 index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS]) 252 253 #define BNX2X_FCOE_L2_TX_INDEX \ 254 (&bp->def_status_blk->sp_sb.\ 255 index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS]) 256 257 /** 258 * CIDs and CLIDs: 259 * CLIDs below is a CLID for func 0, then the CLID for other 260 * functions will be calculated by the formula: 261 * 262 * FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X 263 * 264 */ 265 enum { 266 BNX2X_ISCSI_ETH_CL_ID_IDX, 267 BNX2X_FCOE_ETH_CL_ID_IDX, 268 BNX2X_MAX_CNIC_ETH_CL_ID_IDX, 269 }; 270 271 /* use a value high enough to be above all the PFs, which has least significant 272 * nibble as 8, so when cnic needs to come up with a CID for UIO to use to 273 * calculate doorbell address according to old doorbell configuration scheme 274 * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number 275 * We must avoid coming up with cid 8 for iscsi since according to this method 276 * the designated UIO cid will come out 0 and it has a special handling for that 277 * case which doesn't suit us. Therefore will will cieling to closes cid which 278 * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18. 279 */ 280 281 #define BNX2X_1st_NON_L2_ETH_CID(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * \ 282 (bp)->max_cos) 283 /* amount of cids traversed by UIO's DPM addition to doorbell */ 284 #define UIO_DPM 8 285 /* roundup to DPM offset */ 286 #define UIO_ROUNDUP(bp) (roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \ 287 UIO_DPM)) 288 /* offset to nearest value which has lsb nibble matching DPM */ 289 #define UIO_CID_OFFSET(bp) ((UIO_ROUNDUP(bp) + UIO_DPM) % \ 290 (UIO_DPM * 2)) 291 /* add offset to rounded-up cid to get a value which could be used with UIO */ 292 #define UIO_DPM_ALIGN(bp) (UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp)) 293 /* but wait - avoid UIO special case for cid 0 */ 294 #define UIO_DPM_CID0_OFFSET(bp) ((UIO_DPM * 2) * \ 295 (UIO_DPM_ALIGN(bp) == UIO_DPM)) 296 /* Properly DPM aligned CID dajusted to cid 0 secal case */ 297 #define BNX2X_CNIC_START_ETH_CID(bp) (UIO_DPM_ALIGN(bp) + \ 298 (UIO_DPM_CID0_OFFSET(bp))) 299 /* how many cids were wasted - need this value for cid allocation */ 300 #define UIO_CID_PAD(bp) (BNX2X_CNIC_START_ETH_CID(bp) - \ 301 BNX2X_1st_NON_L2_ETH_CID(bp)) 302 /* iSCSI L2 */ 303 #define BNX2X_ISCSI_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp)) 304 /* FCoE L2 */ 305 #define BNX2X_FCOE_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp) + 1) 306 307 #define CNIC_SUPPORT(bp) ((bp)->cnic_support) 308 #define CNIC_ENABLED(bp) ((bp)->cnic_enabled) 309 #define CNIC_LOADED(bp) ((bp)->cnic_loaded) 310 #define FCOE_INIT(bp) ((bp)->fcoe_init) 311 312 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \ 313 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR 314 315 #define SM_RX_ID 0 316 #define SM_TX_ID 1 317 318 /* defines for multiple tx priority indices */ 319 #define FIRST_TX_ONLY_COS_INDEX 1 320 #define FIRST_TX_COS_INDEX 0 321 322 /* rules for calculating the cids of tx-only connections */ 323 #define CID_TO_FP(cid, bp) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp)) 324 #define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \ 325 (cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp)) 326 327 /* fp index inside class of service range */ 328 #define FP_COS_TO_TXQ(fp, cos, bp) \ 329 ((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp)) 330 331 /* Indexes for transmission queues array: 332 * txdata for RSS i CoS j is at location i + (j * num of RSS) 333 * txdata for FCoE (if exist) is at location max cos * num of RSS 334 * txdata for FWD (if exist) is one location after FCoE 335 * txdata for OOO (if exist) is one location after FWD 336 */ 337 enum { 338 FCOE_TXQ_IDX_OFFSET, 339 FWD_TXQ_IDX_OFFSET, 340 OOO_TXQ_IDX_OFFSET, 341 }; 342 #define MAX_ETH_TXQ_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos) 343 #define FCOE_TXQ_IDX(bp) (MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET) 344 345 /* fast path */ 346 /* 347 * This driver uses new build_skb() API : 348 * RX ring buffer contains pointer to kmalloc() data only, 349 * skb are built only after Hardware filled the frame. 350 */ 351 struct sw_rx_bd { 352 u8 *data; 353 DEFINE_DMA_UNMAP_ADDR(mapping); 354 }; 355 356 struct sw_tx_bd { 357 struct sk_buff *skb; 358 u16 first_bd; 359 u8 flags; 360 /* Set on the first BD descriptor when there is a split BD */ 361 #define BNX2X_TSO_SPLIT_BD (1<<0) 362 #define BNX2X_HAS_SECOND_PBD (1<<1) 363 }; 364 365 struct sw_rx_page { 366 struct page *page; 367 DEFINE_DMA_UNMAP_ADDR(mapping); 368 unsigned int offset; 369 }; 370 371 union db_prod { 372 struct doorbell_set_prod data; 373 u32 raw; 374 }; 375 376 /* dropless fc FW/HW related params */ 377 #define BRB_SIZE(bp) (CHIP_IS_E3(bp) ? 1024 : 512) 378 #define MAX_AGG_QS(bp) (CHIP_IS_E1(bp) ? \ 379 ETH_MAX_AGGREGATION_QUEUES_E1 :\ 380 ETH_MAX_AGGREGATION_QUEUES_E1H_E2) 381 #define FW_DROP_LEVEL(bp) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp)) 382 #define FW_PREFETCH_CNT 16 383 #define DROPLESS_FC_HEADROOM 100 384 385 /* MC hsi */ 386 #define BCM_PAGE_SHIFT 12 387 #define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT) 388 #define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1)) 389 #define BCM_PAGE_ALIGN(addr) (((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK) 390 391 #define PAGES_PER_SGE_SHIFT 0 392 #define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT) 393 #define SGE_PAGE_SHIFT 12 394 #define SGE_PAGE_SIZE (1 << SGE_PAGE_SHIFT) 395 #define SGE_PAGE_MASK (~(SGE_PAGE_SIZE - 1)) 396 #define SGE_PAGE_ALIGN(addr) (((addr) + SGE_PAGE_SIZE - 1) & SGE_PAGE_MASK) 397 #define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE) 398 #define TPA_AGG_SIZE min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \ 399 SGE_PAGES), 0xffff) 400 401 /* SGE ring related macros */ 402 #define NUM_RX_SGE_PAGES 2 403 #define RX_SGE_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge)) 404 #define NEXT_PAGE_SGE_DESC_CNT 2 405 #define MAX_RX_SGE_CNT (RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT) 406 /* RX_SGE_CNT is promised to be a power of 2 */ 407 #define RX_SGE_MASK (RX_SGE_CNT - 1) 408 #define NUM_RX_SGE (RX_SGE_CNT * NUM_RX_SGE_PAGES) 409 #define MAX_RX_SGE (NUM_RX_SGE - 1) 410 #define NEXT_SGE_IDX(x) ((((x) & RX_SGE_MASK) == \ 411 (MAX_RX_SGE_CNT - 1)) ? \ 412 (x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \ 413 (x) + 1) 414 #define RX_SGE(x) ((x) & MAX_RX_SGE) 415 416 /* 417 * Number of required SGEs is the sum of two: 418 * 1. Number of possible opened aggregations (next packet for 419 * these aggregations will probably consume SGE immediately) 420 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only 421 * after placement on BD for new TPA aggregation) 422 * 423 * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page 424 */ 425 #define NUM_SGE_REQ (MAX_AGG_QS(bp) + \ 426 (BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2) 427 #define NUM_SGE_PG_REQ ((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \ 428 MAX_RX_SGE_CNT) 429 #define SGE_TH_LO(bp) (NUM_SGE_REQ + \ 430 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT) 431 #define SGE_TH_HI(bp) (SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM) 432 433 /* Manipulate a bit vector defined as an array of u64 */ 434 435 /* Number of bits in one sge_mask array element */ 436 #define BIT_VEC64_ELEM_SZ 64 437 #define BIT_VEC64_ELEM_SHIFT 6 438 #define BIT_VEC64_ELEM_MASK ((u64)BIT_VEC64_ELEM_SZ - 1) 439 440 #define __BIT_VEC64_SET_BIT(el, bit) \ 441 do { \ 442 el = ((el) | ((u64)0x1 << (bit))); \ 443 } while (0) 444 445 #define __BIT_VEC64_CLEAR_BIT(el, bit) \ 446 do { \ 447 el = ((el) & (~((u64)0x1 << (bit)))); \ 448 } while (0) 449 450 #define BIT_VEC64_SET_BIT(vec64, idx) \ 451 __BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \ 452 (idx) & BIT_VEC64_ELEM_MASK) 453 454 #define BIT_VEC64_CLEAR_BIT(vec64, idx) \ 455 __BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \ 456 (idx) & BIT_VEC64_ELEM_MASK) 457 458 #define BIT_VEC64_TEST_BIT(vec64, idx) \ 459 (((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \ 460 ((idx) & BIT_VEC64_ELEM_MASK)) & 0x1) 461 462 /* Creates a bitmask of all ones in less significant bits. 463 idx - index of the most significant bit in the created mask */ 464 #define BIT_VEC64_ONES_MASK(idx) \ 465 (((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1) 466 #define BIT_VEC64_ELEM_ONE_MASK ((u64)(~0)) 467 468 /*******************************************************/ 469 470 /* Number of u64 elements in SGE mask array */ 471 #define RX_SGE_MASK_LEN (NUM_RX_SGE / BIT_VEC64_ELEM_SZ) 472 #define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1) 473 #define NEXT_SGE_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK) 474 475 union host_hc_status_block { 476 /* pointer to fp status block e1x */ 477 struct host_hc_status_block_e1x *e1x_sb; 478 /* pointer to fp status block e2 */ 479 struct host_hc_status_block_e2 *e2_sb; 480 }; 481 482 struct bnx2x_agg_info { 483 /* 484 * First aggregation buffer is a data buffer, the following - are pages. 485 * We will preallocate the data buffer for each aggregation when 486 * we open the interface and will replace the BD at the consumer 487 * with this one when we receive the TPA_START CQE in order to 488 * keep the Rx BD ring consistent. 