1 /*
2  * Driver for BCM963xx builtin Ethernet mac
3  *
4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33 
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36 
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39 
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43 
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46 
47 /*
48  * io helpers to access mac registers
49  */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 	return bcm_readl(priv->base + off);
53 }
54 
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 			       u32 val, u32 off)
57 {
58 	bcm_writel(val, priv->base + off);
59 }
60 
61 /*
62  * io helpers to access switch registers
63  */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 	return bcm_readl(priv->base + off);
67 }
68 
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 				 u32 val, u32 off)
71 {
72 	bcm_writel(val, priv->base + off);
73 }
74 
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 	return bcm_readw(priv->base + off);
78 }
79 
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 				 u16 val, u32 off)
82 {
83 	bcm_writew(val, priv->base + off);
84 }
85 
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 	return bcm_readb(priv->base + off);
89 }
90 
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 				 u8 val, u32 off)
93 {
94 	bcm_writeb(val, priv->base + off);
95 }
96 
97 
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 	return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103 
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 				       u32 val, u32 off)
106 {
107 	bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109 
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 	return bcm_readl(bcm_enet_shared_base[1] +
113 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115 
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 				       u32 val, u32 off, int chan)
118 {
119 	bcm_writel(val, bcm_enet_shared_base[1] +
120 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122 
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127 
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 				       u32 val, u32 off, int chan)
130 {
131 	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133 
134 /*
135  * write given data into mii register and wait for transfer to end
136  * with timeout (average measured transfer time is 25us)
137  */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 	int limit;
141 
142 	/* make sure mii interrupt status is cleared */
143 	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144 
145 	enet_writel(priv, data, ENET_MIIDATA_REG);
146 	wmb();
147 
148 	/* busy wait on mii interrupt bit, with timeout */
149 	limit = 1000;
150 	do {
151 		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 			break;
153 		udelay(1);
154 	} while (limit-- > 0);
155 
156 	return (limit < 0) ? 1 : 0;
157 }
158 
159 /*
160  * MII internal read callback
161  */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 			      int regnum)
164 {
165 	u32 tmp, val;
166 
167 	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 	tmp |= ENET_MIIDATA_OP_READ_MASK;
171 
172 	if (do_mdio_op(priv, tmp))
173 		return -1;
174 
175 	val = enet_readl(priv, ENET_MIIDATA_REG);
176 	val &= 0xffff;
177 	return val;
178 }
179 
180 /*
181  * MII internal write callback
182  */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 			       int regnum, u16 value)
185 {
186 	u32 tmp;
187 
188 	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193 
194 	(void)do_mdio_op(priv, tmp);
195 	return 0;
196 }
197 
198 /*
199  * MII read callback from phylib
200  */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 				     int regnum)
203 {
204 	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206 
207 /*
208  * MII write callback from phylib
209  */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 				      int regnum, u16 value)
212 {
213 	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215 
216 /*
217  * MII read callback from mii core
218  */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 				  int regnum)
221 {
222 	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224 
225 /*
226  * MII write callback from mii core
227  */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 				    int regnum, int value)
230 {
231 	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233 
234 /*
235  * refill rx queue
236  */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 	struct bcm_enet_priv *priv;
240 
241 	priv = netdev_priv(dev);
242 
243 	while (priv->rx_desc_count < priv->rx_ring_size) {
244 		struct bcm_enet_desc *desc;
245 		struct sk_buff *skb;
246 		dma_addr_t p;
247 		int desc_idx;
248 		u32 len_stat;
249 
250 		desc_idx = priv->rx_dirty_desc;
251 		desc = &priv->rx_desc_cpu[desc_idx];
252 
253 		if (!priv->rx_skb[desc_idx]) {
254 			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 			if (!skb)
256 				break;
257 			priv->rx_skb[desc_idx] = skb;
258 			p = dma_map_single(&priv->pdev->dev, skb->data,
259 					   priv->rx_skb_size,
260 					   DMA_FROM_DEVICE);
261 			desc->address = p;
262 		}
263 
264 		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 		len_stat |= DMADESC_OWNER_MASK;
266 		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 			priv->rx_dirty_desc = 0;
269 		} else {
270 			priv->rx_dirty_desc++;
271 		}
272 		wmb();
273 		desc->len_stat = len_stat;
274 
275 		priv->rx_desc_count++;
276 
277 		/* tell dma engine we allocated one buffer */
278 		if (priv->dma_has_sram)
279 			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 		else
281 			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 	}
283 
284 	/* If rx ring is still empty, set a timer to try allocating
285 	 * again at a later time. */
286 	if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 		priv->rx_timeout.expires = jiffies + HZ;
289 		add_timer(&priv->rx_timeout);
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * timer callback to defer refill rx queue in case we're OOM
297  */
298 static void bcm_enet_refill_rx_timer(struct timer_list *t)
299 {
300 	struct bcm_enet_priv *priv = from_timer(priv, t, rx_timeout);
301 	struct net_device *dev = priv->net_dev;
302 
303 	spin_lock(&priv->rx_lock);
304 	bcm_enet_refill_rx(dev);
305 	spin_unlock(&priv->rx_lock);
306 }
307 
308 /*
309  * extract packet from rx queue
310  */
311 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
312 {
313 	struct bcm_enet_priv *priv;
314 	struct device *kdev;
315 	int processed;
316 
317 	priv = netdev_priv(dev);
318 	kdev = &priv->pdev->dev;
319 	processed = 0;
320 
321 	/* don't scan ring further than number of refilled
322 	 * descriptor */
323 	if (budget > priv->rx_desc_count)
324 		budget = priv->rx_desc_count;
325 
326 	do {
327 		struct bcm_enet_desc *desc;
328 		struct sk_buff *skb;
329 		int desc_idx;
330 		u32 len_stat;
331 		unsigned int len;
332 
333 		desc_idx = priv->rx_curr_desc;
334 		desc = &priv->rx_desc_cpu[desc_idx];
335 
336 		/* make sure we actually read the descriptor status at
337 		 * each loop */
338 		rmb();
339 
340 		len_stat = desc->len_stat;
341 
342 		/* break if dma ownership belongs to hw */
343 		if (len_stat & DMADESC_OWNER_MASK)
344 			break;
345 
346 		processed++;
347 		priv->rx_curr_desc++;
348 		if (priv->rx_curr_desc == priv->rx_ring_size)
349 			priv->rx_curr_desc = 0;
350 		priv->rx_desc_count--;
351 
352 		/* if the packet does not have start of packet _and_
353 		 * end of packet flag set, then just recycle it */
354 		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
355 			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
356 			dev->stats.rx_dropped++;
357 			continue;
358 		}
359 
360 		/* recycle packet if it's marked as bad */
361 		if (!priv->enet_is_sw &&
362 		    unlikely(len_stat & DMADESC_ERR_MASK)) {
363 			dev->stats.rx_errors++;
364 
365 			if (len_stat & DMADESC_OVSIZE_MASK)
366 				dev->stats.rx_length_errors++;
367 			if (len_stat & DMADESC_CRC_MASK)
368 				dev->stats.rx_crc_errors++;
369 			if (len_stat & DMADESC_UNDER_MASK)
370 				dev->stats.rx_frame_errors++;
371 			if (len_stat & DMADESC_OV_MASK)
372 				dev->stats.rx_fifo_errors++;
373 			continue;
374 		}
375 
376 		/* valid packet */
377 		skb = priv->rx_skb[desc_idx];
378 		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
379 		/* don't include FCS */
380 		len -= 4;
381 
382 		if (len < copybreak) {
383 			struct sk_buff *nskb;
384 
385 			nskb = napi_alloc_skb(&priv->napi, len);
386 			if (!nskb) {
387 				/* forget packet, just rearm desc */
388 				dev->stats.rx_dropped++;
389 				continue;
390 			}
391 
392 			dma_sync_single_for_cpu(kdev, desc->address,
393 						len, DMA_FROM_DEVICE);
394 			memcpy(nskb->data, skb->data, len);
395 			dma_sync_single_for_device(kdev, desc->address,
396 						   len, DMA_FROM_DEVICE);
397 			skb = nskb;
398 		} else {
399 			dma_unmap_single(&priv->pdev->dev, desc->address,
400 					 priv->rx_skb_size, DMA_FROM_DEVICE);
401 			priv->rx_skb[desc_idx] = NULL;
402 		}
403 
404 		skb_put(skb, len);
405 		skb->protocol = eth_type_trans(skb, dev);
406 		dev->stats.rx_packets++;
407 		dev->stats.rx_bytes += len;
408 		netif_receive_skb(skb);
409 
410 	} while (--budget > 0);
411 
412 	if (processed || !priv->rx_desc_count) {
413 		bcm_enet_refill_rx(dev);
414 
415 		/* kick rx dma */
416 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
417 					 ENETDMAC_CHANCFG, priv->rx_chan);
418 	}
419 
420 	return processed;
421 }
422 
423 
424 /*
425  * try to or force reclaim of transmitted buffers
426  */
427 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
428 {
429 	struct bcm_enet_priv *priv;
430 	int released;
431 
432 	priv = netdev_priv(dev);
433 	released = 0;
434 
435 	while (priv->tx_desc_count < priv->tx_ring_size) {
436 		struct bcm_enet_desc *desc;
437 		struct sk_buff *skb;
438 
439 		/* We run in a bh and fight against start_xmit, which
440 		 * is called with bh disabled  */
441 		spin_lock(&priv->tx_lock);
442 
443 		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
444 
445 		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
446 			spin_unlock(&priv->tx_lock);
447 			break;
448 		}
449 
450 		/* ensure other field of the descriptor were not read
451 		 * before we checked ownership */
452 		rmb();
453 
