1 /* bnx2.c: Broadcom NX2 network driver. 2 * 3 * Copyright (c) 2004-2011 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 * 9 * Written by: Michael Chan (mchan@broadcom.com) 10 */ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 17 #include <linux/stringify.h> 18 #include <linux/kernel.h> 19 #include <linux/timer.h> 20 #include <linux/errno.h> 21 #include <linux/ioport.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/interrupt.h> 25 #include <linux/pci.h> 26 #include <linux/init.h> 27 #include <linux/netdevice.h> 28 #include <linux/etherdevice.h> 29 #include <linux/skbuff.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/bitops.h> 32 #include <asm/io.h> 33 #include <asm/irq.h> 34 #include <linux/delay.h> 35 #include <asm/byteorder.h> 36 #include <asm/page.h> 37 #include <linux/time.h> 38 #include <linux/ethtool.h> 39 #include <linux/mii.h> 40 #include <linux/if.h> 41 #include <linux/if_vlan.h> 42 #include <net/ip.h> 43 #include <net/tcp.h> 44 #include <net/checksum.h> 45 #include <linux/workqueue.h> 46 #include <linux/crc32.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/firmware.h> 50 #include <linux/log2.h> 51 #include <linux/aer.h> 52 53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE) 54 #define BCM_CNIC 1 55 #include "cnic_if.h" 56 #endif 57 #include "bnx2.h" 58 #include "bnx2_fw.h" 59 60 #define DRV_MODULE_NAME "bnx2" 61 #define DRV_MODULE_VERSION "2.2.3" 62 #define DRV_MODULE_RELDATE "June 27, 2012" 63 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw" 64 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw" 65 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw" 66 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw" 67 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw" 68 69 #define RUN_AT(x) (jiffies + (x)) 70 71 /* Time in jiffies before concluding the transmitter is hung. */ 72 #define TX_TIMEOUT (5*HZ) 73 74 static char version[] __devinitdata = 75 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 76 77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>"); 78 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver"); 79 MODULE_LICENSE("GPL"); 80 MODULE_VERSION(DRV_MODULE_VERSION); 81 MODULE_FIRMWARE(FW_MIPS_FILE_06); 82 MODULE_FIRMWARE(FW_RV2P_FILE_06); 83 MODULE_FIRMWARE(FW_MIPS_FILE_09); 84 MODULE_FIRMWARE(FW_RV2P_FILE_09); 85 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax); 86 87 static int disable_msi = 0; 88 89 module_param(disable_msi, int, 0); 90 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)"); 91 92 typedef enum { 93 BCM5706 = 0, 94 NC370T, 95 NC370I, 96 BCM5706S, 97 NC370F, 98 BCM5708, 99 BCM5708S, 100 BCM5709, 101 BCM5709S, 102 BCM5716, 103 BCM5716S, 104 } board_t; 105 106 /* indexed by board_t, above */ 107 static struct { 108 char *name; 109 } board_info[] __devinitdata = { 110 { "Broadcom NetXtreme II BCM5706 1000Base-T" }, 111 { "HP NC370T Multifunction Gigabit Server Adapter" }, 112 { "HP NC370i Multifunction Gigabit Server Adapter" }, 113 { "Broadcom NetXtreme II BCM5706 1000Base-SX" }, 114 { "HP NC370F Multifunction Gigabit Server Adapter" }, 115 { "Broadcom NetXtreme II BCM5708 1000Base-T" }, 116 { "Broadcom NetXtreme II BCM5708 1000Base-SX" }, 117 { "Broadcom NetXtreme II BCM5709 1000Base-T" }, 118 { "Broadcom NetXtreme II BCM5709 1000Base-SX" }, 119 { "Broadcom NetXtreme II BCM5716 1000Base-T" }, 120 { "Broadcom NetXtreme II BCM5716 1000Base-SX" }, 121 }; 122 123 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = { 124 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706, 125 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T }, 126 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706, 127 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I }, 128 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706, 129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 }, 130 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708, 131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 }, 132 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S, 133 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F }, 134 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S, 135 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S }, 136 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S, 137 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S }, 138 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709, 139 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 }, 140 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S, 141 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S }, 142 { PCI_VENDOR_ID_BROADCOM, 0x163b, 143 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 }, 144 { PCI_VENDOR_ID_BROADCOM, 0x163c, 145 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S }, 146 { 0, } 147 }; 148 149 static const struct flash_spec flash_table[] = 150 { 151 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE) 152 #define NONBUFFERED_FLAGS (BNX2_NV_WREN) 153 /* Slow EEPROM */ 154 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 155 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 156 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 157 "EEPROM - slow"}, 158 /* Expansion entry 0001 */ 159 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 160 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 161 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 162 "Entry 0001"}, 163 /* Saifun SA25F010 (non-buffered flash) */ 164 /* strap, cfg1, & write1 need updates */ 165 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 166 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 167 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 168 "Non-buffered flash (128kB)"}, 169 /* Saifun SA25F020 (non-buffered flash) */ 170 /* strap, cfg1, & write1 need updates */ 171 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 172 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 173 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 174 "Non-buffered flash (256kB)"}, 175 /* Expansion entry 0100 */ 176 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 177 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 178 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 179 "Entry 0100"}, 180 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 181 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 182 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 183 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 184 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 185 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 186 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 187 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 188 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 189 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 190 /* Saifun SA25F005 (non-buffered flash) */ 191 /* strap, cfg1, & write1 need updates */ 192 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 194 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 195 "Non-buffered flash (64kB)"}, 196 /* Fast EEPROM */ 197 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 198 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 199 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 200 "EEPROM - fast"}, 201 /* Expansion entry 1001 */ 202 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 203 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 204 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 205 "Entry 1001"}, 206 /* Expansion entry 1010 */ 207 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 208 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 209 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 210 "Entry 1010"}, 211 /* ATMEL AT45DB011B (buffered flash) */ 212 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 213 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 214 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 215 "Buffered flash (128kB)"}, 216 /* Expansion entry 1100 */ 217 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 218 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 219 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 220 "Entry 1100"}, 221 /* Expansion entry 1101 */ 222 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 223 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 224 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 225 "Entry 1101"}, 226 /* Ateml Expansion entry 1110 */ 227 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 228 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 229 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 230 "Entry 1110 (Atmel)"}, 231 /* ATMEL AT45DB021B (buffered flash) */ 232 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 233 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 234 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 235 "Buffered flash (256kB)"}, 236 }; 237 238 static const struct flash_spec flash_5709 = { 239 .flags = BNX2_NV_BUFFERED, 240 .page_bits = BCM5709_FLASH_PAGE_BITS, 241 .page_size = BCM5709_FLASH_PAGE_SIZE, 242 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 243 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2, 244 .name = "5709 Buffered flash (256kB)", 245 }; 246 247 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl); 248 249 static void bnx2_init_napi(struct bnx2 *bp); 250 static void bnx2_del_napi(struct bnx2 *bp); 251 252 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr) 253 { 254 u32 diff; 255 256 /* Tell compiler to fetch tx_prod and tx_cons from memory. */ 257 barrier(); 258 259 /* The ring uses 256 indices for 255 entries, one of them 260 * needs to be skipped. 261 */ 262 diff = txr->tx_prod - txr->tx_cons; 263 if (unlikely(diff >= TX_DESC_CNT)) { 264 diff &= 0xffff; 265 if (diff == TX_DESC_CNT) 266 diff = MAX_TX_DESC_CNT; 267 } 268 return bp->tx_ring_size - diff; 269 } 270 271 static u32 272 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset) 273 { 274 u32 val; 275 276 spin_lock_bh(&bp->indirect_lock); 277 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset); 278 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW); 279 spin_unlock_bh(&bp->indirect_lock); 280 return val; 281 } 282 283 static void 284 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val) 285 { 286 spin_lock_bh(&bp->indirect_lock); 287 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset); 288 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val); 289 spin_unlock_bh(&bp->indirect_lock); 290 } 291 292 static void 293 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val) 294 { 295 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val); 296 } 297 298 static u32 299 bnx2_shmem_rd(struct bnx2 *bp, u32 offset) 300 { 301 return bnx2_reg_rd_ind(bp, bp->shmem_base + offset); 302 } 303 304 static void 305 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val) 306 { 307 offset += cid_addr; 308 spin_lock_bh(&bp->indirect_lock); 309 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 310 int i; 311 312 REG_WR(bp, BNX2_CTX_CTX_DATA, val); 313 REG_WR(bp, BNX2_CTX_CTX_CTRL, 314 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ); 315 for (i = 0; i < 5; i++) { 316 val = REG_RD(bp, BNX2_CTX_CTX_CTRL); 317 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0) 318 break; 319 udelay(5); 320 } 321 } else { 322 REG_WR(bp, BNX2_CTX_DATA_ADR, offset); 323 REG_WR(bp, BNX2_CTX_DATA, val); 324 } 325 spin_unlock_bh(&bp->indirect_lock); 326 } 327 328 #ifdef BCM_CNIC 329 static int 330 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info) 331 { 332 struct bnx2 *bp = netdev_priv(dev); 333 struct drv_ctl_io *io = &info->data.io; 334 335 switch (info->cmd) { 336 case DRV_CTL_IO_WR_CMD: 337 bnx2_reg_wr_ind(bp, io->offset, io->data); 338 break; 339 case DRV_CTL_IO_RD_CMD: 340 io->data = bnx2_reg_rd_ind(bp, io->offset); 341 break; 342 case DRV_CTL_CTX_WR_CMD: 343 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data); 344 break; 345 default: 346 return -EINVAL; 347 } 348 return 0; 349 } 350 351 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp) 352 { 353 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 354 struct bnx2_napi *bnapi = &bp->bnx2_napi[0]; 355 int sb_id; 356 357 if (bp->flags & BNX2_FLAG_USING_MSIX) { 358 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 359 bnapi->cnic_present = 0; 360 sb_id = bp->irq_nvecs; 361 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 362 } else { 363 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 364 bnapi->cnic_tag = bnapi->last_status_idx; 365 bnapi->cnic_present = 1; 366 sb_id = 0; 367 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 368 } 369 370 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector; 371 cp->irq_arr[0].status_blk = (void *) 372 ((unsigned long) bnapi->status_blk.msi + 373 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id)); 374 cp->irq_arr[0].status_blk_num = sb_id; 375 cp->num_irq = 1; 376 } 377 378 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops, 379 void *data) 380 { 381 struct bnx2 *bp = netdev_priv(dev); 382 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 383 384 if (ops == NULL) 385 return -EINVAL; 386 387 if (cp->drv_state & CNIC_DRV_STATE_REGD) 388 return -EBUSY; 389 390 if (!bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN)) 391 return -ENODEV; 392 393 bp->cnic_data = data; 394 rcu_assign_pointer(bp->cnic_ops, ops); 395 396 cp->num_irq = 0; 397 cp->drv_state = CNIC_DRV_STATE_REGD; 398 399 bnx2_setup_cnic_irq_info(bp); 400 401 return 0; 402 } 403 404 static int bnx2_unregister_cnic(struct net_device *dev) 405 { 406 struct bnx2 *bp = netdev_priv(dev); 407 struct bnx2_napi *bnapi = &bp->bnx2_napi[0]; 408 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 409 410 mutex_lock(&bp->cnic_lock); 411 cp->drv_state = 0; 412 bnapi->cnic_present = 0; 413 RCU_INIT_POINTER(bp->cnic_ops, NULL); 414 mutex_unlock(&bp->cnic_lock); 415 synchronize_rcu(); 416 return 0; 417 } 418 419 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev) 420 { 421 struct bnx2 *bp = netdev_priv(dev); 422 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 423 424 if (!cp->max_iscsi_conn) 425 return NULL; 426 427 cp->drv_owner = THIS_MODULE; 428 cp->chip_id = bp->chip_id; 429 cp->pdev = bp->pdev; 430 cp->io_base = bp->regview; 431 cp->drv_ctl = bnx2_drv_ctl; 432 cp->drv_register_cnic = bnx2_register_cnic; 433 cp->drv_unregister_cnic = bnx2_unregister_cnic; 434 435 return cp; 436 } 437 EXPORT_SYMBOL(bnx2_cnic_probe); 438 439 static void 440 bnx2_cnic_stop(struct bnx2 *bp) 441 { 442 struct cnic_ops *c_ops; 443 struct cnic_ctl_info info; 444 445 mutex_lock(&bp->cnic_lock); 446 c_ops = rcu_dereference_protected(bp->cnic_ops, 447 lockdep_is_held(&bp->cnic_lock)); 448 if (c_ops) { 449 info.cmd = CNIC_CTL_STOP_CMD; 450 c_ops->cnic_ctl(bp->cnic_data, &info); 451 } 452 mutex_unlock(&bp->cnic_lock); 453 } 454 455 static void 456 bnx2_cnic_start(struct bnx2 *bp) 457 { 458 struct cnic_ops *c_ops; 459 struct cnic_ctl_info info; 460 461 mutex_lock(&bp->cnic_lock); 462 c_ops = rcu_dereference_protected(bp->cnic_ops, 463 lockdep_is_held(&bp->cnic_lock)); 464 if (c_ops) { 465 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) { 466 struct bnx2_napi *bnapi = &bp->bnx2_napi[0]; 467 468 bnapi->cnic_tag = bnapi->last_status_idx; 469 } 470 info.cmd = CNIC_CTL_START_CMD; 471 c_ops->cnic_ctl(bp->cnic_data, &info); 472 } 473 mutex_unlock(&bp->cnic_lock); 474 } 475 476 #else 477 478 static void 479 bnx2_cnic_stop(struct bnx2 *bp) 480 { 481 } 482 483 static void 484 bnx2_cnic_start(struct bnx2 *bp) 485 { 486 } 487 488 #endif 489 490 static int 491 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val) 492 { 493 u32 val1; 494 int i, ret; 495 496 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) { 497 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); 498 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL; 499 500 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); 501 REG_RD(bp, BNX2_EMAC_MDIO_MODE); 502 503 udelay(40); 504 } 505 506 val1 = (bp->phy_addr << 21) | (reg << 16) | 507 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT | 508 BNX2_EMAC_MDIO_COMM_START_BUSY; 509 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1); 510 511 for (i = 0; i < 50; i++) { 512 udelay(10); 513 514 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM); 515 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) { 516 udelay(5); 517 518 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM); 519 val1 &= BNX2_EMAC_MDIO_COMM_DATA; 520 521 break; 522 } 523 } 524 525 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) { 526 *val = 0x0; 527 ret = -EBUSY; 528 } 529 else { 530 *val = val1; 531 ret = 0; 532 } 533 534 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) { 535 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); 536 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL; 537 538 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); 539 REG_RD(bp, BNX2_EMAC_MDIO_MODE); 540 541 udelay(40); 542 } 543 544 return ret; 545 } 546 547 static int 548 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val) 549 { 550 u32 val1; 551 int i, ret; 552 553 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) { 554 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); 555 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL; 556 557 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); 558 REG_RD(bp, BNX2_EMAC_MDIO_MODE); 559 560 udelay(40); 561 } 562 563 val1 = (bp->phy_addr << 21) | (reg << 16) | val | 564 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE | 565 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT; 566 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1); 567 568 for (i = 0; i < 50; i++) { 569 udelay(10); 570 571 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM); 572 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) { 573 udelay(5); 574 break; 575 } 576 } 577 578 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) 579 ret = -EBUSY; 580 else 581 ret = 0; 582 583 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) { 584 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); 585 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL; 586 587 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); 588 REG_RD(bp, BNX2_EMAC_MDIO_MODE); 589 590 udelay(40); 591 } 592 593 return ret; 594 } 595 596 static void 597 bnx2_disable_int(struct bnx2 *bp) 598 { 599 int i; 600 struct bnx2_napi *bnapi; 601 602 for (i = 0; i < bp->irq_nvecs; i++) { 603 bnapi = &bp->bnx2_napi[i]; 604 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num | 605 BNX2_PCICFG_INT_ACK_CMD_MASK_INT); 606 } 607 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD); 608 } 609 610 static void 611 bnx2_enable_int(struct bnx2 *bp) 612 { 613 int i; 614 struct bnx2_napi *bnapi; 615 616 for (i = 0; i < bp->irq_nvecs; i++) { 617 bnapi = &bp->bnx2_napi[i]; 618 619 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num | 620 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | 621 BNX2_PCICFG_INT_ACK_CMD_MASK_INT | 622 bnapi->last_status_idx); 623 624 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num | 625 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | 626 bnapi->last_status_idx); 627 } 628 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW); 629 } 630 631 static void 632 bnx2_disable_int_sync(struct bnx2 *bp) 633 { 634 int i; 635 636 atomic_inc(&bp->intr_sem); 637 if (!netif_running(bp->dev)) 638 return; 639 640 bnx2_disable_int(bp); 641 for (i = 0; i < bp->irq_nvecs; i++) 642 synchronize_irq(bp->irq_tbl[i].vector); 643 } 644 645 static void 646 bnx2_napi_disable(struct bnx2 *bp) 647 { 648 int i; 649 650 for (i = 0; i < bp->irq_nvecs; i++) 651 napi_disable(&bp->bnx2_napi[i].napi); 652 } 653 654 static void 655 bnx2_napi_enable(struct bnx2 *bp) 656 { 657 int i; 658 659 for (i = 0; i < bp->irq_nvecs; i++) 660 napi_enable(&bp->bnx2_napi[i].napi); 661 } 662 663 static void 664 bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic) 665 { 666 if (stop_cnic) 667 bnx2_cnic_stop(bp); 668 if (netif_running(bp->dev)) { 669 bnx2_napi_disable(bp); 670 netif_tx_disable(bp->dev); 671 } 672 bnx2_disable_int_sync(bp); 673 netif_carrier_off(bp->dev); /* prevent tx timeout */ 674 } 675 676 static void 677 bnx2_netif_start(struct bnx2 *bp, bool start_cnic) 678 { 679 if (atomic_dec_and_test(&bp->intr_sem)) { 680 if (netif_running(bp->dev)) { 681 netif_tx_wake_all_queues(bp->dev); 682 spin_lock_bh(&bp->phy_lock); 683 if (bp->link_up) 684 netif_carrier_on(bp->dev); 685 spin_unlock_bh(&bp->phy_lock); 686 bnx2_napi_enable(bp); 687 bnx2_enable_int(bp); 688 if (start_cnic) 689 bnx2_cnic_start(bp); 690 } 691 } 692 } 693 694 static void 695 bnx2_free_tx_mem(struct bnx2 *bp) 696 { 697 int i; 698 699 for (i = 0; i < bp->num_tx_rings; i++) { 700 struct bnx2_napi *bnapi = &bp->bnx2_napi[i]; 701 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring; 702 703 if (txr->tx_desc_ring) { 704 dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE, 705 txr->tx_desc_ring, 706 txr->tx_desc_mapping); 707 txr->tx_desc_ring = NULL; 708 } 709 kfree(txr->tx_buf_ring); 710 txr->tx_buf_ring = NULL; 711 } 712 } 713 714 static void 715 bnx2_free_rx_mem(struct bnx2 *bp) 716 { 717 int i; 718 719 for (i = 0; i < bp->num_rx_rings; i++) { 720 struct bnx2_napi *bnapi = &bp->bnx2_napi[i]; 721 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring; 722 int j; 723 724 for (j = 0; j < bp->rx_max_ring; j++) { 725 if (rxr->rx_desc_ring[j]) 726 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE, 727 rxr->rx_desc_ring[j], 728 rxr->rx_desc_mapping[j]); 729 rxr->rx_desc_ring[j] = NULL; 730 } 731 vfree(rxr->rx_buf_ring); 732 rxr->rx_buf_ring = NULL; 733 734 for (j = 0; j < bp->rx_max_pg_ring; j++) { 735 if (rxr->rx_pg_desc_ring[j]) 736 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE, 737 rxr->rx_pg_desc_ring[j], 738 rxr->rx_pg_desc_mapping[j]); 739 rxr->rx_pg_desc_ring[j] = NULL; 740 } 741 vfree(rxr->rx_pg_ring); 742 rxr->rx_pg_ring = NULL; 743 } 744 } 745 746 static int 747 bnx2_alloc_tx_mem(struct bnx2 *bp) 748 { 749 int i; 750 751 for (i = 0; i < bp->num_tx_rings; i++) { 752 struct bnx2_napi *bnapi = &bp->bnx2_napi[i]; 753 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring; 754 755 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL); 756 if (txr->tx_buf_ring == NULL) 757 return -ENOMEM; 758 759 txr->tx_desc_ring = 760 dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE, 761 &txr->tx_desc_mapping, GFP_KERNEL); 762 if (txr->tx_desc_ring == NULL) 763 return -ENOMEM; 764 } 765 return 0; 766 } 767 768 static int 769 bnx2_alloc_rx_mem(struct bnx2 *bp) 770 { 771 int i; 772 773 for (i = 0; i < bp->num_rx_rings; i++) { 774 struct bnx2_napi *bnapi = &bp->bnx2_napi[i]; 775 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring; 776 int j; 777 778 rxr->rx_buf_ring = 779 vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring); 780 if (rxr->rx_buf_ring == NULL) 781 return -ENOMEM; 782 783 for (j = 0; j < bp->rx_max_ring; j++) { 784 rxr->rx_desc_ring[j] = 785 dma_alloc_coherent(&bp->pdev->dev, 786 RXBD_RING_SIZE, 787 &rxr->rx_desc_mapping[j], 788 GFP_KERNEL); 789 if (rxr->rx_desc_ring[j] == NULL) 790 return -ENOMEM; 791 792 } 793 794 if (bp->rx_pg_ring_size) { 795 rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE * 796 bp->rx_max_pg_ring); 797 if (rxr->rx_pg_ring == NULL) 798 return -ENOMEM; 799 800 } 801 802 for (j = 0; j < bp->rx_max_pg_ring; j++) { 803 rxr->rx_pg_desc_ring[j] = 804 dma_alloc_coherent(&bp->pdev->dev, 805 RXBD_RING_SIZE, 806 &rxr->rx_pg_desc_mapping[j], 807 GFP_KERNEL); 808 if (rxr->rx_pg_desc_ring[j] == NULL) 809 return -ENOMEM; 810 811 } 812 } 813 return 0; 814 } 815 816 static void 817 bnx2_free_mem(struct bnx2 *bp) 818 { 819 int i; 820 struct bnx2_napi *bnapi = &bp->bnx2_napi[0]; 821 822 bnx2_free_tx_mem(bp); 823 bnx2_free_rx_mem(bp); 824 825 for (i = 0; i < bp->ctx_pages; i++) { 826 if (bp->ctx_blk[i]) { 827 dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE, 828 bp->ctx_blk[i], 829 bp->ctx_blk_mapping[i]); 830 bp->ctx_blk[i] = NULL; 831 } 832 } 833 if (bnapi->status_blk.msi) { 834 dma_free_coherent(&bp->pdev->dev, bp->status_stats_size, 835 bnapi->status_blk.msi, 836 bp->status_blk_mapping); 837 bnapi->status_blk.msi = NULL; 838 bp->stats_blk = NULL; 839 } 840 } 841 842 static int 843 bnx2_alloc_mem(struct bnx2 *bp) 844 { 845 int i, status_blk_size, err; 846 struct bnx2_napi *bnapi; 847 void *status_blk; 848 849 /* Combine status and statistics blocks into one allocation. */ 850 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block)); 851 if (bp->flags & BNX2_FLAG_MSIX_CAP) 852 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC * 853 BNX2_SBLK_MSIX_ALIGN_SIZE); 854 bp->status_stats_size = status_blk_size + 855 sizeof(struct statistics_block); 856 857 status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size, 858 &bp->status_blk_mapping, GFP_KERNEL); 859 if (status_blk == NULL) 860 goto alloc_mem_err; 861 862 memset(status_blk, 0, bp->status_stats_size); 863 864 bnapi = &bp->bnx2_napi[0]; 865 bnapi->status_blk.msi = status_blk; 866 bnapi->hw_tx_cons_ptr = 867 &bnapi->status_blk.msi->status_tx_quick_consumer_index0; 868 bnapi->hw_rx_cons_ptr = 869 &bnapi->status_blk.msi->status_rx_quick_consumer_index0; 870 if (bp->flags & BNX2_FLAG_MSIX_CAP) { 871 for (i = 1; i < bp->irq_nvecs; i++) { 872 struct status_block_msix *sblk; 873 874 bnapi = &bp->bnx2_napi[i]; 875 876 sblk = (status_blk + BNX2_SBLK_MSIX_ALIGN_SIZE * i); 877 bnapi->status_blk.msix = sblk; 878 bnapi->hw_tx_cons_ptr = 879 &sblk->status_tx_quick_consumer_index; 880 bnapi->hw_rx_cons_ptr = 881 &sblk->status_rx_quick_consumer_index; 882 bnapi->int_num = i << 24; 883 } 884 } 885 886 bp->stats_blk = status_blk + status_blk_size; 887 888 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size; 889 890 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 891 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 892 if (bp->ctx_pages == 0) 893 bp->ctx_pages = 1; 894 for (i = 0; i < bp->ctx_pages; i++) { 895 bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev, 896 BCM_PAGE_SIZE, 897 &bp->ctx_blk_mapping[i], 898 GFP_KERNEL); 899 if (bp->ctx_blk[i] == NULL) 900 goto alloc_mem_err; 901 } 902 } 903 904 err = bnx2_alloc_rx_mem(bp); 905 if (err) 906 goto alloc_mem_err; 907 908 err = bnx2_alloc_tx_mem(bp); 909 if (err) 910 goto alloc_mem_err; 911 912 return 0; 913 914 alloc_mem_err: 915 bnx2_free_mem(bp); 916 return -ENOMEM; 917 } 918 919 static void 920 bnx2_report_fw_link(struct bnx2 *bp) 921 { 922 u32 fw_link_status = 0; 923 924 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) 925 return; 926 927 if (bp->link_up) { 928 u32 bmsr; 929 930 switch (bp->line_speed) { 931 case SPEED_10: 932 if (bp->duplex == DUPLEX_HALF) 933 fw_link_status = BNX2_LINK_STATUS_10HALF; 934 else 935 fw_link_status = BNX2_LINK_STATUS_10FULL; 936 break; 937 case SPEED_100: 938 if (bp->duplex == DUPLEX_HALF) 939 fw_link_status = BNX2_LINK_STATUS_100HALF; 940 else 941 fw_link_status = BNX2_LINK_STATUS_100FULL; 942 break; 943 case SPEED_1000: 944 if (bp->duplex == DUPLEX_HALF) 945 fw_link_status = BNX2_LINK_STATUS_1000HALF; 946 else 947 fw_link_status = BNX2_LINK_STATUS_1000FULL; 948 break; 949 case SPEED_2500: 950 if (bp->duplex == DUPLEX_HALF) 951 fw_link_status = BNX2_LINK_STATUS_2500HALF; 952 else 953 fw_link_status = BNX2_LINK_STATUS_2500FULL; 954 break; 955 } 956 957 fw_link_status |= BNX2_LINK_STATUS_LINK_UP; 958 959 if (bp->autoneg) { 960 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED; 961 962 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr); 963 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr); 964 965 if (!(bmsr & BMSR_ANEGCOMPLETE) || 966 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) 967 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET; 968 else 969 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE; 970 } 971 } 972 else 973 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN; 974 975 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status); 976 } 977 978 static char * 979 bnx2_xceiver_str(struct bnx2 *bp) 980 { 981 return (bp->phy_port == PORT_FIBRE) ? "SerDes" : 982 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" : 983 "Copper"); 984 } 985 986 static void 987 bnx2_report_link(struct bnx2 *bp) 988 { 989 if (bp->link_up) { 990 netif_carrier_on(bp->dev); 991 netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex", 992 bnx2_xceiver_str(bp), 993 bp->line_speed, 994 bp->duplex == DUPLEX_FULL ? "full" : "half"); 995 996 if (bp->flow_ctrl) { 997 if (bp->flow_ctrl & FLOW_CTRL_RX) { 998 pr_cont(", receive "); 999 if (bp->flow_ctrl & FLOW_CTRL_TX) 1000 pr_cont("& transmit "); 1001 } 1002 else { 1003 pr_cont(", transmit "); 1004 } 1005 pr_cont("flow control ON"); 1006 } 1007 pr_cont("\n"); 1008 } else { 1009 netif_carrier_off(bp->dev); 1010 netdev_err(bp->dev, "NIC %s Link is Down\n", 1011 bnx2_xceiver_str(bp)); 1012 } 1013 1014 bnx2_report_fw_link(bp); 1015 } 1016 1017 static void 1018 bnx2_resolve_flow_ctrl(struct bnx2 *bp) 1019 { 1020 u32 local_adv, remote_adv; 1021 1022 bp->flow_ctrl = 0; 1023 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) != 1024 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) { 1025 1026 if (bp->duplex == DUPLEX_FULL) { 1027 bp->flow_ctrl = bp->req_flow_ctrl; 1028 } 1029 return; 1030 } 1031 1032 if (bp->duplex != DUPLEX_FULL) { 1033 return; 1034 } 1035 1036 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) && 1037 (CHIP_NUM(bp) == CHIP_NUM_5708)) { 1038 u32 val; 1039 1040 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val); 1041 if (val & BCM5708S_1000X_STAT1_TX_PAUSE) 1042 bp->flow_ctrl |= FLOW_CTRL_TX; 1043 if (val & BCM5708S_1000X_STAT1_RX_PAUSE) 1044 bp->flow_ctrl |= FLOW_CTRL_RX; 1045 return; 1046 } 1047 1048 bnx2_read_phy(bp, bp->mii_adv, &local_adv); 1049 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv); 1050 1051 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) { 1052 u32 new_local_adv = 0; 1053 u32 new_remote_adv = 0; 1054 1055 if (local_adv & ADVERTISE_1000XPAUSE) 1056 new_local_adv |= ADVERTISE_PAUSE_CAP; 1057 if (local_adv & ADVERTISE_1000XPSE_ASYM) 1058 new_local_adv |= ADVERTISE_PAUSE_ASYM; 1059 if (remote_adv & ADVERTISE_1000XPAUSE) 1060 new_remote_adv |= ADVERTISE_PAUSE_CAP; 1061 if (remote_adv & ADVERTISE_1000XPSE_ASYM) 1062 new_remote_adv |= ADVERTISE_PAUSE_ASYM; 1063 1064 local_adv = new_local_adv; 1065 remote_adv = new_remote_adv; 1066 } 1067 1068 /* See Table 28B-3 of 802.3ab-1999 spec. */ 1069 if (local_adv & ADVERTISE_PAUSE_CAP) { 1070 if(local_adv & ADVERTISE_PAUSE_ASYM) { 1071 if (remote_adv & ADVERTISE_PAUSE_CAP) { 1072 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX; 1073 } 1074 else if (remote_adv & ADVERTISE_PAUSE_ASYM) { 1075 bp->flow_ctrl = FLOW_CTRL_RX; 1076 } 1077 } 1078 else { 1079 if (remote_adv & ADVERTISE_PAUSE_CAP) { 1080 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX; 1081 } 1082 } 1083 } 1084 else if (local_adv & ADVERTISE_PAUSE_ASYM) { 1085 if ((remote_adv & ADVERTISE_PAUSE_CAP) && 1086 (remote_adv & ADVERTISE_PAUSE_ASYM)) { 1087 1088 bp->flow_ctrl = FLOW_CTRL_TX; 1089 } 1090 } 1091 } 1092 1093 static int 1094 bnx2_5709s_linkup(struct bnx2 *bp) 1095 { 1096 u32 val, speed; 1097 1098 bp->link_up = 1; 1099 1100 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS); 1101 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val); 1102 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0); 1103 1104 if ((bp->autoneg & AUTONEG_SPEED) == 0) { 1105 bp->line_speed = bp->req_line_speed; 1106 bp->duplex = bp->req_duplex; 1107 return 0; 1108 } 1109 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK; 1110 switch (speed) { 1111 case MII_BNX2_GP_TOP_AN_SPEED_10: 1112 bp->line_speed = SPEED_10; 1113 break; 1114 case MII_BNX2_GP_TOP_AN_SPEED_100: 1115 bp->line_speed = SPEED_100; 1116 break; 1117 case MII_BNX2_GP_TOP_AN_SPEED_1G: 1118 case MII_BNX2_GP_TOP_AN_SPEED_1GKV: 1119 bp->line_speed = SPEED_1000; 1120 break; 1121 case MII_BNX2_GP_TOP_AN_SPEED_2_5G: 1122 bp->line_speed = SPEED_2500; 1123 break; 1124 } 1125 if (val & MII_BNX2_GP_TOP_AN_FD) 1126 bp->duplex = DUPLEX_FULL; 1127 else 1128 bp->duplex = DUPLEX_HALF; 1129 return 0; 1130 } 1131 1132 static int 1133 bnx2_5708s_linkup(struct bnx2 *bp) 1134 { 1135 u32 val; 1136 1137 bp->link_up = 1; 1138 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val); 1139 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) { 1140 case BCM5708S_1000X_STAT1_SPEED_10: 1141 bp->line_speed = SPEED_10; 1142 break; 1143 case BCM5708S_1000X_STAT1_SPEED_100: 1144 bp->line_speed = SPEED_100; 1145 break; 1146 case BCM5708S_1000X_STAT1_SPEED_1G: 1147 bp->line_speed = SPEED_1000; 1148 break; 1149 case BCM5708S_1000X_STAT1_SPEED_2G5: 1150 bp->line_speed = SPEED_2500; 1151 break; 1152 } 1153 if (val & BCM5708S_1000X_STAT1_FD) 1154 bp->duplex = DUPLEX_FULL; 1155 else 1156 bp->duplex = DUPLEX_HALF; 1157 1158 return 0; 1159 } 1160 1161 static int 1162 bnx2_5706s_linkup(struct bnx2 *bp) 1163 { 1164 u32 bmcr, local_adv, remote_adv, common; 1165 1166 bp->link_up = 1; 1167 bp->line_speed = SPEED_1000; 1168 1169 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 1170 if (bmcr & BMCR_FULLDPLX) { 1171 bp->duplex = DUPLEX_FULL; 1172 } 1173 else { 1174 bp->duplex = DUPLEX_HALF; 1175 } 1176 1177 if (!