1 /*
2  * Driver for BCM963xx builtin Ethernet mac
3  *
4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33 
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36 
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39 
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43 
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46 
47 /*
48  * io helpers to access mac registers
49  */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 	return bcm_readl(priv->base + off);
53 }
54 
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 			       u32 val, u32 off)
57 {
58 	bcm_writel(val, priv->base + off);
59 }
60 
61 /*
62  * io helpers to access switch registers
63  */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 	return bcm_readl(priv->base + off);
67 }
68 
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 				 u32 val, u32 off)
71 {
72 	bcm_writel(val, priv->base + off);
73 }
74 
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 	return bcm_readw(priv->base + off);
78 }
79 
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 				 u16 val, u32 off)
82 {
83 	bcm_writew(val, priv->base + off);
84 }
85 
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 	return bcm_readb(priv->base + off);
89 }
90 
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 				 u8 val, u32 off)
93 {
94 	bcm_writeb(val, priv->base + off);
95 }
96 
97 
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 	return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103 
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 				       u32 val, u32 off)
106 {
107 	bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109 
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 	return bcm_readl(bcm_enet_shared_base[1] +
113 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115 
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 				       u32 val, u32 off, int chan)
118 {
119 	bcm_writel(val, bcm_enet_shared_base[1] +
120 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122 
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127 
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 				       u32 val, u32 off, int chan)
130 {
131 	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133 
134 /*
135  * write given data into mii register and wait for transfer to end
136  * with timeout (average measured transfer time is 25us)
137  */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 	int limit;
141 
142 	/* make sure mii interrupt status is cleared */
143 	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144 
145 	enet_writel(priv, data, ENET_MIIDATA_REG);
146 	wmb();
147 
148 	/* busy wait on mii interrupt bit, with timeout */
149 	limit = 1000;
150 	do {
151 		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 			break;
153 		udelay(1);
154 	} while (limit-- > 0);
155 
156 	return (limit < 0) ? 1 : 0;
157 }
158 
159 /*
160  * MII internal read callback
161  */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 			      int regnum)
164 {
165 	u32 tmp, val;
166 
167 	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 	tmp |= ENET_MIIDATA_OP_READ_MASK;
171 
172 	if (do_mdio_op(priv, tmp))
173 		return -1;
174 
175 	val = enet_readl(priv, ENET_MIIDATA_REG);
176 	val &= 0xffff;
177 	return val;
178 }
179 
180 /*
181  * MII internal write callback
182  */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 			       int regnum, u16 value)
185 {
186 	u32 tmp;
187 
188 	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193 
194 	(void)do_mdio_op(priv, tmp);
195 	return 0;
196 }
197 
198 /*
199  * MII read callback from phylib
200  */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 				     int regnum)
203 {
204 	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206 
207 /*
208  * MII write callback from phylib
209  */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 				      int regnum, u16 value)
212 {
213 	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215 
216 /*
217  * MII read callback from mii core
218  */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 				  int regnum)
221 {
222 	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224 
225 /*
226  * MII write callback from mii core
227  */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 				    int regnum, int value)
230 {
231 	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233 
234 /*
235  * refill rx queue
236  */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 	struct bcm_enet_priv *priv;
240 
241 	priv = netdev_priv(dev);
242 
243 	while (priv->rx_desc_count < priv->rx_ring_size) {
244 		struct bcm_enet_desc *desc;
245 		struct sk_buff *skb;
246 		dma_addr_t p;
247 		int desc_idx;
248 		u32 len_stat;
249 
250 		desc_idx = priv->rx_dirty_desc;
251 		desc = &priv->rx_desc_cpu[desc_idx];
252 
253 		if (!priv->rx_skb[desc_idx]) {
254 			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 			if (!skb)
256 				break;
257 			priv->rx_skb[desc_idx] = skb;
258 			p = dma_map_single(&priv->pdev->dev, skb->data,
259 					   priv->rx_skb_size,
260 					   DMA_FROM_DEVICE);
261 			desc->address = p;
262 		}
263 
264 		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 		len_stat |= DMADESC_OWNER_MASK;
266 		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 			priv->rx_dirty_desc = 0;
269 		} else {
270 			priv->rx_dirty_desc++;
271 		}
272 		wmb();
273 		desc->len_stat = len_stat;
274 
275 		priv->rx_desc_count++;
276 
277 		/* tell dma engine we allocated one buffer */
278 		if (priv->dma_has_sram)
279 			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 		else
281 			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 	}
283 
284 	/* If rx ring is still empty, set a timer to try allocating
285 	 * again at a later time. */
286 	if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 		priv->rx_timeout.expires = jiffies + HZ;
289 		add_timer(&priv->rx_timeout);
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * timer callback to defer refill rx queue in case we're OOM
297  */
298 static void bcm_enet_refill_rx_timer(struct timer_list *t)
299 {
300 	struct bcm_enet_priv *priv = from_timer(priv, t, rx_timeout);
301 	struct net_device *dev = priv->net_dev;
302 
303 	spin_lock(&priv->rx_lock);
304 	bcm_enet_refill_rx(dev);
305 	spin_unlock(&priv->rx_lock);
306 }
307 
308 /*
309  * extract packet from rx queue
310  */
311 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
312 {
313 	struct bcm_enet_priv *priv;
314 	struct device *kdev;
315 	int processed;
316 
317 	priv = netdev_priv(dev);
318 	kdev = &priv->pdev->dev;
319 	processed = 0;
320 
321 	/* don't scan ring further than number of refilled
322 	 * descriptor */
323 	if (budget > priv->rx_desc_count)
324 		budget = priv->rx_desc_count;
325 
326 	do {
327 		struct bcm_enet_desc *desc;
328 		struct sk_buff *skb;
329 		int desc_idx;
330 		u32 len_stat;
331 		unsigned int len;
332 
333 		desc_idx = priv->rx_curr_desc;
334 		desc = &priv->rx_desc_cpu[desc_idx];
335 
336 		/* make sure we actually read the descriptor status at
337 		 * each loop */
338 		rmb();
339 
340 		len_stat = desc->len_stat;
341 
342 		/* break if dma ownership belongs to hw */
343 		if (len_stat & DMADESC_OWNER_MASK)
344 			break;
345 
346 		processed++;
347 		priv->rx_curr_desc++;
348 		if (priv->rx_curr_desc == priv->rx_ring_size)
349 			priv->rx_curr_desc = 0;
350 		priv->rx_desc_count--;
351 
352 		/* if the packet does not have start of packet _and_
353 		 * end of packet flag set, then just recycle it */
354 		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
355 			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
356 			dev->stats.rx_dropped++;
357 			continue;
358 		}
359 
360 		/* recycle packet if it's marked as bad */
361 		if (!priv->enet_is_sw &&
362 		    unlikely(len_stat & DMADESC_ERR_MASK)) {
363 			dev->stats.rx_errors++;
364 
365 			if (len_stat & DMADESC_OVSIZE_MASK)
366 				dev->stats.rx_length_errors++;
367 			if (len_stat & DMADESC_CRC_MASK)
368 				dev->stats.rx_crc_errors++;
369 			if (len_stat & DMADESC_UNDER_MASK)
370 				dev->stats.rx_frame_errors++;
371 			if (len_stat & DMADESC_OV_MASK)
372 				dev->stats.rx_fifo_errors++;
373 			continue;
374 		}
375 
376 		/* valid packet */
377 		skb = priv->rx_skb[desc_idx];
378 		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
379 		/* don't include FCS */
380 		len -= 4;
381 
382 		if (len < copybreak) {
383 			struct sk_buff *nskb;
384 
385 			nskb = napi_alloc_skb(&priv->napi, len);
386 			if (!nskb) {
387 				/* forget packet, just rearm desc */
388 				dev->stats.rx_dropped++;
389 				continue;
390 			}
391 
392 			dma_sync_single_for_cpu(kdev, desc->address,
393 						len, DMA_FROM_DEVICE);
394 			memcpy(nskb->data, skb->data, len);
395 			dma_sync_single_for_device(kdev, desc->address,
396 						   len, DMA_FROM_DEVICE);
397 			skb = nskb;
398 		} else {
399 			dma_unmap_single(&priv->pdev->dev, desc->address,
400 					 priv->rx_skb_size, DMA_FROM_DEVICE);
401 			priv->rx_skb[desc_idx] = NULL;
402 		}
403 
404 		skb_put(skb, len);
405 		skb->protocol = eth_type_trans(skb, dev);
406 		dev->stats.rx_packets++;
407 		dev->stats.rx_bytes += len;
408 		netif_receive_skb(skb);
409 
410 	} while (--budget > 0);
411 
412 	if (processed || !priv->rx_desc_count) {
413 		bcm_enet_refill_rx(dev);
414 
415 		/* kick rx dma */
416 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
417 					 ENETDMAC_CHANCFG, priv->rx_chan);
418 	}
419 
420 	return processed;
421 }
422 
423 
424 /*
425  * try to or force reclaim of transmitted buffers
426  */
427 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
428 {
429 	struct bcm_enet_priv *priv;
430 	int released;
431 
432 	priv = netdev_priv(dev);
433 	released = 0;
434 
435 	while (priv->tx_desc_count < priv->tx_ring_size) {
436 		struct bcm_enet_desc *desc;
437 		struct sk_buff *skb;
438 
439 		/* We run in a bh and fight against start_xmit, which
440 		 * is called with bh disabled  */
441 		spin_lock(&priv->tx_lock);
442 
443 		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
444 
445 		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
446 			spin_unlock(&priv->tx_lock);
447 			break;
448 		}
449 
450 		/* ensure other field of the descriptor were not read
451 		 * before we checked ownership */
452 		rmb();
