1 /*
2  * Broadcom BCM7xxx System Port Ethernet MAC driver
3  *
4  * Copyright (C) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
12 
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/platform_device.h>
20 #include <linux/of.h>
21 #include <linux/of_net.h>
22 #include <linux/of_mdio.h>
23 #include <linux/phy.h>
24 #include <linux/phy_fixed.h>
25 #include <net/ip.h>
26 #include <net/ipv6.h>
27 
28 #include "bcmsysport.h"
29 
30 /* I/O accessors register helpers */
31 #define BCM_SYSPORT_IO_MACRO(name, offset) \
32 static inline u32 name##_readl(struct bcm_sysport_priv *priv, u32 off)	\
33 {									\
34 	u32 reg = __raw_readl(priv->base + offset + off);		\
35 	return reg;							\
36 }									\
37 static inline void name##_writel(struct bcm_sysport_priv *priv,		\
38 				  u32 val, u32 off)			\
39 {									\
40 	__raw_writel(val, priv->base + offset + off);			\
41 }									\
42 
43 BCM_SYSPORT_IO_MACRO(intrl2_0, SYS_PORT_INTRL2_0_OFFSET);
44 BCM_SYSPORT_IO_MACRO(intrl2_1, SYS_PORT_INTRL2_1_OFFSET);
45 BCM_SYSPORT_IO_MACRO(umac, SYS_PORT_UMAC_OFFSET);
46 BCM_SYSPORT_IO_MACRO(tdma, SYS_PORT_TDMA_OFFSET);
47 BCM_SYSPORT_IO_MACRO(rdma, SYS_PORT_RDMA_OFFSET);
48 BCM_SYSPORT_IO_MACRO(rxchk, SYS_PORT_RXCHK_OFFSET);
49 BCM_SYSPORT_IO_MACRO(txchk, SYS_PORT_TXCHK_OFFSET);
50 BCM_SYSPORT_IO_MACRO(rbuf, SYS_PORT_RBUF_OFFSET);
51 BCM_SYSPORT_IO_MACRO(tbuf, SYS_PORT_TBUF_OFFSET);
52 BCM_SYSPORT_IO_MACRO(topctrl, SYS_PORT_TOPCTRL_OFFSET);
53 
54 /* L2-interrupt masking/unmasking helpers, does automatic saving of the applied
55  * mask in a software copy to avoid CPU_MASK_STATUS reads in hot-paths.
56   */
57 #define BCM_SYSPORT_INTR_L2(which)	\
58 static inline void intrl2_##which##_mask_clear(struct bcm_sysport_priv *priv, \
59 						u32 mask)		\
60 {									\
61 	intrl2_##which##_writel(priv, mask, INTRL2_CPU_MASK_CLEAR);	\
62 	priv->irq##which##_mask &= ~(mask);				\
63 }									\
64 static inline void intrl2_##which##_mask_set(struct bcm_sysport_priv *priv, \
65 						u32 mask)		\
66 {									\
67 	intrl2_## which##_writel(priv, mask, INTRL2_CPU_MASK_SET);	\
68 	priv->irq##which##_mask |= (mask);				\
69 }									\
70 
71 BCM_SYSPORT_INTR_L2(0)
72 BCM_SYSPORT_INTR_L2(1)
73 
74 /* Register accesses to GISB/RBUS registers are expensive (few hundred
75  * nanoseconds), so keep the check for 64-bits explicit here to save
76  * one register write per-packet on 32-bits platforms.
77  */
78 static inline void dma_desc_set_addr(struct bcm_sysport_priv *priv,
79 				     void __iomem *d,
80 				     dma_addr_t addr)
81 {
82 #ifdef CONFIG_PHYS_ADDR_T_64BIT
83 	__raw_writel(upper_32_bits(addr) & DESC_ADDR_HI_MASK,
84 		     d + DESC_ADDR_HI_STATUS_LEN);
85 #endif
86 	__raw_writel(lower_32_bits(addr), d + DESC_ADDR_LO);
87 }
88 
89 static inline void tdma_port_write_desc_addr(struct bcm_sysport_priv *priv,
90 					     struct dma_desc *desc,
91 					     unsigned int port)
92 {
93 	/* Ports are latched, so write upper address first */
94 	tdma_writel(priv, desc->addr_status_len, TDMA_WRITE_PORT_HI(port));
95 	tdma_writel(priv, desc->addr_lo, TDMA_WRITE_PORT_LO(port));
96 }
97 
98 /* Ethtool operations */
99 static int bcm_sysport_set_settings(struct net_device *dev,
100 				    struct ethtool_cmd *cmd)
101 {
102 	struct bcm_sysport_priv *priv = netdev_priv(dev);
103 
104 	if (!netif_running(dev))
105 		return -EINVAL;
106 
107 	return phy_ethtool_sset(priv->phydev, cmd);
108 }
109 
110 static int bcm_sysport_get_settings(struct net_device *dev,
111 				    struct ethtool_cmd *cmd)
112 {
113 	struct bcm_sysport_priv *priv = netdev_priv(dev);
114 
115 	if (!netif_running(dev))
116 		return -EINVAL;
117 
118 	return phy_ethtool_gset(priv->phydev, cmd);
119 }
120 
121 static int bcm_sysport_set_rx_csum(struct net_device *dev,
122 				   netdev_features_t wanted)
123 {
124 	struct bcm_sysport_priv *priv = netdev_priv(dev);
125 	u32 reg;
126 
127 	priv->rx_chk_en = !!(wanted & NETIF_F_RXCSUM);
128 	reg = rxchk_readl(priv, RXCHK_CONTROL);
129 	if (priv->rx_chk_en)
130 		reg |= RXCHK_EN;
131 	else
132 		reg &= ~RXCHK_EN;
133 
134 	/* If UniMAC forwards CRC, we need to skip over it to get
135 	 * a valid CHK bit to be set in the per-packet status word
136 	 */
137 	if (priv->rx_chk_en && priv->crc_fwd)
138 		reg |= RXCHK_SKIP_FCS;
139 	else
140 		reg &= ~RXCHK_SKIP_FCS;
141 
142 	/* If Broadcom tags are enabled (e.g: using a switch), make
143 	 * sure we tell the RXCHK hardware to expect a 4-bytes Broadcom
144 	 * tag after the Ethernet MAC Source Address.
145 	 */
146 	if (netdev_uses_dsa(dev))
147 		reg |= RXCHK_BRCM_TAG_EN;
148 	else
149 		reg &= ~RXCHK_BRCM_TAG_EN;
150 
151 	rxchk_writel(priv, reg, RXCHK_CONTROL);
152 
153 	return 0;
154 }
155 
156 static int bcm_sysport_set_tx_csum(struct net_device *dev,
157 				   netdev_features_t wanted)
158 {
159 	struct bcm_sysport_priv *priv = netdev_priv(dev);
160 	u32 reg;
161 
162 	/* Hardware transmit checksum requires us to enable the Transmit status
163 	 * block prepended to the packet contents
164 	 */
165 	priv->tsb_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
166 	reg = tdma_readl(priv, TDMA_CONTROL);
167 	if (priv->tsb_en)
168 		reg |= TSB_EN;
169 	else
170 		reg &= ~TSB_EN;
171 	tdma_writel(priv, reg, TDMA_CONTROL);
172 
173 	return 0;
174 }
175 
176 static int bcm_sysport_set_features(struct net_device *dev,
177 				    netdev_features_t features)
178 {
179 	netdev_features_t changed = features ^ dev->features;
180 	netdev_features_t wanted = dev->wanted_features;
181 	int ret = 0;
182 
183 	if (changed & NETIF_F_RXCSUM)
184 		ret = bcm_sysport_set_rx_csum(dev, wanted);
185 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
186 		ret = bcm_sysport_set_tx_csum(dev, wanted);
187 
188 	return ret;
189 }
190 
191 /* Hardware counters must be kept in sync because the order/offset
192  * is important here (order in structure declaration = order in hardware)
193  */
194 static const struct bcm_sysport_stats bcm_sysport_gstrings_stats[] = {
195 	/* general stats */
196 	STAT_NETDEV(rx_packets),
197 	STAT_NETDEV(tx_packets),
198 	STAT_NETDEV(rx_bytes),
199 	STAT_NETDEV(tx_bytes),
200 	STAT_NETDEV(rx_errors),
201 	STAT_NETDEV(tx_errors),
202 	STAT_NETDEV(rx_dropped),
203 	STAT_NETDEV(tx_dropped),
204 	STAT_NETDEV(multicast),
205 	/* UniMAC RSV counters */
206 	STAT_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
207 	STAT_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
208 	STAT_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
209 	STAT_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
210 	STAT_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
211 	STAT_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
212 	STAT_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
213 	STAT_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
214 	STAT_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
215 	STAT_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
216 	STAT_MIB_RX("rx_pkts", mib.rx.pkt),
217 	STAT_MIB_RX("rx_bytes", mib.rx.bytes),
218 	STAT_MIB_RX("rx_multicast", mib.rx.mca),
219 	STAT_MIB_RX("rx_broadcast", mib.rx.bca),
220 	STAT_MIB_RX("rx_fcs", mib.rx.fcs),
221 	STAT_MIB_RX("rx_control", mib.rx.cf),
222 	STAT_MIB_RX("rx_pause", mib.rx.pf),
223 	STAT_MIB_RX("rx_unknown", mib.rx.uo),
224 	STAT_MIB_RX("rx_align", mib.rx.aln),
225 	STAT_MIB_RX("rx_outrange", mib.rx.flr),
226 	STAT_MIB_RX("rx_code", mib.rx.cde),
227 	STAT_MIB_RX("rx_carrier", mib.rx.fcr),
228 	STAT_MIB_RX("rx_oversize", mib.rx.ovr),
229 	STAT_MIB_RX("rx_jabber", mib.rx.jbr),
230 	STAT_MIB_RX("rx_mtu_err", mib.rx.mtue),
231 	STAT_MIB_RX("rx_good_pkts", mib.rx.pok),
232 	STAT_MIB_RX("rx_unicast", mib.rx.uc),
233 	STAT_MIB_RX("rx_ppp", mib.rx.ppp),
234 	STAT_MIB_RX("rx_crc", mib.rx.rcrc),
235 	/* UniMAC TSV counters */
236 	STAT_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
237 	STAT_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
238 	STAT_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
239 	STAT_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
240 	STAT_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