454 		skb = priv->tx_skb[priv->tx_dirty_desc];
455 		priv->tx_skb[priv->tx_dirty_desc] = NULL;
456 		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
457 				 DMA_TO_DEVICE);
458 
459 		priv->tx_dirty_desc++;
460 		if (priv->tx_dirty_desc == priv->tx_ring_size)
461 			priv->tx_dirty_desc = 0;
462 		priv->tx_desc_count++;
463 
464 		spin_unlock(&priv->tx_lock);
465 
466 		if (desc->len_stat & DMADESC_UNDER_MASK)
467 			dev->stats.tx_errors++;
468 
469 		dev_kfree_skb(skb);
470 		released++;
471 	}
472 
473 	if (netif_queue_stopped(dev) && released)
474 		netif_wake_queue(dev);
475 
476 	return released;
477 }
478 
479 /*
480  * poll func, called by network core
481  */
482 static int bcm_enet_poll(struct napi_struct *napi, int budget)
483 {
484 	struct bcm_enet_priv *priv;
485 	struct net_device *dev;
486 	int rx_work_done;
487 
488 	priv = container_of(napi, struct bcm_enet_priv, napi);
489 	dev = priv->net_dev;
490 
491 	/* ack interrupts */
492 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
493 			 ENETDMAC_IR, priv->rx_chan);
494 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
495 			 ENETDMAC_IR, priv->tx_chan);
496 
497 	/* reclaim sent skb */
498 	bcm_enet_tx_reclaim(dev, 0);
499 
500 	spin_lock(&priv->rx_lock);
501 	rx_work_done = bcm_enet_receive_queue(dev, budget);
502 	spin_unlock(&priv->rx_lock);
503 
504 	if (rx_work_done >= budget) {
505 		/* rx queue is not yet empty/clean */
506 		return rx_work_done;
507 	}
508 
509 	/* no more packet in rx/tx queue, remove device from poll
510 	 * queue */
511 	napi_complete_done(napi, rx_work_done);
512 
513 	/* restore rx/tx interrupt */
514 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
515 			 ENETDMAC_IRMASK, priv->rx_chan);
516 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
517 			 ENETDMAC_IRMASK, priv->tx_chan);
518 
519 	return rx_work_done;
520 }
521 
522 /*
523  * mac interrupt handler
524  */
525 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
526 {
527 	struct net_device *dev;
528 	struct bcm_enet_priv *priv;
529 	u32 stat;
530 
531 	dev = dev_id;
532 	priv = netdev_priv(dev);
533 
534 	stat = enet_readl(priv, ENET_IR_REG);
535 	if (!(stat & ENET_IR_MIB))
536 		return IRQ_NONE;
537 
538 	/* clear & mask interrupt */
539 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
540 	enet_writel(priv, 0, ENET_IRMASK_REG);
541 
542 	/* read mib registers in workqueue */
543 	schedule_work(&priv->mib_update_task);
544 
545 	return IRQ_HANDLED;
546 }
547 
548 /*
549  * rx/tx dma interrupt handler
550  */
551 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
552 {
553 	struct net_device *dev;
554 	struct bcm_enet_priv *priv;
555 
556 	dev = dev_id;
557 	priv = netdev_priv(dev);
558 
559 	/* mask rx/tx interrupts */
560 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
561 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
562 
563 	napi_schedule(&priv->napi);
564 
565 	return IRQ_HANDLED;
566 }
567 
568 /*
569  * tx request callback
570  */
571 static netdev_tx_t
572 bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
573 {
574 	struct bcm_enet_priv *priv;
575 	struct bcm_enet_desc *desc;
576 	u32 len_stat;
577 	netdev_tx_t ret;
578 
579 	priv = netdev_priv(dev);
580 
581 	/* lock against tx reclaim */
582 	spin_lock(&priv->tx_lock);
583 
584 	/* make sure  the tx hw queue  is not full,  should not happen
585 	 * since we stop queue before it's the case */
586 	if (unlikely(!priv->tx_desc_count)) {
587 		netif_stop_queue(dev);
588 		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
589 			"available?\n");
590 		ret = NETDEV_TX_BUSY;
591 		goto out_unlock;
592 	}
593 
594 	/* pad small packets sent on a switch device */
595 	if (priv->enet_is_sw && skb->len < 64) {
596 		int needed = 64 - skb->len;
597 		char *data;
598 
599 		if (unlikely(skb_tailroom(skb) < needed)) {
600 			struct sk_buff *nskb;
601 
602 			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
603 			if (!nskb) {
604 				ret = NETDEV_TX_BUSY;
605 				goto out_unlock;
606 			}
607 			dev_kfree_skb(skb);
608 			skb = nskb;
609 		}
610 		data = skb_put_zero(skb, needed);
611 	}
612 
613 	/* point to the next available desc */
614 	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
615 	priv->tx_skb[priv->tx_curr_desc] = skb;
616 
617 	/* fill descriptor */
618 	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
619 				       DMA_TO_DEVICE);
620 
621 	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
622 	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
623 		DMADESC_APPEND_CRC |
624 		DMADESC_OWNER_MASK;
625 
626 	priv->tx_curr_desc++;
627 	if (priv->tx_curr_desc == priv->tx_ring_size) {
628 		priv->tx_curr_desc = 0;
629 		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
630 	}
631 	priv->tx_desc_count--;
632 
633 	/* dma might be already polling, make sure we update desc
634 	 * fields in correct order */
635 	wmb();
636 	desc->len_stat = len_stat;
637 	wmb();
638 
639 	/* kick tx dma */
640 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
641 				 ENETDMAC_CHANCFG, priv->tx_chan);
642 
643 	/* stop queue if no more desc available */
644 	if (!priv->tx_desc_count)
645 		netif_stop_queue(dev);
646 
647 	dev->stats.tx_bytes += skb->len;
648 	dev->stats.tx_packets++;
649 	ret = NETDEV_TX_OK;
650 
651 out_unlock:
652 	spin_unlock(&priv->tx_lock);
653 	return ret;
654 }
655 
656 /*
657  * Change the interface's mac address.
658  */
659 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
660 {
661 	struct bcm_enet_priv *priv;
662 	struct sockaddr *addr = p;
663 	u32 val;
664 
665 	priv = netdev_priv(dev);
666 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
667 
668 	/* use perfect match register 0 to store my mac address */
669 	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
670 		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
671 	enet_writel(priv, val, ENET_PML_REG(0));
672 
673 	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
674 	val |= ENET_PMH_DATAVALID_MASK;
675 	enet_writel(priv, val, ENET_PMH_REG(0));
676 
677 	return 0;
678 }
679 
680 /*
681  * Change rx mode (promiscuous/allmulti) and update multicast list
682  */
683 static void bcm_enet_set_multicast_list(struct net_device *dev)
684 {
685 	struct bcm_enet_priv *priv;
686 	struct netdev_hw_addr *ha;
687 	u32 val;
688 	int i;
689 
690 	priv = netdev_priv(dev);
691 
692 	val = enet_readl(priv, ENET_RXCFG_REG);
693 
694 	if (dev->flags & IFF_PROMISC)
695 		val |= ENET_RXCFG_PROMISC_MASK;
696 	else
697 		val &= ~ENET_RXCFG_PROMISC_MASK;
698 
699 	/* only 3 perfect match registers left, first one is used for
700 	 * own mac address */
701 	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
702 		val |= ENET_RXCFG_ALLMCAST_MASK;
703 	else
704 		val &= ~ENET_RXCFG_ALLMCAST_MASK;
705 
706 	/* no need to set perfect match registers if we catch all
707 	 * multicast */
708 	if (val & ENET_RXCFG_ALLMCAST_MASK) {
709 		enet_writel(priv, val, ENET_RXCFG_REG);
710 		return;
711 	}
712 
713 	i = 0;
714 	netdev_for_each_mc_addr(ha, dev) {
715 		u8 *dmi_addr;
716 		u32 tmp;
717 
718 		if (i == 3)
719 			break;
720 		/* update perfect match registers */
721 		dmi_addr = ha->addr;
722 		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
723 			(dmi_addr[4] << 8) | dmi_addr[5];
724 		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
725 
726 		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
727 		tmp |= ENET_PMH_DATAVALID_MASK;
728 		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
729 	}
730 
731 	for (; i < 3; i++) {
732 		enet_writel(priv, 0, ENET_PML_REG(i + 1));
733 		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
734 	}
735 
736 	enet_writel(priv, val, ENET_RXCFG_REG);
737 }
738 
739 /*
740  * set mac duplex parameters
741  */
742 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
743 {
744 	u32 val;
745 
746 	val = enet_readl(priv, ENET_TXCTL_REG);
747 	if (fullduplex)
748 		val |= ENET_TXCTL_FD_MASK;
749 	else
750 		val &= ~ENET_TXCTL_FD_MASK;
751 	enet_writel(priv, val, ENET_TXCTL_REG);
752 }
753 
754 /*
755  * set mac flow control parameters
756  */
757 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
758 {
759 	u32 val;
760 
761 	/* rx flow control (pause frame handling) */
762 	val = enet_readl(priv, ENET_RXCFG_REG);
763 	if (rx_en)
764 		val |= ENET_RXCFG_ENFLOW_MASK;
765 	else
766 		val &= ~ENET_RXCFG_ENFLOW_MASK;
767 	enet_writel(priv, val, ENET_RXCFG_REG);
768 
769 	if (!priv->dma_has_sram)
770 		return;
771 
772 	/* tx flow control (pause frame generation) */
773 	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
774 	if (tx_en)
775 		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
776 	else
777 		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
778 	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
779 }
780 
781 /*
782  * link changed callback (from phylib)
783  */
784 static void bcm_enet_adjust_phy_link(struct net_device *dev)
785 {
786 	struct bcm_enet_priv *priv;
787 	struct phy_device *phydev;
788 	int status_changed;
789 
790 	priv = netdev_priv(dev);
791 	phydev = dev->phydev;
792 	status_changed = 0;
793 
794 	if (priv->old_link != phydev->link) {
795 		status_changed = 1;
796 		priv->old_link = phydev->link;
797 	}
798 
799 	/* reflect duplex change in mac configuration */
800 	if (phydev->link && phydev->duplex != priv->old_duplex) {
801 		bcm_enet_set_duplex(priv,
802 				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
803 		status_changed = 1;
804 		priv->old_duplex = phydev->duplex;
805 	}
806 
807 	/* enable flow control if remote advertise it (trust phylib to
808 	 * check that duplex is full */
809 	if (phydev->link && phydev->pause != priv->old_pause) {
810 		int rx_pause_en, tx_pause_en;
811 
812 		if (phydev->pause) {
813 			/* pause was advertised by lpa and us */
814 			rx_pause_en = 1;
815 			tx_pause_en = 1;
816 		} else if (!priv->pause_auto) {
817 			/* pause setting overridden by user */
818 			rx_pause_en = priv->pause_rx;
819 			tx_pause_en = priv->pause_tx;
820 		} else {
821 			rx_pause_en = 0;
822 			tx_pause_en = 0;
823 		}
824 
825 		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
826 		status_changed = 1;
827 		priv->old_pause = phydev->pause;
828 	}
829 
830 	if (status_changed) {
831 		pr_info("%s: link %s", dev->name, phydev->link ?