489 */ 490 struct sw_rx_bd first_buf; 491 u8 tpa_state; 492 #define BNX2X_TPA_START 1 493 #define BNX2X_TPA_STOP 2 494 #define BNX2X_TPA_ERROR 3 495 u8 placement_offset; 496 u16 parsing_flags; 497 u16 vlan_tag; 498 u16 len_on_bd; 499 u32 rxhash; 500 enum pkt_hash_types rxhash_type; 501 u16 gro_size; 502 u16 full_page; 503 }; 504 505 #define Q_STATS_OFFSET32(stat_name) \ 506 (offsetof(struct bnx2x_eth_q_stats, stat_name) / 4) 507 508 struct bnx2x_fp_txdata { 509 510 struct sw_tx_bd *tx_buf_ring; 511 512 union eth_tx_bd_types *tx_desc_ring; 513 dma_addr_t tx_desc_mapping; 514 515 u32 cid; 516 517 union db_prod tx_db; 518 519 u16 tx_pkt_prod; 520 u16 tx_pkt_cons; 521 u16 tx_bd_prod; 522 u16 tx_bd_cons; 523 524 unsigned long tx_pkt; 525 526 __le16 *tx_cons_sb; 527 528 int txq_index; 529 struct bnx2x_fastpath *parent_fp; 530 int tx_ring_size; 531 }; 532 533 enum bnx2x_tpa_mode_t { 534 TPA_MODE_DISABLED, 535 TPA_MODE_LRO, 536 TPA_MODE_GRO 537 }; 538 539 struct bnx2x_alloc_pool { 540 struct page *page; 541 unsigned int offset; 542 }; 543 544 struct bnx2x_fastpath { 545 struct bnx2x *bp; /* parent */ 546 547 struct napi_struct napi; 548 549 union host_hc_status_block status_blk; 550 /* chip independent shortcuts into sb structure */ 551 __le16 *sb_index_values; 552 __le16 *sb_running_index; 553 /* chip independent shortcut into rx_prods_offset memory */ 554 u32 ustorm_rx_prods_offset; 555 556 u32 rx_buf_size; 557 u32 rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */ 558 dma_addr_t status_blk_mapping; 559 560 enum bnx2x_tpa_mode_t mode; 561 562 u8 max_cos; /* actual number of active tx coses */ 563 struct bnx2x_fp_txdata *txdata_ptr[BNX2X_MULTI_TX_COS]; 564 565 struct sw_rx_bd *rx_buf_ring; /* BDs mappings ring */ 566 struct sw_rx_page *rx_page_ring; /* SGE pages mappings ring */ 567 568 struct eth_rx_bd *rx_desc_ring; 569 dma_addr_t rx_desc_mapping; 570 571 union eth_rx_cqe *rx_comp_ring; 572 dma_addr_t rx_comp_mapping; 573 574 /* SGE ring */ 575 struct eth_rx_sge *rx_sge_ring; 576 dma_addr_t rx_sge_mapping; 577 578 u64 sge_mask[RX_SGE_MASK_LEN]; 579 580 u32 cid; 581 582 __le16 fp_hc_idx; 583 584 u8 index; /* number in fp array */ 585 u8 rx_queue; /* index for skb_record */ 586 u8 cl_id; /* eth client id */ 587 u8 cl_qzone_id; 588 u8 fw_sb_id; /* status block number in FW */ 589 u8 igu_sb_id; /* status block number in HW */ 590 591 u16 rx_bd_prod; 592 u16 rx_bd_cons; 593 u16 rx_comp_prod; 594 u16 rx_comp_cons; 595 u16 rx_sge_prod; 596 /* The last maximal completed SGE */ 597 u16 last_max_sge; 598 __le16 *rx_cons_sb; 599 600 /* TPA related */ 601 struct bnx2x_agg_info *tpa_info; 602 #ifdef BNX2X_STOP_ON_ERROR 603 u64 tpa_queue_used; 604 #endif 605 /* The size is calculated using the following: 606 sizeof name field from netdev structure + 607 4 ('-Xx-' string) + 608 4 (for the digits and to make it DWORD aligned) */ 609 #define FP_NAME_SIZE (sizeof(((struct net_device *)0)->name) + 8) 610 char name[FP_NAME_SIZE]; 611 612 struct bnx2x_alloc_pool page_pool; 613 }; 614 615 #define bnx2x_fp(bp, nr, var) ((bp)->fp[(nr)].var) 616 #define bnx2x_sp_obj(bp, fp) ((bp)->sp_objs[(fp)->index]) 617 #define bnx2x_fp_stats(bp, fp) (&((bp)->fp_stats[(fp)->index])) 618 #define bnx2x_fp_qstats(bp, fp) (&((bp)->fp_stats[(fp)->index].eth_q_stats)) 619 620 /* Use 2500 as a mini-jumbo MTU for FCoE */ 621 #define BNX2X_FCOE_MINI_JUMBO_MTU 2500 622 623 #define FCOE_IDX_OFFSET 0 624 625 #define FCOE_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) + \ 626 FCOE_IDX_OFFSET) 627 #define bnx2x_fcoe_fp(bp) (&bp->fp[FCOE_IDX(bp)]) 628 #define bnx2x_fcoe(bp, var) (bnx2x_fcoe_fp(bp)->var) 629 #define bnx2x_fcoe_inner_sp_obj(bp) (&bp->sp_objs[FCOE_IDX(bp)]) 630 #define bnx2x_fcoe_sp_obj(bp, var) (bnx2x_fcoe_inner_sp_obj(bp)->var) 631 #define bnx2x_fcoe_tx(bp, var) (bnx2x_fcoe_fp(bp)-> \ 632 txdata_ptr[FIRST_TX_COS_INDEX] \ 633 ->var) 634 635 #define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp)) 636 #define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->bp)) 637 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(bp)) 638 639 /* MC hsi */ 640 #define MAX_FETCH_BD 13 /* HW max BDs per packet */ 641 #define RX_COPY_THRESH 92 642 643 #define NUM_TX_RINGS 16 644 #define TX_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types)) 645 #define NEXT_PAGE_TX_DESC_CNT 1 646 #define MAX_TX_DESC_CNT (TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT) 647 #define NUM_TX_BD (TX_DESC_CNT * NUM_TX_RINGS) 648 #define MAX_TX_BD (NUM_TX_BD - 1) 649 #define MAX_TX_AVAIL (MAX_TX_DESC_CNT * NUM_TX_RINGS - 2) 650 #define NEXT_TX_IDX(x) ((((x) & MAX_TX_DESC_CNT) == \ 651 (MAX_TX_DESC_CNT - 1)) ? \ 652 (x) + 1 + NEXT_PAGE_TX_DESC_CNT : \ 653 (x) + 1) 654 #define TX_BD(x) ((x) & MAX_TX_BD) 655 #define TX_BD_POFF(x) ((x) & MAX_TX_DESC_CNT) 656 657 /* number of NEXT_PAGE descriptors may be required during placement */ 658 #define NEXT_CNT_PER_TX_PKT(bds) \ 659 (((bds) + MAX_TX_DESC_CNT - 1) / \ 660 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT) 661 /* max BDs per tx packet w/o next_pages: 662 * START_BD - describes packed 663 * START_BD(splitted) - includes unpaged data segment for GSO 664 * PARSING_BD - for TSO and CSUM data 665 * PARSING_BD2 - for encapsulation data 666 * Frag BDs - describes pages for frags 667 */ 668 #define BDS_PER_TX_PKT 4 669 #define MAX_BDS_PER_TX_PKT (MAX_SKB_FRAGS + BDS_PER_TX_PKT) 670 /* max BDs per tx packet including next pages */ 671 #define MAX_DESC_PER_TX_PKT (MAX_BDS_PER_TX_PKT + \ 672 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT)) 673 674 /* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */ 675 #define NUM_RX_RINGS 8 676 #define RX_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd)) 677 #define NEXT_PAGE_RX_DESC_CNT 2 678 #define MAX_RX_DESC_CNT (RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT) 679 #define RX_DESC_MASK (RX_DESC_CNT - 1) 680 #define NUM_RX_BD (RX_DESC_CNT * NUM_RX_RINGS) 681 #define MAX_RX_BD (NUM_RX_BD - 1) 682 #define MAX_RX_AVAIL (MAX_RX_DESC_CNT * NUM_RX_RINGS - 2) 683 684 /* dropless fc calculations for BDs 685 * 686 * Number of BDs should as number of buffers in BRB: 687 * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT 688 * "next" elements on each page 689 */ 690 #define NUM_BD_REQ BRB_SIZE(bp) 691 #define NUM_BD_PG_REQ ((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \ 692 MAX_RX_DESC_CNT) 693 #define BD_TH_LO(bp) (NUM_BD_REQ + \ 694 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \ 695 FW_DROP_LEVEL(bp)) 696 #define BD_TH_HI(bp) (BD_TH_LO(bp) + DROPLESS_FC_HEADROOM) 697 698 #define MIN_RX_AVAIL ((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128) 699 700 #define MIN_RX_SIZE_TPA_HW (CHIP_IS_E1(bp) ? \ 701 ETH_MIN_RX_CQES_WITH_TPA_E1 : \ 702 ETH_MIN_RX_CQES_WITH_TPA_E1H_E2) 703 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA 704 #define MIN_RX_SIZE_TPA (max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL)) 705 #define MIN_RX_SIZE_NONTPA (max_t(u32, MIN_RX_SIZE_NONTPA_HW,\ 706 MIN_RX_AVAIL)) 707 708 #define NEXT_RX_IDX(x) ((((x) & RX_DESC_MASK) == \ 709 (MAX_RX_DESC_CNT - 1)) ? \ 710 (x) + 1 + NEXT_PAGE_RX_DESC_CNT : \ 711 (x) + 1) 712 #define RX_BD(x) ((x) & MAX_RX_BD) 713 714 /* 715 * As long as CQE is X times bigger than BD entry we have to allocate X times 716 * more pages for CQ ring in order to keep it balanced with BD ring 717 */ 718 #define CQE_BD_REL (sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd)) 719 #define NUM_RCQ_RINGS (NUM_RX_RINGS * CQE_BD_REL) 720 #define RCQ_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe)) 721 #define NEXT_PAGE_RCQ_DESC_CNT 1 722 #define MAX_RCQ_DESC_CNT (RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT) 723 #define NUM_RCQ_BD (RCQ_DESC_CNT * NUM_RCQ_RINGS) 724 #define MAX_RCQ_BD (NUM_RCQ_BD - 1) 725 #define MAX_RCQ_AVAIL (MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2) 726 #define NEXT_RCQ_IDX(x) ((((x) & MAX_RCQ_DESC_CNT) == \ 727 (MAX_RCQ_DESC_CNT - 1)) ? \ 728 (x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \ 729 (x) + 1) 730 #define RCQ_BD(x) ((x) & MAX_RCQ_BD) 731 732 /* dropless fc calculations for RCQs 733 * 734 * Number of RCQs should be as number of buffers in BRB: 735 * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT 736 * "next" elements on each page 737 */ 738 #define NUM_RCQ_REQ BRB_SIZE(bp) 739 #define NUM_RCQ_PG_REQ ((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \ 740 MAX_RCQ_DESC_CNT) 741 #define RCQ_TH_LO(bp) (NUM_RCQ_REQ + \ 742 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \ 743 FW_DROP_LEVEL(bp)) 744 #define RCQ_TH_HI(bp) (RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM) 745 746 /* This is needed for determining of last_max */ 747 #define SUB_S16(a, b) (s16)((s16)(a) - (s16)(b)) 748 #define SUB_S32(a, b) (s32)((s32)(a) - (s32)(b)) 749 750 #define BNX2X_SWCID_SHIFT 17 751 #define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1) 752 753 /* used on a CID received from the HW */ 754 #define SW_CID(x) (le32_to_cpu(x) & BNX2X_SWCID_MASK) 755 #define CQE_CMD(x) (le32_to_cpu(x) >> \ 756 COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT) 757 758 #define BD_UNMAP_ADDR(bd) HILO_U64(le32_to_cpu((bd)->addr_hi), \ 759 le32_to_cpu((bd)->addr_lo)) 760 #define BD_UNMAP_LEN(bd) (le16_to_cpu((bd)->nbytes)) 761 762 #define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */ 763 #define BNX2X_DB_SHIFT 3 /* 8 bytes*/ 764 #if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT) 765 #error "Min DB doorbell stride is 8" 766 #endif 767 #define DOORBELL_RELAXED(bp, cid, val) \ 768 writel_relaxed((u32)(val), (bp)->doorbells + ((bp)->db_size * (cid))) 769 770 /* TX CSUM helpers */ 771 #define SKB_CS_OFF(skb) (offsetof(struct tcphdr, check) - \ 772 skb->csum_offset) 773 #define SKB_CS(skb) (*(u16 *)(skb_transport_header(skb) + \ 774 skb->csum_offset)) 775 776 #define pbd_tcp_flags(tcp_hdr) (ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff) 777 778 #define XMIT_PLAIN 0 779 #define XMIT_CSUM_V4 (1 << 0) 780 #define XMIT_CSUM_V6 (1 << 1) 781 #define XMIT_CSUM_TCP (1 << 2) 782 #define XMIT_GSO_V4 (1 << 3) 783 #define XMIT_GSO_V6 (1 << 4) 784 #define XMIT_CSUM_ENC_V4 (1 << 5) 785 #define XMIT_CSUM_ENC_V6 (1 << 6) 786 #define XMIT_GSO_ENC_V4 (1 << 7) 787 #define XMIT_GSO_ENC_V6 (1 << 8) 788 789 #define XMIT_CSUM_ENC (XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6) 790 #define XMIT_GSO_ENC (XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6) 791 792 #define XMIT_CSUM (XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC) 793 #define XMIT_GSO (XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC) 