(bmcr & BMCR_ANENABLE)) { 1178 return 0; 1179 } 1180 1181 bnx2_read_phy(bp, bp->mii_adv, &local_adv); 1182 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv); 1183 1184 common = local_adv & remote_adv; 1185 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) { 1186 1187 if (common & ADVERTISE_1000XFULL) { 1188 bp->duplex = DUPLEX_FULL; 1189 } 1190 else { 1191 bp->duplex = DUPLEX_HALF; 1192 } 1193 } 1194 1195 return 0; 1196 } 1197 1198 static int 1199 bnx2_copper_linkup(struct bnx2 *bp) 1200 { 1201 u32 bmcr; 1202 1203 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 1204 if (bmcr & BMCR_ANENABLE) { 1205 u32 local_adv, remote_adv, common; 1206 1207 bnx2_read_phy(bp, MII_CTRL1000, &local_adv); 1208 bnx2_read_phy(bp, MII_STAT1000, &remote_adv); 1209 1210 common = local_adv & (remote_adv >> 2); 1211 if (common & ADVERTISE_1000FULL) { 1212 bp->line_speed = SPEED_1000; 1213 bp->duplex = DUPLEX_FULL; 1214 } 1215 else if (common & ADVERTISE_1000HALF) { 1216 bp->line_speed = SPEED_1000; 1217 bp->duplex = DUPLEX_HALF; 1218 } 1219 else { 1220 bnx2_read_phy(bp, bp->mii_adv, &local_adv); 1221 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv); 1222 1223 common = local_adv & remote_adv; 1224 if (common & ADVERTISE_100FULL) { 1225 bp->line_speed = SPEED_100; 1226 bp->duplex = DUPLEX_FULL; 1227 } 1228 else if (common & ADVERTISE_100HALF) { 1229 bp->line_speed = SPEED_100; 1230 bp->duplex = DUPLEX_HALF; 1231 } 1232 else if (common & ADVERTISE_10FULL) { 1233 bp->line_speed = SPEED_10; 1234 bp->duplex = DUPLEX_FULL; 1235 } 1236 else if (common & ADVERTISE_10HALF) { 1237 bp->line_speed = SPEED_10; 1238 bp->duplex = DUPLEX_HALF; 1239 } 1240 else { 1241 bp->line_speed = 0; 1242 bp->link_up = 0; 1243 } 1244 } 1245 } 1246 else { 1247 if (bmcr & BMCR_SPEED100) { 1248 bp->line_speed = SPEED_100; 1249 } 1250 else { 1251 bp->line_speed = SPEED_10; 1252 } 1253 if (bmcr & BMCR_FULLDPLX) { 1254 bp->duplex = DUPLEX_FULL; 1255 } 1256 else { 1257 bp->duplex = DUPLEX_HALF; 1258 } 1259 } 1260 1261 return 0; 1262 } 1263 1264 static void 1265 bnx2_init_rx_context(struct bnx2 *bp, u32 cid) 1266 { 1267 u32 val, rx_cid_addr = GET_CID_ADDR(cid); 1268 1269 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE; 1270 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2; 1271 val |= 0x02 << 8; 1272 1273 if (bp->flow_ctrl & FLOW_CTRL_TX) 1274 val |= BNX2_L2CTX_FLOW_CTRL_ENABLE; 1275 1276 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val); 1277 } 1278 1279 static void 1280 bnx2_init_all_rx_contexts(struct bnx2 *bp) 1281 { 1282 int i; 1283 u32 cid; 1284 1285 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) { 1286 if (i == 1) 1287 cid = RX_RSS_CID; 1288 bnx2_init_rx_context(bp, cid); 1289 } 1290 } 1291 1292 static void 1293 bnx2_set_mac_link(struct bnx2 *bp) 1294 { 1295 u32 val; 1296 1297 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620); 1298 if (bp->link_up && (bp->line_speed == SPEED_1000) && 1299 (bp->duplex == DUPLEX_HALF)) { 1300 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff); 1301 } 1302 1303 /* Configure the EMAC mode register. */ 1304 val = REG_RD(bp, BNX2_EMAC_MODE); 1305 1306 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX | 1307 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK | 1308 BNX2_EMAC_MODE_25G_MODE); 1309 1310 if (bp->link_up) { 1311 switch (bp->line_speed) { 1312 case SPEED_10: 1313 if (CHIP_NUM(bp) != CHIP_NUM_5706) { 1314 val |= BNX2_EMAC_MODE_PORT_MII_10M; 1315 break; 1316 } 1317 /* fall through */ 1318 case SPEED_100: 1319 val |= BNX2_EMAC_MODE_PORT_MII; 1320 break; 1321 case SPEED_2500: 1322 val |= BNX2_EMAC_MODE_25G_MODE; 1323 /* fall through */ 1324 case SPEED_1000: 1325 val |= BNX2_EMAC_MODE_PORT_GMII; 1326 break; 1327 } 1328 } 1329 else { 1330 val |= BNX2_EMAC_MODE_PORT_GMII; 1331 } 1332 1333 /* Set the MAC to operate in the appropriate duplex mode. */ 1334 if (bp->duplex == DUPLEX_HALF) 1335 val |= BNX2_EMAC_MODE_HALF_DUPLEX; 1336 REG_WR(bp, BNX2_EMAC_MODE, val); 1337 1338 /* Enable/disable rx PAUSE. */ 1339 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN; 1340 1341 if (bp->flow_ctrl & FLOW_CTRL_RX) 1342 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN; 1343 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode); 1344 1345 /* Enable/disable tx PAUSE. */ 1346 val = REG_RD(bp, BNX2_EMAC_TX_MODE); 1347 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN; 1348 1349 if (bp->flow_ctrl & FLOW_CTRL_TX) 1350 val |= BNX2_EMAC_TX_MODE_FLOW_EN; 1351 REG_WR(bp, BNX2_EMAC_TX_MODE, val); 1352 1353 /* Acknowledge the interrupt. */ 1354 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE); 1355 1356 bnx2_init_all_rx_contexts(bp); 1357 } 1358 1359 static void 1360 bnx2_enable_bmsr1(struct bnx2 *bp) 1361 { 1362 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) && 1363 (CHIP_NUM(bp) == CHIP_NUM_5709)) 1364 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, 1365 MII_BNX2_BLK_ADDR_GP_STATUS); 1366 } 1367 1368 static void 1369 bnx2_disable_bmsr1(struct bnx2 *bp) 1370 { 1371 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) && 1372 (CHIP_NUM(bp) == CHIP_NUM_5709)) 1373 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, 1374 MII_BNX2_BLK_ADDR_COMBO_IEEEB0); 1375 } 1376 1377 static int 1378 bnx2_test_and_enable_2g5(struct bnx2 *bp) 1379 { 1380 u32 up1; 1381 int ret = 1; 1382 1383 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)) 1384 return 0; 1385 1386 if (bp->autoneg & AUTONEG_SPEED) 1387 bp->advertising |= ADVERTISED_2500baseX_Full; 1388 1389 if (CHIP_NUM(bp) == CHIP_NUM_5709) 1390 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G); 1391 1392 bnx2_read_phy(bp, bp->mii_up1, &up1); 1393 if (!(up1 & BCM5708S_UP1_2G5)) { 1394 up1 |= BCM5708S_UP1_2G5; 1395 bnx2_write_phy(bp, bp->mii_up1, up1); 1396 ret = 0; 1397 } 1398 1399 if (CHIP_NUM(bp) == CHIP_NUM_5709) 1400 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, 1401 MII_BNX2_BLK_ADDR_COMBO_IEEEB0); 1402 1403 return ret; 1404 } 1405 1406 static int 1407 bnx2_test_and_disable_2g5(struct bnx2 *bp) 1408 { 1409 u32 up1; 1410 int ret = 0; 1411 1412 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)) 1413 return 0; 1414 1415 if (CHIP_NUM(bp) == CHIP_NUM_5709) 1416 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G); 1417 1418 bnx2_read_phy(bp, bp->mii_up1, &up1); 1419 if (up1 & BCM5708S_UP1_2G5) { 1420 up1 &= ~BCM5708S_UP1_2G5; 1421 bnx2_write_phy(bp, bp->mii_up1, up1); 1422 ret = 1; 1423 } 1424 1425 if (CHIP_NUM(bp) == CHIP_NUM_5709) 1426 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, 1427 MII_BNX2_BLK_ADDR_COMBO_IEEEB0); 1428 1429 return ret; 1430 } 1431 1432 static void 1433 bnx2_enable_forced_2g5(struct bnx2 *bp) 1434 { 1435 u32 uninitialized_var(bmcr); 1436 int err; 1437 1438 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)) 1439 return; 1440 1441 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 1442 u32 val; 1443 1444 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, 1445 MII_BNX2_BLK_ADDR_SERDES_DIG); 1446 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) { 1447 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK; 1448 val |= MII_BNX2_SD_MISC1_FORCE | 1449 MII_BNX2_SD_MISC1_FORCE_2_5G; 1450 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val); 1451 } 1452 1453 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, 1454 MII_BNX2_BLK_ADDR_COMBO_IEEEB0); 1455 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 1456 1457 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) { 1458 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 1459 if (!err) 1460 bmcr |= BCM5708S_BMCR_FORCE_2500; 1461 } else { 1462 return; 1463 } 1464 1465 if (err) 1466 return; 1467 1468 if (bp->autoneg & AUTONEG_SPEED) { 1469 bmcr &= ~BMCR_ANENABLE; 1470 if (bp->req_duplex == DUPLEX_FULL) 1471 bmcr |= BMCR_FULLDPLX; 1472 } 1473 bnx2_write_phy(bp, bp->mii_bmcr, bmcr); 1474 } 1475 1476 static void 1477 bnx2_disable_forced_2g5(struct bnx2 *bp) 1478 { 1479 u32 uninitialized_var(bmcr); 1480 int err; 1481 1482 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)) 1483 return; 1484 1485 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 1486 u32 val; 1487 1488 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, 1489 MII_BNX2_BLK_ADDR_SERDES_DIG); 1490 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) { 1491 val &= ~MII_BNX2_SD_MISC1_FORCE; 1492 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val); 1493 } 1494 1495 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, 1496 MII_BNX2_BLK_ADDR_COMBO_IEEEB0); 1497 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 1498 1499 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) { 1500 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 1501 if (!err) 1502 bmcr &= ~BCM5708S_BMCR_FORCE_2500; 1503 } else { 1504 return; 1505 } 1506 1507 if (err) 1508 return; 1509 1510 if (bp->autoneg & AUTONEG_SPEED) 1511 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART; 1512 bnx2_write_phy(bp, bp->mii_bmcr, bmcr); 1513 } 1514 1515 static void 1516 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start) 1517 { 1518 u32 val; 1519 1520 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL); 1521 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val); 1522 if (start) 1523 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f); 1524 else 1525 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0); 1526 } 1527 1528 static int 1529 bnx2_set_link(struct bnx2 *bp) 1530 { 1531 u32 bmsr; 1532 u8 link_up; 1533 1534 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) { 1535 bp->link_up = 1; 1536 return 0; 1537 } 1538 1539 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) 1540 return 0; 1541 1542 link_up = bp->link_up; 1543 1544 bnx2_enable_bmsr1(bp); 1545 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr); 1546 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr); 1547 bnx2_disable_bmsr1(bp); 1548 1549 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) && 1550 (CHIP_NUM(bp) == CHIP_NUM_5706)) { 1551 u32 val, an_dbg; 1552 1553 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) { 1554 bnx2_5706s_force_link_dn(bp, 0); 1555 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN; 1556 } 1557 val = REG_RD(bp, BNX2_EMAC_STATUS); 1558 1559 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG); 1560 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg); 1561 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg); 1562 1563 if ((val & BNX2_EMAC_STATUS_LINK) && 1564 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC)) 1565 bmsr |= BMSR_LSTATUS; 1566 else 1567 bmsr &= ~BMSR_LSTATUS; 1568 } 1569 1570 if (bmsr & BMSR_LSTATUS) { 1571 bp->link_up = 1; 1572 1573 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) { 1574 if (CHIP_NUM(bp) == CHIP_NUM_5706) 1575 bnx2_5706s_linkup(bp); 1576 else if (CHIP_NUM(bp) == CHIP_NUM_5708) 1577 bnx2_5708s_linkup(bp); 1578 else if (CHIP_NUM(bp) == CHIP_NUM_5709) 1579 bnx2_5709s_linkup(bp); 1580 } 1581 else { 1582 bnx2_copper_linkup(bp); 1583 } 1584 bnx2_resolve_flow_ctrl(bp); 1585 } 1586 else { 1587 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) && 1588 (bp->autoneg & AUTONEG_SPEED)) 1589 bnx2_disable_forced_2g5(bp); 1590 1591 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) { 1592 u32 bmcr; 1593 1594 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 1595 bmcr |= BMCR_ANENABLE; 1596 bnx2_write_phy(bp, bp->mii_bmcr, bmcr); 1597 1598 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT; 1599 } 1600 bp->link_up = 0; 1601 } 1602 1603 if (bp->link_up != link_up) { 1604 bnx2_report_link(bp); 1605 } 1606 1607 bnx2_set_mac_link(bp); 1608 1609 return 0; 1610 } 1611 1612 static int 1613 bnx2_reset_phy(struct bnx2 *bp) 1614 { 1615 int i; 1616 u32 reg; 1617 1618 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET); 1619 1620 #define PHY_RESET_MAX_WAIT 100 1621 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) { 1622 udelay(10); 1623 1624 bnx2_read_phy(bp, bp->mii_bmcr, ®); 1625 if (!(reg & BMCR_RESET)) { 1626 udelay(20); 1627 break; 1628 } 1629 } 1630 if (i == PHY_RESET_MAX_WAIT) { 1631 return -EBUSY; 1632 } 1633 return 0; 1634 } 1635 1636 static u32 1637 bnx2_phy_get_pause_adv(struct bnx2 *bp) 1638 { 1639 u32 adv = 0; 1640 1641 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) == 1642 (FLOW_CTRL_RX | FLOW_CTRL_TX)) { 1643 1644 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) { 1645 adv = ADVERTISE_1000XPAUSE; 1646 } 1647 else { 1648 adv = ADVERTISE_PAUSE_CAP; 1649 } 1650 } 1651 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) { 1652 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) { 1653 adv = ADVERTISE_1000XPSE_ASYM; 1654 } 1655 else { 1656 adv = ADVERTISE_PAUSE_ASYM; 1657 } 1658 } 1659 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) { 1660 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) { 1661 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM; 1662 } 1663 else { 1664 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 1665 } 1666 } 1667 return adv; 1668 } 1669 1670 static int bnx2_fw_sync(struct bnx2 *, u32, int, int); 1671 1672 static int 1673 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port) 1674 __releases(&bp->phy_lock) 1675 __acquires(&bp->phy_lock) 1676 { 1677 u32 speed_arg = 0, pause_adv; 1678 1679 pause_adv = bnx2_phy_get_pause_adv(bp); 1680 1681 if (bp->autoneg & AUTONEG_SPEED) { 1682 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG; 1683 if (bp->advertising & ADVERTISED_10baseT_Half) 1684 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF; 1685 if (bp->advertising & ADVERTISED_10baseT_Full) 1686 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL; 1687 if (bp->advertising & ADVERTISED_100baseT_Half) 1688 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF; 1689 if (bp->advertising & ADVERTISED_100baseT_Full) 1690 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL; 1691 if (bp->advertising & ADVERTISED_1000baseT_Full) 1692 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL; 1693 if (bp->advertising & ADVERTISED_2500baseX_Full) 1694 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL; 1695 } else { 1696 if (bp->req_line_speed == SPEED_2500) 1697 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL; 1698 else if (bp->req_line_speed == SPEED_1000) 1699 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL; 1700 else if (bp->req_line_speed == SPEED_100) { 1701 if (bp->req_duplex == DUPLEX_FULL) 1702 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL; 1703 else 1704 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF; 1705 } else if (bp->req_line_speed == SPEED_10) { 1706 if (bp->req_duplex == DUPLEX_FULL) 1707 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL; 1708 else 1709 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF; 1710 } 1711 } 1712 1713 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP)) 1714 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE; 1715 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM)) 1716 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE; 1717 1718 if (port == PORT_TP) 1719 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE | 1720 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED; 1721 1722 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg); 1723 1724 spin_unlock_bh(&bp->phy_lock); 1725 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0); 1726 spin_lock_bh(&bp->phy_lock); 1727 1728 return 0; 1729 } 1730 1731 static int 1732 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port) 1733 __releases(&bp->phy_lock) 1734 __acquires(&bp->phy_lock) 1735 { 1736 u32 adv, bmcr; 1737 u32 new_adv = 0; 1738 1739 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) 1740 return bnx2_setup_remote_phy(bp, port); 1741 1742 if (!(bp->autoneg & AUTONEG_SPEED)) { 1743 u32 new_bmcr; 1744 int force_link_down = 0; 1745 1746 if (bp->req_line_speed == SPEED_2500) { 1747 if (!bnx2_test_and_enable_2g5(bp)) 1748 force_link_down = 1; 1749 } else if (bp->req_line_speed == SPEED_1000) { 1750 if (bnx2_test_and_disable_2g5(bp)) 1751 force_link_down = 1; 1752 } 1753 bnx2_read_phy(bp, bp->mii_adv, &adv); 1754 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF); 1755 1756 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 1757 new_bmcr = bmcr & ~BMCR_ANENABLE; 1758 new_bmcr |= BMCR_SPEED1000; 1759 1760 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 1761 if (bp->req_line_speed == SPEED_2500) 1762 bnx2_enable_forced_2g5(bp); 1763 else if (bp->req_line_speed == SPEED_1000) { 1764 bnx2_disable_forced_2g5(bp); 1765 new_bmcr &= ~0x2000; 1766 } 1767 1768 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) { 1769 if (bp->req_line_speed == SPEED_2500) 1770 new_bmcr |= BCM5708S_BMCR_FORCE_2500; 1771 else 1772 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500; 1773 } 1774 1775 if (bp->req_duplex == DUPLEX_FULL) { 1776 adv |= ADVERTISE_1000XFULL; 1777 new_bmcr |= BMCR_FULLDPLX; 1778 } 1779 else { 1780 adv |= ADVERTISE_1000XHALF; 1781 new_bmcr &= ~BMCR_FULLDPLX; 1782 } 1783 if ((new_bmcr != bmcr) || (force_link_down)) { 1784 /* Force a link down visible on the other side */ 1785 if (bp->link_up) { 1786 bnx2_write_phy(bp, bp->mii_adv, adv & 1787 ~(ADVERTISE_1000XFULL | 1788 ADVERTISE_1000XHALF)); 1789 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | 1790 BMCR_ANRESTART | BMCR_ANENABLE); 1791 1792 bp->link_up = 0; 1793 netif_carrier_off(bp->dev); 1794 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr); 1795 bnx2_report_link(bp); 1796 } 1797 bnx2_write_phy(bp, bp->mii_adv, adv); 1798 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr); 1799 } else { 1800 bnx2_resolve_flow_ctrl(bp); 1801 bnx2_set_mac_link(bp); 1802 } 1803 return 0; 1804 } 1805 1806 bnx2_test_and_enable_2g5(bp); 1807 1808 if (bp->advertising & ADVERTISED_1000baseT_Full) 1809 new_adv |= ADVERTISE_1000XFULL; 1810 1811 new_adv |= bnx2_phy_get_pause_adv(bp); 1812 1813 bnx2_read_phy(bp, bp->mii_adv, &adv); 1814 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 1815 1816 bp->serdes_an_pending = 0; 1817 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) { 1818 /* Force a link down visible on the other side */ 1819 if (bp->link_up) { 1820 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK); 1821 spin_unlock_bh(&bp->phy_lock); 1822 msleep(20); 1823 spin_lock_bh(&bp->phy_lock); 1824 } 1825 1826 bnx2_write_phy(bp, bp->mii_adv, new_adv); 1827 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | 1828 BMCR_ANENABLE); 1829 /* Speed up link-up time when the link partner 1830 * does not autonegotiate which is very common 1831 * in blade servers. Some blade servers use 1832 * IPMI for kerboard input and it's important 1833 * to minimize link disruptions. Autoneg. involves 1834 * exchanging base pages plus 3 next pages and 1835 * normally completes in about 120 msec. 1836 */ 1837 bp->current_interval = BNX2_SERDES_AN_TIMEOUT; 1838 bp->serdes_an_pending = 1; 1839 mod_timer(&bp->timer, jiffies + bp->current_interval); 1840 } else { 1841 bnx2_resolve_flow_ctrl(bp); 1842 bnx2_set_mac_link(bp); 1843 } 1844 1845 return 0; 1846 } 1847 1848 #define ETHTOOL_ALL_FIBRE_SPEED \ 1849 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \ 1850 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\ 1851 (ADVERTISED_1000baseT_Full) 1852 1853 #define ETHTOOL_ALL_COPPER_SPEED \ 1854 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ 1855 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ 1856 ADVERTISED_1000baseT_Full) 1857 1858 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \ 1859 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA) 1860 1861 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL) 1862 1863 static void 1864 bnx2_set_default_remote_link(struct bnx2 *bp) 1865 { 1866 u32 link; 1867 1868 if (bp->phy_port == PORT_TP) 1869 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK); 1870 else 1871 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK); 1872 1873 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) { 1874 bp->req_line_speed = 0; 1875 bp->autoneg |= AUTONEG_SPEED; 1876 bp->advertising = ADVERTISED_Autoneg; 1877 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF) 1878 bp->advertising |= ADVERTISED_10baseT_Half; 1879 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL) 1880 bp->advertising |= ADVERTISED_10baseT_Full; 1881 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF) 1882 bp->advertising |= ADVERTISED_100baseT_Half; 1883 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL) 1884 bp->advertising |= ADVERTISED_100baseT_Full; 1885 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL) 1886 bp->advertising |= ADVERTISED_1000baseT_Full; 1887 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL) 1888 bp->advertising |= ADVERTISED_2500baseX_Full; 1889 } else { 1890 bp->autoneg = 0; 1891 bp->advertising = 0; 1892 bp->req_duplex = DUPLEX_FULL; 1893 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) { 1894 bp->req_line_speed = SPEED_10; 1895 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF) 1896 bp->req_duplex = DUPLEX_HALF; 1897 } 1898 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) { 1899 bp->req_line_speed = SPEED_100; 1900 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF) 1901 bp->req_duplex = DUPLEX_HALF; 1902 } 1903 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL) 1904 bp->req_line_speed = SPEED_1000; 1905 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL) 1906 bp->req_line_speed = SPEED_2500; 1907 } 1908 } 1909 1910 static void 1911 bnx2_set_default_link(struct bnx2 *bp) 1912 { 1913 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) { 1914 bnx2_set_default_remote_link(bp); 1915 return; 1916 } 1917 1918 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL; 1919 bp->req_line_speed = 0; 1920 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) { 1921 u32 reg; 1922 1923 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg; 1924 1925 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG); 1926 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK; 1927 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) { 1928 bp->autoneg = 0; 1929 bp->req_line_speed = bp->line_speed = SPEED_1000; 1930 bp->req_duplex = DUPLEX_FULL; 1931 } 1932 } else 1933 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg; 1934 } 1935 1936 static void 1937 bnx2_send_heart_beat(struct bnx2 *bp) 1938 { 1939 u32 msg; 1940 u32 addr; 1941 1942 spin_lock(&bp->indirect_lock); 1943 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK); 1944 addr = bp->shmem_base + BNX2_DRV_PULSE_MB; 1945 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr); 1946 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg); 1947 spin_unlock(&bp->indirect_lock); 1948 } 1949 1950 static void 1951 bnx2_remote_phy_event(struct bnx2 *bp) 1952 { 1953 u32 msg; 1954 u8 link_up = bp->link_up; 1955 u8 old_port; 1956 1957 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS); 1958 1959 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED) 1960 bnx2_send_heart_beat(bp); 1961 1962 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED; 1963 1964 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN) 1965 bp->link_up = 0; 1966 else { 1967 u32 speed; 1968 1969 bp->link_up = 1; 1970 speed = msg & BNX2_LINK_STATUS_SPEED_MASK; 1971 bp->duplex = DUPLEX_FULL; 1972 switch (speed) { 1973 case BNX2_LINK_STATUS_10HALF: 1974 bp->duplex = DUPLEX_HALF; 1975 /* fall through */ 1976 case BNX2_LINK_STATUS_10FULL: 1977 bp->line_speed = SPEED_10; 1978 break; 1979 case BNX2_LINK_STATUS_100HALF: 1980 bp->duplex = DUPLEX_HALF; 1981 /* fall through */ 1982 case BNX2_LINK_STATUS_100BASE_T4: 1983 case BNX2_LINK_STATUS_100FULL: 1984 bp->line_speed = SPEED_100; 1985 break; 1986 case BNX2_LINK_STATUS_1000HALF: 1987 bp->duplex = DUPLEX_HALF; 1988 /* fall through */ 1989 case BNX2_LINK_STATUS_1000FULL: 1990 bp->line_speed = SPEED_1000; 1991 break; 1992 case BNX2_LINK_STATUS_2500HALF: 1993 bp->duplex = DUPLEX_HALF; 1994 /* fall through */ 1995 case BNX2_LINK_STATUS_2500FULL: 1996 bp->line_speed = SPEED_2500; 1997 break; 1998 default: 1999 bp->line_speed = 0; 2000 break; 2001 } 2002 2003 bp->flow_ctrl = 0; 2004 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) != 2005 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) { 2006 if (bp->duplex == DUPLEX_FULL) 2007 bp->flow_ctrl = bp->req_flow_ctrl; 2008 } else { 2009 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED) 2010 bp->flow_ctrl |= FLOW_CTRL_TX; 2011 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED) 2012 bp->flow_ctrl |= FLOW_CTRL_RX; 2013 } 2014 2015 old_port = bp->phy_port; 2016 if (msg & BNX2_LINK_STATUS_SERDES_LINK) 2017 bp->phy_port = PORT_FIBRE; 2018 else 2019 bp->phy_port = PORT_TP; 2020 2021 if (old_port != bp->phy_port) 2022 bnx2_set_default_link(bp); 2023 2024 } 2025 if (bp->link_up != link_up) 2026 bnx2_report_link(bp); 2027 2028 bnx2_set_mac_link(bp); 2029 } 2030 2031 static int 2032 bnx2_set_remote_link(struct bnx2 *bp) 2033 { 2034 u32 evt_code; 2035 2036 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB); 2037 switch (evt_code) { 2038 case BNX2_FW_EVT_CODE_LINK_EVENT: 2039 bnx2_remote_phy_event(bp); 2040 break; 2041 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT: 2042 default: 2043 bnx2_send_heart_beat(bp); 2044 break; 2045 } 2046 return 0; 2047 } 2048 2049 static int 2050 bnx2_setup_copper_phy(struct bnx2 *bp) 2051 __releases(&bp->phy_lock) 2052 __acquires(&bp->phy_lock) 2053 { 2054 u32 bmcr; 2055 u32 new_bmcr; 2056 2057 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 2058 2059 if (bp->autoneg & AUTONEG_SPEED) { 2060 u32 adv_reg, adv1000_reg; 2061 u32 new_adv = 0; 2062 u32 new_adv1000 = 0; 2063 2064 bnx2_read_phy(bp, bp->mii_adv, &adv_reg); 2065 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP | 2066 ADVERTISE_PAUSE_ASYM); 2067 2068 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg); 2069 adv1000_reg &= PHY_ALL_1000_SPEED; 2070 2071 new_adv = ethtool_adv_to_mii_adv_t(bp->advertising); 2072 new_adv |= ADVERTISE_CSMA; 2073 new_adv |= bnx2_phy_get_pause_adv(bp); 2074 2075 new_adv1000 |= ethtool_adv_to_mii_ctrl1000_t(bp->advertising); 2076 2077 if ((adv1000_reg != new_adv1000) || 2078 (adv_reg != new_adv) || 2079 ((bmcr & BMCR_ANENABLE) == 0)) { 2080 2081 bnx2_write_phy(bp, bp->mii_adv, new_adv); 2082 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000); 2083 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART | 2084 BMCR_ANENABLE); 2085 } 2086 else if (bp->link_up) { 2087 /* Flow ctrl may have changed from auto to forced */ 2088 /* or vice-versa. */ 2089 2090 bnx2_resolve_flow_ctrl(bp); 2091 bnx2_set_mac_link(bp); 2092 } 2093 return 0; 2094 } 2095 2096 new_bmcr = 0; 2097 if (bp->req_line_speed == SPEED_100) { 2098 new_bmcr |= BMCR_SPEED100; 2099 } 2100 if (bp->req_duplex == DUPLEX_FULL) { 2101 new_bmcr |= BMCR_FULLDPLX; 2102 } 2103 if (new_bmcr != bmcr) { 2104 u32 bmsr; 2105 2106 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr); 2107 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr); 2108 2109 if (bmsr & BMSR_LSTATUS) { 2110 /* Force link down */ 2111 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK); 2112 spin_unlock_bh(&bp->phy_lock); 2113 msleep(50); 2114 spin_lock_bh(&bp->phy_lock); 2115 2116 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr); 2117 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr); 2118 } 2119 2120 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr); 2121 2122 /* Normally, the new speed is setup after the link has 2123 * gone down and up again. In some cases, link will not go 2124 * down so we need to set up the new speed here. 2125 */ 2126 if (bmsr & BMSR_LSTATUS) { 2127 bp->line_speed = bp->req_line_speed; 2128 bp->duplex = bp->req_duplex; 2129 bnx2_resolve_flow_ctrl(bp); 2130 bnx2_set_mac_link(bp); 2131 } 2132 } else { 2133 bnx2_resolve_flow_ctrl(bp); 2134 bnx2_set_mac_link(bp); 2135 } 2136 return 0; 2137 } 2138 2139 static int 2140 bnx2_setup_phy(struct bnx2 *bp, u8 port) 2141 __releases(&bp->phy_lock) 2142 __acquires(&bp->phy_lock) 2143 { 2144 if (bp->loopback == MAC_LOOPBACK) 2145 return 0; 2146 2147 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) { 2148 return bnx2_setup_serdes_phy(bp, port); 2149 } 2150 else { 2151 return bnx2_setup_copper_phy(bp); 2152 } 2153 } 2154 2155 static int 2156 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy) 2157 { 2158 u32 val; 2159 2160 bp->mii_bmcr = MII_BMCR + 0x10; 2161 bp->mii_bmsr = MII_BMSR + 0x10; 2162 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1; 2163 bp->mii_adv = MII_ADVERTISE + 0x10; 2164 bp->mii_lpa = MII_LPA + 0x10; 2165 bp->mii_up1 = MII_BNX2_OVER1G_UP1; 2166 2167 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER); 2168 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD); 2169 2170 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0); 2171 if (reset_phy) 2172 bnx2_reset_phy(bp); 2173 2174 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG); 2175 2176 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val); 2177 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET; 2178 val |= MII_BNX2_SD_1000XCTL1_FIBER; 2179 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val); 2180 2181 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G); 2182 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val); 2183 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) 2184 val |= BCM5708S_UP1_2G5; 2185 else 2186 val &= ~BCM5708S_UP1_2G5; 2187 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val); 2188 2189 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG); 2190 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val); 2191 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM; 2192 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val); 2193 2194 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0); 2195 2196 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN | 2197 