241 	STAT_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
242 	STAT_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
243 	STAT_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
244 	STAT_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
245 	STAT_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
246 	STAT_MIB_TX("tx_pkts", mib.tx.pkts),
247 	STAT_MIB_TX("tx_multicast", mib.tx.mca),
248 	STAT_MIB_TX("tx_broadcast", mib.tx.bca),
249 	STAT_MIB_TX("tx_pause", mib.tx.pf),
250 	STAT_MIB_TX("tx_control", mib.tx.cf),
251 	STAT_MIB_TX("tx_fcs_err", mib.tx.fcs),
252 	STAT_MIB_TX("tx_oversize", mib.tx.ovr),
253 	STAT_MIB_TX("tx_defer", mib.tx.drf),
254 	STAT_MIB_TX("tx_excess_defer", mib.tx.edf),
255 	STAT_MIB_TX("tx_single_col", mib.tx.scl),
256 	STAT_MIB_TX("tx_multi_col", mib.tx.mcl),
257 	STAT_MIB_TX("tx_late_col", mib.tx.lcl),
258 	STAT_MIB_TX("tx_excess_col", mib.tx.ecl),
259 	STAT_MIB_TX("tx_frags", mib.tx.frg),
260 	STAT_MIB_TX("tx_total_col", mib.tx.ncl),
261 	STAT_MIB_TX("tx_jabber", mib.tx.jbr),
262 	STAT_MIB_TX("tx_bytes", mib.tx.bytes),
263 	STAT_MIB_TX("tx_good_pkts", mib.tx.pok),
264 	STAT_MIB_TX("tx_unicast", mib.tx.uc),
265 	/* UniMAC RUNT counters */
266 	STAT_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
267 	STAT_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
268 	STAT_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
269 	STAT_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
270 	/* RXCHK misc statistics */
271 	STAT_RXCHK("rxchk_bad_csum", mib.rxchk_bad_csum, RXCHK_BAD_CSUM_CNTR),
272 	STAT_RXCHK("rxchk_other_pkt_disc", mib.rxchk_other_pkt_disc,
273 		   RXCHK_OTHER_DISC_CNTR),
274 	/* RBUF misc statistics */
275 	STAT_RBUF("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, RBUF_OVFL_DISC_CNTR),
276 	STAT_RBUF("rbuf_err_cnt", mib.rbuf_err_cnt, RBUF_ERR_PKT_CNTR),
277 	STAT_MIB_SOFT("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
278 	STAT_MIB_SOFT("rx_dma_failed", mib.rx_dma_failed),
279 	STAT_MIB_SOFT("tx_dma_failed", mib.tx_dma_failed),
280 };
281 
282 #define BCM_SYSPORT_STATS_LEN	ARRAY_SIZE(bcm_sysport_gstrings_stats)
283 
284 static void bcm_sysport_get_drvinfo(struct net_device *dev,
285 				    struct ethtool_drvinfo *info)
286 {
287 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
288 	strlcpy(info->version, "0.1", sizeof(info->version));
289 	strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
290 	info->n_stats = BCM_SYSPORT_STATS_LEN;
291 }
292 
293 static u32 bcm_sysport_get_msglvl(struct net_device *dev)
294 {
295 	struct bcm_sysport_priv *priv = netdev_priv(dev);
296 
297 	return priv->msg_enable;
298 }
299 
300 static void bcm_sysport_set_msglvl(struct net_device *dev, u32 enable)
301 {
302 	struct bcm_sysport_priv *priv = netdev_priv(dev);
303 
304 	priv->msg_enable = enable;
305 }
306 
307 static int bcm_sysport_get_sset_count(struct net_device *dev, int string_set)
308 {
309 	switch (string_set) {
310 	case ETH_SS_STATS:
311 		return BCM_SYSPORT_STATS_LEN;
312 	default:
313 		return -EOPNOTSUPP;
314 	}
315 }
316 
317 static void bcm_sysport_get_strings(struct net_device *dev,
318 				    u32 stringset, u8 *data)
319 {
320 	int i;
321 
322 	switch (stringset) {
323 	case ETH_SS_STATS:
324 		for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
325 			memcpy(data + i * ETH_GSTRING_LEN,
326 			       bcm_sysport_gstrings_stats[i].stat_string,
327 			       ETH_GSTRING_LEN);
328 		}
329 		break;
330 	default:
331 		break;
332 	}
333 }
334 
335 static void bcm_sysport_update_mib_counters(struct bcm_sysport_priv *priv)
336 {
337 	int i, j = 0;
338 
339 	for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
340 		const struct bcm_sysport_stats *s;
341 		u8 offset = 0;
342 		u32 val = 0;
343 		char *p;
344 
345 		s = &bcm_sysport_gstrings_stats[i];
346 		switch (s->type) {
347 		case BCM_SYSPORT_STAT_NETDEV:
348 		case BCM_SYSPORT_STAT_SOFT:
349 			continue;
350 		case BCM_SYSPORT_STAT_MIB_RX:
351 		case BCM_SYSPORT_STAT_MIB_TX:
352 		case BCM_SYSPORT_STAT_RUNT:
353 			if (s->type != BCM_SYSPORT_STAT_MIB_RX)
354 				offset = UMAC_MIB_STAT_OFFSET;
355 			val = umac_readl(priv, UMAC_MIB_START + j + offset);
356 			break;
357 		case BCM_SYSPORT_STAT_RXCHK:
358 			val = rxchk_readl(priv, s->reg_offset);
359 			if (val == ~0)
360 				rxchk_writel(priv, 0, s->reg_offset);
361 			break;
362 		case BCM_SYSPORT_STAT_RBUF:
363 			val = rbuf_readl(priv, s->reg_offset);
364 			if (val == ~0)
365 				rbuf_writel(priv, 0, s->reg_offset);
366 			break;
367 		}
368 
369 		j += s->stat_sizeof;
370 		p = (char *)priv + s->stat_offset;
371 		*(u32 *)p = val;
372 	}
373 
374 	netif_dbg(priv, hw, priv->netdev, "updated MIB counters\n");
375 }
376 
377 static void bcm_sysport_get_stats(struct net_device *dev,
378 				  struct ethtool_stats *stats, u64 *data)
379 {
380 	struct bcm_sysport_priv *priv = netdev_priv(dev);
381 	int i;
382 
383 	if (netif_running(dev))
384 		bcm_sysport_update_mib_counters(priv);
385 
386 	for (i =  0; i < BCM_SYSPORT_STATS_LEN; i++) {
387 		const struct bcm_sysport_stats *s;
388 		char *p;
389 
390 		s = &bcm_sysport_gstrings_stats[i];
391 		if (s->type == BCM_SYSPORT_STAT_NETDEV)
392 			p = (char *)&dev->stats;
393 		else
394 			p = (char *)priv;
395 		p += s->stat_offset;
396 		data[i] = *(u32 *)p;
397 	}
398 }
399 
400 static void bcm_sysport_get_wol(struct net_device *dev,
401 				struct ethtool_wolinfo *wol)
402 {
403 	struct bcm_sysport_priv *priv = netdev_priv(dev);
404 	u32 reg;
405 
406 	wol->supported = WAKE_MAGIC | WAKE_MAGICSECURE;
407 	wol->wolopts = priv->wolopts;
408 
409 	if (!(priv->wolopts & WAKE_MAGICSECURE))
410 		return;
411 
412 	/* Return the programmed SecureOn password */
413 	reg = umac_readl(priv, UMAC_PSW_MS);
414 	put_unaligned_be16(reg, &wol->sopass[0]);
415 	reg = umac_readl(priv, UMAC_PSW_LS);
416 	put_unaligned_be32(reg, &wol->sopass[2]);
417 }
418 
419 static int bcm_sysport_set_wol(struct net_device *dev,
420 			       struct ethtool_wolinfo *wol)
421 {
422 	struct bcm_sysport_priv *priv = netdev_priv(dev);
423 	struct device *kdev = &priv->pdev->dev;
424 	u32 supported = WAKE_MAGIC | WAKE_MAGICSECURE;
425 
426 	if (!device_can_wakeup(kdev))
427 		return -ENOTSUPP;
428 
429 	if (wol->wolopts & ~supported)
430 		return -EINVAL;
431 
432 	/* Program the SecureOn password */
433 	if (wol->wolopts & WAKE_MAGICSECURE) {
434 		umac_writel(priv, get_unaligned_be16(&wol->sopass[0]),
435 			    UMAC_PSW_MS);
436 		umac_writel(priv, get_unaligned_be32(&wol->sopass[2]),
437 			    UMAC_PSW_LS);
438 	}
439 
440 	/* Flag the device and relevant IRQ as wakeup capable */
441 	if (wol->wolopts) {
442 		device_set_wakeup_enable(kdev, 1);
443 		if (priv->wol_irq_disabled)
444 			enable_irq_wake(priv->wol_irq);
445 		priv->wol_irq_disabled = 0;
446 	} else {
447 		device_set_wakeup_enable(kdev, 0);
448 		/* Avoid unbalanced disable_irq_wake calls */
449 		if (!priv->wol_irq_disabled)
450 			disable_irq_wake(priv->wol_irq);
451 		priv->wol_irq_disabled = 1;
452 	}
453 
454 	priv->wolopts = wol->wolopts;
455 
456 	return 0;
457 }
458 
459 static int bcm_sysport_get_coalesce(struct net_device *dev,
460 				    struct ethtool_coalesce *ec)
461 {
462 	struct bcm_sysport_priv *priv = netdev_priv(dev);
463 	u32 reg;
464 
465 	reg = tdma_readl(priv, TDMA_DESC_RING_INTR_CONTROL(0));
466 
467 	ec->tx_coalesce_usecs = (reg >> RING_TIMEOUT_SHIFT) * 8192 / 1000;
468 	ec->tx_max_coalesced_frames = reg & RING_INTR_THRESH_MASK;
469 
470 	reg = rdma_readl(priv, RDMA_MBDONE_INTR);
471 
472 	ec->rx_coalesce_usecs = (reg >> RDMA_TIMEOUT_SHIFT) * 8192 / 1000;
473 	ec->rx_max_coalesced_frames = reg & RDMA_INTR_THRESH_MASK;
474 
475 	return 0;
476 }
477 
478 static int bcm_sysport_set_coalesce(struct net_device *dev,
479 				    struct ethtool_coalesce *ec)
480 {
481 	struct bcm_sysport_priv *priv = netdev_priv(dev);
482 	unsigned int i;
483 	u32 reg;
484 
485 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
486 	 * divided by 1024, which yield roughly 8.192 us, our maximum value has
487 	 * to fit in the RING_TIMEOUT_MASK (16 bits).