794 795 /* stuff added to make the code fit 80Col */ 796 #define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE) 797 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG) 798 #define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG) 799 #define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD) 800 #define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH) 801 802 #define ETH_RX_ERROR_FALGS ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG 803 804 #define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \ 805 (((le16_to_cpu(flags) & \ 806 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \ 807 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \ 808 == PRS_FLAG_OVERETH_IPV4) 809 #define BNX2X_RX_SUM_FIX(cqe) \ 810 BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags) 811 812 #define FP_USB_FUNC_OFF \ 813 offsetof(struct cstorm_status_block_u, func) 814 #define FP_CSB_FUNC_OFF \ 815 offsetof(struct cstorm_status_block_c, func) 816 817 #define HC_INDEX_ETH_RX_CQ_CONS 1 818 819 #define HC_INDEX_OOO_TX_CQ_CONS 4 820 821 #define HC_INDEX_ETH_TX_CQ_CONS_COS0 5 822 823 #define HC_INDEX_ETH_TX_CQ_CONS_COS1 6 824 825 #define HC_INDEX_ETH_TX_CQ_CONS_COS2 7 826 827 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0 828 829 #define BNX2X_RX_SB_INDEX \ 830 (&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]) 831 832 #define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0 833 834 #define BNX2X_TX_SB_INDEX_COS0 \ 835 (&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]) 836 837 /* end of fast path */ 838 839 /* common */ 840 841 struct bnx2x_common { 842 843 u32 chip_id; 844 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 845 #define CHIP_ID(bp) (bp->common.chip_id & 0xfffffff0) 846 847 #define CHIP_NUM(bp) (bp->common.chip_id >> 16) 848 #define CHIP_NUM_57710 0x164e 849 #define CHIP_NUM_57711 0x164f 850 #define CHIP_NUM_57711E 0x1650 851 #define CHIP_NUM_57712 0x1662 852 #define CHIP_NUM_57712_MF 0x1663 853 #define CHIP_NUM_57712_VF 0x166f 854 #define CHIP_NUM_57713 0x1651 855 #define CHIP_NUM_57713E 0x1652 856 #define CHIP_NUM_57800 0x168a 857 #define CHIP_NUM_57800_MF 0x16a5 858 #define CHIP_NUM_57800_VF 0x16a9 859 #define CHIP_NUM_57810 0x168e 860 #define CHIP_NUM_57810_MF 0x16ae 861 #define CHIP_NUM_57810_VF 0x16af 862 #define CHIP_NUM_57811 0x163d 863 #define CHIP_NUM_57811_MF 0x163e 864 #define CHIP_NUM_57811_VF 0x163f 865 #define CHIP_NUM_57840_OBSOLETE 0x168d 866 #define CHIP_NUM_57840_MF_OBSOLETE 0x16ab 867 #define CHIP_NUM_57840_4_10 0x16a1 868 #define CHIP_NUM_57840_2_20 0x16a2 869 #define CHIP_NUM_57840_MF 0x16a4 870 #define CHIP_NUM_57840_VF 0x16ad 871 #define CHIP_IS_E1(bp) (CHIP_NUM(bp) == CHIP_NUM_57710) 872 #define CHIP_IS_57711(bp) (CHIP_NUM(bp) == CHIP_NUM_57711) 873 #define CHIP_IS_57711E(bp) (CHIP_NUM(bp) == CHIP_NUM_57711E) 874 #define CHIP_IS_57712(bp) (CHIP_NUM(bp) == CHIP_NUM_57712) 875 #define CHIP_IS_57712_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_VF) 876 #define CHIP_IS_57712_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_MF) 877 #define CHIP_IS_57800(bp) (CHIP_NUM(bp) == CHIP_NUM_57800) 878 #define CHIP_IS_57800_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_MF) 879 #define CHIP_IS_57800_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_VF) 880 #define CHIP_IS_57810(bp) (CHIP_NUM(bp) == CHIP_NUM_57810) 881 #define CHIP_IS_57810_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_MF) 882 #define CHIP_IS_57810_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_VF) 883 #define CHIP_IS_57811(bp) (CHIP_NUM(bp) == CHIP_NUM_57811) 884 #define CHIP_IS_57811_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_MF) 885 #define CHIP_IS_57811_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_VF) 886 #define CHIP_IS_57840(bp) \ 887 ((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \ 888 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \ 889 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE)) 890 #define CHIP_IS_57840_MF(bp) ((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \ 891 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE)) 892 #define CHIP_IS_57840_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57840_VF) 893 #define CHIP_IS_E1H(bp) (CHIP_IS_57711(bp) || \ 894 CHIP_IS_57711E(bp)) 895 #define CHIP_IS_57811xx(bp) (CHIP_IS_57811(bp) || \ 896 CHIP_IS_57811_MF(bp) || \ 897 CHIP_IS_57811_VF(bp)) 898 #define CHIP_IS_E2(bp) (CHIP_IS_57712(bp) || \ 899 CHIP_IS_57712_MF(bp) || \ 900 CHIP_IS_57712_VF(bp)) 901 #define CHIP_IS_E3(bp) (CHIP_IS_57800(bp) || \ 902 CHIP_IS_57800_MF(bp) || \ 903 CHIP_IS_57800_VF(bp) || \ 904 CHIP_IS_57810(bp) || \ 905 CHIP_IS_57810_MF(bp) || \ 906 CHIP_IS_57810_VF(bp) || \ 907 CHIP_IS_57811xx(bp) || \ 908 CHIP_IS_57840(bp) || \ 909 CHIP_IS_57840_MF(bp) || \ 910 CHIP_IS_57840_VF(bp)) 911 #define CHIP_IS_E1x(bp) (CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp))) 912 #define USES_WARPCORE(bp) (CHIP_IS_E3(bp)) 913 #define IS_E1H_OFFSET (!CHIP_IS_E1(bp)) 914 915 #define CHIP_REV_SHIFT 12 916 #define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT) 917 #define CHIP_REV_VAL(bp) (bp->common.chip_id & CHIP_REV_MASK) 918 #define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT) 919 #define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT) 920 /* assume maximum 5 revisions */ 921 #define CHIP_REV_IS_SLOW(bp) (CHIP_REV_VAL(bp) > 0x00005000) 922 /* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */ 923 #define CHIP_REV_IS_EMUL(bp) ((CHIP_REV_IS_SLOW(bp)) && \ 924 !(CHIP_REV_VAL(bp) & 0x00001000)) 925 /* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */ 926 #define CHIP_REV_IS_FPGA(bp) ((CHIP_REV_IS_SLOW(bp)) && \ 927 (CHIP_REV_VAL(bp) & 0x00001000)) 928 929 #define CHIP_TIME(bp) ((CHIP_REV_IS_EMUL(bp)) ? 2000 : \ 930 ((CHIP_REV_IS_FPGA(bp)) ? 200 : 1)) 931 932 #define CHIP_METAL(bp) (bp->common.chip_id & 0x00000ff0) 933 #define CHIP_BOND_ID(bp) (bp->common.chip_id & 0x0000000f) 934 #define CHIP_REV_SIM(bp) (((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\ 935 (CHIP_REV_SHIFT + 1)) \ 936 << CHIP_REV_SHIFT) 937 #define CHIP_REV(bp) (CHIP_REV_IS_SLOW(bp) ? \ 938 CHIP_REV_SIM(bp) :\ 939 CHIP_REV_VAL(bp)) 940 #define CHIP_IS_E3B0(bp) (CHIP_IS_E3(bp) && \ 941 (CHIP_REV(bp) == CHIP_REV_Bx)) 942 #define CHIP_IS_E3A0(bp) (CHIP_IS_E3(bp) && \ 943 (CHIP_REV(bp) == CHIP_REV_Ax)) 944 /* This define is used in two main places: 945 * 1. In the early stages of nic_load, to know if to configure Parser / Searcher 946 * to nic-only mode or to offload mode. Offload mode is configured if either the 947 * chip is E1x (where MIC_MODE register is not applicable), or if cnic already 948 * registered for this port (which means that the user wants storage services). 949 * 2. During cnic-related load, to know if offload mode is already configured in 950 * the HW or needs to be configured. 951 * Since the transition from nic-mode to offload-mode in HW causes traffic 952 * corruption, nic-mode is configured only in ports on which storage services 953 * where never requested. 954 */ 955 #define CONFIGURE_NIC_MODE(bp) (!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp)) 956 957 int flash_size; 958 #define BNX2X_NVRAM_1MB_SIZE 0x20000 /* 1M bit in bytes */ 959 #define BNX2X_NVRAM_TIMEOUT_COUNT 30000 960 #define BNX2X_NVRAM_PAGE_SIZE 256 961 962 u32 shmem_base; 963 u32 shmem2_base; 964 u32 mf_cfg_base; 965 u32 mf2_cfg_base; 966 967 u32 hw_config; 968 969 u32 bc_ver; 970 971 u8 int_block; 972 #define INT_BLOCK_HC 0 973 #define INT_BLOCK_IGU 1 974 #define INT_BLOCK_MODE_NORMAL 0 975 #define INT_BLOCK_MODE_BW_COMP 2 976 #define CHIP_INT_MODE_IS_NBC(bp) \ 977 (!CHIP_IS_E1x(bp) && \ 978 !((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP)) 979 #define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp)) 980 981 u8 chip_port_mode; 982 #define CHIP_4_PORT_MODE 0x0 983 #define CHIP_2_PORT_MODE 0x1 984 #define CHIP_PORT_MODE_NONE 0x2 985 #define CHIP_MODE(bp) (bp->common.chip_port_mode) 986 #define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE) 987 988 u32 boot_mode; 989 }; 990 991 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */ 992 #define BNX2X_IGU_STAS_MSG_VF_CNT 64 993 #define BNX2X_IGU_STAS_MSG_PF_CNT 4 994 995 #define MAX_IGU_ATTN_ACK_TO 100 996 /* end of common */ 997 998 /* port */ 999 1000 struct bnx2x_port { 1001 u32 pmf; 1002 1003 u32 link_config[LINK_CONFIG_SIZE]; 1004 1005 u32 supported[LINK_CONFIG_SIZE]; 1006 1007 u32 advertising[LINK_CONFIG_SIZE]; 1008 1009 u32 phy_addr; 1010 1011 /* used to synchronize phy accesses */ 1012 struct mutex phy_mutex; 1013 1014 u32 port_stx; 1015 1016 struct nig_stats old_nig_stats; 1017 }; 1018 1019 /* end of port */ 1020 1021 #define STATS_OFFSET32(stat_name) \ 1022 (offsetof(struct bnx2x_eth_stats, stat_name) / 4) 1023 1024 /* slow path */ 1025 #define BNX2X_MAX_NUM_OF_VFS 64 1026 #define BNX2X_VF_CID_WND 4 /* log num of queues per VF. HW config. */ 1027 #define BNX2X_CIDS_PER_VF (1 << BNX2X_VF_CID_WND) 1028 1029 /* We need to reserve doorbell addresses for all VF and queue combinations */ 1030 #define BNX2X_VF_CIDS (BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF) 1031 1032 /* The doorbell is configured to have the same number of CIDs for PFs and for 1033 * VFs. For this reason the PF CID zone is as large as the VF zone. 1034 */ 1035 #define BNX2X_FIRST_VF_CID BNX2X_VF_CIDS 1036 #define BNX2X_MAX_NUM_VF_QUEUES 64 1037 #define BNX2X_VF_ID_INVALID 0xFF 1038 1039 /* the number of VF CIDS multiplied by the amount of bytes reserved for each 1040 * cid must not exceed the size of the VF doorbell 1041 */ 1042 #define BNX2X_VF_BAR_SIZE 512 1043 #if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT)) 1044 #error "VF doorbell bar size is 512" 1045 #endif 1046 1047 /* 1048 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is 1049 * control by the number of fast-path status blocks supported by the 1050 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default 1051 * status block represents an independent interrupts context that can 1052 * serve a regular L2 networking queue. However special L2 queues such 1053 * as the FCoE queue do not require a FP-SB and other components like 1054 * the CNIC may consume FP-SB reducing the number of possible L2 queues 1055 * 1056 * If the maximum number of FP-SB available is X then: 1057 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of 1058 * regular L2 queues is Y=X-1 1059 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor) 1060 * c. If the FCoE L2 queue is supported the actual number of L2 queues 1061 * is Y+1 1062 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for 1063 * slow-path interrupts) or Y+2 if CNIC is supported (one additional 1064 * FP interrupt context for the CNIC). 