MII_BNX2_CL73_BAM_NP_AFT_BP_EN; 2198 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val); 2199 2200 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0); 2201 2202 return 0; 2203 } 2204 2205 static int 2206 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy) 2207 { 2208 u32 val; 2209 2210 if (reset_phy) 2211 bnx2_reset_phy(bp); 2212 2213 bp->mii_up1 = BCM5708S_UP1; 2214 2215 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3); 2216 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE); 2217 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG); 2218 2219 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val); 2220 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN; 2221 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val); 2222 2223 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val); 2224 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN; 2225 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val); 2226 2227 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) { 2228 bnx2_read_phy(bp, BCM5708S_UP1, &val); 2229 val |= BCM5708S_UP1_2G5; 2230 bnx2_write_phy(bp, BCM5708S_UP1, val); 2231 } 2232 2233 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) || 2234 (CHIP_ID(bp) == CHIP_ID_5708_B0) || 2235 (CHIP_ID(bp) == CHIP_ID_5708_B1)) { 2236 /* increase tx signal amplitude */ 2237 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, 2238 BCM5708S_BLK_ADDR_TX_MISC); 2239 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val); 2240 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM; 2241 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val); 2242 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG); 2243 } 2244 2245 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) & 2246 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK; 2247 2248 if (val) { 2249 u32 is_backplane; 2250 2251 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG); 2252 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) { 2253 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, 2254 BCM5708S_BLK_ADDR_TX_MISC); 2255 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val); 2256 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, 2257 BCM5708S_BLK_ADDR_DIG); 2258 } 2259 } 2260 return 0; 2261 } 2262 2263 static int 2264 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy) 2265 { 2266 if (reset_phy) 2267 bnx2_reset_phy(bp); 2268 2269 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT; 2270 2271 if (CHIP_NUM(bp) == CHIP_NUM_5706) 2272 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300); 2273 2274 if (bp->dev->mtu > 1500) { 2275 u32 val; 2276 2277 /* Set extended packet length bit */ 2278 bnx2_write_phy(bp, 0x18, 0x7); 2279 bnx2_read_phy(bp, 0x18, &val); 2280 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000); 2281 2282 bnx2_write_phy(bp, 0x1c, 0x6c00); 2283 bnx2_read_phy(bp, 0x1c, &val); 2284 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02); 2285 } 2286 else { 2287 u32 val; 2288 2289 bnx2_write_phy(bp, 0x18, 0x7); 2290 bnx2_read_phy(bp, 0x18, &val); 2291 bnx2_write_phy(bp, 0x18, val & ~0x4007); 2292 2293 bnx2_write_phy(bp, 0x1c, 0x6c00); 2294 bnx2_read_phy(bp, 0x1c, &val); 2295 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00); 2296 } 2297 2298 return 0; 2299 } 2300 2301 static int 2302 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy) 2303 { 2304 u32 val; 2305 2306 if (reset_phy) 2307 bnx2_reset_phy(bp); 2308 2309 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) { 2310 bnx2_write_phy(bp, 0x18, 0x0c00); 2311 bnx2_write_phy(bp, 0x17, 0x000a); 2312 bnx2_write_phy(bp, 0x15, 0x310b); 2313 bnx2_write_phy(bp, 0x17, 0x201f); 2314 bnx2_write_phy(bp, 0x15, 0x9506); 2315 bnx2_write_phy(bp, 0x17, 0x401f); 2316 bnx2_write_phy(bp, 0x15, 0x14e2); 2317 bnx2_write_phy(bp, 0x18, 0x0400); 2318 } 2319 2320 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) { 2321 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, 2322 MII_BNX2_DSP_EXPAND_REG | 0x8); 2323 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val); 2324 val &= ~(1 << 8); 2325 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val); 2326 } 2327 2328 if (bp->dev->mtu > 1500) { 2329 /* Set extended packet length bit */ 2330 bnx2_write_phy(bp, 0x18, 0x7); 2331 bnx2_read_phy(bp, 0x18, &val); 2332 bnx2_write_phy(bp, 0x18, val | 0x4000); 2333 2334 bnx2_read_phy(bp, 0x10, &val); 2335 bnx2_write_phy(bp, 0x10, val | 0x1); 2336 } 2337 else { 2338 bnx2_write_phy(bp, 0x18, 0x7); 2339 bnx2_read_phy(bp, 0x18, &val); 2340 bnx2_write_phy(bp, 0x18, val & ~0x4007); 2341 2342 bnx2_read_phy(bp, 0x10, &val); 2343 bnx2_write_phy(bp, 0x10, val & ~0x1); 2344 } 2345 2346 /* ethernet@wirespeed */ 2347 bnx2_write_phy(bp, 0x18, 0x7007); 2348 bnx2_read_phy(bp, 0x18, &val); 2349 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4)); 2350 return 0; 2351 } 2352 2353 2354 static int 2355 bnx2_init_phy(struct bnx2 *bp, int reset_phy) 2356 __releases(&bp->phy_lock) 2357 __acquires(&bp->phy_lock) 2358 { 2359 u32 val; 2360 int rc = 0; 2361 2362 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK; 2363 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY; 2364 2365 bp->mii_bmcr = MII_BMCR; 2366 bp->mii_bmsr = MII_BMSR; 2367 bp->mii_bmsr1 = MII_BMSR; 2368 bp->mii_adv = MII_ADVERTISE; 2369 bp->mii_lpa = MII_LPA; 2370 2371 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK); 2372 2373 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) 2374 goto setup_phy; 2375 2376 bnx2_read_phy(bp, MII_PHYSID1, &val); 2377 bp->phy_id = val << 16; 2378 bnx2_read_phy(bp, MII_PHYSID2, &val); 2379 bp->phy_id |= val & 0xffff; 2380 2381 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) { 2382 if (CHIP_NUM(bp) == CHIP_NUM_5706) 2383 rc = bnx2_init_5706s_phy(bp, reset_phy); 2384 else if (CHIP_NUM(bp) == CHIP_NUM_5708) 2385 rc = bnx2_init_5708s_phy(bp, reset_phy); 2386 else if (CHIP_NUM(bp) == CHIP_NUM_5709) 2387 rc = bnx2_init_5709s_phy(bp, reset_phy); 2388 } 2389 else { 2390 rc = bnx2_init_copper_phy(bp, reset_phy); 2391 } 2392 2393 setup_phy: 2394 if (!rc) 2395 rc = bnx2_setup_phy(bp, bp->phy_port); 2396 2397 return rc; 2398 } 2399 2400 static int 2401 bnx2_set_mac_loopback(struct bnx2 *bp) 2402 { 2403 u32 mac_mode; 2404 2405 mac_mode = REG_RD(bp, BNX2_EMAC_MODE); 2406 mac_mode &= ~BNX2_EMAC_MODE_PORT; 2407 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK; 2408 REG_WR(bp, BNX2_EMAC_MODE, mac_mode); 2409 bp->link_up = 1; 2410 return 0; 2411 } 2412 2413 static int bnx2_test_link(struct bnx2 *); 2414 2415 static int 2416 bnx2_set_phy_loopback(struct bnx2 *bp) 2417 { 2418 u32 mac_mode; 2419 int rc, i; 2420 2421 spin_lock_bh(&bp->phy_lock); 2422 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX | 2423 BMCR_SPEED1000); 2424 spin_unlock_bh(&bp->phy_lock); 2425 if (rc) 2426 return rc; 2427 2428 for (i = 0; i < 10; i++) { 2429 if (bnx2_test_link(bp) == 0) 2430 break; 2431 msleep(100); 2432 } 2433 2434 mac_mode = REG_RD(bp, BNX2_EMAC_MODE); 2435 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX | 2436 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK | 2437 BNX2_EMAC_MODE_25G_MODE); 2438 2439 mac_mode |= BNX2_EMAC_MODE_PORT_GMII; 2440 REG_WR(bp, BNX2_EMAC_MODE, mac_mode); 2441 bp->link_up = 1; 2442 return 0; 2443 } 2444 2445 static void 2446 bnx2_dump_mcp_state(struct bnx2 *bp) 2447 { 2448 struct net_device *dev = bp->dev; 2449 u32 mcp_p0, mcp_p1; 2450 2451 netdev_err(dev, "<--- start MCP states dump --->\n"); 2452 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 2453 mcp_p0 = BNX2_MCP_STATE_P0; 2454 mcp_p1 = BNX2_MCP_STATE_P1; 2455 } else { 2456 mcp_p0 = BNX2_MCP_STATE_P0_5708; 2457 mcp_p1 = BNX2_MCP_STATE_P1_5708; 2458 } 2459 netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n", 2460 bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1)); 2461 netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n", 2462 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE), 2463 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE), 2464 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK)); 2465 netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n", 2466 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER), 2467 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER), 2468 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION)); 2469 netdev_err(dev, "DEBUG: shmem states:\n"); 2470 netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]", 2471 bnx2_shmem_rd(bp, BNX2_DRV_MB), 2472 bnx2_shmem_rd(bp, BNX2_FW_MB), 2473 bnx2_shmem_rd(bp, BNX2_LINK_STATUS)); 2474 pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB)); 2475 netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]", 2476 bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE), 2477 bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE)); 2478 pr_cont(" condition[%08x]\n", 2479 bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION)); 2480 DP_SHMEM_LINE(bp, BNX2_BC_RESET_TYPE); 2481 DP_SHMEM_LINE(bp, 0x3cc); 2482 DP_SHMEM_LINE(bp, 0x3dc); 2483 DP_SHMEM_LINE(bp, 0x3ec); 2484 netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc)); 2485 netdev_err(dev, "<--- end MCP states dump --->\n"); 2486 } 2487 2488 static int 2489 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent) 2490 { 2491 int i; 2492 u32 val; 2493 2494 bp->fw_wr_seq++; 2495 msg_data |= bp->fw_wr_seq; 2496 2497 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data); 2498 2499 if (!ack) 2500 return 0; 2501 2502 /* wait for an acknowledgement. */ 2503 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) { 2504 msleep(10); 2505 2506 val = bnx2_shmem_rd(bp, BNX2_FW_MB); 2507 2508 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ)) 2509 break; 2510 } 2511 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0) 2512 return 0; 2513 2514 /* If we timed out, inform the firmware that this is the case. */ 2515 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) { 2516 msg_data &= ~BNX2_DRV_MSG_CODE; 2517 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT; 2518 2519 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data); 2520 if (!silent) { 2521 pr_err("fw sync timeout, reset code = %x\n", msg_data); 2522 bnx2_dump_mcp_state(bp); 2523 } 2524 2525 return -EBUSY; 2526 } 2527 2528 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK) 2529 return -EIO; 2530 2531 return 0; 2532 } 2533 2534 static int 2535 bnx2_init_5709_context(struct bnx2 *bp) 2536 { 2537 int i, ret = 0; 2538 u32 val; 2539 2540 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12); 2541 val |= (BCM_PAGE_BITS - 8) << 16; 2542 REG_WR(bp, BNX2_CTX_COMMAND, val); 2543 for (i = 0; i < 10; i++) { 2544 val = REG_RD(bp, BNX2_CTX_COMMAND); 2545 if (!(val & BNX2_CTX_COMMAND_MEM_INIT)) 2546 break; 2547 udelay(2); 2548 } 2549 if (val & BNX2_CTX_COMMAND_MEM_INIT) 2550 return -EBUSY; 2551 2552 for (i = 0; i < bp->ctx_pages; i++) { 2553 int j; 2554 2555 if (bp->ctx_blk[i]) 2556 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE); 2557 else 2558 return -ENOMEM; 2559 2560 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0, 2561 (bp->ctx_blk_mapping[i] & 0xffffffff) | 2562 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID); 2563 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1, 2564 (u64) bp->ctx_blk_mapping[i] >> 32); 2565 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i | 2566 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 2567 for (j = 0; j < 10; j++) { 2568 2569 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL); 2570 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ)) 2571 break; 2572 udelay(5); 2573 } 2574 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) { 2575 ret = -EBUSY; 2576 break; 2577 } 2578 } 2579 return ret; 2580 } 2581 2582 static void 2583 bnx2_init_context(struct bnx2 *bp) 2584 { 2585 u32 vcid; 2586 2587 vcid = 96; 2588 while (vcid) { 2589 u32 vcid_addr, pcid_addr, offset; 2590 int i; 2591 2592 vcid--; 2593 2594 if (CHIP_ID(bp) == CHIP_ID_5706_A0) { 2595 u32 new_vcid; 2596 2597 vcid_addr = GET_PCID_ADDR(vcid); 2598 if (vcid & 0x8) { 2599 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7); 2600 } 2601 else { 2602 new_vcid = vcid; 2603 } 2604 pcid_addr = GET_PCID_ADDR(new_vcid); 2605 } 2606 else { 2607 vcid_addr = GET_CID_ADDR(vcid); 2608 pcid_addr = vcid_addr; 2609 } 2610 2611 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) { 2612 vcid_addr += (i << PHY_CTX_SHIFT); 2613 pcid_addr += (i << PHY_CTX_SHIFT); 2614 2615 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr); 2616 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr); 2617 2618 /* Zero out the context. */ 2619 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) 2620 bnx2_ctx_wr(bp, vcid_addr, offset, 0); 2621 } 2622 } 2623 } 2624 2625 static int 2626 bnx2_alloc_bad_rbuf(struct bnx2 *bp) 2627 { 2628 u16 *good_mbuf; 2629 u32 good_mbuf_cnt; 2630 u32 val; 2631 2632 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL); 2633 if (good_mbuf == NULL) 2634 return -ENOMEM; 2635 2636 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 2637 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE); 2638 2639 good_mbuf_cnt = 0; 2640 2641 /* Allocate a bunch of mbufs and save the good ones in an array. */ 2642 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1); 2643 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) { 2644 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND, 2645 BNX2_RBUF_COMMAND_ALLOC_REQ); 2646 2647 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC); 2648 2649 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE; 2650 2651 /* The addresses with Bit 9 set are bad memory blocks. */ 2652 if (!(val & (1 << 9))) { 2653 good_mbuf[good_mbuf_cnt] = (u16) val; 2654 good_mbuf_cnt++; 2655 } 2656 2657 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1); 2658 } 2659 2660 /* Free the good ones back to the mbuf pool thus discarding 2661 * all the bad ones. */ 2662 while (good_mbuf_cnt) { 2663 good_mbuf_cnt--; 2664 2665 val = good_mbuf[good_mbuf_cnt]; 2666 val = (val << 9) | val | 1; 2667 2668 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val); 2669 } 2670 kfree(good_mbuf); 2671 return 0; 2672 } 2673 2674 static void 2675 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos) 2676 { 2677 u32 val; 2678 2679 val = (mac_addr[0] << 8) | mac_addr[1]; 2680 2681 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val); 2682 2683 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 2684 (mac_addr[4] << 8) | mac_addr[5]; 2685 2686 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val); 2687 } 2688 2689 static inline int 2690 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp) 2691 { 2692 dma_addr_t mapping; 2693 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index]; 2694 struct rx_bd *rxbd = 2695 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)]; 2696 struct page *page = alloc_page(gfp); 2697 2698 if (!page) 2699 return -ENOMEM; 2700 mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE, 2701 PCI_DMA_FROMDEVICE); 2702 if (dma_mapping_error(&bp->pdev->dev, mapping)) { 2703 __free_page(page); 2704 return -EIO; 2705 } 2706 2707 rx_pg->page = page; 2708 dma_unmap_addr_set(rx_pg, mapping, mapping); 2709 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32; 2710 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff; 2711 return 0; 2712 } 2713 2714 static void 2715 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index) 2716 { 2717 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index]; 2718 struct page *page = rx_pg->page; 2719 2720 if (!page) 2721 return; 2722 2723 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping), 2724 PAGE_SIZE, PCI_DMA_FROMDEVICE); 2725 2726 __free_page(page); 2727 rx_pg->page = NULL; 2728 } 2729 2730 static inline int 2731 bnx2_alloc_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp) 2732 { 2733 u8 *data; 2734 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index]; 2735 dma_addr_t mapping; 2736 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)]; 2737 2738 data = kmalloc(bp->rx_buf_size, gfp); 2739 if (!data) 2740 return -ENOMEM; 2741 2742 mapping = dma_map_single(&bp->pdev->dev, 2743 get_l2_fhdr(data), 2744 bp->rx_buf_use_size, 2745 PCI_DMA_FROMDEVICE); 2746 if (dma_mapping_error(&bp->pdev->dev, mapping)) { 2747 kfree(data); 2748 return -EIO; 2749 } 2750 2751 rx_buf->data = data; 2752 dma_unmap_addr_set(rx_buf, mapping, mapping); 2753 2754 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32; 2755 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff; 2756 2757 rxr->rx_prod_bseq += bp->rx_buf_use_size; 2758 2759 return 0; 2760 } 2761 2762 static int 2763 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event) 2764 { 2765 struct status_block *sblk = bnapi->status_blk.msi; 2766 u32 new_link_state, old_link_state; 2767 int is_set = 1; 2768 2769 new_link_state = sblk->status_attn_bits & event; 2770 old_link_state = sblk->status_attn_bits_ack & event; 2771 if (new_link_state != old_link_state) { 2772 if (new_link_state) 2773 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event); 2774 else 2775 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event); 2776 } else 2777 is_set = 0; 2778 2779 return is_set; 2780 } 2781 2782 static void 2783 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi) 2784 { 2785 spin_lock(&bp->phy_lock); 2786 2787 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE)) 2788 bnx2_set_link(bp); 2789 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT)) 2790 bnx2_set_remote_link(bp); 2791 2792 spin_unlock(&bp->phy_lock); 2793 2794 } 2795 2796 static inline u16 2797 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi) 2798 { 2799 u16 cons; 2800 2801 /* Tell compiler that status block fields can change. */ 2802 barrier(); 2803 cons = *bnapi->hw_tx_cons_ptr; 2804 barrier(); 2805 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT)) 2806 cons++; 2807 return cons; 2808 } 2809 2810 static int 2811 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget) 2812 { 2813 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring; 2814 u16 hw_cons, sw_cons, sw_ring_cons; 2815 int tx_pkt = 0, index; 2816 unsigned int tx_bytes = 0; 2817 struct netdev_queue *txq; 2818 2819 index = (bnapi - bp->bnx2_napi); 2820 txq = netdev_get_tx_queue(bp->dev, index); 2821 2822 hw_cons = bnx2_get_hw_tx_cons(bnapi); 2823 sw_cons = txr->tx_cons; 2824 2825 while (sw_cons != hw_cons) { 2826 struct sw_tx_bd *tx_buf; 2827 struct sk_buff *skb; 2828 int i, last; 2829 2830 sw_ring_cons = TX_RING_IDX(sw_cons); 2831 2832 tx_buf = &txr->tx_buf_ring[sw_ring_cons]; 2833 skb = tx_buf->skb; 2834 2835 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 2836 prefetch(&skb->end); 2837 2838 /* partial BD completions possible with TSO packets */ 2839 if (tx_buf->is_gso) { 2840 u16 last_idx, last_ring_idx; 2841 2842 last_idx = sw_cons + tx_buf->nr_frags + 1; 2843 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1; 2844 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) { 2845 last_idx++; 2846 } 2847 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) { 2848 break; 2849 } 2850 } 2851 2852 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping), 2853 skb_headlen(skb), PCI_DMA_TODEVICE); 2854 2855 tx_buf->skb = NULL; 2856 last = tx_buf->nr_frags; 2857 2858 for (i = 0; i < last; i++) { 2859 sw_cons = NEXT_TX_BD(sw_cons); 2860 2861 dma_unmap_page(&bp->pdev->dev, 2862 dma_unmap_addr( 2863 &txr->tx_buf_ring[TX_RING_IDX(sw_cons)], 2864 mapping), 2865 skb_frag_size(&skb_shinfo(skb)->frags[i]), 2866 PCI_DMA_TODEVICE); 2867 } 2868 2869 sw_cons = NEXT_TX_BD(sw_cons); 2870 2871 tx_bytes += skb->len; 2872 dev_kfree_skb(skb); 2873 tx_pkt++; 2874 if (tx_pkt == budget) 2875 break; 2876 2877 if (hw_cons == sw_cons) 2878 hw_cons = bnx2_get_hw_tx_cons(bnapi); 2879 } 2880 2881 netdev_tx_completed_queue(txq, tx_pkt, tx_bytes); 2882 txr->hw_tx_cons = hw_cons; 2883 txr->tx_cons = sw_cons; 2884 2885 /* Need to make the tx_cons update visible to bnx2_start_xmit() 2886 * before checking for netif_tx_queue_stopped(). Without the 2887 * memory barrier, there is a small possibility that bnx2_start_xmit() 2888 * will miss it and cause the queue to be stopped forever. 2889 */ 2890 smp_mb(); 2891 2892 if (unlikely(netif_tx_queue_stopped(txq)) && 2893 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) { 2894 __netif_tx_lock(txq, smp_processor_id()); 2895 if ((netif_tx_queue_stopped(txq)) && 2896 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) 2897 netif_tx_wake_queue(txq); 2898 __netif_tx_unlock(txq); 2899 } 2900 2901 return tx_pkt; 2902 } 2903 2904 static void 2905 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, 2906 struct sk_buff *skb, int count) 2907 { 2908 struct sw_pg *cons_rx_pg, *prod_rx_pg; 2909 struct rx_bd *cons_bd, *prod_bd; 2910 int i; 2911 u16 hw_prod, prod; 2912 u16 cons = rxr->rx_pg_cons; 2913 2914 cons_rx_pg = &rxr->rx_pg_ring[cons]; 2915 2916 /* The caller was unable to allocate a new page to replace the 2917 * last one in the frags array, so we need to recycle that page 2918 * and then free the skb. 2919 */ 2920 if (skb) { 2921 struct page *page; 2922 struct skb_shared_info *shinfo; 2923 2924 shinfo = skb_shinfo(skb); 2925 shinfo->nr_frags--; 2926 page = skb_frag_page(&shinfo->frags[shinfo->nr_frags]); 2927 __skb_frag_set_page(&shinfo->frags[shinfo->nr_frags], NULL); 2928 2929 cons_rx_pg->page = page; 2930 dev_kfree_skb(skb); 2931 } 2932 2933 hw_prod = rxr->rx_pg_prod; 2934 2935 for (i = 0; i < count; i++) { 2936 prod = RX_PG_RING_IDX(hw_prod); 2937 2938 prod_rx_pg = &rxr->rx_pg_ring[prod]; 2939 cons_rx_pg = &rxr->rx_pg_ring[cons]; 2940 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 2941 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 2942 2943 if (prod != cons) { 2944 prod_rx_pg->page = cons_rx_pg->page; 2945 cons_rx_pg->page = NULL; 2946 dma_unmap_addr_set(prod_rx_pg, mapping, 2947 dma_unmap_addr(cons_rx_pg, mapping)); 2948 2949 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi; 2950 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo; 2951 2952 } 2953 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons)); 2954 hw_prod = NEXT_RX_BD(hw_prod); 2955 } 2956 rxr->rx_pg_prod = hw_prod; 2957 rxr->rx_pg_cons = cons; 2958 } 2959 2960 static inline void 2961 bnx2_reuse_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, 2962 u8 *data, u16 cons, u16 prod) 2963 { 2964 struct sw_bd *cons_rx_buf, *prod_rx_buf; 2965 struct rx_bd *cons_bd, *prod_bd; 2966 2967 cons_rx_buf = &rxr->rx_buf_ring[cons]; 2968 prod_rx_buf = &rxr->rx_buf_ring[prod]; 2969 2970 dma_sync_single_for_device(&bp->pdev->dev, 2971 dma_unmap_addr(cons_rx_buf, mapping), 2972 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE); 2973 2974 rxr->rx_prod_bseq += bp->rx_buf_use_size; 2975 2976 prod_rx_buf->data = data; 2977 2978 if (cons == prod) 2979 return; 2980 2981 dma_unmap_addr_set(prod_rx_buf, mapping, 2982 dma_unmap_addr(cons_rx_buf, mapping)); 2983 2984 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 2985 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 2986 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi; 2987 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo; 2988 } 2989 2990 static struct sk_buff * 2991 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u8 *data, 2992 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr, 2993 u32 ring_idx) 2994 { 2995 int err; 2996 u16 prod = ring_idx & 0xffff; 2997 struct sk_buff *skb; 2998 2999 err = bnx2_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 3000 if (unlikely(err)) { 3001 bnx2_reuse_rx_data(bp, rxr, data, (u16) (ring_idx >> 16), prod); 3002 error: 3003 if (hdr_len) { 3004 unsigned int raw_len = len + 4; 3005 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT; 3006 3007 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages); 3008 } 3009 return NULL; 3010 } 3011 3012 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 3013 PCI_DMA_FROMDEVICE); 3014 skb = build_skb(data, 0); 3015 if (!skb) { 3016 kfree(data); 3017 goto error; 3018 } 3019 skb_reserve(skb, ((u8 *)get_l2_fhdr(data) - data) + BNX2_RX_OFFSET); 3020 if (hdr_len == 0) { 3021 skb_put(skb, len); 3022 return skb; 3023 } else { 3024 unsigned int i, frag_len, frag_size, pages; 3025 struct sw_pg *rx_pg; 3026 u16 pg_cons = rxr->rx_pg_cons; 3027 u16 pg_prod = rxr->rx_pg_prod; 3028 3029 frag_size = len + 4 - hdr_len; 3030 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT; 3031 skb_put(skb, hdr_len); 3032 3033 for (i = 0; i < pages; i++) { 3034 dma_addr_t mapping_old; 3035 3036 frag_len = min(frag_size, (unsigned int) PAGE_SIZE); 3037 if (unlikely(frag_len <= 4)) { 3038 unsigned int tail = 4 - frag_len; 3039 3040 rxr->rx_pg_cons = pg_cons; 3041 rxr->rx_pg_prod = pg_prod; 3042 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, 3043 pages - i); 3044 skb->len -= tail; 3045 if (i == 0) { 3046 skb->tail -= tail; 3047 } else { 3048 skb_frag_t *frag = 3049 &skb_shinfo(skb)->frags[i - 1]; 3050 skb_frag_size_sub(frag, tail); 3051 skb->data_len -= tail; 3052 } 3053 return skb; 3054 } 3055 rx_pg = &rxr->rx_pg_ring[pg_cons]; 3056 3057 /* Don't unmap yet. If we're unable to allocate a new 3058 * page, we need to recycle the page and the DMA addr. 3059 */ 3060 mapping_old = dma_unmap_addr(rx_pg, mapping); 3061 if (i == pages - 1) 3062 frag_len -= 4; 3063 3064 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len); 3065 rx_pg->page = NULL; 3066 3067 err = bnx2_alloc_rx_page(bp, rxr, 3068 RX_PG_RING_IDX(pg_prod), 3069 GFP_ATOMIC); 3070 if (unlikely(err)) { 3071 rxr->rx_pg_cons = pg_cons; 3072 rxr->rx_pg_prod = pg_prod; 3073 bnx2_reuse_rx_skb_pages(bp, rxr, skb, 3074 pages - i); 3075 return NULL; 3076 } 3077 3078 dma_unmap_page(&bp->pdev->dev, mapping_old, 3079 PAGE_SIZE, PCI_DMA_FROMDEVICE); 3080 3081 frag_size -= frag_len; 3082 skb->data_len += frag_len; 3083 skb->truesize += PAGE_SIZE; 3084 skb->len += frag_len; 3085 3086 pg_prod = NEXT_RX_BD(pg_prod); 3087 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons)); 3088 } 3089 rxr->rx_pg_prod = pg_prod; 3090 rxr->rx_pg_cons = pg_cons; 3091 } 3092 return skb; 3093 } 3094 3095 static inline u16 3096 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi) 3097 { 3098 u16 cons; 3099 3100 /* Tell compiler that status block fields can change. */ 3101 barrier(); 3102 cons = *bnapi->hw_rx_cons_ptr; 3103 barrier(); 3104 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)) 3105 cons++; 3106 return cons; 3107 } 3108 3109 static int 3110 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget) 3111 { 3112 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring; 3113 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod; 3114 struct l2_fhdr *rx_hdr; 3115 int rx_pkt = 0, pg_ring_used = 0; 3116 3117 hw_cons = bnx2_get_hw_rx_cons(bnapi); 3118 sw_cons = rxr->rx_cons; 3119 sw_prod = rxr->rx_prod; 3120 3121 /* Memory barrier necessary as speculative reads of the rx 3122 * buffer can be ahead of the index in the status block 3123 */ 3124 rmb(); 3125 while (sw_cons != hw_cons) { 3126 unsigned int len, hdr_len; 3127 u32 status; 3128 struct sw_bd *rx_buf, *next_rx_buf; 3129 struct sk_buff *skb; 3130 dma_addr_t dma_addr; 3131 u8 *data; 3132 3133 sw_ring_cons = RX_RING_IDX(sw_cons); 3134 sw_ring_prod = RX_RING_IDX(sw_prod); 3135 3136 rx_buf = &rxr->rx_buf_ring[sw_ring_cons]; 3137 data = rx_buf->data; 3138 rx_buf->data = NULL; 3139 3140 rx_hdr = get_l2_fhdr(data); 3141 prefetch(rx_hdr); 3142 3143 dma_addr = dma_unmap_addr(rx_buf, mapping); 3144 3145 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, 3146 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, 3147 PCI_DMA_FROMDEVICE); 3148 3149 next_rx_buf = 3150 &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))]; 3151 prefetch(get_l2_fhdr(next_rx_buf->data)); 3152 3153 len = rx_hdr->l2_fhdr_pkt_len; 3154 status = rx_hdr->l2_fhdr_status; 3155 3156 hdr_len = 0; 3157 if (status & L2_FHDR_STATUS_SPLIT) { 3158 hdr_len = rx_hdr->l2_fhdr_ip_xsum; 3159 pg_ring_used = 1; 3160 } else if (len > bp->rx_jumbo_thresh) { 3161 hdr_len = bp->rx_jumbo_thresh; 3162 pg_ring_used = 1; 3163 } 3164 3165 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC | 3166 L2_FHDR_ERRORS_PHY_DECODE | 3167 L2_FHDR_ERRORS_ALIGNMENT | 3168 L2_FHDR_ERRORS_TOO_SHORT | 3169 L2_FHDR_ERRORS_GIANT_FRAME))) { 3170 3171 bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons, 3172 sw_ring_prod); 3173 if (pg_ring_used) { 3174 int pages; 3175 3176 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT; 3177 3178 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages); 3179 } 3180 goto next_rx; 3181 } 3182 3183 len -= 4; 3184 3185 if (len <= bp->rx_copy_thresh) { 3186 skb = netdev_alloc_skb(bp->dev, len + 6); 3187 if (skb == NULL) { 3188 bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons, 3189 sw_ring_prod); 3190 goto next_rx; 3191 } 3192 3193 /* aligned copy */ 3194 memcpy(skb->data, 3195 (u8 *)rx_hdr + BNX2_RX_OFFSET - 6, 3196 len + 6); 3197 skb_reserve(skb, 6); 3198 skb_put(skb, len); 3199 3200 bnx2_reuse_rx_data(bp, rxr, data, 3201 sw_ring_cons, sw_ring_prod); 3202 3203 } else { 3204 skb = bnx2_rx_skb(bp, rxr, data, len, hdr_len, dma_addr, 3205 (sw_ring_cons << 16) | sw_ring_prod); 3206 if (!skb) 3207 goto next_rx; 3208 } 3209 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && 3210 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) 3211 __vlan_hwaccel_put_tag(skb, rx_hdr->l2_fhdr_vlan_tag); 3212 3213 skb->protocol = eth_type_trans(skb, bp->dev); 3214 3215 if ((len > (bp->dev->mtu + ETH_HLEN)) && 3216 (ntohs(skb->protocol) != 0x8100)) { 3217 3218 dev_kfree_skb(skb); 3219 goto next_rx; 3220 3221 } 3222 3223 skb_checksum_none_assert(skb); 3224 if ((bp->dev->features & NETIF_F_RXCSUM) && 3225 (status & (L2_FHDR_STATUS_TCP_SEGMENT | 3226 L2_FHDR_STATUS_UDP_DATAGRAM))) { 3227 3228 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM | 3229 L2_FHDR_ERRORS_UDP_XSUM)) == 0)) 3230 skb->ip_summed = CHECKSUM_UNNECESSARY; 3231 } 3232 if ((bp->dev->features & NETIF_F_RXHASH) && 3233 ((status & L2_FHDR_STATUS_USE_RXHASH) == 3234 L2_FHDR_STATUS_USE_RXHASH)) 3235 skb->rxhash = rx_hdr->l2_fhdr_hash; 3236 3237 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]); 3238 napi_gro_receive(&bnapi->napi, skb); 3239 rx_pkt++; 3240 3241 next_rx: 3242 sw_cons = NEXT_RX_BD(sw_cons); 3243 sw_prod = NEXT_RX_BD(sw_prod); 3244 3245 if ((rx_pkt == budget)) 3246 break; 3247 3248 /* Refresh hw_cons to see if there is new work */ 3249 if (sw_cons == hw_cons) { 3250 hw_cons = bnx2_get_hw_rx_cons(bnapi); 3251 rmb(); 3252 } 3253 } 3254 rxr->rx_cons = sw_cons; 3255 rxr->rx_prod = sw_prod; 3256 3257 if (pg_ring_used) 3258 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod); 3259 3260 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod); 3261 3262 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq); 3263 3264 mmiowb(); 3265 3266 return rx_pkt; 3267 3268 } 3269 3270 /* MSI ISR - The only difference between this and the INTx ISR 3271 * is that the MSI interrupt is always serviced. 