1 /* 2 * Driver for BCM963xx builtin Ethernet mac 3 * 4 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/clk.h> 24 #include <linux/etherdevice.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/ethtool.h> 28 #include <linux/crc32.h> 29 #include <linux/err.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/platform_device.h> 32 #include <linux/if_vlan.h> 33 34 #include <bcm63xx_dev_enet.h> 35 #include "bcm63xx_enet.h" 36 37 static char bcm_enet_driver_name[] = "bcm63xx_enet"; 38 static char bcm_enet_driver_version[] = "1.0"; 39 40 static int copybreak __read_mostly = 128; 41 module_param(copybreak, int, 0); 42 MODULE_PARM_DESC(copybreak, "Receive copy threshold"); 43 44 /* io registers memory shared between all devices */ 45 static void __iomem *bcm_enet_shared_base[3]; 46 47 /* 48 * io helpers to access mac registers 49 */ 50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off) 51 { 52 return bcm_readl(priv->base + off); 53 } 54 55 static inline void enet_writel(struct bcm_enet_priv *priv, 56 u32 val, u32 off) 57 { 58 bcm_writel(val, priv->base + off); 59 } 60 61 /* 62 * io helpers to access switch registers 63 */ 64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off) 65 { 66 return bcm_readl(priv->base + off); 67 } 68 69 static inline void enetsw_writel(struct bcm_enet_priv *priv, 70 u32 val, u32 off) 71 { 72 bcm_writel(val, priv->base + off); 73 } 74 75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off) 76 { 77 return bcm_readw(priv->base + off); 78 } 79 80 static inline void enetsw_writew(struct bcm_enet_priv *priv, 81 u16 val, u32 off) 82 { 83 bcm_writew(val, priv->base + off); 84 } 85 86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off) 87 { 88 return bcm_readb(priv->base + off); 89 } 90 91 static inline void enetsw_writeb(struct bcm_enet_priv *priv, 92 u8 val, u32 off) 93 { 94 bcm_writeb(val, priv->base + off); 95 } 96 97 98 /* io helpers to access shared registers */ 99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off) 100 { 101 return bcm_readl(bcm_enet_shared_base[0] + off); 102 } 103 104 static inline void enet_dma_writel(struct bcm_enet_priv *priv, 105 u32 val, u32 off) 106 { 107 bcm_writel(val, bcm_enet_shared_base[0] + off); 108 } 109 110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan) 111 { 112 return bcm_readl(bcm_enet_shared_base[1] + 113 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 114 } 115 116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv, 117 u32 val, u32 off, int chan) 118 { 119 bcm_writel(val, bcm_enet_shared_base[1] + 120 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 121 } 122 123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan) 124 { 125 return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 126 } 127 128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv, 129 u32 val, u32 off, int chan) 130 { 131 bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 132 } 133 134 /* 135 * write given data into mii register and wait for transfer to end 136 * with timeout (average measured transfer time is 25us) 137 */ 138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data) 139 { 140 int limit; 141 142 /* make sure mii interrupt status is cleared */ 143 enet_writel(priv, ENET_IR_MII, ENET_IR_REG); 144 145 enet_writel(priv, data, ENET_MIIDATA_REG); 146 wmb(); 147 148 /* busy wait on mii interrupt bit, with timeout */ 149 limit = 1000; 150 do { 151 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII) 152 break; 153 udelay(1); 154 } while (limit-- > 0); 155 156 return (limit < 0) ? 1 : 0; 157 } 158 159 /* 160 * MII internal read callback 161 */ 162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id, 163 int regnum) 164 { 165 u32 tmp, val; 166 167 tmp = regnum << ENET_MIIDATA_REG_SHIFT; 168 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 169 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 170 tmp |= ENET_MIIDATA_OP_READ_MASK; 171 172 if (do_mdio_op(priv, tmp)) 173 return -1; 174 175 val = enet_readl(priv, ENET_MIIDATA_REG); 176 val &= 0xffff; 177 return val; 178 } 179 180 /* 181 * MII internal write callback 182 */ 183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id, 184 int regnum, u16 value) 185 { 186 u32 tmp; 187 188 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT; 189 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 190 tmp |= regnum << ENET_MIIDATA_REG_SHIFT; 191 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 192 tmp |= ENET_MIIDATA_OP_WRITE_MASK; 193 194 (void)do_mdio_op(priv, tmp); 195 return 0; 196 } 197 198 /* 199 * MII read callback from phylib 200 */ 201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id, 202 int regnum) 203 { 204 return bcm_enet_mdio_read(bus->priv, mii_id, regnum); 205 } 206 207 /* 208 * MII write callback from phylib 209 */ 210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id, 211 int regnum, u16 value) 212 { 213 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value); 214 } 215 216 /* 217 * MII read callback from mii core 218 */ 219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id, 220 int regnum) 221 { 222 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum); 223 } 224 225 /* 226 * MII write callback from mii core 227 */ 228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id, 229 int regnum, int value) 230 { 231 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value); 232 } 233 234 /* 235 * refill rx queue 236 */ 237 static int bcm_enet_refill_rx(struct net_device *dev) 238 { 239 struct bcm_enet_priv *priv; 240 241 priv = netdev_priv(dev); 242 243 while (priv->rx_desc_count < priv->rx_ring_size) { 244 struct bcm_enet_desc *desc; 245 struct sk_buff *skb; 246 dma_addr_t p; 247 int desc_idx; 248 u32 len_stat; 249 250 desc_idx = priv->rx_dirty_desc; 251 desc = &priv->rx_desc_cpu[desc_idx]; 252 253 if (!priv->rx_skb[desc_idx]) { 254 skb = netdev_alloc_skb(dev, priv->rx_skb_size); 255 if (!skb) 256 break; 257 priv->rx_skb[desc_idx] = skb; 258 p = dma_map_single(&priv->pdev->dev, skb->data, 259 priv->rx_skb_size, 260 DMA_FROM_DEVICE); 261 desc->address = p; 262 } 263 264 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT; 265 len_stat |= DMADESC_OWNER_MASK; 266 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) { 267 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 268 priv->rx_dirty_desc = 0; 269 } else { 270 priv->rx_dirty_desc++; 271 } 272 wmb(); 273 desc->len_stat = len_stat; 274 275 priv->rx_desc_count++; 276 277 /* tell dma engine we allocated one buffer */ 278 if (priv->dma_has_sram) 279 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan)); 280 else 281 enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan); 282 } 283 284 /* If rx ring is still empty, set a timer to try allocating 285 * again at a later time. */ 286 if (priv->rx_desc_count == 0 && netif_running(dev)) { 287 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n"); 288 priv->rx_timeout.expires = jiffies + HZ; 289 add_timer(&priv->rx_timeout); 290 } 291 292 return 0; 293 } 294 295 /* 296 * timer callback to defer refill rx queue in case we're OOM 297 */ 298 static void bcm_enet_refill_rx_timer(struct timer_list *t) 299 { 300 struct bcm_enet_priv *priv = from_timer(priv, t, rx_timeout); 301 struct net_device *dev = priv->net_dev; 302 303 spin_lock(&priv->rx_lock); 304 bcm_enet_refill_rx(dev); 305 spin_unlock(&priv->rx_lock); 306 } 307 308 /* 309 * extract packet from rx queue 310 */ 311 static int bcm_enet_receive_queue(struct net_device *dev, int budget) 312 { 313 struct bcm_enet_priv *priv; 314 struct device *kdev; 315 int processed; 316 317 priv = netdev_priv(dev); 318 kdev = &priv->pdev->dev; 319 processed = 0; 320 321 /* don't scan ring further than number of refilled 322 * descriptor */ 323 if (budget > priv->rx_desc_count) 324 budget = priv->rx_desc_count; 325 326 do { 327 struct bcm_enet_desc *desc; 328 struct sk_buff *skb; 329 int desc_idx; 330 u32 len_stat; 331 unsigned int len; 332 333 desc_idx = priv->rx_curr_desc; 334 desc = &priv->rx_desc_cpu[desc_idx]; 335 336 /* make sure we actually read the descriptor status at 337 * each loop */ 338 rmb(); 339 340 len_stat = desc->len_stat; 341 342 /* break if dma ownership belongs to hw */ 343 if (len_stat & DMADESC_OWNER_MASK) 344 break; 345 346 processed++; 347 priv->rx_curr_desc++; 348 if (priv->rx_curr_desc == priv->rx_ring_size) 349 priv->rx_curr_desc = 0; 350 priv->rx_desc_count--; 351 352 /* if the packet does not have start of packet _and_ 353 * end of packet flag set, then just recycle it */ 354 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) != 355 (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) { 356 dev->stats.rx_dropped++; 357 continue; 358 } 359 360 /* recycle packet if it's marked as bad */ 361 if (!priv->enet_is_sw && 362 unlikely(len_stat & DMADESC_ERR_MASK)) { 363 dev->stats.rx_errors++; 364 365 if (len_stat & DMADESC_OVSIZE_MASK) 366 dev->stats.rx_length_errors++; 367 if (len_stat & DMADESC_CRC_MASK) 368 dev->stats.rx_crc_errors++; 369 if (len_stat & DMADESC_UNDER_MASK) 370 dev->stats.rx_frame_errors++; 371 if (len_stat & DMADESC_OV_MASK) 372 dev->stats.rx_fifo_errors++; 373 continue; 374 } 375 376 /* valid packet */ 377 skb = priv->rx_skb[desc_idx]; 378 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT; 379 /* don't include FCS */ 380 len -= 4; 381 382 if (len < copybreak) { 383 struct sk_buff *nskb; 384 385 nskb = napi_alloc_skb(&priv->napi, len); 386 if (!nskb) { 387 /* forget packet, just rearm desc */ 388 dev->stats.rx_dropped++; 389 continue; 390 } 391 392 dma_sync_single_for_cpu(kdev, desc->address, 393 len, DMA_FROM_DEVICE); 394 memcpy(nskb->data, skb->data, len); 395 dma_sync_single_for_device(kdev, desc->address, 396 len, DMA_FROM_DEVICE); 397 skb = nskb; 398 } else { 399 dma_unmap_single(&priv->pdev->dev, desc->address, 400 priv->rx_skb_size, DMA_FROM_DEVICE); 401 priv->rx_skb[desc_idx] = NULL; 402 } 403 404 skb_put(skb, len); 405 skb->protocol = eth_type_trans(skb, dev); 406 dev->stats.rx_packets++; 407 dev->stats.rx_bytes += len; 