1065 * e. The number of HW context (CID count) is always X or X+1 if FCoE 1066 * L2 queue is supported. The cid for the FCoE L2 queue is always X. 1067 */ 1068 1069 /* fast-path interrupt contexts E1x */ 1070 #define FP_SB_MAX_E1x 16 1071 /* fast-path interrupt contexts E2 */ 1072 #define FP_SB_MAX_E2 HC_SB_MAX_SB_E2 1073 1074 union cdu_context { 1075 struct eth_context eth; 1076 char pad[1024]; 1077 }; 1078 1079 /* CDU host DB constants */ 1080 #define CDU_ILT_PAGE_SZ_HW 2 1081 #define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */ 1082 #define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context)) 1083 1084 #define CNIC_ISCSI_CID_MAX 256 1085 #define CNIC_FCOE_CID_MAX 2048 1086 #define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX) 1087 #define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS) 1088 1089 #define QM_ILT_PAGE_SZ_HW 0 1090 #define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */ 1091 #define QM_CID_ROUND 1024 1092 1093 /* TM (timers) host DB constants */ 1094 #define TM_ILT_PAGE_SZ_HW 0 1095 #define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */ 1096 #define TM_CONN_NUM (BNX2X_FIRST_VF_CID + \ 1097 BNX2X_VF_CIDS + \ 1098 CNIC_ISCSI_CID_MAX) 1099 #define TM_ILT_SZ (8 * TM_CONN_NUM) 1100 #define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ) 1101 1102 /* SRC (Searcher) host DB constants */ 1103 #define SRC_ILT_PAGE_SZ_HW 0 1104 #define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */ 1105 #define SRC_HASH_BITS 10 1106 #define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */ 1107 #define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM) 1108 #define SRC_T2_SZ SRC_ILT_SZ 1109 #define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ) 1110 1111 #define MAX_DMAE_C 8 1112 1113 /* DMA memory not used in fastpath */ 1114 struct bnx2x_slowpath { 1115 union { 1116 struct mac_configuration_cmd e1x; 1117 struct eth_classify_rules_ramrod_data e2; 1118 } mac_rdata; 1119 1120 union { 1121 struct eth_classify_rules_ramrod_data e2; 1122 } vlan_rdata; 1123 1124 union { 1125 struct tstorm_eth_mac_filter_config e1x; 1126 struct eth_filter_rules_ramrod_data e2; 1127 } rx_mode_rdata; 1128 1129 union { 1130 struct mac_configuration_cmd e1; 1131 struct eth_multicast_rules_ramrod_data e2; 1132 } mcast_rdata; 1133 1134 struct eth_rss_update_ramrod_data rss_rdata; 1135 1136 /* Queue State related ramrods are always sent under rtnl_lock */ 1137 union { 1138 struct client_init_ramrod_data init_data; 1139 struct client_update_ramrod_data update_data; 1140 struct tpa_update_ramrod_data tpa_data; 1141 } q_rdata; 1142 1143 union { 1144 struct function_start_data func_start; 1145 /* pfc configuration for DCBX ramrod */ 1146 struct flow_control_configuration pfc_config; 1147 } func_rdata; 1148 1149 /* afex ramrod can not be a part of func_rdata union because these 1150 * events might arrive in parallel to other events from func_rdata. 1151 * Therefore, if they would have been defined in the same union, 1152 * data can get corrupted. 1153 */ 1154 union { 1155 struct afex_vif_list_ramrod_data viflist_data; 1156 struct function_update_data func_update; 1157 } func_afex_rdata; 1158 1159 /* used by dmae command executer */ 1160 struct dmae_command dmae[MAX_DMAE_C]; 1161 1162 u32 stats_comp; 1163 union mac_stats mac_stats; 1164 struct nig_stats nig_stats; 1165 struct host_port_stats port_stats; 1166 struct host_func_stats func_stats; 1167 1168 u32 wb_comp; 1169 u32 wb_data[4]; 1170 1171 union drv_info_to_mcp drv_info_to_mcp; 1172 }; 1173 1174 #define bnx2x_sp(bp, var) (&bp->slowpath->var) 1175 #define bnx2x_sp_mapping(bp, var) \ 1176 (bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var)) 1177 1178 /* attn group wiring */ 1179 #define MAX_DYNAMIC_ATTN_GRPS 8 1180 1181 struct attn_route { 1182 u32 sig[5]; 1183 }; 1184 1185 struct iro { 1186 u32 base; 1187 u16 m1; 1188 u16 m2; 1189 u16 m3; 1190 u16 size; 1191 }; 1192 1193 struct hw_context { 1194 union cdu_context *vcxt; 1195 dma_addr_t cxt_mapping; 1196 size_t size; 1197 }; 1198 1199 /* forward */ 1200 struct bnx2x_ilt; 1201 1202 struct bnx2x_vfdb; 1203 1204 enum bnx2x_recovery_state { 1205 BNX2X_RECOVERY_DONE, 1206 BNX2X_RECOVERY_INIT, 1207 BNX2X_RECOVERY_WAIT, 1208 BNX2X_RECOVERY_FAILED, 1209 BNX2X_RECOVERY_NIC_LOADING 1210 }; 1211 1212 /* 1213 * Event queue (EQ or event ring) MC hsi 1214 * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2 1215 */ 1216 #define NUM_EQ_PAGES 1 1217 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem)) 1218 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1) 1219 #define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES) 1220 #define EQ_DESC_MASK (NUM_EQ_DESC - 1) 1221 #define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2) 1222 1223 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */ 1224 #define NEXT_EQ_IDX(x) ((((x) & EQ_DESC_MAX_PAGE) == \ 1225 (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1) 1226 1227 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */ 1228 #define EQ_DESC(x) ((x) & EQ_DESC_MASK) 1229 1230 #define BNX2X_EQ_INDEX \ 1231 (&bp->def_status_blk->sp_sb.\ 1232 index_values[HC_SP_INDEX_EQ_CONS]) 1233 1234 /* This is a data that will be used to create a link report message. 1235 * We will keep the data used for the last link report in order 1236 * to prevent reporting the same link parameters twice. 1237 */ 1238 struct bnx2x_link_report_data { 1239 u16 line_speed; /* Effective line speed */ 1240 unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */ 1241 }; 1242 1243 enum { 1244 BNX2X_LINK_REPORT_FD, /* Full DUPLEX */ 1245 BNX2X_LINK_REPORT_LINK_DOWN, 1246 BNX2X_LINK_REPORT_RX_FC_ON, 1247 BNX2X_LINK_REPORT_TX_FC_ON, 1248 }; 1249 1250 enum { 1251 BNX2X_PORT_QUERY_IDX, 1252 BNX2X_PF_QUERY_IDX, 1253 BNX2X_FCOE_QUERY_IDX, 1254 BNX2X_FIRST_QUEUE_QUERY_IDX, 1255 }; 1256 1257 struct bnx2x_fw_stats_req { 1258 struct stats_query_header hdr; 1259 struct stats_query_entry query[FP_SB_MAX_E1x+ 1260 BNX2X_FIRST_QUEUE_QUERY_IDX]; 1261 }; 1262 1263 struct bnx2x_fw_stats_data { 1264 struct stats_counter storm_counters; 1265 struct per_port_stats port; 1266 struct per_pf_stats pf; 1267 struct fcoe_statistics_params fcoe; 1268 struct per_queue_stats queue_stats[1]; 1269 }; 1270 1271 /* Public slow path states */ 1272 enum sp_rtnl_flag { 1273 BNX2X_SP_RTNL_SETUP_TC, 1274 BNX2X_SP_RTNL_TX_TIMEOUT, 1275 BNX2X_SP_RTNL_FAN_FAILURE, 1276 BNX2X_SP_RTNL_AFEX_F_UPDATE, 1277 BNX2X_SP_RTNL_ENABLE_SRIOV, 1278 BNX2X_SP_RTNL_VFPF_MCAST, 1279 BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 1280 BNX2X_SP_RTNL_RX_MODE, 1281 BNX2X_SP_RTNL_HYPERVISOR_VLAN, 1282 BNX2X_SP_RTNL_TX_STOP, 1283 BNX2X_SP_RTNL_GET_DRV_VERSION, 1284 BNX2X_SP_RTNL_CHANGE_UDP_PORT, 1285 }; 1286 1287 enum bnx2x_iov_flag { 1288 BNX2X_IOV_HANDLE_VF_MSG, 1289 BNX2X_IOV_HANDLE_FLR, 1290 }; 1291 1292 struct bnx2x_prev_path_list { 1293 struct list_head list; 1294 u8 bus; 1295 u8 slot; 1296 u8 path; 1297 u8 aer; 1298 u8 undi; 1299 }; 1300 1301 struct bnx2x_sp_objs { 1302 /* MACs object */ 1303 struct bnx2x_vlan_mac_obj mac_obj; 1304 1305 /* Queue State object */ 1306 struct bnx2x_queue_sp_obj q_obj; 1307 1308 /* VLANs object */ 1309 struct bnx2x_vlan_mac_obj vlan_obj; 1310 }; 1311 1312 struct bnx2x_fp_stats { 1313 struct tstorm_per_queue_stats old_tclient; 1314 struct ustorm_per_queue_stats old_uclient; 1315 struct xstorm_per_queue_stats old_xclient; 1316 struct bnx2x_eth_q_stats eth_q_stats; 1317 struct bnx2x_eth_q_stats_old eth_q_stats_old; 1318 }; 1319 1320 enum { 1321 SUB_MF_MODE_UNKNOWN = 0, 1322 SUB_MF_MODE_UFP, 1323 SUB_MF_MODE_NPAR1_DOT_5, 1324 SUB_MF_MODE_BD, 1325 }; 1326 1327 struct bnx2x_vlan_entry { 1328 struct list_head link; 1329 u16 vid; 1330 bool hw; 1331 }; 1332 1333 enum bnx2x_udp_port_type { 1334 BNX2X_UDP_PORT_VXLAN, 1335 BNX2X_UDP_PORT_GENEVE, 1336 BNX2X_UDP_PORT_MAX, 1337 }; 1338 1339 struct bnx2x_udp_tunnel { 1340 u16 dst_port; 1341 u8 count; 1342 }; 1343 1344 struct bnx2x { 1345 /* Fields used in the tx and intr/napi performance paths 1346 * are grouped together in the beginning of the structure 1347 */ 1348 struct bnx2x_fastpath *fp; 1349 struct bnx2x_sp_objs *sp_objs; 1350 struct bnx2x_fp_stats *fp_stats; 1351 struct bnx2x_fp_txdata *bnx2x_txq; 1352 void __iomem *regview; 1353 void __iomem *doorbells; 1354 u16 db_size; 1355 1356 u8 pf_num; /* absolute PF number */ 1357 u8 pfid; /* per-path PF number */ 1358 int base_fw_ndsb; /**/ 1359 #define BP_PATH(bp) (CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1)) 1360 #define BP_PORT(bp) (bp->pfid & 1) 1361 #define BP_FUNC(bp) (bp->pfid) 1362 #define BP_ABS_FUNC(bp) (bp->pf_num) 1363 #define BP_VN(bp) ((bp)->pfid >> 1) 1364 #define BP_MAX_VN_NUM(bp) (CHIP_MODE_IS_4_PORT(bp) ? 