488 	 */
489 	if (ec->tx_max_coalesced_frames > RING_INTR_THRESH_MASK ||
490 	    ec->tx_coalesce_usecs > (RING_TIMEOUT_MASK * 8) + 1 ||
491 	    ec->rx_max_coalesced_frames > RDMA_INTR_THRESH_MASK ||
492 	    ec->rx_coalesce_usecs > (RDMA_TIMEOUT_MASK * 8) + 1)
493 		return -EINVAL;
494 
495 	if ((ec->tx_coalesce_usecs == 0 && ec->tx_max_coalesced_frames == 0) ||
496 	    (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0))
497 		return -EINVAL;
498 
499 	for (i = 0; i < dev->num_tx_queues; i++) {
500 		reg = tdma_readl(priv, TDMA_DESC_RING_INTR_CONTROL(i));
501 		reg &= ~(RING_INTR_THRESH_MASK |
502 			 RING_TIMEOUT_MASK << RING_TIMEOUT_SHIFT);
503 		reg |= ec->tx_max_coalesced_frames;
504 		reg |= DIV_ROUND_UP(ec->tx_coalesce_usecs * 1000, 8192) <<
505 			 RING_TIMEOUT_SHIFT;
506 		tdma_writel(priv, reg, TDMA_DESC_RING_INTR_CONTROL(i));
507 	}
508 
509 	reg = rdma_readl(priv, RDMA_MBDONE_INTR);
510 	reg &= ~(RDMA_INTR_THRESH_MASK |
511 		 RDMA_TIMEOUT_MASK << RDMA_TIMEOUT_SHIFT);
512 	reg |= ec->rx_max_coalesced_frames;
513 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192) <<
514 			    RDMA_TIMEOUT_SHIFT;
515 	rdma_writel(priv, reg, RDMA_MBDONE_INTR);
516 
517 	return 0;
518 }
519 
520 static void bcm_sysport_free_cb(struct bcm_sysport_cb *cb)
521 {
522 	dev_kfree_skb_any(cb->skb);
523 	cb->skb = NULL;
524 	dma_unmap_addr_set(cb, dma_addr, 0);
525 }
526 
527 static struct sk_buff *bcm_sysport_rx_refill(struct bcm_sysport_priv *priv,
528 					     struct bcm_sysport_cb *cb)
529 {
530 	struct device *kdev = &priv->pdev->dev;
531 	struct net_device *ndev = priv->netdev;
532 	struct sk_buff *skb, *rx_skb;
533 	dma_addr_t mapping;
534 
535 	/* Allocate a new SKB for a new packet */
536 	skb = netdev_alloc_skb(priv->netdev, RX_BUF_LENGTH);
537 	if (!skb) {
538 		priv->mib.alloc_rx_buff_failed++;
539 		netif_err(priv, rx_err, ndev, "SKB alloc failed\n");
540 		return NULL;
541 	}
542 
543 	mapping = dma_map_single(kdev, skb->data,
544 				 RX_BUF_LENGTH, DMA_FROM_DEVICE);
545 	if (dma_mapping_error(kdev, mapping)) {
546 		priv->mib.rx_dma_failed++;
547 		dev_kfree_skb_any(skb);
548 		netif_err(priv, rx_err, ndev, "DMA mapping failure\n");
549 		return NULL;
550 	}
551 
552 	/* Grab the current SKB on the ring */
553 	rx_skb = cb->skb;
554 	if (likely(rx_skb))
555 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
556 				 RX_BUF_LENGTH, DMA_FROM_DEVICE);
557 
558 	/* Put the new SKB on the ring */
559 	cb->skb = skb;
560 	dma_unmap_addr_set(cb, dma_addr, mapping);
561 	dma_desc_set_addr(priv, cb->bd_addr, mapping);
562 
563 	netif_dbg(priv, rx_status, ndev, "RX refill\n");
564 
565 	/* Return the current SKB to the caller */
566 	return rx_skb;
567 }
568 
569 static int bcm_sysport_alloc_rx_bufs(struct bcm_sysport_priv *priv)
570 {
571 	struct bcm_sysport_cb *cb;
572 	struct sk_buff *skb;
573 	unsigned int i;
574 
575 	for (i = 0; i < priv->num_rx_bds; i++) {
576 		cb = &priv->rx_cbs[i];
577 		skb = bcm_sysport_rx_refill(priv, cb);
578 		if (skb)
579 			dev_kfree_skb(skb);
580 		if (!cb->skb)
581 			return -ENOMEM;
582 	}
583 
584 	return 0;
585 }
586 
587 /* Poll the hardware for up to budget packets to process */
588 static unsigned int bcm_sysport_desc_rx(struct bcm_sysport_priv *priv,
589 					unsigned int budget)
590 {
591 	struct net_device *ndev = priv->netdev;
592 	unsigned int processed = 0, to_process;
593 	struct bcm_sysport_cb *cb;
594 	struct sk_buff *skb;
595 	unsigned int p_index;
596 	u16 len, status;
597 	struct bcm_rsb *rsb;
598 
599 	/* Determine how much we should process since last call */
600 	p_index = rdma_readl(priv, RDMA_PROD_INDEX);
601 	p_index &= RDMA_PROD_INDEX_MASK;
602 
603 	if (p_index < priv->rx_c_index)
604 		to_process = (RDMA_CONS_INDEX_MASK + 1) -
605 			priv->rx_c_index + p_index;
606 	else
607 		to_process = p_index - priv->rx_c_index;
608 
609 	netif_dbg(priv, rx_status, ndev,
610 		  "p_index=%d rx_c_index=%d to_process=%d\n",
611 		  p_index, priv->rx_c_index, to_process);
612 
613 	while ((processed < to_process) && (processed < budget)) {
614 		cb = &priv->rx_cbs[priv->rx_read_ptr];
615 		skb = bcm_sysport_rx_refill(priv, cb);
616 
617 
618 		/* We do not have a backing SKB, so we do not a corresponding
619 		 * DMA mapping for this incoming packet since
620 		 * bcm_sysport_rx_refill always either has both skb and mapping
621 		 * or none.
622 		 */
623 		if (unlikely(!skb)) {
624 			netif_err(priv, rx_err, ndev, "out of memory!\n");
625 			ndev->stats.rx_dropped++;
626 			ndev->stats.rx_errors++;
627 			goto next;
628 		}
629 
630 		/* Extract the Receive Status Block prepended */
631 		rsb = (struct bcm_rsb *)skb->data;
632 		len = (rsb->rx_status_len >> DESC_LEN_SHIFT) & DESC_LEN_MASK;
633 		status = (rsb->rx_status_len >> DESC_STATUS_SHIFT) &
634 			  DESC_STATUS_MASK;
635 
636 		netif_dbg(priv, rx_status, ndev,
637 			  "p=%d, c=%d, rd_ptr=%d, len=%d, flag=0x%04x\n",
638 			  p_index, priv->rx_c_index, priv->rx_read_ptr,
639 			  len, status);
640 
641 		if (unlikely(len > RX_BUF_LENGTH)) {
642 			netif_err(priv, rx_status, ndev, "oversized packet\n");
643 			ndev->stats.rx_length_errors++;
644 			ndev->stats.rx_errors++;
645 			dev_kfree_skb_any(skb);
646 			goto next;
647 		}
648 
649 		if (unlikely(!(status & DESC_EOP) || !(status & DESC_SOP))) {
650 			netif_err(priv, rx_status, ndev, "fragmented packet!\n");
651 			ndev->stats.rx_dropped++;
652 			ndev->stats.rx_errors++;
653 			dev_kfree_skb_any(skb);
654 			goto next;
655 		}
656 
657 		if (unlikely(status & (RX_STATUS_ERR | RX_STATUS_OVFLOW))) {
658 			netif_err(priv, rx_err, ndev, "error packet\n");
659 			if (status & RX_STATUS_OVFLOW)
660 				ndev->stats.rx_over_errors++;
661 			ndev->stats.rx_dropped++;
662 			ndev->stats.rx_errors++;
663 			dev_kfree_skb_any(skb);
664 			goto next;
665 		}
666 
667 		skb_put(skb, len);
668 
669 		/* Hardware validated our checksum */
670 		if (likely(status & DESC_L4_CSUM))
671 			skb->ip_summed = CHECKSUM_UNNECESSARY;
672 
673 		/* Hardware pre-pends packets with 2bytes before Ethernet
674 		 * header plus we have the Receive Status Block, strip off all
675 		 * of this from the SKB.