832 			"UP" : "DOWN");
833 		if (phydev->link)
834 			pr_cont(" - %d/%s - flow control %s", phydev->speed,
835 			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
836 			       phydev->pause == 1 ? "rx&tx" : "off");
837 
838 		pr_cont("\n");
839 	}
840 }
841 
842 /*
843  * link changed callback (if phylib is not used)
844  */
845 static void bcm_enet_adjust_link(struct net_device *dev)
846 {
847 	struct bcm_enet_priv *priv;
848 
849 	priv = netdev_priv(dev);
850 	bcm_enet_set_duplex(priv, priv->force_duplex_full);
851 	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
852 	netif_carrier_on(dev);
853 
854 	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
855 		dev->name,
856 		priv->force_speed_100 ? 100 : 10,
857 		priv->force_duplex_full ? "full" : "half",
858 		priv->pause_rx ? "rx" : "off",
859 		priv->pause_tx ? "tx" : "off");
860 }
861 
862 /*
863  * open callback, allocate dma rings & buffers and start rx operation
864  */
865 static int bcm_enet_open(struct net_device *dev)
866 {
867 	struct bcm_enet_priv *priv;
868 	struct sockaddr addr;
869 	struct device *kdev;
870 	struct phy_device *phydev;
871 	int i, ret;
872 	unsigned int size;
873 	char phy_id[MII_BUS_ID_SIZE + 3];
874 	void *p;
875 	u32 val;
876 
877 	priv = netdev_priv(dev);
878 	kdev = &priv->pdev->dev;
879 
880 	if (priv->has_phy) {
881 		/* connect to PHY */
882 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
883 			 priv->mii_bus->id, priv->phy_id);
884 
885 		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
886 				     PHY_INTERFACE_MODE_MII);
887 
888 		if (IS_ERR(phydev)) {
889 			dev_err(kdev, "could not attach to PHY\n");
890 			return PTR_ERR(phydev);
891 		}
892 
893 		/* mask with MAC supported features */
894 		phy_support_sym_pause(phydev);
895 		phy_set_max_speed(phydev, SPEED_100);
896 		phy_set_sym_pause(phydev, priv->pause_rx, priv->pause_rx,
897 				  priv->pause_auto);
898 
899 		phy_attached_info(phydev);
900 
901 		priv->old_link = 0;
902 		priv->old_duplex = -1;
903 		priv->old_pause = -1;
904 	} else {
905 		phydev = NULL;
906 	}
907 
908 	/* mask all interrupts and request them */
909 	enet_writel(priv, 0, ENET_IRMASK_REG);
910 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
911 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
912 
913 	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
914 	if (ret)
915 		goto out_phy_disconnect;
916 
917 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
918 			  dev->name, dev);
919 	if (ret)
920 		goto out_freeirq;
921 
922 	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
923 			  0, dev->name, dev);
924 	if (ret)
925 		goto out_freeirq_rx;
926 
927 	/* initialize perfect match registers */
928 	for (i = 0; i < 4; i++) {
929 		enet_writel(priv, 0, ENET_PML_REG(i));
930 		enet_writel(priv, 0, ENET_PMH_REG(i));
931 	}
932 
933 	/* write device mac address */
934 	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
935 	bcm_enet_set_mac_address(dev, &addr);
936 
937 	/* allocate rx dma ring */
938 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
939 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
940 	if (!p) {
941 		ret = -ENOMEM;
942 		goto out_freeirq_tx;
943 	}
944 
945 	priv->rx_desc_alloc_size = size;
946 	priv->rx_desc_cpu = p;
947 
948 	/* allocate tx dma ring */
949 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
950 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
951 	if (!p) {
952 		ret = -ENOMEM;
953 		goto out_free_rx_ring;
954 	}
955 
956 	priv->tx_desc_alloc_size = size;
957 	priv->tx_desc_cpu = p;
958 
959 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
960 			       GFP_KERNEL);
961 	if (!priv->tx_skb) {
962 		ret = -ENOMEM;
963 		goto out_free_tx_ring;
964 	}
965 
966 	priv->tx_desc_count = priv->tx_ring_size;
967 	priv->tx_dirty_desc = 0;
968 	priv->tx_curr_desc = 0;
969 	spin_lock_init(&priv->tx_lock);
970 
971 	/* init & fill rx ring with skbs */
972 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
973 			       GFP_KERNEL);
974 	if (!priv->rx_skb) {
975 		ret = -ENOMEM;
976 		goto out_free_tx_skb;
977 	}
978 
979 	priv->rx_desc_count = 0;
980 	priv->rx_dirty_desc = 0;
981 	priv->rx_curr_desc = 0;
982 
983 	/* initialize flow control buffer allocation */
984 	if (priv->dma_has_sram)
985 		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
986 				ENETDMA_BUFALLOC_REG(priv->rx_chan));
987 	else
988 		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
989 				ENETDMAC_BUFALLOC, priv->rx_chan);
990 
991 	if (bcm_enet_refill_rx(dev)) {
992 		dev_err(kdev, "cannot allocate rx skb queue\n");
993 		ret = -ENOMEM;
994 		goto out;
995 	}
996 
997 	/* write rx & tx ring addresses */
998 	if (priv->dma_has_sram) {
999 		enet_dmas_writel(priv, priv->rx_desc_dma,
1000 				 ENETDMAS_RSTART_REG, priv->rx_chan);
1001 		enet_dmas_writel(priv, priv->tx_desc_dma,
1002 			 ENETDMAS_RSTART_REG, priv->tx_chan);
1003 	} else {
1004 		enet_dmac_writel(priv, priv->rx_desc_dma,
1005 				ENETDMAC_RSTART, priv->rx_chan);
1006 		enet_dmac_writel(priv, priv->tx_desc_dma,
1007 				ENETDMAC_RSTART, priv->tx_chan);
1008 	}
1009 
1010 	/* clear remaining state ram for rx & tx channel */
1011 	if (priv->dma_has_sram) {
1012 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1013 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1014 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1015 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1016 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1017 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1018 	} else {
1019 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1020 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1021 	}
1022 
1023 	/* set max rx/tx length */
1024 	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1025 	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1026 
1027 	/* set dma maximum burst len */
1028 	enet_dmac_writel(priv, priv->dma_maxburst,
1029 			 ENETDMAC_MAXBURST, priv->rx_chan);
1030 	enet_dmac_writel(priv, priv->dma_maxburst,
1031 			 ENETDMAC_MAXBURST, priv->tx_chan);
1032 
1033 	/* set correct transmit fifo watermark */
1034 	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1035 
1036 	/* set flow control low/high threshold to 1/3 / 2/3 */
1037 	if (priv->dma_has_sram) {
1038 		val = priv->rx_ring_size / 3;
1039 		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1040 		val = (priv->rx_ring_size * 2) / 3;
1041 		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1042 	} else {
1043 		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1044 		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1045 		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1046 	}
1047 
1048 	/* all set, enable mac and interrupts, start dma engine and
1049 	 * kick rx dma channel */
1050 	wmb();
1051 	val = enet_readl(priv, ENET_CTL_REG);
1052 	val |= ENET_CTL_ENABLE_MASK;
1053 	enet_writel(priv, val, ENET_CTL_REG);
1054 	if (priv->dma_has_sram)
1055 		enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1056 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1057 			 ENETDMAC_CHANCFG, priv->rx_chan);
1058 
1059 	/* watch "mib counters about to overflow" interrupt */
1060 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1061 	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1062 
1063 	/* watch "packet transferred" interrupt in rx and tx */
1064 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1065 			 ENETDMAC_IR, priv->rx_chan);
1066 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1067 			 ENETDMAC_IR, priv->tx_chan);
1068 
1069 	/* make sure we enable napi before rx interrupt  */
1070 	napi_enable(&priv->napi);
1071 
1072 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1073 			 ENETDMAC_IRMASK, priv->rx_chan);
1074 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1075 			 ENETDMAC_IRMASK, priv->tx_chan);
1076 
1077 	if (phydev)
1078 		phy_start(phydev);
1079 	else
1080 		bcm_enet_adjust_link(dev);
1081 
1082 	netif_start_queue(dev);
1083 	return 0;
1084 
1085 out:
1086 	for (i = 0; i < priv->rx_ring_size; i++) {
1087 		struct bcm_enet_desc *desc;
1088 
1089 		if (!priv->rx_skb[i])
1090 			continue;
1091 
1092 		desc = &priv->rx_desc_cpu[i];
1093 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1094 				 DMA_FROM_DEVICE);
1095 		kfree_skb(priv->rx_skb[i]);
1096 	}
1097 	kfree(priv->rx_skb);
1098 
1099 out_free_tx_skb:
1100 	kfree(priv->tx_skb);
1101 
1102 out_free_tx_ring:
1103 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1104 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1105 
1106 out_free_rx_ring:
1107 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1108 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1109 
1110 out_freeirq_tx:
1111 	free_irq(priv->irq_tx, dev);
1112 
1113 out_freeirq_rx:
1114 	free_irq(priv->irq_rx, dev);
1115 
1116 out_freeirq:
1117 	free_irq(dev->irq, dev);
1118 
1119 out_phy_disconnect:
1120 	if (phydev)
1121 		phy_disconnect(phydev);
1122 
1123 	return ret;
1124 }
1125 
1126 /*
1127  * disable mac
1128  */
1129 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1130 {
1131 	int limit;
1132 	u32 val;
1133 
1134 	val = enet_readl(priv, ENET_CTL_REG);
1135 	val |= ENET_CTL_DISABLE_MASK;
1136 	enet_writel(priv, val, ENET_CTL_REG);
1137 
1138 	limit = 1000;
1139 	do {
1140 		u32 val;
1141 
1142 		val = enet_readl(priv, ENET_CTL_REG);
1143 		if (!(val & ENET_CTL_DISABLE_MASK))
1144 			break;
1145 		udelay(1);
1146 	} while (limit--);
1147 }
1148 
1149 /*
1150  * disable dma in given channel
1151  */
1152 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1153 {
1154 	int limit;
1155 