453 
454 		skb = priv->tx_skb[priv->tx_dirty_desc];
455 		priv->tx_skb[priv->tx_dirty_desc] = NULL;
456 		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
457 				 DMA_TO_DEVICE);
458 
459 		priv->tx_dirty_desc++;
460 		if (priv->tx_dirty_desc == priv->tx_ring_size)
461 			priv->tx_dirty_desc = 0;
462 		priv->tx_desc_count++;
463 
464 		spin_unlock(&priv->tx_lock);
465 
466 		if (desc->len_stat & DMADESC_UNDER_MASK)
467 			dev->stats.tx_errors++;
468 
469 		dev_kfree_skb(skb);
470 		released++;
471 	}
472 
473 	if (netif_queue_stopped(dev) && released)
474 		netif_wake_queue(dev);
475 
476 	return released;
477 }
478 
479 /*
480  * poll func, called by network core
481  */
482 static int bcm_enet_poll(struct napi_struct *napi, int budget)
483 {
484 	struct bcm_enet_priv *priv;
485 	struct net_device *dev;
486 	int rx_work_done;
487 
488 	priv = container_of(napi, struct bcm_enet_priv, napi);
489 	dev = priv->net_dev;
490 
491 	/* ack interrupts */
492 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
493 			 ENETDMAC_IR, priv->rx_chan);
494 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
495 			 ENETDMAC_IR, priv->tx_chan);
496 
497 	/* reclaim sent skb */
498 	bcm_enet_tx_reclaim(dev, 0);
499 
500 	spin_lock(&priv->rx_lock);
501 	rx_work_done = bcm_enet_receive_queue(dev, budget);
502 	spin_unlock(&priv->rx_lock);
503 
504 	if (rx_work_done >= budget) {
505 		/* rx queue is not yet empty/clean */
506 		return rx_work_done;
507 	}
508 
509 	/* no more packet in rx/tx queue, remove device from poll
510 	 * queue */
511 	napi_complete_done(napi, rx_work_done);
512 
513 	/* restore rx/tx interrupt */
514 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
515 			 ENETDMAC_IRMASK, priv->rx_chan);
516 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
517 			 ENETDMAC_IRMASK, priv->tx_chan);
518 
519 	return rx_work_done;
520 }
521 
522 /*
523  * mac interrupt handler
524  */
525 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
526 {
527 	struct net_device *dev;
528 	struct bcm_enet_priv *priv;
529 	u32 stat;
530 
531 	dev = dev_id;
532 	priv = netdev_priv(dev);
533 
534 	stat = enet_readl(priv, ENET_IR_REG);
535 	if (!(stat & ENET_IR_MIB))
536 		return IRQ_NONE;
537 
538 	/* clear & mask interrupt */
539 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
540 	enet_writel(priv, 0, ENET_IRMASK_REG);
541 
542 	/* read mib registers in workqueue */
543 	schedule_work(&priv->mib_update_task);
544 
545 	return IRQ_HANDLED;
546 }
547 
548 /*
549  * rx/tx dma interrupt handler
550  */
551 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
552 {
553 	struct net_device *dev;
554 	struct bcm_enet_priv *priv;
555 
556 	dev = dev_id;
557 	priv = netdev_priv(dev);
558 
559 	/* mask rx/tx interrupts */
560 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
561 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
562 
563 	napi_schedule(&priv->napi);
564 
565 	return IRQ_HANDLED;
566 }
567 
568 /*
569  * tx request callback
570  */
571 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
572 {
573 	struct bcm_enet_priv *priv;
574 	struct bcm_enet_desc *desc;
575 	u32 len_stat;
576 	int ret;
577 
578 	priv = netdev_priv(dev);
579 
580 	/* lock against tx reclaim */
581 	spin_lock(&priv->tx_lock);
582 
583 	/* make sure  the tx hw queue  is not full,  should not happen
584 	 * since we stop queue before it's the case */
585 	if (unlikely(!priv->tx_desc_count)) {
586 		netif_stop_queue(dev);
587 		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
588 			"available?\n");
589 		ret = NETDEV_TX_BUSY;
590 		goto out_unlock;
591 	}
592 
593 	/* pad small packets sent on a switch device */
594 	if (priv->enet_is_sw && skb->len < 64) {
595 		int needed = 64 - skb->len;
596 		char *data;
597 
598 		if (unlikely(skb_tailroom(skb) < needed)) {
599 			struct sk_buff *nskb;
600 
601 			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
602 			if (!nskb) {
603 				ret = NETDEV_TX_BUSY;
604 				goto out_unlock;
605 			}
606 			dev_kfree_skb(skb);
607 			skb = nskb;
608 		}
609 		data = skb_put_zero(skb, needed);
610 	}
611 
612 	/* point to the next available desc */
613 	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
614 	priv->tx_skb[priv->tx_curr_desc] = skb;
615 
616 	/* fill descriptor */
617 	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
618 				       DMA_TO_DEVICE);
619 
620 	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
621 	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
622 		DMADESC_APPEND_CRC |
623 		DMADESC_OWNER_MASK;
624 
625 	priv->tx_curr_desc++;
626 	if (priv->tx_curr_desc == priv->tx_ring_size) {
627 		priv->tx_curr_desc = 0;
628 		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
629 	}
630 	priv->tx_desc_count--;
631 
632 	/* dma might be already polling, make sure we update desc
633 	 * fields in correct order */
634 	wmb();
635 	desc->len_stat = len_stat;
636 	wmb();
637 
638 	/* kick tx dma */
639 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
640 				 ENETDMAC_CHANCFG, priv->tx_chan);
641 
642 	/* stop queue if no more desc available */
643 	if (!priv->tx_desc_count)
644 		netif_stop_queue(dev);
645 
646 	dev->stats.tx_bytes += skb->len;
647 	dev->stats.tx_packets++;
648 	ret = NETDEV_TX_OK;
649 
650 out_unlock:
651 	spin_unlock(&priv->tx_lock);
652 	return ret;
653 }
654 
655 /*
656  * Change the interface's mac address.
657  */
658 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
659 {
660 	struct bcm_enet_priv *priv;
661 	struct sockaddr *addr = p;
662 	u32 val;
663 
664 	priv = netdev_priv(dev);
665 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
666 
667 	/* use perfect match register 0 to store my mac address */
668 	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
669 		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
670 	enet_writel(priv, val, ENET_PML_REG(0));
671 
672 	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
673 	val |= ENET_PMH_DATAVALID_MASK;
674 	enet_writel(priv, val, ENET_PMH_REG(0));
675 
676 	return 0;
677 }
678 
679 /*
680  * Change rx mode (promiscuous/allmulti) and update multicast list
681  */
682 static void bcm_enet_set_multicast_list(struct net_device *dev)
683 {
684 	struct bcm_enet_priv *priv;
685 	struct netdev_hw_addr *ha;
686 	u32 val;
687 	int i;
688 
689 	priv = netdev_priv(dev);
690 
691 	val = enet_readl(priv, ENET_RXCFG_REG);
692 
693 	if (dev->flags & IFF_PROMISC)
694 		val |= ENET_RXCFG_PROMISC_MASK;
695 	else
696 		val &= ~ENET_RXCFG_PROMISC_MASK;
697 
698 	/* only 3 perfect match registers left, first one is used for
699 	 * own mac address */
700 	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
701 		val |= ENET_RXCFG_ALLMCAST_MASK;
702 	else
703 		val &= ~ENET_RXCFG_ALLMCAST_MASK;
704 
705 	/* no need to set perfect match registers if we catch all
706 	 * multicast */
707 	if (val & ENET_RXCFG_ALLMCAST_MASK) {
708 		enet_writel(priv, val, ENET_RXCFG_REG);
709 		return;
710 	}
711 
712 	i = 0;
713 	netdev_for_each_mc_addr(ha, dev) {
714 		u8 *dmi_addr;
715 		u32 tmp;
716 
717 		if (i == 3)
718 			break;
719 		/* update perfect match registers */
720 		dmi_addr = ha->addr;
721 		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
722 			(dmi_addr[4] << 8) | dmi_addr[5];
723 		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
724 
725 		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
726 		tmp |= ENET_PMH_DATAVALID_MASK;
727 		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
728 	}
729 
730 	for (; i < 3; i++) {
731 		enet_writel(priv, 0, ENET_PML_REG(i + 1));
732 		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
733 	}
734 
735 	enet_writel(priv, val, ENET_RXCFG_REG);
736 }
737 
738 /*
739  * set mac duplex parameters
740  */
741 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
742 {
743 	u32 val;
744 
745 	val = enet_readl(priv, ENET_TXCTL_REG);
746 	if (fullduplex)
747 		val |= ENET_TXCTL_FD_MASK;
748 	else
749 		val &= ~ENET_TXCTL_FD_MASK;
750 	enet_writel(priv, val, ENET_TXCTL_REG);
751 }
752 
753 /*
754  * set mac flow control parameters
755  */
756 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
757 {
758 	u32 val;
759 
760 	/* rx flow control (pause frame handling) */
761 	val = enet_readl(priv, ENET_RXCFG_REG);
762 	if (rx_en)
763 		val |= ENET_RXCFG_ENFLOW_MASK;
764 	else
765 		val &= ~ENET_RXCFG_ENFLOW_MASK;
766 	enet_writel(priv, val, ENET_RXCFG_REG);
767 
768 	if (!priv->dma_has_sram)
769 		return;
770 
771 	/* tx flow control (pause frame generation) */
772 	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
773 	if (tx_en)
774 		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
775 	else
776 		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
777 	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
778 }
779 
780 /*
781  * link changed callback (from phylib)
782  */
783 static void bcm_enet_adjust_phy_link(struct net_device *dev)
784 {
785 	struct bcm_enet_priv *priv;
786 	struct phy_device *phydev;
787 	int status_changed;
788 
789 	priv = netdev_priv(dev);
790 	phydev = dev->phydev;
791 	status_changed = 0;
792 
793 	if (priv->old_link != phydev->link) {
794 		status_changed = 1;
795 		priv->old_link = phydev->link;
796 	}
797 
798 	/* reflect duplex change in mac configuration */
799 	if (phydev->link && phydev->duplex != priv->old_duplex) {
800 		bcm_enet_set_duplex(priv,
801 				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
802 		status_changed = 1;
803 		priv->old_duplex = phydev->duplex;
804 	}
805 
806 	/* enable flow control if remote advertise it (trust phylib to
807 	 * check that duplex is full */
808 	if (phydev->link && phydev->pause != priv->old_pause) {
809 		int rx_pause_en, tx_pause_en;
810 
811 		if (phydev->pause) {
812 			/* pause was advertised by lpa and us */
813 			rx_pause_en = 1;
814 			tx_pause_en = 1;
815 		} else if (!priv->pause_auto) {
816 			/* pause setting overridden by user */
817 			rx_pause_en = priv->pause_rx;
818 			tx_pause_en = priv->pause_tx;
819 		} else {
820 			rx_pause_en = 0;
821 			tx_pause_en = 0;
822 		}
823 
824 		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
825 		status_changed = 1;
826 		priv->old_pause = phydev->pause;
827 	}
828 
829 	if (status_changed) {
830 		pr_info("%s: link %s", dev->name, phydev->link ?