676 		 */
677 		skb_pull(skb, sizeof(*rsb) + 2);
678 		len -= (sizeof(*rsb) + 2);
679 
680 		/* UniMAC may forward CRC */
681 		if (priv->crc_fwd) {
682 			skb_trim(skb, len - ETH_FCS_LEN);
683 			len -= ETH_FCS_LEN;
684 		}
685 
686 		skb->protocol = eth_type_trans(skb, ndev);
687 		ndev->stats.rx_packets++;
688 		ndev->stats.rx_bytes += len;
689 
690 		napi_gro_receive(&priv->napi, skb);
691 next:
692 		processed++;
693 		priv->rx_read_ptr++;
694 
695 		if (priv->rx_read_ptr == priv->num_rx_bds)
696 			priv->rx_read_ptr = 0;
697 	}
698 
699 	return processed;
700 }
701 
702 static void bcm_sysport_tx_reclaim_one(struct bcm_sysport_priv *priv,
703 				       struct bcm_sysport_cb *cb,
704 				       unsigned int *bytes_compl,
705 				       unsigned int *pkts_compl)
706 {
707 	struct device *kdev = &priv->pdev->dev;
708 	struct net_device *ndev = priv->netdev;
709 
710 	if (cb->skb) {
711 		ndev->stats.tx_bytes += cb->skb->len;
712 		*bytes_compl += cb->skb->len;
713 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
714 				 dma_unmap_len(cb, dma_len),
715 				 DMA_TO_DEVICE);
716 		ndev->stats.tx_packets++;
717 		(*pkts_compl)++;
718 		bcm_sysport_free_cb(cb);
719 	/* SKB fragment */
720 	} else if (dma_unmap_addr(cb, dma_addr)) {
721 		ndev->stats.tx_bytes += dma_unmap_len(cb, dma_len);
722 		dma_unmap_page(kdev, dma_unmap_addr(cb, dma_addr),
723 			       dma_unmap_len(cb, dma_len), DMA_TO_DEVICE);
724 		dma_unmap_addr_set(cb, dma_addr, 0);
725 	}
726 }
727 
728 /* Reclaim queued SKBs for transmission completion, lockless version */
729 static unsigned int __bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
730 					     struct bcm_sysport_tx_ring *ring)
731 {
732 	struct net_device *ndev = priv->netdev;
733 	unsigned int c_index, last_c_index, last_tx_cn, num_tx_cbs;
734 	unsigned int pkts_compl = 0, bytes_compl = 0;
735 	struct bcm_sysport_cb *cb;
736 	struct netdev_queue *txq;
737 	u32 hw_ind;
738 
739 	txq = netdev_get_tx_queue(ndev, ring->index);
740 
741 	/* Compute how many descriptors have been processed since last call */
742 	hw_ind = tdma_readl(priv, TDMA_DESC_RING_PROD_CONS_INDEX(ring->index));
743 	c_index = (hw_ind >> RING_CONS_INDEX_SHIFT) & RING_CONS_INDEX_MASK;
744 	ring->p_index = (hw_ind & RING_PROD_INDEX_MASK);
745 
746 	last_c_index = ring->c_index;
747 	num_tx_cbs = ring->size;
748 
749 	c_index &= (num_tx_cbs - 1);
750 
751 	if (c_index >= last_c_index)
752 		last_tx_cn = c_index - last_c_index;
753 	else
754 		last_tx_cn = num_tx_cbs - last_c_index + c_index;
755 
756 	netif_dbg(priv, tx_done, ndev,
757 		  "ring=%d c_index=%d last_tx_cn=%d last_c_index=%d\n",
758 		  ring->index, c_index, last_tx_cn, last_c_index);
759 
760 	while (last_tx_cn-- > 0) {
761 		cb = ring->cbs + last_c_index;
762 		bcm_sysport_tx_reclaim_one(priv, cb, &bytes_compl, &pkts_compl);
763 
764 		ring->desc_count++;
765 		last_c_index++;
766 		last_c_index &= (num_tx_cbs - 1);
767 	}
768 
769 	ring->c_index = c_index;
770 
771 	if (netif_tx_queue_stopped(txq) && pkts_compl)
772 		netif_tx_wake_queue(txq);
773 
774 	netif_dbg(priv, tx_done, ndev,
775 		  "ring=%d c_index=%d pkts_compl=%d, bytes_compl=%d\n",
776 		  ring->index, ring->c_index, pkts_compl, bytes_compl);
777 
778 	return pkts_compl;
779 }
780 
781 /* Locked version of the per-ring TX reclaim routine */
782 static unsigned int bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
783 					   struct bcm_sysport_tx_ring *ring)
784 {
785 	unsigned int released;
786 	unsigned long flags;
787 
788 	spin_lock_irqsave(&ring->lock, flags);
789 	released = __bcm_sysport_tx_reclaim(priv, ring);
790 	spin_unlock_irqrestore(&ring->lock, flags);
791 
792 	return released;
793 }
794 
795 static int bcm_sysport_tx_poll(struct napi_struct *napi, int budget)
796 {
797 	struct bcm_sysport_tx_ring *ring =
798 		container_of(napi, struct bcm_sysport_tx_ring, napi);
799 	unsigned int work_done = 0;
800 
801 	work_done = bcm_sysport_tx_reclaim(ring->priv, ring);
802 
803 	if (work_done == 0) {
804 		napi_complete(napi);
805 		/* re-enable TX interrupt */
806 		intrl2_1_mask_clear(ring->priv, BIT(ring->index));
807 
808 		return 0;
809 	}
810 
811 	return budget;
812 }
813 
814 static void bcm_sysport_tx_reclaim_all(struct bcm_sysport_priv *priv)
815 {
816 	unsigned int q;
817 
818 	for (q = 0; q < priv->netdev->num_tx_queues; q++)
819 		bcm_sysport_tx_reclaim(priv, &priv->tx_rings[q]);
820 }
821 
822 static int bcm_sysport_poll(struct napi_struct *napi, int budget)
823 {
824 	struct bcm_sysport_priv *priv =
825 		container_of(napi, struct bcm_sysport_priv, napi);
826 	unsigned int work_done = 0;
827 
828 	work_done = bcm_sysport_desc_rx(priv, budget);
829 
830 	priv->rx_c_index += work_done;
831 	priv->rx_c_index &= RDMA_CONS_INDEX_MASK;
832 	rdma_writel(priv, priv->rx_c_index, RDMA_CONS_INDEX);
833 
834 	if (work_done < budget) {
835 		napi_complete(napi);
836 		/* re-enable RX interrupts */
837 		intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE);
838 	}
839 
840 	return work_done;
841 }
842 
843 static void bcm_sysport_resume_from_wol(struct bcm_sysport_priv *priv)
844 {
845 	u32 reg;
846 
847 	/* Stop monitoring MPD interrupt */
848 	intrl2_0_mask_set(priv, INTRL2_0_MPD);
849 
850 	/* Clear the MagicPacket detection logic */
851 	reg = umac_readl(priv, UMAC_MPD_CTRL);
852 	reg &= ~MPD_EN;
853 	umac_writel(priv, reg, UMAC_MPD_CTRL);
854 
855 	netif_dbg(priv, wol, priv->netdev, "resumed from WOL\n");
856 }
857 
858 /* RX and misc interrupt routine */
859 static irqreturn_t bcm_sysport_rx_isr(int irq, void *dev_id)
860 {
861 	struct net_device *dev = dev_id;
862 	struct bcm_sysport_priv *priv = netdev_priv(dev);
863 
864 	priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
865 			  ~intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
866 	intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
867 
868 	if (unlikely(priv->irq0_stat == 0)) {
869 		netdev_warn(priv->netdev, "spurious RX interrupt\n");
870 		return IRQ_NONE;
871 	}
872 
873 	if (priv->irq0_stat & INTRL2_0_RDMA_MBDONE) {
874 		if (likely(napi_schedule_prep(&priv->napi))) {
875 			/* disable RX interrupts */
876 			intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE);
877 			__napi_schedule(&priv->napi);
878 		}
879 	}
880 
881 	/* TX ring is full, perform a full reclaim since we do not know
882 	 * which one would trigger this interrupt
883 	 */
884 	if (priv->irq0_stat & INTRL2_0_TX_RING_FULL)
885 		bcm_sysport_tx_reclaim_all(priv);
886 
887 	if (priv->irq0_stat & INTRL2_0_MPD) {
888 		netdev_info(priv->netdev, "Wake-on-LAN interrupt!\n");
889 		bcm_sysport_resume_from_wol(priv);
890 	}
891 
892 	return IRQ_HANDLED;
893 }
894 
895 /* TX interrupt service routine */
896 static irqreturn_t bcm_sysport_tx_isr(int irq, void *dev_id)
897 {
898 	struct net_device *dev = dev_id;
899 	struct bcm_sysport_priv *priv = netdev_priv(dev);
900 	struct bcm_sysport_tx_ring *txr;
901 	unsigned int ring;
902 
903 	priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
904 				~intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
905 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
906 
907 	if (unlikely(priv->irq1_stat == 0)) {
908 		netdev_warn(priv->netdev, "spurious TX interrupt\n");
909 		return IRQ_NONE;
910 	}
911 
912 	for (ring = 0; ring < dev->num_tx_queues; ring++) {
913 		if (!(priv->irq1_stat & BIT(ring)))
914 			continue;
915 
916 		txr = &priv->tx_rings[ring];
917 
918 		if (likely(napi_schedule_prep(&txr->napi))) {
919 			intrl2_1_mask_set(priv, BIT(ring));
920 			__napi_schedule(&txr->napi);
921 		}
922 	}
923 
924 	return IRQ_HANDLED;
925 }
926 
927 static irqreturn_t bcm_sysport_wol_isr(int irq, void *dev_id)
928 {
929 	struct bcm_sysport_priv *priv = dev_id;
930 
931 	pm_wakeup_event(&priv->pdev->dev, 0);
932 
933 	return IRQ_HANDLED;
934 }
935 
936 #ifdef CONFIG_NET_POLL_CONTROLLER
937 static void bcm_sysport_poll_controller(struct net_device *dev)
938 {
939 	struct bcm_sysport_priv *priv = netdev_priv(dev);
940 
941 	disable_irq(priv->irq0);
942 	bcm_sysport_rx_isr(priv->irq0, priv);
943 	enable_irq(priv->irq0);
944 
945 	disable_irq(priv->irq1);
946 	bcm_sysport_tx_isr(priv->irq1, priv);
947 	enable_irq(priv->irq1);
948 }
949 #endif
950 
951 static struct sk_buff *bcm_sysport_insert_tsb(struct sk_buff *skb,
952 					      struct net_device *dev)
953 {
954 	struct sk_buff *nskb;
955 	struct bcm_tsb *tsb;
956 	u32 csum_info;
957 	u8 ip_proto;
958 	u16 csum_start;
959 	u16 ip_ver;
960 
961 	/* Re-allocate SKB if needed */
962 	if (unlikely(skb_headroom(skb) < sizeof(*tsb))) {
963 		nskb = skb_realloc_headroom(skb, sizeof(*tsb));
964 		dev_kfree_skb(skb);
965 		if (!nskb) {
966 			dev->stats.tx_errors++;
967 			dev->stats.tx_dropped++;
968 			return NULL;
969 		}
970 		skb = nskb;
971 	}
972 
973 	tsb = (struct bcm_tsb *)skb_push(skb, sizeof(*tsb));
974 	/* Zero-out TSB by default */
975 	memset(tsb, 0, sizeof(*tsb));
976 
977 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
978 		ip_ver = htons(skb->protocol);
979 		switch (ip_ver) {
980 		case ETH_P_IP:
981 			ip_proto = ip_hdr(skb)->protocol;
982 			break;
983 		case ETH_P_IPV6:
984 			ip_proto = ipv6_hdr(skb)->nexthdr;
985 			break;
986 		default:
987 			return skb;
988 		}
989 
990 		/* Get the checksum offset and the L4 (transport) offset */
991 		csum_start = skb_checksum_start_offset(skb) - sizeof(*tsb);
992 		csum_info = (csum_start + skb->csum_offset) & L4_CSUM_PTR_MASK;
993 		csum_info |= (csum_start << L4_PTR_SHIFT);
994 
995 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
996 			csum_info |= L4_LENGTH_VALID;
997 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
998 				csum_info |= L4_UDP;
999 		} else {
1000 			csum_info = 0;
1001 		}
1002 
1003 		tsb->l4_ptr_dest_map = csum_info;
1004 	}
1005 
1006 	return skb;
1007 }
1008 
1009 static netdev_tx_t bcm_sysport_xmit(struct sk_buff *skb,
1010 				    struct net_device *dev)
1011 {
1012 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1013 	struct device *kdev = &priv->pdev->dev;
1014 	struct bcm_sysport_tx_ring *ring;
1015 	struct bcm_sysport_cb *cb;
1016 	struct netdev_queue *txq;
1017 	struct dma_desc *desc;
1018 	unsigned int skb_len;
1019 	unsigned long flags;
1020 	dma_addr_t mapping;
1021 	u32 len_status;
1022 	u16 queue;
1023 	int ret;
1024 
1025 	queue = skb_get_queue_mapping(skb);
1026 	txq = netdev_get_tx_queue(dev, queue);
1027 	ring = &priv->tx_rings[queue];
1028 
1029 	/* lock against tx reclaim in BH context and TX ring full interrupt */
1030 	spin_lock_irqsave(&ring->lock, flags);
1031 	if (unlikely(ring->desc_count == 0)) {
1032 		netif_tx_stop_queue(txq);
1033 		netdev_err(dev, "queue %d awake and ring full!\n", queue);
1034 		ret = NETDEV_TX_BUSY;
1035 		goto out;
1036 	}
1037 
1038 	/* Insert TSB and checksum infos */
1039 	if (priv->tsb_en) {
1040 		skb = bcm_sysport_insert_tsb(skb, dev);
1041 		if (!skb) {
1042 			ret = NETDEV_TX_OK;
1043 			goto out;
1044 		}
1045 	}
1046 
1047 	/* The Ethernet switch we are interfaced with needs packets to be at
1048 	 * least 64 bytes (including FCS) otherwise they will be discarded when
1049 	 * they enter the switch port logic. When Broadcom tags are enabled, we
1050 	 * need to make sure that packets are at least 68 bytes
1051 	 * (including FCS and tag) because the length verification is done after
1052 	 * the Broadcom tag is stripped off the ingress packet.