1156 	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1157 
1158 	limit = 1000;
1159 	do {
1160 		u32 val;
1161 
1162 		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1163 		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1164 			break;
1165 		udelay(1);
1166 	} while (limit--);
1167 }
1168 
1169 /*
1170  * stop callback
1171  */
1172 static int bcm_enet_stop(struct net_device *dev)
1173 {
1174 	struct bcm_enet_priv *priv;
1175 	struct device *kdev;
1176 	int i;
1177 
1178 	priv = netdev_priv(dev);
1179 	kdev = &priv->pdev->dev;
1180 
1181 	netif_stop_queue(dev);
1182 	napi_disable(&priv->napi);
1183 	if (priv->has_phy)
1184 		phy_stop(dev->phydev);
1185 	del_timer_sync(&priv->rx_timeout);
1186 
1187 	/* mask all interrupts */
1188 	enet_writel(priv, 0, ENET_IRMASK_REG);
1189 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1190 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1191 
1192 	/* make sure no mib update is scheduled */
1193 	cancel_work_sync(&priv->mib_update_task);
1194 
1195 	/* disable dma & mac */
1196 	bcm_enet_disable_dma(priv, priv->tx_chan);
1197 	bcm_enet_disable_dma(priv, priv->rx_chan);
1198 	bcm_enet_disable_mac(priv);
1199 
1200 	/* force reclaim of all tx buffers */
1201 	bcm_enet_tx_reclaim(dev, 1);
1202 
1203 	/* free the rx skb ring */
1204 	for (i = 0; i < priv->rx_ring_size; i++) {
1205 		struct bcm_enet_desc *desc;
1206 
1207 		if (!priv->rx_skb[i])
1208 			continue;
1209 
1210 		desc = &priv->rx_desc_cpu[i];
1211 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1212 				 DMA_FROM_DEVICE);
1213 		kfree_skb(priv->rx_skb[i]);
1214 	}
1215 
1216 	/* free remaining allocated memory */
1217 	kfree(priv->rx_skb);
1218 	kfree(priv->tx_skb);
1219 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1220 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1221 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1222 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1223 	free_irq(priv->irq_tx, dev);
1224 	free_irq(priv->irq_rx, dev);
1225 	free_irq(dev->irq, dev);
1226 
1227 	/* release phy */
1228 	if (priv->has_phy)
1229 		phy_disconnect(dev->phydev);
1230 
1231 	return 0;
1232 }
1233 
1234 /*
1235  * ethtool callbacks
1236  */
1237 struct bcm_enet_stats {
1238 	char stat_string[ETH_GSTRING_LEN];
1239 	int sizeof_stat;
1240 	int stat_offset;
1241 	int mib_reg;
1242 };
1243 
1244 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1245 		     offsetof(struct bcm_enet_priv, m)
1246 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1247 		     offsetof(struct net_device_stats, m)
1248 
1249 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1250 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1251 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1252 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1253 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1254 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1255 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1256 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1257 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1258 
1259 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1260 	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1261 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1262 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1263 	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1264 	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1265 	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1266 	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1267 	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1268 	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1269 	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1270 	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1271 	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1272 	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1273 	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1274 	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1275 	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1276 	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1277 	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1278 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1279 	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1280 
1281 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1282 	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1283 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1284 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1285 	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1286 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1287 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1288 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1289 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1290 	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1291 	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1292 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1293 	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1294 	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1295 	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1296 	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1297 	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1298 	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1299 	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1300 	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1301 	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1302 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1303 
1304 };
1305 
1306 #define BCM_ENET_STATS_LEN	ARRAY_SIZE(bcm_enet_gstrings_stats)
1307 
1308 static const u32 unused_mib_regs[] = {
1309 	ETH_MIB_TX_ALL_OCTETS,
1310 	ETH_MIB_TX_ALL_PKTS,
1311 	ETH_MIB_RX_ALL_OCTETS,
1312 	ETH_MIB_RX_ALL_PKTS,
1313 };
1314 
1315 
1316 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1317 				 struct ethtool_drvinfo *drvinfo)
1318 {
1319 	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1320 	strlcpy(drvinfo->version, bcm_enet_driver_version,
1321 		sizeof(drvinfo->version));
1322 	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1323 	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1324 }
1325 
1326 static int bcm_enet_get_sset_count(struct net_device *netdev,
1327 					int string_set)
1328 {
1329 	switch (string_set) {
1330 	case ETH_SS_STATS:
1331 		return BCM_ENET_STATS_LEN;
1332 	default:
1333 		return -EINVAL;
1334 	}
1335 }
1336 
1337 static void bcm_enet_get_strings(struct net_device *netdev,
1338 				 u32 stringset, u8 *data)
1339 {
1340 	int i;
1341 
1342 	switch (stringset) {
1343 	case ETH_SS_STATS:
1344 		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1345 			memcpy(data + i * ETH_GSTRING_LEN,
1346 			       bcm_enet_gstrings_stats[i].stat_string,
1347 			       ETH_GSTRING_LEN);
1348 		}
1349 		break;
1350 	}
1351 }
1352 
1353 static void update_mib_counters(struct bcm_enet_priv *priv)
1354 {
1355 	int i;
1356 
1357 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1358 		const struct bcm_enet_stats *s;
1359 		u32 val;
1360 		char *p;
1361 
1362 		s = &bcm_enet_gstrings_stats[i];
1363 		if (s->mib_reg == -1)
1364 			continue;
1365 
1366 		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1367 		p = (char *)priv + s->stat_offset;
1368 
1369 		if (s->sizeof_stat == sizeof(u64))
1370 			*(u64 *)p += val;
1371 		else
1372 			*(u32 *)p += val;
1373 	}
1374 
1375 	/* also empty unused mib counters to make sure mib counter
1376 	 * overflow interrupt is cleared */
1377 	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1378 		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1379 }
1380 
1381 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1382 {
1383 	struct bcm_enet_priv *priv;
1384 
1385 	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1386 	mutex_lock(&priv->mib_update_lock);
1387 	update_mib_counters(priv);
1388 	mutex_unlock(&priv->mib_update_lock);
1389 
1390 	/* reenable mib interrupt */
1391 	if (netif_running(priv->net_dev))
1392 		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1393 }
1394 
1395 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1396 				       struct ethtool_stats *stats,
1397 				       u64 *data)
1398 {
1399 	struct bcm_enet_priv *priv;
1400 	int i;
1401 
1402 	priv = netdev_priv(netdev);
1403 
1404 	mutex_lock(&priv->mib_update_lock);
1405 	update_mib_counters(priv);
1406 
1407 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1408 		const struct bcm_enet_stats *s;
1409 		char *p;
1410 
1411 		s = &bcm_enet_gstrings_stats[i];
1412 		if (s->mib_reg == -1)
1413 			p = (char *)&netdev->stats;
1414 		else
1415 			p = (char *)priv;
1416 		p += s->stat_offset;
1417 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1418 			*(u64 *)p : *(u32 *)p;
1419 	}
1420 	mutex_unlock(&priv->mib_update_lock);
1421 }
1422 
1423 static int bcm_enet_nway_reset(struct net_device *dev)
1424 {
1425 	struct bcm_enet_priv *priv;
1426 
1427 	priv = netdev_priv(dev);
1428 	if (priv->has_phy)
1429 		return phy_ethtool_nway_reset(dev);
1430 
1431 	return -EOPNOTSUPP;
1432 }
1433 
1434 static int bcm_enet_get_link_ksettings(struct net_device *dev,
1435 				       struct ethtool_link_ksettings *cmd)
1436 {
1437 	struct bcm_enet_priv *priv;
1438 	u32 supported, advertising;
1439 
1440 	priv = netdev_priv(dev);
1441 
1442 	if (priv->has_phy) {
1443 		if (!dev->phydev)
1444 			return -ENODEV;
1445 
1446 		phy_ethtool_ksettings_get(dev->phydev, cmd);
1447 
1448 		return 0;
1449 	} else {
1450 		cmd->base.autoneg = 0;
1451 		cmd->base.speed = (priv->force_speed_100) ?