831 			"UP" : "DOWN");
832 		if (phydev->link)
833 			pr_cont(" - %d/%s - flow control %s", phydev->speed,
834 			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
835 			       phydev->pause == 1 ? "rx&tx" : "off");
836 
837 		pr_cont("\n");
838 	}
839 }
840 
841 /*
842  * link changed callback (if phylib is not used)
843  */
844 static void bcm_enet_adjust_link(struct net_device *dev)
845 {
846 	struct bcm_enet_priv *priv;
847 
848 	priv = netdev_priv(dev);
849 	bcm_enet_set_duplex(priv, priv->force_duplex_full);
850 	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
851 	netif_carrier_on(dev);
852 
853 	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
854 		dev->name,
855 		priv->force_speed_100 ? 100 : 10,
856 		priv->force_duplex_full ? "full" : "half",
857 		priv->pause_rx ? "rx" : "off",
858 		priv->pause_tx ? "tx" : "off");
859 }
860 
861 /*
862  * open callback, allocate dma rings & buffers and start rx operation
863  */
864 static int bcm_enet_open(struct net_device *dev)
865 {
866 	struct bcm_enet_priv *priv;
867 	struct sockaddr addr;
868 	struct device *kdev;
869 	struct phy_device *phydev;
870 	int i, ret;
871 	unsigned int size;
872 	char phy_id[MII_BUS_ID_SIZE + 3];
873 	void *p;
874 	u32 val;
875 
876 	priv = netdev_priv(dev);
877 	kdev = &priv->pdev->dev;
878 
879 	if (priv->has_phy) {
880 		/* connect to PHY */
881 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
882 			 priv->mii_bus->id, priv->phy_id);
883 
884 		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
885 				     PHY_INTERFACE_MODE_MII);
886 
887 		if (IS_ERR(phydev)) {
888 			dev_err(kdev, "could not attach to PHY\n");
889 			return PTR_ERR(phydev);
890 		}
891 
892 		/* mask with MAC supported features */
893 		phydev->supported &= (SUPPORTED_10baseT_Half |
894 				      SUPPORTED_10baseT_Full |
895 				      SUPPORTED_100baseT_Half |
896 				      SUPPORTED_100baseT_Full |
897 				      SUPPORTED_Autoneg |
898 				      SUPPORTED_Pause |
899 				      SUPPORTED_MII);
900 		phydev->advertising = phydev->supported;
901 
902 		if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
903 			phydev->advertising |= SUPPORTED_Pause;
904 		else
905 			phydev->advertising &= ~SUPPORTED_Pause;
906 
907 		phy_attached_info(phydev);
908 
909 		priv->old_link = 0;
910 		priv->old_duplex = -1;
911 		priv->old_pause = -1;
912 	} else {
913 		phydev = NULL;
914 	}
915 
916 	/* mask all interrupts and request them */
917 	enet_writel(priv, 0, ENET_IRMASK_REG);
918 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
919 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
920 
921 	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
922 	if (ret)
923 		goto out_phy_disconnect;
924 
925 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
926 			  dev->name, dev);
927 	if (ret)
928 		goto out_freeirq;
929 
930 	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
931 			  0, dev->name, dev);
932 	if (ret)
933 		goto out_freeirq_rx;
934 
935 	/* initialize perfect match registers */
936 	for (i = 0; i < 4; i++) {
937 		enet_writel(priv, 0, ENET_PML_REG(i));
938 		enet_writel(priv, 0, ENET_PMH_REG(i));
939 	}
940 
941 	/* write device mac address */
942 	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
943 	bcm_enet_set_mac_address(dev, &addr);
944 
945 	/* allocate rx dma ring */
946 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
947 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
948 	if (!p) {
949 		ret = -ENOMEM;
950 		goto out_freeirq_tx;
951 	}
952 
953 	priv->rx_desc_alloc_size = size;
954 	priv->rx_desc_cpu = p;
955 
956 	/* allocate tx dma ring */
957 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
958 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
959 	if (!p) {
960 		ret = -ENOMEM;
961 		goto out_free_rx_ring;
962 	}
963 
964 	priv->tx_desc_alloc_size = size;
965 	priv->tx_desc_cpu = p;
966 
967 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
968 			       GFP_KERNEL);
969 	if (!priv->tx_skb) {
970 		ret = -ENOMEM;
971 		goto out_free_tx_ring;
972 	}
973 
974 	priv->tx_desc_count = priv->tx_ring_size;
975 	priv->tx_dirty_desc = 0;
976 	priv->tx_curr_desc = 0;
977 	spin_lock_init(&priv->tx_lock);
978 
979 	/* init & fill rx ring with skbs */
980 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
981 			       GFP_KERNEL);
982 	if (!priv->rx_skb) {
983 		ret = -ENOMEM;
984 		goto out_free_tx_skb;
985 	}
986 
987 	priv->rx_desc_count = 0;
988 	priv->rx_dirty_desc = 0;
989 	priv->rx_curr_desc = 0;
990 
991 	/* initialize flow control buffer allocation */
992 	if (priv->dma_has_sram)
993 		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
994 				ENETDMA_BUFALLOC_REG(priv->rx_chan));
995 	else
996 		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
997 				ENETDMAC_BUFALLOC, priv->rx_chan);
998 
999 	if (bcm_enet_refill_rx(dev)) {
1000 		dev_err(kdev, "cannot allocate rx skb queue\n");
1001 		ret = -ENOMEM;
1002 		goto out;
1003 	}
1004 
1005 	/* write rx & tx ring addresses */
1006 	if (priv->dma_has_sram) {
1007 		enet_dmas_writel(priv, priv->rx_desc_dma,
1008 				 ENETDMAS_RSTART_REG, priv->rx_chan);
1009 		enet_dmas_writel(priv, priv->tx_desc_dma,
1010 			 ENETDMAS_RSTART_REG, priv->tx_chan);
1011 	} else {
1012 		enet_dmac_writel(priv, priv->rx_desc_dma,
1013 				ENETDMAC_RSTART, priv->rx_chan);
1014 		enet_dmac_writel(priv, priv->tx_desc_dma,
1015 				ENETDMAC_RSTART, priv->tx_chan);
1016 	}
1017 
1018 	/* clear remaining state ram for rx & tx channel */
1019 	if (priv->dma_has_sram) {
1020 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1021 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1022 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1023 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1024 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1025 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1026 	} else {
1027 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1028 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1029 	}
1030 
1031 	/* set max rx/tx length */
1032 	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1033 	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1034 
1035 	/* set dma maximum burst len */
1036 	enet_dmac_writel(priv, priv->dma_maxburst,
1037 			 ENETDMAC_MAXBURST, priv->rx_chan);
1038 	enet_dmac_writel(priv, priv->dma_maxburst,
1039 			 ENETDMAC_MAXBURST, priv->tx_chan);
1040 
1041 	/* set correct transmit fifo watermark */
1042 	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1043 
1044 	/* set flow control low/high threshold to 1/3 / 2/3 */
1045 	if (priv->dma_has_sram) {
1046 		val = priv->rx_ring_size / 3;
1047 		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1048 		val = (priv->rx_ring_size * 2) / 3;
1049 		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1050 	} else {
1051 		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1052 		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1053 		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1054 	}
1055 
1056 	/* all set, enable mac and interrupts, start dma engine and
1057 	 * kick rx dma channel */
1058 	wmb();
1059 	val = enet_readl(priv, ENET_CTL_REG);
1060 	val |= ENET_CTL_ENABLE_MASK;
1061 	enet_writel(priv, val, ENET_CTL_REG);
1062 	if (priv->dma_has_sram)
1063 		enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1064 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1065 			 ENETDMAC_CHANCFG, priv->rx_chan);
1066 
1067 	/* watch "mib counters about to overflow" interrupt */
1068 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1069 	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1070 
1071 	/* watch "packet transferred" interrupt in rx and tx */
1072 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1073 			 ENETDMAC_IR, priv->rx_chan);
1074 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1075 			 ENETDMAC_IR, priv->tx_chan);
1076 
1077 	/* make sure we enable napi before rx interrupt  */
1078 	napi_enable(&priv->napi);
1079 
1080 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1081 			 ENETDMAC_IRMASK, priv->rx_chan);
1082 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1083 			 ENETDMAC_IRMASK, priv->tx_chan);
1084 
1085 	if (phydev)
1086 		phy_start(phydev);
1087 	else
1088 		bcm_enet_adjust_link(dev);
1089 
1090 	netif_start_queue(dev);
1091 	return 0;
1092 
1093 out:
1094 	for (i = 0; i < priv->rx_ring_size; i++) {
1095 		struct bcm_enet_desc *desc;
1096 
1097 		if (!priv->rx_skb[i])
1098 			continue;
1099 
1100 		desc = &priv->rx_desc_cpu[i];
1101 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1102 				 DMA_FROM_DEVICE);
1103 		kfree_skb(priv->rx_skb[i]);
1104 	}
1105 	kfree(priv->rx_skb);
1106 
1107 out_free_tx_skb:
1108 	kfree(priv->tx_skb);
1109 
1110 out_free_tx_ring:
1111 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1112 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1113 
1114 out_free_rx_ring:
1115 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1116 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1117 
1118 out_freeirq_tx:
1119 	free_irq(priv->irq_tx, dev);
1120 
1121 out_freeirq_rx:
1122 	free_irq(priv->irq_rx, dev);
1123 
1124 out_freeirq:
1125 	free_irq(dev->irq, dev);
1126 
1127 out_phy_disconnect:
1128 	if (phydev)
1129 		phy_disconnect(phydev);
1130 
1131 	return ret;
1132 }
1133 
1134 /*
1135  * disable mac
1136  */
1137 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1138 {
1139 	int limit;
1140 	u32 val;
1141 
1142 	val = enet_readl(priv, ENET_CTL_REG);
1143 	val |= ENET_CTL_DISABLE_MASK;
1144 	enet_writel(priv, val, ENET_CTL_REG);
1145 
1146 	limit = 1000;
1147 	do {
1148 		u32 val;
1149 
1150 		val = enet_readl(priv, ENET_CTL_REG);
1151 		if (!(val & ENET_CTL_DISABLE_MASK))
1152 			break;
1153 		udelay(1);
1154 	} while (limit--);
1155 }
1156 
1157 /*
1158  * disable dma in given channel