408 netif_receive_skb(skb); 409 410 } while (--budget > 0); 411 412 if (processed || !priv->rx_desc_count) { 413 bcm_enet_refill_rx(dev); 414 415 /* kick rx dma */ 416 enet_dmac_writel(priv, priv->dma_chan_en_mask, 417 ENETDMAC_CHANCFG, priv->rx_chan); 418 } 419 420 return processed; 421 } 422 423 424 /* 425 * try to or force reclaim of transmitted buffers 426 */ 427 static int bcm_enet_tx_reclaim(struct net_device *dev, int force) 428 { 429 struct bcm_enet_priv *priv; 430 int released; 431 432 priv = netdev_priv(dev); 433 released = 0; 434 435 while (priv->tx_desc_count < priv->tx_ring_size) { 436 struct bcm_enet_desc *desc; 437 struct sk_buff *skb; 438 439 /* We run in a bh and fight against start_xmit, which 440 * is called with bh disabled */ 441 spin_lock(&priv->tx_lock); 442 443 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc]; 444 445 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) { 446 spin_unlock(&priv->tx_lock); 447 break; 448 } 449 450 /* ensure other field of the descriptor were not read 451 * before we checked ownership */ 452 rmb(); 453 454 skb = priv->tx_skb[priv->tx_dirty_desc]; 455 priv->tx_skb[priv->tx_dirty_desc] = NULL; 456 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len, 457 DMA_TO_DEVICE); 458 459 priv->tx_dirty_desc++; 460 if (priv->tx_dirty_desc == priv->tx_ring_size) 461 priv->tx_dirty_desc = 0; 462 priv->tx_desc_count++; 463 464 spin_unlock(&priv->tx_lock); 465 466 if (desc->len_stat & DMADESC_UNDER_MASK) 467 dev->stats.tx_errors++; 468 469 dev_kfree_skb(skb); 470 released++; 471 } 472 473 if (netif_queue_stopped(dev) && released) 474 netif_wake_queue(dev); 475 476 return released; 477 } 478 479 /* 480 * poll func, called by network core 481 */ 482 static int bcm_enet_poll(struct napi_struct *napi, int budget) 483 { 484 struct bcm_enet_priv *priv; 485 struct net_device *dev; 486 int rx_work_done; 487 488 priv = container_of(napi, struct bcm_enet_priv, napi); 489 dev = priv->net_dev; 490 491 /* ack interrupts */ 492 enet_dmac_writel(priv, priv->dma_chan_int_mask, 493 ENETDMAC_IR, priv->rx_chan); 494 enet_dmac_writel(priv, priv->dma_chan_int_mask, 495 ENETDMAC_IR, priv->tx_chan); 496 497 /* reclaim sent skb */ 498 bcm_enet_tx_reclaim(dev, 0); 499 500 spin_lock(&priv->rx_lock); 501 rx_work_done = bcm_enet_receive_queue(dev, budget); 502 spin_unlock(&priv->rx_lock); 503 504 if (rx_work_done >= budget) { 505 /* rx queue is not yet empty/clean */ 506 return rx_work_done; 507 } 508 509 /* no more packet in rx/tx queue, remove device from poll 510 * queue */ 511 napi_complete_done(napi, rx_work_done); 512 513 /* restore rx/tx interrupt */ 514 enet_dmac_writel(priv, priv->dma_chan_int_mask, 515 ENETDMAC_IRMASK, priv->rx_chan); 516 enet_dmac_writel(priv, priv->dma_chan_int_mask, 517 ENETDMAC_IRMASK, priv->tx_chan); 518 519 return rx_work_done; 520 } 521 522 /* 523 * mac interrupt handler 524 */ 525 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id) 526 { 527 struct net_device *dev; 528 struct bcm_enet_priv *priv; 529 u32 stat; 530 531 dev = dev_id; 532 priv = netdev_priv(dev); 533 534 stat = enet_readl(priv, ENET_IR_REG); 535 if (!(stat & ENET_IR_MIB)) 536 return IRQ_NONE; 537 538 /* clear & mask interrupt */ 539 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 540 enet_writel(priv, 0, ENET_IRMASK_REG); 541 542 /* read mib registers in workqueue */ 543 schedule_work(&priv->mib_update_task); 544 545 return IRQ_HANDLED; 546 } 547 548 /* 549 * rx/tx dma interrupt handler 550 */ 551 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id) 552 { 553 struct net_device *dev; 554 struct bcm_enet_priv *priv; 555 556 dev = dev_id; 557 priv = netdev_priv(dev); 558 559 /* mask rx/tx interrupts */ 560 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 561 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 562 563 napi_schedule(&priv->napi); 564 565 return IRQ_HANDLED; 566 } 567 568 /* 569 * tx request callback 570 */ 571 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 572 { 573 struct bcm_enet_priv *priv; 574 struct bcm_enet_desc *desc; 575 u32 len_stat; 576 int ret; 577 578 priv = netdev_priv(dev); 579 580 /* lock against tx reclaim */ 581 spin_lock(&priv->tx_lock); 582 583 /* make sure the tx hw queue is not full, should not happen 584 * since we stop queue before it's the case */ 585 if (unlikely(!priv->tx_desc_count)) { 586 netif_stop_queue(dev); 587 dev_err(&priv->pdev->dev, "xmit called with no tx desc " 588 "available?\n"); 589 ret = NETDEV_TX_BUSY; 590 goto out_unlock; 591 } 592 593 /* pad small packets sent on a switch device */ 594 if (priv->enet_is_sw && skb->len < 64) { 595 int needed = 64 - skb->len; 596 char *data; 597 598 if (unlikely(skb_tailroom(skb) < needed)) { 599 struct sk_buff *nskb; 600 601 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC); 602 if (!nskb) { 603 ret = NETDEV_TX_BUSY; 604 goto out_unlock; 605 } 606 dev_kfree_skb(skb); 607 skb = nskb; 608 } 609 data = skb_put_zero(skb, needed); 610 } 611 612 /* point to the next available desc */ 613 desc = &priv->tx_desc_cpu[priv->tx_curr_desc]; 614 priv->tx_skb[priv->tx_curr_desc] = skb; 615 616 /* fill descriptor */ 617 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len, 618 DMA_TO_DEVICE); 619 620 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK; 621 len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) | 622 DMADESC_APPEND_CRC | 623 DMADESC_OWNER_MASK; 624 625 priv->tx_curr_desc++; 626 if (priv->tx_curr_desc == priv->tx_ring_size) { 627 priv->tx_curr_desc = 0; 628 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 629 } 630 priv->tx_desc_count--; 631 632 /* dma might be already polling, make sure we update desc 633 * fields in correct order */ 634 wmb(); 635 desc->len_stat = len_stat; 636 wmb(); 637 638 /* kick tx dma */ 639 enet_dmac_writel(priv, priv->dma_chan_en_mask, 640 ENETDMAC_CHANCFG, priv->tx_chan); 641 642 /* stop queue if no more desc available */ 643 if (!priv->tx_desc_count) 644 netif_stop_queue(dev); 645 646 dev->stats.tx_bytes += skb->len; 647 dev->stats.tx_packets++; 648 ret = NETDEV_TX_OK; 649 650 out_unlock: 651 spin_unlock(&priv->tx_lock); 652 return ret; 653 } 654 655 /* 656 * Change the interface's mac address. 657 */ 658 static int bcm_enet_set_mac_address(struct net_device *dev, void *p) 659 { 660 struct bcm_enet_priv *priv; 661 struct sockaddr *addr = p; 662 u32 val; 663 664 priv = netdev_priv(dev); 665 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 666 667 /* use perfect match register 0 to store my mac address */ 668 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) | 669 (dev->dev_addr[4] << 8) | dev->dev_addr[5]; 670 enet_writel(priv, val, ENET_PML_REG(0)); 671 672 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]); 673 val |= ENET_PMH_DATAVALID_MASK; 674 enet_writel(priv, val, ENET_PMH_REG(0)); 675 676 return 0; 677 } 678 679 /* 680 * Change rx mode (promiscuous/allmulti) and update multicast list 681 */ 682 static void bcm_enet_set_multicast_list(struct net_device *dev) 683 { 684 struct bcm_enet_priv *priv; 685 struct netdev_hw_addr *ha; 686 u32 val; 687 int i; 688 689 priv = netdev_priv(dev); 690 691 val = enet_readl(priv, ENET_RXCFG_REG); 692 693 if (dev->flags & IFF_PROMISC) 694 val |= ENET_RXCFG_PROMISC_MASK; 695 else 696 val &= ~ENET_RXCFG_PROMISC_MASK; 697 698 /* only 3 perfect match registers left, first one is used for 699 * own mac address */ 700 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3) 701 val |= ENET_RXCFG_ALLMCAST_MASK; 702 else 703 val &= ~ENET_RXCFG_ALLMCAST_MASK; 704 705 /* no need to set perfect match registers if we catch all 706 * multicast */ 707 if (val & ENET_RXCFG_ALLMCAST_MASK) { 708 enet_writel(priv, val, ENET_RXCFG_REG); 709 return; 710 } 711 712 i = 0; 713 netdev_for_each_mc_addr(ha, dev) { 714 u8 *dmi_addr; 715 u32 tmp; 716 717 if (i == 3) 718 break; 719 /* update perfect match registers */ 720 dmi_addr = ha->addr; 721 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) | 722 (dmi_addr[4] << 8) | dmi_addr[5]; 723 enet_writel(priv, tmp, ENET_PML_REG(i + 1)); 724 725 tmp = (dmi_addr[0] << 8 | dmi_addr[1]); 726 tmp |= ENET_PMH_DATAVALID_MASK; 727 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1)); 728 } 729 730 for (; i < 3; i++) { 731 enet_writel(priv, 0, ENET_PML_REG(i + 1)); 732 enet_writel(priv, 0, ENET_PMH_REG(i + 1)); 733 } 734 735 enet_writel(priv, val, ENET_RXCFG_REG); 736 } 737 738 /* 739 * set mac duplex parameters 740 */ 741 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex) 742 { 743 u32 val; 744 745 val = enet_readl(priv, ENET_TXCTL_REG); 746 if (fullduplex) 747 val |= ENET_TXCTL_FD_MASK; 748 else 749 val &= ~ENET_TXCTL_FD_MASK; 750 enet_writel(priv, val, ENET_TXCTL_REG); 751 } 752 753 /* 754 * set mac flow control parameters 755 */ 756 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en) 757 { 758 u32 val; 759 760 /* rx flow control (pause frame handling) */ 761 val = enet_readl(priv, ENET_RXCFG_REG); 762 if (rx_en) 763 val |= ENET_RXCFG_ENFLOW_MASK; 764 else 765 val &= ~ENET_RXCFG_ENFLOW_MASK; 766 enet_writel(priv, val, ENET_RXCFG_REG); 767 768 if (!priv->dma_has_sram) 769 return; 770 771 /* tx flow control (pause frame generation) */ 772 val = enet_dma_readl(priv, ENETDMA_CFG_REG); 773 if (tx_en) 774 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 775 else 776 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 777 enet_dma_writel(priv, val, ENETDMA_CFG_REG); 778 } 779 780 /* 781 * link changed callback (from phylib) 782 */ 783 static void bcm_enet_adjust_phy_link(struct net_device *dev) 784 { 785 struct bcm_enet_priv *priv; 786 struct phy_device *phydev; 787 int status_changed; 788 789 priv = netdev_priv(dev); 790 phydev = dev->phydev; 791 status_changed = 0; 792 793 if (priv->old_link != phydev->link) { 794 status_changed = 1; 795 priv->old_link = phydev->link; 796 } 797 798 /* reflect duplex change in mac configuration */ 799 if (phydev->link && phydev->duplex != priv->old_duplex) { 800 bcm_enet_set_duplex(priv, 801 (phydev->duplex == DUPLEX_FULL) ? 