1053 	 */
1054 	if (skb_padto(skb, ETH_ZLEN + ENET_BRCM_TAG_LEN)) {
1055 		ret = NETDEV_TX_OK;
1056 		goto out;
1057 	}
1058 
1059 	skb_len = skb->len < ETH_ZLEN + ENET_BRCM_TAG_LEN ?
1060 			ETH_ZLEN + ENET_BRCM_TAG_LEN : skb->len;
1061 
1062 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1063 	if (dma_mapping_error(kdev, mapping)) {
1064 		priv->mib.tx_dma_failed++;
1065 		netif_err(priv, tx_err, dev, "DMA map failed at %p (len=%d)\n",
1066 			  skb->data, skb_len);
1067 		ret = NETDEV_TX_OK;
1068 		goto out;
1069 	}
1070 
1071 	/* Remember the SKB for future freeing */
1072 	cb = &ring->cbs[ring->curr_desc];
1073 	cb->skb = skb;
1074 	dma_unmap_addr_set(cb, dma_addr, mapping);
1075 	dma_unmap_len_set(cb, dma_len, skb_len);
1076 
1077 	/* Fetch a descriptor entry from our pool */
1078 	desc = ring->desc_cpu;
1079 
1080 	desc->addr_lo = lower_32_bits(mapping);
1081 	len_status = upper_32_bits(mapping) & DESC_ADDR_HI_MASK;
1082 	len_status |= (skb_len << DESC_LEN_SHIFT);
1083 	len_status |= (DESC_SOP | DESC_EOP | TX_STATUS_APP_CRC) <<
1084 		       DESC_STATUS_SHIFT;
1085 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1086 		len_status |= (DESC_L4_CSUM << DESC_STATUS_SHIFT);
1087 
1088 	ring->curr_desc++;
1089 	if (ring->curr_desc == ring->size)
1090 		ring->curr_desc = 0;
1091 	ring->desc_count--;
1092 
1093 	/* Ensure write completion of the descriptor status/length
1094 	 * in DRAM before the System Port WRITE_PORT register latches
1095 	 * the value
1096 	 */
1097 	wmb();
1098 	desc->addr_status_len = len_status;
1099 	wmb();
1100 
1101 	/* Write this descriptor address to the RING write port */
1102 	tdma_port_write_desc_addr(priv, desc, ring->index);
1103 
1104 	/* Check ring space and update SW control flow */
1105 	if (ring->desc_count == 0)
1106 		netif_tx_stop_queue(txq);
1107 
1108 	netif_dbg(priv, tx_queued, dev, "ring=%d desc_count=%d, curr_desc=%d\n",
1109 		  ring->index, ring->desc_count, ring->curr_desc);
1110 
1111 	ret = NETDEV_TX_OK;
1112 out:
1113 	spin_unlock_irqrestore(&ring->lock, flags);
1114 	return ret;
1115 }
1116 
1117 static void bcm_sysport_tx_timeout(struct net_device *dev)
1118 {
1119 	netdev_warn(dev, "transmit timeout!\n");
1120 
1121 	dev->trans_start = jiffies;
1122 	dev->stats.tx_errors++;
1123 
1124 	netif_tx_wake_all_queues(dev);
1125 }
1126 
1127 /* phylib adjust link callback */
1128 static void bcm_sysport_adj_link(struct net_device *dev)
1129 {
1130 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1131 	struct phy_device *phydev = priv->phydev;
1132 	unsigned int changed = 0;
1133 	u32 cmd_bits = 0, reg;
1134 
1135 	if (priv->old_link != phydev->link) {
1136 		changed = 1;
1137 		priv->old_link = phydev->link;
1138 	}
1139 
1140 	if (priv->old_duplex != phydev->duplex) {
1141 		changed = 1;
1142 		priv->old_duplex = phydev->duplex;
1143 	}
1144 
1145 	switch (phydev->speed) {
1146 	case SPEED_2500:
1147 		cmd_bits = CMD_SPEED_2500;
1148 		break;
1149 	case SPEED_1000:
1150 		cmd_bits = CMD_SPEED_1000;
1151 		break;
1152 	case SPEED_100:
1153 		cmd_bits = CMD_SPEED_100;
1154 		break;
1155 	case SPEED_10:
1156 		cmd_bits = CMD_SPEED_10;
1157 		break;
1158 	default:
1159 		break;
1160 	}
1161 	cmd_bits <<= CMD_SPEED_SHIFT;
1162 
1163 	if (phydev->duplex == DUPLEX_HALF)
1164 		cmd_bits |= CMD_HD_EN;
1165 
1166 	if (priv->old_pause != phydev->pause) {
1167 		changed = 1;
1168 		priv->old_pause = phydev->pause;
1169 	}
1170 
1171 	if (!phydev->pause)
1172 		cmd_bits |= CMD_RX_PAUSE_IGNORE | CMD_TX_PAUSE_IGNORE;
1173 
1174 	if (!changed)
1175 		return;
1176 
1177 	if (phydev->link) {
1178 		reg = umac_readl(priv, UMAC_CMD);
1179 		reg &= ~((CMD_SPEED_MASK << CMD_SPEED_SHIFT) |
1180 			CMD_HD_EN | CMD_RX_PAUSE_IGNORE |
1181 			CMD_TX_PAUSE_IGNORE);
1182 		reg |= cmd_bits;
1183 		umac_writel(priv, reg, UMAC_CMD);
1184 	}
1185 
1186 	phy_print_status(priv->phydev);
1187 }
1188 
1189 static int bcm_sysport_init_tx_ring(struct bcm_sysport_priv *priv,
1190 				    unsigned int index)
1191 {
1192 	struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
1193 	struct device *kdev = &priv->pdev->dev;
1194 	size_t size;
1195 	void *p;
1196 	u32 reg;
1197 
1198 	/* Simple descriptors partitioning for now */
1199 	size = 256;
1200 
1201 	/* We just need one DMA descriptor which is DMA-able, since writing to
1202 	 * the port will allocate a new descriptor in its internal linked-list
1203 	 */
1204 	p = dma_zalloc_coherent(kdev, sizeof(struct dma_desc), &ring->desc_dma,
1205 				GFP_KERNEL);
1206 	if (!p) {
1207 		netif_err(priv, hw, priv->netdev, "DMA alloc failed\n");
1208 		return -ENOMEM;
1209 	}
1210 
1211 	ring->cbs = kcalloc(size, sizeof(struct bcm_sysport_cb), GFP_KERNEL);
1212 	if (!ring->cbs) {
1213 		netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
1214 		return -ENOMEM;
1215 	}
1216 
1217 	/* Initialize SW view of the ring */
1218 	spin_lock_init(&ring->lock);
1219 	ring->priv = priv;
1220 	netif_napi_add(priv->netdev, &ring->napi, bcm_sysport_tx_poll, 64);
1221 	ring->index = index;
1222 	ring->size = size;
1223 	ring->alloc_size = ring->size;
1224 	ring->desc_cpu = p;
1225 	ring->desc_count = ring->size;
1226 	ring->curr_desc = 0;
1227 
1228 	/* Initialize HW ring */
1229 	tdma_writel(priv, RING_EN, TDMA_DESC_RING_HEAD_TAIL_PTR(index));
1230 	tdma_writel(priv, 0, TDMA_DESC_RING_COUNT(index));
1231 	tdma_writel(priv, 1, TDMA_DESC_RING_INTR_CONTROL(index));
1232 	tdma_writel(priv, 0, TDMA_DESC_RING_PROD_CONS_INDEX(index));
1233 	tdma_writel(priv, RING_IGNORE_STATUS, TDMA_DESC_RING_MAPPING(index));
1234 	tdma_writel(priv, 0, TDMA_DESC_RING_PCP_DEI_VID(index));
1235 
1236 	/* Program the number of descriptors as MAX_THRESHOLD and half of
1237 	 * its size for the hysteresis trigger
1238 	 */
1239 	tdma_writel(priv, ring->size |
1240 			1 << RING_HYST_THRESH_SHIFT,
1241 			TDMA_DESC_RING_MAX_HYST(index));
1242 
1243 	/* Enable the ring queue in the arbiter */
1244 	reg = tdma_readl(priv, TDMA_TIER1_ARB_0_QUEUE_EN);
1245 	reg |= (1 << index);
1246 	tdma_writel(priv, reg, TDMA_TIER1_ARB_0_QUEUE_EN);
1247 
1248 	napi_enable(&ring->napi);
1249 
1250 	netif_dbg(priv, hw, priv->netdev,
1251 		  "TDMA cfg, size=%d, desc_cpu=%p\n",
1252 		  ring->size, ring->desc_cpu);
1253 
1254 	return 0;
1255 }
1256 
1257 static void bcm_sysport_fini_tx_ring(struct bcm_sysport_priv *priv,
1258 				     unsigned int index)
1259 {
1260 	struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
1261 	struct device *kdev = &priv->pdev->dev;
1262 	u32 reg;
1263 
1264 	/* Caller should stop the TDMA engine */
1265 	reg = tdma_readl(priv, TDMA_STATUS);
1266 	if (!(reg & TDMA_DISABLED))
1267 		netdev_warn(priv->netdev, "TDMA not stopped!\n");
1268 
1269 	/* ring->cbs is the last part in bcm_sysport_init_tx_ring which could
1270 	 * fail, so by checking this pointer we know whether the TX ring was
1271 	 * fully initialized or not.