1159  */
1160 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1161 {
1162 	int limit;
1163 
1164 	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1165 
1166 	limit = 1000;
1167 	do {
1168 		u32 val;
1169 
1170 		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1171 		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1172 			break;
1173 		udelay(1);
1174 	} while (limit--);
1175 }
1176 
1177 /*
1178  * stop callback
1179  */
1180 static int bcm_enet_stop(struct net_device *dev)
1181 {
1182 	struct bcm_enet_priv *priv;
1183 	struct device *kdev;
1184 	int i;
1185 
1186 	priv = netdev_priv(dev);
1187 	kdev = &priv->pdev->dev;
1188 
1189 	netif_stop_queue(dev);
1190 	napi_disable(&priv->napi);
1191 	if (priv->has_phy)
1192 		phy_stop(dev->phydev);
1193 	del_timer_sync(&priv->rx_timeout);
1194 
1195 	/* mask all interrupts */
1196 	enet_writel(priv, 0, ENET_IRMASK_REG);
1197 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1198 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1199 
1200 	/* make sure no mib update is scheduled */
1201 	cancel_work_sync(&priv->mib_update_task);
1202 
1203 	/* disable dma & mac */
1204 	bcm_enet_disable_dma(priv, priv->tx_chan);
1205 	bcm_enet_disable_dma(priv, priv->rx_chan);
1206 	bcm_enet_disable_mac(priv);
1207 
1208 	/* force reclaim of all tx buffers */
1209 	bcm_enet_tx_reclaim(dev, 1);
1210 
1211 	/* free the rx skb ring */
1212 	for (i = 0; i < priv->rx_ring_size; i++) {
1213 		struct bcm_enet_desc *desc;
1214 
1215 		if (!priv->rx_skb[i])
1216 			continue;
1217 
1218 		desc = &priv->rx_desc_cpu[i];
1219 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1220 				 DMA_FROM_DEVICE);
1221 		kfree_skb(priv->rx_skb[i]);
1222 	}
1223 
1224 	/* free remaining allocated memory */
1225 	kfree(priv->rx_skb);
1226 	kfree(priv->tx_skb);
1227 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1228 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1229 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1230 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1231 	free_irq(priv->irq_tx, dev);
1232 	free_irq(priv->irq_rx, dev);
1233 	free_irq(dev->irq, dev);
1234 
1235 	/* release phy */
1236 	if (priv->has_phy)
1237 		phy_disconnect(dev->phydev);
1238 
1239 	return 0;
1240 }
1241 
1242 /*
1243  * ethtool callbacks
1244  */
1245 struct bcm_enet_stats {
1246 	char stat_string[ETH_GSTRING_LEN];
1247 	int sizeof_stat;
1248 	int stat_offset;
1249 	int mib_reg;
1250 };
1251 
1252 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1253 		     offsetof(struct bcm_enet_priv, m)
1254 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1255 		     offsetof(struct net_device_stats, m)
1256 
1257 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1258 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1259 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1260 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1261 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1262 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1263 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1264 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1265 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1266 
1267 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1268 	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1269 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1270 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1271 	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1272 	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1273 	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1274 	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1275 	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1276 	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1277 	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1278 	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1279 	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1280 	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1281 	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1282 	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1283 	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1284 	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1285 	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1286 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1287 	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1288 
1289 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1290 	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1291 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1292 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1293 	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1294 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1295 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1296 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1297 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1298 	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1299 	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1300 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1301 	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1302 	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1303 	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1304 	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1305 	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1306 	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1307 	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1308 	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1309 	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1310 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1311 
1312 };
1313 
1314 #define BCM_ENET_STATS_LEN	ARRAY_SIZE(bcm_enet_gstrings_stats)
1315 
1316 static const u32 unused_mib_regs[] = {
1317 	ETH_MIB_TX_ALL_OCTETS,
1318 	ETH_MIB_TX_ALL_PKTS,
1319 	ETH_MIB_RX_ALL_OCTETS,
1320 	ETH_MIB_RX_ALL_PKTS,
1321 };
1322 
1323 
1324 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1325 				 struct ethtool_drvinfo *drvinfo)
1326 {
1327 	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1328 	strlcpy(drvinfo->version, bcm_enet_driver_version,
1329 		sizeof(drvinfo->version));
1330 	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1331 	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1332 }
1333 
1334 static int bcm_enet_get_sset_count(struct net_device *netdev,
1335 					int string_set)
1336 {
1337 	switch (string_set) {
1338 	case ETH_SS_STATS:
1339 		return BCM_ENET_STATS_LEN;
1340 	default:
1341 		return -EINVAL;
1342 	}
1343 }
1344 
1345 static void bcm_enet_get_strings(struct net_device *netdev,
1346 				 u32 stringset, u8 *data)
1347 {
1348 	int i;
1349 
1350 	switch (stringset) {
1351 	case ETH_SS_STATS:
1352 		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1353 			memcpy(data + i * ETH_GSTRING_LEN,
1354 			       bcm_enet_gstrings_stats[i].stat_string,
1355 			       ETH_GSTRING_LEN);
1356 		}
1357 		break;
1358 	}
1359 }
1360 
1361 static void update_mib_counters(struct bcm_enet_priv *priv)
1362 {
1363 	int i;
1364 
1365 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1366 		const struct bcm_enet_stats *s;
1367 		u32 val;
1368 		char *p;
1369 
1370 		s = &bcm_enet_gstrings_stats[i];
1371 		if (s->mib_reg == -1)
1372 			continue;
1373 
1374 		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1375 		p = (char *)priv + s->stat_offset;
1376 
1377 		if (s->sizeof_stat == sizeof(u64))
1378 			*(u64 *)p += val;
1379 		else
1380 			*(u32 *)p += val;
1381 	}
1382 
1383 	/* also empty unused mib counters to make sure mib counter
1384 	 * overflow interrupt is cleared */
1385 	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1386 		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1387 }
1388 
1389 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1390 {
1391 	struct bcm_enet_priv *priv;
1392 
1393 	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1394 	mutex_lock(&priv->mib_update_lock);
1395 	update_mib_counters(priv);
1396 	mutex_unlock(&priv->mib_update_lock);
1397 
1398 	/* reenable mib interrupt */
1399 	if (netif_running(priv->net_dev))
1400 		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1401 }
1402 
1403 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1404 				       struct ethtool_stats *stats,
1405 				       u64 *data)
1406 {
1407 	struct bcm_enet_priv *priv;
1408 	int i;
1409 
1410 	priv = netdev_priv(netdev);
1411 
1412 	mutex_lock(&priv->mib_update_lock);
1413 	update_mib_counters(priv);
1414 
1415 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1416 		const struct bcm_enet_stats *s;
1417 		char *p;
1418 
1419 		s = &bcm_enet_gstrings_stats[i];
1420 		if (s->mib_reg == -1)
1421 			p = (char *)&netdev->stats;
1422 		else
1423 			p = (char *)priv;
1424 		p += s->stat_offset;
1425 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1426 			*(u64 *)p : *(u32 *)p;
1427 	}
1428 	mutex_unlock(&priv->mib_update_lock);
1429 }
1430 
1431 static int bcm_enet_nway_reset(struct net_device *dev)
1432 {
1433 	struct bcm_enet_priv *priv;
1434 
1435 	priv = netdev_priv(dev);
1436 	if (priv->has_phy)
1437 		return phy_ethtool_nway_reset(dev);
1438 
1439 	return -EOPNOTSUPP;
1440 }
1441 
1442 static int bcm_enet_get_link_ksettings(struct net_device *dev,
1443 				       struct ethtool_link_ksettings *cmd)
1444 {
1445 	struct bcm_enet_priv *priv;
1446 	u32 supported, advertising;
1447 
1448 	priv = netdev_priv(dev);
1449 
1450 	if (priv->has_phy) {
1451 		if (!dev->phydev)
1452 			return -ENODEV;
1453 
1454 		phy_ethtool_ksettings_get(dev->phydev, cmd);
1455 
1456 		return 0;
1457 	} else {
1458 		cmd->base.autoneg = 0;
1459 		cmd->base.speed = (priv->force_speed_100) ?
1460 			SPEED_100 : SPEED_10;
1461 		cmd->base.duplex = (priv->force_duplex_full) ?