1 : 0); 802 status_changed = 1; 803 priv->old_duplex = phydev->duplex; 804 } 805 806 /* enable flow control if remote advertise it (trust phylib to 807 * check that duplex is full */ 808 if (phydev->link && phydev->pause != priv->old_pause) { 809 int rx_pause_en, tx_pause_en; 810 811 if (phydev->pause) { 812 /* pause was advertised by lpa and us */ 813 rx_pause_en = 1; 814 tx_pause_en = 1; 815 } else if (!priv->pause_auto) { 816 /* pause setting overridden by user */ 817 rx_pause_en = priv->pause_rx; 818 tx_pause_en = priv->pause_tx; 819 } else { 820 rx_pause_en = 0; 821 tx_pause_en = 0; 822 } 823 824 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en); 825 status_changed = 1; 826 priv->old_pause = phydev->pause; 827 } 828 829 if (status_changed) { 830 pr_info("%s: link %s", dev->name, phydev->link ? 831 "UP" : "DOWN"); 832 if (phydev->link) 833 pr_cont(" - %d/%s - flow control %s", phydev->speed, 834 DUPLEX_FULL == phydev->duplex ? "full" : "half", 835 phydev->pause == 1 ? "rx&tx" : "off"); 836 837 pr_cont("\n"); 838 } 839 } 840 841 /* 842 * link changed callback (if phylib is not used) 843 */ 844 static void bcm_enet_adjust_link(struct net_device *dev) 845 { 846 struct bcm_enet_priv *priv; 847 848 priv = netdev_priv(dev); 849 bcm_enet_set_duplex(priv, priv->force_duplex_full); 850 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx); 851 netif_carrier_on(dev); 852 853 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n", 854 dev->name, 855 priv->force_speed_100 ? 100 : 10, 856 priv->force_duplex_full ? "full" : "half", 857 priv->pause_rx ? "rx" : "off", 858 priv->pause_tx ? "tx" : "off"); 859 } 860 861 /* 862 * open callback, allocate dma rings & buffers and start rx operation 863 */ 864 static int bcm_enet_open(struct net_device *dev) 865 { 866 struct bcm_enet_priv *priv; 867 struct sockaddr addr; 868 struct device *kdev; 869 struct phy_device *phydev; 870 int i, ret; 871 unsigned int size; 872 char phy_id[MII_BUS_ID_SIZE + 3]; 873 void *p; 874 u32 val; 875 876 priv = netdev_priv(dev); 877 kdev = &priv->pdev->dev; 878 879 if (priv->has_phy) { 880 /* connect to PHY */ 881 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 882 priv->mii_bus->id, priv->phy_id); 883 884 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link, 885 PHY_INTERFACE_MODE_MII); 886 887 if (IS_ERR(phydev)) { 888 dev_err(kdev, "could not attach to PHY\n"); 889 return PTR_ERR(phydev); 890 } 891 892 /* mask with MAC supported features */ 893 phydev->supported &= (SUPPORTED_10baseT_Half | 894 SUPPORTED_10baseT_Full | 895 SUPPORTED_100baseT_Half | 896 SUPPORTED_100baseT_Full | 897 SUPPORTED_Autoneg | 898 SUPPORTED_Pause | 899 SUPPORTED_MII); 900 phydev->advertising = phydev->supported; 901 902 if (priv->pause_auto && priv->pause_rx && priv->pause_tx) 903 phydev->advertising |= SUPPORTED_Pause; 904 else 905 phydev->advertising &= ~SUPPORTED_Pause; 906 907 phy_attached_info(phydev); 908 909 priv->old_link = 0; 910 priv->old_duplex = -1; 911 priv->old_pause = -1; 912 } else { 913 phydev = NULL; 914 } 915 916 /* mask all interrupts and request them */ 917 enet_writel(priv, 0, ENET_IRMASK_REG); 918 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 919 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 920 921 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev); 922 if (ret) 923 goto out_phy_disconnect; 924 925 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0, 926 dev->name, dev); 927 if (ret) 928 goto out_freeirq; 929 930 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 931 0, dev->name, dev); 932 if (ret) 933 goto out_freeirq_rx; 934 935 /* initialize perfect match registers */ 936 for (i = 0; i < 4; i++) { 937 enet_writel(priv, 0, ENET_PML_REG(i)); 938 enet_writel(priv, 0, ENET_PMH_REG(i)); 939 } 940 941 /* write device mac address */ 942 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN); 943 bcm_enet_set_mac_address(dev, &addr); 944 945 /* allocate rx dma ring */ 946 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 947 p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 948 if (!p) { 949 ret = -ENOMEM; 950 goto out_freeirq_tx; 951 } 952 953 priv->rx_desc_alloc_size = size; 954 priv->rx_desc_cpu = p; 955 956 /* allocate tx dma ring */ 957 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 958 p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 959 if (!p) { 960 ret = -ENOMEM; 961 goto out_free_rx_ring; 962 } 963 964 priv->tx_desc_alloc_size = size; 965 priv->tx_desc_cpu = p; 966 967 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *), 968 GFP_KERNEL); 969 if (!priv->tx_skb) { 970 ret = -ENOMEM; 971 goto out_free_tx_ring; 972 } 973 974 priv->tx_desc_count = priv->tx_ring_size; 975 priv->tx_dirty_desc = 0; 976 priv->tx_curr_desc = 0; 977 spin_lock_init(&priv->tx_lock); 978 979 /* init & fill rx ring with skbs */ 980 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *), 981 GFP_KERNEL); 982 if (!priv->rx_skb) { 983 ret = -ENOMEM; 984 goto out_free_tx_skb; 985 } 986 987 priv->rx_desc_count = 0; 988 priv->rx_dirty_desc = 0; 989 priv->rx_curr_desc = 0; 990 991 /* initialize flow control buffer allocation */ 992 if (priv->dma_has_sram) 993 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 994 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 995 else 996 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 997 ENETDMAC_BUFALLOC, priv->rx_chan); 998 999 if (bcm_enet_refill_rx(dev)) { 1000 dev_err(kdev, "cannot allocate rx skb queue\n"); 1001 ret = -ENOMEM; 1002 goto out; 1003 } 1004 1005 /* write rx & tx ring addresses */ 1006 if (priv->dma_has_sram) { 1007 enet_dmas_writel(priv, priv->rx_desc_dma, 1008 ENETDMAS_RSTART_REG, priv->rx_chan); 1009 enet_dmas_writel(priv, priv->tx_desc_dma, 1010 ENETDMAS_RSTART_REG, priv->tx_chan); 1011 } else { 1012 enet_dmac_writel(priv, priv->rx_desc_dma, 1013 ENETDMAC_RSTART, priv->rx_chan); 1014 enet_dmac_writel(priv, priv->tx_desc_dma, 1015 ENETDMAC_RSTART, priv->tx_chan); 1016 } 1017 1018 /* clear remaining state ram for rx & tx channel */ 1019 if (priv->dma_has_sram) { 1020 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 1021 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 1022 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 1023 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 1024 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 1025 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 1026 } else { 1027 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan); 1028 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan); 1029 } 1030 1031 /* set max rx/tx length */ 1032 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG); 1033 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG); 1034 1035 /* set dma maximum burst len */ 1036 enet_dmac_writel(priv, priv->dma_maxburst, 1037 ENETDMAC_MAXBURST, priv->rx_chan); 1038 enet_dmac_writel(priv, priv->dma_maxburst, 1039 ENETDMAC_MAXBURST, priv->tx_chan); 1040 1041 /* set correct transmit fifo watermark */ 1042 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG); 1043 1044 /* set flow control low/high threshold to 1/3 / 2/3 */ 1045 if (priv->dma_has_sram) { 1046 val = priv->rx_ring_size / 3; 1047 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 1048 val = (priv->rx_ring_size * 2) / 3; 1049 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 1050 } else { 1051 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan); 1052 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan); 1053 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan); 1054 } 1055 1056 /* all set, enable mac and interrupts, start dma engine and 1057 * kick rx dma channel */ 1058 wmb(); 1059 val = enet_readl(priv, ENET_CTL_REG); 1060 val |= ENET_CTL_ENABLE_MASK; 1061 enet_writel(priv, val, ENET_CTL_REG); 1062 if (priv->dma_has_sram) 1063 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 1064 enet_dmac_writel(priv, priv->dma_chan_en_mask, 1065 ENETDMAC_CHANCFG, priv->rx_chan); 1066 1067 /* watch "mib counters about to overflow" interrupt */ 1068 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 1069 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1070 1071 /* watch "packet transferred" interrupt in rx and tx */ 1072 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1073 ENETDMAC_IR, priv->rx_chan); 1074 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1075 ENETDMAC_IR, priv->tx_chan); 1076 1077 /* make sure we enable napi before rx interrupt */ 1078 napi_enable(&priv->napi); 1079 1080 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1081 ENETDMAC_IRMASK, priv->rx_chan); 1082 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1083 ENETDMAC_IRMASK, priv->tx_chan); 1084 1085 if (phydev) 1086 phy_start(phydev); 1087 else 1088 bcm_enet_adjust_link(dev); 1089 1090 netif_start_queue(dev); 1091 return 0; 1092 1093 out: 1094 for (i = 0; i < priv->rx_ring_size; i++) { 1095 struct bcm_enet_desc *desc; 1096 1097 if (!priv->rx_skb[i]) 1098 continue; 1099 1100 desc = &priv->rx_desc_cpu[i]; 1101 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1102 DMA_FROM_DEVICE); 1103 kfree_skb(priv->rx_skb[i]); 1104 } 1105 kfree(priv->rx_skb); 1106 1107 out_free_tx_skb: 1108 kfree(priv->tx_skb); 1109 1110 out_free_tx_ring: 1111 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1112 priv->tx_desc_cpu, priv->tx_desc_dma); 1113 1114 out_free_rx_ring: 1115 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1116 priv->rx_desc_cpu, priv->rx_desc_dma); 1117 1118 out_freeirq_tx: 1119 free_irq(priv->irq_tx, dev); 1120 1121 out_freeirq_rx: 1122 free_irq(priv->irq_rx, dev); 1123 1124 out_freeirq: 1125 free_irq(dev->irq, dev); 1126 1127 out_phy_disconnect: 1128 if (phydev) 1129 phy_disconnect(phydev); 1130 1131 return ret; 1132 } 1133 1134 /* 1135 * disable mac 1136 */ 1137 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv) 1138 { 1139 int limit; 1140 u32 val; 1141 1142 val = enet_readl(priv, ENET_CTL_REG); 1143 val |= ENET_CTL_DISABLE_MASK; 1144 enet_writel(priv, val, ENET_CTL_REG); 1145 1146 limit = 1000; 1147 do { 1148 u32 val; 1149 1150 val = enet_readl(priv, ENET_CTL_REG); 1151 if (!