1272 	 */
1273 	if (!ring->cbs)
1274 		return;
1275 
1276 	napi_disable(&ring->napi);
1277 	netif_napi_del(&ring->napi);
1278 
1279 	bcm_sysport_tx_reclaim(priv, ring);
1280 
1281 	kfree(ring->cbs);
1282 	ring->cbs = NULL;
1283 
1284 	if (ring->desc_dma) {
1285 		dma_free_coherent(kdev, sizeof(struct dma_desc),
1286 				  ring->desc_cpu, ring->desc_dma);
1287 		ring->desc_dma = 0;
1288 	}
1289 	ring->size = 0;
1290 	ring->alloc_size = 0;
1291 
1292 	netif_dbg(priv, hw, priv->netdev, "TDMA fini done\n");
1293 }
1294 
1295 /* RDMA helper */
1296 static inline int rdma_enable_set(struct bcm_sysport_priv *priv,
1297 				  unsigned int enable)
1298 {
1299 	unsigned int timeout = 1000;
1300 	u32 reg;
1301 
1302 	reg = rdma_readl(priv, RDMA_CONTROL);
1303 	if (enable)
1304 		reg |= RDMA_EN;
1305 	else
1306 		reg &= ~RDMA_EN;
1307 	rdma_writel(priv, reg, RDMA_CONTROL);
1308 
1309 	/* Poll for RMDA disabling completion */
1310 	do {
1311 		reg = rdma_readl(priv, RDMA_STATUS);
1312 		if (!!(reg & RDMA_DISABLED) == !enable)
1313 			return 0;
1314 		usleep_range(1000, 2000);
1315 	} while (timeout-- > 0);
1316 
1317 	netdev_err(priv->netdev, "timeout waiting for RDMA to finish\n");
1318 
1319 	return -ETIMEDOUT;
1320 }
1321 
1322 /* TDMA helper */
1323 static inline int tdma_enable_set(struct bcm_sysport_priv *priv,
1324 				  unsigned int enable)
1325 {
1326 	unsigned int timeout = 1000;
1327 	u32 reg;
1328 
1329 	reg = tdma_readl(priv, TDMA_CONTROL);
1330 	if (enable)
1331 		reg |= TDMA_EN;
1332 	else
1333 		reg &= ~TDMA_EN;
1334 	tdma_writel(priv, reg, TDMA_CONTROL);
1335 
1336 	/* Poll for TMDA disabling completion */
1337 	do {
1338 		reg = tdma_readl(priv, TDMA_STATUS);
1339 		if (!!(reg & TDMA_DISABLED) == !enable)
1340 			return 0;
1341 
1342 		usleep_range(1000, 2000);
1343 	} while (timeout-- > 0);
1344 
1345 	netdev_err(priv->netdev, "timeout waiting for TDMA to finish\n");
1346 
1347 	return -ETIMEDOUT;
1348 }
1349 
1350 static int bcm_sysport_init_rx_ring(struct bcm_sysport_priv *priv)
1351 {
1352 	struct bcm_sysport_cb *cb;
1353 	u32 reg;
1354 	int ret;
1355 	int i;
1356 
1357 	/* Initialize SW view of the RX ring */
1358 	priv->num_rx_bds = NUM_RX_DESC;
1359 	priv->rx_bds = priv->base + SYS_PORT_RDMA_OFFSET;
1360 	priv->rx_c_index = 0;
1361 	priv->rx_read_ptr = 0;
1362 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct bcm_sysport_cb),
1363 				GFP_KERNEL);
1364 	if (!priv->rx_cbs) {
1365 		netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
1366 		return -ENOMEM;
1367 	}
1368 
1369 	for (i = 0; i < priv->num_rx_bds; i++) {
1370 		cb = priv->rx_cbs + i;
1371 		cb->bd_addr = priv->rx_bds + i * DESC_SIZE;
1372 	}
1373 
1374 	ret = bcm_sysport_alloc_rx_bufs(priv);
1375 	if (ret) {
1376 		netif_err(priv, hw, priv->netdev, "SKB allocation failed\n");
1377 		return ret;
1378 	}
1379 
1380 	/* Initialize HW, ensure RDMA is disabled */
1381 	reg = rdma_readl(priv, RDMA_STATUS);
1382 	if (!(reg & RDMA_DISABLED))
1383 		rdma_enable_set(priv, 0);
1384 
1385 	rdma_writel(priv, 0, RDMA_WRITE_PTR_LO);
1386 	rdma_writel(priv, 0, RDMA_WRITE_PTR_HI);
1387 	rdma_writel(priv, 0, RDMA_PROD_INDEX);
1388 	rdma_writel(priv, 0, RDMA_CONS_INDEX);
1389 	rdma_writel(priv, priv->num_rx_bds << RDMA_RING_SIZE_SHIFT |
1390 			  RX_BUF_LENGTH, RDMA_RING_BUF_SIZE);
1391 	/* Operate the queue in ring mode */
1392 	rdma_writel(priv, 0, RDMA_START_ADDR_HI);
1393 	rdma_writel(priv, 0, RDMA_START_ADDR_LO);
1394 	rdma_writel(priv, 0, RDMA_END_ADDR_HI);
1395 	rdma_writel(priv, NUM_HW_RX_DESC_WORDS - 1, RDMA_END_ADDR_LO);
1396 
1397 	rdma_writel(priv, 1, RDMA_MBDONE_INTR);
1398 
1399 	netif_dbg(priv, hw, priv->netdev,
1400 		  "RDMA cfg, num_rx_bds=%d, rx_bds=%p\n",
1401 		  priv->num_rx_bds, priv->rx_bds);
1402 
1403 	return 0;
1404 }
1405 
1406 static void bcm_sysport_fini_rx_ring(struct bcm_sysport_priv *priv)
1407 {
1408 	struct bcm_sysport_cb *cb;
1409 	unsigned int i;
1410 	u32 reg;
1411 
1412 	/* Caller should ensure RDMA is disabled */
1413 	reg = rdma_readl(priv, RDMA_STATUS);
1414 	if (!(reg & RDMA_DISABLED))
1415 		netdev_warn(priv->netdev, "RDMA not stopped!\n");
1416 
1417 	for (i = 0; i < priv->num_rx_bds; i++) {
1418 		cb = &priv->rx_cbs[i];
1419 		if (dma_unmap_addr(cb, dma_addr))
1420 			dma_unmap_single(&priv->pdev->dev,
1421 					 dma_unmap_addr(cb, dma_addr),
1422 					 RX_BUF_LENGTH, DMA_FROM_DEVICE);
1423 		bcm_sysport_free_cb(cb);
1424 	}
1425 
1426 	kfree(priv->rx_cbs);
1427 	priv->rx_cbs = NULL;
1428 
1429 	netif_dbg(priv, hw, priv->netdev, "RDMA fini done\n");
1430 }
1431 
1432 static void bcm_sysport_set_rx_mode(struct net_device *dev)
1433 {
1434 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1435 	u32 reg;
1436 
1437 	reg = umac_readl(priv, UMAC_CMD);
1438 	if (dev->flags & IFF_PROMISC)
1439 		reg |= CMD_PROMISC;
1440 	else
1441 		reg &= ~CMD_PROMISC;
1442 	umac_writel(priv, reg, UMAC_CMD);
1443 
1444 	/* No support for ALLMULTI */
1445 	if (dev->flags & IFF_ALLMULTI)
1446 		return;
1447 }
1448 
1449 static inline void umac_enable_set(struct bcm_sysport_priv *priv,
1450 				   u32 mask, unsigned int enable)
1451 {
1452 	u32 reg;
1453 
1454 	reg = umac_readl(priv, UMAC_CMD);
1455 	if (enable)
1456 		reg |= mask;
1457 	else
1458 		reg &= ~mask;
1459 	umac_writel(priv, reg, UMAC_CMD);
1460 
1461 	/* UniMAC stops on a packet boundary, wait for a full-sized packet
1462 	 * to be processed (1 msec).