1462 			DUPLEX_FULL : DUPLEX_HALF;
1463 		supported = ADVERTISED_10baseT_Half |
1464 			ADVERTISED_10baseT_Full |
1465 			ADVERTISED_100baseT_Half |
1466 			ADVERTISED_100baseT_Full;
1467 		advertising = 0;
1468 		ethtool_convert_legacy_u32_to_link_mode(
1469 			cmd->link_modes.supported, supported);
1470 		ethtool_convert_legacy_u32_to_link_mode(
1471 			cmd->link_modes.advertising, advertising);
1472 		cmd->base.port = PORT_MII;
1473 	}
1474 	return 0;
1475 }
1476 
1477 static int bcm_enet_set_link_ksettings(struct net_device *dev,
1478 				       const struct ethtool_link_ksettings *cmd)
1479 {
1480 	struct bcm_enet_priv *priv;
1481 
1482 	priv = netdev_priv(dev);
1483 	if (priv->has_phy) {
1484 		if (!dev->phydev)
1485 			return -ENODEV;
1486 		return phy_ethtool_ksettings_set(dev->phydev, cmd);
1487 	} else {
1488 
1489 		if (cmd->base.autoneg ||
1490 		    (cmd->base.speed != SPEED_100 &&
1491 		     cmd->base.speed != SPEED_10) ||
1492 		    cmd->base.port != PORT_MII)
1493 			return -EINVAL;
1494 
1495 		priv->force_speed_100 =
1496 			(cmd->base.speed == SPEED_100) ? 1 : 0;
1497 		priv->force_duplex_full =
1498 			(cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1499 
1500 		if (netif_running(dev))
1501 			bcm_enet_adjust_link(dev);
1502 		return 0;
1503 	}
1504 }
1505 
1506 static void bcm_enet_get_ringparam(struct net_device *dev,
1507 				   struct ethtool_ringparam *ering)
1508 {
1509 	struct bcm_enet_priv *priv;
1510 
1511 	priv = netdev_priv(dev);
1512 
1513 	/* rx/tx ring is actually only limited by memory */
1514 	ering->rx_max_pending = 8192;
1515 	ering->tx_max_pending = 8192;
1516 	ering->rx_pending = priv->rx_ring_size;
1517 	ering->tx_pending = priv->tx_ring_size;
1518 }
1519 
1520 static int bcm_enet_set_ringparam(struct net_device *dev,
1521 				  struct ethtool_ringparam *ering)
1522 {
1523 	struct bcm_enet_priv *priv;
1524 	int was_running;
1525 
1526 	priv = netdev_priv(dev);
1527 
1528 	was_running = 0;
1529 	if (netif_running(dev)) {
1530 		bcm_enet_stop(dev);
1531 		was_running = 1;
1532 	}
1533 
1534 	priv->rx_ring_size = ering->rx_pending;
1535 	priv->tx_ring_size = ering->tx_pending;
1536 
1537 	if (was_running) {
1538 		int err;
1539 
1540 		err = bcm_enet_open(dev);
1541 		if (err)
1542 			dev_close(dev);
1543 		else
1544 			bcm_enet_set_multicast_list(dev);
1545 	}
1546 	return 0;
1547 }
1548 
1549 static void bcm_enet_get_pauseparam(struct net_device *dev,
1550 				    struct ethtool_pauseparam *ecmd)
1551 {
1552 	struct bcm_enet_priv *priv;
1553 
1554 	priv = netdev_priv(dev);
1555 	ecmd->autoneg = priv->pause_auto;
1556 	ecmd->rx_pause = priv->pause_rx;
1557 	ecmd->tx_pause = priv->pause_tx;
1558 }
1559 
1560 static int bcm_enet_set_pauseparam(struct net_device *dev,
1561 				   struct ethtool_pauseparam *ecmd)
1562 {
1563 	struct bcm_enet_priv *priv;
1564 
1565 	priv = netdev_priv(dev);
1566 
1567 	if (priv->has_phy) {
1568 		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1569 			/* asymetric pause mode not supported,
1570 			 * actually possible but integrated PHY has RO
1571 			 * asym_pause bit */
1572 			return -EINVAL;
1573 		}
1574 	} else {
1575 		/* no pause autoneg on direct mii connection */
1576 		if (ecmd->autoneg)
1577 			return -EINVAL;
1578 	}
1579 
1580 	priv->pause_auto = ecmd->autoneg;
1581 	priv->pause_rx = ecmd->rx_pause;
1582 	priv->pause_tx = ecmd->tx_pause;
1583 
1584 	return 0;
1585 }
1586 
1587 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1588 	.get_strings		= bcm_enet_get_strings,
1589 	.get_sset_count		= bcm_enet_get_sset_count,
1590 	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1591 	.nway_reset		= bcm_enet_nway_reset,
1592 	.get_drvinfo		= bcm_enet_get_drvinfo,
1593 	.get_link		= ethtool_op_get_link,
1594 	.get_ringparam		= bcm_enet_get_ringparam,
1595 	.set_ringparam		= bcm_enet_set_ringparam,
1596 	.get_pauseparam		= bcm_enet_get_pauseparam,
1597 	.set_pauseparam		= bcm_enet_set_pauseparam,
1598 	.get_link_ksettings	= bcm_enet_get_link_ksettings,
1599 	.set_link_ksettings	= bcm_enet_set_link_ksettings,
1600 };
1601 
1602 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1603 {
1604 	struct bcm_enet_priv *priv;
1605 
1606 	priv = netdev_priv(dev);
1607 	if (priv->has_phy) {
1608 		if (!dev->phydev)
1609 			return -ENODEV;
1610 		return phy_mii_ioctl(dev->phydev, rq, cmd);
1611 	} else {
1612 		struct mii_if_info mii;
1613 
1614 		mii.dev = dev;
1615 		mii.mdio_read = bcm_enet_mdio_read_mii;
1616 		mii.mdio_write = bcm_enet_mdio_write_mii;
1617 		mii.phy_id = 0;
1618 		mii.phy_id_mask = 0x3f;
1619 		mii.reg_num_mask = 0x1f;
1620 		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1621 	}
1622 }
1623 
1624 /*
1625  * adjust mtu, can't be called while device is running
1626  */
1627 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1628 {
1629 	struct bcm_enet_priv *priv = netdev_priv(dev);
1630 	int actual_mtu = new_mtu;
1631 
1632 	if (netif_running(dev))
1633 		return -EBUSY;
1634 
1635 	/* add ethernet header + vlan tag size */
1636 	actual_mtu += VLAN_ETH_HLEN;
1637 
1638 	/*
1639 	 * setup maximum size before we get overflow mark in
1640 	 * descriptor, note that this will not prevent reception of
1641 	 * big frames, they will be split into multiple buffers
1642 	 * anyway
1643 	 */
1644 	priv->hw_mtu = actual_mtu;
1645 
1646 	/*
1647 	 * align rx buffer size to dma burst len, account FCS since
1648 	 * it's appended
1649 	 */
1650 	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1651 				  priv->dma_maxburst * 4);
1652 
1653 	dev->mtu = new_mtu;
1654 	return 0;
1655 }
1656 
1657 /*
1658  * preinit hardware to allow mii operation while device is down
1659  */
1660 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1661 {
1662 	u32 val;
1663 	int limit;
1664 
1665 	/* make sure mac is disabled */
1666 	bcm_enet_disable_mac(priv);
1667 
1668 	/* soft reset mac */
1669 	val = ENET_CTL_SRESET_MASK;
1670 	enet_writel(priv, val, ENET_CTL_REG);
1671 	wmb();
1672 
1673 	limit = 1000;
1674 	do {
1675 		val = enet_readl(priv, ENET_CTL_REG);
1676 		if (!(val & ENET_CTL_SRESET_MASK))
1677 			break;
1678 		udelay(1);
1679 	} while (limit--);
1680 
1681 	/* select correct mii interface */
1682 	val = enet_readl(priv, ENET_CTL_REG);
1683 	if (priv->use_external_mii)
1684 		val |= ENET_CTL_EPHYSEL_MASK;
1685 	else
1686 		val &= ~ENET_CTL_EPHYSEL_MASK;
1687 	enet_writel(priv, val, ENET_CTL_REG);
1688 
1689 	/* turn on mdc clock */
1690 	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1691 		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1692 
1693 	/* set mib counters to self-clear when read */
1694 	val = enet_readl(priv, ENET_MIBCTL_REG);
1695 	val |= ENET_MIBCTL_RDCLEAR_MASK;
1696 	enet_writel(priv, val, ENET_MIBCTL_REG);
1697 }
1698 
1699 static const struct net_device_ops bcm_enet_ops = {
1700 	.ndo_open		= bcm_enet_open,
1701 	.ndo_stop		= bcm_enet_stop,
1702 	.ndo_start_xmit		= bcm_enet_start_xmit,
1703 	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1704 	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1705 	.ndo_do_ioctl		= bcm_enet_ioctl,
1706 	.ndo_change_mtu		= bcm_enet_change_mtu,
1707 };
1708 
1709 /*
1710  * allocate netdevice, request register memory and register device.
1711  */
1712 static int bcm_enet_probe(struct platform_device *pdev)
1713 {
1714 	struct bcm_enet_priv *priv;
1715 	struct net_device *dev;
1716 	struct bcm63xx_enet_platform_data *pd;
1717 	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1718 	struct mii_bus *bus;
1719 	int i, ret;
1720 
1721 	if (!bcm_enet_shared_base[0])
1722 		return -EPROBE_DEFER;
1723 
1724 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1725 	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1726 	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1727 	if (!res_irq || !res_irq_rx || !res_irq_tx)
1728 		return -ENODEV;
1729 
1730 	ret = 0;
1731 	dev = alloc_etherdev(sizeof(*priv));
1732 	if (!dev)
1733 		return -ENOMEM;
1734 	priv = netdev_priv(dev);
1735 
1736 	priv->enet_is_sw = false;
1737 	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1738 
1739 	ret = bcm_enet_change_mtu(dev, dev->mtu);
1740 	if (ret)
1741 		goto out;
1742 
1743 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1744 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1745 	if (IS_ERR(priv->base)) {
1746 		ret = PTR_ERR(priv->base);
1747 		goto out;
1748 	}
1749 
1750 	dev->irq = priv->irq = res_irq->start;
1751 	priv->irq_rx = res_irq_rx->start;
1752 	priv->irq_tx = res_irq_tx->start;
1753 
1754 	priv->mac_clk = devm_clk_get(&pdev->dev, "enet");
1755 	if (IS_ERR(priv->mac_clk)) {
1756 		ret = PTR_ERR(priv->mac_clk);
1757 		goto out;
1758 	}
1759 	ret = clk_prepare_enable(priv->mac_clk);
1760 	if (ret)
1761 		goto out;
1762 
1763 	/* initialize default and fetch platform data */
1764 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1765 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1766 
1767 	pd = dev_get_platdata(&pdev->dev);
1768 	if (pd) {
1769 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1770 		priv->has_phy = pd->has_phy;
1771 		priv->phy_id = pd->phy_id;
1772 		priv->has_phy_interrupt = pd->has_phy_interrupt;
1773 		priv->phy_interrupt = pd->phy_interrupt;
1774 		priv->use_external_mii = !pd->use_internal_phy;
1775 		priv->pause_auto = pd->pause_auto;
1776 		priv->pause_rx = pd->pause_rx;
1777 		priv->pause_tx = pd->pause_tx;
1778 		priv->force_duplex_full = pd->force_duplex_full;
1779 		priv->force_speed_100 = pd->force_speed_100;
1780 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1781 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1782 		priv->dma_chan_width = pd->dma_chan_width;
1783 		priv->dma_has_sram = pd->dma_has_sram;
1784 		priv->dma_desc_shift = pd->dma_desc_shift;
1785 		priv->rx_chan = pd->rx_chan;
1786 		priv->tx_chan = pd->tx_chan;
1787 	}
1788 