(val & ENET_CTL_DISABLE_MASK)) 1152 break; 1153 udelay(1); 1154 } while (limit--); 1155 } 1156 1157 /* 1158 * disable dma in given channel 1159 */ 1160 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan) 1161 { 1162 int limit; 1163 1164 enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan); 1165 1166 limit = 1000; 1167 do { 1168 u32 val; 1169 1170 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan); 1171 if (!(val & ENETDMAC_CHANCFG_EN_MASK)) 1172 break; 1173 udelay(1); 1174 } while (limit--); 1175 } 1176 1177 /* 1178 * stop callback 1179 */ 1180 static int bcm_enet_stop(struct net_device *dev) 1181 { 1182 struct bcm_enet_priv *priv; 1183 struct device *kdev; 1184 int i; 1185 1186 priv = netdev_priv(dev); 1187 kdev = &priv->pdev->dev; 1188 1189 netif_stop_queue(dev); 1190 napi_disable(&priv->napi); 1191 if (priv->has_phy) 1192 phy_stop(dev->phydev); 1193 del_timer_sync(&priv->rx_timeout); 1194 1195 /* mask all interrupts */ 1196 enet_writel(priv, 0, ENET_IRMASK_REG); 1197 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 1198 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 1199 1200 /* make sure no mib update is scheduled */ 1201 cancel_work_sync(&priv->mib_update_task); 1202 1203 /* disable dma & mac */ 1204 bcm_enet_disable_dma(priv, priv->tx_chan); 1205 bcm_enet_disable_dma(priv, priv->rx_chan); 1206 bcm_enet_disable_mac(priv); 1207 1208 /* force reclaim of all tx buffers */ 1209 bcm_enet_tx_reclaim(dev, 1); 1210 1211 /* free the rx skb ring */ 1212 for (i = 0; i < priv->rx_ring_size; i++) { 1213 struct bcm_enet_desc *desc; 1214 1215 if (!priv->rx_skb[i]) 1216 continue; 1217 1218 desc = &priv->rx_desc_cpu[i]; 1219 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1220 DMA_FROM_DEVICE); 1221 kfree_skb(priv->rx_skb[i]); 1222 } 1223 1224 /* free remaining allocated memory */ 1225 kfree(priv->rx_skb); 1226 kfree(priv->tx_skb); 1227 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1228 priv->rx_desc_cpu, priv->rx_desc_dma); 1229 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1230 priv->tx_desc_cpu, priv->tx_desc_dma); 1231 free_irq(priv->irq_tx, dev); 1232 free_irq(priv->irq_rx, dev); 1233 free_irq(dev->irq, dev); 1234 1235 /* release phy */ 1236 if (priv->has_phy) 1237 phy_disconnect(dev->phydev); 1238 1239 return 0; 1240 } 1241 1242 /* 1243 * ethtool callbacks 1244 */ 1245 struct bcm_enet_stats { 1246 char stat_string[ETH_GSTRING_LEN]; 1247 int sizeof_stat; 1248 int stat_offset; 1249 int mib_reg; 1250 }; 1251 1252 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \ 1253 offsetof(struct bcm_enet_priv, m) 1254 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \ 1255 offsetof(struct net_device_stats, m) 1256 1257 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = { 1258 { "rx_packets", DEV_STAT(rx_packets), -1 }, 1259 { "tx_packets", DEV_STAT(tx_packets), -1 }, 1260 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 1261 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 1262 { "rx_errors", DEV_STAT(rx_errors), -1 }, 1263 { "tx_errors", DEV_STAT(tx_errors), -1 }, 1264 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 1265 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 1266 1267 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS}, 1268 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS }, 1269 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST }, 1270 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT }, 1271 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 }, 1272 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 }, 1273 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 }, 1274 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 }, 1275 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 }, 1276 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX }, 1277 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB }, 1278 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR }, 1279 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG }, 1280 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP }, 1281 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN }, 1282 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND }, 1283 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC }, 1284 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN }, 1285 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM }, 1286 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE }, 1287 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL }, 1288 1289 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS }, 1290 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS }, 1291 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST }, 1292 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT }, 1293 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 }, 1294 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 }, 1295 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 }, 1296 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 }, 1297 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023}, 1298 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX }, 1299 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB }, 1300 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR }, 1301 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG }, 1302 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN }, 1303 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL }, 1304 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL }, 1305 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL }, 1306 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL }, 1307 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE }, 1308 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF }, 1309 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS }, 1310 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE }, 1311 1312 }; 1313 1314 #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats) 1315 1316 static const u32 unused_mib_regs[] = { 1317 ETH_MIB_TX_ALL_OCTETS, 1318 ETH_MIB_TX_ALL_PKTS, 1319 ETH_MIB_RX_ALL_OCTETS, 1320 ETH_MIB_RX_ALL_PKTS, 1321 }; 1322 1323 1324 static void bcm_enet_get_drvinfo(struct net_device *netdev, 1325 struct ethtool_drvinfo *drvinfo) 1326 { 1327 strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver)); 1328 strlcpy(drvinfo->version, bcm_enet_driver_version, 1329 sizeof(drvinfo->version)); 1330 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version)); 1331 strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info)); 1332 } 1333 1334 static int bcm_enet_get_sset_count(struct net_device *netdev, 1335 int string_set) 1336 { 1337 switch (string_set) { 1338 case ETH_SS_STATS: 1339 return BCM_ENET_STATS_LEN; 1340 default: 1341 return -EINVAL; 1342 } 1343 } 1344 1345 static void bcm_enet_get_strings(struct net_device *netdev, 1346 u32 stringset, u8 *data) 1347 { 1348 int i; 1349 1350 switch (stringset) { 1351 case ETH_SS_STATS: 1352 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1353 memcpy(data + i * ETH_GSTRING_LEN, 1354 bcm_enet_gstrings_stats[i].stat_string, 1355 ETH_GSTRING_LEN); 1356 } 1357 break; 1358 } 1359 } 1360 1361 static void update_mib_counters(struct bcm_enet_priv *priv) 1362 { 1363 int i; 1364 1365 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1366 const struct bcm_enet_stats *s; 1367 u32 val; 1368 char *p; 1369 1370 s = &bcm_enet_gstrings_stats[i]; 1371 if (s->mib_reg == -1) 1372 continue; 1373 1374 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg)); 1375 p = (char *)priv + s->stat_offset; 1376 1377 if (s->sizeof_stat == sizeof(u64)) 1378 *(u64 *)p += val; 1379 else 1380 *(u32 *)p += val; 1381 } 1382 1383 /* also empty unused mib counters to make sure mib counter 1384 * overflow interrupt is cleared */ 1385 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++) 1386 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i])); 1387 } 1388 1389 static void bcm_enet_update_mib_counters_defer(struct work_struct *t) 1390 { 1391 struct bcm_enet_priv *priv; 1392 1393 priv = container_of(t, struct bcm_enet_priv, mib_update_task); 1394 mutex_lock(&priv->mib_update_lock); 1395 update_mib_counters(priv); 1396 mutex_unlock(&priv->mib_update_lock); 1397 1398 /* reenable mib interrupt */ 1399 if (netif_running(priv->net_dev)) 1400 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1401 } 1402 1403 static void bcm_enet_get_ethtool_stats(struct net_device *netdev, 1404 struct ethtool_stats *stats, 1405 u64 *data) 1406 { 1407 struct bcm_enet_priv *priv; 1408 int i; 1409 1410 priv = netdev_priv(netdev); 1411 1412 mutex_lock(&priv->mib_update_lock); 1413 update_mib_counters(priv); 1414 1415 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1416 const struct bcm_enet_stats *s; 1417 char *p; 1418 1419 s = &bcm_enet_gstrings_stats[i]; 1420 if (s->mib_reg == -1) 1421 p = (char *)&netdev->stats; 1422 else 1423 p = (char *)priv; 1424 p += s->stat_offset; 1425 data[i] = (s->sizeof_stat == sizeof(u64)) ? 1426 *(u64 *)p : *(u32 *)p; 1427 } 1428 mutex_unlock(&priv->mib_update_lock); 1429 } 1430 1431 static int bcm_enet_nway_reset(struct net_device *dev) 1432 { 1433 struct bcm_enet_priv *priv; 1434 1435 priv = netdev_priv(dev); 1436 if (priv->has_phy) 1437 return phy_ethtool_nway_reset(dev); 1438 1439 return -EOPNOTSUPP; 1440 } 1441 1442 static int bcm_enet_get_link_ksettings(struct net_device *dev, 1443 struct ethtool_link_ksettings *cmd) 1444 { 1445 struct bcm_enet_priv *priv; 1446 u32 supported, advertising; 1447 1448 priv = netdev_priv(dev); 1449 1450 if (priv->has_phy) { 1451 if (!dev->phydev) 1452 return -ENODEV; 1453 1454 phy_ethtool_ksettings_get(dev->phydev, cmd); 1455 1456 return 0; 1457 } else { 1458 cmd->base.autoneg = 0; 1459 cmd->base.speed = (priv->force_speed_100) ? 1460 SPEED_100 : SPEED_10; 1461 cmd->base.duplex = (priv->force_duplex_full) ? 