3272 */ 3273 static irqreturn_t 3274 bnx2_msi(int irq, void *dev_instance) 3275 { 3276 struct bnx2_napi *bnapi = dev_instance; 3277 struct bnx2 *bp = bnapi->bp; 3278 3279 prefetch(bnapi->status_blk.msi); 3280 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, 3281 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 3282 BNX2_PCICFG_INT_ACK_CMD_MASK_INT); 3283 3284 /* Return here if interrupt is disabled. */ 3285 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 3286 return IRQ_HANDLED; 3287 3288 napi_schedule(&bnapi->napi); 3289 3290 return IRQ_HANDLED; 3291 } 3292 3293 static irqreturn_t 3294 bnx2_msi_1shot(int irq, void *dev_instance) 3295 { 3296 struct bnx2_napi *bnapi = dev_instance; 3297 struct bnx2 *bp = bnapi->bp; 3298 3299 prefetch(bnapi->status_blk.msi); 3300 3301 /* Return here if interrupt is disabled. */ 3302 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 3303 return IRQ_HANDLED; 3304 3305 napi_schedule(&bnapi->napi); 3306 3307 return IRQ_HANDLED; 3308 } 3309 3310 static irqreturn_t 3311 bnx2_interrupt(int irq, void *dev_instance) 3312 { 3313 struct bnx2_napi *bnapi = dev_instance; 3314 struct bnx2 *bp = bnapi->bp; 3315 struct status_block *sblk = bnapi->status_blk.msi; 3316 3317 /* When using INTx, it is possible for the interrupt to arrive 3318 * at the CPU before the status block posted prior to the 3319 * interrupt. Reading a register will flush the status block. 3320 * When using MSI, the MSI message will always complete after 3321 * the status block write. 3322 */ 3323 if ((sblk->status_idx == bnapi->last_status_idx) && 3324 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) & 3325 BNX2_PCICFG_MISC_STATUS_INTA_VALUE)) 3326 return IRQ_NONE; 3327 3328 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, 3329 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 3330 BNX2_PCICFG_INT_ACK_CMD_MASK_INT); 3331 3332 /* Read back to deassert IRQ immediately to avoid too many 3333 * spurious interrupts. 3334 */ 3335 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD); 3336 3337 /* Return here if interrupt is shared and is disabled. */ 3338 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 3339 return IRQ_HANDLED; 3340 3341 if (napi_schedule_prep(&bnapi->napi)) { 3342 bnapi->last_status_idx = sblk->status_idx; 3343 __napi_schedule(&bnapi->napi); 3344 } 3345 3346 return IRQ_HANDLED; 3347 } 3348 3349 static inline int 3350 bnx2_has_fast_work(struct bnx2_napi *bnapi) 3351 { 3352 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring; 3353 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring; 3354 3355 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) || 3356 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)) 3357 return 1; 3358 return 0; 3359 } 3360 3361 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \ 3362 STATUS_ATTN_BITS_TIMER_ABORT) 3363 3364 static inline int 3365 bnx2_has_work(struct bnx2_napi *bnapi) 3366 { 3367 struct status_block *sblk = bnapi->status_blk.msi; 3368 3369 if (bnx2_has_fast_work(bnapi)) 3370 return 1; 3371 3372 #ifdef BCM_CNIC 3373 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx)) 3374 return 1; 3375 #endif 3376 3377 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) != 3378 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS)) 3379 return 1; 3380 3381 return 0; 3382 } 3383 3384 static void 3385 bnx2_chk_missed_msi(struct bnx2 *bp) 3386 { 3387 struct bnx2_napi *bnapi = &bp->bnx2_napi[0]; 3388 u32 msi_ctrl; 3389 3390 if (bnx2_has_work(bnapi)) { 3391 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL); 3392 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE)) 3393 return; 3394 3395 if (bnapi->last_status_idx == bp->idle_chk_status_idx) { 3396 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl & 3397 ~BNX2_PCICFG_MSI_CONTROL_ENABLE); 3398 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl); 3399 bnx2_msi(bp->irq_tbl[0].vector, bnapi); 3400 } 3401 } 3402 3403 bp->idle_chk_status_idx = bnapi->last_status_idx; 3404 } 3405 3406 #ifdef BCM_CNIC 3407 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi) 3408 { 3409 struct cnic_ops *c_ops; 3410 3411 if (!bnapi->cnic_present) 3412 return; 3413 3414 rcu_read_lock(); 3415 c_ops = rcu_dereference(bp->cnic_ops); 3416 if (c_ops) 3417 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data, 3418 bnapi->status_blk.msi); 3419 rcu_read_unlock(); 3420 } 3421 #endif 3422 3423 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi) 3424 { 3425 struct status_block *sblk = bnapi->status_blk.msi; 3426 u32 status_attn_bits = sblk->status_attn_bits; 3427 u32 status_attn_bits_ack = sblk->status_attn_bits_ack; 3428 3429 if ((status_attn_bits & STATUS_ATTN_EVENTS) != 3430 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) { 3431 3432 bnx2_phy_int(bp, bnapi); 3433 3434 /* This is needed to take care of transient status 3435 * during link changes. 3436 */ 3437 REG_WR(bp, BNX2_HC_COMMAND, 3438 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); 3439 REG_RD(bp, BNX2_HC_COMMAND); 3440 } 3441 } 3442 3443 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi, 3444 int work_done, int budget) 3445 { 3446 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring; 3447 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring; 3448 3449 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons) 3450 bnx2_tx_int(bp, bnapi, 0); 3451 3452 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) 3453 work_done += bnx2_rx_int(bp, bnapi, budget - work_done); 3454 3455 return work_done; 3456 } 3457 3458 static int bnx2_poll_msix(struct napi_struct *napi, int budget) 3459 { 3460 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi); 3461 struct bnx2 *bp = bnapi->bp; 3462 int work_done = 0; 3463 struct status_block_msix *sblk = bnapi->status_blk.msix; 3464 3465 while (1) { 3466 work_done = bnx2_poll_work(bp, bnapi, work_done, budget); 3467 if (unlikely(work_done >= budget)) 3468 break; 3469 3470 bnapi->last_status_idx = sblk->status_idx; 3471 /* status idx must be read before checking for more work. */ 3472 rmb(); 3473 if (likely(!bnx2_has_fast_work(bnapi))) { 3474 3475 napi_complete(napi); 3476 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num | 3477 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | 3478 bnapi->last_status_idx); 3479 break; 3480 } 3481 } 3482 return work_done; 3483 } 3484 3485 static int bnx2_poll(struct napi_struct *napi, int budget) 3486 { 3487 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi); 3488 struct bnx2 *bp = bnapi->bp; 3489 int work_done = 0; 3490 struct status_block *sblk = bnapi->status_blk.msi; 3491 3492 while (1) { 3493 bnx2_poll_link(bp, bnapi); 3494 3495 work_done = bnx2_poll_work(bp, bnapi, work_done, budget); 3496 3497 #ifdef BCM_CNIC 3498 bnx2_poll_cnic(bp, bnapi); 3499 #endif 3500 3501 /* bnapi->last_status_idx is used below to tell the hw how 3502 * much work has been processed, so we must read it before 3503 * checking for more work. 3504 */ 3505 bnapi->last_status_idx = sblk->status_idx; 3506 3507 if (unlikely(work_done >= budget)) 3508 break; 3509 3510 rmb(); 3511 if (likely(!bnx2_has_work(bnapi))) { 3512 napi_complete(napi); 3513 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) { 3514 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, 3515 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | 3516 bnapi->last_status_idx); 3517 break; 3518 } 3519 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, 3520 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | 3521 BNX2_PCICFG_INT_ACK_CMD_MASK_INT | 3522 bnapi->last_status_idx); 3523 3524 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, 3525 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | 3526 bnapi->last_status_idx); 3527 break; 3528 } 3529 } 3530 3531 return work_done; 3532 } 3533 3534 /* Called with rtnl_lock from vlan functions and also netif_tx_lock 3535 * from set_multicast. 3536 */ 3537 static void 3538 bnx2_set_rx_mode(struct net_device *dev) 3539 { 3540 struct bnx2 *bp = netdev_priv(dev); 3541 u32 rx_mode, sort_mode; 3542 struct netdev_hw_addr *ha; 3543 int i; 3544 3545 if (!netif_running(dev)) 3546 return; 3547 3548 spin_lock_bh(&bp->phy_lock); 3549 3550 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS | 3551 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG); 3552 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN; 3553 if (!(dev->features & NETIF_F_HW_VLAN_RX) && 3554 (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)) 3555 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG; 3556 if (dev->flags & IFF_PROMISC) { 3557 /* Promiscuous mode. */ 3558 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS; 3559 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN | 3560 BNX2_RPM_SORT_USER0_PROM_VLAN; 3561 } 3562 else if (dev->flags & IFF_ALLMULTI) { 3563 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 3564 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4), 3565 0xffffffff); 3566 } 3567 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN; 3568 } 3569 else { 3570 /* Accept one or more multicast(s). */ 3571 u32 mc_filter[NUM_MC_HASH_REGISTERS]; 3572 u32 regidx; 3573 u32 bit; 3574 u32 crc; 3575 3576 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS); 3577 3578 netdev_for_each_mc_addr(ha, dev) { 3579 crc = ether_crc_le(ETH_ALEN, ha->addr); 3580 bit = crc & 0xff; 3581 regidx = (bit & 0xe0) >> 5; 3582 bit &= 0x1f; 3583 mc_filter[regidx] |= (1 << bit); 3584 } 3585 3586 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 3587 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4), 3588 mc_filter[i]); 3589 } 3590 3591 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN; 3592 } 3593 3594 if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) { 3595 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS; 3596 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN | 3597 BNX2_RPM_SORT_USER0_PROM_VLAN; 3598 } else if (!(dev->flags & IFF_PROMISC)) { 3599 /* Add all entries into to the match filter list */ 3600 i = 0; 3601 netdev_for_each_uc_addr(ha, dev) { 3602 bnx2_set_mac_addr(bp, ha->addr, 3603 i + BNX2_START_UNICAST_ADDRESS_INDEX); 3604 sort_mode |= (1 << 3605 (i + BNX2_START_UNICAST_ADDRESS_INDEX)); 3606 i++; 3607 } 3608 3609 } 3610 3611 if (rx_mode != bp->rx_mode) { 3612 bp->rx_mode = rx_mode; 3613 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode); 3614 } 3615 3616 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0); 3617 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode); 3618 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA); 3619 3620 spin_unlock_bh(&bp->phy_lock); 3621 } 3622 3623 static int 3624 check_fw_section(const struct firmware *fw, 3625 const struct bnx2_fw_file_section *section, 3626 u32 alignment, bool non_empty) 3627 { 3628 u32 offset = be32_to_cpu(section->offset); 3629 u32 len = be32_to_cpu(section->len); 3630 3631 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3) 3632 return -EINVAL; 3633 if ((non_empty && len == 0) || len > fw->size - offset || 3634 len & (alignment - 1)) 3635 return -EINVAL; 3636 return 0; 3637 } 3638 3639 static int 3640 check_mips_fw_entry(const struct firmware *fw, 3641 const struct bnx2_mips_fw_file_entry *entry) 3642 { 3643 if (check_fw_section(fw, &entry->text, 4, true) || 3644 check_fw_section(fw, &entry->data, 4, false) || 3645 check_fw_section(fw, &entry->rodata, 4, false)) 3646 return -EINVAL; 3647 return 0; 3648 } 3649 3650 static void bnx2_release_firmware(struct bnx2 *bp) 3651 { 3652 if (bp->rv2p_firmware) { 3653 release_firmware(bp->mips_firmware); 3654 release_firmware(bp->rv2p_firmware); 3655 bp->rv2p_firmware = NULL; 3656 } 3657 } 3658 3659 static int bnx2_request_uncached_firmware(struct bnx2 *bp) 3660 { 3661 const char *mips_fw_file, *rv2p_fw_file; 3662 const struct bnx2_mips_fw_file *mips_fw; 3663 const struct bnx2_rv2p_fw_file *rv2p_fw; 3664 int rc; 3665 3666 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 3667 mips_fw_file = FW_MIPS_FILE_09; 3668 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) || 3669 (CHIP_ID(bp) == CHIP_ID_5709_A1)) 3670 rv2p_fw_file = FW_RV2P_FILE_09_Ax; 3671 else 3672 rv2p_fw_file = FW_RV2P_FILE_09; 3673 } else { 3674 mips_fw_file = FW_MIPS_FILE_06; 3675 rv2p_fw_file = FW_RV2P_FILE_06; 3676 } 3677 3678 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev); 3679 if (rc) { 3680 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file); 3681 goto out; 3682 } 3683 3684 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev); 3685 if (rc) { 3686 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file); 3687 goto err_release_mips_firmware; 3688 } 3689 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data; 3690 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data; 3691 if (bp->mips_firmware->size < sizeof(*mips_fw) || 3692 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) || 3693 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) || 3694 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) || 3695 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) || 3696 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) { 3697 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file); 3698 rc = -EINVAL; 3699 goto err_release_firmware; 3700 } 3701 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) || 3702 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) || 3703 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) { 3704 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file); 3705 rc = -EINVAL; 3706 goto err_release_firmware; 3707 } 3708 out: 3709 return rc; 3710 3711 err_release_firmware: 3712 release_firmware(bp->rv2p_firmware); 3713 bp->rv2p_firmware = NULL; 3714 err_release_mips_firmware: 3715 release_firmware(bp->mips_firmware); 3716 goto out; 3717 } 3718 3719 static int bnx2_request_firmware(struct bnx2 *bp) 3720 { 3721 return bp->rv2p_firmware ? 0 : bnx2_request_uncached_firmware(bp); 3722 } 3723 3724 static u32 3725 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code) 3726 { 3727 switch (idx) { 3728 case RV2P_P1_FIXUP_PAGE_SIZE_IDX: 3729 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK; 3730 rv2p_code |= RV2P_BD_PAGE_SIZE; 3731 break; 3732 } 3733 return rv2p_code; 3734 } 3735 3736 static int 3737 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc, 3738 const struct bnx2_rv2p_fw_file_entry *fw_entry) 3739 { 3740 u32 rv2p_code_len, file_offset; 3741 __be32 *rv2p_code; 3742 int i; 3743 u32 val, cmd, addr; 3744 3745 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len); 3746 file_offset = be32_to_cpu(fw_entry->rv2p.offset); 3747 3748 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset); 3749 3750 if (rv2p_proc == RV2P_PROC1) { 3751 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR; 3752 addr = BNX2_RV2P_PROC1_ADDR_CMD; 3753 } else { 3754 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR; 3755 addr = BNX2_RV2P_PROC2_ADDR_CMD; 3756 } 3757 3758 for (i = 0; i < rv2p_code_len; i += 8) { 3759 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code)); 3760 rv2p_code++; 3761 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code)); 3762 rv2p_code++; 3763 3764 val = (i / 8) | cmd; 3765 REG_WR(bp, addr, val); 3766 } 3767 3768 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset); 3769 for (i = 0; i < 8; i++) { 3770 u32 loc, code; 3771 3772 loc = be32_to_cpu(fw_entry->fixup[i]); 3773 if (loc && ((loc * 4) < rv2p_code_len)) { 3774 code = be32_to_cpu(*(rv2p_code + loc - 1)); 3775 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code); 3776 code = be32_to_cpu(*(rv2p_code + loc)); 3777 code = rv2p_fw_fixup(rv2p_proc, i, loc, code); 3778 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code); 3779 3780 val = (loc / 2) | cmd; 3781 REG_WR(bp, addr, val); 3782 } 3783 } 3784 3785 /* Reset the processor, un-stall is done later. */ 3786 if (rv2p_proc == RV2P_PROC1) { 3787 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET); 3788 } 3789 else { 3790 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET); 3791 } 3792 3793 return 0; 3794 } 3795 3796 static int 3797 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg, 3798 const struct bnx2_mips_fw_file_entry *fw_entry) 3799 { 3800 u32 addr, len, file_offset; 3801 __be32 *data; 3802 u32 offset; 3803 u32 val; 3804 3805 /* Halt the CPU. */ 3806 val = bnx2_reg_rd_ind(bp, cpu_reg->mode); 3807 val |= cpu_reg->mode_value_halt; 3808 bnx2_reg_wr_ind(bp, cpu_reg->mode, val); 3809 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear); 3810 3811 /* Load the Text area. */ 3812 addr = be32_to_cpu(fw_entry->text.addr); 3813 len = be32_to_cpu(fw_entry->text.len); 3814 file_offset = be32_to_cpu(fw_entry->text.offset); 3815 data = (__be32 *)(bp->mips_firmware->data + file_offset); 3816 3817 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base); 3818 if (len) { 3819 int j; 3820 3821 for (j = 0; j < (len / 4); j++, offset += 4) 3822 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j])); 3823 } 3824 3825 /* Load the Data area. */ 3826 addr = be32_to_cpu(fw_entry->data.addr); 3827 len = be32_to_cpu(fw_entry->data.len); 3828 file_offset = be32_to_cpu(fw_entry->data.offset); 3829 data = (__be32 *)(bp->mips_firmware->data + file_offset); 3830 3831 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base); 3832 if (len) { 3833 int j; 3834 3835 for (j = 0; j < (len / 4); j++, offset += 4) 3836 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j])); 3837 } 3838 3839 /* Load the Read-Only area. */ 3840 addr = be32_to_cpu(fw_entry->rodata.addr); 3841 len = be32_to_cpu(fw_entry->rodata.len); 3842 file_offset = be32_to_cpu(fw_entry->rodata.offset); 3843 data = (__be32 *)(bp->mips_firmware->data + file_offset); 3844 3845 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base); 3846 if (len) { 3847 int j; 3848 3849 for (j = 0; j < (len / 4); j++, offset += 4) 3850 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j])); 3851 } 3852 3853 /* Clear the pre-fetch instruction. */ 3854 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0); 3855 3856 val = be32_to_cpu(fw_entry->start_addr); 3857 bnx2_reg_wr_ind(bp, cpu_reg->pc, val); 3858 3859 /* Start the CPU. */ 3860 val = bnx2_reg_rd_ind(bp, cpu_reg->mode); 3861 val &= ~cpu_reg->mode_value_halt; 3862 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear); 3863 bnx2_reg_wr_ind(bp, cpu_reg->mode, val); 3864 3865 return 0; 3866 } 3867 3868 static int 3869 bnx2_init_cpus(struct bnx2 *bp) 3870 { 3871 const struct bnx2_mips_fw_file *mips_fw = 3872 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data; 3873 const struct bnx2_rv2p_fw_file *rv2p_fw = 3874 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data; 3875 int rc; 3876 3877 /* Initialize the RV2P processor. */ 3878 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1); 3879 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2); 3880 3881 /* Initialize the RX Processor. */ 3882 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp); 3883 if (rc) 3884 goto init_cpu_err; 3885 3886 /* Initialize the TX Processor. */ 3887 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp); 3888 if (rc) 3889 goto init_cpu_err; 3890 3891 /* Initialize the TX Patch-up Processor. */ 3892 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat); 3893 if (rc) 3894 goto init_cpu_err; 3895 3896 /* Initialize the Completion Processor. */ 3897 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com); 3898 if (rc) 3899 goto init_cpu_err; 3900 3901 /* Initialize the Command Processor. */ 3902 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp); 3903 3904 init_cpu_err: 3905 return rc; 3906 } 3907 3908 static int 3909 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state) 3910 { 3911 u16 pmcsr; 3912 3913 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr); 3914 3915 switch (state) { 3916 case PCI_D0: { 3917 u32 val; 3918 3919 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, 3920 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3921 PCI_PM_CTRL_PME_STATUS); 3922 3923 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3924 /* delay required during transition out of D3hot */ 3925 msleep(20); 3926 3927 val = REG_RD(bp, BNX2_EMAC_MODE); 3928 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD; 3929 val &= ~BNX2_EMAC_MODE_MPKT; 3930 REG_WR(bp, BNX2_EMAC_MODE, val); 3931 3932 val = REG_RD(bp, BNX2_RPM_CONFIG); 3933 val &= ~BNX2_RPM_CONFIG_ACPI_ENA; 3934 REG_WR(bp, BNX2_RPM_CONFIG, val); 3935 break; 3936 } 3937 case PCI_D3hot: { 3938 int i; 3939 u32 val, wol_msg; 3940 3941 if (bp->wol) { 3942 u32 advertising; 3943 u8 autoneg; 3944 3945 autoneg = bp->autoneg; 3946 advertising = bp->advertising; 3947 3948 if (bp->phy_port == PORT_TP) { 3949 bp->autoneg = AUTONEG_SPEED; 3950 bp->advertising = ADVERTISED_10baseT_Half | 3951 ADVERTISED_10baseT_Full | 3952 ADVERTISED_100baseT_Half | 3953 ADVERTISED_100baseT_Full | 3954 ADVERTISED_Autoneg; 3955 } 3956 3957 spin_lock_bh(&bp->phy_lock); 3958 bnx2_setup_phy(bp, bp->phy_port); 3959 spin_unlock_bh(&bp->phy_lock); 3960 3961 bp->autoneg = autoneg; 3962 bp->advertising = advertising; 3963 3964 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0); 3965 3966 val = REG_RD(bp, BNX2_EMAC_MODE); 3967 3968 /* Enable port mode. */ 3969 val &= ~BNX2_EMAC_MODE_PORT; 3970 val |= BNX2_EMAC_MODE_MPKT_RCVD | 3971 BNX2_EMAC_MODE_ACPI_RCVD | 3972 BNX2_EMAC_MODE_MPKT; 3973 if (bp->phy_port == PORT_TP) 3974 val |= BNX2_EMAC_MODE_PORT_MII; 3975 else { 3976 val |= BNX2_EMAC_MODE_PORT_GMII; 3977 if (bp->line_speed == SPEED_2500) 3978 val |= BNX2_EMAC_MODE_25G_MODE; 3979 } 3980 3981 REG_WR(bp, BNX2_EMAC_MODE, val); 3982 3983 /* receive all multicast */ 3984 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 3985 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4), 3986 0xffffffff); 3987 } 3988 REG_WR(bp, BNX2_EMAC_RX_MODE, 3989 BNX2_EMAC_RX_MODE_SORT_MODE); 3990 3991 val = 1 | BNX2_RPM_SORT_USER0_BC_EN | 3992 BNX2_RPM_SORT_USER0_MC_EN; 3993 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0); 3994 REG_WR(bp, BNX2_RPM_SORT_USER0, val); 3995 REG_WR(bp, BNX2_RPM_SORT_USER0, val | 3996 BNX2_RPM_SORT_USER0_ENA); 3997 3998 /* Need to enable EMAC and RPM for WOL. */ 3999 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 4000 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE | 4001 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE | 4002 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE); 4003 4004 val = REG_RD(bp, BNX2_RPM_CONFIG); 4005 val &= ~BNX2_RPM_CONFIG_ACPI_ENA; 4006 REG_WR(bp, BNX2_RPM_CONFIG, val); 4007 4008 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL; 4009 } 4010 else { 4011 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL; 4012 } 4013 4014 if (!(bp->flags & BNX2_FLAG_NO_WOL)) 4015 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 4016 1, 0); 4017 4018 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 4019 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) || 4020 (CHIP_ID(bp) == CHIP_ID_5706_A1)) { 4021 4022 if (bp->wol) 4023 pmcsr |= 3; 4024 } 4025 else { 4026 pmcsr |= 3; 4027 } 4028 if (bp->wol) { 4029 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 4030 } 4031 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, 4032 pmcsr); 4033 4034 /* No more memory access after this point until 4035 * device is brought back to D0. 4036 */ 4037 udelay(50); 4038 break; 4039 } 4040 default: 4041 return -EINVAL; 4042 } 4043 return 0; 4044 } 4045 4046 static int 4047 bnx2_acquire_nvram_lock(struct bnx2 *bp) 4048 { 4049 u32 val; 4050 int j; 4051 4052 /* Request access to the flash interface. */ 4053 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2); 4054 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 4055 val = REG_RD(bp, BNX2_NVM_SW_ARB); 4056 if (val & BNX2_NVM_SW_ARB_ARB_ARB2) 4057 break; 4058 4059 udelay(5); 4060 } 4061 4062 if (j >= NVRAM_TIMEOUT_COUNT) 4063 return -EBUSY; 4064 4065 return 0; 4066 } 4067 4068 static int 4069 bnx2_release_nvram_lock(struct bnx2 *bp) 4070 { 4071 int j; 4072 u32 val; 4073 4074 /* Relinquish nvram interface. */ 4075 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2); 4076 4077 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 4078 val = REG_RD(bp, BNX2_NVM_SW_ARB); 4079 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2)) 4080 break; 4081 4082 udelay(5); 4083 } 4084 4085 if (j >= NVRAM_TIMEOUT_COUNT) 4086 return -EBUSY; 4087 4088 return 0; 4089 } 4090 4091 4092 static int 4093 bnx2_enable_nvram_write(struct bnx2 *bp) 4094 { 4095 u32 val; 4096 4097 val = REG_RD(bp, BNX2_MISC_CFG); 4098 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI); 4099 4100 if (bp->flash_info->flags & BNX2_NV_WREN) { 4101 int j; 4102 4103 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); 4104 REG_WR(bp, BNX2_NVM_COMMAND, 4105 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT); 4106 4107 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 4108 udelay(5); 4109 4110 val = REG_RD(bp, BNX2_NVM_COMMAND); 4111 if (val & BNX2_NVM_COMMAND_DONE) 4112 break; 4113 } 4114 4115 if (j >= NVRAM_TIMEOUT_COUNT) 4116 return -EBUSY; 4117 } 4118 return 0; 4119 } 4120 4121 static void 4122 bnx2_disable_nvram_write(struct bnx2 *bp) 4123 { 4124 u32 val; 4125 4126 val = REG_RD(bp, BNX2_MISC_CFG); 4127 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN); 4128 } 4129 4130 4131 static void 4132 bnx2_enable_nvram_access(struct bnx2 *bp) 4133 { 4134 u32 val; 4135 4136 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE); 4137 /* Enable both bits, even on read. */ 4138 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE, 4139 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN); 4140 } 4141 4142 static void 4143 bnx2_disable_nvram_access(struct bnx2 *bp) 4144 { 4145 u32 val; 4146 4147 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE); 4148 /* Disable both bits, even after read. */ 4149 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE, 4150 val & ~(BNX2_NVM_ACCESS_ENABLE_EN | 4151 BNX2_NVM_ACCESS_ENABLE_WR_EN)); 4152 } 4153 4154 static int 4155 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset) 4156 { 4157 u32 cmd; 4158 int j; 4159 4160 if (bp->flash_info->flags & BNX2_NV_BUFFERED) 4161 /* Buffered flash, no erase needed */ 4162 return 0; 4163 4164 /* Build an erase command */ 4165 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR | 4166 BNX2_NVM_COMMAND_DOIT; 4167 4168 /* Need to clear DONE bit separately. */ 4169 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); 4170 4171 /* Address of the NVRAM to read from. */ 4172 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE); 4173 4174 /* Issue an erase command. */ 4175 REG_WR(bp, BNX2_NVM_COMMAND, cmd); 4176 4177 /* Wait for completion. */ 4178 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 4179 u32 val; 4180 4181 udelay(5); 4182 4183 val = REG_RD(bp, BNX2_NVM_COMMAND); 4184 if (val & BNX2_NVM_COMMAND_DONE) 4185 break; 4186 } 4187 4188 if (j >= NVRAM_TIMEOUT_COUNT) 4189 return -EBUSY; 4190 4191 return 0; 4192 } 4193 4194 static int 4195 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags) 4196 { 4197 u32 cmd; 4198 int j; 4199 4200 /* Build the command word. */ 4201 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags; 4202 4203 /* Calculate an offset of a buffered flash, not needed for 5709. */ 4204 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) { 4205 offset = ((offset / bp->flash_info->page_size) << 4206 bp->flash_info->page_bits) + 4207 (offset % bp->flash_info->page_size); 4208 } 4209 4210 /* Need to clear DONE bit separately. */ 4211 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); 4212 4213 /* Address of the NVRAM to read from. */ 4214 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE); 4215 4216 /* Issue a read command. */ 4217 REG_WR(bp, BNX2_NVM_COMMAND, cmd); 4218 4219 /* Wait for completion. */ 4220 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 4221 u32 val; 4222 4223 udelay(5); 4224 4225 val = REG_RD(bp, BNX2_NVM_COMMAND); 4226 if (val & BNX2_NVM_COMMAND_DONE) { 4227 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ)); 4228 memcpy(ret_val, &v, 4); 4229 break; 4230 } 4231 } 4232 if (j >= NVRAM_TIMEOUT_COUNT) 4233 return -EBUSY; 4234 4235 return 0; 4236 } 4237 4238 4239 static int 4240 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags) 4241 { 4242 u32 cmd; 4243 __be32 val32; 4244 int j; 4245 4246 /* Build the command word. */ 4247 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags; 4248 4249 /* Calculate an offset of a buffered flash, not needed for 5709. */ 4250 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) { 4251 offset = ((offset / bp->flash_info->page_size) << 4252 bp->flash_info->page_bits) + 4253 (offset % bp->flash_info->page_size); 4254 } 4255 4256 /* Need to clear DONE bit separately. */ 4257 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); 4258 4259 memcpy(&val32, val, 4); 4260 4261 /* Write the data. */ 4262 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32)); 4263 4264 /* Address of the NVRAM to write to. */ 4265 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE); 4266 4267 /* Issue the write command. */ 4268 REG_WR(bp, BNX2_NVM_COMMAND, cmd); 4269 4270 /* Wait for completion. */ 4271 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 4272 udelay(5); 4273 4274 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE) 4275 break; 4276 } 4277 if (j >= NVRAM_TIMEOUT_COUNT) 4278 return -EBUSY; 4279 4280 return 0; 4281 } 4282 4283 static int 4284 bnx2_init_nvram(struct bnx2 *bp) 4285 { 4286 u32 val; 4287 int j, entry_count, rc = 0; 4288 const struct flash_spec *flash; 4289 4290 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 4291 bp->flash_info = &flash_5709; 4292 goto get_flash_size; 4293 } 4294 4295 /* Determine the selected interface. */ 4296 val = REG_RD(bp, BNX2_NVM_CFG1); 4297 4298 entry_count = ARRAY_SIZE(flash_table); 4299 4300 if (val & 0x40000000) { 4301 4302 /* Flash interface has been reconfigured */ 4303 for (j = 0, flash = &flash_table[0]; j < entry_count; 4304 j++, flash++) { 4305 if ((val & FLASH_BACKUP_STRAP_MASK) == 4306 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 4307 bp->flash_info = flash; 4308 break; 4309 } 4310 } 4311 } 4312 else { 4313 u32 mask; 4314 /* Not yet been reconfigured */ 4315 4316 if (val & (1 << 23)) 4317 mask = FLASH_BACKUP_STRAP_MASK; 4318 else 4319 mask = FLASH_STRAP_MASK; 4320 4321 for (j = 0, flash = &flash_table[0]; j < entry_count; 4322 j++, flash++) { 4323 4324 if ((val & mask) == (flash->strapping & mask)) { 4325 bp->flash_info = flash; 4326 4327 /* Request access to the flash interface. */ 4328 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0) 4329 return rc; 4330 4331 /* Enable access to flash interface */ 4332 bnx2_enable_nvram_access(bp); 4333 4334 /* Reconfigure the flash interface */ 4335 REG_WR(bp, BNX2_NVM_CFG1, flash->config1); 4336 REG_WR(bp, BNX2_NVM_CFG2, flash->config2); 4337 REG_WR(bp, BNX2_NVM_CFG3, flash->config3); 4338 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1); 4339 4340 /* Disable access to flash interface */ 4341 bnx2_disable_nvram_access(bp); 4342 bnx2_release_nvram_lock(bp); 4343 4344 break; 4345 } 4346 } 4347 } /* if (val & 0x40000000) */ 4348 4349 if (j == entry_count) { 4350 bp->flash_info = NULL; 4351 pr_alert("Unknown flash/EEPROM type\n"); 4352 return -ENODEV; 4353 } 4354 4355 get_flash_size: 4356 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2); 4357 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK; 4358 if (val) 4359 bp->flash_size = val; 4360 else 4361 bp->flash_size = bp->flash_info->total_size; 4362 4363 return rc; 4364 } 4365 4366 static int 4367 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf, 4368 int buf_size) 4369 { 4370 int rc = 0; 4371 u32 cmd_flags, offset32, len32, extra; 4372 4373 if (buf_size == 0) 4374 return 0; 4375 4376 /* Request access to the flash interface. */ 4377 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0) 4378 return rc; 4379 4380 /* Enable access to flash interface */ 4381 bnx2_enable_nvram_access(bp); 4382 4383 len32 = buf_size; 4384 offset32 = offset; 4385 extra = 0; 4386 4387 cmd_flags = 0; 4388 4389 if (offset32 & 3) { 4390 u8 buf[4]; 4391 u32 pre_len; 4392 4393 offset32 &= ~3; 4394 pre_len = 4 - (offset & 3); 4395 4396 if (pre_len >= len32) { 4397 pre_len = len32; 4398 cmd_flags = BNX2_NVM_COMMAND_FIRST | 4399 BNX2_NVM_COMMAND_LAST; 4400 } 4401 else { 4402 cmd_flags = BNX2_NVM_COMMAND_FIRST; 4403 } 4404 4405 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags); 4406 4407 if (rc) 4408 return rc; 4409 4410 memcpy(ret_buf, buf + (offset & 3), pre_len); 4411 4412 offset32 += 4; 4413 ret_buf += pre_len; 4414 len32 -= pre_len; 4415 } 4416 if (len32 & 3) { 4417 extra = 4 - (len32 & 3); 4418 len32 = (len32 + 4) & ~3; 4419 } 4420 4421 if (len32 == 4) { 4422 u8 buf[4]; 4423 4424 if (cmd_flags) 4425 cmd_flags = BNX2_NVM_COMMAND_LAST; 4426 else 4427 cmd_flags = BNX2_NVM_COMMAND_FIRST | 4428 BNX2_NVM_COMMAND_LAST; 4429 4430 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags); 4431 4432 memcpy(ret_buf, buf, 4 - extra); 4433 } 4434 else if (len32 > 0) { 4435 u8 buf[4]; 4436 4437 /* Read the first word. */ 4438 if (cmd_flags) 4439 cmd_flags = 0; 4440 else 4441 cmd_flags = BNX2_NVM_COMMAND_FIRST; 4442 4443 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags); 4444 4445 /* Advance to the next dword. */ 4446 offset32 += 4; 4447 ret_buf += 4; 4448 len32 -= 4; 4449 4450 while (len32 > 4 && rc == 0) { 4451 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0); 4452 4453 /* Advance to the next dword. */ 4454 offset32 += 4; 4455 ret_buf += 4; 4456 len32 -= 4; 4457 } 4458 4459 if (rc) 4460 return rc; 4461 4462 cmd_flags = BNX2_NVM_COMMAND_LAST; 4463 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags); 4464 4465 memcpy(ret_buf, buf, 4 - extra); 4466 } 4467 4468 /* Disable access to flash interface */ 4469 bnx2_disable_nvram_access(bp); 4470 4471 bnx2_release_nvram_lock(bp); 4472 4473 return rc; 4474 } 4475 4476 static int 4477 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf, 4478 int buf_size) 4479 { 4480 u32 written, offset32, len32; 4481 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL; 4482 int rc = 0; 4483 int align_start, align_end; 4484 4485 buf = data_buf; 4486 offset32 = offset; 4487 len32 = buf_size; 4488 align_start = align_end = 0; 4489 4490 if ((align_start = (offset32 & 3))) { 4491 offset32 &= ~3; 4492 len32 += align_start; 4493 if (len32 < 4) 4494 len32 = 4; 4495 if ((rc = bnx2_nvram_read(bp, offset32, start, 4))) 4496 return rc; 4497 } 4498 4499 if (len32 & 3) { 4500 align_end = 4 - (len32 & 3); 4501 len32 += align_end; 4502 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4))) 4503 return rc; 4504 } 4505 4506 if (align_start || align_end) { 4507 align_buf = kmalloc(len32, GFP_KERNEL); 4508 if (align_buf == NULL) 4509 return -ENOMEM; 4510 if (align_start) { 4511 memcpy(align_buf, start, 4); 4512 } 4513 if (align_end) { 4514 memcpy(align_buf + len32 - 4, end, 4); 4515 } 4516 memcpy(align_buf + align_start, data_buf, buf_size); 4517 buf = align_buf; 4518 } 4519 4520 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) { 4521 flash_buffer = kmalloc(264, GFP_KERNEL); 4522 if (flash_buffer == NULL) { 4523 rc = -ENOMEM; 4524 goto nvram_write_end; 4525 } 4526 } 4527 4528 written = 0; 4529 while ((written < len32) && (rc == 0)) { 4530 u32 page_start, page_end, data_start, data_end; 4531 u32 addr, cmd_flags; 4532 int i; 4533 4534 /* Find the page_start addr */ 4535 page_start = offset32 + written; 4536 page_start -= (page_start % bp->flash_info->page_size); 4537 /* Find the page_end addr */ 4538 page_end = page_start + bp->flash_info->page_size; 4539 /* Find the data_start addr */ 4540 data_start = (written == 0) ? offset32 : page_start; 4541 /* Find the data_end addr */ 4542 data_end = (page_end > offset32 + len32) ? 