1789 	if (priv->has_phy && !priv->use_external_mii) {
1790 		/* using internal PHY, enable clock */
1791 		priv->phy_clk = devm_clk_get(&pdev->dev, "ephy");
1792 		if (IS_ERR(priv->phy_clk)) {
1793 			ret = PTR_ERR(priv->phy_clk);
1794 			priv->phy_clk = NULL;
1795 			goto out_disable_clk_mac;
1796 		}
1797 		ret = clk_prepare_enable(priv->phy_clk);
1798 		if (ret)
1799 			goto out_disable_clk_mac;
1800 	}
1801 
1802 	/* do minimal hardware init to be able to probe mii bus */
1803 	bcm_enet_hw_preinit(priv);
1804 
1805 	/* MII bus registration */
1806 	if (priv->has_phy) {
1807 
1808 		priv->mii_bus = mdiobus_alloc();
1809 		if (!priv->mii_bus) {
1810 			ret = -ENOMEM;
1811 			goto out_uninit_hw;
1812 		}
1813 
1814 		bus = priv->mii_bus;
1815 		bus->name = "bcm63xx_enet MII bus";
1816 		bus->parent = &pdev->dev;
1817 		bus->priv = priv;
1818 		bus->read = bcm_enet_mdio_read_phylib;
1819 		bus->write = bcm_enet_mdio_write_phylib;
1820 		sprintf(bus->id, "%s-%d", pdev->name, pdev->id);
1821 
1822 		/* only probe bus where we think the PHY is, because
1823 		 * the mdio read operation return 0 instead of 0xffff
1824 		 * if a slave is not present on hw */
1825 		bus->phy_mask = ~(1 << priv->phy_id);
1826 
1827 		if (priv->has_phy_interrupt)
1828 			bus->irq[priv->phy_id] = priv->phy_interrupt;
1829 
1830 		ret = mdiobus_register(bus);
1831 		if (ret) {
1832 			dev_err(&pdev->dev, "unable to register mdio bus\n");
1833 			goto out_free_mdio;
1834 		}
1835 	} else {
1836 
1837 		/* run platform code to initialize PHY device */
1838 		if (pd && pd->mii_config &&
1839 		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1840 				   bcm_enet_mdio_write_mii)) {
1841 			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1842 			goto out_uninit_hw;
1843 		}
1844 	}
1845 
1846 	spin_lock_init(&priv->rx_lock);
1847 
1848 	/* init rx timeout (used for oom) */
1849 	timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
1850 
1851 	/* init the mib update lock&work */
1852 	mutex_init(&priv->mib_update_lock);
1853 	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1854 
1855 	/* zero mib counters */
1856 	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1857 		enet_writel(priv, 0, ENET_MIB_REG(i));
1858 
1859 	/* register netdevice */
1860 	dev->netdev_ops = &bcm_enet_ops;
1861 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1862 
1863 	dev->ethtool_ops = &bcm_enet_ethtool_ops;
1864 	/* MTU range: 46 - 2028 */
1865 	dev->min_mtu = ETH_ZLEN - ETH_HLEN;
1866 	dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN;
1867 	SET_NETDEV_DEV(dev, &pdev->dev);
1868 
1869 	ret = register_netdev(dev);
1870 	if (ret)
1871 		goto out_unregister_mdio;
1872 
1873 	netif_carrier_off(dev);
1874 	platform_set_drvdata(pdev, dev);
1875 	priv->pdev = pdev;
1876 	priv->net_dev = dev;
1877 
1878 	return 0;
1879 
1880 out_unregister_mdio:
1881 	if (priv->mii_bus)
1882 		mdiobus_unregister(priv->mii_bus);
1883 
1884 out_free_mdio:
1885 	if (priv->mii_bus)
1886 		mdiobus_free(priv->mii_bus);
1887 
1888 out_uninit_hw:
1889 	/* turn off mdc clock */
1890 	enet_writel(priv, 0, ENET_MIISC_REG);
1891 	clk_disable_unprepare(priv->phy_clk);
1892 
1893 out_disable_clk_mac:
1894 	clk_disable_unprepare(priv->mac_clk);
1895 out:
1896 	free_netdev(dev);
1897 	return ret;
1898 }
1899 
1900 
1901 /*
1902  * exit func, stops hardware and unregisters netdevice
1903  */
1904 static int bcm_enet_remove(struct platform_device *pdev)
1905 {
1906 	struct bcm_enet_priv *priv;
1907 	struct net_device *dev;
1908 
1909 	/* stop netdevice */
1910 	dev = platform_get_drvdata(pdev);
1911 	priv = netdev_priv(dev);
1912 	unregister_netdev(dev);
1913 
1914 	/* turn off mdc clock */
1915 	enet_writel(priv, 0, ENET_MIISC_REG);
1916 
1917 	if (priv->has_phy) {
1918 		mdiobus_unregister(priv->mii_bus);
1919 		mdiobus_free(priv->mii_bus);
1920 	} else {
1921 		struct bcm63xx_enet_platform_data *pd;
1922 
1923 		pd = dev_get_platdata(&pdev->dev);
1924 		if (pd && pd->mii_config)
1925 			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1926 				       bcm_enet_mdio_write_mii);
1927 	}
1928 
1929 	/* disable hw block clocks */
1930 	clk_disable_unprepare(priv->phy_clk);
1931 	clk_disable_unprepare(priv->mac_clk);
1932 
1933 	free_netdev(dev);
1934 	return 0;
1935 }
1936 
1937 struct platform_driver bcm63xx_enet_driver = {
1938 	.probe	= bcm_enet_probe,
1939 	.remove	= bcm_enet_remove,
1940 	.driver	= {
1941 		.name	= "bcm63xx_enet",
1942 		.owner  = THIS_MODULE,
1943 	},
1944 };
1945 
1946 /*
1947  * switch mii access callbacks
1948  */
1949 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1950 				int ext, int phy_id, int location)
1951 {
1952 	u32 reg;
1953 	int ret;
1954 
1955 	spin_lock_bh(&priv->enetsw_mdio_lock);
1956 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1957 
1958 	reg = ENETSW_MDIOC_RD_MASK |
1959 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1960 		(location << ENETSW_MDIOC_REG_SHIFT);
1961 
1962 	if (ext)
1963 		reg |= ENETSW_MDIOC_EXT_MASK;
1964 
1965 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1966 	udelay(50);
1967 	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
1968 	spin_unlock_bh(&priv->enetsw_mdio_lock);
1969 	return ret;
1970 }
1971 
1972 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
1973 				 int ext, int phy_id, int location,
1974 				 uint16_t data)
1975 {
1976 	u32 reg;
1977 
1978 	spin_lock_bh(&priv->enetsw_mdio_lock);
1979 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1980 
1981 	reg = ENETSW_MDIOC_WR_MASK |
1982 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1983 		(location << ENETSW_MDIOC_REG_SHIFT);
1984 
1985 	if (ext)
1986 		reg |= ENETSW_MDIOC_EXT_MASK;
1987 
1988 	reg |= data;
1989 
1990 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1991 	udelay(50);
1992 	spin_unlock_bh(&priv->enetsw_mdio_lock);
1993 }
1994 
1995 static inline int bcm_enet_port_is_rgmii(int portid)
1996 {
1997 	return portid >= ENETSW_RGMII_PORT0;
1998 }
1999 
2000 /*
2001  * enet sw PHY polling
2002  */
2003 static void swphy_poll_timer(struct timer_list *t)
2004 {
2005 	struct bcm_enet_priv *priv = from_timer(priv, t, swphy_poll);
2006 	unsigned int i;
2007 
2008 	for (i = 0; i < priv->num_ports; i++) {
2009 		struct bcm63xx_enetsw_port *port;
2010 		int val, j, up, advertise, lpa, speed, duplex, media;
2011 		int external_phy = bcm_enet_port_is_rgmii(i);
2012 		u8 override;
2013 
2014 		port = &priv->used_ports[i];
2015 		if (!port->used)
2016 			continue;
2017 
2018 		if (port->bypass_link)
2019 			continue;
2020 
2021 		/* dummy read to clear */
2022 		for (j = 0; j < 2; j++)
2023 			val = bcmenet_sw_mdio_read(priv, external_phy,
2024 						   port->phy_id, MII_BMSR);
2025 
2026 		if (val == 0xffff)
2027 			continue;
2028 
2029 		up = (val & BMSR_LSTATUS) ? 1 : 0;
2030 		if (!(up ^ priv->sw_port_link[i]))
2031 			continue;
2032 
2033 		priv->sw_port_link[i] = up;
2034 
2035 		/* link changed */
2036 		if (!up) {
2037 			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2038 				 port->name);
2039 			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2040 				      ENETSW_PORTOV_REG(i));
2041 			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2042 				      ENETSW_PTCTRL_TXDIS_MASK,
2043 				      ENETSW_PTCTRL_REG(i));
2044 			continue;
2045 		}
2046 
2047 		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2048 						 port->phy_id, MII_ADVERTISE);
2049 
2050 		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2051 					   MII_LPA);
2052 
2053 		/* figure out media and duplex from advertise and LPA values */
2054 		media = mii_nway_result(lpa & advertise);
2055 		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2056 
2057 		if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2058 			speed = 100;
2059 		else
2060 			speed = 10;
2061 
2062 		if (val & BMSR_ESTATEN) {
2063 			advertise = bcmenet_sw_mdio_read(priv, external_phy,
2064 						port->phy_id, MII_CTRL1000);
2065 
2066 			lpa = bcmenet_sw_mdio_read(priv, external_phy,
2067 						port->phy_id, MII_STAT1000);
2068 
2069 			if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2070 					&& lpa & (LPA_1000FULL | LPA_1000HALF)) {
2071 				speed = 1000;
2072 				duplex = (lpa & LPA_1000FULL);
2073 			}
2074 		}
2075 
2076 		dev_info(&priv->pdev->dev,
2077 			 "link UP on %s, %dMbps, %s-duplex\n",
2078 			 port->name, speed, duplex ? "full" : "half");
2079 
2080 		override = ENETSW_PORTOV_ENABLE_MASK |
2081 			ENETSW_PORTOV_LINKUP_MASK;
2082 
2083 		if (speed == 1000)
2084 			override |= ENETSW_IMPOV_1000_MASK;
2085 		else if (speed == 100)
2086 			override |= ENETSW_IMPOV_100_MASK;
2087 		if (duplex)
2088 			override |= ENETSW_IMPOV_FDX_MASK;
2089 
2090 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2091 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2092 	}
2093 
2094 	priv->swphy_poll.expires = jiffies + HZ;
2095 	add_timer(&priv->swphy_poll);
2096 }
2097 
2098 /*
2099  * open callback, allocate dma rings & buffers and start rx operation
2100  */
2101 static int bcm_enetsw_open(struct net_device *dev)
2102 {
2103 	struct bcm_enet_priv *priv;
2104 	struct device *kdev;
2105 	int i, ret;
2106 	unsigned int size;
2107 	void *p;
2108 	u32 val;
2109 
2110 	priv = netdev_priv(dev);
2111 	kdev = &priv->pdev->dev;
2112 
2113 	/* mask all interrupts and request them */
2114 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2115 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2116 
2117 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2118 			  0, dev->name, dev);
2119 	if (ret)
2120 		goto out_freeirq;
2121 
2122 	if (priv->irq_tx != -1) {
2123 		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2124 				  0, dev->name, dev);
2125 		if (ret)
2126 			goto out_freeirq_rx;
2127 	}
2128 
2129 	/* allocate rx dma ring */