2 : 4) 1365 #define BP_L_ID(bp) (BP_VN(bp) << 2) 1366 #define BP_FW_MB_IDX_VN(bp, vn) (BP_PORT(bp) +\ 1367 (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2 : 1)) 1368 #define BP_FW_MB_IDX(bp) BP_FW_MB_IDX_VN(bp, BP_VN(bp)) 1369 1370 #ifdef CONFIG_BNX2X_SRIOV 1371 /* protects vf2pf mailbox from simultaneous access */ 1372 struct mutex vf2pf_mutex; 1373 /* vf pf channel mailbox contains request and response buffers */ 1374 struct bnx2x_vf_mbx_msg *vf2pf_mbox; 1375 dma_addr_t vf2pf_mbox_mapping; 1376 1377 /* we set aside a copy of the acquire response */ 1378 struct pfvf_acquire_resp_tlv acquire_resp; 1379 1380 /* bulletin board for messages from pf to vf */ 1381 union pf_vf_bulletin *pf2vf_bulletin; 1382 dma_addr_t pf2vf_bulletin_mapping; 1383 1384 union pf_vf_bulletin shadow_bulletin; 1385 struct pf_vf_bulletin_content old_bulletin; 1386 1387 u16 requested_nr_virtfn; 1388 #endif /* CONFIG_BNX2X_SRIOV */ 1389 1390 struct net_device *dev; 1391 struct pci_dev *pdev; 1392 1393 const struct iro *iro_arr; 1394 #define IRO (bp->iro_arr) 1395 1396 enum bnx2x_recovery_state recovery_state; 1397 int is_leader; 1398 struct msix_entry *msix_table; 1399 1400 int tx_ring_size; 1401 1402 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */ 1403 #define ETH_OVERHEAD (ETH_HLEN + 8 + 8) 1404 #define ETH_MIN_PACKET_SIZE (ETH_ZLEN - ETH_HLEN) 1405 #define ETH_MAX_PACKET_SIZE ETH_DATA_LEN 1406 #define ETH_MAX_JUMBO_PACKET_SIZE 9600 1407 /* TCP with Timestamp Option (32) + IPv6 (40) */ 1408 #define ETH_MAX_TPA_HEADER_SIZE 72 1409 1410 /* Max supported alignment is 256 (8 shift) 1411 * minimal alignment shift 6 is optimal for 57xxx HW performance 1412 */ 1413 #define BNX2X_RX_ALIGN_SHIFT max(6, min(8, L1_CACHE_SHIFT)) 1414 1415 /* FW uses 2 Cache lines Alignment for start packet and size 1416 * 1417 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes 1418 * at the end of skb->data, to avoid wasting a full cache line. 1419 * This reduces memory use (skb->truesize). 1420 */ 1421 #define BNX2X_FW_RX_ALIGN_START (1UL << BNX2X_RX_ALIGN_SHIFT) 1422 1423 #define BNX2X_FW_RX_ALIGN_END \ 1424 max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT, \ 1425 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 1426 1427 #define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5) 1428 1429 struct host_sp_status_block *def_status_blk; 1430 #define DEF_SB_IGU_ID 16 1431 #define DEF_SB_ID HC_SP_SB_ID 1432 __le16 def_idx; 1433 __le16 def_att_idx; 1434 u32 attn_state; 1435 struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS]; 1436 1437 /* slow path ring */ 1438 struct eth_spe *spq; 1439 dma_addr_t spq_mapping; 1440 u16 spq_prod_idx; 1441 struct eth_spe *spq_prod_bd; 1442 struct eth_spe *spq_last_bd; 1443 __le16 *dsb_sp_prod; 1444 atomic_t cq_spq_left; /* ETH_XXX ramrods credit */ 1445 /* used to synchronize spq accesses */ 1446 spinlock_t spq_lock; 1447 1448 /* event queue */ 1449 union event_ring_elem *eq_ring; 1450 dma_addr_t eq_mapping; 1451 u16 eq_prod; 1452 u16 eq_cons; 1453 __le16 *eq_cons_sb; 1454 atomic_t eq_spq_left; /* COMMON_XXX ramrods credit */ 1455 1456 /* Counter for marking that there is a STAT_QUERY ramrod pending */ 1457 u16 stats_pending; 1458 /* Counter for completed statistics ramrods */ 1459 u16 stats_comp; 1460 1461 /* End of fields used in the performance code paths */ 1462 1463 int panic; 1464 int msg_enable; 1465 1466 u32 flags; 1467 #define PCIX_FLAG (1 << 0) 1468 #define PCI_32BIT_FLAG (1 << 1) 1469 #define ONE_PORT_FLAG (1 << 2) 1470 #define NO_WOL_FLAG (1 << 3) 1471 #define USING_MSIX_FLAG (1 << 5) 1472 #define USING_MSI_FLAG (1 << 6) 1473 #define DISABLE_MSI_FLAG (1 << 7) 1474 #define NO_MCP_FLAG (1 << 9) 1475 #define MF_FUNC_DIS (1 << 11) 1476 #define OWN_CNIC_IRQ (1 << 12) 1477 #define NO_ISCSI_OOO_FLAG (1 << 13) 1478 #define NO_ISCSI_FLAG (1 << 14) 1479 #define NO_FCOE_FLAG (1 << 15) 1480 #define BC_SUPPORTS_PFC_STATS (1 << 17) 1481 #define TX_SWITCHING (1 << 18) 1482 #define BC_SUPPORTS_FCOE_FEATURES (1 << 19) 1483 #define USING_SINGLE_MSIX_FLAG (1 << 20) 1484 #define BC_SUPPORTS_DCBX_MSG_NON_PMF (1 << 21) 1485 #define IS_VF_FLAG (1 << 22) 1486 #define BC_SUPPORTS_RMMOD_CMD (1 << 23) 1487 #define HAS_PHYS_PORT_ID (1 << 24) 1488 #define AER_ENABLED (1 << 25) 1489 #define PTP_SUPPORTED (1 << 26) 1490 #define TX_TIMESTAMPING_EN (1 << 27) 1491 1492 #define BP_NOMCP(bp) ((bp)->flags & NO_MCP_FLAG) 1493 1494 #ifdef CONFIG_BNX2X_SRIOV 1495 #define IS_VF(bp) ((bp)->flags & IS_VF_FLAG) 1496 #define IS_PF(bp) (!((bp)->flags & IS_VF_FLAG)) 1497 #else 1498 #define IS_VF(bp) false 1499 #define IS_PF(bp) true 1500 #endif 1501 1502 #define NO_ISCSI(bp) ((bp)->flags & NO_ISCSI_FLAG) 1503 #define NO_ISCSI_OOO(bp) ((bp)->flags & NO_ISCSI_OOO_FLAG) 1504 #define NO_FCOE(bp) ((bp)->flags & NO_FCOE_FLAG) 1505 1506 u8 cnic_support; 1507 bool cnic_enabled; 1508 bool cnic_loaded; 1509 struct cnic_eth_dev *(*cnic_probe)(struct net_device *); 1510 1511 /* Flag that indicates that we can start looking for FCoE L2 queue 1512 * completions in the default status block. 1513 */ 1514 bool fcoe_init; 1515 1516 int mrrs; 1517 1518 struct delayed_work sp_task; 1519 struct delayed_work iov_task; 1520 1521 atomic_t interrupt_occurred; 1522 struct delayed_work sp_rtnl_task; 1523 1524 struct delayed_work period_task; 1525 struct timer_list timer; 1526 int current_interval; 1527 1528 u16 fw_seq; 1529 u16 fw_drv_pulse_wr_seq; 1530 u32 func_stx; 1531 1532 struct link_params link_params; 1533 struct link_vars link_vars; 1534 u32 link_cnt; 1535 struct bnx2x_link_report_data last_reported_link; 1536 bool force_link_down; 1537 1538 struct mdio_if_info mdio; 1539 1540 struct bnx2x_common common; 1541 struct bnx2x_port port; 1542 1543 struct cmng_init cmng; 1544 1545 u32 mf_config[E1HVN_MAX]; 1546 u32 mf_ext_config; 1547 u32 path_has_ovlan; /* E3 */ 1548 u16 mf_ov; 1549 u8 mf_mode; 1550 #define IS_MF(bp) (bp->mf_mode != 0) 1551 #define IS_MF_SI(bp) (bp->mf_mode == MULTI_FUNCTION_SI) 1552 #define IS_MF_SD(bp) (bp->mf_mode == MULTI_FUNCTION_SD) 1553 #define IS_MF_AFEX(bp) (bp->mf_mode == MULTI_FUNCTION_AFEX) 1554 u8 mf_sub_mode; 1555 #define IS_MF_UFP(bp) (IS_MF_SD(bp) && \ 1556 bp->mf_sub_mode == SUB_MF_MODE_UFP) 1557 #define IS_MF_BD(bp) (IS_MF_SD(bp) && \ 1558 bp->mf_sub_mode == SUB_MF_MODE_BD) 1559 1560 u8 wol; 1561 1562 int rx_ring_size; 1563 1564 u16 tx_quick_cons_trip_int; 1565 u16 tx_quick_cons_trip; 1566 u16 tx_ticks_int; 1567 u16 tx_ticks; 1568 1569 u16 rx_quick_cons_trip_int; 1570 u16 rx_quick_cons_trip; 1571 u16 rx_ticks_int; 1572 u16 rx_ticks; 1573 /* Maximal coalescing timeout in us */ 1574 #define BNX2X_MAX_COALESCE_TOUT (0xff*BNX2X_BTR) 1575 1576 u32 lin_cnt; 1577 1578 u16 state; 1579 #define BNX2X_STATE_CLOSED 0 1580 #define BNX2X_STATE_OPENING_WAIT4_LOAD 0x1000 1581 #define BNX2X_STATE_OPENING_WAIT4_PORT 0x2000 1582 #define BNX2X_STATE_OPEN 0x3000 1583 #define BNX2X_STATE_CLOSING_WAIT4_HALT 0x4000 1584 #define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000 1585 1586 #define BNX2X_STATE_DIAG 0xe000 1587 #define BNX2X_STATE_ERROR 0xf000 1588 1589 #define BNX2X_MAX_PRIORITY 8 1590 int num_queues; 1591 uint num_ethernet_queues; 1592 uint num_cnic_queues; 1593 int disable_tpa; 1594 1595 u32 rx_mode; 1596 #define BNX2X_RX_MODE_NONE 0 1597 #define BNX2X_RX_MODE_NORMAL 1 1598 #define BNX2X_RX_MODE_ALLMULTI 2 1599 #define BNX2X_RX_MODE_PROMISC 3 1600 #define BNX2X_MAX_MULTICAST 64 1601 1602 u8 igu_dsb_id; 1603 u8 igu_base_sb; 1604 u8 igu_sb_cnt; 1605 u8 min_msix_vec_cnt; 1606 1607 u32 igu_base_addr; 1608 dma_addr_t def_status_blk_mapping; 1609 1610 struct bnx2x_slowpath *slowpath; 1611 dma_addr_t slowpath_mapping; 1612 1613 /* Mechanism protecting the drv_info_to_mcp */ 1614 struct mutex drv_info_mutex; 1615 bool drv_info_mng_owner; 1616 1617 /* Total number of FW statistics requests */ 1618 u8 fw_stats_num; 1619 1620 /* 1621 * This is a memory buffer that will contain both statistics 1622 * ramrod request and data. 1623 */ 1624 void *fw_stats; 1625 dma_addr_t fw_stats_mapping; 1626 1627 /* 1628 * FW statistics request shortcut (points at the 1629 * beginning of fw_stats buffer). 1630 */ 1631 struct bnx2x_fw_stats_req *fw_stats_req; 1632 dma_addr_t fw_stats_req_mapping; 1633 int fw_stats_req_sz; 1634 1635 /* 1636 * FW statistics data shortcut (points at the beginning of 1637 * fw_stats buffer + fw_stats_req_sz). 1638 */ 1639 struct bnx2x_fw_stats_data *fw_stats_data; 1640 dma_addr_t fw_stats_data_mapping; 1641 int fw_stats_data_sz; 1642 1643 /* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB 1644 * context size we need 8 ILT entries. 1645 */ 1646 #define ILT_MAX_L2_LINES 32 1647 struct hw_context context[ILT_MAX_L2_LINES]; 1648 1649 struct bnx2x_ilt *ilt; 1650 #define BP_ILT(bp) ((bp)->ilt) 1651 #define ILT_MAX_LINES 256 1652 /* 1653 * Maximum supported number of RSS queues: number of IGU SBs minus one that goes 1654 * to CNIC. 1655 */ 1656 #define BNX2X_MAX_RSS_COUNT(bp) ((bp)->igu_sb_cnt - CNIC_SUPPORT(bp)) 1657 1658 /* 1659 * Maximum CID count that might be required by the bnx2x: 1660 * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI 1661 */ 1662 1663 #define BNX2X_L2_CID_COUNT(bp) (BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \ 1664 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp))) 1665 #define BNX2X_L2_MAX_CID(bp) (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \ 1666 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp))) 1667 #define L2_ILT_LINES(bp) (DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\ 1668 ILT_PAGE_CIDS)) 1669 1670 int qm_cid_count; 1671 1672 bool dropless_fc; 1673 1674 void *t2; 1675 dma_addr_t t2_mapping; 1676 struct cnic_ops __rcu *cnic_ops; 1677 void *cnic_data; 1678 u32 cnic_tag; 1679 struct cnic_eth_dev cnic_eth_dev; 1680 union host_hc_status_block cnic_sb; 1681 dma_addr_t cnic_sb_mapping; 1682 struct eth_spe *cnic_kwq; 1683 struct eth_spe *cnic_kwq_prod; 1684 struct eth_spe *cnic_kwq_cons; 1685 struct eth_spe *cnic_kwq_last; 1686 u16 cnic_kwq_pending; 1687 u16 cnic_spq_pending; 1688 u8 fip_mac[ETH_ALEN]; 1689 struct mutex cnic_mutex; 1690 struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj; 1691 1692 /* Start index of the "special" (CNIC related) L2 clients */ 1693 u8 cnic_base_cl_id; 1694 1695 int dmae_ready; 1696 /* used to synchronize dmae accesses */ 1697 spinlock_t dmae_lock; 1698 1699 /* used to protect the FW mail box */ 1700 struct mutex fw_mb_mutex; 1701 1702 /* used to synchronize stats collecting */ 1703 int stats_state; 1704 1705 /* used for synchronization of concurrent threads statistics handling */ 1706 struct semaphore stats_lock; 1707 1708 /* used by dmae command loader */ 1709 struct dmae_command stats_dmae; 1710 int executer_idx; 1711 1712 u16 stats_counter; 1713 struct bnx2x_eth_stats eth_stats; 1714 struct host_func_stats func_stats; 1715 struct bnx2x_eth_stats_old eth_stats_old; 1716 struct bnx2x_net_stats_old net_stats_old; 1717 struct bnx2x_fw_port_stats_old fw_stats_old; 1718 bool stats_init; 1719 1720 struct z_stream_s *strm; 1721 void *gunzip_buf; 1722 dma_addr_t gunzip_mapping; 1723 int gunzip_outlen; 1724 #define FW_BUF_SIZE 0x8000 1725 #define GUNZIP_BUF(bp) (bp->gunzip_buf) 1726 #define GUNZIP_PHYS(bp) (bp->gunzip_mapping) 1727 #define GUNZIP_OUTLEN(bp) (bp->gunzip_outlen) 1728 1729 struct raw_op *init_ops; 1730 /* Init blocks offsets inside init_ops */ 1731 u16 *init_ops_offsets; 1732 /* Data blob - has 32 bit granularity */ 1733 u32 *init_data; 1734 u32 init_mode_flags; 1735 #define INIT_MODE_FLAGS(bp) (bp->init_mode_flags) 1736 /* Zipped PRAM blobs - raw data */ 1737 const u8 *tsem_int_table_data; 1738 const u8 *tsem_pram_data; 1739 const u8 *usem_int_table_data; 1740 const u8 *usem_pram_data; 1741 const u8 *xsem_int_table_data; 1742 const u8 *xsem_pram_data; 1743 const u8 *csem_int_table_data; 1744 const u8 *csem_pram_data; 1745 #define INIT_OPS(bp) (bp->init_ops) 1746 #define INIT_OPS_OFFSETS(bp) (bp->init_ops_offsets) 1747 #define INIT_DATA(bp) (bp->init_data) 1748 #define INIT_TSEM_INT_TABLE_DATA(bp) (bp->tsem_int_table_data) 1749 #define INIT_TSEM_PRAM_DATA(bp) (bp->tsem_pram_data) 1750 #define INIT_USEM_INT_TABLE_DATA(bp) (bp->usem_int_table_data) 1751 #define INIT_USEM_PRAM_DATA(bp) (bp->usem_pram_data) 1752 #define INIT_XSEM_INT_TABLE_DATA(bp) (bp->xsem_int_table_data) 1753 #define INIT_XSEM_PRAM_DATA(bp) (bp->xsem_pram_data) 1754 #define INIT_CSEM_INT_TABLE_DATA(bp) (bp->csem_int_table_data) 1755 #define INIT_CSEM_PRAM_DATA(bp) (bp->csem_pram_data) 1756 1757 #define PHY_FW_VER_LEN 20 1758 char fw_ver[32]; 1759 const struct firmware *firmware; 1760 1761 struct bnx2x_vfdb *vfdb; 1762 #define IS_SRIOV(bp) ((bp)->vfdb) 1763 1764 /* DCB support on/off */ 1765 u16 dcb_state; 1766 #define BNX2X_DCB_STATE_OFF 0 1767 #define BNX2X_DCB_STATE_ON 1 1768 1769 /* DCBX engine mode */ 1770 int dcbx_enabled; 1771 #define BNX2X_DCBX_ENABLED_OFF 0 1772 #define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1 1773 #define BNX2X_DCBX_ENABLED_ON_NEG_ON 2 1774 #define BNX2X_DCBX_ENABLED_INVALID (-1) 1775 1776 bool dcbx_mode_uset; 1777 1778 struct bnx2x_config_dcbx_params dcbx_config_params; 1779 struct bnx2x_dcbx_port_params dcbx_port_params; 1780 int dcb_version; 1781 1782 /* CAM credit pools */ 1783 struct bnx2x_credit_pool_obj vlans_pool; 1784 1785 struct bnx2x_credit_pool_obj macs_pool; 1786 1787 /* RX_MODE object */ 1788 struct bnx2x_rx_mode_obj rx_mode_obj; 1789 1790 /* MCAST object */ 1791 struct bnx2x_mcast_obj mcast_obj; 1792 1793 /* RSS configuration object */ 1794 struct bnx2x_rss_config_obj rss_conf_obj; 1795 1796 /* Function State controlling object */ 1797 struct bnx2x_func_sp_obj func_obj; 1798 1799 unsigned long sp_state; 1800 1801 /* operation indication for the sp_rtnl task */ 1802 unsigned long sp_rtnl_state; 1803 1804 /* Indication of the IOV tasks */ 1805 unsigned long iov_task_state; 1806 1807 /* DCBX Negotiation results */ 1808 struct dcbx_features dcbx_local_feat; 1809 u32 dcbx_error; 1810 1811 #ifdef BCM_DCBNL 1812 struct dcbx_features dcbx_remote_feat; 1813 u32 dcbx_remote_flags; 1814 #endif 1815 /* AFEX: store default vlan used */ 1816 int afex_def_vlan_tag; 1817 enum mf_cfg_afex_vlan_mode afex_vlan_mode; 1818 u32 pending_max; 1819 1820 /* multiple tx classes of service */ 1821 u8 max_cos; 1822 1823 /* priority to cos mapping */ 1824 u8 prio_to_cos[8]; 1825 1826 int fp_array_size; 1827 u32 dump_preset_idx; 1828 1829 u8 phys_port_id[ETH_ALEN]; 1830 1831 /* PTP related context */ 1832 struct ptp_clock *ptp_clock; 1833 struct ptp_clock_info ptp_clock_info; 1834 struct work_struct ptp_task; 1835 struct cyclecounter cyclecounter; 1836 struct timecounter timecounter; 1837 bool timecounter_init_done; 1838 struct sk_buff *ptp_tx_skb; 1839 unsigned long ptp_tx_start; 1840 bool hwtstamp_ioctl_called; 1841 u16 tx_type; 1842 u16 rx_filter; 1843 1844 struct bnx2x_link_report_data vf_link_vars; 1845 struct list_head vlan_reg; 1846 u16 vlan_cnt; 1847 u16 vlan_credit; 1848 bool accept_any_vlan; 1849 1850 /* Vxlan/Geneve related information */ 1851 struct bnx2x_udp_tunnel udp_tunnel_ports[BNX2X_UDP_PORT_MAX]; 1852 }; 1853 1854 /* Tx queues may be less or equal to Rx queues */ 1855 extern int num_queues; 1856 #define BNX2X_NUM_QUEUES(bp) (bp->num_queues) 1857 #define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues) 1858 #define BNX2X_NUM_NON_CNIC_QUEUES(bp) (BNX2X_NUM_QUEUES(bp) - \ 1859 (bp)->num_cnic_queues) 1860 #define BNX2X_NUM_RX_QUEUES(bp) BNX2X_NUM_QUEUES(bp) 1861 1862 #define is_multi(bp) (BNX2X_NUM_QUEUES(bp) > 1) 1863 1864 #define BNX2X_MAX_QUEUES(bp) BNX2X_MAX_RSS_COUNT(bp) 1865 /* #define is_eth_multi(bp) (BNX2X_NUM_ETH_QUEUES(bp) > 1) */ 1866 1867 #define RSS_IPV4_CAP_MASK \ 1868 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY 1869 1870 #define RSS_IPV4_TCP_CAP_MASK \ 1871 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY 1872 1873 #define RSS_IPV6_CAP_MASK \ 1874 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY 1875 1876 #define RSS_IPV6_TCP_CAP_MASK \ 1877 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY 1878 1879 struct bnx2x_func_init_params { 1880 /* dma */ 1881 bool spq_active; 1882 dma_addr_t spq_map; 1883 u16 spq_prod; 1884 1885 u16 func_id; /* abs fid */ 1886 u16 pf_id; 1887 }; 1888 1889 #define for_each_cnic_queue(bp, var) \ 1890 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 1891 (var)++) \ 1892 if (skip_queue(bp, var)) \ 1893 continue; \ 1894 else 1895 1896 #define for_each_eth_queue(bp, var) \ 1897 for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++) 1898 1899 #define for_each_nondefault_eth_queue(bp, var) \ 1900 for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++) 1901 1902 #define for_each_queue(bp, var) \ 1903 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1904 if (skip_queue(bp, var)) \ 1905 continue; \ 1906 else 1907 1908 /* Skip forwarding FP */ 1909 #define for_each_valid_rx_queue(bp, var) \ 1910 for ((var) = 0; \ 1911 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \ 1912 BNX2X_NUM_ETH_QUEUES(bp)); \ 1913 (var)++) \ 1914 if (skip_rx_queue(bp, var)) \ 1915 continue; \ 1916 else 1917 1918 #define for_each_rx_queue_cnic(bp, var) \ 1919 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 1920 (var)++) \ 1921 if (skip_rx_queue(bp, var)) \ 1922 continue; \ 1923 else 1924 1925 #define for_each_rx_queue(bp, var) \ 1926 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1927 if (skip_rx_queue(bp, var)) \ 1928 continue; \ 1929 else 1930 1931 /* Skip OOO FP */ 1932 #define for_each_valid_tx_queue(bp, var) \ 1933 for ((var) = 0; \ 1934 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \ 1935 BNX2X_NUM_ETH_QUEUES(bp)); \ 1936 (var)++) \ 1937 if (skip_tx_queue(bp, var)) \ 1938 continue; \ 1939 else 1940 1941 #define for_each_tx_queue_cnic(bp, var) \ 1942 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 1943 (var)++) \ 1944 if (skip_tx_queue(bp, var)) \ 1945 continue; \ 1946 else 1947 1948 #define for_each_tx_queue(bp, var) \ 1949 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1950 if (skip_tx_queue(bp, var)) \ 1951 continue; \ 1952 else 1953 1954 #define for_each_nondefault_queue(bp, var) \ 1955 for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1956 if (skip_queue(bp, var)) \ 1957 continue; \ 1958 else 1959 1960 #define for_each_cos_in_tx_queue(fp, var) \ 1961 for ((var) = 0; (var) < (fp)->max_cos; (var)++) 1962 1963 /* skip rx queue 1964 * if FCOE l2 support is disabled and this is the fcoe L2 queue 1965 */ 1966 #define skip_rx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 1967 1968 /* skip tx queue 1969 * if FCOE l2 support is disabled and this is the fcoe L2 queue 1970 */ 1971 #define skip_tx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 1972 1973 #define skip_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 1974 1975 /** 1976 * bnx2x_set_mac_one - configure a single MAC address 1977 * 1978 * @bp: driver handle 1979 * @mac: MAC to configure 1980 * @obj: MAC object handle 1981 * @set: if 'true' add a new MAC, otherwise - delete 1982 * @mac_type: the type of the MAC to configure (e.g. ETH, UC list) 1983 * @ramrod_flags: RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT) 1984 * 1985 * Configures one MAC according to provided parameters or continues the 1986 * execution of previously scheduled commands if RAMROD_CONT is set in 1987 * ramrod_flags. 1988 * 1989 * Returns zero if operation has successfully completed, a positive value if the 1990 * operation has been successfully scheduled and a negative - if a requested 1991 * operations has failed. 1992 */ 1993 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 1994 struct bnx2x_vlan_mac_obj *obj, bool set, 1995 int mac_type, unsigned long *ramrod_flags); 1996 1997 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan, 1998 struct bnx2x_vlan_mac_obj *obj, bool set, 1999 unsigned long *ramrod_flags); 2000 2001 /** 2002 * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object 2003 * 2004 * @bp: driver handle 2005 * @mac_obj: MAC object handle 2006 * @mac_type: type of the MACs to clear (BNX2X_XXX_MAC) 2007 * @wait_for_comp: if 'true' block until completion 2008 * 2009 * Deletes all MACs of the specific type (e.g. ETH, UC list). 2010 * 2011 * Returns zero if operation has successfully completed, a positive value if the 2012 * operation has been successfully scheduled and a negative - if a requested 2013 * operations has failed. 