4543 (offset32 + len32) : page_end; 4544 4545 /* Request access to the flash interface. */ 4546 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0) 4547 goto nvram_write_end; 4548 4549 /* Enable access to flash interface */ 4550 bnx2_enable_nvram_access(bp); 4551 4552 cmd_flags = BNX2_NVM_COMMAND_FIRST; 4553 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) { 4554 int j; 4555 4556 /* Read the whole page into the buffer 4557 * (non-buffer flash only) */ 4558 for (j = 0; j < bp->flash_info->page_size; j += 4) { 4559 if (j == (bp->flash_info->page_size - 4)) { 4560 cmd_flags |= BNX2_NVM_COMMAND_LAST; 4561 } 4562 rc = bnx2_nvram_read_dword(bp, 4563 page_start + j, 4564 &flash_buffer[j], 4565 cmd_flags); 4566 4567 if (rc) 4568 goto nvram_write_end; 4569 4570 cmd_flags = 0; 4571 } 4572 } 4573 4574 /* Enable writes to flash interface (unlock write-protect) */ 4575 if ((rc = bnx2_enable_nvram_write(bp)) != 0) 4576 goto nvram_write_end; 4577 4578 /* Loop to write back the buffer data from page_start to 4579 * data_start */ 4580 i = 0; 4581 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) { 4582 /* Erase the page */ 4583 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0) 4584 goto nvram_write_end; 4585 4586 /* Re-enable the write again for the actual write */ 4587 bnx2_enable_nvram_write(bp); 4588 4589 for (addr = page_start; addr < data_start; 4590 addr += 4, i += 4) { 4591 4592 rc = bnx2_nvram_write_dword(bp, addr, 4593 &flash_buffer[i], cmd_flags); 4594 4595 if (rc != 0) 4596 goto nvram_write_end; 4597 4598 cmd_flags = 0; 4599 } 4600 } 4601 4602 /* Loop to write the new data from data_start to data_end */ 4603 for (addr = data_start; addr < data_end; addr += 4, i += 4) { 4604 if ((addr == page_end - 4) || 4605 ((bp->flash_info->flags & BNX2_NV_BUFFERED) && 4606 (addr == data_end - 4))) { 4607 4608 cmd_flags |= BNX2_NVM_COMMAND_LAST; 4609 } 4610 rc = bnx2_nvram_write_dword(bp, addr, buf, 4611 cmd_flags); 4612 4613 if (rc != 0) 4614 goto nvram_write_end; 4615 4616 cmd_flags = 0; 4617 buf += 4; 4618 } 4619 4620 /* Loop to write back the buffer data from data_end 4621 * to page_end */ 4622 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) { 4623 for (addr = data_end; addr < page_end; 4624 addr += 4, i += 4) { 4625 4626 if (addr == page_end-4) { 4627 cmd_flags = BNX2_NVM_COMMAND_LAST; 4628 } 4629 rc = bnx2_nvram_write_dword(bp, addr, 4630 &flash_buffer[i], cmd_flags); 4631 4632 if (rc != 0) 4633 goto nvram_write_end; 4634 4635 cmd_flags = 0; 4636 } 4637 } 4638 4639 /* Disable writes to flash interface (lock write-protect) */ 4640 bnx2_disable_nvram_write(bp); 4641 4642 /* Disable access to flash interface */ 4643 bnx2_disable_nvram_access(bp); 4644 bnx2_release_nvram_lock(bp); 4645 4646 /* Increment written */ 4647 written += data_end - data_start; 4648 } 4649 4650 nvram_write_end: 4651 kfree(flash_buffer); 4652 kfree(align_buf); 4653 return rc; 4654 } 4655 4656 static void 4657 bnx2_init_fw_cap(struct bnx2 *bp) 4658 { 4659 u32 val, sig = 0; 4660 4661 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP; 4662 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN; 4663 4664 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE)) 4665 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN; 4666 4667 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB); 4668 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE) 4669 return; 4670 4671 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) { 4672 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN; 4673 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN; 4674 } 4675 4676 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) && 4677 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) { 4678 u32 link; 4679 4680 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP; 4681 4682 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS); 4683 if (link & BNX2_LINK_STATUS_SERDES_LINK) 4684 bp->phy_port = PORT_FIBRE; 4685 else 4686 bp->phy_port = PORT_TP; 4687 4688 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | 4689 BNX2_FW_CAP_REMOTE_PHY_CAPABLE; 4690 } 4691 4692 if (netif_running(bp->dev) && sig) 4693 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig); 4694 } 4695 4696 static void 4697 bnx2_setup_msix_tbl(struct bnx2 *bp) 4698 { 4699 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN); 4700 4701 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR); 4702 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR); 4703 } 4704 4705 static int 4706 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code) 4707 { 4708 u32 val; 4709 int i, rc = 0; 4710 u8 old_port; 4711 4712 /* Wait for the current PCI transaction to complete before 4713 * issuing a reset. */ 4714 if ((CHIP_NUM(bp) == CHIP_NUM_5706) || 4715 (CHIP_NUM(bp) == CHIP_NUM_5708)) { 4716 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS, 4717 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 4718 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 4719 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 4720 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 4721 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS); 4722 udelay(5); 4723 } else { /* 5709 */ 4724 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL); 4725 val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE; 4726 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val); 4727 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL); 4728 4729 for (i = 0; i < 100; i++) { 4730 msleep(1); 4731 val = REG_RD(bp, BNX2_PCICFG_DEVICE_CONTROL); 4732 if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND)) 4733 break; 4734 } 4735 } 4736 4737 /* Wait for the firmware to tell us it is ok to issue a reset. */ 4738 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1); 4739 4740 /* Deposit a driver reset signature so the firmware knows that 4741 * this is a soft reset. */ 4742 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE, 4743 BNX2_DRV_RESET_SIGNATURE_MAGIC); 4744 4745 /* Do a dummy read to force the chip to complete all current transaction 4746 * before we issue a reset. */ 4747 val = REG_RD(bp, BNX2_MISC_ID); 4748 4749 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 4750 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET); 4751 REG_RD(bp, BNX2_MISC_COMMAND); 4752 udelay(5); 4753 4754 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4755 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4756 4757 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val); 4758 4759 } else { 4760 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4761 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4762 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4763 4764 /* Chip reset. */ 4765 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val); 4766 4767 /* Reading back any register after chip reset will hang the 4768 * bus on 5706 A0 and A1. The msleep below provides plenty 4769 * of margin for write posting. 4770 */ 4771 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) || 4772 (CHIP_ID(bp) == CHIP_ID_5706_A1)) 4773 msleep(20); 4774 4775 /* Reset takes approximate 30 usec */ 4776 for (i = 0; i < 10; i++) { 4777 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG); 4778 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4779 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) 4780 break; 4781 udelay(10); 4782 } 4783 4784 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4785 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 4786 pr_err("Chip reset did not complete\n"); 4787 return -EBUSY; 4788 } 4789 } 4790 4791 /* Make sure byte swapping is properly configured. */ 4792 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0); 4793 if (val != 0x01020304) { 4794 pr_err("Chip not in correct endian mode\n"); 4795 return -ENODEV; 4796 } 4797 4798 /* Wait for the firmware to finish its initialization. */ 4799 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0); 4800 if (rc) 4801 return rc; 4802 4803 spin_lock_bh(&bp->phy_lock); 4804 old_port = bp->phy_port; 4805 bnx2_init_fw_cap(bp); 4806 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) && 4807 old_port != bp->phy_port) 4808 bnx2_set_default_remote_link(bp); 4809 spin_unlock_bh(&bp->phy_lock); 4810 4811 if (CHIP_ID(bp) == CHIP_ID_5706_A0) { 4812 /* Adjust the voltage regular to two steps lower. The default 4813 * of this register is 0x0000000e. */ 4814 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa); 4815 4816 /* Remove bad rbuf memory from the free pool. */ 4817 rc = bnx2_alloc_bad_rbuf(bp); 4818 } 4819 4820 if (bp->flags & BNX2_FLAG_USING_MSIX) { 4821 bnx2_setup_msix_tbl(bp); 4822 /* Prevent MSIX table reads and write from timing out */ 4823 REG_WR(bp, BNX2_MISC_ECO_HW_CTL, 4824 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN); 4825 } 4826 4827 return rc; 4828 } 4829 4830 static int 4831 bnx2_init_chip(struct bnx2 *bp) 4832 { 4833 u32 val, mtu; 4834 int rc, i; 4835 4836 /* Make sure the interrupt is not active. */ 4837 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT); 4838 4839 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP | 4840 BNX2_DMA_CONFIG_DATA_WORD_SWAP | 4841 #ifdef __BIG_ENDIAN 4842 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP | 4843 #endif 4844 BNX2_DMA_CONFIG_CNTL_WORD_SWAP | 4845 DMA_READ_CHANS << 12 | 4846 DMA_WRITE_CHANS << 16; 4847 4848 val |= (0x2 << 20) | (1 << 11); 4849 4850 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133)) 4851 val |= (1 << 23); 4852 4853 if ((CHIP_NUM(bp) == CHIP_NUM_5706) && 4854 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX)) 4855 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA; 4856 4857 REG_WR(bp, BNX2_DMA_CONFIG, val); 4858 4859 if (CHIP_ID(bp) == CHIP_ID_5706_A0) { 4860 val = REG_RD(bp, BNX2_TDMA_CONFIG); 4861 val |= BNX2_TDMA_CONFIG_ONE_DMA; 4862 REG_WR(bp, BNX2_TDMA_CONFIG, val); 4863 } 4864 4865 if (bp->flags & BNX2_FLAG_PCIX) { 4866 u16 val16; 4867 4868 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD, 4869 &val16); 4870 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD, 4871 val16 & ~PCI_X_CMD_ERO); 4872 } 4873 4874 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 4875 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 4876 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 4877 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 4878 4879 /* Initialize context mapping and zero out the quick contexts. The 4880 * context block must have already been enabled. */ 4881 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 4882 rc = bnx2_init_5709_context(bp); 4883 if (rc) 4884 return rc; 4885 } else 4886 bnx2_init_context(bp); 4887 4888 if ((rc = bnx2_init_cpus(bp)) != 0) 4889 return rc; 4890 4891 bnx2_init_nvram(bp); 4892 4893 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0); 4894 4895 val = REG_RD(bp, BNX2_MQ_CONFIG); 4896 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE; 4897 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 4898 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 4899 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE; 4900 if (CHIP_REV(bp) == CHIP_REV_Ax) 4901 val |= BNX2_MQ_CONFIG_HALT_DIS; 4902 } 4903 4904 REG_WR(bp, BNX2_MQ_CONFIG, val); 4905 4906 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 4907 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val); 4908 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val); 4909 4910 val = (BCM_PAGE_BITS - 8) << 24; 4911 REG_WR(bp, BNX2_RV2P_CONFIG, val); 4912 4913 /* Configure page size. */ 4914 val = REG_RD(bp, BNX2_TBDR_CONFIG); 4915 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE; 4916 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 4917 REG_WR(bp, BNX2_TBDR_CONFIG, val); 4918 4919 val = bp->mac_addr[0] + 4920 (bp->mac_addr[1] << 8) + 4921 (bp->mac_addr[2] << 16) + 4922 bp->mac_addr[3] + 4923 (bp->mac_addr[4] << 8) + 4924 (bp->mac_addr[5] << 16); 4925 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val); 4926 4927 /* Program the MTU. Also include 4 bytes for CRC32. */ 4928 mtu = bp->dev->mtu; 4929 val = mtu + ETH_HLEN + ETH_FCS_LEN; 4930 if (val > (MAX_ETHERNET_PACKET_SIZE + 4)) 4931 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA; 4932 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val); 4933 4934 if (mtu < 1500) 4935 mtu = 1500; 4936 4937 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu)); 4938 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu)); 4939 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu)); 4940 4941 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size); 4942 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) 4943 bp->bnx2_napi[i].last_status_idx = 0; 4944 4945 bp->idle_chk_status_idx = 0xffff; 4946 4947 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE; 4948 4949 /* Set up how to generate a link change interrupt. */ 4950 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK); 4951 4952 REG_WR(bp, BNX2_HC_STATUS_ADDR_L, 4953 (u64) bp->status_blk_mapping & 0xffffffff); 4954 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32); 4955 4956 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L, 4957 (u64) bp->stats_blk_mapping & 0xffffffff); 4958 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H, 4959 (u64) bp->stats_blk_mapping >> 32); 4960 4961 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP, 4962 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip); 4963 4964 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP, 4965 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip); 4966 4967 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP, 4968 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip); 4969 4970 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks); 4971 4972 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks); 4973 4974 REG_WR(bp, BNX2_HC_COM_TICKS, 4975 (bp->com_ticks_int << 16) | bp->com_ticks); 4976 4977 REG_WR(bp, BNX2_HC_CMD_TICKS, 4978 (bp->cmd_ticks_int << 16) | bp->cmd_ticks); 4979 4980 if (bp->flags & BNX2_FLAG_BROKEN_STATS) 4981 REG_WR(bp, BNX2_HC_STATS_TICKS, 0); 4982 else 4983 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks); 4984 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 4985 4986 if (CHIP_ID(bp) == CHIP_ID_5706_A1) 4987 val = BNX2_HC_CONFIG_COLLECT_STATS; 4988 else { 4989 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE | 4990 BNX2_HC_CONFIG_COLLECT_STATS; 4991 } 4992 4993 if (bp->flags & BNX2_FLAG_USING_MSIX) { 4994 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR, 4995 BNX2_HC_MSIX_BIT_VECTOR_VAL); 4996 4997 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B; 4998 } 4999 5000 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI) 5001 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM; 5002 5003 REG_WR(bp, BNX2_HC_CONFIG, val); 5004 5005 if (bp->rx_ticks < 25) 5006 bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1); 5007 else 5008 bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0); 5009 5010 for (i = 1; i < bp->irq_nvecs; i++) { 5011 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) + 5012 BNX2_HC_SB_CONFIG_1; 5013 5014 REG_WR(bp, base, 5015 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE | 5016 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE | 5017 BNX2_HC_SB_CONFIG_1_ONE_SHOT); 5018 5019 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF, 5020 (bp->tx_quick_cons_trip_int << 16) | 5021 bp->tx_quick_cons_trip); 5022 5023 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF, 5024 (bp->tx_ticks_int << 16) | bp->tx_ticks); 5025 5026 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF, 5027 (bp->rx_quick_cons_trip_int << 16) | 5028 bp->rx_quick_cons_trip); 5029 5030 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF, 5031 (bp->rx_ticks_int << 16) | bp->rx_ticks); 5032 } 5033 5034 /* Clear internal stats counters. */ 5035 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW); 5036 5037 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS); 5038 5039 /* Initialize the receive filter. */ 5040 bnx2_set_rx_mode(bp->dev); 5041 5042 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 5043 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL); 5044 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE; 5045 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val); 5046 } 5047 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET, 5048 1, 0); 5049 5050 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT); 5051 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS); 5052 5053 udelay(20); 5054 5055 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND); 5056 5057 return rc; 5058 } 5059 5060 static void 5061 bnx2_clear_ring_states(struct bnx2 *bp) 5062 { 5063 struct bnx2_napi *bnapi; 5064 struct bnx2_tx_ring_info *txr; 5065 struct bnx2_rx_ring_info *rxr; 5066 int i; 5067 5068 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) { 5069 bnapi = &bp->bnx2_napi[i]; 5070 txr = &bnapi->tx_ring; 5071 rxr = &bnapi->rx_ring; 5072 5073 txr->tx_cons = 0; 5074 txr->hw_tx_cons = 0; 5075 rxr->rx_prod_bseq = 0; 5076 rxr->rx_prod = 0; 5077 rxr->rx_cons = 0; 5078 rxr->rx_pg_prod = 0; 5079 rxr->rx_pg_cons = 0; 5080 } 5081 } 5082 5083 static void 5084 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr) 5085 { 5086 u32 val, offset0, offset1, offset2, offset3; 5087 u32 cid_addr = GET_CID_ADDR(cid); 5088 5089 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 5090 offset0 = BNX2_L2CTX_TYPE_XI; 5091 offset1 = BNX2_L2CTX_CMD_TYPE_XI; 5092 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI; 5093 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI; 5094 } else { 5095 offset0 = BNX2_L2CTX_TYPE; 5096 offset1 = BNX2_L2CTX_CMD_TYPE; 5097 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI; 5098 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO; 5099 } 5100 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2; 5101 bnx2_ctx_wr(bp, cid_addr, offset0, val); 5102 5103 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16); 5104 bnx2_ctx_wr(bp, cid_addr, offset1, val); 5105 5106 val = (u64) txr->tx_desc_mapping >> 32; 5107 bnx2_ctx_wr(bp, cid_addr, offset2, val); 5108 5109 val = (u64) txr->tx_desc_mapping & 0xffffffff; 5110 bnx2_ctx_wr(bp, cid_addr, offset3, val); 5111 } 5112 5113 static void 5114 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num) 5115 { 5116 struct tx_bd *txbd; 5117 u32 cid = TX_CID; 5118 struct bnx2_napi *bnapi; 5119 struct bnx2_tx_ring_info *txr; 5120 5121 bnapi = &bp->bnx2_napi[ring_num]; 5122 txr = &bnapi->tx_ring; 5123 5124 if (ring_num == 0) 5125 cid = TX_CID; 5126 else 5127 cid = TX_TSS_CID + ring_num - 1; 5128 5129 bp->tx_wake_thresh = bp->tx_ring_size / 2; 5130 5131 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT]; 5132 5133 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32; 5134 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff; 5135 5136 txr->tx_prod = 0; 5137 txr->tx_prod_bseq = 0; 5138 5139 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX; 5140 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ; 5141 5142 bnx2_init_tx_context(bp, cid, txr); 5143 } 5144 5145 static void 5146 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size, 5147 int num_rings) 5148 { 5149 int i; 5150 struct rx_bd *rxbd; 5151 5152 for (i = 0; i < num_rings; i++) { 5153 int j; 5154 5155 rxbd = &rx_ring[i][0]; 5156 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) { 5157 rxbd->rx_bd_len = buf_size; 5158 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END; 5159 } 5160 if (i == (num_rings - 1)) 5161 j = 0; 5162 else 5163 j = i + 1; 5164 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32; 5165 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff; 5166 } 5167 } 5168 5169 static void 5170 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num) 5171 { 5172 int i; 5173 u16 prod, ring_prod; 5174 u32 cid, rx_cid_addr, val; 5175 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num]; 5176 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring; 5177 5178 if (ring_num == 0) 5179 cid = RX_CID; 5180 else 5181 cid = RX_RSS_CID + ring_num - 1; 5182 5183 rx_cid_addr = GET_CID_ADDR(cid); 5184 5185 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping, 5186 bp->rx_buf_use_size, bp->rx_max_ring); 5187 5188 bnx2_init_rx_context(bp, cid); 5189 5190 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 5191 val = REG_RD(bp, BNX2_MQ_MAP_L2_5); 5192 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM); 5193 } 5194 5195 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0); 5196 if (bp->rx_pg_ring_size) { 5197 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring, 5198 rxr->rx_pg_desc_mapping, 5199 PAGE_SIZE, bp->rx_max_pg_ring); 5200 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE; 5201 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val); 5202 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY, 5203 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num); 5204 5205 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32; 5206 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val); 5207 5208 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff; 5209 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val); 5210 5211 if (CHIP_NUM(bp) == CHIP_NUM_5709) 5212 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT); 5213 } 5214 5215 val = (u64) rxr->rx_desc_mapping[0] >> 32; 5216 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val); 5217 5218 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff; 5219 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val); 5220 5221 ring_prod = prod = rxr->rx_pg_prod; 5222 for (i = 0; i < bp->rx_pg_ring_size; i++) { 5223 if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) { 5224 netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n", 5225 ring_num, i, bp->rx_pg_ring_size); 5226 break; 5227 } 5228 prod = NEXT_RX_BD(prod); 5229 ring_prod = RX_PG_RING_IDX(prod); 5230 } 5231 rxr->rx_pg_prod = prod; 5232 5233 ring_prod = prod = rxr->rx_prod; 5234 for (i = 0; i < bp->rx_ring_size; i++) { 5235 if (bnx2_alloc_rx_data(bp, rxr, ring_prod, GFP_KERNEL) < 0) { 5236 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 5237 ring_num, i, bp->rx_ring_size); 5238 break; 5239 } 5240 prod = NEXT_RX_BD(prod); 5241 ring_prod = RX_RING_IDX(prod); 5242 } 5243 rxr->rx_prod = prod; 5244 5245 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX; 5246 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ; 5247 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX; 5248 5249 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod); 5250 REG_WR16(bp, rxr->rx_bidx_addr, prod); 5251 5252 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq); 5253 } 5254 5255 static void 5256 bnx2_init_all_rings(struct bnx2 *bp) 5257 { 5258 int i; 5259 u32 val; 5260 5261 bnx2_clear_ring_states(bp); 5262 5263 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0); 5264 for (i = 0; i < bp->num_tx_rings; i++) 5265 bnx2_init_tx_ring(bp, i); 5266 5267 if (bp->num_tx_rings > 1) 5268 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) | 5269 (TX_TSS_CID << 7)); 5270 5271 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0); 5272 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0); 5273 5274 for (i = 0; i < bp->num_rx_rings; i++) 5275 bnx2_init_rx_ring(bp, i); 5276 5277 if (bp->num_rx_rings > 1) { 5278 u32 tbl_32 = 0; 5279 5280 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) { 5281 int shift = (i % 8) << 2; 5282 5283 tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift; 5284 if ((i % 8) == 7) { 5285 REG_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32); 5286 REG_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) | 5287 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK | 5288 BNX2_RLUP_RSS_COMMAND_WRITE | 5289 BNX2_RLUP_RSS_COMMAND_HASH_MASK); 5290 tbl_32 = 0; 5291 } 5292 } 5293 5294 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI | 5295 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI; 5296 5297 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val); 5298 5299 } 5300 } 5301 5302 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size) 5303 { 5304 u32 max, num_rings = 1; 5305 5306 while (ring_size > MAX_RX_DESC_CNT) { 5307 ring_size -= MAX_RX_DESC_CNT; 5308 num_rings++; 5309 } 5310 /* round to next power of 2 */ 5311 max = max_size; 5312 while ((max & num_rings) == 0) 5313 max >>= 1; 5314 5315 if (num_rings != max) 5316 max <<= 1; 5317 5318 return max; 5319 } 5320 5321 static void 5322 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size) 5323 { 5324 u32 rx_size, rx_space, jumbo_size; 5325 5326 /* 8 for CRC and VLAN */ 5327 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8; 5328 5329 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD + 5330 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5331 5332 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH; 5333 bp->rx_pg_ring_size = 0; 5334 bp->rx_max_pg_ring = 0; 5335 bp->rx_max_pg_ring_idx = 0; 5336 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) { 5337 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 5338 5339 jumbo_size = size * pages; 5340 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT) 5341 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT; 5342 5343 bp->rx_pg_ring_size = jumbo_size; 5344 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size, 5345 MAX_RX_PG_RINGS); 5346 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1; 5347 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET; 5348 bp->rx_copy_thresh = 0; 5349 } 5350 5351 bp->rx_buf_use_size = rx_size; 5352 /* hw alignment + build_skb() overhead*/ 5353 bp->rx_buf_size = SKB_DATA_ALIGN(bp->rx_buf_use_size + BNX2_RX_ALIGN) + 5354 NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5355 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET; 5356 bp->rx_ring_size = size; 5357 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS); 5358 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1; 5359 } 5360 5361 static void 5362 bnx2_free_tx_skbs(struct bnx2 *bp) 5363 { 5364 int i; 5365 5366 for (i = 0; i < bp->num_tx_rings; i++) { 5367 struct bnx2_napi *bnapi = &bp->bnx2_napi[i]; 5368 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring; 5369 int j; 5370 5371 if (txr->tx_buf_ring == NULL) 5372 continue; 5373 5374 for (j = 0; j < TX_DESC_CNT; ) { 5375 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 5376 struct sk_buff *skb = tx_buf->skb; 5377 int k, last; 5378 5379 if (skb == NULL) { 5380 j = NEXT_TX_BD(j); 5381 continue; 5382 } 5383 5384 dma_unmap_single(&bp->pdev->dev, 5385 dma_unmap_addr(tx_buf, mapping), 5386 skb_headlen(skb), 5387 PCI_DMA_TODEVICE); 5388 5389 tx_buf->skb = NULL; 5390 5391 last = tx_buf->nr_frags; 5392 j = NEXT_TX_BD(j); 5393 for (k = 0; k < last; k++, j = NEXT_TX_BD(j)) { 5394 tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)]; 5395 dma_unmap_page(&bp->pdev->dev, 5396 dma_unmap_addr(tx_buf, mapping), 5397 skb_frag_size(&skb_shinfo(skb)->frags[k]), 5398 PCI_DMA_TODEVICE); 5399 } 5400 dev_kfree_skb(skb); 5401 } 5402 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 5403 } 5404 } 5405 5406 static void 5407 bnx2_free_rx_skbs(struct bnx2 *bp) 5408 { 5409 int i; 5410 5411 for (i = 0; i < bp->num_rx_rings; i++) { 5412 struct bnx2_napi *bnapi = &bp->bnx2_napi[i]; 5413 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring; 5414 int j; 5415 5416 if (rxr->rx_buf_ring == NULL) 5417 return; 5418 5419 for (j = 0; j < bp->rx_max_ring_idx; j++) { 5420 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j]; 5421 u8 *data = rx_buf->data; 5422 5423 if (data == NULL) 5424 continue; 5425 5426 dma_unmap_single(&bp->pdev->dev, 5427 dma_unmap_addr(rx_buf, mapping), 5428 bp->rx_buf_use_size, 5429 PCI_DMA_FROMDEVICE); 5430 5431 rx_buf->data = NULL; 5432 5433 kfree(data); 5434 } 5435 for (j = 0; j < bp->rx_max_pg_ring_idx; j++) 5436 bnx2_free_rx_page(bp, rxr, j); 5437 } 5438 } 5439 5440 static void 5441 bnx2_free_skbs(struct bnx2 *bp) 5442 { 5443 bnx2_free_tx_skbs(bp); 5444 bnx2_free_rx_skbs(bp); 5445 } 5446 5447 