1463 	 */
1464 	if (enable == 0)
1465 		usleep_range(1000, 2000);
1466 }
1467 
1468 static inline void umac_reset(struct bcm_sysport_priv *priv)
1469 {
1470 	u32 reg;
1471 
1472 	reg = umac_readl(priv, UMAC_CMD);
1473 	reg |= CMD_SW_RESET;
1474 	umac_writel(priv, reg, UMAC_CMD);
1475 	udelay(10);
1476 	reg = umac_readl(priv, UMAC_CMD);
1477 	reg &= ~CMD_SW_RESET;
1478 	umac_writel(priv, reg, UMAC_CMD);
1479 }
1480 
1481 static void umac_set_hw_addr(struct bcm_sysport_priv *priv,
1482 			     unsigned char *addr)
1483 {
1484 	umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
1485 			(addr[2] << 8) | addr[3], UMAC_MAC0);
1486 	umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
1487 }
1488 
1489 static void topctrl_flush(struct bcm_sysport_priv *priv)
1490 {
1491 	topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
1492 	topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);
1493 	mdelay(1);
1494 	topctrl_writel(priv, 0, RX_FLUSH_CNTL);
1495 	topctrl_writel(priv, 0, TX_FLUSH_CNTL);
1496 }
1497 
1498 static int bcm_sysport_change_mac(struct net_device *dev, void *p)
1499 {
1500 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1501 	struct sockaddr *addr = p;
1502 
1503 	if (!is_valid_ether_addr(addr->sa_data))
1504 		return -EINVAL;
1505 
1506 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1507 
1508 	/* interface is disabled, changes to MAC will be reflected on next
1509 	 * open call
1510 	 */
1511 	if (!netif_running(dev))
1512 		return 0;
1513 
1514 	umac_set_hw_addr(priv, dev->dev_addr);
1515 
1516 	return 0;
1517 }
1518 
1519 static void bcm_sysport_netif_start(struct net_device *dev)
1520 {
1521 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1522 
1523 	/* Enable NAPI */
1524 	napi_enable(&priv->napi);
1525 
1526 	/* Enable RX interrupt and TX ring full interrupt */
1527 	intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);
1528 
1529 	phy_start(priv->phydev);
1530 
1531 	/* Enable TX interrupts for the 32 TXQs */
1532 	intrl2_1_mask_clear(priv, 0xffffffff);
1533 
1534 	/* Last call before we start the real business */
1535 	netif_tx_start_all_queues(dev);
1536 }
1537 
1538 static void rbuf_init(struct bcm_sysport_priv *priv)
1539 {
1540 	u32 reg;
1541 
1542 	reg = rbuf_readl(priv, RBUF_CONTROL);
1543 	reg |= RBUF_4B_ALGN | RBUF_RSB_EN;
1544 	rbuf_writel(priv, reg, RBUF_CONTROL);
1545 }
1546 
1547 static int bcm_sysport_open(struct net_device *dev)
1548 {
1549 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1550 	unsigned int i;
1551 	int ret;
1552 
1553 	/* Reset UniMAC */
1554 	umac_reset(priv);
1555 
1556 	/* Flush TX and RX FIFOs at TOPCTRL level */
1557 	topctrl_flush(priv);
1558 
1559 	/* Disable the UniMAC RX/TX */
1560 	umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 0);
1561 
1562 	/* Enable RBUF 2bytes alignment and Receive Status Block */
1563 	rbuf_init(priv);
1564 
1565 	/* Set maximum frame length */
1566 	umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1567 
1568 	/* Set MAC address */
1569 	umac_set_hw_addr(priv, dev->dev_addr);
1570 
1571 	/* Read CRC forward */
1572 	priv->crc_fwd = !!(umac_readl(priv, UMAC_CMD) & CMD_CRC_FWD);
1573 
1574 	priv->phydev = of_phy_connect(dev, priv->phy_dn, bcm_sysport_adj_link,
1575 					0, priv->phy_interface);
1576 	if (!priv->phydev) {
1577 		netdev_err(dev, "could not attach to PHY\n");
1578 		return -ENODEV;
1579 	}
1580 
1581 	/* Reset house keeping link status */
1582 	priv->old_duplex = -1;
1583 	priv->old_link = -1;
1584 	priv->old_pause = -1;
1585 
1586 	/* mask all interrupts and request them */
1587 	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
1588 	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1589 	intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1590 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
1591 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1592 	intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1593 
1594 	ret = request_irq(priv->irq0, bcm_sysport_rx_isr, 0, dev->name, dev);
1595 	if (ret) {
1596 		netdev_err(dev, "failed to request RX interrupt\n");
1597 		goto out_phy_disconnect;
1598 	}
1599 
1600 	ret = request_irq(priv->irq1, bcm_sysport_tx_isr, 0, dev->name, dev);
1601 	if (ret) {
1602 		netdev_err(dev, "failed to request TX interrupt\n");
1603 		goto out_free_irq0;
1604 	}
1605 
1606 	/* Initialize both hardware and software ring */
1607 	for (i = 0; i < dev->num_tx_queues; i++) {
1608 		ret = bcm_sysport_init_tx_ring(priv, i);
1609 		if (ret) {
1610 			netdev_err(dev, "failed to initialize TX ring %d\n",
1611 				   i);
1612 			goto out_free_tx_ring;
1613 		}
1614 	}
1615 
1616 	/* Initialize linked-list */
1617 	tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);
1618 
1619 	/* Initialize RX ring */
1620 	ret = bcm_sysport_init_rx_ring(priv);
1621 	if (ret) {
1622 		netdev_err(dev, "failed to initialize RX ring\n");
1623 		goto out_free_rx_ring;
1624 	}
1625 
1626 	/* Turn on RDMA */
1627 	ret = rdma_enable_set(priv, 1);
1628 	if (ret)
1629 		goto out_free_rx_ring;
1630 
1631 	/* Turn on TDMA */
1632 	ret = tdma_enable_set(priv, 1);
1633 	if (ret)
1634 		goto out_clear_rx_int;
1635 
1636 	/* Turn on UniMAC TX/RX */
1637 	umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 1);
1638 
1639 	bcm_sysport_netif_start(dev);
1640 
1641 	return 0;
1642 
1643 out_clear_rx_int:
1644 	intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);
1645 out_free_rx_ring:
1646 	bcm_sysport_fini_rx_ring(priv);
1647 out_free_tx_ring:
1648 	for (i = 0; i < dev->num_tx_queues; i++)
1649 		bcm_sysport_fini_tx_ring(priv, i);
1650 	free_irq(priv->irq1, dev);
1651 out_free_irq0:
1652 	free_irq(priv->irq0, dev);
1653 out_phy_disconnect:
1654 	phy_disconnect(priv->phydev);
1655 	return ret;
1656 }
1657 
1658 static void bcm_sysport_netif_stop(struct net_device *dev)
1659 {
1660 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1661 
1662 	/* stop all software from updating hardware */
1663 	netif_tx_stop_all_queues(dev);
1664 	napi_disable(&priv->napi);
1665 	phy_stop(priv->phydev);
1666 
1667 	/* mask all interrupts */
1668 	intrl2_0_mask_set(priv, 0xffffffff);
1669 	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1670 	intrl2_1_mask_set(priv, 0xffffffff);
1671 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1672 }
1673 
1674 static int bcm_sysport_stop(struct net_device *dev)
1675 {
1676 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1677 	unsigned int i;
1678 	int ret;
1679 
1680 	bcm_sysport_netif_stop(dev);
1681 
1682 	/* Disable UniMAC RX */
1683 	umac_enable_set(priv, CMD_RX_EN, 0);
1684 
1685 	ret = tdma_enable_set(priv, 0);
1686 	if (ret) {
1687 		netdev_err(dev, "timeout disabling RDMA\n");
1688 		return ret;
1689 	}
1690 
1691 	/* Wait for a maximum packet size to be drained */
1692 	usleep_range(2000, 3000);
1693 
1694 	ret = rdma_enable_set(priv, 0);
1695 	if (ret) {
1696 		netdev_err(dev, "timeout disabling TDMA\n");
1697 		return ret;
1698 	}
1699 
1700 	/* Disable UniMAC TX */
1701 	umac_enable_set(priv, CMD_TX_EN, 0);
1702 
1703 	/* Free RX/TX rings SW structures */
1704 	for (i = 0; i < dev->num_tx_queues; i++)
1705 		bcm_sysport_fini_tx_ring(priv, i);
1706 	bcm_sysport_fini_rx_ring(priv);
1707 
1708 	free_irq(priv->irq0, dev);
1709 	free_irq(priv->irq1, dev);
1710 
1711 	/* Disconnect from PHY */
1712 	phy_disconnect(priv->phydev);
1713 
1714 	return 0;
1715 }
1716 
1717 static struct ethtool_ops bcm_sysport_ethtool_ops = {
1718 	.get_settings		= bcm_sysport_get_settings,
1719 	.set_settings		= bcm_sysport_set_settings,
1720 	.get_drvinfo		= bcm_sysport_get_drvinfo,
1721 	.get_msglevel		= bcm_sysport_get_msglvl,
1722 	.set_msglevel		= bcm_sysport_set_msglvl,
1723 	.get_link		= ethtool_op_get_link,
1724 	.get_strings		= bcm_sysport_get_strings,
1725 	.get_ethtool_stats	= bcm_sysport_get_stats,
1726 	.get_sset_count		= bcm_sysport_get_sset_count,
1727 	.get_wol		= bcm_sysport_get_wol,
1728 	.set_wol		= bcm_sysport_set_wol,
1729 	.get_coalesce		= bcm_sysport_get_coalesce,
1730 	.set_coalesce		= bcm_sysport_set_coalesce,
1731 };
1732 
1733 static const struct net_device_ops bcm_sysport_netdev_ops = {
1734 	.ndo_start_xmit		= bcm_sysport_xmit,
1735 	.ndo_tx_timeout		= bcm_sysport_tx_timeout,
1736 	.ndo_open		= bcm_sysport_open,
1737 	.ndo_stop		= bcm_sysport_stop,
1738 	.ndo_set_features	= bcm_sysport_set_features,
1739 	.ndo_set_rx_mode	= bcm_sysport_set_rx_mode,
1740 	.ndo_set_mac_address	= bcm_sysport_change_mac,
1741 #ifdef CONFIG_NET_POLL_CONTROLLER
1742 	.ndo_poll_controller	= bcm_sysport_poll_controller,
1743 #endif
1744 };
1745 
1746 #define REV_FMT	"v%2x.%02x"
1747 
1748 static int bcm_sysport_probe(struct platform_device *pdev)
1749 {
1750 	struct bcm_sysport_priv *priv;
1751 	struct device_node *dn;
1752 	struct net_device *dev;
1753 	const void *macaddr;
1754 	struct resource *r;
1755 	u32 txq, rxq;
1756 	int ret;
1757 
1758 	dn = pdev->dev.of_node;
1759 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1760 
1761 	/* Read the Transmit/Receive Queue properties */
1762 	if (of_property_read_u32(dn, "systemport,num-txq", &txq))
1763 		txq = TDMA_NUM_RINGS;
1764 	if (of_property_read_u32(dn, "systemport,num-rxq", &rxq))
1765 		rxq = 1;
1766 
1767 	dev = alloc_etherdev_mqs(sizeof(*priv), txq, rxq);
1768 	if (!dev)
1769 		return -ENOMEM;
1770 
1771 	/* Initialize private members */
1772 	priv = netdev_priv(dev);
1773 
1774 	priv->irq0 = platform_get_irq(pdev, 0);
1775 	priv->irq1 = platform_get_irq(pdev, 1);
1776 	priv->wol_irq = platform_get_irq(pdev, 2);
1777 	if (priv->irq0 <= 0 || priv->irq1 <= 0) {
1778 		dev_err(&pdev->dev, "invalid interrupts\n");
1779 		ret = -EINVAL;
1780 		goto err;
1781 	}
1782 
1783 	priv->base = devm_ioremap_resource(&pdev->dev, r);
1784 	if (IS_ERR(priv->base)) {
1785 		ret = PTR_ERR(priv->base);
1786 		goto err;
1787 	}
1788 
1789 	priv->netdev = dev;
1790 	priv->pdev = pdev;
1791 
1792 	priv->phy_interface = of_get_phy_mode(dn);
1793 	/* Default to GMII interface mode */
1794 	if (priv->phy_interface < 0)
1795 		priv->phy_interface = PHY_INTERFACE_MODE_GMII;
1796 
1797 	/* In the case of a fixed PHY, the DT node associated
1798 	 * to the PHY is the Ethernet MAC DT node.