2014 */ 2015 int bnx2x_del_all_macs(struct bnx2x *bp, 2016 struct bnx2x_vlan_mac_obj *mac_obj, 2017 int mac_type, bool wait_for_comp); 2018 2019 /* Init Function API */ 2020 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p); 2021 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 2022 u8 vf_valid, int fw_sb_id, int igu_sb_id); 2023 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port); 2024 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); 2025 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode); 2026 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); 2027 void bnx2x_read_mf_cfg(struct bnx2x *bp); 2028 2029 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val); 2030 2031 /* dmae */ 2032 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32); 2033 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 2034 u32 len32); 2035 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx); 2036 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type); 2037 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode); 2038 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 2039 bool with_comp, u8 comp_type); 2040 2041 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 2042 u8 src_type, u8 dst_type); 2043 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 2044 u32 *comp); 2045 2046 /* FLR related routines */ 2047 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp); 2048 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count); 2049 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt); 2050 u8 bnx2x_is_pcie_pending(struct pci_dev *dev); 2051 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 2052 char *msg, u32 poll_cnt); 2053 2054 void bnx2x_calc_fc_adv(struct bnx2x *bp); 2055 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 2056 u32 data_hi, u32 data_lo, int cmd_type); 2057 void bnx2x_update_coalesce(struct bnx2x *bp); 2058 int bnx2x_get_cur_phy_idx(struct bnx2x *bp); 2059 2060 bool bnx2x_port_after_undi(struct bnx2x *bp); 2061 2062 static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms, 2063 int wait) 2064 { 2065 u32 val; 2066 2067 do { 2068 val = REG_RD(bp, reg); 2069 if (val == expected) 2070 break; 2071 ms -= wait; 2072 msleep(wait); 2073 2074 } while (ms > 0); 2075 2076 return val; 2077 } 2078 2079 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, 2080 bool is_pf); 2081 2082 #define BNX2X_ILT_ZALLOC(x, y, size) \ 2083 x = dma_zalloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL) 2084 2085 #define BNX2X_ILT_FREE(x, y, size) \ 2086 do { \ 2087 if (x) { \ 2088 dma_free_coherent(&bp->pdev->dev, size, x, y); \ 2089 x = NULL; \ 2090 y = 0; \ 2091 } \ 2092 } while (0) 2093 2094 #define ILOG2(x) (ilog2((x))) 2095 2096 #define ILT_NUM_PAGE_ENTRIES (3072) 2097 /* In 57710/11 we use whole table since we have 8 func 2098 * In 57712 we have only 4 func, but use same size per func, then only half of 2099 * the table in use 2100 */ 2101 #define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES/8) 2102 2103 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC) 2104 /* 2105 * the phys address is shifted right 12 bits and has an added 2106 * 1=valid bit added to the 53rd bit 2107 * then since this is a wide register(TM) 2108 * we split it into two 32 bit writes 2109 */ 2110 #define ONCHIP_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF)) 2111 #define ONCHIP_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44))) 2112 2113 /* load/unload mode */ 2114 #define LOAD_NORMAL 0 2115 #define LOAD_OPEN 1 2116 #define LOAD_DIAG 2 2117 #define LOAD_LOOPBACK_EXT 3 2118 #define UNLOAD_NORMAL 0 2119 #define UNLOAD_CLOSE 1 2120 #define UNLOAD_RECOVERY 2 2121 2122 /* DMAE command defines */ 2123 #define DMAE_TIMEOUT -1 2124 #define DMAE_PCI_ERROR -2 /* E2 and onward */ 2125 #define DMAE_NOT_RDY -3 2126 #define DMAE_PCI_ERR_FLAG 0x80000000 2127 2128 #define DMAE_SRC_PCI 0 2129 #define DMAE_SRC_GRC 1 2130 2131 #define DMAE_DST_NONE 0 2132 #define DMAE_DST_PCI 1 2133 #define DMAE_DST_GRC 2 2134 2135 #define DMAE_COMP_PCI 0 2136 #define DMAE_COMP_GRC 1 2137 2138 /* E2 and onward - PCI error handling in the completion */ 2139 2140 #define DMAE_COMP_REGULAR 0 2141 #define DMAE_COM_SET_ERR 1 2142 2143 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << \ 2144 DMAE_COMMAND_SRC_SHIFT) 2145 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << \ 2146 DMAE_COMMAND_SRC_SHIFT) 2147 2148 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << \ 2149 DMAE_COMMAND_DST_SHIFT) 2150 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << \ 2151 DMAE_COMMAND_DST_SHIFT) 2152 2153 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << \ 2154 DMAE_COMMAND_C_DST_SHIFT) 2155 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << \ 2156 DMAE_COMMAND_C_DST_SHIFT) 2157 2158 #define DMAE_CMD_C_ENABLE DMAE_COMMAND_C_TYPE_ENABLE 2159 2160 #define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT) 2161 #define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT) 2162 #define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT) 2163 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT) 2164 2165 #define DMAE_CMD_PORT_0 0 2166 #define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT 2167 2168 #define DMAE_CMD_SRC_RESET DMAE_COMMAND_SRC_RESET 2169 #define DMAE_CMD_DST_RESET DMAE_COMMAND_DST_RESET 2170 #define DMAE_CMD_E1HVN_SHIFT DMAE_COMMAND_E1HVN_SHIFT 2171 2172 #define DMAE_SRC_PF 0 2173 #define DMAE_SRC_VF 1 2174 2175 #define DMAE_DST_PF 0 2176 #define DMAE_DST_VF 1 2177 2178 #define DMAE_C_SRC 0 2179 #define DMAE_C_DST 1 2180 2181 #define DMAE_LEN32_RD_MAX 0x80 2182 #define DMAE_LEN32_WR_MAX(bp) (CHIP_IS_E1(bp) ? 0x400 : 0x2000) 2183 2184 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and on - upper bit 2185 * indicates error 2186 */ 2187 2188 #define MAX_DMAE_C_PER_PORT 8 2189 #define INIT_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \ 2190 BP_VN(bp)) 2191 #define PMF_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \ 2192 E1HVN_MAX) 2193 2194 /* PCIE link and speed */ 2195 #define PCICFG_LINK_WIDTH 0x1f00000 2196 #define PCICFG_LINK_WIDTH_SHIFT 20 2197 #define PCICFG_LINK_SPEED 0xf0000 2198 #define PCICFG_LINK_SPEED_SHIFT 16 2199 2200 #define BNX2X_NUM_TESTS_SF 7 2201 #define BNX2X_NUM_TESTS_MF 3 2202 #define BNX2X_NUM_TESTS(bp) (IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \ 2203 IS_VF(bp) ? 0 : BNX2X_NUM_TESTS_SF) 2204 2205 #define BNX2X_PHY_LOOPBACK 0 2206 #define BNX2X_MAC_LOOPBACK 1 2207 #define BNX2X_EXT_LOOPBACK 2 2208 #define BNX2X_PHY_LOOPBACK_FAILED 1 2209 #define BNX2X_MAC_LOOPBACK_FAILED 2 2210 #define BNX2X_EXT_LOOPBACK_FAILED 3 2211 #define BNX2X_LOOPBACK_FAILED (BNX2X_MAC_LOOPBACK_FAILED | \ 2212 BNX2X_PHY_LOOPBACK_FAILED) 2213 2214 #define STROM_ASSERT_ARRAY_SIZE 50 2215 2216 /* must be used on a CID before placing it on a HW ring */ 2217 #define HW_CID(bp, x) ((BP_PORT(bp) << 23) | \ 2218 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \ 2219 (x)) 2220 2221 #define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe)) 2222 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1) 2223 2224 #define BNX2X_BTR 4 2225 #define MAX_SPQ_PENDING 8 2226 2227 /* CMNG constants, as derived from system spec calculations */ 2228 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */ 2229 #define DEF_MIN_RATE 100 2230 /* resolution of the rate shaping timer - 400 usec */ 2231 #define RS_PERIODIC_TIMEOUT_USEC 400 2232 /* number of bytes in single QM arbitration cycle - 2233 * coefficient for calculating the fairness timer */ 2234 #define QM_ARB_BYTES 160000 2235 /* resolution of Min algorithm 1:100 */ 2236 #define MIN_RES 100 2237 /* how many bytes above threshold for the minimal credit of Min algorithm*/ 2238 #define MIN_ABOVE_THRESH 32768 2239 /* Fairness algorithm integration time coefficient - 2240 * for calculating the actual Tfair */ 2241 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) 2242 /* Memory of fairness algorithm . 2 cycles */ 2243 #define FAIR_MEM 2 2244 2245 #define ATTN_NIG_FOR_FUNC (1L << 8) 2246 #define ATTN_SW_TIMER_4_FUNC (1L << 9) 2247 #define GPIO_2_FUNC (1L << 10) 2248 #define GPIO_3_FUNC (1L << 11) 2249 #define GPIO_4_FUNC (1L << 12) 2250 #define ATTN_GENERAL_ATTN_1 (1L << 13) 2251 #define ATTN_GENERAL_ATTN_2 (1L << 14) 2252 #define ATTN_GENERAL_ATTN_3 (1L << 15) 2253 #define ATTN_GENERAL_ATTN_4 (1L << 13) 2254 #define ATTN_GENERAL_ATTN_5 (1L << 14) 2255 #define ATTN_GENERAL_ATTN_6 (1L << 15) 2256 2257 #define ATTN_HARD_WIRED_MASK 0xff00 2258 #define ATTENTION_ID 4 2259 2260 #define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_PERSONALITY_ONLY(bp) || \ 2261 IS_MF_FCOE_AFEX(bp)) 2262 2263 /* stuff added to make the code fit 80Col */ 2264 2265 #define BNX2X_PMF_LINK_ASSERT \ 2266 GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp)) 2267 2268 #define BNX2X_MC_ASSERT_BITS \ 2269 (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2270 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2271 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2272 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT)) 2273 2274 #define BNX2X_MCP_ASSERT \ 2275 GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT) 2276 2277 #define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC) 2278 #define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \ 2279 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \ 2280 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \ 2281 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \ 2282 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \ 2283 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC)) 2284 2285 #define HW_INTERRUPT_ASSERT_SET_0 \ 2286 (AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \ 2287 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \ 2288 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \ 2289 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \ 2290 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT) 2291 #define HW_PRTY_ASSERT_SET_0 (AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \ 2292 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \ 2293 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \ 2294 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\ 2295 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\ 2296 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\ 2297 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR) 2298 #define HW_INTERRUPT_ASSERT_SET_1 \ 2299 (AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \ 2300 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \ 2301 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \ 2302 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \ 2303 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \ 2304 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \ 2305 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \ 2306 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \ 2307 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \ 2308 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \ 2309 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT) 2310 #define HW_PRTY_ASSERT_SET_1 (AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\ 2311 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \ 2312 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\ 2313 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \ 2314 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\ 2315 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \ 2316 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\ 2317 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\ 2318 AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\ 2319 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \ 2320 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \ 2321 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\ 2322 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \ 2323 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \ 2324 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\ 2325 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR) 2326 #define HW_INTERRUPT_ASSERT_SET_2 \ 2327 (AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \ 2328 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \ 2329 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \ 2330 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\ 2331 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT) 2332 #define HW_PRTY_ASSERT_SET_2 (AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \ 2333 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \ 2334 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\ 2335 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \ 2336 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \ 2337 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\ 2338 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \ 2339 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR) 2340 2341 #define HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD \ 2342 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \ 2343 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \ 2344 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY) 2345 2346 #define HW_PRTY_ASSERT_SET_3 (HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD | \ 2347 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY) 2348 2349 #define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \ 2350 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR) 2351 2352 #define MULTI_MASK 0x7f 2353 2354 #define DEF_USB_FUNC_OFF offsetof(struct cstorm_def_status_block_u, func) 2355 #define DEF_CSB_FUNC_OFF offsetof(struct cstorm_def_status_block_c, func) 2356 #define DEF_XSB_FUNC_OFF offsetof(struct xstorm_def_status_block, func) 2357 #define DEF_TSB_FUNC_OFF offsetof(struct tstorm_def_status_block, func) 2358 2359 #define DEF_USB_IGU_INDEX_OFF \ 2360 offsetof(struct cstorm_def_status_block_u, igu_index) 2361 #define DEF_CSB_IGU_INDEX_OFF \ 2362 offsetof(struct cstorm_def_status_block_c, igu_index) 2363 #define DEF_XSB_IGU_INDEX_OFF \ 2364 offsetof(struct xstorm_def_status_block, igu_index) 2365 #define DEF_TSB_IGU_INDEX_OFF \ 2366 offsetof(struct tstorm_def_status_block, igu_index) 2367 2368 #define DEF_USB_SEGMENT_OFF \ 2369 offsetof(struct cstorm_def_status_block_u, segment) 2370 #define DEF_CSB_SEGMENT_OFF \ 2371 offsetof(struct cstorm_def_status_block_c, segment) 2372 #define DEF_XSB_SEGMENT_OFF \ 2373 offsetof(struct xstorm_def_status_block, segment) 2374 #define DEF_TSB_SEGMENT_OFF \ 2375 offsetof(struct tstorm_def_status_block, segment) 2376 2377 #define BNX2X_SP_DSB_INDEX \ 2378 (&bp->def_status_blk->sp_sb.\ 2379 index_values[HC_SP_INDEX_ETH_DEF_CONS]) 2380 2381 #define CAM_IS_INVALID(x) \ 2382 (GET_FLAG(x.flags, \ 2383 MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \ 2384 (T_ETH_MAC_COMMAND_INVALIDATE)) 2385 2386 /* Number of u32 elements in MC hash array */ 2387 #define MC_HASH_SIZE 8 2388 #define MC_HASH_OFFSET(bp, i) (BAR_TSTRORM_INTMEM + \ 2389 TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4) 2390 2391 #ifndef PXP2_REG_PXP2_INT_STS 2392 #define PXP2_REG_PXP2_INT_STS PXP2_REG_PXP2_INT_STS_0 2393 #endif 2394 2395 #ifndef ETH_MAX_RX_CLIENTS_E2 2396 #define ETH_MAX_RX_CLIENTS_E2 ETH_MAX_RX_CLIENTS_E1H 2397 #endif 2398 2399 #define BNX2X_VPD_LEN 128 2400 #define VENDOR_ID_LEN 4 2401 2402 #define VF_ACQUIRE_THRESH 3 2403 #define VF_ACQUIRE_MAC_FILTERS 1 2404 #define VF_ACQUIRE_MC_FILTERS 10 2405 #define VF_ACQUIRE_VLAN_FILTERS 2 /* VLAN0 + 'real' VLAN */ 2406 2407 #define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \ 2408 (!((me_reg) & ME_REG_VF_ERR))) 2409 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err); 2410 2411 /* Congestion management fairness mode */ 2412 #define CMNG_FNS_NONE 0 2413 #define CMNG_FNS_MINMAX 1 2414 2415 #define HC_SEG_ACCESS_DEF 0 /*Driver decision 0-3*/ 2416 #define HC_SEG_ACCESS_ATTN 4 2417 #define HC_SEG_ACCESS_NORM 0 /*Driver decision 0-1*/ 2418 2419 static const u32 dmae_reg_go_c[] = { 2420 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3, 2421 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7, 2422 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11, 2423 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15 2424 }; 2425 2426 void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev); 2427 void bnx2x_notify_link_changed(struct bnx2x *bp); 2428 2429 #define BNX2X_MF_SD_PROTOCOL(bp) \ 2430 ((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK) 2431 2432 #define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \ 2433 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI) 2434 2435 #define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \ 2436 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE) 2437 2438 #define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) 2439 #define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) 2440 #define IS_MF_ISCSI_SI(bp) (IS_MF_SI(bp) && BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp)) 2441 2442 #define IS_MF_ISCSI_ONLY(bp) (IS_MF_ISCSI_SD(bp) || IS_MF_ISCSI_SI(bp)) 2443 2444 #define BNX2X_MF_EXT_PROTOCOL_MASK \ 2445 (MACP_FUNC_CFG_FLAGS_ETHERNET | \ 2446 MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD | \ 2447 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2448 2449 #define BNX2X_MF_EXT_PROT(bp) ((bp)->mf_ext_config & \ 2450 BNX2X_MF_EXT_PROTOCOL_MASK) 2451 2452 #define BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp) \ 2453 (BNX2X_MF_EXT_PROT(bp) & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2454 2455 #define BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp) \ 2456 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2457 2458 #define BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) \ 2459 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) 2460 2461 #define IS_MF_FCOE_AFEX(bp) \ 2462 (IS_MF_AFEX(bp) && BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp)) 2463 2464 #define IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) \ 2465 (IS_MF_SD(bp) && \ 2466 (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \ 2467 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 2468 2469 #define IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp) \ 2470 (IS_MF_SI(bp) && \ 2471 (BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) || \ 2472 BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp))) 2473 2474 #define IS_MF_STORAGE_PERSONALITY_ONLY(bp) \ 2475 (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) || \ 2476 IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp)) 2477 2478 /* Determines whether BW configuration arrives in 100Mb units or in 2479 * percentages from actual physical link speed. 2480 */ 2481 #define IS_MF_PERCENT_BW(bp) (IS_MF_SI(bp) || IS_MF_UFP(bp) || IS_MF_BD(bp)) 2482 2483 #define SET_FLAG(value, mask, flag) \ 2484 do {\ 2485 (value) &= ~(mask);\ 2486 (value) |= ((flag) << (mask##_SHIFT));\ 2487 } while (0) 2488 2489 #define GET_FLAG(value, mask) \ 2490 (((value) & (mask)) >> (mask##_SHIFT)) 2491 2492 #define GET_FIELD(value, fname) \ 2493 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 2494 2495 enum { 2496 SWITCH_UPDATE, 2497 AFEX_UPDATE, 2498 }; 2499 2500 #define NUM_MACS 8 2501 2502 void bnx2x_set_local_cmng(struct bnx2x *bp); 2503 2504 void bnx2x_update_mng_version(struct bnx2x *bp); 2505 2506 void bnx2x_update_mfw_dump(struct bnx2x *bp); 2507 2508 #define MCPR_SCRATCH_BASE(bp) \ 2509 (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH) 2510 2511 #define E1H_MAX_MF_SB_COUNT (HC_SB_MAX_SB_E1X/(E1HVN_MAX * PORT_MAX)) 2512 2513 void bnx2x_init_ptp(struct bnx2x *bp); 2514 int bnx2x_configure_ptp_filters(struct bnx2x *bp); 2515 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb); 2516 2517 #define BNX2X_MAX_PHC_DRIFT 31000000 2518 #define BNX2X_PTP_TX_TIMEOUT 2519 2520 /* Re-configure all previously configured vlan filters. 2521 * Meant for implicit re-load flows. 2522 */ 2523 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp); 2524 2525 #endif /* bnx2x.h */ 2526