static int 5448 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code) 5449 { 5450 int rc; 5451 5452 rc = bnx2_reset_chip(bp, reset_code); 5453 bnx2_free_skbs(bp); 5454 if (rc) 5455 return rc; 5456 5457 if ((rc = bnx2_init_chip(bp)) != 0) 5458 return rc; 5459 5460 bnx2_init_all_rings(bp); 5461 return 0; 5462 } 5463 5464 static int 5465 bnx2_init_nic(struct bnx2 *bp, int reset_phy) 5466 { 5467 int rc; 5468 5469 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0) 5470 return rc; 5471 5472 spin_lock_bh(&bp->phy_lock); 5473 bnx2_init_phy(bp, reset_phy); 5474 bnx2_set_link(bp); 5475 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) 5476 bnx2_remote_phy_event(bp); 5477 spin_unlock_bh(&bp->phy_lock); 5478 return 0; 5479 } 5480 5481 static int 5482 bnx2_shutdown_chip(struct bnx2 *bp) 5483 { 5484 u32 reset_code; 5485 5486 if (bp->flags & BNX2_FLAG_NO_WOL) 5487 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN; 5488 else if (bp->wol) 5489 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL; 5490 else 5491 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL; 5492 5493 return bnx2_reset_chip(bp, reset_code); 5494 } 5495 5496 static int 5497 bnx2_test_registers(struct bnx2 *bp) 5498 { 5499 int ret; 5500 int i, is_5709; 5501 static const struct { 5502 u16 offset; 5503 u16 flags; 5504 #define BNX2_FL_NOT_5709 1 5505 u32 rw_mask; 5506 u32 ro_mask; 5507 } reg_tbl[] = { 5508 { 0x006c, 0, 0x00000000, 0x0000003f }, 5509 { 0x0090, 0, 0xffffffff, 0x00000000 }, 5510 { 0x0094, 0, 0x00000000, 0x00000000 }, 5511 5512 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 }, 5513 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff }, 5514 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff }, 5515 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff }, 5516 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 }, 5517 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 }, 5518 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff }, 5519 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff }, 5520 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff }, 5521 5522 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff }, 5523 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff }, 5524 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 }, 5525 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 }, 5526 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 }, 5527 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 }, 5528 5529 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 }, 5530 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 }, 5531 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 }, 5532 5533 { 0x1000, 0, 0x00000000, 0x00000001 }, 5534 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 }, 5535 5536 { 0x1408, 0, 0x01c00800, 0x00000000 }, 5537 { 0x149c, 0, 0x8000ffff, 0x00000000 }, 5538 { 0x14a8, 0, 0x00000000, 0x000001ff }, 5539 { 0x14ac, 0, 0x0fffffff, 0x10000000 }, 5540 { 0x14b0, 0, 0x00000002, 0x00000001 }, 5541 { 0x14b8, 0, 0x00000000, 0x00000000 }, 5542 { 0x14c0, 0, 0x00000000, 0x00000009 }, 5543 { 0x14c4, 0, 0x00003fff, 0x00000000 }, 5544 { 0x14cc, 0, 0x00000000, 0x00000001 }, 5545 { 0x14d0, 0, 0xffffffff, 0x00000000 }, 5546 5547 { 0x1800, 0, 0x00000000, 0x00000001 }, 5548 { 0x1804, 0, 0x00000000, 0x00000003 }, 5549 5550 { 0x2800, 0, 0x00000000, 0x00000001 }, 5551 { 0x2804, 0, 0x00000000, 0x00003f01 }, 5552 { 0x2808, 0, 0x0f3f3f03, 0x00000000 }, 5553 { 0x2810, 0, 0xffff0000, 0x00000000 }, 5554 { 0x2814, 0, 0xffff0000, 0x00000000 }, 5555 { 0x2818, 0, 0xffff0000, 0x00000000 }, 5556 { 0x281c, 0, 0xffff0000, 0x00000000 }, 5557 { 0x2834, 0, 0xffffffff, 0x00000000 }, 5558 { 0x2840, 0, 0x00000000, 0xffffffff }, 5559 { 0x2844, 0, 0x00000000, 0xffffffff }, 5560 { 0x2848, 0, 0xffffffff, 0x00000000 }, 5561 { 0x284c, 0, 0xf800f800, 0x07ff07ff }, 5562 5563 { 0x2c00, 0, 0x00000000, 0x00000011 }, 5564 { 0x2c04, 0, 0x00000000, 0x00030007 }, 5565 5566 { 0x3c00, 0, 0x00000000, 0x00000001 }, 5567 { 0x3c04, 0, 0x00000000, 0x00070000 }, 5568 { 0x3c08, 0, 0x00007f71, 0x07f00000 }, 5569 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 }, 5570 { 0x3c10, 0, 0xffffffff, 0x00000000 }, 5571 { 0x3c14, 0, 0x00000000, 0xffffffff }, 5572 { 0x3c18, 0, 0x00000000, 0xffffffff }, 5573 { 0x3c1c, 0, 0xfffff000, 0x00000000 }, 5574 { 0x3c20, 0, 0xffffff00, 0x00000000 }, 5575 5576 { 0x5004, 0, 0x00000000, 0x0000007f }, 5577 { 0x5008, 0, 0x0f0007ff, 0x00000000 }, 5578 5579 { 0x5c00, 0, 0x00000000, 0x00000001 }, 5580 { 0x5c04, 0, 0x00000000, 0x0003000f }, 5581 { 0x5c08, 0, 0x00000003, 0x00000000 }, 5582 { 0x5c0c, 0, 0x0000fff8, 0x00000000 }, 5583 { 0x5c10, 0, 0x00000000, 0xffffffff }, 5584 { 0x5c80, 0, 0x00000000, 0x0f7113f1 }, 5585 { 0x5c84, 0, 0x00000000, 0x0000f333 }, 5586 { 0x5c88, 0, 0x00000000, 0x00077373 }, 5587 { 0x5c8c, 0, 0x00000000, 0x0007f737 }, 5588 5589 { 0x6808, 0, 0x0000ff7f, 0x00000000 }, 5590 { 0x680c, 0, 0xffffffff, 0x00000000 }, 5591 { 0x6810, 0, 0xffffffff, 0x00000000 }, 5592 { 0x6814, 0, 0xffffffff, 0x00000000 }, 5593 { 0x6818, 0, 0xffffffff, 0x00000000 }, 5594 { 0x681c, 0, 0xffffffff, 0x00000000 }, 5595 { 0x6820, 0, 0x00ff00ff, 0x00000000 }, 5596 { 0x6824, 0, 0x00ff00ff, 0x00000000 }, 5597 { 0x6828, 0, 0x00ff00ff, 0x00000000 }, 5598 { 0x682c, 0, 0x03ff03ff, 0x00000000 }, 5599 { 0x6830, 0, 0x03ff03ff, 0x00000000 }, 5600 { 0x6834, 0, 0x03ff03ff, 0x00000000 }, 5601 { 0x6838, 0, 0x03ff03ff, 0x00000000 }, 5602 { 0x683c, 0, 0x0000ffff, 0x00000000 }, 5603 { 0x6840, 0, 0x00000ff0, 0x00000000 }, 5604 { 0x6844, 0, 0x00ffff00, 0x00000000 }, 5605 { 0x684c, 0, 0xffffffff, 0x00000000 }, 5606 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 }, 5607 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 }, 5608 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 }, 5609 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 }, 5610 { 0x6908, 0, 0x00000000, 0x0001ff0f }, 5611 { 0x690c, 0, 0x00000000, 0x0ffe00f0 }, 5612 5613 { 0xffff, 0, 0x00000000, 0x00000000 }, 5614 }; 5615 5616 ret = 0; 5617 is_5709 = 0; 5618 if (CHIP_NUM(bp) == CHIP_NUM_5709) 5619 is_5709 = 1; 5620 5621 for (i = 0; reg_tbl[i].offset != 0xffff; i++) { 5622 u32 offset, rw_mask, ro_mask, save_val, val; 5623 u16 flags = reg_tbl[i].flags; 5624 5625 if (is_5709 && (flags & BNX2_FL_NOT_5709)) 5626 continue; 5627 5628 offset = (u32) reg_tbl[i].offset; 5629 rw_mask = reg_tbl[i].rw_mask; 5630 ro_mask = reg_tbl[i].ro_mask; 5631 5632 save_val = readl(bp->regview + offset); 5633 5634 writel(0, bp->regview + offset); 5635 5636 val = readl(bp->regview + offset); 5637 if ((val & rw_mask) != 0) { 5638 goto reg_test_err; 5639 } 5640 5641 if ((val & ro_mask) != (save_val & ro_mask)) { 5642 goto reg_test_err; 5643 } 5644 5645 writel(0xffffffff, bp->regview + offset); 5646 5647 val = readl(bp->regview + offset); 5648 if ((val & rw_mask) != rw_mask) { 5649 goto reg_test_err; 5650 } 5651 5652 if ((val & ro_mask) != (save_val & ro_mask)) { 5653 goto reg_test_err; 5654 } 5655 5656 writel(save_val, bp->regview + offset); 5657 continue; 5658 5659 reg_test_err: 5660 writel(save_val, bp->regview + offset); 5661 ret = -ENODEV; 5662 break; 5663 } 5664 return ret; 5665 } 5666 5667 static int 5668 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size) 5669 { 5670 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555, 5671 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa }; 5672 int i; 5673 5674 for (i = 0; i < sizeof(test_pattern) / 4; i++) { 5675 u32 offset; 5676 5677 for (offset = 0; offset < size; offset += 4) { 5678 5679 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]); 5680 5681 if (bnx2_reg_rd_ind(bp, start + offset) != 5682 test_pattern[i]) { 5683 return -ENODEV; 5684 } 5685 } 5686 } 5687 return 0; 5688 } 5689 5690 static int 5691 bnx2_test_memory(struct bnx2 *bp) 5692 { 5693 int ret = 0; 5694 int i; 5695 static struct mem_entry { 5696 u32 offset; 5697 u32 len; 5698 } mem_tbl_5706[] = { 5699 { 0x60000, 0x4000 }, 5700 { 0xa0000, 0x3000 }, 5701 { 0xe0000, 0x4000 }, 5702 { 0x120000, 0x4000 }, 5703 { 0x1a0000, 0x4000 }, 5704 { 0x160000, 0x4000 }, 5705 { 0xffffffff, 0 }, 5706 }, 5707 mem_tbl_5709[] = { 5708 { 0x60000, 0x4000 }, 5709 { 0xa0000, 0x3000 }, 5710 { 0xe0000, 0x4000 }, 5711 { 0x120000, 0x4000 }, 5712 { 0x1a0000, 0x4000 }, 5713 { 0xffffffff, 0 }, 5714 }; 5715 struct mem_entry *mem_tbl; 5716 5717 if (CHIP_NUM(bp) == CHIP_NUM_5709) 5718 mem_tbl = mem_tbl_5709; 5719 else 5720 mem_tbl = mem_tbl_5706; 5721 5722 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) { 5723 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset, 5724 mem_tbl[i].len)) != 0) { 5725 return ret; 5726 } 5727 } 5728 5729 return ret; 5730 } 5731 5732 #define BNX2_MAC_LOOPBACK 0 5733 #define BNX2_PHY_LOOPBACK 1 5734 5735 static int 5736 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode) 5737 { 5738 unsigned int pkt_size, num_pkts, i; 5739 struct sk_buff *skb; 5740 u8 *data; 5741 unsigned char *packet; 5742 u16 rx_start_idx, rx_idx; 5743 dma_addr_t map; 5744 struct tx_bd *txbd; 5745 struct sw_bd *rx_buf; 5746 struct l2_fhdr *rx_hdr; 5747 int ret = -ENODEV; 5748 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi; 5749 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring; 5750 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring; 5751 5752 tx_napi = bnapi; 5753 5754 txr = &tx_napi->tx_ring; 5755 rxr = &bnapi->rx_ring; 5756 if (loopback_mode == BNX2_MAC_LOOPBACK) { 5757 bp->loopback = MAC_LOOPBACK; 5758 bnx2_set_mac_loopback(bp); 5759 } 5760 else if (loopback_mode == BNX2_PHY_LOOPBACK) { 5761 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) 5762 return 0; 5763 5764 bp->loopback = PHY_LOOPBACK; 5765 bnx2_set_phy_loopback(bp); 5766 } 5767 else 5768 return -EINVAL; 5769 5770 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4); 5771 skb = netdev_alloc_skb(bp->dev, pkt_size); 5772 if (!skb) 5773 return -ENOMEM; 5774 packet = skb_put(skb, pkt_size); 5775 memcpy(packet, bp->dev->dev_addr, 6); 5776 memset(packet + 6, 0x0, 8); 5777 for (i = 14; i < pkt_size; i++) 5778 packet[i] = (unsigned char) (i & 0xff); 5779 5780 map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size, 5781 PCI_DMA_TODEVICE); 5782 if (dma_mapping_error(&bp->pdev->dev, map)) { 5783 dev_kfree_skb(skb); 5784 return -EIO; 5785 } 5786 5787 REG_WR(bp, BNX2_HC_COMMAND, 5788 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); 5789 5790 REG_RD(bp, BNX2_HC_COMMAND); 5791 5792 udelay(5); 5793 rx_start_idx = bnx2_get_hw_rx_cons(bnapi); 5794 5795 num_pkts = 0; 5796 5797 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)]; 5798 5799 txbd->tx_bd_haddr_hi = (u64) map >> 32; 5800 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff; 5801 txbd->tx_bd_mss_nbytes = pkt_size; 5802 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END; 5803 5804 num_pkts++; 5805 txr->tx_prod = NEXT_TX_BD(txr->tx_prod); 5806 txr->tx_prod_bseq += pkt_size; 5807 5808 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod); 5809 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq); 5810 5811 udelay(100); 5812 5813 REG_WR(bp, BNX2_HC_COMMAND, 5814 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); 5815 5816 REG_RD(bp, BNX2_HC_COMMAND); 5817 5818 udelay(5); 5819 5820 dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE); 5821 dev_kfree_skb(skb); 5822 5823 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod) 5824 goto loopback_test_done; 5825 5826 rx_idx = bnx2_get_hw_rx_cons(bnapi); 5827 if (rx_idx != rx_start_idx + num_pkts) { 5828 goto loopback_test_done; 5829 } 5830 5831 rx_buf = &rxr->rx_buf_ring[rx_start_idx]; 5832 data = rx_buf->data; 5833 5834 rx_hdr = get_l2_fhdr(data); 5835 data = (u8 *)rx_hdr + BNX2_RX_OFFSET; 5836 5837 dma_sync_single_for_cpu(&bp->pdev->dev, 5838 dma_unmap_addr(rx_buf, mapping), 5839 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE); 5840 5841 if (rx_hdr->l2_fhdr_status & 5842 (L2_FHDR_ERRORS_BAD_CRC | 5843 L2_FHDR_ERRORS_PHY_DECODE | 5844 L2_FHDR_ERRORS_ALIGNMENT | 5845 L2_FHDR_ERRORS_TOO_SHORT | 5846 L2_FHDR_ERRORS_GIANT_FRAME)) { 5847 5848 goto loopback_test_done; 5849 } 5850 5851 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) { 5852 goto loopback_test_done; 5853 } 5854 5855 for (i = 14; i < pkt_size; i++) { 5856 if (*(data + i) != (unsigned char) (i & 0xff)) { 5857 goto loopback_test_done; 5858 } 5859 } 5860 5861 ret = 0; 5862 5863 loopback_test_done: 5864 bp->loopback = 0; 5865 return ret; 5866 } 5867 5868 #define BNX2_MAC_LOOPBACK_FAILED 1 5869 #define BNX2_PHY_LOOPBACK_FAILED 2 5870 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \ 5871 BNX2_PHY_LOOPBACK_FAILED) 5872 5873 static int 5874 bnx2_test_loopback(struct bnx2 *bp) 5875 { 5876 int rc = 0; 5877 5878 if (!netif_running(bp->dev)) 5879 return BNX2_LOOPBACK_FAILED; 5880 5881 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET); 5882 spin_lock_bh(&bp->phy_lock); 5883 bnx2_init_phy(bp, 1); 5884 spin_unlock_bh(&bp->phy_lock); 5885 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK)) 5886 rc |= BNX2_MAC_LOOPBACK_FAILED; 5887 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK)) 5888 rc |= BNX2_PHY_LOOPBACK_FAILED; 5889 return rc; 5890 } 5891 5892 #define NVRAM_SIZE 0x200 5893 #define CRC32_RESIDUAL 0xdebb20e3 5894 5895 static int 5896 bnx2_test_nvram(struct bnx2 *bp) 5897 { 5898 __be32 buf[NVRAM_SIZE / 4]; 5899 u8 *data = (u8 *) buf; 5900 int rc = 0; 5901 u32 magic, csum; 5902 5903 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0) 5904 goto test_nvram_done; 5905 5906 magic = be32_to_cpu(buf[0]); 5907 if (magic != 0x669955aa) { 5908 rc = -ENODEV; 5909 goto test_nvram_done; 5910 } 5911 5912 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0) 5913 goto test_nvram_done; 5914 5915 csum = ether_crc_le(0x100, data); 5916 if (csum != CRC32_RESIDUAL) { 5917 rc = -ENODEV; 5918 goto test_nvram_done; 5919 } 5920 5921 csum = ether_crc_le(0x100, data + 0x100); 5922 if (csum != CRC32_RESIDUAL) { 5923 rc = -ENODEV; 5924 } 5925 5926 test_nvram_done: 5927 return rc; 5928 } 5929 5930 static int 5931 bnx2_test_link(struct bnx2 *bp) 5932 { 5933 u32 bmsr; 5934 5935 if (!netif_running(bp->dev)) 5936 return -ENODEV; 5937 5938 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) { 5939 if (bp->link_up) 5940 return 0; 5941 return -ENODEV; 5942 } 5943 spin_lock_bh(&bp->phy_lock); 5944 bnx2_enable_bmsr1(bp); 5945 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr); 5946 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr); 5947 bnx2_disable_bmsr1(bp); 5948 spin_unlock_bh(&bp->phy_lock); 5949 5950 if (bmsr & BMSR_LSTATUS) { 5951 return 0; 5952 } 5953 return -ENODEV; 5954 } 5955 5956 static int 5957 bnx2_test_intr(struct bnx2 *bp) 5958 { 5959 int i; 5960 u16 status_idx; 5961 5962 if (!netif_running(bp->dev)) 5963 return -ENODEV; 5964 5965 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff; 5966 5967 /* This register is not touched during run-time. */ 5968 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW); 5969 REG_RD(bp, BNX2_HC_COMMAND); 5970 5971 for (i = 0; i < 10; i++) { 5972 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) != 5973 status_idx) { 5974 5975 break; 5976 } 5977 5978 msleep_interruptible(10); 5979 } 5980 if (i < 10) 5981 return 0; 5982 5983 return -ENODEV; 5984 } 5985 5986 /* Determining link for parallel detection. */ 5987 static int 5988 bnx2_5706_serdes_has_link(struct bnx2 *bp) 5989 { 5990 u32 mode_ctl, an_dbg, exp; 5991 5992 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL) 5993 return 0; 5994 5995 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL); 5996 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl); 5997 5998 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET)) 5999 return 0; 6000 6001 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG); 6002 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg); 6003 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg); 6004 6005 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID)) 6006 return 0; 6007 6008 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1); 6009 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp); 6010 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp); 6011 6012 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */ 6013 return 0; 6014 6015 return 1; 6016 } 6017 6018 static void 6019 bnx2_5706_serdes_timer(struct bnx2 *bp) 6020 { 6021 int check_link = 1; 6022 6023 spin_lock(&bp->phy_lock); 6024 if (bp->serdes_an_pending) { 6025 bp->serdes_an_pending--; 6026 check_link = 0; 6027 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) { 6028 u32 bmcr; 6029 6030 bp->current_interval = BNX2_TIMER_INTERVAL; 6031 6032 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 6033 6034 if (bmcr & BMCR_ANENABLE) { 6035 if (bnx2_5706_serdes_has_link(bp)) { 6036 bmcr &= ~BMCR_ANENABLE; 6037 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX; 6038 bnx2_write_phy(bp, bp->mii_bmcr, bmcr); 6039 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT; 6040 } 6041 } 6042 } 6043 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) && 6044 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) { 6045 u32 phy2; 6046 6047 bnx2_write_phy(bp, 0x17, 0x0f01); 6048 bnx2_read_phy(bp, 0x15, &phy2); 6049 if (phy2 & 0x20) { 6050 u32 bmcr; 6051 6052 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 6053 bmcr |= BMCR_ANENABLE; 6054 bnx2_write_phy(bp, bp->mii_bmcr, bmcr); 6055 6056 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT; 6057 } 6058 } else 6059 bp->current_interval = BNX2_TIMER_INTERVAL; 6060 6061 if (check_link) { 6062 u32 val; 6063 6064 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG); 6065 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val); 6066 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val); 6067 6068 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) { 6069 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) { 6070 bnx2_5706s_force_link_dn(bp, 1); 6071 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN; 6072 } else 6073 bnx2_set_link(bp); 6074 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC)) 6075 bnx2_set_link(bp); 6076 } 6077 spin_unlock(&bp->phy_lock); 6078 } 6079 6080 static void 6081 bnx2_5708_serdes_timer(struct bnx2 *bp) 6082 { 6083 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) 6084 return; 6085 6086 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) { 6087 bp->serdes_an_pending = 0; 6088 return; 6089 } 6090 6091 spin_lock(&bp->phy_lock); 6092 if (bp->serdes_an_pending) 6093 bp->serdes_an_pending--; 6094 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) { 6095 u32 bmcr; 6096 6097 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 6098 if (bmcr & BMCR_ANENABLE) { 6099 bnx2_enable_forced_2g5(bp); 6100 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT; 6101 } else { 6102 bnx2_disable_forced_2g5(bp); 6103 bp->serdes_an_pending = 2; 6104 bp->current_interval = BNX2_TIMER_INTERVAL; 6105 } 6106 6107 } else 6108 bp->current_interval = BNX2_TIMER_INTERVAL; 6109 6110 spin_unlock(&bp->phy_lock); 6111 } 6112 6113 static void 6114 bnx2_timer(unsigned long data) 6115 { 6116 struct bnx2 *bp = (struct bnx2 *) data; 6117 6118 if (!netif_running(bp->dev)) 6119 return; 6120 6121 if (atomic_read(&bp->intr_sem) != 0) 6122 goto bnx2_restart_timer; 6123 6124 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) == 6125 BNX2_FLAG_USING_MSI) 6126 bnx2_chk_missed_msi(bp); 6127 6128 bnx2_send_heart_beat(bp); 6129 6130 bp->stats_blk->stat_FwRxDrop = 6131 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT); 6132 6133 /* workaround occasional corrupted counters */ 6134 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks) 6135 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | 6136 BNX2_HC_COMMAND_STATS_NOW); 6137 6138 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) { 6139 if (CHIP_NUM(bp) == CHIP_NUM_5706) 6140 bnx2_5706_serdes_timer(bp); 6141 else 6142 bnx2_5708_serdes_timer(bp); 6143 } 6144 6145 bnx2_restart_timer: 6146 mod_timer(&bp->timer, jiffies + bp->current_interval); 6147 } 6148 6149 static int 6150 bnx2_request_irq(struct bnx2 *bp) 6151 { 6152 unsigned long flags; 6153 struct bnx2_irq *irq; 6154 int rc = 0, i; 6155 6156 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX) 6157 flags = 0; 6158 else 6159 flags = IRQF_SHARED; 6160 6161 for (i = 0; i < bp->irq_nvecs; i++) { 6162 irq = &bp->irq_tbl[i]; 6163 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 6164 &bp->bnx2_napi[i]); 6165 if (rc) 6166 break; 6167 irq->requested = 1; 6168 } 6169 return rc; 6170 } 6171 6172 static void 6173 __bnx2_free_irq(struct bnx2 *bp) 6174 { 6175 struct bnx2_irq *irq; 6176 int i; 6177 6178 for (i = 0; i < bp->irq_nvecs; i++) { 6179 irq = &bp->irq_tbl[i]; 6180 if (irq->requested) 6181 free_irq(irq->vector, &bp->bnx2_napi[i]); 6182 irq->requested = 0; 6183 } 6184 } 6185 6186 static void 6187 bnx2_free_irq(struct bnx2 *bp) 6188 { 6189 6190 __bnx2_free_irq(bp); 6191 if (bp->flags & BNX2_FLAG_USING_MSI) 6192 pci_disable_msi(bp->pdev); 6193 else if (bp->flags & BNX2_FLAG_USING_MSIX) 6194 pci_disable_msix(bp->pdev); 6195 6196 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI); 6197 } 6198 6199 static void 6200 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs) 6201 { 6202 int i, total_vecs, rc; 6203 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC]; 6204 struct net_device *dev = bp->dev; 6205 const int len = sizeof(bp->irq_tbl[0].name); 6206 6207 bnx2_setup_msix_tbl(bp); 6208 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1); 6209 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE); 6210 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE); 6211 6212 /* Need to flush the previous three writes to ensure MSI-X 6213 * is setup properly */ 6214 REG_RD(bp, BNX2_PCI_MSIX_CONTROL); 6215 6216 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) { 6217 msix_ent[i].entry = i; 6218 msix_ent[i].vector = 0; 6219 } 6220 6221 total_vecs = msix_vecs; 6222 #ifdef BCM_CNIC 6223 total_vecs++; 6224 #endif 6225 rc = -ENOSPC; 6226 while (total_vecs >= BNX2_MIN_MSIX_VEC) { 6227 rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs); 6228 if (rc <= 0) 6229 break; 6230 if (rc > 0) 6231 total_vecs = rc; 6232 } 6233 6234 if (rc != 0) 6235 return; 6236 6237 msix_vecs = total_vecs; 6238 #ifdef BCM_CNIC 6239 msix_vecs--; 6240 #endif 6241 bp->irq_nvecs = msix_vecs; 6242 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI; 6243 for (i = 0; i < total_vecs; i++) { 6244 bp->irq_tbl[i].vector = msix_ent[i].vector; 6245 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i); 6246 bp->irq_tbl[i].handler = bnx2_msi_1shot; 6247 } 6248 } 6249 6250 static int 6251 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi) 6252 { 6253 int cpus = netif_get_num_default_rss_queues(); 6254 int msix_vecs; 6255 6256 if (!bp->num_req_rx_rings) 6257 msix_vecs = max(cpus + 1, bp->num_req_tx_rings); 6258 else if (!bp->num_req_tx_rings) 6259 msix_vecs = max(cpus, bp->num_req_rx_rings); 6260 else 6261 msix_vecs = max(bp->num_req_rx_rings, bp->num_req_tx_rings); 6262 6263 msix_vecs = min(msix_vecs, RX_MAX_RINGS); 6264 6265 bp->irq_tbl[0].handler = bnx2_interrupt; 6266 strcpy(bp->irq_tbl[0].name, bp->dev->name); 6267 bp->irq_nvecs = 1; 6268 bp->irq_tbl[0].vector = bp->pdev->irq; 6269 6270 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi) 6271 bnx2_enable_msix(bp, msix_vecs); 6272 6273 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi && 6274 !(bp->flags & BNX2_FLAG_USING_MSIX)) { 6275 if (pci_enable_msi(bp->pdev) == 0) { 6276 bp->flags |= BNX2_FLAG_USING_MSI; 6277 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 6278 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI; 6279 bp->irq_tbl[0].handler = bnx2_msi_1shot; 6280 } else 6281 bp->irq_tbl[0].handler = bnx2_msi; 6282 6283 bp->irq_tbl[0].vector = bp->pdev->irq; 6284 } 6285 } 6286 6287 if (!bp->num_req_tx_rings) 6288 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs); 6289 else 6290 bp->num_tx_rings = min(bp->irq_nvecs, bp->num_req_tx_rings); 6291 6292 if (!bp->num_req_rx_rings) 6293 bp->num_rx_rings = bp->irq_nvecs; 6294 else 6295 bp->num_rx_rings = min(bp->irq_nvecs, bp->num_req_rx_rings); 6296 6297 netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings); 6298 6299 return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings); 6300 } 6301 6302 /* Called with rtnl_lock */ 6303 static int 6304 bnx2_open(struct net_device *dev) 6305 { 6306 struct bnx2 *bp = netdev_priv(dev); 6307 int rc; 6308 6309 rc = bnx2_request_firmware(bp); 6310 if (rc < 0) 6311 goto out; 6312 6313 netif_carrier_off(dev); 6314 6315 bnx2_set_power_state(bp, PCI_D0); 6316 bnx2_disable_int(bp); 6317 6318 rc = bnx2_setup_int_mode(bp, disable_msi); 6319 if (rc) 6320 goto open_err; 6321 bnx2_init_napi(bp); 6322 bnx2_napi_enable(bp); 6323 rc = bnx2_alloc_mem(bp); 6324 if (rc) 6325 goto open_err; 6326 6327 rc = bnx2_request_irq(bp); 6328 if (rc) 6329 goto open_err; 6330 6331 rc = bnx2_init_nic(bp, 1); 6332 if (rc) 6333 goto open_err; 6334 6335 mod_timer(&bp->timer, jiffies + bp->current_interval); 6336 6337 atomic_set(&bp->intr_sem, 0); 6338 6339 memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block)); 6340 6341 bnx2_enable_int(bp); 6342 6343 if (bp->flags & BNX2_FLAG_USING_MSI) { 6344 /* Test MSI to make sure it is working 6345 * If MSI test fails, go back to INTx mode 6346 */ 6347 if (bnx2_test_intr(bp) != 0) { 6348 netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n"); 6349 6350 bnx2_disable_int(bp); 6351 bnx2_free_irq(bp); 6352 6353 bnx2_setup_int_mode(bp, 1); 6354 6355 rc = bnx2_init_nic(bp, 0); 6356 6357 if (!rc) 6358 rc = bnx2_request_irq(bp); 6359 6360 if (rc) { 6361 del_timer_sync(&bp->timer); 6362 goto open_err; 6363 } 6364 bnx2_enable_int(bp); 6365 } 6366 } 6367 if (bp->flags & BNX2_FLAG_USING_MSI) 6368 netdev_info(dev, "using MSI\n"); 6369 else if (bp->flags & BNX2_FLAG_USING_MSIX) 6370 netdev_info(dev, "using MSIX\n"); 6371 6372 netif_tx_start_all_queues(dev); 6373 out: 6374 return rc; 6375 6376 open_err: 6377 bnx2_napi_disable(bp); 6378 bnx2_free_skbs(bp); 6379 bnx2_free_irq(bp); 6380 bnx2_free_mem(bp); 6381 bnx2_del_napi(bp); 6382 bnx2_release_firmware(bp); 6383 goto out; 6384 } 6385 6386 static void 6387 bnx2_reset_task(struct work_struct *work) 6388 { 6389 struct bnx2 *bp = container_of(work, struct bnx2, reset_task); 6390 int rc; 6391 u16 pcicmd; 6392 6393 rtnl_lock(); 6394 if (!netif_running(bp->dev)) { 6395 rtnl_unlock(); 6396 return; 6397 } 6398 6399 bnx2_netif_stop(bp, true); 6400 6401 pci_read_config_word(bp->pdev, PCI_COMMAND, &pcicmd); 6402 if (!(pcicmd & PCI_COMMAND_MEMORY)) { 6403 /* in case PCI block has reset */ 6404 pci_restore_state(bp->pdev); 6405 pci_save_state(bp->pdev); 6406 } 6407 rc = bnx2_init_nic(bp, 1); 6408 if (rc) { 6409 netdev_err(bp->dev, "failed to reset NIC, closing\n"); 6410 bnx2_napi_enable(bp); 6411 dev_close(bp->dev); 6412 rtnl_unlock(); 6413 return; 6414 } 6415 6416 atomic_set(&bp->intr_sem, 1); 6417 bnx2_netif_start(bp, true); 6418 rtnl_unlock(); 6419 } 6420 6421 #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL } 6422 6423 static void 6424 bnx2_dump_ftq(struct bnx2 *bp) 6425 { 6426 int i; 6427 u32 reg, bdidx, cid, valid; 6428 struct net_device *dev = bp->dev; 6429 static const struct ftq_reg { 6430 char *name; 6431 u32 off; 6432 } ftq_arr[] = { 6433 BNX2_FTQ_ENTRY(RV2P_P), 6434 BNX2_FTQ_ENTRY(RV2P_T), 6435 BNX2_FTQ_ENTRY(RV2P_M), 6436 BNX2_FTQ_ENTRY(TBDR_), 6437 BNX2_FTQ_ENTRY(TDMA_), 6438 BNX2_FTQ_ENTRY(TXP_), 6439 BNX2_FTQ_ENTRY(TXP_), 6440 BNX2_FTQ_ENTRY(TPAT_), 6441 BNX2_FTQ_ENTRY(RXP_C), 6442 BNX2_FTQ_ENTRY(RXP_), 6443 BNX2_FTQ_ENTRY(COM_COMXQ_), 6444 BNX2_FTQ_ENTRY(COM_COMTQ_), 6445 BNX2_FTQ_ENTRY(COM_COMQ_), 6446 BNX2_FTQ_ENTRY(CP_CPQ_), 6447 }; 6448 6449 netdev_err(dev, "<--- start FTQ dump --->\n"); 6450 for (i = 0; i < ARRAY_SIZE(ftq_arr); i++) 6451 netdev_err(dev, "%s %08x\n", ftq_arr[i].name, 6452 bnx2_reg_rd_ind(bp, ftq_arr[i].off)); 6453 6454 netdev_err(dev, "CPU states:\n"); 6455 for (reg = BNX2_TXP_CPU_MODE; reg <= BNX2_CP_CPU_MODE; reg += 0x40000) 6456 netdev_err(dev, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n", 6457 reg, bnx2_reg_rd_ind(bp, reg), 6458 bnx2_reg_rd_ind(bp, reg + 4), 6459 bnx2_reg_rd_ind(bp, reg + 8), 6460 bnx2_reg_rd_ind(bp, reg + 0x1c), 6461 bnx2_reg_rd_ind(bp, reg + 0x1c), 6462 bnx2_reg_rd_ind(bp, reg + 0x20)); 6463 6464 netdev_err(dev, "<--- end FTQ dump --->\n"); 6465 netdev_err(dev, "<--- start TBDC dump --->\n"); 6466 netdev_err(dev, "TBDC free cnt: %ld\n", 6467 REG_RD(bp, BNX2_TBDC_STATUS) & BNX2_TBDC_STATUS_FREE_CNT); 6468 netdev_err(dev, "LINE CID BIDX CMD VALIDS\n"); 6469 for (i = 0; i < 0x20; i++) { 6470 int j = 0; 6471 6472 REG_WR(bp, BNX2_TBDC_BD_ADDR, i); 6473 REG_WR(bp, BNX2_TBDC_CAM_OPCODE, 6474 BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ); 6475 REG_WR(bp, BNX2_TBDC_COMMAND, BNX2_TBDC_COMMAND_CMD_REG_ARB); 6476 while ((REG_RD(bp, BNX2_TBDC_COMMAND) & 6477 BNX2_TBDC_COMMAND_CMD_REG_ARB) && j < 100) 6478 j++; 6479 6480 cid = REG_RD(bp, BNX2_TBDC_CID); 6481 bdidx = REG_RD(bp, BNX2_TBDC_BIDX); 6482 valid = REG_RD(bp, BNX2_TBDC_CAM_OPCODE); 6483 netdev_err(dev, "%02x %06x %04lx %02x [%x]\n", 6484 i, cid, bdidx & BNX2_TBDC_BDIDX_BDIDX, 6485 bdidx >> 24, (valid >> 8) & 0x0ff); 6486 } 6487 netdev_err(dev, "<--- end TBDC dump --->\n"); 6488 } 6489 6490 static void 6491 bnx2_dump_state(struct bnx2 *bp) 6492 { 6493 struct net_device *dev = bp->dev; 6494 u32 val1, val2; 6495 6496 pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1); 6497 netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n", 6498 atomic_read(&bp->intr_sem), val1); 6499 pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1); 6500 pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2); 6501 netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2); 6502 netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n", 6503 REG_RD(bp, BNX2_EMAC_TX_STATUS), 6504 REG_RD(bp, BNX2_EMAC_RX_STATUS)); 6505 netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n", 6506 REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL)); 6507 netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n", 6508 REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS)); 6509 if (bp->flags & BNX2_FLAG_USING_MSIX) 6510 netdev_err(dev, "DEBUG: PBA[%08x]\n", 6511 REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE)); 6512 } 6513 6514 static void 6515 bnx2_tx_timeout(struct net_device *dev) 6516 { 6517 struct bnx2 *bp = netdev_priv(dev); 6518 6519 bnx2_dump_ftq(bp); 6520 bnx2_dump_state(bp); 6521 bnx2_dump_mcp_state(bp); 6522 6523 /* This allows the netif to be shutdown gracefully before resetting */ 6524 schedule_work(&bp->reset_task); 6525 } 6526 6527 /* Called with netif_tx_lock. 6528 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call 6529 * netif_wake_queue(). 6530 */ 6531 static netdev_tx_t 6532 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev) 6533 { 6534 struct bnx2 *bp = netdev_priv(dev); 6535 dma_addr_t mapping; 6536 struct tx_bd *txbd; 6537 struct sw_tx_bd *tx_buf; 6538 u32 len, vlan_tag_flags, last_frag, mss; 6539 u16 prod, ring_prod; 6540 int i; 6541 struct bnx2_napi *bnapi; 6542 struct bnx2_tx_ring_info *txr; 6543 struct netdev_queue *txq; 6544 6545 /* Determine which tx ring we will be placed on */ 6546 i = skb_get_queue_mapping(skb); 6547 bnapi = &bp->bnx2_napi[i]; 6548 txr = &bnapi->tx_ring; 6549 txq = netdev_get_tx_queue(dev, i); 6550 6551 if (unlikely(bnx2_tx_avail(bp, txr) < 6552 (skb_shinfo(skb)->nr_frags + 1))) { 6553 netif_tx_stop_queue(txq); 6554 netdev_err(dev, "BUG! Tx ring full when queue awake!