2130 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2131 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2132 	if (!p) {
2133 		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2134 		ret = -ENOMEM;
2135 		goto out_freeirq_tx;
2136 	}
2137 
2138 	priv->rx_desc_alloc_size = size;
2139 	priv->rx_desc_cpu = p;
2140 
2141 	/* allocate tx dma ring */
2142 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2143 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2144 	if (!p) {
2145 		dev_err(kdev, "cannot allocate tx ring\n");
2146 		ret = -ENOMEM;
2147 		goto out_free_rx_ring;
2148 	}
2149 
2150 	priv->tx_desc_alloc_size = size;
2151 	priv->tx_desc_cpu = p;
2152 
2153 	priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2154 			       GFP_KERNEL);
2155 	if (!priv->tx_skb) {
2156 		dev_err(kdev, "cannot allocate rx skb queue\n");
2157 		ret = -ENOMEM;
2158 		goto out_free_tx_ring;
2159 	}
2160 
2161 	priv->tx_desc_count = priv->tx_ring_size;
2162 	priv->tx_dirty_desc = 0;
2163 	priv->tx_curr_desc = 0;
2164 	spin_lock_init(&priv->tx_lock);
2165 
2166 	/* init & fill rx ring with skbs */
2167 	priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2168 			       GFP_KERNEL);
2169 	if (!priv->rx_skb) {
2170 		dev_err(kdev, "cannot allocate rx skb queue\n");
2171 		ret = -ENOMEM;
2172 		goto out_free_tx_skb;
2173 	}
2174 
2175 	priv->rx_desc_count = 0;
2176 	priv->rx_dirty_desc = 0;
2177 	priv->rx_curr_desc = 0;
2178 
2179 	/* disable all ports */
2180 	for (i = 0; i < priv->num_ports; i++) {
2181 		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2182 			      ENETSW_PORTOV_REG(i));
2183 		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2184 			      ENETSW_PTCTRL_TXDIS_MASK,
2185 			      ENETSW_PTCTRL_REG(i));
2186 
2187 		priv->sw_port_link[i] = 0;
2188 	}
2189 
2190 	/* reset mib */
2191 	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2192 	val |= ENETSW_GMCR_RST_MIB_MASK;
2193 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2194 	mdelay(1);
2195 	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2196 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2197 	mdelay(1);
2198 
2199 	/* force CPU port state */
2200 	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2201 	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2202 	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2203 
2204 	/* enable switch forward engine */
2205 	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2206 	val |= ENETSW_SWMODE_FWD_EN_MASK;
2207 	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2208 
2209 	/* enable jumbo on all ports */
2210 	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2211 	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2212 
2213 	/* initialize flow control buffer allocation */
2214 	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2215 			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2216 
2217 	if (bcm_enet_refill_rx(dev)) {
2218 		dev_err(kdev, "cannot allocate rx skb queue\n");
2219 		ret = -ENOMEM;
2220 		goto out;
2221 	}
2222 
2223 	/* write rx & tx ring addresses */
2224 	enet_dmas_writel(priv, priv->rx_desc_dma,
2225 			 ENETDMAS_RSTART_REG, priv->rx_chan);
2226 	enet_dmas_writel(priv, priv->tx_desc_dma,
2227 			 ENETDMAS_RSTART_REG, priv->tx_chan);
2228 
2229 	/* clear remaining state ram for rx & tx channel */
2230 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2231 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2232 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2233 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2234 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2235 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2236 
2237 	/* set dma maximum burst len */
2238 	enet_dmac_writel(priv, priv->dma_maxburst,
2239 			 ENETDMAC_MAXBURST, priv->rx_chan);
2240 	enet_dmac_writel(priv, priv->dma_maxburst,
2241 			 ENETDMAC_MAXBURST, priv->tx_chan);
2242 
2243 	/* set flow control low/high threshold to 1/3 / 2/3 */
2244 	val = priv->rx_ring_size / 3;
2245 	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2246 	val = (priv->rx_ring_size * 2) / 3;
2247 	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2248 
2249 	/* all set, enable mac and interrupts, start dma engine and
2250 	 * kick rx dma channel
2251 	 */
2252 	wmb();
2253 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2254 	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2255 			 ENETDMAC_CHANCFG, priv->rx_chan);
2256 
2257 	/* watch "packet transferred" interrupt in rx and tx */
2258 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2259 			 ENETDMAC_IR, priv->rx_chan);
2260 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2261 			 ENETDMAC_IR, priv->tx_chan);
2262 
2263 	/* make sure we enable napi before rx interrupt  */
2264 	napi_enable(&priv->napi);
2265 
2266 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2267 			 ENETDMAC_IRMASK, priv->rx_chan);
2268 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2269 			 ENETDMAC_IRMASK, priv->tx_chan);
2270 
2271 	netif_carrier_on(dev);
2272 	netif_start_queue(dev);
2273 
2274 	/* apply override config for bypass_link ports here. */
2275 	for (i = 0; i < priv->num_ports; i++) {
2276 		struct bcm63xx_enetsw_port *port;
2277 		u8 override;
2278 		port = &priv->used_ports[i];
2279 		if (!port->used)
2280 			continue;
2281 
2282 		if (!port->bypass_link)
2283 			continue;
2284 
2285 		override = ENETSW_PORTOV_ENABLE_MASK |
2286 			ENETSW_PORTOV_LINKUP_MASK;
2287 
2288 		switch (port->force_speed) {
2289 		case 1000:
2290 			override |= ENETSW_IMPOV_1000_MASK;
2291 			break;
2292 		case 100:
2293 			override |= ENETSW_IMPOV_100_MASK;
2294 			break;
2295 		case 10:
2296 			break;
2297 		default:
2298 			pr_warn("invalid forced speed on port %s: assume 10\n",
2299 			       port->name);
2300 			break;
2301 		}
2302 
2303 		if (port->force_duplex_full)
2304 			override |= ENETSW_IMPOV_FDX_MASK;
2305 
2306 
2307 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2308 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2309 	}
2310 
2311 	/* start phy polling timer */
2312 	timer_setup(&priv->swphy_poll, swphy_poll_timer, 0);
2313 	mod_timer(&priv->swphy_poll, jiffies);
2314 	return 0;
2315 
2316 out:
2317 	for (i = 0; i < priv->rx_ring_size; i++) {
2318 		struct bcm_enet_desc *desc;
2319 
2320 		if (!priv->rx_skb[i])
2321 			continue;
2322 
2323 		desc = &priv->rx_desc_cpu[i];
2324 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2325 				 DMA_FROM_DEVICE);
2326 		kfree_skb(priv->rx_skb[i]);
2327 	}
2328 	kfree(priv->rx_skb);
2329 
2330 out_free_tx_skb:
2331 	kfree(priv->tx_skb);
2332 
2333 out_free_tx_ring:
2334 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2335 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2336 
2337 out_free_rx_ring:
2338 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2339 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2340 
2341 out_freeirq_tx:
2342 	if (priv->irq_tx != -1)
2343 		free_irq(priv->irq_tx, dev);
2344 
2345 out_freeirq_rx:
2346 	free_irq(priv->irq_rx, dev);
2347 
2348 out_freeirq:
2349 	return ret;
2350 }
2351 
2352 /* stop callback */
2353 static int bcm_enetsw_stop(struct net_device *dev)
2354 {
2355 	struct bcm_enet_priv *priv;
2356 	struct device *kdev;
2357 	int i;
2358 
2359 	priv = netdev_priv(dev);
2360 	kdev = &priv->pdev->dev;
2361 
2362 	del_timer_sync(&priv->swphy_poll);
2363 	netif_stop_queue(dev);
2364 	napi_disable(&priv->napi);
2365 	del_timer_sync(&priv->rx_timeout);
2366 
2367 	/* mask all interrupts */
2368 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2369 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2370 
2371 	/* disable dma & mac */
2372 	bcm_enet_disable_dma(priv, priv->tx_chan);
2373 	bcm_enet_disable_dma(priv, priv->rx_chan);
2374 
2375 	/* force reclaim of all tx buffers */
2376 	bcm_enet_tx_reclaim(dev, 1);
2377 
2378 	/* free the rx skb ring */
2379 	for (i = 0; i < priv->rx_ring_size; i++) {
2380 		struct bcm_enet_desc *desc;
2381 
2382 		if (!priv->rx_skb[i])
2383 			continue;
2384 
2385 		desc = &priv->rx_desc_cpu[i];
2386 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2387 				 DMA_FROM_DEVICE);
2388 		kfree_skb(priv->rx_skb[i]);
2389 	}
2390 
2391 	/* free remaining allocated memory */
2392 	kfree(priv->rx_skb);
2393 	kfree(priv->tx_skb);
2394 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2395 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2396 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2397 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2398 	if (priv->irq_tx != -1)
2399 		free_irq(priv->irq_tx, dev);
2400 	free_irq(priv->irq_rx, dev);
2401 
2402 	return 0;
2403 }
2404 
2405 /* try to sort out phy external status by walking the used_port field
2406  * in the bcm_enet_priv structure. in case the phy address is not
2407  * assigned to any physical port on the switch, assume it is external
2408  * (and yell at the user).
2409  */
2410 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2411 {
2412 	int i;
2413 
2414 	for (i = 0; i < priv->num_ports; ++i) {
2415 		if (!priv->used_ports[i].used)
2416 			continue;
2417 		if (priv->used_ports[i].phy_id == phy_id)
2418 			return bcm_enet_port_is_rgmii(i);
2419 	}
2420 
2421 	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2422 		    phy_id);
2423 	return 1;
2424 }
2425 
2426 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2427  * external/internal status of the given phy_id first.
2428  */
2429 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2430 				    int location)
2431 {
2432 	struct bcm_enet_priv *priv;
2433 
2434 	priv = netdev_priv(dev);
2435 	return bcmenet_sw_mdio_read(priv,
2436 				    bcm_enetsw_phy_is_external(priv, phy_id),
2437 				    phy_id, location);
2438 }
2439 
2440 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2441  * external/internal status of the given phy_id first.