1799 	 */
1800 	if (of_phy_is_fixed_link(dn)) {
1801 		ret = of_phy_register_fixed_link(dn);
1802 		if (ret) {
1803 			dev_err(&pdev->dev, "failed to register fixed PHY\n");
1804 			goto err;
1805 		}
1806 
1807 		priv->phy_dn = dn;
1808 	}
1809 
1810 	/* Initialize netdevice members */
1811 	macaddr = of_get_mac_address(dn);
1812 	if (!macaddr || !is_valid_ether_addr(macaddr)) {
1813 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
1814 		eth_hw_addr_random(dev);
1815 	} else {
1816 		ether_addr_copy(dev->dev_addr, macaddr);
1817 	}
1818 
1819 	SET_NETDEV_DEV(dev, &pdev->dev);
1820 	dev_set_drvdata(&pdev->dev, dev);
1821 	dev->ethtool_ops = &bcm_sysport_ethtool_ops;
1822 	dev->netdev_ops = &bcm_sysport_netdev_ops;
1823 	netif_napi_add(dev, &priv->napi, bcm_sysport_poll, 64);
1824 
1825 	/* HW supported features, none enabled by default */
1826 	dev->hw_features |= NETIF_F_RXCSUM | NETIF_F_HIGHDMA |
1827 				NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1828 
1829 	/* Request the WOL interrupt and advertise suspend if available */
1830 	priv->wol_irq_disabled = 1;
1831 	ret = devm_request_irq(&pdev->dev, priv->wol_irq,
1832 			       bcm_sysport_wol_isr, 0, dev->name, priv);
1833 	if (!ret)
1834 		device_set_wakeup_capable(&pdev->dev, 1);
1835 
1836 	/* Set the needed headroom once and for all */
1837 	BUILD_BUG_ON(sizeof(struct bcm_tsb) != 8);
1838 	dev->needed_headroom += sizeof(struct bcm_tsb);
1839 
1840 	/* libphy will adjust the link state accordingly */
1841 	netif_carrier_off(dev);
1842 
1843 	ret = register_netdev(dev);
1844 	if (ret) {
1845 		dev_err(&pdev->dev, "failed to register net_device\n");
1846 		goto err;
1847 	}
1848 
1849 	priv->rev = topctrl_readl(priv, REV_CNTL) & REV_MASK;
1850 	dev_info(&pdev->dev,
1851 		 "Broadcom SYSTEMPORT" REV_FMT
1852 		 " at 0x%p (irqs: %d, %d, TXQs: %d, RXQs: %d)\n",
1853 		 (priv->rev >> 8) & 0xff, priv->rev & 0xff,
1854 		 priv->base, priv->irq0, priv->irq1, txq, rxq);
1855 
1856 	return 0;
1857 err:
1858 	free_netdev(dev);
1859 	return ret;
1860 }
1861 
1862 static int bcm_sysport_remove(struct platform_device *pdev)
1863 {
1864 	struct net_device *dev = dev_get_drvdata(&pdev->dev);
1865 
1866 	/* Not much to do, ndo_close has been called
1867 	 * and we use managed allocations
1868 	 */
1869 	unregister_netdev(dev);
1870 	free_netdev(dev);
1871 	dev_set_drvdata(&pdev->dev, NULL);
1872 
1873 	return 0;
1874 }
1875 
1876 #ifdef CONFIG_PM_SLEEP
1877 static int bcm_sysport_suspend_to_wol(struct bcm_sysport_priv *priv)
1878 {
1879 	struct net_device *ndev = priv->netdev;
1880 	unsigned int timeout = 1000;
1881 	u32 reg;
1882 
1883 	/* Password has already been programmed */
1884 	reg = umac_readl(priv, UMAC_MPD_CTRL);
1885 	reg |= MPD_EN;
1886 	reg &= ~PSW_EN;
1887 	if (priv->wolopts & WAKE_MAGICSECURE)
1888 		reg |= PSW_EN;
1889 	umac_writel(priv, reg, UMAC_MPD_CTRL);
1890 
1891 	/* Make sure RBUF entered WoL mode as result */
1892 	do {
1893 		reg = rbuf_readl(priv, RBUF_STATUS);
1894 		if (reg & RBUF_WOL_MODE)
1895 			break;
1896 
1897 		udelay(10);
1898 	} while (timeout-- > 0);
1899 
1900 	/* Do not leave the UniMAC RBUF matching only MPD packets */
1901 	if (!timeout) {
1902 		reg = umac_readl(priv, UMAC_MPD_CTRL);
1903 		reg &= ~MPD_EN;
1904 		umac_writel(priv, reg, UMAC_MPD_CTRL);
1905 		netif_err(priv, wol, ndev, "failed to enter WOL mode\n");
1906 		return -ETIMEDOUT;
1907 	}
1908 
1909 	/* UniMAC receive needs to be turned on */
1910 	umac_enable_set(priv, CMD_RX_EN, 1);
1911 
1912 	/* Enable the interrupt wake-up source */
1913 	intrl2_0_mask_clear(priv, INTRL2_0_MPD);
1914 
1915 	netif_dbg(priv, wol, ndev, "entered WOL mode\n");
1916 
1917 	return 0;
1918 }
1919 
1920 static int bcm_sysport_suspend(struct device *d)
1921 {
1922 	struct net_device *dev = dev_get_drvdata(d);
1923 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1924 	unsigned int i;
1925 	int ret = 0;
1926 	u32 reg;
1927 
1928 	if (!netif_running(dev))
1929 		return 0;
1930 
1931 	bcm_sysport_netif_stop(dev);
1932 
1933 	phy_suspend(priv->phydev);
1934 
1935 	netif_device_detach(dev);
1936 
1937 	/* Disable UniMAC RX */
1938 	umac_enable_set(priv, CMD_RX_EN, 0);
1939 
1940 	ret = rdma_enable_set(priv, 0);
1941 	if (ret) {
1942 		netdev_err(dev, "RDMA timeout!\n");
1943 		return ret;
1944 	}
1945 
1946 	/* Disable RXCHK if enabled */
1947 	if (priv->rx_chk_en) {
1948 		reg = rxchk_readl(priv, RXCHK_CONTROL);
1949 		reg &= ~RXCHK_EN;
1950 		rxchk_writel(priv, reg, RXCHK_CONTROL);
1951 	}
1952 
1953 	/* Flush RX pipe */
1954 	if (!priv->wolopts)
1955 		topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
1956 
1957 	ret = tdma_enable_set(priv, 0);
1958 	if (ret) {
1959 		netdev_err(dev, "TDMA timeout!\n");
1960 		return ret;
1961 	}
1962 
1963 	/* Wait for a packet boundary */
1964 	usleep_range(2000, 3000);
1965 
1966 	umac_enable_set(priv, CMD_TX_EN, 0);
1967 
1968 	topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);
1969 
1970 	/* Free RX/TX rings SW structures */
1971 	for (i = 0; i < dev->num_tx_queues; i++)
1972 		bcm_sysport_fini_tx_ring(priv, i);
1973 	bcm_sysport_fini_rx_ring(priv);
1974 
1975 	/* Get prepared for Wake-on-LAN */
1976 	if (device_may_wakeup(d) && priv->wolopts)
1977 		ret = bcm_sysport_suspend_to_wol(priv);
1978 
1979 	return ret;
1980 }
1981 
1982 static int bcm_sysport_resume(struct device *d)
1983 {
1984 	struct net_device *dev = dev_get_drvdata(d);
1985 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1986 	unsigned int i;
1987 	u32 reg;
1988 	int ret;
1989 
1990 	if (!netif_running(dev))
1991 		return 0;
1992 
1993 	umac_reset(priv);
1994 
1995 	/* We may have been suspended and never received a WOL event that
1996 	 * would turn off MPD detection, take care of that now
1997 	 */
1998 	bcm_sysport_resume_from_wol(priv);
1999 
2000 	/* Initialize both hardware and software ring */
2001 	for (i = 0; i < dev->num_tx_queues; i++) {
2002 		ret = bcm_sysport_init_tx_ring(priv, i);
2003 		if (ret) {
2004 			netdev_err(dev, "failed to initialize TX ring %d\n",
2005 				   i);
2006 			goto out_free_tx_rings;
2007 		}
2008 	}
2009 
2010 	/* Initialize linked-list */
2011 	tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);
2012 
2013 	/* Initialize RX ring */
2014 	ret = bcm_sysport_init_rx_ring(priv);
2015 	if (ret) {
2016 		netdev_err(dev, "failed to initialize RX ring\n");
2017 		goto out_free_rx_ring;
2018 	}
2019 
2020 	netif_device_attach(dev);
2021 
2022 	/* RX pipe enable */
2023 	topctrl_writel(priv, 0, RX_FLUSH_CNTL);
2024 
2025 	ret = rdma_enable_set(priv, 1);
2026 	if (ret) {
2027 		netdev_err(dev, "failed to enable RDMA\n");
2028 		goto out_free_rx_ring;
2029 	}
2030 
2031 	/* Enable rxhck */
2032 	if (priv->rx_chk_en) {
2033 		reg = rxchk_readl(priv, RXCHK_CONTROL);
2034 		reg |= RXCHK_EN;
2035 		rxchk_writel(priv, reg, RXCHK_CONTROL);
2036 	}
2037 
2038 	rbuf_init(priv);
2039 
2040 	/* Set maximum frame length */
2041 	umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2042 
2043 	/* Set MAC address */
2044 	umac_set_hw_addr(priv, dev->dev_addr);
2045 
2046 	umac_enable_set(priv, CMD_RX_EN, 1);
2047 
2048 	/* TX pipe enable */
2049 	topctrl_writel(priv, 0, TX_FLUSH_CNTL);
2050 
2051 	umac_enable_set(priv, CMD_TX_EN, 1);
2052 
2053 	ret = tdma_enable_set(priv, 1);
2054 	if (ret) {
2055 		netdev_err(dev, "TDMA timeout!\n");
2056 		goto out_free_rx_ring;
2057 	}
2058 
2059 	phy_resume(priv->phydev);
2060 
2061 	bcm_sysport_netif_start(dev);
2062 
2063 	return 0;
2064 
2065 out_free_rx_ring:
2066 	bcm_sysport_fini_rx_ring(priv);
2067 out_free_tx_rings:
2068 	for (i = 0; i < dev->num_tx_queues; i++)
2069 		bcm_sysport_fini_tx_ring(priv, i);
2070 	return ret;
2071 }
2072 #endif
2073 
2074 static SIMPLE_DEV_PM_OPS(bcm_sysport_pm_ops,
2075 		bcm_sysport_suspend, bcm_sysport_resume);
2076 
2077 static const struct of_device_id bcm_sysport_of_match[] = {
2078 	{ .compatible = "brcm,systemport-v1.00" },
2079 	{ .compatible = "brcm,systemport" },
2080 	{ /* sentinel */ }
2081 };
2082 MODULE_DEVICE_TABLE(of, bcm_sysport_of_match);
2083 
2084 static struct platform_driver bcm_sysport_driver = {
2085 	.probe	= bcm_sysport_probe,
2086 	.remove	= bcm_sysport_remove,
2087 	.driver =  {
2088 		.name = "brcm-systemport",
2089 		.of_match_table = bcm_sysport_of_match,
2090 		.pm = &bcm_sysport_pm_ops,
2091 	},
2092 };
2093 module_platform_driver(bcm_sysport_driver);
2094 
2095 MODULE_AUTHOR("Broadcom Corporation");
2096 MODULE_DESCRIPTION("Broadcom System Port Ethernet MAC driver");
2097 MODULE_ALIAS("platform:brcm-systemport");
2098 MODULE_LICENSE("GPL");
2099