1452 			SPEED_100 : SPEED_10;
1453 		cmd->base.duplex = (priv->force_duplex_full) ?
1454 			DUPLEX_FULL : DUPLEX_HALF;
1455 		supported = ADVERTISED_10baseT_Half |
1456 			ADVERTISED_10baseT_Full |
1457 			ADVERTISED_100baseT_Half |
1458 			ADVERTISED_100baseT_Full;
1459 		advertising = 0;
1460 		ethtool_convert_legacy_u32_to_link_mode(
1461 			cmd->link_modes.supported, supported);
1462 		ethtool_convert_legacy_u32_to_link_mode(
1463 			cmd->link_modes.advertising, advertising);
1464 		cmd->base.port = PORT_MII;
1465 	}
1466 	return 0;
1467 }
1468 
1469 static int bcm_enet_set_link_ksettings(struct net_device *dev,
1470 				       const struct ethtool_link_ksettings *cmd)
1471 {
1472 	struct bcm_enet_priv *priv;
1473 
1474 	priv = netdev_priv(dev);
1475 	if (priv->has_phy) {
1476 		if (!dev->phydev)
1477 			return -ENODEV;
1478 		return phy_ethtool_ksettings_set(dev->phydev, cmd);
1479 	} else {
1480 
1481 		if (cmd->base.autoneg ||
1482 		    (cmd->base.speed != SPEED_100 &&
1483 		     cmd->base.speed != SPEED_10) ||
1484 		    cmd->base.port != PORT_MII)
1485 			return -EINVAL;
1486 
1487 		priv->force_speed_100 =
1488 			(cmd->base.speed == SPEED_100) ? 1 : 0;
1489 		priv->force_duplex_full =
1490 			(cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1491 
1492 		if (netif_running(dev))
1493 			bcm_enet_adjust_link(dev);
1494 		return 0;
1495 	}
1496 }
1497 
1498 static void bcm_enet_get_ringparam(struct net_device *dev,
1499 				   struct ethtool_ringparam *ering)
1500 {
1501 	struct bcm_enet_priv *priv;
1502 
1503 	priv = netdev_priv(dev);
1504 
1505 	/* rx/tx ring is actually only limited by memory */
1506 	ering->rx_max_pending = 8192;
1507 	ering->tx_max_pending = 8192;
1508 	ering->rx_pending = priv->rx_ring_size;
1509 	ering->tx_pending = priv->tx_ring_size;
1510 }
1511 
1512 static int bcm_enet_set_ringparam(struct net_device *dev,
1513 				  struct ethtool_ringparam *ering)
1514 {
1515 	struct bcm_enet_priv *priv;
1516 	int was_running;
1517 
1518 	priv = netdev_priv(dev);
1519 
1520 	was_running = 0;
1521 	if (netif_running(dev)) {
1522 		bcm_enet_stop(dev);
1523 		was_running = 1;
1524 	}
1525 
1526 	priv->rx_ring_size = ering->rx_pending;
1527 	priv->tx_ring_size = ering->tx_pending;
1528 
1529 	if (was_running) {
1530 		int err;
1531 
1532 		err = bcm_enet_open(dev);
1533 		if (err)
1534 			dev_close(dev);
1535 		else
1536 			bcm_enet_set_multicast_list(dev);
1537 	}
1538 	return 0;
1539 }
1540 
1541 static void bcm_enet_get_pauseparam(struct net_device *dev,
1542 				    struct ethtool_pauseparam *ecmd)
1543 {
1544 	struct bcm_enet_priv *priv;
1545 
1546 	priv = netdev_priv(dev);
1547 	ecmd->autoneg = priv->pause_auto;
1548 	ecmd->rx_pause = priv->pause_rx;
1549 	ecmd->tx_pause = priv->pause_tx;
1550 }
1551 
1552 static int bcm_enet_set_pauseparam(struct net_device *dev,
1553 				   struct ethtool_pauseparam *ecmd)
1554 {
1555 	struct bcm_enet_priv *priv;
1556 
1557 	priv = netdev_priv(dev);
1558 
1559 	if (priv->has_phy) {
1560 		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1561 			/* asymetric pause mode not supported,
1562 			 * actually possible but integrated PHY has RO
1563 			 * asym_pause bit */
1564 			return -EINVAL;
1565 		}
1566 	} else {
1567 		/* no pause autoneg on direct mii connection */
1568 		if (ecmd->autoneg)
1569 			return -EINVAL;
1570 	}
1571 
1572 	priv->pause_auto = ecmd->autoneg;
1573 	priv->pause_rx = ecmd->rx_pause;
1574 	priv->pause_tx = ecmd->tx_pause;
1575 
1576 	return 0;
1577 }
1578 
1579 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1580 	.get_strings		= bcm_enet_get_strings,
1581 	.get_sset_count		= bcm_enet_get_sset_count,
1582 	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1583 	.nway_reset		= bcm_enet_nway_reset,
1584 	.get_drvinfo		= bcm_enet_get_drvinfo,
1585 	.get_link		= ethtool_op_get_link,
1586 	.get_ringparam		= bcm_enet_get_ringparam,
1587 	.set_ringparam		= bcm_enet_set_ringparam,
1588 	.get_pauseparam		= bcm_enet_get_pauseparam,
1589 	.set_pauseparam		= bcm_enet_set_pauseparam,
1590 	.get_link_ksettings	= bcm_enet_get_link_ksettings,
1591 	.set_link_ksettings	= bcm_enet_set_link_ksettings,
1592 };
1593 
1594 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1595 {
1596 	struct bcm_enet_priv *priv;
1597 
1598 	priv = netdev_priv(dev);
1599 	if (priv->has_phy) {
1600 		if (!dev->phydev)
1601 			return -ENODEV;
1602 		return phy_mii_ioctl(dev->phydev, rq, cmd);
1603 	} else {
1604 		struct mii_if_info mii;
1605 
1606 		mii.dev = dev;
1607 		mii.mdio_read = bcm_enet_mdio_read_mii;
1608 		mii.mdio_write = bcm_enet_mdio_write_mii;
1609 		mii.phy_id = 0;
1610 		mii.phy_id_mask = 0x3f;
1611 		mii.reg_num_mask = 0x1f;
1612 		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1613 	}
1614 }
1615 
1616 /*
1617  * adjust mtu, can't be called while device is running
1618  */
1619 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1620 {
1621 	struct bcm_enet_priv *priv = netdev_priv(dev);
1622 	int actual_mtu = new_mtu;
1623 
1624 	if (netif_running(dev))
1625 		return -EBUSY;
1626 
1627 	/* add ethernet header + vlan tag size */
1628 	actual_mtu += VLAN_ETH_HLEN;
1629 
1630 	/*
1631 	 * setup maximum size before we get overflow mark in
1632 	 * descriptor, note that this will not prevent reception of
1633 	 * big frames, they will be split into multiple buffers
1634 	 * anyway
1635 	 */
1636 	priv->hw_mtu = actual_mtu;
1637 
1638 	/*
1639 	 * align rx buffer size to dma burst len, account FCS since
1640 	 * it's appended
1641 	 */
1642 	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1643 				  priv->dma_maxburst * 4);
1644 
1645 	dev->mtu = new_mtu;
1646 	return 0;
1647 }
1648 
1649 /*
1650  * preinit hardware to allow mii operation while device is down
1651  */
1652 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1653 {
1654 	u32 val;
1655 	int limit;
1656 
1657 	/* make sure mac is disabled */
1658 	bcm_enet_disable_mac(priv);
1659 
1660 	/* soft reset mac */
1661 	val = ENET_CTL_SRESET_MASK;
1662 	enet_writel(priv, val, ENET_CTL_REG);
1663 	wmb();
1664 
1665 	limit = 1000;
1666 	do {
1667 		val = enet_readl(priv, ENET_CTL_REG);
1668 		if (!(val & ENET_CTL_SRESET_MASK))
1669 			break;
1670 		udelay(1);
1671 	} while (limit--);
1672 
1673 	/* select correct mii interface */
1674 	val = enet_readl(priv, ENET_CTL_REG);
1675 	if (priv->use_external_mii)
1676 		val |= ENET_CTL_EPHYSEL_MASK;
1677 	else
1678 		val &= ~ENET_CTL_EPHYSEL_MASK;
1679 	enet_writel(priv, val, ENET_CTL_REG);
1680 
1681 	/* turn on mdc clock */
1682 	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1683 		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1684 
1685 	/* set mib counters to self-clear when read */
1686 	val = enet_readl(priv, ENET_MIBCTL_REG);
1687 	val |= ENET_MIBCTL_RDCLEAR_MASK;
1688 	enet_writel(priv, val, ENET_MIBCTL_REG);
1689 }
1690 
1691 static const struct net_device_ops bcm_enet_ops = {
1692 	.ndo_open		= bcm_enet_open,
1693 	.ndo_stop		= bcm_enet_stop,
1694 	.ndo_start_xmit		= bcm_enet_start_xmit,
1695 	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1696 	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1697 	.ndo_do_ioctl		= bcm_enet_ioctl,
1698 	.ndo_change_mtu		= bcm_enet_change_mtu,
1699 };
1700 
1701 /*
1702  * allocate netdevice, request register memory and register device.