\n"); 6555 6556 return NETDEV_TX_BUSY; 6557 } 6558 len = skb_headlen(skb); 6559 prod = txr->tx_prod; 6560 ring_prod = TX_RING_IDX(prod); 6561 6562 vlan_tag_flags = 0; 6563 if (skb->ip_summed == CHECKSUM_PARTIAL) { 6564 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 6565 } 6566 6567 if (vlan_tx_tag_present(skb)) { 6568 vlan_tag_flags |= 6569 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16)); 6570 } 6571 6572 if ((mss = skb_shinfo(skb)->gso_size)) { 6573 u32 tcp_opt_len; 6574 struct iphdr *iph; 6575 6576 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO; 6577 6578 tcp_opt_len = tcp_optlen(skb); 6579 6580 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) { 6581 u32 tcp_off = skb_transport_offset(skb) - 6582 sizeof(struct ipv6hdr) - ETH_HLEN; 6583 6584 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) | 6585 TX_BD_FLAGS_SW_FLAGS; 6586 if (likely(tcp_off == 0)) 6587 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK; 6588 else { 6589 tcp_off >>= 3; 6590 vlan_tag_flags |= ((tcp_off & 0x3) << 6591 TX_BD_FLAGS_TCP6_OFF0_SHL) | 6592 ((tcp_off & 0x10) << 6593 TX_BD_FLAGS_TCP6_OFF4_SHL); 6594 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL; 6595 } 6596 } else { 6597 iph = ip_hdr(skb); 6598 if (tcp_opt_len || (iph->ihl > 5)) { 6599 vlan_tag_flags |= ((iph->ihl - 5) + 6600 (tcp_opt_len >> 2)) << 8; 6601 } 6602 } 6603 } else 6604 mss = 0; 6605 6606 mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE); 6607 if (dma_mapping_error(&bp->pdev->dev, mapping)) { 6608 dev_kfree_skb(skb); 6609 return NETDEV_TX_OK; 6610 } 6611 6612 tx_buf = &txr->tx_buf_ring[ring_prod]; 6613 tx_buf->skb = skb; 6614 dma_unmap_addr_set(tx_buf, mapping, mapping); 6615 6616 txbd = &txr->tx_desc_ring[ring_prod]; 6617 6618 txbd->tx_bd_haddr_hi = (u64) mapping >> 32; 6619 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff; 6620 txbd->tx_bd_mss_nbytes = len | (mss << 16); 6621 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START; 6622 6623 last_frag = skb_shinfo(skb)->nr_frags; 6624 tx_buf->nr_frags = last_frag; 6625 tx_buf->is_gso = skb_is_gso(skb); 6626 6627 for (i = 0; i < last_frag; i++) { 6628 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 6629 6630 prod = NEXT_TX_BD(prod); 6631 ring_prod = TX_RING_IDX(prod); 6632 txbd = &txr->tx_desc_ring[ring_prod]; 6633 6634 len = skb_frag_size(frag); 6635 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, len, 6636 DMA_TO_DEVICE); 6637 if (dma_mapping_error(&bp->pdev->dev, mapping)) 6638 goto dma_error; 6639 dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping, 6640 mapping); 6641 6642 txbd->tx_bd_haddr_hi = (u64) mapping >> 32; 6643 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff; 6644 txbd->tx_bd_mss_nbytes = len | (mss << 16); 6645 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags; 6646 6647 } 6648 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END; 6649 6650 /* Sync BD data before updating TX mailbox */ 6651 wmb(); 6652 6653 netdev_tx_sent_queue(txq, skb->len); 6654 6655 prod = NEXT_TX_BD(prod); 6656 txr->tx_prod_bseq += skb->len; 6657 6658 REG_WR16(bp, txr->tx_bidx_addr, prod); 6659 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq); 6660 6661 mmiowb(); 6662 6663 txr->tx_prod = prod; 6664 6665 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) { 6666 netif_tx_stop_queue(txq); 6667 6668 /* netif_tx_stop_queue() must be done before checking 6669 * tx index in bnx2_tx_avail() below, because in 6670 * bnx2_tx_int(), we update tx index before checking for 6671 * netif_tx_queue_stopped(). 6672 */ 6673 smp_mb(); 6674 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh) 6675 netif_tx_wake_queue(txq); 6676 } 6677 6678 return NETDEV_TX_OK; 6679 dma_error: 6680 /* save value of frag that failed */ 6681 last_frag = i; 6682 6683 /* start back at beginning and unmap skb */ 6684 prod = txr->tx_prod; 6685 ring_prod = TX_RING_IDX(prod); 6686 tx_buf = &txr->tx_buf_ring[ring_prod]; 6687 tx_buf->skb = NULL; 6688 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping), 6689 skb_headlen(skb), PCI_DMA_TODEVICE); 6690 6691 /* unmap remaining mapped pages */ 6692 for (i = 0; i < last_frag; i++) { 6693 prod = NEXT_TX_BD(prod); 6694 ring_prod = TX_RING_IDX(prod); 6695 tx_buf = &txr->tx_buf_ring[ring_prod]; 6696 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping), 6697 skb_frag_size(&skb_shinfo(skb)->frags[i]), 6698 PCI_DMA_TODEVICE); 6699 } 6700 6701 dev_kfree_skb(skb); 6702 return NETDEV_TX_OK; 6703 } 6704 6705 /* Called with rtnl_lock */ 6706 static int 6707 bnx2_close(struct net_device *dev) 6708 { 6709 struct bnx2 *bp = netdev_priv(dev); 6710 6711 bnx2_disable_int_sync(bp); 6712 bnx2_napi_disable(bp); 6713 netif_tx_disable(dev); 6714 del_timer_sync(&bp->timer); 6715 bnx2_shutdown_chip(bp); 6716 bnx2_free_irq(bp); 6717 bnx2_free_skbs(bp); 6718 bnx2_free_mem(bp); 6719 bnx2_del_napi(bp); 6720 bp->link_up = 0; 6721 netif_carrier_off(bp->dev); 6722 bnx2_set_power_state(bp, PCI_D3hot); 6723 return 0; 6724 } 6725 6726 static void 6727 bnx2_save_stats(struct bnx2 *bp) 6728 { 6729 u32 *hw_stats = (u32 *) bp->stats_blk; 6730 u32 *temp_stats = (u32 *) bp->temp_stats_blk; 6731 int i; 6732 6733 /* The 1st 10 counters are 64-bit counters */ 6734 for (i = 0; i < 20; i += 2) { 6735 u32 hi; 6736 u64 lo; 6737 6738 hi = temp_stats[i] + hw_stats[i]; 6739 lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1]; 6740 if (lo > 0xffffffff) 6741 hi++; 6742 temp_stats[i] = hi; 6743 temp_stats[i + 1] = lo & 0xffffffff; 6744 } 6745 6746 for ( ; i < sizeof(struct statistics_block) / 4; i++) 6747 temp_stats[i] += hw_stats[i]; 6748 } 6749 6750 #define GET_64BIT_NET_STATS64(ctr) \ 6751 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo)) 6752 6753 #define GET_64BIT_NET_STATS(ctr) \ 6754 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \ 6755 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr) 6756 6757 #define GET_32BIT_NET_STATS(ctr) \ 6758 (unsigned long) (bp->stats_blk->ctr + \ 6759 bp->temp_stats_blk->ctr) 6760 6761 static struct rtnl_link_stats64 * 6762 bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats) 6763 { 6764 struct bnx2 *bp = netdev_priv(dev); 6765 6766 if (bp->stats_blk == NULL) 6767 return net_stats; 6768 6769 net_stats->rx_packets = 6770 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) + 6771 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) + 6772 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts); 6773 6774 net_stats->tx_packets = 6775 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) + 6776 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) + 6777 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts); 6778 6779 net_stats->rx_bytes = 6780 GET_64BIT_NET_STATS(stat_IfHCInOctets); 6781 6782 net_stats->tx_bytes = 6783 GET_64BIT_NET_STATS(stat_IfHCOutOctets); 6784 6785 net_stats->multicast = 6786 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts); 6787 6788 net_stats->collisions = 6789 GET_32BIT_NET_STATS(stat_EtherStatsCollisions); 6790 6791 net_stats->rx_length_errors = 6792 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) + 6793 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts); 6794 6795 net_stats->rx_over_errors = 6796 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) + 6797 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards); 6798 6799 net_stats->rx_frame_errors = 6800 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors); 6801 6802 net_stats->rx_crc_errors = 6803 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors); 6804 6805 net_stats->rx_errors = net_stats->rx_length_errors + 6806 net_stats->rx_over_errors + net_stats->rx_frame_errors + 6807 net_stats->rx_crc_errors; 6808 6809 net_stats->tx_aborted_errors = 6810 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) + 6811 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions); 6812 6813 if ((CHIP_NUM(bp) == CHIP_NUM_5706) || 6814 (CHIP_ID(bp) == CHIP_ID_5708_A0)) 6815 net_stats->tx_carrier_errors = 0; 6816 else { 6817 net_stats->tx_carrier_errors = 6818 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors); 6819 } 6820 6821 net_stats->tx_errors = 6822 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) + 6823 net_stats->tx_aborted_errors + 6824 net_stats->tx_carrier_errors; 6825 6826 net_stats->rx_missed_errors = 6827 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) + 6828 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) + 6829 GET_32BIT_NET_STATS(stat_FwRxDrop); 6830 6831 return net_stats; 6832 } 6833 6834 /* All ethtool functions called with rtnl_lock */ 6835 6836 static int 6837 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 6838 { 6839 struct bnx2 *bp = netdev_priv(dev); 6840 int support_serdes = 0, support_copper = 0; 6841 6842 cmd->supported = SUPPORTED_Autoneg; 6843 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) { 6844 support_serdes = 1; 6845 support_copper = 1; 6846 } else if (bp->phy_port == PORT_FIBRE) 6847 support_serdes = 1; 6848 else 6849 support_copper = 1; 6850 6851 if (support_serdes) { 6852 cmd->supported |= SUPPORTED_1000baseT_Full | 6853 SUPPORTED_FIBRE; 6854 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) 6855 cmd->supported |= SUPPORTED_2500baseX_Full; 6856 6857 } 6858 if (support_copper) { 6859 cmd->supported |= SUPPORTED_10baseT_Half | 6860 SUPPORTED_10baseT_Full | 6861 SUPPORTED_100baseT_Half | 6862 SUPPORTED_100baseT_Full | 6863 SUPPORTED_1000baseT_Full | 6864 SUPPORTED_TP; 6865 6866 } 6867 6868 spin_lock_bh(&bp->phy_lock); 6869 cmd->port = bp->phy_port; 6870 cmd->advertising = bp->advertising; 6871 6872 if (bp->autoneg & AUTONEG_SPEED) { 6873 cmd->autoneg = AUTONEG_ENABLE; 6874 } else { 6875 cmd->autoneg = AUTONEG_DISABLE; 6876 } 6877 6878 if (netif_carrier_ok(dev)) { 6879 ethtool_cmd_speed_set(cmd, bp->line_speed); 6880 cmd->duplex = bp->duplex; 6881 } 6882 else { 6883 ethtool_cmd_speed_set(cmd, -1); 6884 cmd->duplex = -1; 6885 } 6886 spin_unlock_bh(&bp->phy_lock); 6887 6888 cmd->transceiver = XCVR_INTERNAL; 6889 cmd->phy_address = bp->phy_addr; 6890 6891 return 0; 6892 } 6893 6894 static int 6895 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 6896 { 6897 struct bnx2 *bp = netdev_priv(dev); 6898 u8 autoneg = bp->autoneg; 6899 u8 req_duplex = bp->req_duplex; 6900 u16 req_line_speed = bp->req_line_speed; 6901 u32 advertising = bp->advertising; 6902 int err = -EINVAL; 6903 6904 spin_lock_bh(&bp->phy_lock); 6905 6906 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE) 6907 goto err_out_unlock; 6908 6909 if (cmd->port != bp->phy_port && 6910 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)) 6911 goto err_out_unlock; 6912 6913 /* If device is down, we can store the settings only if the user 6914 * is setting the currently active port. 6915 */ 6916 if (!netif_running(dev) && cmd->port != bp->phy_port) 6917 goto err_out_unlock; 6918 6919 if (cmd->autoneg == AUTONEG_ENABLE) { 6920 autoneg |= AUTONEG_SPEED; 6921 6922 advertising = cmd->advertising; 6923 if (cmd->port == PORT_TP) { 6924 advertising &= ETHTOOL_ALL_COPPER_SPEED; 6925 if (!advertising) 6926 advertising = ETHTOOL_ALL_COPPER_SPEED; 6927 } else { 6928 advertising &= ETHTOOL_ALL_FIBRE_SPEED; 6929 if (!advertising) 6930 advertising = ETHTOOL_ALL_FIBRE_SPEED; 6931 } 6932 advertising |= ADVERTISED_Autoneg; 6933 } 6934 else { 6935 u32 speed = ethtool_cmd_speed(cmd); 6936 if (cmd->port == PORT_FIBRE) { 6937 if ((speed != SPEED_1000 && 6938 speed != SPEED_2500) || 6939 (cmd->duplex != DUPLEX_FULL)) 6940 goto err_out_unlock; 6941 6942 if (speed == SPEED_2500 && 6943 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)) 6944 goto err_out_unlock; 6945 } else if (speed == SPEED_1000 || speed == SPEED_2500) 6946 goto err_out_unlock; 6947 6948 autoneg &= ~AUTONEG_SPEED; 6949 req_line_speed = speed; 6950 req_duplex = cmd->duplex; 6951 advertising = 0; 6952 } 6953 6954 bp->autoneg = autoneg; 6955 bp->advertising = advertising; 6956 bp->req_line_speed = req_line_speed; 6957 bp->req_duplex = req_duplex; 6958 6959 err = 0; 6960 /* If device is down, the new settings will be picked up when it is 6961 * brought up. 6962 */ 6963 if (netif_running(dev)) 6964 err = bnx2_setup_phy(bp, cmd->port); 6965 6966 err_out_unlock: 6967 spin_unlock_bh(&bp->phy_lock); 6968 6969 return err; 6970 } 6971 6972 static void 6973 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 6974 { 6975 struct bnx2 *bp = netdev_priv(dev); 6976 6977 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 6978 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 6979 strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info)); 6980 strlcpy(info->fw_version, bp->fw_version, sizeof(info->fw_version)); 6981 } 6982 6983 #define BNX2_REGDUMP_LEN (32 * 1024) 6984 6985 static int 6986 bnx2_get_regs_len(struct net_device *dev) 6987 { 6988 return BNX2_REGDUMP_LEN; 6989 } 6990 6991 static void 6992 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p) 6993 { 6994 u32 *p = _p, i, offset; 6995 u8 *orig_p = _p; 6996 struct bnx2 *bp = netdev_priv(dev); 6997 static const u32 reg_boundaries[] = { 6998 0x0000, 0x0098, 0x0400, 0x045c, 6999 0x0800, 0x0880, 0x0c00, 0x0c10, 7000 0x0c30, 0x0d08, 0x1000, 0x101c, 7001 0x1040, 0x1048, 0x1080, 0x10a4, 7002 0x1400, 0x1490, 0x1498, 0x14f0, 7003 0x1500, 0x155c, 0x1580, 0x15dc, 7004 0x1600, 0x1658, 0x1680, 0x16d8, 7005 0x1800, 0x1820, 0x1840, 0x1854, 7006 0x1880, 0x1894, 0x1900, 0x1984, 7007 0x1c00, 0x1c0c, 0x1c40, 0x1c54, 7008 0x1c80, 0x1c94, 0x1d00, 0x1d84, 7009 0x2000, 0x2030, 0x23c0, 0x2400, 7010 0x2800, 0x2820, 0x2830, 0x2850, 7011 0x2b40, 0x2c10, 0x2fc0, 0x3058, 7012 0x3c00, 0x3c94, 0x4000, 0x4010, 7013 0x4080, 0x4090, 0x43c0, 0x4458, 7014 0x4c00, 0x4c18, 0x4c40, 0x4c54, 7015 0x4fc0, 0x5010, 0x53c0, 0x5444, 7016 0x5c00, 0x5c18, 0x5c80, 0x5c90, 7017 0x5fc0, 0x6000, 0x6400, 0x6428, 7018 0x6800, 0x6848, 0x684c, 0x6860, 7019 0x6888, 0x6910, 0x8000 7020 }; 7021 7022 regs->version = 0; 7023 7024 memset(p, 0, BNX2_REGDUMP_LEN); 7025 7026 if (!netif_running(bp->dev)) 7027 return; 7028 7029 i = 0; 7030 offset = reg_boundaries[0]; 7031 p += offset; 7032 while (offset < BNX2_REGDUMP_LEN) { 7033 *p++ = REG_RD(bp, offset); 7034 offset += 4; 7035 if (offset == reg_boundaries[i + 1]) { 7036 offset = reg_boundaries[i + 2]; 7037 p = (u32 *) (orig_p + offset); 7038 i += 2; 7039 } 7040 } 7041 } 7042 7043 static void 7044 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 7045 { 7046 struct bnx2 *bp = netdev_priv(dev); 7047 7048 if (bp->flags & BNX2_FLAG_NO_WOL) { 7049 wol->supported = 0; 7050 wol->wolopts = 0; 7051 } 7052 else { 7053 wol->supported = WAKE_MAGIC; 7054 if (bp->wol) 7055 wol->wolopts = WAKE_MAGIC; 7056 else 7057 wol->wolopts = 0; 7058 } 7059 memset(&wol->sopass, 0, sizeof(wol->sopass)); 7060 } 7061 7062 static int 7063 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 7064 { 7065 struct bnx2 *bp = netdev_priv(dev); 7066 7067 if (wol->wolopts & ~WAKE_MAGIC) 7068 return -EINVAL; 7069 7070 if (wol->wolopts & WAKE_MAGIC) { 7071 if (bp->flags & BNX2_FLAG_NO_WOL) 7072 return -EINVAL; 7073 7074 bp->wol = 1; 7075 } 7076 else { 7077 bp->wol = 0; 7078 } 7079 return 0; 7080 } 7081 7082 static int 7083 bnx2_nway_reset(struct net_device *dev) 7084 { 7085 struct bnx2 *bp = netdev_priv(dev); 7086 u32 bmcr; 7087 7088 if (!netif_running(dev)) 7089 return -EAGAIN; 7090 7091 if (!(bp->autoneg & AUTONEG_SPEED)) { 7092 return -EINVAL; 7093 } 7094 7095 spin_lock_bh(&bp->phy_lock); 7096 7097 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) { 7098 int rc; 7099 7100 rc = bnx2_setup_remote_phy(bp, bp->phy_port); 7101 spin_unlock_bh(&bp->phy_lock); 7102 return rc; 7103 } 7104 7105 /* Force a link down visible on the other side */ 7106 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) { 7107 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK); 7108 spin_unlock_bh(&bp->phy_lock); 7109 7110 msleep(20); 7111 7112 spin_lock_bh(&bp->phy_lock); 7113 7114 bp->current_interval = BNX2_SERDES_AN_TIMEOUT; 7115 bp->serdes_an_pending = 1; 7116 mod_timer(&bp->timer, jiffies + bp->current_interval); 7117 } 7118 7119 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr); 7120 bmcr &= ~BMCR_LOOPBACK; 7121 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE); 7122 7123 spin_unlock_bh(&bp->phy_lock); 7124 7125 return 0; 7126 } 7127 7128 static u32 7129 bnx2_get_link(struct net_device *dev) 7130 { 7131 struct bnx2 *bp = netdev_priv(dev); 7132 7133 return bp->link_up; 7134 } 7135 7136 static int 7137 bnx2_get_eeprom_len(struct net_device *dev) 7138 { 7139 struct bnx2 *bp = netdev_priv(dev); 7140 7141 if (bp->flash_info == NULL) 7142 return 0; 7143 7144 return (int) bp->flash_size; 7145 } 7146 7147 static int 7148 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 7149 u8 *eebuf) 7150 { 7151 struct bnx2 *bp = netdev_priv(dev); 7152 int rc; 7153 7154 if (!netif_running(dev)) 7155 return -EAGAIN; 7156 7157 /* parameters already validated in ethtool_get_eeprom */ 7158 7159 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len); 7160 7161 return rc; 7162 } 7163 7164 static int 7165 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 7166 u8 *eebuf) 7167 { 7168 struct bnx2 *bp = netdev_priv(dev); 7169 int rc; 7170 7171 if (!netif_running(dev)) 7172 return -EAGAIN; 7173 7174 /* parameters already validated in ethtool_set_eeprom */ 7175 7176 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len); 7177 7178 return rc; 7179 } 7180 7181 static int 7182 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal) 7183 { 7184 struct bnx2 *bp = netdev_priv(dev); 7185 7186 memset(coal, 0, sizeof(struct ethtool_coalesce)); 7187 7188 coal->rx_coalesce_usecs = bp->rx_ticks; 7189 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip; 7190 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int; 7191 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int; 7192 7193 coal->tx_coalesce_usecs = bp->tx_ticks; 7194 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip; 7195 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int; 7196 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int; 7197 7198 coal->stats_block_coalesce_usecs = bp->stats_ticks; 7199 7200 return 0; 7201 } 7202 7203 static int 7204 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal) 7205 { 7206 struct bnx2 *bp = netdev_priv(dev); 7207 7208 bp->rx_ticks = (u16) coal->rx_coalesce_usecs; 7209 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff; 7210 7211 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames; 7212 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff; 7213 7214 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq; 7215 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff; 7216 7217 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq; 7218 if (bp->rx_quick_cons_trip_int > 0xff) 7219 bp->rx_quick_cons_trip_int = 0xff; 7220 7221 bp->tx_ticks = (u16) coal->tx_coalesce_usecs; 7222 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff; 7223 7224 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames; 7225 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff; 7226 7227 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq; 7228 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff; 7229 7230 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq; 7231 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int = 7232 0xff; 7233 7234 bp->stats_ticks = coal->stats_block_coalesce_usecs; 7235 if (bp->flags & BNX2_FLAG_BROKEN_STATS) { 7236 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC) 7237 bp->stats_ticks = USEC_PER_SEC; 7238 } 7239 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS) 7240 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS; 7241 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS; 7242 7243 if (netif_running(bp->dev)) { 7244 bnx2_netif_stop(bp, true); 7245 bnx2_init_nic(bp, 0); 7246 bnx2_netif_start(bp, true); 7247 } 7248 7249 return 0; 7250 } 7251 7252 static void 7253 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) 7254 { 7255 struct bnx2 *bp = netdev_priv(dev); 7256 7257 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT; 7258 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT; 7259 7260 ering->rx_pending = bp->rx_ring_size; 7261 ering->rx_jumbo_pending = bp->rx_pg_ring_size; 7262 7263 ering->tx_max_pending = MAX_TX_DESC_CNT; 7264 ering->tx_pending = bp->tx_ring_size; 7265 } 7266 7267 static int 7268 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx, bool reset_irq) 7269 { 7270 if (netif_running(bp->dev)) { 7271 /* Reset will erase chipset stats; save them */ 7272 bnx2_save_stats(bp); 7273 7274 bnx2_netif_stop(bp, true); 7275 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET); 7276 if (reset_irq) { 7277 bnx2_free_irq(bp); 7278 bnx2_del_napi(bp); 7279 } else { 7280 __bnx2_free_irq(bp); 7281 } 7282 bnx2_free_skbs(bp); 7283 bnx2_free_mem(bp); 7284 } 7285 7286 bnx2_set_rx_ring_size(bp, rx); 7287 bp->tx_ring_size = tx; 7288 7289 if (netif_running(bp->dev)) { 7290 int rc = 0; 7291 7292 if (reset_irq) { 7293 rc = bnx2_setup_int_mode(bp, disable_msi); 7294 bnx2_init_napi(bp); 7295 } 7296 7297 if (!rc) 7298 rc = bnx2_alloc_mem(bp); 7299 7300 if (!rc) 7301 rc = bnx2_request_irq(bp); 7302 7303 if (!rc) 7304 rc = bnx2_init_nic(bp, 0); 7305 7306 if (rc) { 7307 bnx2_napi_enable(bp); 7308 dev_close(bp->dev); 7309 return rc; 7310 } 7311 #ifdef BCM_CNIC 7312 mutex_lock(&bp->cnic_lock); 7313 /* Let cnic know about the new status block. */ 7314 if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD) 7315 bnx2_setup_cnic_irq_info(bp); 7316 mutex_unlock(&bp->cnic_lock); 7317 #endif 7318 bnx2_netif_start(bp, true); 7319 } 7320 return 0; 7321 } 7322 7323 static int 7324 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) 7325 { 7326 struct bnx2 *bp = netdev_priv(dev); 7327 int rc; 7328 7329 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) || 7330 (ering->tx_pending > MAX_TX_DESC_CNT) || 7331 (ering->tx_pending <= MAX_SKB_FRAGS)) { 7332 7333 return -EINVAL; 7334 } 7335 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending, 7336 false); 7337 return rc; 7338 } 7339 7340 static void 7341 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) 7342 { 7343 struct bnx2 *bp = netdev_priv(dev); 7344 7345 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0); 7346 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0); 7347 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0); 7348 } 7349 7350 static int 7351 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) 7352 { 7353 struct bnx2 *bp = netdev_priv(dev); 7354 7355 bp->req_flow_ctrl = 0; 7356 if (epause->rx_pause) 7357 bp->req_flow_ctrl |= FLOW_CTRL_RX; 7358 if (epause->tx_pause) 7359 bp->req_flow_ctrl |= FLOW_CTRL_TX; 7360 7361 if (epause->autoneg) { 7362 bp->autoneg |= AUTONEG_FLOW_CTRL; 7363 } 7364 else { 7365 bp->autoneg &= ~AUTONEG_FLOW_CTRL; 7366 } 7367 7368 if (netif_running(dev)) { 7369 spin_lock_bh(&bp->phy_lock); 7370 bnx2_setup_phy(bp, bp->phy_port); 7371 spin_unlock_bh(&bp->phy_lock); 7372 } 7373 7374 return 0; 7375 } 7376 7377 static struct { 7378 char string[ETH_GSTRING_LEN]; 7379 } bnx2_stats_str_arr[] = { 7380 { "rx_bytes" }, 7381 { "rx_error_bytes" }, 7382 { "tx_bytes" }, 7383 { "tx_error_bytes" }, 7384 { "rx_ucast_packets" }, 7385 { "rx_mcast_packets" }, 7386 { "rx_bcast_packets" }, 7387 { "tx_ucast_packets" }, 7388 { "tx_mcast_packets" }, 7389 { "tx_bcast_packets" }, 7390 { "tx_mac_errors" }, 7391 { "tx_carrier_errors" }, 7392 { "rx_crc_errors" }, 7393 { "rx_align_errors" }, 7394 { "tx_single_collisions" }, 7395 { "tx_multi_collisions" }, 7396 { "tx_deferred" }, 7397 { "tx_excess_collisions" }, 7398 { "tx_late_collisions" }, 7399 { "tx_total_collisions" }, 7400 { "rx_fragments" }, 7401 { "rx_jabbers" }, 7402 { "rx_undersize_packets" }, 7403 { "rx_oversize_packets" }, 7404 { "rx_64_byte_packets" }, 7405 { "rx_65_to_127_byte_packets" }, 7406 { "rx_128_to_255_byte_packets" }, 7407 { "rx_256_to_511_byte_packets" }, 7408 { "rx_512_to_1023_byte_packets" }, 7409 { "rx_1024_to_1522_byte_packets" }, 7410 { "rx_1523_to_9022_byte_packets" }, 7411 { "tx_64_byte_packets" }, 7412 { "tx_65_to_127_byte_packets" }, 7413 { "tx_128_to_255_byte_packets" }, 7414 { "tx_256_to_511_byte_packets" }, 7415 { "tx_512_to_1023_byte_packets" }, 7416 { "tx_1024_to_1522_byte_packets" }, 7417 { "tx_1523_to_9022_byte_packets" }, 7418 { "rx_xon_frames" }, 7419 { "rx_xoff_frames" }, 7420 { "tx_xon_frames" }, 7421 { "tx_xoff_frames" }, 7422 { "rx_mac_ctrl_frames" }, 7423 { "rx_filtered_packets" }, 7424 { "rx_ftq_discards" }, 7425 { "rx_discards" }, 7426 { "rx_fw_discards" }, 7427 }; 7428 7429 #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr) 7430 7431 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4) 7432 7433 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = { 7434 STATS_OFFSET32(stat_IfHCInOctets_hi), 7435 STATS_OFFSET32(stat_IfHCInBadOctets_hi), 7436 STATS_OFFSET32(stat_IfHCOutOctets_hi), 7437 STATS_OFFSET32(stat_IfHCOutBadOctets_hi), 7438 STATS_OFFSET32(stat_IfHCInUcastPkts_hi), 7439 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi), 7440 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi), 7441 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi), 7442 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi), 7443 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi), 7444 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors), 7445 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors), 7446 STATS_OFFSET32(stat_Dot3StatsFCSErrors), 7447 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors), 7448 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames), 7449 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames), 7450 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions), 7451 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions), 7452 STATS_OFFSET32(stat_Dot3StatsLateCollisions), 7453 STATS_OFFSET32(stat_EtherStatsCollisions), 7454 STATS_OFFSET32(stat_EtherStatsFragments), 7455 STATS_OFFSET32(stat_EtherStatsJabbers), 7456 STATS_OFFSET32(stat_EtherStatsUndersizePkts), 7457 STATS_OFFSET32(stat_EtherStatsOverrsizePkts), 7458 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets), 7459 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets), 7460 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets), 7461 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets), 7462 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets), 7463 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets), 7464 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets), 7465 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets), 7466 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets), 7467 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets), 7468 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets), 7469 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets), 7470 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets), 7471 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets), 7472 STATS_OFFSET32(stat_XonPauseFramesReceived), 7473 STATS_OFFSET32(stat_XoffPauseFramesReceived), 7474 STATS_OFFSET32(stat_OutXonSent), 7475 STATS_OFFSET32(stat_OutXoffSent), 7476 STATS_OFFSET32(stat_MacControlFramesReceived), 7477 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards), 7478 STATS_OFFSET32(stat_IfInFTQDiscards), 7479 STATS_OFFSET32(stat_IfInMBUFDiscards), 7480 STATS_OFFSET32(stat_FwRxDrop), 7481 }; 7482 7483 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are 7484 * skipped because of errata. 7485 */ 7486 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = { 7487 8,0,8,8,8,8,8,8,8,8, 7488 4,0,4,4,4,4,4,4,4,4, 7489 4,4,4,4,4,4,4,4,4,4, 7490 4,4,4,4,4,4,4,4,4,4, 7491 4,4,4,4,4,4,4, 7492 }; 7493 7494 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = { 7495 8,0,8,8,8,8,8,8,8,8, 7496 4,4,4,4,4,4,4,4,4,4, 7497 4,4,4,4,4,4,4,4,4,4, 7498 4,4,4,4,4,4,4,4,4,4, 7499 4,4,4,4,4,4,4, 7500 }; 7501 7502 #define BNX2_NUM_TESTS 6 7503 7504 static struct { 7505 char string[ETH_GSTRING_LEN]; 7506 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = { 7507 { "register_test (offline)" }, 7508 { "memory_test (offline)" }, 7509 { "loopback_test (offline)" }, 7510 { "nvram_test (online)" }, 7511 { "interrupt_test (online)" }, 7512 { "link_test (online)" }, 7513 }; 7514 7515 static int 7516 bnx2_get_sset_count(struct net_device *dev, int sset) 7517 { 7518 switch (sset) { 7519 case ETH_SS_TEST: 7520 return BNX2_NUM_TESTS; 7521 case ETH_SS_STATS: 7522 return BNX2_NUM_STATS; 7523 default: 7524 return -EOPNOTSUPP; 7525 } 7526 } 7527 7528 static void 7529 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf) 7530 { 7531 struct bnx2 *bp = netdev_priv(dev); 7532 7533 bnx2_set_power_state(bp, PCI_D0); 7534 7535 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS); 7536 if (etest->flags & ETH_TEST_FL_OFFLINE) { 7537 int i; 7538 7539 bnx2_netif_stop(bp, true); 7540 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG); 7541 bnx2_free_skbs(bp); 7542 7543 if (bnx2_test_registers(bp) != 0) { 7544 buf[0] = 1; 7545 etest->flags |= ETH_TEST_FL_FAILED; 7546 } 7547 if (bnx2_test_memory(bp) != 0) { 7548 buf[1] = 1; 7549 etest->flags |= ETH_TEST_FL_FAILED; 7550 } 7551 if ((buf[2] = bnx2_test_loopback(bp)) != 0) 7552 etest->flags |= ETH_TEST_FL_FAILED; 7553 7554 if (!netif_running(bp->dev)) 7555 bnx2_shutdown_chip(bp); 7556 else { 7557 bnx2_init_nic(bp, 1); 7558 bnx2_netif_start(bp, true); 7559 } 7560 7561 /* wait for link up */ 7562 for (i = 0; i < 7; i++) { 7563 if (bp->link_up) 7564 break; 7565 msleep_interruptible(1000); 7566 } 7567 } 7568 7569 if (bnx2_test_nvram(bp) != 0) { 7570 buf[3] = 1; 7571 etest->flags |= ETH_TEST_FL_FAILED; 7572 } 7573 if (bnx2_test_intr(bp) != 0) { 7574 buf[4] = 1; 7575 etest->flags |= ETH_TEST_FL_FAILED; 7576 } 7577 7578 if (bnx2_test_link(bp) != 0) { 7579 buf[5] = 1; 7580 etest->flags |= ETH_TEST_FL_FAILED; 7581 7582 } 7583 if (!netif_running(bp->dev)) 7584 bnx2_set_power_state(bp, PCI_D3hot); 7585 } 7586 7587 static void 7588 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 7589 { 7590 switch (stringset) { 7591 case ETH_SS_STATS: 7592 memcpy(buf, bnx2_stats_str_arr, 7593 sizeof(bnx2_stats_str_arr)); 7594 break; 7595 case ETH_SS_TEST: 7596 memcpy(buf, bnx2_tests_str_arr, 7597 sizeof(bnx2_tests_str_arr)); 7598 break; 7599 } 7600 } 7601 7602 static void 7603 bnx2_get_ethtool_stats(struct net_device *dev, 7604 struct ethtool_stats *stats, u64 *buf) 7605 { 7606 struct bnx2 *bp = netdev_priv(dev); 7607 int i; 7608 u32 *hw_stats = (u32 *) bp->stats_blk; 7609 u32 *temp_stats = (u32 *) bp->temp_stats_blk; 7610 u8 *stats_len_arr = NULL; 7611 7612 if (hw_stats == NULL) { 7613 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS); 7614 return; 7615 } 7616 7617 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) || 7618 (CHIP_ID(bp) == CHIP_ID_5706_A1) || 7619 (CHIP_ID(bp) == CHIP_ID_5706_A2) || 7620 (CHIP_ID(bp) == CHIP_ID_5708_A0)) 7621 stats_len_arr = bnx2_5706_stats_len_arr; 7622 else 7623 stats_len_arr = bnx2_5708_stats_len_arr; 7624 7625 for (i = 0; i < BNX2_NUM_STATS; i++) { 7626 unsigned long offset; 7627 7628 if (stats_len_arr[i] == 0) { 7629 /* skip this counter */ 7630 buf[i] = 0; 7631 continue; 7632 } 7633 7634 offset = bnx2_stats_offset_arr[i]; 7635 if (stats_len_arr[i] == 4) { 7636 /* 4-byte counter */ 7637 buf[i] = (u64) *(hw_stats + offset) + 7638 *(temp_stats + offset); 7639 continue; 7640 } 7641 /* 8-byte counter */ 7642 buf[i] = (((u64) *(hw_stats + offset)) << 32) + 7643 *(hw_stats + offset + 1) + 7644 (((u64) *(temp_stats + offset)) << 32) + 7645 *(temp_stats + offset + 1); 7646 } 7647 } 7648 7649 static int 7650 bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state) 7651 { 7652 struct bnx2 *bp = netdev_priv(dev); 7653 7654 switch (state) { 7655 case ETHTOOL_ID_ACTIVE: 7656 bnx2_set_power_state(bp, PCI_D0); 7657 7658 bp->leds_save = REG_RD(bp, BNX2_MISC_CFG); 7659 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC); 7660 return 1; /* cycle on/off once per second */ 7661 7662 case ETHTOOL_ID_ON: 7663 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE | 7664 BNX2_EMAC_LED_1000MB_OVERRIDE | 7665 BNX2_EMAC_LED_100MB_OVERRIDE | 7666 BNX2_EMAC_LED_10MB_OVERRIDE | 7667 BNX2_EMAC_LED_TRAFFIC_OVERRIDE | 7668 BNX2_EMAC_LED_TRAFFIC); 7669 break; 7670 7671 case ETHTOOL_ID_OFF: 7672 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE); 7673 break; 7674 7675 case ETHTOOL_ID_INACTIVE: 7676 REG_WR(bp, BNX2_EMAC_LED, 0); 7677 REG_WR(bp, BNX2_MISC_CFG, bp->leds_save); 7678 7679 if (!netif_running(dev)) 7680 bnx2_set_power_state(bp, PCI_D3hot); 7681 break; 7682 } 7683 7684 return 0; 7685 } 7686 7687 static netdev_features_t 7688 bnx2_fix_features(struct net_device *dev, netdev_features_t features) 7689 { 7690 struct bnx2 *bp = netdev_priv(dev); 7691 7692 if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)) 7693 features |= NETIF_F_HW_VLAN_RX; 7694 7695 return features; 7696 } 7697 7698 static int 7699 bnx2_set_features(struct net_device *dev, netdev_features_t features) 7700 { 7701 struct bnx2 *bp = netdev_priv(dev); 7702 7703 /* TSO with VLAN tag won't work with current firmware */ 7704 if (features & NETIF_F_HW_VLAN_TX) 7705 dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO); 7706 else 7707 dev->vlan_features &= ~NETIF_F_ALL_TSO; 7708 7709 if ((!!