1462 DUPLEX_FULL : DUPLEX_HALF; 1463 supported = ADVERTISED_10baseT_Half | 1464 ADVERTISED_10baseT_Full | 1465 ADVERTISED_100baseT_Half | 1466 ADVERTISED_100baseT_Full; 1467 advertising = 0; 1468 ethtool_convert_legacy_u32_to_link_mode( 1469 cmd->link_modes.supported, supported); 1470 ethtool_convert_legacy_u32_to_link_mode( 1471 cmd->link_modes.advertising, advertising); 1472 cmd->base.port = PORT_MII; 1473 } 1474 return 0; 1475 } 1476 1477 static int bcm_enet_set_link_ksettings(struct net_device *dev, 1478 const struct ethtool_link_ksettings *cmd) 1479 { 1480 struct bcm_enet_priv *priv; 1481 1482 priv = netdev_priv(dev); 1483 if (priv->has_phy) { 1484 if (!dev->phydev) 1485 return -ENODEV; 1486 return phy_ethtool_ksettings_set(dev->phydev, cmd); 1487 } else { 1488 1489 if (cmd->base.autoneg || 1490 (cmd->base.speed != SPEED_100 && 1491 cmd->base.speed != SPEED_10) || 1492 cmd->base.port != PORT_MII) 1493 return -EINVAL; 1494 1495 priv->force_speed_100 = 1496 (cmd->base.speed == SPEED_100) ? 1 : 0; 1497 priv->force_duplex_full = 1498 (cmd->base.duplex == DUPLEX_FULL) ? 1 : 0; 1499 1500 if (netif_running(dev)) 1501 bcm_enet_adjust_link(dev); 1502 return 0; 1503 } 1504 } 1505 1506 static void bcm_enet_get_ringparam(struct net_device *dev, 1507 struct ethtool_ringparam *ering) 1508 { 1509 struct bcm_enet_priv *priv; 1510 1511 priv = netdev_priv(dev); 1512 1513 /* rx/tx ring is actually only limited by memory */ 1514 ering->rx_max_pending = 8192; 1515 ering->tx_max_pending = 8192; 1516 ering->rx_pending = priv->rx_ring_size; 1517 ering->tx_pending = priv->tx_ring_size; 1518 } 1519 1520 static int bcm_enet_set_ringparam(struct net_device *dev, 1521 struct ethtool_ringparam *ering) 1522 { 1523 struct bcm_enet_priv *priv; 1524 int was_running; 1525 1526 priv = netdev_priv(dev); 1527 1528 was_running = 0; 1529 if (netif_running(dev)) { 1530 bcm_enet_stop(dev); 1531 was_running = 1; 1532 } 1533 1534 priv->rx_ring_size = ering->rx_pending; 1535 priv->tx_ring_size = ering->tx_pending; 1536 1537 if (was_running) { 1538 int err; 1539 1540 err = bcm_enet_open(dev); 1541 if (err) 1542 dev_close(dev); 1543 else 1544 bcm_enet_set_multicast_list(dev); 1545 } 1546 return 0; 1547 } 1548 1549 static void bcm_enet_get_pauseparam(struct net_device *dev, 1550 struct ethtool_pauseparam *ecmd) 1551 { 1552 struct bcm_enet_priv *priv; 1553 1554 priv = netdev_priv(dev); 1555 ecmd->autoneg = priv->pause_auto; 1556 ecmd->rx_pause = priv->pause_rx; 1557 ecmd->tx_pause = priv->pause_tx; 1558 } 1559 1560 static int bcm_enet_set_pauseparam(struct net_device *dev, 1561 struct ethtool_pauseparam *ecmd) 1562 { 1563 struct bcm_enet_priv *priv; 1564 1565 priv = netdev_priv(dev); 1566 1567 if (priv->has_phy) { 1568 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) { 1569 /* asymetric pause mode not supported, 1570 * actually possible but integrated PHY has RO 1571 * asym_pause bit */ 1572 return -EINVAL; 1573 } 1574 } else { 1575 /* no pause autoneg on direct mii connection */ 1576 if (ecmd->autoneg) 1577 return -EINVAL; 1578 } 1579 1580 priv->pause_auto = ecmd->autoneg; 1581 priv->pause_rx = ecmd->rx_pause; 1582 priv->pause_tx = ecmd->tx_pause; 1583 1584 return 0; 1585 } 1586 1587 static const struct ethtool_ops bcm_enet_ethtool_ops = { 1588 .get_strings = bcm_enet_get_strings, 1589 .get_sset_count = bcm_enet_get_sset_count, 1590 .get_ethtool_stats = bcm_enet_get_ethtool_stats, 1591 .nway_reset = bcm_enet_nway_reset, 1592 .get_drvinfo = bcm_enet_get_drvinfo, 1593 .get_link = ethtool_op_get_link, 1594 .get_ringparam = bcm_enet_get_ringparam, 1595 .set_ringparam = bcm_enet_set_ringparam, 1596 .get_pauseparam = bcm_enet_get_pauseparam, 1597 .set_pauseparam = bcm_enet_set_pauseparam, 1598 .get_link_ksettings = bcm_enet_get_link_ksettings, 1599 .set_link_ksettings = bcm_enet_set_link_ksettings, 1600 }; 1601 1602 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1603 { 1604 struct bcm_enet_priv *priv; 1605 1606 priv = netdev_priv(dev); 1607 if (priv->has_phy) { 1608 if (!dev->phydev) 1609 return -ENODEV; 1610 return phy_mii_ioctl(dev->phydev, rq, cmd); 1611 } else { 1612 struct mii_if_info mii; 1613 1614 mii.dev = dev; 1615 mii.mdio_read = bcm_enet_mdio_read_mii; 1616 mii.mdio_write = bcm_enet_mdio_write_mii; 1617 mii.phy_id = 0; 1618 mii.phy_id_mask = 0x3f; 1619 mii.reg_num_mask = 0x1f; 1620 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 1621 } 1622 } 1623 1624 /* 1625 * adjust mtu, can't be called while device is running 1626 */ 1627 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu) 1628 { 1629 struct bcm_enet_priv *priv = netdev_priv(dev); 1630 int actual_mtu = new_mtu; 1631 1632 if (netif_running(dev)) 1633 return -EBUSY; 1634 1635 /* add ethernet header + vlan tag size */ 1636 actual_mtu += VLAN_ETH_HLEN; 1637 1638 /* 1639 * setup maximum size before we get overflow mark in 1640 * descriptor, note that this will not prevent reception of 1641 * big frames, they will be split into multiple buffers 1642 * anyway 1643 */ 1644 priv->hw_mtu = actual_mtu; 1645 1646 /* 1647 * align rx buffer size to dma burst len, account FCS since 1648 * it's appended 1649 */ 1650 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN, 1651 priv->dma_maxburst * 4); 1652 1653 dev->mtu = new_mtu; 1654 return 0; 1655 } 1656 1657 /* 1658 * preinit hardware to allow mii operation while device is down 1659 */ 1660 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv) 1661 { 1662 u32 val; 1663 int limit; 1664 1665 /* make sure mac is disabled */ 1666 bcm_enet_disable_mac(priv); 1667 1668 /* soft reset mac */ 1669 val = ENET_CTL_SRESET_MASK; 1670 enet_writel(priv, val, ENET_CTL_REG); 1671 wmb(); 1672 1673 limit = 1000; 1674 do { 1675 val = enet_readl(priv, ENET_CTL_REG); 1676 if (!(val & ENET_CTL_SRESET_MASK)) 1677 break; 1678 udelay(1); 1679 } while (limit--); 1680 1681 /* select correct mii interface */ 1682 val = enet_readl(priv, ENET_CTL_REG); 1683 if (priv->use_external_mii) 1684 val |= ENET_CTL_EPHYSEL_MASK; 1685 else 1686 val &= ~ENET_CTL_EPHYSEL_MASK; 1687 enet_writel(priv, val, ENET_CTL_REG); 1688 1689 /* turn on mdc clock */ 1690 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) | 1691 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG); 1692 1693 /* set mib counters to self-clear when read */ 1694 val = enet_readl(priv, ENET_MIBCTL_REG); 1695 val |= ENET_MIBCTL_RDCLEAR_MASK; 1696 enet_writel(priv, val, ENET_MIBCTL_REG); 1697 } 1698 1699 static const struct net_device_ops bcm_enet_ops = { 1700 .ndo_open = bcm_enet_open, 1701 .ndo_stop = bcm_enet_stop, 1702 .ndo_start_xmit = bcm_enet_start_xmit, 1703 .ndo_set_mac_address = bcm_enet_set_mac_address, 1704 .ndo_set_rx_mode = bcm_enet_set_multicast_list, 1705 .ndo_do_ioctl = bcm_enet_ioctl, 1706 .ndo_change_mtu = bcm_enet_change_mtu, 1707 }; 1708 1709 /* 1710 * allocate netdevice, request register memory and register device. 1711 */ 1712 static int bcm_enet_probe(struct platform_device *pdev) 1713 { 1714 struct bcm_enet_priv *priv; 1715 struct net_device *dev; 1716 struct bcm63xx_enet_platform_data *pd; 1717 struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx; 1718 struct mii_bus *bus; 1719 int i, ret; 1720 1721 if (!bcm_enet_shared_base[0]) 1722 return -EPROBE_DEFER; 1723 1724 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1725 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1); 1726 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2); 1727 if (!res_irq || !res_irq_rx || !res_irq_tx) 1728 return -ENODEV; 1729 1730 ret = 0; 1731 dev = alloc_etherdev(sizeof(*priv)); 1732 if (!dev) 1733 return -ENOMEM; 1734 priv = netdev_priv(dev); 1735 1736 priv->enet_is_sw = false; 1737 priv->dma_maxburst = BCMENET_DMA_MAXBURST; 1738 1739 ret = bcm_enet_change_mtu(dev, dev->mtu); 1740 if (ret) 1741 goto out; 1742 1743 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1744 priv->base = devm_ioremap_resource(&pdev->dev, res_mem); 1745 if (IS_ERR(priv->base)) { 1746 ret = PTR_ERR(priv->base); 1747 goto out; 1748 } 1749 1750 dev->irq = priv->irq = res_irq->start; 1751 priv->irq_rx = res_irq_rx->start; 1752 priv->irq_tx = res_irq_tx->start; 1753 1754 priv->mac_clk = devm_clk_get(&pdev->dev, "enet"); 1755 if (IS_ERR(priv->mac_clk)) { 1756 ret = PTR_ERR(priv->mac_clk); 1757 goto out; 1758 } 1759 ret = clk_prepare_enable(priv->mac_clk); 1760 if (ret) 1761 goto out; 1762 1763 /* initialize default and fetch platform data */ 1764 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 1765 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 1766 1767 pd = dev_get_platdata(&pdev->dev); 1768 if (pd) { 1769 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 1770 priv->has_phy = pd->has_phy; 1771 priv->phy_id = pd->phy_id; 1772 priv->has_phy_interrupt = pd->has_phy_interrupt; 1773 priv->phy_interrupt = pd->phy_interrupt; 1774 priv->use_external_mii = !pd->use_internal_phy; 1775 priv->pause_auto = pd->pause_auto; 1776 priv->pause_rx = pd->pause_rx; 1777 priv->pause_tx = pd->pause_tx; 1778 priv->force_duplex_full = pd->force_duplex_full; 1779 priv->force_speed_100 = pd->force_speed_100; 1780 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 1781 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 1782 priv->dma_chan_width = pd->dma_chan_width; 1783 priv->dma_has_sram = pd->dma_has_sram; 1784 priv->dma_desc_shift = pd->dma_desc_shift; 1785 priv->rx_chan = pd->rx_chan; 1786 priv->tx_chan = pd->tx_chan; 1787 } 1788 1789 if (priv->has_phy && !priv->use_external_mii) { 1790 /* using internal PHY, enable clock */ 1791 priv->phy_clk = devm_clk_get(&pdev->dev, "ephy"); 1792 if (IS_ERR(priv->phy_clk)) { 1793 ret = PTR_ERR(priv->phy_clk); 1794 priv->phy_clk = NULL; 1795 goto out_disable_clk_mac; 1796 } 1797 ret = clk_prepare_enable(priv->phy_clk); 1798 if (ret) 1799 goto out_disable_clk_mac; 1800 } 1801 1802 /* do minimal hardware init to be able to probe mii bus */ 1803 bcm_enet_hw_preinit(priv); 1804 1805 /* MII bus registration */ 1806 if (priv->has_phy) { 1807 1808 priv->mii_bus = mdiobus_alloc(); 1809 if (!priv->mii_bus) { 1810 ret = -ENOMEM; 1811 goto