1703  */
1704 static int bcm_enet_probe(struct platform_device *pdev)
1705 {
1706 	struct bcm_enet_priv *priv;
1707 	struct net_device *dev;
1708 	struct bcm63xx_enet_platform_data *pd;
1709 	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1710 	struct mii_bus *bus;
1711 	int i, ret;
1712 
1713 	if (!bcm_enet_shared_base[0])
1714 		return -EPROBE_DEFER;
1715 
1716 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1717 	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1718 	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1719 	if (!res_irq || !res_irq_rx || !res_irq_tx)
1720 		return -ENODEV;
1721 
1722 	ret = 0;
1723 	dev = alloc_etherdev(sizeof(*priv));
1724 	if (!dev)
1725 		return -ENOMEM;
1726 	priv = netdev_priv(dev);
1727 
1728 	priv->enet_is_sw = false;
1729 	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1730 
1731 	ret = bcm_enet_change_mtu(dev, dev->mtu);
1732 	if (ret)
1733 		goto out;
1734 
1735 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1736 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1737 	if (IS_ERR(priv->base)) {
1738 		ret = PTR_ERR(priv->base);
1739 		goto out;
1740 	}
1741 
1742 	dev->irq = priv->irq = res_irq->start;
1743 	priv->irq_rx = res_irq_rx->start;
1744 	priv->irq_tx = res_irq_tx->start;
1745 
1746 	priv->mac_clk = devm_clk_get(&pdev->dev, "enet");
1747 	if (IS_ERR(priv->mac_clk)) {
1748 		ret = PTR_ERR(priv->mac_clk);
1749 		goto out;
1750 	}
1751 	ret = clk_prepare_enable(priv->mac_clk);
1752 	if (ret)
1753 		goto out;
1754 
1755 	/* initialize default and fetch platform data */
1756 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1757 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1758 
1759 	pd = dev_get_platdata(&pdev->dev);
1760 	if (pd) {
1761 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1762 		priv->has_phy = pd->has_phy;
1763 		priv->phy_id = pd->phy_id;
1764 		priv->has_phy_interrupt = pd->has_phy_interrupt;
1765 		priv->phy_interrupt = pd->phy_interrupt;
1766 		priv->use_external_mii = !pd->use_internal_phy;
1767 		priv->pause_auto = pd->pause_auto;
1768 		priv->pause_rx = pd->pause_rx;
1769 		priv->pause_tx = pd->pause_tx;
1770 		priv->force_duplex_full = pd->force_duplex_full;
1771 		priv->force_speed_100 = pd->force_speed_100;
1772 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1773 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1774 		priv->dma_chan_width = pd->dma_chan_width;
1775 		priv->dma_has_sram = pd->dma_has_sram;
1776 		priv->dma_desc_shift = pd->dma_desc_shift;
1777 		priv->rx_chan = pd->rx_chan;
1778 		priv->tx_chan = pd->tx_chan;
1779 	}
1780 
1781 	if (priv->has_phy && !priv->use_external_mii) {
1782 		/* using internal PHY, enable clock */
1783 		priv->phy_clk = devm_clk_get(&pdev->dev, "ephy");
1784 		if (IS_ERR(priv->phy_clk)) {
1785 			ret = PTR_ERR(priv->phy_clk);
1786 			priv->phy_clk = NULL;
1787 			goto out_disable_clk_mac;
1788 		}
1789 		ret = clk_prepare_enable(priv->phy_clk);
1790 		if (ret)
1791 			goto out_disable_clk_mac;
1792 	}
1793 
1794 	/* do minimal hardware init to be able to probe mii bus */
1795 	bcm_enet_hw_preinit(priv);
1796 
1797 	/* MII bus registration */
1798 	if (priv->has_phy) {
1799 
1800 		priv->mii_bus = mdiobus_alloc();
1801 		if (!priv->mii_bus) {
1802 			ret = -ENOMEM;
1803 			goto out_uninit_hw;
1804 		}
1805 
1806 		bus = priv->mii_bus;
1807 		bus->name = "bcm63xx_enet MII bus";
1808 		bus->parent = &pdev->dev;
1809 		bus->priv = priv;
1810 		bus->read = bcm_enet_mdio_read_phylib;
1811 		bus->write = bcm_enet_mdio_write_phylib;
1812 		sprintf(bus->id, "%s-%d", pdev->name, pdev->id);
1813 
1814 		/* only probe bus where we think the PHY is, because
1815 		 * the mdio read operation return 0 instead of 0xffff
1816 		 * if a slave is not present on hw */
1817 		bus->phy_mask = ~(1 << priv->phy_id);
1818 
1819 		if (priv->has_phy_interrupt)
1820 			bus->irq[priv->phy_id] = priv->phy_interrupt;
1821 
1822 		ret = mdiobus_register(bus);
1823 		if (ret) {
1824 			dev_err(&pdev->dev, "unable to register mdio bus\n");
1825 			goto out_free_mdio;
1826 		}
1827 	} else {
1828 
1829 		/* run platform code to initialize PHY device */
1830 		if (pd && pd->mii_config &&
1831 		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1832 				   bcm_enet_mdio_write_mii)) {
1833 			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1834 			goto out_uninit_hw;
1835 		}
1836 	}
1837 
1838 	spin_lock_init(&priv->rx_lock);
1839 
1840 	/* init rx timeout (used for oom) */
1841 	timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
1842 
1843 	/* init the mib update lock&work */
1844 	mutex_init(&priv->mib_update_lock);
1845 	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1846 
1847 	/* zero mib counters */
1848 	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1849 		enet_writel(priv, 0, ENET_MIB_REG(i));
1850 
1851 	/* register netdevice */
1852 	dev->netdev_ops = &bcm_enet_ops;
1853 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1854 
1855 	dev->ethtool_ops = &bcm_enet_ethtool_ops;
1856 	/* MTU range: 46 - 2028 */
1857 	dev->min_mtu = ETH_ZLEN - ETH_HLEN;
1858 	dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN;
1859 	SET_NETDEV_DEV(dev, &pdev->dev);
1860 
1861 	ret = register_netdev(dev);
1862 	if (ret)
1863 		goto out_unregister_mdio;
1864 
1865 	netif_carrier_off(dev);
1866 	platform_set_drvdata(pdev, dev);
1867 	priv->pdev = pdev;
1868 	priv->net_dev = dev;
1869 
1870 	return 0;
1871 
1872 out_unregister_mdio:
1873 	if (priv->mii_bus)
1874 		mdiobus_unregister(priv->mii_bus);
1875 
1876 out_free_mdio:
1877 	if (priv->mii_bus)
1878 		mdiobus_free(priv->mii_bus);
1879 
1880 out_uninit_hw:
1881 	/* turn off mdc clock */
1882 	enet_writel(priv, 0, ENET_MIISC_REG);
1883 	clk_disable_unprepare(priv->phy_clk);
1884 
1885 out_disable_clk_mac:
1886 	clk_disable_unprepare(priv->mac_clk);
1887 out:
1888 	free_netdev(dev);
1889 	return ret;
1890 }
1891 
1892 
1893 /*
1894  * exit func, stops hardware and unregisters netdevice
1895  */
1896 static int bcm_enet_remove(struct platform_device *pdev)
1897 {
1898 	struct bcm_enet_priv *priv;
1899 	struct net_device *dev;
1900 
1901 	/* stop netdevice */
1902 	dev = platform_get_drvdata(pdev);
1903 	priv = netdev_priv(dev);
1904 	unregister_netdev(dev);
1905 
1906 	/* turn off mdc clock */
1907 	enet_writel(priv, 0, ENET_MIISC_REG);
1908 
1909 	if (priv->has_phy) {
1910 		mdiobus_unregister(priv->mii_bus);
1911 		mdiobus_free(priv->mii_bus);
1912 	} else {
1913 		struct bcm63xx_enet_platform_data *pd;
1914 
1915 		pd = dev_get_platdata(&pdev->dev);
1916 		if (pd && pd->mii_config)
1917 			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1918 				       bcm_enet_mdio_write_mii);
1919 	}
1920 
1921 	/* disable hw block clocks */
1922 	clk_disable_unprepare(priv->phy_clk);
1923 	clk_disable_unprepare(priv->mac_clk);
1924 
1925 	free_netdev(dev);
1926 	return 0;
1927 }
1928 
1929 struct platform_driver bcm63xx_enet_driver = {
1930 	.probe	= bcm_enet_probe,
1931 	.remove	= bcm_enet_remove,
1932 	.driver	= {
1933 		.name	= "bcm63xx_enet",
1934 		.owner  = THIS_MODULE,
1935 	},
1936 };
1937 
1938 /*
1939  * switch mii access callbacks
1940  */
1941 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1942 				int ext, int phy_id, int location)
1943 {
1944 	u32 reg;
1945 	int ret;
1946 
1947 	spin_lock_bh(&priv->enetsw_mdio_lock);
1948 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1949 
1950 	reg = ENETSW_MDIOC_RD_MASK |
1951 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1952 		(location << ENETSW_MDIOC_REG_SHIFT);
1953 
1954 	if (ext)
1955 		reg |= ENETSW_MDIOC_EXT_MASK;
1956 
1957 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1958 	udelay(50);
1959 	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
1960 	spin_unlock_bh(&priv->enetsw_mdio_lock);
1961 	return ret;
1962 }
1963 
1964 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
1965 				 int ext, int phy_id, int location,
1966 				 uint16_t data)
1967 {
1968 	u32 reg;
1969 
1970 	spin_lock_bh(&priv->enetsw_mdio_lock);
1971 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1972 
1973 	reg = ENETSW_MDIOC_WR_MASK |
1974 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1975 		(location << ENETSW_MDIOC_REG_SHIFT);
1976 
1977 	if (ext)
1978 		reg |= ENETSW_MDIOC_EXT_MASK;
1979 
1980 	reg |= data;
1981 
1982 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1983 	udelay(50);
1984 	spin_unlock_bh(&priv->enetsw_mdio_lock);
1985 }
1986 
1987 static inline int bcm_enet_port_is_rgmii(int portid)
1988 {
1989 	return portid >= ENETSW_RGMII_PORT0;
1990 }
1991 
1992 /*
1993  * enet sw PHY polling
1994  */
1995 static void swphy_poll_timer(struct timer_list *t)
1996 {
1997 	struct bcm_enet_priv *priv = from_timer(priv, t, swphy_poll);
1998 	unsigned int i;
1999 
2000 	for (i = 0; i < priv->num_ports; i++) {
2001 		struct bcm63xx_enetsw_port *port;
2002 		int val, j, up, advertise, lpa, speed, duplex, media;
2003 		int external_phy = bcm_enet_port_is_rgmii(i);
2004 		u8 override;
2005 
2006 		port = &priv->used_ports[i];
2007 		if (!port->used)
2008 			continue;
2009 
2010 		if (port->bypass_link)
2011 			continue;
2012 
2013 		/* dummy read to clear */
2014 		for (j = 0; j < 2; j++)
2015 			val = bcmenet_sw_mdio_read(priv, external_phy,
2016 						   port->phy_id, MII_BMSR);
2017 
2018 		if (val == 0xffff)
2019 			continue;
2020 
2021 		up = (val & BMSR_LSTATUS) ? 1 : 0;
2022 		if (!(up ^ priv->sw_port_link[i]))