2442  */
2443 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2444 				      int location,
2445 				      int val)
2446 {
2447 	struct bcm_enet_priv *priv;
2448 
2449 	priv = netdev_priv(dev);
2450 	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2451 			      phy_id, location, val);
2452 }
2453 
2454 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2455 {
2456 	struct mii_if_info mii;
2457 
2458 	mii.dev = dev;
2459 	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2460 	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2461 	mii.phy_id = 0;
2462 	mii.phy_id_mask = 0x3f;
2463 	mii.reg_num_mask = 0x1f;
2464 	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2465 
2466 }
2467 
2468 static const struct net_device_ops bcm_enetsw_ops = {
2469 	.ndo_open		= bcm_enetsw_open,
2470 	.ndo_stop		= bcm_enetsw_stop,
2471 	.ndo_start_xmit		= bcm_enet_start_xmit,
2472 	.ndo_change_mtu		= bcm_enet_change_mtu,
2473 	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2474 };
2475 
2476 
2477 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2478 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2479 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2480 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2481 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2482 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2483 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2484 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2485 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2486 
2487 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2488 	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2489 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2490 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2491 	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2492 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2493 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2494 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2495 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2496 	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2497 	  ETHSW_MIB_RX_1024_1522 },
2498 	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2499 	  ETHSW_MIB_RX_1523_2047 },
2500 	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2501 	  ETHSW_MIB_RX_2048_4095 },
2502 	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2503 	  ETHSW_MIB_RX_4096_8191 },
2504 	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2505 	  ETHSW_MIB_RX_8192_9728 },
2506 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2507 	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2508 	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2509 	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2510 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2511 
2512 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2513 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2514 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2515 	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2516 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2517 	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2518 
2519 };
2520 
2521 #define BCM_ENETSW_STATS_LEN	\
2522 	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2523 
2524 static void bcm_enetsw_get_strings(struct net_device *netdev,
2525 				   u32 stringset, u8 *data)
2526 {
2527 	int i;
2528 
2529 	switch (stringset) {
2530 	case ETH_SS_STATS:
2531 		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2532 			memcpy(data + i * ETH_GSTRING_LEN,
2533 			       bcm_enetsw_gstrings_stats[i].stat_string,
2534 			       ETH_GSTRING_LEN);
2535 		}
2536 		break;
2537 	}
2538 }
2539 
2540 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2541 				     int string_set)
2542 {
2543 	switch (string_set) {
2544 	case ETH_SS_STATS:
2545 		return BCM_ENETSW_STATS_LEN;
2546 	default:
2547 		return -EINVAL;
2548 	}
2549 }
2550 
2551 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2552 				   struct ethtool_drvinfo *drvinfo)
2553 {
2554 	strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2555 	strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2556 	strncpy(drvinfo->fw_version, "N/A", 32);
2557 	strncpy(drvinfo->bus_info, "bcm63xx", 32);
2558 }
2559 
2560 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2561 					 struct ethtool_stats *stats,
2562 					 u64 *data)
2563 {
2564 	struct bcm_enet_priv *priv;
2565 	int i;
2566 
2567 	priv = netdev_priv(netdev);
2568 
2569 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2570 		const struct bcm_enet_stats *s;
2571 		u32 lo, hi;
2572 		char *p;
2573 		int reg;
2574 
2575 		s = &bcm_enetsw_gstrings_stats[i];
2576 
2577 		reg = s->mib_reg;
2578 		if (reg == -1)
2579 			continue;
2580 
2581 		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2582 		p = (char *)priv + s->stat_offset;
2583 
2584 		if (s->sizeof_stat == sizeof(u64)) {
2585 			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2586 			*(u64 *)p = ((u64)hi << 32 | lo);
2587 		} else {
2588 			*(u32 *)p = lo;
2589 		}
2590 	}
2591 
2592 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2593 		const struct bcm_enet_stats *s;
2594 		char *p;
2595 
2596 		s = &bcm_enetsw_gstrings_stats[i];
2597 
2598 		if (s->mib_reg == -1)
2599 			p = (char *)&netdev->stats + s->stat_offset;
2600 		else
2601 			p = (char *)priv + s->stat_offset;
2602 
2603 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2604 			*(u64 *)p : *(u32 *)p;
2605 	}
2606 }
2607 
2608 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2609 				     struct ethtool_ringparam *ering)
2610 {
2611 	struct bcm_enet_priv *priv;
2612 
2613 	priv = netdev_priv(dev);
2614 
2615 	/* rx/tx ring is actually only limited by memory */
2616 	ering->rx_max_pending = 8192;
2617 	ering->tx_max_pending = 8192;
2618 	ering->rx_mini_max_pending = 0;
2619 	ering->rx_jumbo_max_pending = 0;
2620 	ering->rx_pending = priv->rx_ring_size;
2621 	ering->tx_pending = priv->tx_ring_size;
2622 }
2623 
2624 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2625 				    struct ethtool_ringparam *ering)
2626 {
2627 	struct bcm_enet_priv *priv;
2628 	int was_running;
2629 
2630 	priv = netdev_priv(dev);
2631 
2632 	was_running = 0;
2633 	if (netif_running(dev)) {
2634 		bcm_enetsw_stop(dev);
2635 		was_running = 1;
2636 	}
2637 
2638 	priv->rx_ring_size = ering->rx_pending;
2639 	priv->tx_ring_size = ering->tx_pending;
2640 
2641 	if (was_running) {
2642 		int err;
2643 
2644 		err = bcm_enetsw_open(dev);
2645 		if (err)
2646 			dev_close(dev);
2647 	}
2648 	return 0;
2649 }
2650 
2651 static const struct ethtool_ops bcm_enetsw_ethtool_ops = {
2652 	.get_strings		= bcm_enetsw_get_strings,
2653 	.get_sset_count		= bcm_enetsw_get_sset_count,
2654 	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2655 	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2656 	.get_ringparam		= bcm_enetsw_get_ringparam,
2657 	.set_ringparam		= bcm_enetsw_set_ringparam,
2658 };
2659 
2660 /* allocate netdevice, request register memory and register device. */
2661 static int bcm_enetsw_probe(struct platform_device *pdev)
2662 {
2663 	struct bcm_enet_priv *priv;
2664 	struct net_device *dev;
2665 	struct bcm63xx_enetsw_platform_data *pd;
2666 	struct resource *res_mem;
2667 	int ret, irq_rx, irq_tx;
2668 
2669 	if (!bcm_enet_shared_base[0])
2670 		return -EPROBE_DEFER;
2671 
2672 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2673 	irq_rx = platform_get_irq(pdev, 0);
2674 	irq_tx = platform_get_irq(pdev, 1);
2675 	if (!res_mem || irq_rx < 0)
2676 		return -ENODEV;
2677 
2678 	ret = 0;
2679 	dev = alloc_etherdev(sizeof(*priv));
2680 	if (!dev)
2681 		return -ENOMEM;
2682 	priv = netdev_priv(dev);
2683 	memset(priv, 0, sizeof(*priv));
2684 
2685 	/* initialize default and fetch platform data */
2686 	priv->enet_is_sw = true;
2687 	priv->irq_rx = irq_rx;
2688 	priv->irq_tx = irq_tx;
2689 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2690 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2691 	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2692 
2693 	pd = dev_get_platdata(&pdev->dev);
2694 	if (pd) {
2695 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2696 		memcpy(priv->used_ports, pd->used_ports,
2697 		       sizeof(pd->used_ports));
2698 		priv->num_ports = pd->num_ports;
2699 		priv->dma_has_sram = pd->dma_has_sram;
2700 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2701 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2702 		priv->dma_chan_width = pd->dma_chan_width;
2703 	}
2704 
2705 	ret = bcm_enet_change_mtu(dev, dev->mtu);
2706 	if (ret)
2707 		goto out;
2708 
2709 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
2710 	if (IS_ERR(priv->base)) {
2711 		ret = PTR_ERR(priv->base);
2712 		goto out;
2713 	}
2714 
2715 	priv->mac_clk = devm_clk_get(&pdev->dev, "enetsw");
2716 	if (IS_ERR(priv->mac_clk)) {
2717 		ret = PTR_ERR(priv->mac_clk);
2718 		goto out;
2719 	}
2720 	ret = clk_prepare_enable(priv->mac_clk);
2721 	if (ret)
2722 		goto out;
2723 
2724 	priv->rx_chan = 0;
2725 	priv->tx_chan = 1;
2726 	spin_lock_init(&priv->rx_lock);
2727 
2728 	/* init rx timeout (used for oom) */
2729 	timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
2730 
2731 	/* register netdevice */
2732 	dev->netdev_ops = &bcm_enetsw_ops;
2733 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2734 	dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2735 	SET_NETDEV_DEV(dev, &pdev->dev);
2736 
2737 	spin_lock_init(&priv->enetsw_mdio_lock);
2738 
2739 	ret = register_netdev(dev);
2740 	if (ret)
2741 		goto out_disable_clk;
2742 
2743 	netif_carrier_off(dev);
2744 	platform_set_drvdata(pdev, dev);
2745 	priv->pdev = pdev;
2746 	priv->net_dev = dev;
2747 
2748 	return 0;
2749 
2750 out_disable_clk:
2751 	clk_disable_unprepare(priv->mac_clk);
2752 out:
2753 	free_netdev(dev);
2754 	return ret;
2755 }
2756 
2757 
2758 /* exit func, stops hardware and unregisters netdevice */
2759 static int bcm_enetsw_remove(struct platform_device *pdev)
2760 {
2761 	struct bcm_enet_priv *priv;
2762 	struct net_device *dev;
2763 
2764 	/* stop netdevice */
2765 	dev = platform_get_drvdata(pdev);
2766 	priv = netdev_priv(dev);
2767 	unregister_netdev(dev);
2768 
2769 	clk_disable_unprepare(priv->mac_clk);
2770 
2771 	free_netdev(dev);
2772 	return 0;
2773 }
2774 
2775 struct platform_driver bcm63xx_enetsw_driver = {
2776 	.probe	= bcm_enetsw_probe,
2777 	.remove	= bcm_enetsw_remove,
2778 	.driver	= {
2779 		.name	= "bcm63xx_enetsw",
2780 		.owner  = THIS_MODULE,
2781 	},
2782 };
2783 
2784 /* reserve & remap memory space shared between all macs */
2785 static int bcm_enet_shared_probe(struct platform_device *pdev)
2786 {
2787 	struct resource *res;
2788 	void __iomem *p[3];
2789 	unsigned int i;
2790 
2791 	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2792 
2793 	for (i = 0; i < 3; i++) {
2794 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2795 		p[i] = devm_ioremap_resource(&pdev->dev, res);
2796 		if (IS_ERR(p[i]))
2797 			return PTR_ERR(p[i]);
2798 	}
2799 
2800 	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2801 
2802 	return 0;
2803 }
2804 
2805 static int bcm_enet_shared_remove(struct platform_device *pdev)
2806 {
2807 	return 0;
2808 }
2809 
2810 /* this "shared" driver is needed because both macs share a single
2811  * address space
2812  */
2813 struct platform_driver bcm63xx_enet_shared_driver = {
2814 	.probe	= bcm_enet_shared_probe,
2815 	.remove	= bcm_enet_shared_remove,
2816 	.driver	= {
2817 		.name	= "bcm63xx_enet_shared",
2818 		.owner  = THIS_MODULE,
2819 	},
2820 };
2821 
2822 static struct platform_driver * const drivers[] = {
2823 	&bcm63xx_enet_shared_driver,
2824 	&bcm63xx_enet_driver,
2825 	&bcm63xx_enetsw_driver,
2826 };
2827 
2828 /* entry point */
2829 static int __init bcm_enet_init(void)
2830 {
2831 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2832 }
2833 
2834 static void __exit bcm_enet_exit(void)
2835 {
2836 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2837 }
2838 
2839 
2840 module_init(bcm_enet_init);
2841 module_exit(bcm_enet_exit);
2842 
2843 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2844 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2845 MODULE_LICENSE("GPL");
2846