out_uninit_hw; 1812 } 1813 1814 bus = priv->mii_bus; 1815 bus->name = "bcm63xx_enet MII bus"; 1816 bus->parent = &pdev->dev; 1817 bus->priv = priv; 1818 bus->read = bcm_enet_mdio_read_phylib; 1819 bus->write = bcm_enet_mdio_write_phylib; 1820 sprintf(bus->id, "%s-%d", pdev->name, pdev->id); 1821 1822 /* only probe bus where we think the PHY is, because 1823 * the mdio read operation return 0 instead of 0xffff 1824 * if a slave is not present on hw */ 1825 bus->phy_mask = ~(1 << priv->phy_id); 1826 1827 if (priv->has_phy_interrupt) 1828 bus->irq[priv->phy_id] = priv->phy_interrupt; 1829 1830 ret = mdiobus_register(bus); 1831 if (ret) { 1832 dev_err(&pdev->dev, "unable to register mdio bus\n"); 1833 goto out_free_mdio; 1834 } 1835 } else { 1836 1837 /* run platform code to initialize PHY device */ 1838 if (pd && pd->mii_config && 1839 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii, 1840 bcm_enet_mdio_write_mii)) { 1841 dev_err(&pdev->dev, "unable to configure mdio bus\n"); 1842 goto out_uninit_hw; 1843 } 1844 } 1845 1846 spin_lock_init(&priv->rx_lock); 1847 1848 /* init rx timeout (used for oom) */ 1849 timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0); 1850 1851 /* init the mib update lock&work */ 1852 mutex_init(&priv->mib_update_lock); 1853 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer); 1854 1855 /* zero mib counters */ 1856 for (i = 0; i < ENET_MIB_REG_COUNT; i++) 1857 enet_writel(priv, 0, ENET_MIB_REG(i)); 1858 1859 /* register netdevice */ 1860 dev->netdev_ops = &bcm_enet_ops; 1861 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 1862 1863 dev->ethtool_ops = &bcm_enet_ethtool_ops; 1864 /* MTU range: 46 - 2028 */ 1865 dev->min_mtu = ETH_ZLEN - ETH_HLEN; 1866 dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN; 1867 SET_NETDEV_DEV(dev, &pdev->dev); 1868 1869 ret = register_netdev(dev); 1870 if (ret) 1871 goto out_unregister_mdio; 1872 1873 netif_carrier_off(dev); 1874 platform_set_drvdata(pdev, dev); 1875 priv->pdev = pdev; 1876 priv->net_dev = dev; 1877 1878 return 0; 1879 1880 out_unregister_mdio: 1881 if (priv->mii_bus) 1882 mdiobus_unregister(priv->mii_bus); 1883 1884 out_free_mdio: 1885 if (priv->mii_bus) 1886 mdiobus_free(priv->mii_bus); 1887 1888 out_uninit_hw: 1889 /* turn off mdc clock */ 1890 enet_writel(priv, 0, ENET_MIISC_REG); 1891 clk_disable_unprepare(priv->phy_clk); 1892 1893 out_disable_clk_mac: 1894 clk_disable_unprepare(priv->mac_clk); 1895 out: 1896 free_netdev(dev); 1897 return ret; 1898 } 1899 1900 1901 /* 1902 * exit func, stops hardware and unregisters netdevice 1903 */ 1904 static int bcm_enet_remove(struct platform_device *pdev) 1905 { 1906 struct bcm_enet_priv *priv; 1907 struct net_device *dev; 1908 1909 /* stop netdevice */ 1910 dev = platform_get_drvdata(pdev); 1911 priv = netdev_priv(dev); 1912 unregister_netdev(dev); 1913 1914 /* turn off mdc clock */ 1915 enet_writel(priv, 0, ENET_MIISC_REG); 1916 1917 if (priv->has_phy) { 1918 mdiobus_unregister(priv->mii_bus); 1919 mdiobus_free(priv->mii_bus); 1920 } else { 1921 struct bcm63xx_enet_platform_data *pd; 1922 1923 pd = dev_get_platdata(&pdev->dev); 1924 if (pd && pd->mii_config) 1925 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii, 1926 bcm_enet_mdio_write_mii); 1927 } 1928 1929 /* disable hw block clocks */ 1930 clk_disable_unprepare(priv->phy_clk); 1931 clk_disable_unprepare(priv->mac_clk); 1932 1933 free_netdev(dev); 1934 return 0; 1935 } 1936 1937 struct platform_driver bcm63xx_enet_driver = { 1938 .probe = bcm_enet_probe, 1939 .remove = bcm_enet_remove, 1940 .driver = { 1941 .name = "bcm63xx_enet", 1942 .owner = THIS_MODULE, 1943 }, 1944 }; 1945 1946 /* 1947 * switch mii access callbacks 1948 */ 1949 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv, 1950 int ext, int phy_id, int location) 1951 { 1952 u32 reg; 1953 int ret; 1954 1955 spin_lock_bh(&priv->enetsw_mdio_lock); 1956 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 1957 1958 reg = ENETSW_MDIOC_RD_MASK | 1959 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 1960 (location << ENETSW_MDIOC_REG_SHIFT); 1961 1962 if (ext) 1963 reg |= ENETSW_MDIOC_EXT_MASK; 1964 1965 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 1966 udelay(50); 1967 ret = enetsw_readw(priv, ENETSW_MDIOD_REG); 1968 spin_unlock_bh(&priv->enetsw_mdio_lock); 1969 return ret; 1970 } 1971 1972 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv, 1973 int ext, int phy_id, int location, 1974 uint16_t data) 1975 { 1976 u32 reg; 1977 1978 spin_lock_bh(&priv->enetsw_mdio_lock); 1979 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 1980 1981 reg = ENETSW_MDIOC_WR_MASK | 1982 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 1983 (location << ENETSW_MDIOC_REG_SHIFT); 1984 1985 if (ext) 1986 reg |= ENETSW_MDIOC_EXT_MASK; 1987 1988 reg |= data; 1989 1990 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 1991 udelay(50); 1992 spin_unlock_bh(&priv->enetsw_mdio_lock); 1993 } 1994 1995 static inline int bcm_enet_port_is_rgmii(int portid) 1996 { 1997 return portid >= ENETSW_RGMII_PORT0; 1998 } 1999 2000 /* 2001 * enet sw PHY polling 2002 */ 2003 static void swphy_poll_timer(struct timer_list *t) 2004 { 2005 struct bcm_enet_priv *priv = from_timer(priv, t, swphy_poll); 2006 unsigned int i; 2007 2008 for (i = 0; i < priv->num_ports; i++) { 2009 struct bcm63xx_enetsw_port *port; 2010 int val, j, up, advertise, lpa, speed, duplex, media; 2011 int external_phy = bcm_enet_port_is_rgmii(i); 2012 u8 override; 2013 2014 port = &priv->used_ports[i]; 2015 if (!port->used) 2016 continue; 2017 2018 if (port->bypass_link) 2019 continue; 2020 2021 /* dummy read to clear */ 2022 for (j = 0; j < 2; j++) 2023 val = bcmenet_sw_mdio_read(priv, external_phy, 2024 port->phy_id, MII_BMSR); 2025 2026 if (val == 0xffff) 2027 continue; 2028 2029 up = (val & BMSR_LSTATUS) ? 1 : 0; 2030 if (!(up ^ priv->sw_port_link[i])) 2031 continue; 2032 2033 priv->sw_port_link[i] = up; 2034 2035 /* link changed */ 2036 if (!up) { 2037 dev_info(&priv->pdev->dev, "link DOWN on %s\n", 2038 port->name); 2039 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2040 ENETSW_PORTOV_REG(i)); 2041 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2042 ENETSW_PTCTRL_TXDIS_MASK, 2043 ENETSW_PTCTRL_REG(i)); 2044 continue; 2045 } 2046 2047 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2048 port->phy_id, MII_ADVERTISE); 2049 2050 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id, 2051 MII_LPA); 2052 2053 /* figure out media and duplex from advertise and LPA values */ 2054 media = mii_nway_result(lpa & advertise); 2055 duplex = (media & ADVERTISE_FULL) ? 1 : 0; 2056 2057 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF)) 2058 speed = 100; 2059 else 2060 speed = 10; 2061 2062 if (val & BMSR_ESTATEN) { 2063 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2064 port->phy_id, MII_CTRL1000); 2065 2066 lpa = bcmenet_sw_mdio_read(priv, external_phy, 2067 port->phy_id, MII_STAT1000); 2068 2069 if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF) 2070 && lpa & (LPA_1000FULL | LPA_1000HALF)) { 2071 speed = 1000; 2072 duplex = (lpa & LPA_1000FULL); 2073 } 2074 } 2075 2076 dev_info(&priv->pdev->dev, 2077 "link UP on %s, %dMbps, %s-duplex\n", 2078 port->name, speed, duplex ? "full" : "half"); 2079 2080 override = ENETSW_PORTOV_ENABLE_MASK | 2081 ENETSW_PORTOV_LINKUP_MASK; 2082 2083 if (speed == 1000) 2084 override |= ENETSW_IMPOV_1000_MASK; 2085 else if (speed == 100) 2086 override |= ENETSW_IMPOV_100_MASK; 2087 if (duplex) 2088 override |= ENETSW_IMPOV_FDX_MASK; 2089 2090 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2091 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2092 } 2093 2094 priv->swphy_poll.expires = jiffies + HZ; 2095 add_timer(&priv->swphy_poll); 2096 } 2097 2098 /* 2099 * open callback, allocate dma rings & buffers and start rx operation 2100 */ 2101 static int bcm_enetsw_open(struct net_device *dev) 2102 { 2103 struct bcm_enet_priv *priv; 2104 struct device *kdev; 2105 int i, ret; 2106 unsigned int size; 2107 void *p; 2108 u32 val; 2109 2110 priv = netdev_priv(dev); 2111 kdev = &priv->pdev->dev; 2112 2113 /* mask all interrupts and request them */ 2114 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2115 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2116 2117 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 2118 0, dev->name, dev); 2119 if (ret) 2120 goto out_freeirq; 2121 2122 if (priv->irq_tx != -1) { 2123 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 2124 0, dev->name, dev); 2125 if (ret) 2126 goto out_freeirq_rx; 2127 } 2128 2129 /* allocate rx dma ring */ 2130 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 2131 p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 2132 if (!p) { 2133 dev_err(kdev, "cannot allocate rx ring %u\n", size); 2134 ret = -ENOMEM; 2135 goto out_freeirq_tx; 2136 } 2137 2138 priv->rx_desc_alloc_size = size; 2139 priv->rx_desc_cpu = p; 2140 2141 /* allocate tx dma ring */ 2142 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 2143 p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 2144 if (!p) { 2145 dev_err(kdev, "cannot allocate tx ring\n"); 2146 ret = -ENOMEM; 2147 goto out_free_rx_ring; 2148 } 2149 2150 priv->tx_desc_alloc_size = size; 2151 priv->tx_desc_cpu = p; 2152 2153 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size, 2154 GFP_KERNEL); 2155 if (!priv->tx_skb) { 2156 dev_err(kdev, "cannot allocate rx skb queue\n"); 2157 ret = -ENOMEM; 2158 goto out_free_tx_ring; 2159 } 2160 2161 priv->tx_desc_count = priv->tx_ring_size; 2162 priv->tx_dirty_desc = 0; 2163 priv->tx_curr_desc = 0; 2164 spin_lock_init(&priv->tx_lock); 2165 2166 /* init & fill rx ring with skbs */ 2167 priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size, 2168 GFP_KERNEL); 2169 if (!priv->rx_skb) { 2170 dev_err(kdev, "cannot allocate rx skb queue\n"); 2171 ret = -ENOMEM; 2172 goto out_free_tx_skb; 2173 } 2174 2175 priv->rx_desc_count = 0; 2176 priv->rx_dirty_desc = 0; 2177 priv->rx_curr_desc = 0; 2178 2179 /* disable all ports */ 2180 for (i = 0; i < priv->num_ports; i++) { 2181 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2182 ENETSW_PORTOV_REG(i)); 2183 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2184 ENETSW_PTCTRL_TXDIS_MASK, 2185 ENETSW_PTCTRL_REG(i)); 2186 2187 priv->sw_port_link[i] = 0; 2188 } 2189 2190 /* reset mib */ 2191 val = enetsw_readb(priv, ENETSW_GMCR_REG); 2192 val |= ENETSW_GMCR_RST_MIB_MASK; 2193 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2194 mdelay(1); 2195 val &= ~ENETSW_GMCR_RST_MIB_MASK; 2196 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2197 mdelay(1); 2198 2199 /* force CPU port state */ 2200 val = enetsw_readb(priv, ENETSW_IMPOV_REG); 2201 val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK; 2202 enetsw_writeb(priv, val, ENETSW_IMPOV_REG); 2203 2204 /* enable switch forward engine */ 2205 val = enetsw_readb(priv, ENETSW_SWMODE_REG); 2206 val |= ENETSW_SWMODE_FWD_EN_MASK; 2207 enetsw_writeb(priv, val, ENETSW_SWMODE_REG); 2208 2209 /* enable jumbo on all ports */ 2210 enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG); 2211 enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG); 2212 2213 /* initialize flow control buffer allocation */ 2214 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 2215 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 2216 2217 if (bcm_enet_refill_rx(dev)) { 2218 dev_err(kdev, "cannot allocate rx skb queue\n"); 2219 ret = -ENOMEM; 2220 goto out; 2221 } 2222 2223 /* write rx & tx ring addresses */ 2224 enet_dmas_writel(priv, priv->rx_desc_dma, 2225 ENETDMAS_RSTART_REG, priv->rx_chan); 2226 enet_dmas_writel(priv, priv->tx_desc_dma, 2227 ENETDMAS_RSTART_REG, priv->tx_chan); 2228 2229 /* clear remaining state ram for rx & tx channel */ 2230 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 2231 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 2232 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 2233 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 2234 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 2235 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 2236 2237 /* set dma maximum burst len */ 2238 enet_dmac_writel(priv, priv->dma_maxburst, 2239 ENETDMAC_MAXBURST, priv->rx_chan); 2240 enet_dmac_writel(priv, priv->dma_maxburst, 2241 ENETDMAC_MAXBURST, priv->tx_chan); 2242 2243 /* set flow control low/high threshold to 1/3 / 2/3 */ 2244 val = priv->rx_ring_size / 3; 2245 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 2246 val = (priv->rx_ring_size * 2) / 3; 2247 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 2248 2249 /* all set, enable mac and interrupts, start dma engine and 2250 * kick rx dma channel 2251 */ 2252 wmb(); 2253 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 2254 enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK, 2255 ENETDMAC_CHANCFG, priv->rx_chan); 2256 2257 /* watch "packet transferred" interrupt in rx and tx */ 2258 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2259 ENETDMAC_IR, priv->rx_chan); 2260 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2261 ENETDMAC_IR, priv->tx_chan); 2262 2263 /* make sure we enable napi before rx interrupt */ 2264 napi_enable(&priv->napi); 2265 2266 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2267 ENETDMAC_IRMASK, priv->rx_chan); 2268 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2269 ENETDMAC_IRMASK, priv->tx_chan); 2270 2271 netif_carrier_on(dev); 2272 netif_start_queue(dev); 2273 2274 /* apply override config for bypass_link ports here. */ 2275 for (i = 0; i < priv->num_ports; i++) { 2276 struct bcm63xx_enetsw_port *port; 2277 u8 override; 2278 port = &priv->used_ports[i]; 2279 if (!port->used) 2280 continue; 2281 2282 if (!port->bypass_link) 2283 continue; 2284 2285 override = ENETSW_PORTOV_ENABLE_MASK | 2286 ENETSW_PORTOV_LINKUP_MASK; 2287 2288 switch (port->force_speed) { 2289 case 1000: 2290 override |= ENETSW_IMPOV_1000_MASK; 2291 break; 2292 case 100: 2293 override |= ENETSW_IMPOV_100_MASK; 2294 break; 2295 case 10: 2296 break; 2297 default: 2298 pr_warn("invalid forced speed on port %s: assume 10\n", 2299 port->name); 2300 break; 2301 } 2302 2303 if (port->force_duplex_full) 2304 override |= ENETSW_IMPOV_FDX_MASK; 2305 2306 2307 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2308 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2309 } 2310 2311 /* start phy polling timer */ 2312 timer_setup(&priv->swphy_poll, swphy_poll_timer, 0); 2313 mod_timer(&priv->swphy_poll, jiffies); 2314 return 0; 2315 2316 out: 2317 for (i = 0; i < priv->rx_ring_size; i++) { 2318 struct bcm_enet_desc *desc; 2319 2320 if (!priv->rx_skb[i]) 2321 continue; 2322 2323 desc = &priv->rx_desc_cpu[i]; 2324 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 2325 DMA_FROM_DEVICE); 2326 kfree_skb(priv->rx_skb[i]); 2327 } 2328 kfree(priv->rx_skb); 2329 2330 out_free_tx_skb: 2331 kfree(priv->tx_skb); 2332 2333 out_free_tx_ring: 2334 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2335 priv->tx_desc_cpu, priv->tx_desc_dma); 2336 2337 out_free_rx_ring: 2338 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2339 priv->rx_desc_cpu, priv->rx_desc_dma); 2340 2341 out_freeirq_tx: 2342 if (priv->irq_tx != -1) 2343 free_irq(priv->irq_tx, dev); 2344 2345 out_freeirq_rx: 2346 free_irq(priv->irq_rx, dev); 2347 2348 out_freeirq: 2349 return ret; 2350 } 2351 2352 /* stop callback */ 2353 static int bcm_enetsw_stop(struct net_device *dev) 2354 { 2355 struct bcm_enet_priv *priv; 2356 struct device *kdev; 2357 int i; 2358 2359 priv = netdev_priv(dev); 2360 kdev = &priv->pdev->dev; 2361 2362 del_timer_sync(&priv->swphy_poll); 2363 netif_stop_queue(dev); 2364 napi_disable(&priv->napi); 2365 del_timer_sync(&priv->rx_timeout); 2366 2367 /* mask all interrupts */ 2368 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2369 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2370 2371 /* disable dma & mac */ 2372 bcm_enet_disable_dma(priv, priv->tx_chan); 2373 bcm_enet_disable_dma(priv, priv->rx_chan); 2374 2375 /* force reclaim of all tx buffers */ 2376 bcm_enet_tx_reclaim(dev, 1); 2377 2378 /* free the rx skb ring */ 2379 for (i = 0; i < priv->rx_ring_size; i++) { 2380 struct bcm_enet_desc *desc; 2381 2382 if (!priv->rx_skb[i]) 2383 continue; 2384 2385 desc = &priv->rx_desc_cpu[i]; 2386 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 2387 DMA_FROM_DEVICE); 2388 kfree_skb(priv->rx_skb[i]); 2389 } 2390 2391 /* free remaining allocated memory */ 2392 kfree(priv->rx_skb); 2393 kfree(priv->tx_skb); 2394 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2395 priv->rx_desc_cpu, priv->rx_desc_dma); 2396 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2397 priv->tx_desc_cpu, priv->tx_desc_dma); 2398 if (priv->irq_tx != -1) 2399 free_irq(priv->irq_tx, dev); 2400 free_irq(priv->irq_rx, dev); 2401 2402 return 0; 2403 } 2404 2405 /* try to sort out phy external status by walking the used_port field 2406 * in the bcm_enet_priv structure. in case the phy address is not 2407 * assigned to any physical port on the switch, assume it is external 2408 * (and yell at the user). 2409 */ 2410 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id) 2411 { 2412 int i; 2413 2414 for (i = 0; i < priv->num_ports; ++i) { 2415 if (!priv->used_ports[i].used) 2416 continue; 2417 if (priv->used_ports[i].phy_id == phy_id) 2418 return bcm_enet_port_is_rgmii(i); 2419 } 2420 2421 printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n", 2422 phy_id); 2423 return 1; 2424 } 2425 2426 /* can't use bcmenet_sw_mdio_read directly as we need to sort out 2427 * external/internal status of the given phy_id first. 2428 */ 2429 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id, 2430 int location) 2431 { 2432 struct bcm_enet_priv *priv; 2433 2434 priv = netdev_priv(dev); 2435 return bcmenet_sw_mdio_read(priv, 2436 bcm_enetsw_phy_is_external(priv, phy_id), 2437 phy_id, location); 2438 } 2439 2440 /* can't use bcmenet_sw_mdio_write directly as we need to sort out 2441 * external/internal status of the given phy_id first. 2442 */ 2443 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id, 2444 int location, 2445 int val) 2446 { 2447 struct bcm_enet_priv *priv; 2448 2449 priv = netdev_priv(dev); 2450 bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id), 2451 phy_id, location, val); 2452 } 2453 2454 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2455 { 2456 struct mii_if_info mii; 2457 2458 mii.dev = dev; 2459 mii.mdio_read = bcm_enetsw_mii_mdio_read; 2460 mii.mdio_write = bcm_enetsw_mii_mdio_write; 2461 mii.phy_id = 0; 2462 mii.phy_id_mask = 0x3f; 2463 mii.reg_num_mask = 0x1f; 2464 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 2465 2466 } 2467 2468 static const struct net_device_ops bcm_enetsw_ops = { 2469 .ndo_open = bcm_enetsw_open, 2470 .ndo_stop = bcm_enetsw_stop, 2471 .ndo_start_xmit = bcm_enet_start_xmit, 2472 .ndo_change_mtu = bcm_enet_change_mtu, 2473 .ndo_do_ioctl = bcm_enetsw_ioctl, 2474 }; 2475 2476 2477 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = { 2478 { "rx_packets", DEV_STAT(rx_packets), -1 }, 2479 { "tx_packets", DEV_STAT(tx_packets), -1 }, 2480 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 2481 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 2482 { "rx_errors", DEV_STAT(rx_errors), -1 }, 2483 { "tx_errors", DEV_STAT(tx_errors), -1 }, 2484 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 2485 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 2486 2487 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT }, 2488 { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST }, 2489 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST }, 2490 { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT }, 2491 { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 }, 2492 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 }, 2493 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 }, 2494 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 }, 2495 