2023 			continue;
2024 
2025 		priv->sw_port_link[i] = up;
2026 
2027 		/* link changed */
2028 		if (!up) {
2029 			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2030 				 port->name);
2031 			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2032 				      ENETSW_PORTOV_REG(i));
2033 			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2034 				      ENETSW_PTCTRL_TXDIS_MASK,
2035 				      ENETSW_PTCTRL_REG(i));
2036 			continue;
2037 		}
2038 
2039 		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2040 						 port->phy_id, MII_ADVERTISE);
2041 
2042 		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2043 					   MII_LPA);
2044 
2045 		/* figure out media and duplex from advertise and LPA values */
2046 		media = mii_nway_result(lpa & advertise);
2047 		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2048 
2049 		if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2050 			speed = 100;
2051 		else
2052 			speed = 10;
2053 
2054 		if (val & BMSR_ESTATEN) {
2055 			advertise = bcmenet_sw_mdio_read(priv, external_phy,
2056 						port->phy_id, MII_CTRL1000);
2057 
2058 			lpa = bcmenet_sw_mdio_read(priv, external_phy,
2059 						port->phy_id, MII_STAT1000);
2060 
2061 			if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2062 					&& lpa & (LPA_1000FULL | LPA_1000HALF)) {
2063 				speed = 1000;
2064 				duplex = (lpa & LPA_1000FULL);
2065 			}
2066 		}
2067 
2068 		dev_info(&priv->pdev->dev,
2069 			 "link UP on %s, %dMbps, %s-duplex\n",
2070 			 port->name, speed, duplex ? "full" : "half");
2071 
2072 		override = ENETSW_PORTOV_ENABLE_MASK |
2073 			ENETSW_PORTOV_LINKUP_MASK;
2074 
2075 		if (speed == 1000)
2076 			override |= ENETSW_IMPOV_1000_MASK;
2077 		else if (speed == 100)
2078 			override |= ENETSW_IMPOV_100_MASK;
2079 		if (duplex)
2080 			override |= ENETSW_IMPOV_FDX_MASK;
2081 
2082 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2083 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2084 	}
2085 
2086 	priv->swphy_poll.expires = jiffies + HZ;
2087 	add_timer(&priv->swphy_poll);
2088 }
2089 
2090 /*
2091  * open callback, allocate dma rings & buffers and start rx operation
2092  */
2093 static int bcm_enetsw_open(struct net_device *dev)
2094 {
2095 	struct bcm_enet_priv *priv;
2096 	struct device *kdev;
2097 	int i, ret;
2098 	unsigned int size;
2099 	void *p;
2100 	u32 val;
2101 
2102 	priv = netdev_priv(dev);
2103 	kdev = &priv->pdev->dev;
2104 
2105 	/* mask all interrupts and request them */
2106 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2107 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2108 
2109 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2110 			  0, dev->name, dev);
2111 	if (ret)
2112 		goto out_freeirq;
2113 
2114 	if (priv->irq_tx != -1) {
2115 		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2116 				  0, dev->name, dev);
2117 		if (ret)
2118 			goto out_freeirq_rx;
2119 	}
2120 
2121 	/* allocate rx dma ring */
2122 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2123 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2124 	if (!p) {
2125 		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2126 		ret = -ENOMEM;
2127 		goto out_freeirq_tx;
2128 	}
2129 
2130 	priv->rx_desc_alloc_size = size;
2131 	priv->rx_desc_cpu = p;
2132 
2133 	/* allocate tx dma ring */
2134 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2135 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2136 	if (!p) {
2137 		dev_err(kdev, "cannot allocate tx ring\n");
2138 		ret = -ENOMEM;
2139 		goto out_free_rx_ring;
2140 	}
2141 
2142 	priv->tx_desc_alloc_size = size;
2143 	priv->tx_desc_cpu = p;
2144 
2145 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
2146 			       GFP_KERNEL);
2147 	if (!priv->tx_skb) {
2148 		dev_err(kdev, "cannot allocate rx skb queue\n");
2149 		ret = -ENOMEM;
2150 		goto out_free_tx_ring;
2151 	}
2152 
2153 	priv->tx_desc_count = priv->tx_ring_size;
2154 	priv->tx_dirty_desc = 0;
2155 	priv->tx_curr_desc = 0;
2156 	spin_lock_init(&priv->tx_lock);
2157 
2158 	/* init & fill rx ring with skbs */
2159 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
2160 			       GFP_KERNEL);
2161 	if (!priv->rx_skb) {
2162 		dev_err(kdev, "cannot allocate rx skb queue\n");
2163 		ret = -ENOMEM;
2164 		goto out_free_tx_skb;
2165 	}
2166 
2167 	priv->rx_desc_count = 0;
2168 	priv->rx_dirty_desc = 0;
2169 	priv->rx_curr_desc = 0;
2170 
2171 	/* disable all ports */
2172 	for (i = 0; i < priv->num_ports; i++) {
2173 		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2174 			      ENETSW_PORTOV_REG(i));
2175 		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2176 			      ENETSW_PTCTRL_TXDIS_MASK,
2177 			      ENETSW_PTCTRL_REG(i));
2178 
2179 		priv->sw_port_link[i] = 0;
2180 	}
2181 
2182 	/* reset mib */
2183 	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2184 	val |= ENETSW_GMCR_RST_MIB_MASK;
2185 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2186 	mdelay(1);
2187 	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2188 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2189 	mdelay(1);
2190 
2191 	/* force CPU port state */
2192 	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2193 	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2194 	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2195 
2196 	/* enable switch forward engine */
2197 	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2198 	val |= ENETSW_SWMODE_FWD_EN_MASK;
2199 	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2200 
2201 	/* enable jumbo on all ports */
2202 	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2203 	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2204 
2205 	/* initialize flow control buffer allocation */
2206 	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2207 			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2208 
2209 	if (bcm_enet_refill_rx(dev)) {
2210 		dev_err(kdev, "cannot allocate rx skb queue\n");
2211 		ret = -ENOMEM;
2212 		goto out;
2213 	}
2214 
2215 	/* write rx & tx ring addresses */
2216 	enet_dmas_writel(priv, priv->rx_desc_dma,
2217 			 ENETDMAS_RSTART_REG, priv->rx_chan);
2218 	enet_dmas_writel(priv, priv->tx_desc_dma,
2219 			 ENETDMAS_RSTART_REG, priv->tx_chan);
2220 
2221 	/* clear remaining state ram for rx & tx channel */
2222 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2223 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2224 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2225 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2226 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2227 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2228 
2229 	/* set dma maximum burst len */
2230 	enet_dmac_writel(priv, priv->dma_maxburst,
2231 			 ENETDMAC_MAXBURST, priv->rx_chan);
2232 	enet_dmac_writel(priv, priv->dma_maxburst,
2233 			 ENETDMAC_MAXBURST, priv->tx_chan);
2234 
2235 	/* set flow control low/high threshold to 1/3 / 2/3 */
2236 	val = priv->rx_ring_size / 3;
2237 	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2238 	val = (priv->rx_ring_size * 2) / 3;
2239 	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2240 
2241 	/* all set, enable mac and interrupts, start dma engine and
2242 	 * kick rx dma channel
2243 	 */
2244 	wmb();
2245 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2246 	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2247 			 ENETDMAC_CHANCFG, priv->rx_chan);
2248 
2249 	/* watch "packet transferred" interrupt in rx and tx */
2250 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2251 			 ENETDMAC_IR, priv->rx_chan);
2252 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2253 			 ENETDMAC_IR, priv->tx_chan);
2254 
2255 	/* make sure we enable napi before rx interrupt  */
2256 	napi_enable(&priv->napi);
2257 
2258 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2259 			 ENETDMAC_IRMASK, priv->rx_chan);
2260 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2261 			 ENETDMAC_IRMASK, priv->tx_chan);
2262 
2263 	netif_carrier_on(dev);
2264 	netif_start_queue(dev);
2265 
2266 	/* apply override config for bypass_link ports here. */
2267 	for (i = 0; i < priv->num_ports; i++) {
2268 		struct bcm63xx_enetsw_port *port;
2269 		u8 override;
2270 		port = &priv->used_ports[i];
2271 		if (!port->used)
2272 			continue;
2273 
2274 		if (!port->bypass_link)
2275 			continue;
2276 
2277 		override = ENETSW_PORTOV_ENABLE_MASK |
2278 			ENETSW_PORTOV_LINKUP_MASK;
2279 
2280 		switch (port->force_speed) {
2281 		case 1000:
2282 			override |= ENETSW_IMPOV_1000_MASK;
2283 			break;
2284 		case 100:
2285 			override |= ENETSW_IMPOV_100_MASK;
2286 			break;
2287 		case 10:
2288 			break;
2289 		default:
2290 			pr_warn("invalid forced speed on port %s: assume 10\n",
2291 			       port->name);
2292 			break;
2293 		}
2294 
2295 		if (port->force_duplex_full)
2296 			override |= ENETSW_IMPOV_FDX_MASK;
2297 
2298 
2299 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2300 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2301 	}
2302 
2303 	/* start phy polling timer */
2304 	timer_setup(&priv->swphy_poll, swphy_poll_timer, 0);
2305 	mod_timer(&priv->swphy_poll, jiffies);
2306 	return 0;
2307 
2308 out:
2309 	for (i = 0; i < priv->rx_ring_size; i++) {
2310 		struct bcm_enet_desc *desc;
2311 
2312 		if (!priv->rx_skb[i])
2313 			continue;
2314 
2315 		desc = &priv->rx_desc_cpu[i];
2316 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2317 				 DMA_FROM_DEVICE);