(features & NETIF_F_HW_VLAN_RX) != 7710 !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) && 7711 netif_running(dev)) { 7712 bnx2_netif_stop(bp, false); 7713 dev->features = features; 7714 bnx2_set_rx_mode(dev); 7715 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1); 7716 bnx2_netif_start(bp, false); 7717 return 1; 7718 } 7719 7720 return 0; 7721 } 7722 7723 static void bnx2_get_channels(struct net_device *dev, 7724 struct ethtool_channels *channels) 7725 { 7726 struct bnx2 *bp = netdev_priv(dev); 7727 u32 max_rx_rings = 1; 7728 u32 max_tx_rings = 1; 7729 7730 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) { 7731 max_rx_rings = RX_MAX_RINGS; 7732 max_tx_rings = TX_MAX_RINGS; 7733 } 7734 7735 channels->max_rx = max_rx_rings; 7736 channels->max_tx = max_tx_rings; 7737 channels->max_other = 0; 7738 channels->max_combined = 0; 7739 channels->rx_count = bp->num_rx_rings; 7740 channels->tx_count = bp->num_tx_rings; 7741 channels->other_count = 0; 7742 channels->combined_count = 0; 7743 } 7744 7745 static int bnx2_set_channels(struct net_device *dev, 7746 struct ethtool_channels *channels) 7747 { 7748 struct bnx2 *bp = netdev_priv(dev); 7749 u32 max_rx_rings = 1; 7750 u32 max_tx_rings = 1; 7751 int rc = 0; 7752 7753 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) { 7754 max_rx_rings = RX_MAX_RINGS; 7755 max_tx_rings = TX_MAX_RINGS; 7756 } 7757 if (channels->rx_count > max_rx_rings || 7758 channels->tx_count > max_tx_rings) 7759 return -EINVAL; 7760 7761 bp->num_req_rx_rings = channels->rx_count; 7762 bp->num_req_tx_rings = channels->tx_count; 7763 7764 if (netif_running(dev)) 7765 rc = bnx2_change_ring_size(bp, bp->rx_ring_size, 7766 bp->tx_ring_size, true); 7767 7768 return rc; 7769 } 7770 7771 static const struct ethtool_ops bnx2_ethtool_ops = { 7772 .get_settings = bnx2_get_settings, 7773 .set_settings = bnx2_set_settings, 7774 .get_drvinfo = bnx2_get_drvinfo, 7775 .get_regs_len = bnx2_get_regs_len, 7776 .get_regs = bnx2_get_regs, 7777 .get_wol = bnx2_get_wol, 7778 .set_wol = bnx2_set_wol, 7779 .nway_reset = bnx2_nway_reset, 7780 .get_link = bnx2_get_link, 7781 .get_eeprom_len = bnx2_get_eeprom_len, 7782 .get_eeprom = bnx2_get_eeprom, 7783 .set_eeprom = bnx2_set_eeprom, 7784 .get_coalesce = bnx2_get_coalesce, 7785 .set_coalesce = bnx2_set_coalesce, 7786 .get_ringparam = bnx2_get_ringparam, 7787 .set_ringparam = bnx2_set_ringparam, 7788 .get_pauseparam = bnx2_get_pauseparam, 7789 .set_pauseparam = bnx2_set_pauseparam, 7790 .self_test = bnx2_self_test, 7791 .get_strings = bnx2_get_strings, 7792 .set_phys_id = bnx2_set_phys_id, 7793 .get_ethtool_stats = bnx2_get_ethtool_stats, 7794 .get_sset_count = bnx2_get_sset_count, 7795 .get_channels = bnx2_get_channels, 7796 .set_channels = bnx2_set_channels, 7797 }; 7798 7799 /* Called with rtnl_lock */ 7800 static int 7801 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 7802 { 7803 struct mii_ioctl_data *data = if_mii(ifr); 7804 struct bnx2 *bp = netdev_priv(dev); 7805 int err; 7806 7807 switch(cmd) { 7808 case SIOCGMIIPHY: 7809 data->phy_id = bp->phy_addr; 7810 7811 /* fallthru */ 7812 case SIOCGMIIREG: { 7813 u32 mii_regval; 7814 7815 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) 7816 return -EOPNOTSUPP; 7817 7818 if (!netif_running(dev)) 7819 return -EAGAIN; 7820 7821 spin_lock_bh(&bp->phy_lock); 7822 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval); 7823 spin_unlock_bh(&bp->phy_lock); 7824 7825 data->val_out = mii_regval; 7826 7827 return err; 7828 } 7829 7830 case SIOCSMIIREG: 7831 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) 7832 return -EOPNOTSUPP; 7833 7834 if (!netif_running(dev)) 7835 return -EAGAIN; 7836 7837 spin_lock_bh(&bp->phy_lock); 7838 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in); 7839 spin_unlock_bh(&bp->phy_lock); 7840 7841 return err; 7842 7843 default: 7844 /* do nothing */ 7845 break; 7846 } 7847 return -EOPNOTSUPP; 7848 } 7849 7850 /* Called with rtnl_lock */ 7851 static int 7852 bnx2_change_mac_addr(struct net_device *dev, void *p) 7853 { 7854 struct sockaddr *addr = p; 7855 struct bnx2 *bp = netdev_priv(dev); 7856 7857 if (!is_valid_ether_addr(addr->sa_data)) 7858 return -EADDRNOTAVAIL; 7859 7860 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 7861 if (netif_running(dev)) 7862 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0); 7863 7864 return 0; 7865 } 7866 7867 /* Called with rtnl_lock */ 7868 static int 7869 bnx2_change_mtu(struct net_device *dev, int new_mtu) 7870 { 7871 struct bnx2 *bp = netdev_priv(dev); 7872 7873 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) || 7874 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE)) 7875 return -EINVAL; 7876 7877 dev->mtu = new_mtu; 7878 return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size, 7879 false); 7880 } 7881 7882 #ifdef CONFIG_NET_POLL_CONTROLLER 7883 static void 7884 poll_bnx2(struct net_device *dev) 7885 { 7886 struct bnx2 *bp = netdev_priv(dev); 7887 int i; 7888 7889 for (i = 0; i < bp->irq_nvecs; i++) { 7890 struct bnx2_irq *irq = &bp->irq_tbl[i]; 7891 7892 disable_irq(irq->vector); 7893 irq->handler(irq->vector, &bp->bnx2_napi[i]); 7894 enable_irq(irq->vector); 7895 } 7896 } 7897 #endif 7898 7899 static void __devinit 7900 bnx2_get_5709_media(struct bnx2 *bp) 7901 { 7902 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL); 7903 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID; 7904 u32 strap; 7905 7906 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) 7907 return; 7908 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 7909 bp->phy_flags |= BNX2_PHY_FLAG_SERDES; 7910 return; 7911 } 7912 7913 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 7914 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 7915 else 7916 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; 7917 7918 if (bp->func == 0) { 7919 switch (strap) { 7920 case 0x4: 7921 case 0x5: 7922 case 0x6: 7923 bp->phy_flags |= BNX2_PHY_FLAG_SERDES; 7924 return; 7925 } 7926 } else { 7927 switch (strap) { 7928 case 0x1: 7929 case 0x2: 7930 case 0x4: 7931 bp->phy_flags |= BNX2_PHY_FLAG_SERDES; 7932 return; 7933 } 7934 } 7935 } 7936 7937 static void __devinit 7938 bnx2_get_pci_speed(struct bnx2 *bp) 7939 { 7940 u32 reg; 7941 7942 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS); 7943 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) { 7944 u32 clkreg; 7945 7946 bp->flags |= BNX2_FLAG_PCIX; 7947 7948 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS); 7949 7950 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 7951 switch (clkreg) { 7952 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 7953 bp->bus_speed_mhz = 133; 7954 break; 7955 7956 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 7957 bp->bus_speed_mhz = 100; 7958 break; 7959 7960 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 7961 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 7962 bp->bus_speed_mhz = 66; 7963 break; 7964 7965 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 7966 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 7967 bp->bus_speed_mhz = 50; 7968 break; 7969 7970 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 7971 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 7972 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 7973 bp->bus_speed_mhz = 33; 7974 break; 7975 } 7976 } 7977 else { 7978 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN) 7979 bp->bus_speed_mhz = 66; 7980 else 7981 bp->bus_speed_mhz = 33; 7982 } 7983 7984 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET) 7985 bp->flags |= BNX2_FLAG_PCI_32BIT; 7986 7987 } 7988 7989 static void __devinit 7990 bnx2_read_vpd_fw_ver(struct bnx2 *bp) 7991 { 7992 int rc, i, j; 7993 u8 *data; 7994 unsigned int block_end, rosize, len; 7995 7996 #define BNX2_VPD_NVRAM_OFFSET 0x300 7997 #define BNX2_VPD_LEN 128 7998 #define BNX2_MAX_VER_SLEN 30 7999 8000 data = kmalloc(256, GFP_KERNEL); 8001 if (!data) 8002 return; 8003 8004 rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN, 8005 BNX2_VPD_LEN); 8006 if (rc) 8007 goto vpd_done; 8008 8009 for (i = 0; i < BNX2_VPD_LEN; i += 4) { 8010 data[i] = data[i + BNX2_VPD_LEN + 3]; 8011 data[i + 1] = data[i + BNX2_VPD_LEN + 2]; 8012 data[i + 2] = data[i + BNX2_VPD_LEN + 1]; 8013 data[i + 3] = data[i + BNX2_VPD_LEN]; 8014 } 8015 8016 i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA); 8017 if (i < 0) 8018 goto vpd_done; 8019 8020 rosize = pci_vpd_lrdt_size(&data[i]); 8021 i += PCI_VPD_LRDT_TAG_SIZE; 8022 block_end = i + rosize; 8023 8024 if (block_end > BNX2_VPD_LEN) 8025 goto vpd_done; 8026 8027 j = pci_vpd_find_info_keyword(data, i, rosize, 8028 PCI_VPD_RO_KEYWORD_MFR_ID); 8029 if (j < 0) 8030 goto vpd_done; 8031 8032 len = pci_vpd_info_field_size(&data[j]); 8033 8034 j += PCI_VPD_INFO_FLD_HDR_SIZE; 8035 if (j + len > block_end || len != 4 || 8036 memcmp(&data[j], "1028", 4)) 8037 goto vpd_done; 8038 8039 j = pci_vpd_find_info_keyword(data, i, rosize, 8040 PCI_VPD_RO_KEYWORD_VENDOR0); 8041 if (j < 0) 8042 goto vpd_done; 8043 8044 len = pci_vpd_info_field_size(&data[j]); 8045 8046 j += PCI_VPD_INFO_FLD_HDR_SIZE; 8047 if (j + len > block_end || len > BNX2_MAX_VER_SLEN) 8048 goto vpd_done; 8049 8050 memcpy(bp->fw_version, &data[j], len); 8051 bp->fw_version[len] = ' '; 8052 8053 vpd_done: 8054 kfree(data); 8055 } 8056 8057 static int __devinit 8058 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev) 8059 { 8060 struct bnx2 *bp; 8061 int rc, i, j; 8062 u32 reg; 8063 u64 dma_mask, persist_dma_mask; 8064 int err; 8065 8066 SET_NETDEV_DEV(dev, &pdev->dev); 8067 bp = netdev_priv(dev); 8068 8069 bp->flags = 0; 8070 bp->phy_flags = 0; 8071 8072 bp->temp_stats_blk = 8073 kzalloc(sizeof(struct statistics_block), GFP_KERNEL); 8074 8075 if (bp->temp_stats_blk == NULL) { 8076 rc = -ENOMEM; 8077 goto err_out; 8078 } 8079 8080 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 8081 rc = pci_enable_device(pdev); 8082 if (rc) { 8083 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 8084 goto err_out; 8085 } 8086 8087 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 8088 dev_err(&pdev->dev, 8089 "Cannot find PCI device base address, aborting\n"); 8090 rc = -ENODEV; 8091 goto err_out_disable; 8092 } 8093 8094 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 8095 if (rc) { 8096 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 8097 goto err_out_disable; 8098 } 8099 8100 pci_set_master(pdev); 8101 8102 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); 8103 if (bp->pm_cap == 0) { 8104 dev_err(&pdev->dev, 8105 "Cannot find power management capability, aborting\n"); 8106 rc = -EIO; 8107 goto err_out_release; 8108 } 8109 8110 bp->dev = dev; 8111 bp->pdev = pdev; 8112 8113 spin_lock_init(&bp->phy_lock); 8114 spin_lock_init(&bp->indirect_lock); 8115 #ifdef BCM_CNIC 8116 mutex_init(&bp->cnic_lock); 8117 #endif 8118 INIT_WORK(&bp->reset_task, bnx2_reset_task); 8119 8120 bp->regview = pci_iomap(pdev, 0, MB_GET_CID_ADDR(TX_TSS_CID + 8121 TX_MAX_TSS_RINGS + 1)); 8122 if (!bp->regview) { 8123 dev_err(&pdev->dev, "Cannot map register space, aborting\n"); 8124 rc = -ENOMEM; 8125 goto err_out_release; 8126 } 8127 8128 bnx2_set_power_state(bp, PCI_D0); 8129 8130 /* Configure byte swap and enable write to the reg_window registers. 8131 * Rely on CPU to do target byte swapping on big endian systems 8132 * The chip's target access swapping will not swap all accesses 8133 */ 8134 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, 8135 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 8136 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP); 8137 8138 bp->chip_id = REG_RD(bp, BNX2_MISC_ID); 8139 8140 if (CHIP_NUM(bp) == CHIP_NUM_5709) { 8141 if (!pci_is_pcie(pdev)) { 8142 dev_err(&pdev->dev, "Not PCIE, aborting\n"); 8143 rc = -EIO; 8144 goto err_out_unmap; 8145 } 8146 bp->flags |= BNX2_FLAG_PCIE; 8147 if (CHIP_REV(bp) == CHIP_REV_Ax) 8148 bp->flags |= BNX2_FLAG_JUMBO_BROKEN; 8149 8150 /* AER (Advanced Error Reporting) hooks */ 8151 err = pci_enable_pcie_error_reporting(pdev); 8152 if (!err) 8153 bp->flags |= BNX2_FLAG_AER_ENABLED; 8154 8155 } else { 8156 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX); 8157 if (bp->pcix_cap == 0) { 8158 dev_err(&pdev->dev, 8159 "Cannot find PCIX capability, aborting\n"); 8160 rc = -EIO; 8161 goto err_out_unmap; 8162 } 8163 bp->flags |= BNX2_FLAG_BROKEN_STATS; 8164 } 8165 8166 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) { 8167 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) 8168 bp->flags |= BNX2_FLAG_MSIX_CAP; 8169 } 8170 8171 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) { 8172 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) 8173 bp->flags |= BNX2_FLAG_MSI_CAP; 8174 } 8175 8176 /* 5708 cannot support DMA addresses > 40-bit. */ 8177 if (CHIP_NUM(bp) == CHIP_NUM_5708) 8178 persist_dma_mask = dma_mask = DMA_BIT_MASK(40); 8179 else 8180 persist_dma_mask = dma_mask = DMA_BIT_MASK(64); 8181 8182 /* Configure DMA attributes. */ 8183 if (pci_set_dma_mask(pdev, dma_mask) == 0) { 8184 dev->features |= NETIF_F_HIGHDMA; 8185 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask); 8186 if (rc) { 8187 dev_err(&pdev->dev, 8188 "pci_set_consistent_dma_mask failed, aborting\n"); 8189 goto err_out_unmap; 8190 } 8191 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) { 8192 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 8193 goto err_out_unmap; 8194 } 8195 8196 if (!(bp->flags & BNX2_FLAG_PCIE)) 8197 bnx2_get_pci_speed(bp); 8198 8199 /* 5706A0 may falsely detect SERR and PERR. */ 8200 if (CHIP_ID(bp) == CHIP_ID_5706_A0) { 8201 reg = REG_RD(bp, PCI_COMMAND); 8202 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY); 8203 REG_WR(bp, PCI_COMMAND, reg); 8204 } 8205 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) && 8206 !(bp->flags & BNX2_FLAG_PCIX)) { 8207 8208 dev_err(&pdev->dev, 8209 "5706 A1 can only be used in a PCIX bus, aborting\n"); 8210 goto err_out_unmap; 8211 } 8212 8213 bnx2_init_nvram(bp); 8214 8215 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE); 8216 8217 if (bnx2_reg_rd_ind(bp, BNX2_MCP_TOE_ID) & BNX2_MCP_TOE_ID_FUNCTION_ID) 8218 bp->func = 1; 8219 8220 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) == 8221 BNX2_SHM_HDR_SIGNATURE_SIG) { 8222 u32 off = bp->func << 2; 8223 8224 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off); 8225 } else 8226 bp->shmem_base = HOST_VIEW_SHMEM_BASE; 8227 8228 /* Get the permanent MAC address. First we need to make sure the 8229 * firmware is actually running. 8230 */ 8231 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE); 8232 8233 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) != 8234 BNX2_DEV_INFO_SIGNATURE_MAGIC) { 8235 dev_err(&pdev->dev, "Firmware not running, aborting\n"); 8236 rc = -ENODEV; 8237 goto err_out_unmap; 8238 } 8239 8240 bnx2_read_vpd_fw_ver(bp); 8241 8242 j = strlen(bp->fw_version); 8243 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV); 8244 for (i = 0; i < 3 && j < 24; i++) { 8245 u8 num, k, skip0; 8246 8247 if (i == 0) { 8248 bp->fw_version[j++] = 'b'; 8249 bp->fw_version[j++] = 'c'; 8250 bp->fw_version[j++] = ' '; 8251 } 8252 num = (u8) (reg >> (24 - (i * 8))); 8253 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) { 8254 if (num >= k || !skip0 || k == 1) { 8255 bp->fw_version[j++] = (num / k) + '0'; 8256 skip0 = 0; 8257 } 8258 } 8259 if (i != 2) 8260 bp->fw_version[j++] = '.'; 8261 } 8262 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE); 8263 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED) 8264 bp->wol = 1; 8265 8266 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) { 8267 bp->flags |= BNX2_FLAG_ASF_ENABLE; 8268 8269 for (i = 0; i < 30; i++) { 8270 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION); 8271 if (reg & BNX2_CONDITION_MFW_RUN_MASK) 8272 break; 8273 msleep(10); 8274 } 8275 } 8276 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION); 8277 reg &= BNX2_CONDITION_MFW_RUN_MASK; 8278 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN && 8279 reg != BNX2_CONDITION_MFW_RUN_NONE) { 8280 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR); 8281 8282 if (j < 32) 8283 bp->fw_version[j++] = ' '; 8284 for (i = 0; i < 3 && j < 28; i++) { 8285 reg = bnx2_reg_rd_ind(bp, addr + i * 4); 8286 reg = be32_to_cpu(reg); 8287 memcpy(&bp->fw_version[j], ®, 4); 8288 j += 4; 8289 } 8290 } 8291 8292 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER); 8293 bp->mac_addr[0] = (u8) (reg >> 8); 8294 bp->mac_addr[1] = (u8) reg; 8295 8296 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER); 8297 bp->mac_addr[2] = (u8) (reg >> 24); 8298 bp->mac_addr[3] = (u8) (reg >> 16); 8299 bp->mac_addr[4] = (u8) (reg >> 8); 8300 bp->mac_addr[5] = (u8) reg; 8301 8302 bp->tx_ring_size = MAX_TX_DESC_CNT; 8303 bnx2_set_rx_ring_size(bp, 255); 8304 8305 bp->tx_quick_cons_trip_int = 2; 8306 bp->tx_quick_cons_trip = 20; 8307 bp->tx_ticks_int = 18; 8308 bp->tx_ticks = 80; 8309 8310 bp->rx_quick_cons_trip_int = 2; 8311 bp->rx_quick_cons_trip = 12; 8312 bp->rx_ticks_int = 18; 8313 bp->rx_ticks = 18; 8314 8315 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS; 8316 8317 bp->current_interval = BNX2_TIMER_INTERVAL; 8318 8319 bp->phy_addr = 1; 8320 8321 /* Disable WOL support if we are running on a SERDES chip. */ 8322 if (CHIP_NUM(bp) == CHIP_NUM_5709) 8323 bnx2_get_5709_media(bp); 8324 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT) 8325 bp->phy_flags |= BNX2_PHY_FLAG_SERDES; 8326 8327 bp->phy_port = PORT_TP; 8328 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) { 8329 bp->phy_port = PORT_FIBRE; 8330 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG); 8331 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) { 8332 bp->flags |= BNX2_FLAG_NO_WOL; 8333 bp->wol = 0; 8334 } 8335 if (CHIP_NUM(bp) == CHIP_NUM_5706) { 8336 /* Don't do parallel detect on this board because of 8337 * some board problems. The link will not go down 8338 * if we do parallel detect. 8339 */ 8340 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP && 8341 pdev->subsystem_device == 0x310c) 8342 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL; 8343 } else { 8344 bp->phy_addr = 2; 8345 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G) 8346 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE; 8347 } 8348 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 || 8349 CHIP_NUM(bp) == CHIP_NUM_5708) 8350 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX; 8351 else if (CHIP_NUM(bp) == CHIP_NUM_5709 && 8352 (CHIP_REV(bp) == CHIP_REV_Ax || 8353 CHIP_REV(bp) == CHIP_REV_Bx)) 8354 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC; 8355 8356 bnx2_init_fw_cap(bp); 8357 8358 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) || 8359 (CHIP_ID(bp) == CHIP_ID_5708_B0) || 8360 (CHIP_ID(bp) == CHIP_ID_5708_B1) || 8361 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) { 8362 bp->flags |= BNX2_FLAG_NO_WOL; 8363 bp->wol = 0; 8364 } 8365 8366 if (CHIP_ID(bp) == CHIP_ID_5706_A0) { 8367 bp->tx_quick_cons_trip_int = 8368 bp->tx_quick_cons_trip; 8369 bp->tx_ticks_int = bp->tx_ticks; 8370 bp->rx_quick_cons_trip_int = 8371 bp->rx_quick_cons_trip; 8372 bp->rx_ticks_int = bp->rx_ticks; 8373 bp->comp_prod_trip_int = bp->comp_prod_trip; 8374 bp->com_ticks_int = bp->com_ticks; 8375 bp->cmd_ticks_int = bp->cmd_ticks; 8376 } 8377 8378 /* Disable MSI on 5706 if AMD 8132 bridge is found. 8379 * 8380 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes 8381 * with byte enables disabled on the unused 32-bit word. This is legal 8382 * but causes problems on the AMD 8132 which will eventually stop 8383 * responding after a while. 8384 * 8385 * AMD believes this incompatibility is unique to the 5706, and 8386 * prefers to locally disable MSI rather than globally disabling it. 8387 */ 8388 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) { 8389 struct pci_dev *amd_8132 = NULL; 8390 8391 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD, 8392 PCI_DEVICE_ID_AMD_8132_BRIDGE, 8393 amd_8132))) { 8394 8395 if (amd_8132->revision >= 0x10 && 8396 amd_8132->revision <= 0x13) { 8397 disable_msi = 1; 8398 pci_dev_put(amd_8132); 8399 break; 8400 } 8401 } 8402 } 8403 8404 bnx2_set_default_link(bp); 8405 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX; 8406 8407 init_timer(&bp->timer); 8408 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL); 8409 bp->timer.data = (unsigned long) bp; 8410 bp->timer.function = bnx2_timer; 8411 8412 #ifdef BCM_CNIC 8413 if (bnx2_shmem_rd(bp, BNX2_ISCSI_INITIATOR) & BNX2_ISCSI_INITIATOR_EN) 8414 bp->cnic_eth_dev.max_iscsi_conn = 8415 (bnx2_shmem_rd(bp, BNX2_ISCSI_MAX_CONN) & 8416 BNX2_ISCSI_MAX_CONN_MASK) >> BNX2_ISCSI_MAX_CONN_SHIFT; 8417 #endif 8418 pci_save_state(pdev); 8419 8420 return 0; 8421 8422 err_out_unmap: 8423 if (bp->flags & BNX2_FLAG_AER_ENABLED) { 8424 pci_disable_pcie_error_reporting(pdev); 8425 bp->flags &= ~BNX2_FLAG_AER_ENABLED; 8426 } 8427 8428 pci_iounmap(pdev, bp->regview); 8429 bp->regview = NULL; 8430 8431 err_out_release: 8432 pci_release_regions(pdev); 8433 8434 err_out_disable: 8435 pci_disable_device(pdev); 8436 pci_set_drvdata(pdev, NULL); 8437 8438 err_out: 8439 return rc; 8440 } 8441 8442 static char * __devinit 8443 bnx2_bus_string(struct bnx2 *bp, char *str) 8444 { 8445 char *s = str; 8446 8447 if (bp->flags & BNX2_FLAG_PCIE) { 8448 s += sprintf(s, "PCI Express"); 8449 } else { 8450 s += sprintf(s, "PCI"); 8451 if (bp->flags & BNX2_FLAG_PCIX) 8452 s += sprintf(s, "-X"); 8453 if (bp->flags & BNX2_FLAG_PCI_32BIT) 8454 s += sprintf(s, " 32-bit"); 8455 else 8456 s += sprintf(s, " 64-bit"); 8457 s += sprintf(s, " %dMHz", bp->bus_speed_mhz); 8458 } 8459 return str; 8460 } 8461 8462 static void 8463 bnx2_del_napi(struct bnx2 *bp) 8464 { 8465 int i; 8466 8467 for (i = 0; i < bp->irq_nvecs; i++) 8468 netif_napi_del(&bp->bnx2_napi[i].napi); 8469 } 8470 8471 static void 8472 bnx2_init_napi(struct bnx2 *bp) 8473 { 8474 int i; 8475 8476 for (i = 0; i < bp->irq_nvecs; i++) { 8477 struct bnx2_napi *bnapi = &bp->bnx2_napi[i]; 8478 int (*poll)(struct napi_struct *, int); 8479 8480 if (i == 0) 8481 poll = bnx2_poll; 8482 else 8483 poll = bnx2_poll_msix; 8484 8485 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64); 8486 bnapi->bp = bp; 8487 } 8488 } 8489 8490 static const struct net_device_ops bnx2_netdev_ops = { 8491 .ndo_open = bnx2_open, 8492 .ndo_start_xmit = bnx2_start_xmit, 8493 .ndo_stop = bnx2_close, 8494 .ndo_get_stats64 = bnx2_get_stats64, 8495 .ndo_set_rx_mode = bnx2_set_rx_mode, 8496 .ndo_do_ioctl = bnx2_ioctl, 8497 .ndo_validate_addr = eth_validate_addr, 8498 .ndo_set_mac_address = bnx2_change_mac_addr, 8499 .ndo_change_mtu = bnx2_change_mtu, 8500 .ndo_fix_features = bnx2_fix_features, 8501 .ndo_set_features = bnx2_set_features, 8502 .ndo_tx_timeout = bnx2_tx_timeout, 8503 #ifdef CONFIG_NET_POLL_CONTROLLER 8504 .ndo_poll_controller = poll_bnx2, 8505 #endif 8506 }; 8507 8508 static int __devinit 8509 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 8510 { 8511 static int version_printed = 0; 8512 struct net_device *dev; 8513 struct bnx2 *bp; 8514 int rc; 8515 char str[40]; 8516 8517 if (version_printed++ == 0) 8518 pr_info("%s", version); 8519 8520 /* dev zeroed in init_etherdev */ 8521 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS); 8522 if (!dev) 8523 return -ENOMEM; 8524 8525 rc = bnx2_init_board(pdev, dev); 8526 if (rc < 0) 8527 goto err_free; 8528 8529 dev->netdev_ops = &bnx2_netdev_ops; 8530 dev->watchdog_timeo = TX_TIMEOUT; 8531 dev->ethtool_ops = &bnx2_ethtool_ops; 8532 8533 bp = netdev_priv(dev); 8534 8535 pci_set_drvdata(pdev, dev); 8536 8537 memcpy(dev->dev_addr, bp->mac_addr, 6); 8538 memcpy(dev->perm_addr, bp->mac_addr, 6); 8539 8540 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 8541 NETIF_F_TSO | NETIF_F_TSO_ECN | 8542 NETIF_F_RXHASH | NETIF_F_RXCSUM; 8543 8544 if (CHIP_NUM(bp) == CHIP_NUM_5709) 8545 dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6; 8546 8547 dev->vlan_features = dev->hw_features; 8548 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; 8549 dev->features |= dev->hw_features; 8550 dev->priv_flags |= IFF_UNICAST_FLT; 8551 8552 if ((rc = register_netdev(dev))) { 8553 dev_err(&pdev->dev, "Cannot register net device\n"); 8554 goto error; 8555 } 8556 8557 netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, " 8558 "node addr %pM\n", board_info[ent->driver_data].name, 8559 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A', 8560 ((CHIP_ID(bp) & 0x0ff0) >> 4), 8561 bnx2_bus_string(bp, str), (long)pci_resource_start(pdev, 0), 8562 pdev->irq, dev->dev_addr); 8563 8564 return 0; 8565 8566 error: 8567 iounmap(bp->regview); 8568 pci_release_regions(pdev); 8569 pci_disable_device(pdev); 8570 pci_set_drvdata(pdev, NULL); 8571 err_free: 8572 free_netdev(dev); 8573 return rc; 8574 } 8575 8576 static void __devexit 8577 bnx2_remove_one(struct pci_dev *pdev) 8578 { 8579 struct net_device *dev = pci_get_drvdata(pdev); 8580 struct bnx2 *bp = netdev_priv(dev); 8581 8582 unregister_netdev(dev); 8583 8584 del_timer_sync(&bp->timer); 8585 cancel_work_sync(&bp->reset_task); 8586 8587 pci_iounmap(bp->pdev, bp->regview); 8588 8589 kfree(bp->temp_stats_blk); 8590 8591 if (bp->flags & BNX2_FLAG_AER_ENABLED) { 8592 pci_disable_pcie_error_reporting(pdev); 8593 bp->flags &= ~BNX2_FLAG_AER_ENABLED; 8594 } 8595 8596 bnx2_release_firmware(bp); 8597 8598 free_netdev(dev); 8599 8600 pci_release_regions(pdev); 8601 pci_disable_device(pdev); 8602 pci_set_drvdata(pdev, NULL); 8603 } 8604 8605 static int 8606 bnx2_suspend(struct pci_dev *pdev, pm_message_t state) 8607 { 8608 struct net_device *dev = pci_get_drvdata(pdev); 8609 struct bnx2 *bp = netdev_priv(dev); 8610 8611 /* PCI register 4 needs to be saved whether netif_running() or not. 8612 * MSI address and data need to be saved if using MSI and 8613 * netif_running(). 8614 */ 8615 pci_save_state(pdev); 8616 if (!netif_running(dev)) 8617 return 0; 8618 8619 cancel_work_sync(&bp->reset_task); 8620 bnx2_netif_stop(bp, true); 8621 netif_device_detach(dev); 8622 del_timer_sync(&bp->timer); 8623 bnx2_shutdown_chip(bp); 8624 bnx2_free_skbs(bp); 8625 bnx2_set_power_state(bp, pci_choose_state(pdev, state)); 8626 return 0; 8627 } 8628 8629 static int 8630 bnx2_resume(struct pci_dev *pdev) 8631 { 8632 struct net_device *dev = pci_get_drvdata(pdev); 8633 struct bnx2 *bp = netdev_priv(dev); 8634 8635 pci_restore_state(pdev); 8636 if (!netif_running(dev)) 8637 return 0; 8638 8639 bnx2_set_power_state(bp, PCI_D0); 8640 netif_device_attach(dev); 8641 bnx2_init_nic(bp, 1); 8642 bnx2_netif_start(bp, true); 8643 return 0; 8644 } 8645 8646 /** 8647 * bnx2_io_error_detected - called when PCI error is detected 8648 * @pdev: Pointer to PCI device 8649 * @state: The current pci connection state 8650 * 8651 * This function is called after a PCI bus error affecting 8652 * this device has been detected. 8653 */ 8654 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev, 8655 pci_channel_state_t state) 8656 { 8657 struct net_device *dev = pci_get_drvdata(pdev); 8658 struct bnx2 *bp = netdev_priv(dev); 8659 8660 rtnl_lock(); 8661 netif_device_detach(dev); 8662 8663 if (state == pci_channel_io_perm_failure) { 8664 rtnl_unlock(); 8665 return PCI_ERS_RESULT_DISCONNECT; 8666 } 8667 8668 if (netif_running(dev)) { 8669 bnx2_netif_stop(bp, true); 8670 del_timer_sync(&bp->timer); 8671 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET); 8672 } 8673 8674 pci_disable_device(pdev); 8675 rtnl_unlock(); 8676 8677 /* Request a slot slot reset. */ 8678 return PCI_ERS_RESULT_NEED_RESET; 8679 } 8680 8681 /** 8682 * bnx2_io_slot_reset - called after the pci bus has been reset. 8683 * @pdev: Pointer to PCI device 8684 * 8685 * Restart the card from scratch, as if from a cold-boot. 8686 */ 8687 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev) 8688 { 8689 struct net_device *dev = pci_get_drvdata(pdev); 8690 struct bnx2 *bp = netdev_priv(dev); 8691 pci_ers_result_t result; 8692 int err; 8693 8694 rtnl_lock(); 8695 if (pci_enable_device(pdev)) { 8696 dev_err(&pdev->dev, 8697 "Cannot re-enable PCI device after reset\n"); 8698 result = PCI_ERS_RESULT_DISCONNECT; 8699 } else { 8700 pci_set_master(pdev); 8701 pci_restore_state(pdev); 8702 pci_save_state(pdev); 8703 8704 if (netif_running(dev)) { 8705 bnx2_set_power_state(bp, PCI_D0); 8706 bnx2_init_nic(bp, 1); 8707 } 8708 result = PCI_ERS_RESULT_RECOVERED; 8709 } 8710 rtnl_unlock(); 8711 8712 if (!(bp->flags & BNX2_FLAG_AER_ENABLED)) 8713 return result; 8714 8715 err = pci_cleanup_aer_uncorrect_error_status(pdev); 8716 if (err) { 8717 dev_err(&pdev->dev, 8718 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 8719 err); /* non-fatal, continue */ 8720 } 8721 8722 return result; 8723 } 8724 8725 /** 8726 * bnx2_io_resume - called when traffic can start flowing again. 8727 * @pdev: Pointer to PCI device 8728 * 8729 * This callback is called when the error recovery driver tells us that 8730 * its OK to resume normal operation. 8731 */ 8732 static void bnx2_io_resume(struct pci_dev *pdev) 8733 { 8734 struct net_device *dev = pci_get_drvdata(pdev); 8735 struct bnx2 *bp = netdev_priv(dev); 8736 8737 rtnl_lock(); 8738 if (netif_running(dev)) 8739 bnx2_netif_start(bp, true); 8740 8741 netif_device_attach(dev); 8742 rtnl_unlock(); 8743 } 8744 8745 static struct pci_error_handlers bnx2_err_handler = { 8746 .error_detected = bnx2_io_error_detected, 8747 .slot_reset = bnx2_io_slot_reset, 8748 .resume = bnx2_io_resume, 8749 }; 8750 8751 static struct pci_driver bnx2_pci_driver = { 8752 .name = DRV_MODULE_NAME, 8753 .id_table = bnx2_pci_tbl, 8754 .probe = bnx2_init_one, 8755 .remove = __devexit_p(bnx2_remove_one), 8756 .suspend = bnx2_suspend, 8757 .resume = bnx2_resume, 8758 .err_handler = &bnx2_err_handler, 8759 }; 8760 8761 static int __init bnx2_init(void) 8762 { 8763 return pci_register_driver(&bnx2_pci_driver); 8764 } 8765 8766 static void __exit bnx2_cleanup(void) 8767 { 8768 pci_unregister_driver(&bnx2_pci_driver); 8769 } 8770 8771 module_init(bnx2_init); 8772 module_exit(bnx2_cleanup); 8773 8774 8775 8776