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023}, 2496 { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max), 2497 ETHSW_MIB_RX_1024_1522 }, 2498 { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047), 2499 ETHSW_MIB_RX_1523_2047 }, 2500 { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095), 2501 ETHSW_MIB_RX_2048_4095 }, 2502 { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191), 2503 ETHSW_MIB_RX_4096_8191 }, 2504 { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728), 2505 ETHSW_MIB_RX_8192_9728 }, 2506 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR }, 2507 { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC }, 2508 { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP }, 2509 { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND }, 2510 { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE }, 2511 2512 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT }, 2513 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST }, 2514 { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT }, 2515 { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT }, 2516 { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE }, 2517 { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS }, 2518 2519 }; 2520 2521 #define BCM_ENETSW_STATS_LEN \ 2522 (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats)) 2523 2524 static void bcm_enetsw_get_strings(struct net_device *netdev, 2525 u32 stringset, u8 *data) 2526 { 2527 int i; 2528 2529 switch (stringset) { 2530 case ETH_SS_STATS: 2531 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2532 memcpy(data + i * ETH_GSTRING_LEN, 2533 bcm_enetsw_gstrings_stats[i].stat_string, 2534 ETH_GSTRING_LEN); 2535 } 2536 break; 2537 } 2538 } 2539 2540 static int bcm_enetsw_get_sset_count(struct net_device *netdev, 2541 int string_set) 2542 { 2543 switch (string_set) { 2544 case ETH_SS_STATS: 2545 return BCM_ENETSW_STATS_LEN; 2546 default: 2547 return -EINVAL; 2548 } 2549 } 2550 2551 static void bcm_enetsw_get_drvinfo(struct net_device *netdev, 2552 struct ethtool_drvinfo *drvinfo) 2553 { 2554 strncpy(drvinfo->driver, bcm_enet_driver_name, 32); 2555 strncpy(drvinfo->version, bcm_enet_driver_version, 32); 2556 strncpy(drvinfo->fw_version, "N/A", 32); 2557 strncpy(drvinfo->bus_info, "bcm63xx", 32); 2558 } 2559 2560 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev, 2561 struct ethtool_stats *stats, 2562 u64 *data) 2563 { 2564 struct bcm_enet_priv *priv; 2565 int i; 2566 2567 priv = netdev_priv(netdev); 2568 2569 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2570 const struct bcm_enet_stats *s; 2571 u32 lo, hi; 2572 char *p; 2573 int reg; 2574 2575 s = &bcm_enetsw_gstrings_stats[i]; 2576 2577 reg = s->mib_reg; 2578 if (reg == -1) 2579 continue; 2580 2581 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg)); 2582 p = (char *)priv + s->stat_offset; 2583 2584 if (s->sizeof_stat == sizeof(u64)) { 2585 hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1)); 2586 *(u64 *)p = ((u64)hi << 32 | lo); 2587 } else { 2588 *(u32 *)p = lo; 2589 } 2590 } 2591 2592 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2593 const struct bcm_enet_stats *s; 2594 char *p; 2595 2596 s = &bcm_enetsw_gstrings_stats[i]; 2597 2598 if (s->mib_reg == -1) 2599 p = (char *)&netdev->stats + s->stat_offset; 2600 else 2601 p = (char *)priv + s->stat_offset; 2602 2603 data[i] = (s->sizeof_stat == sizeof(u64)) ? 2604 *(u64 *)p : *(u32 *)p; 2605 } 2606 } 2607 2608 static void bcm_enetsw_get_ringparam(struct net_device *dev, 2609 struct ethtool_ringparam *ering) 2610 { 2611 struct bcm_enet_priv *priv; 2612 2613 priv = netdev_priv(dev); 2614 2615 /* rx/tx ring is actually only limited by memory */ 2616 ering->rx_max_pending = 8192; 2617 ering->tx_max_pending = 8192; 2618 ering->rx_mini_max_pending = 0; 2619 ering->rx_jumbo_max_pending = 0; 2620 ering->rx_pending = priv->rx_ring_size; 2621 ering->tx_pending = priv->tx_ring_size; 2622 } 2623 2624 static int bcm_enetsw_set_ringparam(struct net_device *dev, 2625 struct ethtool_ringparam *ering) 2626 { 2627 struct bcm_enet_priv *priv; 2628 int was_running; 2629 2630 priv = netdev_priv(dev); 2631 2632 was_running = 0; 2633 if (netif_running(dev)) { 2634 bcm_enetsw_stop(dev); 2635 was_running = 1; 2636 } 2637 2638 priv->rx_ring_size = ering->rx_pending; 2639 priv->tx_ring_size = ering->tx_pending; 2640 2641 if (was_running) { 2642 int err; 2643 2644 err = bcm_enetsw_open(dev); 2645 if (err) 2646 dev_close(dev); 2647 } 2648 return 0; 2649 } 2650 2651 static const struct ethtool_ops bcm_enetsw_ethtool_ops = { 2652 .get_strings = bcm_enetsw_get_strings, 2653 .get_sset_count = bcm_enetsw_get_sset_count, 2654 .get_ethtool_stats = bcm_enetsw_get_ethtool_stats, 2655 .get_drvinfo = bcm_enetsw_get_drvinfo, 2656 .get_ringparam = bcm_enetsw_get_ringparam, 2657 .set_ringparam = bcm_enetsw_set_ringparam, 2658 }; 2659 2660 /* allocate netdevice, request register memory and register device. */ 2661 static int bcm_enetsw_probe(struct platform_device *pdev) 2662 { 2663 struct bcm_enet_priv *priv; 2664 struct net_device *dev; 2665 struct bcm63xx_enetsw_platform_data *pd; 2666 struct resource *res_mem; 2667 int ret, irq_rx, irq_tx; 2668 2669 if (!bcm_enet_shared_base[0]) 2670 return -EPROBE_DEFER; 2671 2672 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2673 irq_rx = platform_get_irq(pdev, 0); 2674 irq_tx = platform_get_irq(pdev, 1); 2675 if (!res_mem || irq_rx < 0) 2676 return -ENODEV; 2677 2678 ret = 0; 2679 dev = alloc_etherdev(sizeof(*priv)); 2680 if (!dev) 2681 return -ENOMEM; 2682 priv = netdev_priv(dev); 2683 memset(priv, 0, sizeof(*priv)); 2684 2685 /* initialize default and fetch platform data */ 2686 priv->enet_is_sw = true; 2687 priv->irq_rx = irq_rx; 2688 priv->irq_tx = irq_tx; 2689 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 2690 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 2691 priv->dma_maxburst = BCMENETSW_DMA_MAXBURST; 2692 2693 pd = dev_get_platdata(&pdev->dev); 2694 if (pd) { 2695 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 2696 memcpy(priv->used_ports, pd->used_ports, 2697 sizeof(pd->used_ports)); 2698 priv->num_ports = pd->num_ports; 2699 priv->dma_has_sram = pd->dma_has_sram; 2700 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 2701 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 2702 priv->dma_chan_width = pd->dma_chan_width; 2703 } 2704 2705 ret = bcm_enet_change_mtu(dev, dev->mtu); 2706 if (ret) 2707 goto out; 2708 2709 priv->base = devm_ioremap_resource(&pdev->dev, res_mem); 2710 if (IS_ERR(priv->base)) { 2711 ret = PTR_ERR(priv->base); 2712 goto out; 2713 } 2714 2715 priv->mac_clk = devm_clk_get(&pdev->dev, "enetsw"); 2716 if (IS_ERR(priv->mac_clk)) { 2717 ret = PTR_ERR(priv->mac_clk); 2718 goto out; 2719 } 2720 ret = clk_prepare_enable(priv->mac_clk); 2721 if (ret) 2722 goto out; 2723 2724 priv->rx_chan = 0; 2725 priv->tx_chan = 1; 2726 spin_lock_init(&priv->rx_lock); 2727 2728 /* init rx timeout (used for oom) */ 2729 timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0); 2730 2731 /* register netdevice */ 2732 dev->netdev_ops = &bcm_enetsw_ops; 2733 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 2734 dev->ethtool_ops = &bcm_enetsw_ethtool_ops; 2735 SET_NETDEV_DEV(dev, &pdev->dev); 2736 2737 spin_lock_init(&priv->enetsw_mdio_lock); 2738 2739 ret = register_netdev(dev); 2740 if (ret) 2741 goto out_disable_clk; 2742 2743 netif_carrier_off(dev); 2744 platform_set_drvdata(pdev, dev); 2745 priv->pdev = pdev; 2746 priv->net_dev = dev; 2747 2748 return 0; 2749 2750 out_disable_clk: 2751 clk_disable_unprepare(priv->mac_clk); 2752 out: 2753 free_netdev(dev); 2754 return ret; 2755 } 2756 2757 2758 /* exit func, stops hardware and unregisters netdevice */ 2759 static int bcm_enetsw_remove(struct platform_device *pdev) 2760 { 2761 struct bcm_enet_priv *priv; 2762 struct net_device *dev; 2763 2764 /* stop netdevice */ 2765 dev = platform_get_drvdata(pdev); 2766 priv = netdev_priv(dev); 2767 unregister_netdev(dev); 2768 2769 clk_disable_unprepare(priv->mac_clk); 2770 2771 free_netdev(dev); 2772 return 0; 2773 } 2774 2775 struct platform_driver bcm63xx_enetsw_driver = { 2776 .probe = bcm_enetsw_probe, 2777 .remove = bcm_enetsw_remove, 2778 .driver = { 2779 .name = "bcm63xx_enetsw", 2780 .owner = THIS_MODULE, 2781 }, 2782 }; 2783 2784 /* reserve & remap memory space shared between all macs */ 2785 static int bcm_enet_shared_probe(struct platform_device *pdev) 2786 { 2787 struct resource *res; 2788 void __iomem *p[3]; 2789 unsigned int i; 2790 2791 memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base)); 2792 2793 for (i = 0; i < 3; i++) { 2794 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 2795 p[i] = devm_ioremap_resource(&pdev->dev, res); 2796 if (IS_ERR(p[i])) 2797 return PTR_ERR(p[i]); 2798 } 2799 2800 memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base)); 2801 2802 return 0; 2803 } 2804 2805 static int bcm_enet_shared_remove(struct platform_device *pdev) 2806 { 2807 return 0; 2808 } 2809 2810 /* this "shared" driver is needed because both macs share a single 2811 * address space 2812 */ 2813 struct platform_driver bcm63xx_enet_shared_driver = { 2814 .probe = bcm_enet_shared_probe, 2815 .remove = bcm_enet_shared_remove, 2816 .driver = { 2817 .name = "bcm63xx_enet_shared", 2818 .owner = THIS_MODULE, 2819 }, 2820 }; 2821 2822 static struct platform_driver * const drivers[] = { 2823 &bcm63xx_enet_shared_driver, 2824 &bcm63xx_enet_driver, 2825 &bcm63xx_enetsw_driver, 2826 }; 2827 2828 /* entry point */ 2829 static int __init bcm_enet_init(void) 2830 { 2831 return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); 2832 } 2833 2834 static void __exit bcm_enet_exit(void) 2835 { 2836 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); 2837 } 2838 2839 2840 module_init(bcm_enet_init); 2841 module_exit(bcm_enet_exit); 2842 2843 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver"); 2844 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>"); 2845 MODULE_LICENSE("GPL"); 2846