2318 		kfree_skb(priv->rx_skb[i]);
2319 	}
2320 	kfree(priv->rx_skb);
2321 
2322 out_free_tx_skb:
2323 	kfree(priv->tx_skb);
2324 
2325 out_free_tx_ring:
2326 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2327 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2328 
2329 out_free_rx_ring:
2330 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2331 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2332 
2333 out_freeirq_tx:
2334 	if (priv->irq_tx != -1)
2335 		free_irq(priv->irq_tx, dev);
2336 
2337 out_freeirq_rx:
2338 	free_irq(priv->irq_rx, dev);
2339 
2340 out_freeirq:
2341 	return ret;
2342 }
2343 
2344 /* stop callback */
2345 static int bcm_enetsw_stop(struct net_device *dev)
2346 {
2347 	struct bcm_enet_priv *priv;
2348 	struct device *kdev;
2349 	int i;
2350 
2351 	priv = netdev_priv(dev);
2352 	kdev = &priv->pdev->dev;
2353 
2354 	del_timer_sync(&priv->swphy_poll);
2355 	netif_stop_queue(dev);
2356 	napi_disable(&priv->napi);
2357 	del_timer_sync(&priv->rx_timeout);
2358 
2359 	/* mask all interrupts */
2360 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2361 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2362 
2363 	/* disable dma & mac */
2364 	bcm_enet_disable_dma(priv, priv->tx_chan);
2365 	bcm_enet_disable_dma(priv, priv->rx_chan);
2366 
2367 	/* force reclaim of all tx buffers */
2368 	bcm_enet_tx_reclaim(dev, 1);
2369 
2370 	/* free the rx skb ring */
2371 	for (i = 0; i < priv->rx_ring_size; i++) {
2372 		struct bcm_enet_desc *desc;
2373 
2374 		if (!priv->rx_skb[i])
2375 			continue;
2376 
2377 		desc = &priv->rx_desc_cpu[i];
2378 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2379 				 DMA_FROM_DEVICE);
2380 		kfree_skb(priv->rx_skb[i]);
2381 	}
2382 
2383 	/* free remaining allocated memory */
2384 	kfree(priv->rx_skb);
2385 	kfree(priv->tx_skb);
2386 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2387 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2388 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2389 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2390 	if (priv->irq_tx != -1)
2391 		free_irq(priv->irq_tx, dev);
2392 	free_irq(priv->irq_rx, dev);
2393 
2394 	return 0;
2395 }
2396 
2397 /* try to sort out phy external status by walking the used_port field
2398  * in the bcm_enet_priv structure. in case the phy address is not
2399  * assigned to any physical port on the switch, assume it is external
2400  * (and yell at the user).
2401  */
2402 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2403 {
2404 	int i;
2405 
2406 	for (i = 0; i < priv->num_ports; ++i) {
2407 		if (!priv->used_ports[i].used)
2408 			continue;
2409 		if (priv->used_ports[i].phy_id == phy_id)
2410 			return bcm_enet_port_is_rgmii(i);
2411 	}
2412 
2413 	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2414 		    phy_id);
2415 	return 1;
2416 }
2417 
2418 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2419  * external/internal status of the given phy_id first.
2420  */
2421 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2422 				    int location)
2423 {
2424 	struct bcm_enet_priv *priv;
2425 
2426 	priv = netdev_priv(dev);
2427 	return bcmenet_sw_mdio_read(priv,
2428 				    bcm_enetsw_phy_is_external(priv, phy_id),
2429 				    phy_id, location);
2430 }
2431 
2432 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2433  * external/internal status of the given phy_id first.
2434  */
2435 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2436 				      int location,
2437 				      int val)
2438 {
2439 	struct bcm_enet_priv *priv;
2440 
2441 	priv = netdev_priv(dev);
2442 	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2443 			      phy_id, location, val);
2444 }
2445 
2446 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2447 {
2448 	struct mii_if_info mii;
2449 
2450 	mii.dev = dev;
2451 	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2452 	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2453 	mii.phy_id = 0;
2454 	mii.phy_id_mask = 0x3f;
2455 	mii.reg_num_mask = 0x1f;
2456 	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2457 
2458 }
2459 
2460 static const struct net_device_ops bcm_enetsw_ops = {
2461 	.ndo_open		= bcm_enetsw_open,
2462 	.ndo_stop		= bcm_enetsw_stop,
2463 	.ndo_start_xmit		= bcm_enet_start_xmit,
2464 	.ndo_change_mtu		= bcm_enet_change_mtu,
2465 	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2466 };
2467 
2468 
2469 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2470 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2471 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2472 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2473 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2474 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2475 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2476 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2477 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2478 
2479 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2480 	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2481 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2482 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2483 	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2484 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2485 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2486 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2487 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2488 	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2489 	  ETHSW_MIB_RX_1024_1522 },
2490 	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2491 	  ETHSW_MIB_RX_1523_2047 },
2492 	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2493 	  ETHSW_MIB_RX_2048_4095 },
2494 	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2495 	  ETHSW_MIB_RX_4096_8191 },
2496 	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2497 	  ETHSW_MIB_RX_8192_9728 },
2498 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2499 	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2500 	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2501 	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2502 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2503 
2504 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2505 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2506 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2507 	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2508 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2509 	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2510 
2511 };
2512 
2513 #define BCM_ENETSW_STATS_LEN	\
2514 	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2515 
2516 static void bcm_enetsw_get_strings(struct net_device *netdev,
2517 				   u32 stringset, u8 *data)
2518 {
2519 	int i;
2520 
2521 	switch (stringset) {
2522 	case ETH_SS_STATS:
2523 		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2524 			memcpy(data + i * ETH_GSTRING_LEN,
2525 			       bcm_enetsw_gstrings_stats[i].stat_string,
2526 			       ETH_GSTRING_LEN);
2527 		}
2528 		break;
2529 	}
2530 }
2531 
2532 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2533 				     int string_set)
2534 {
2535 	switch (string_set) {
2536 	case ETH_SS_STATS:
2537 		return BCM_ENETSW_STATS_LEN;
2538 	default:
2539 		return -EINVAL;
2540 	}
2541 }
2542 
2543 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2544 				   struct ethtool_drvinfo *drvinfo)
2545 {
2546 	strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2547 	strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2548 	strncpy(drvinfo->fw_version, "N/A", 32);
2549 	strncpy(drvinfo->bus_info, "bcm63xx", 32);
2550 }
2551 
2552 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2553 					 struct ethtool_stats *stats,
2554 					 u64 *data)
2555 {
2556 	struct bcm_enet_priv *priv;
2557 	int i;
2558 
2559 	priv = netdev_priv(netdev);
2560 
2561 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2562 		const struct bcm_enet_stats *s;
2563 		u32 lo, hi;
2564 		char *p;
2565 		int reg;
2566 
2567 		s = &bcm_enetsw_gstrings_stats[i];
2568 
2569 		reg = s->mib_reg;
2570 		if (reg == -1)
2571 			continue;
2572 
2573 		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2574 		p = (char *)priv + s->stat_offset;
2575 
2576 		if (s->sizeof_stat == sizeof(u64)) {
2577 			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2578 			*(u64 *)p = ((u64)hi << 32 | lo);
2579 		} else {
2580 			*(u32 *)p = lo;
2581 		}
2582 	}
2583 
2584 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2585 		const struct bcm_enet_stats *s;
2586 		char *p;
2587 
2588 		s = &bcm_enetsw_gstrings_stats[i];
2589 
2590 		if (s->mib_reg == -1)
2591 			p = (char *)&netdev->stats + s->stat_offset;
2592 		else
2593 			p = (char *)priv + s->stat_offset;
2594 
2595 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2596 			*(u64 *)p : *(u32 *)p;
2597 	}
2598 }
2599 
2600 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2601 				     struct ethtool_ringparam *ering)
2602 {
2603 	struct bcm_enet_priv *priv;
2604 
2605 	priv = netdev_priv(dev);
2606 
2607 	/* rx/tx ring is actually only limited by memory */
2608 	ering->rx_max_pending = 8192;
2609 	ering->tx_max_pending = 8192;
2610 	ering->rx_mini_max_pending = 0;
2611 	ering->rx_jumbo_max_pending = 0;
2612 	ering->rx_pending = priv->rx_ring_size;
2613 	ering->tx_pending = priv->tx_ring_size;
2614 }
2615 
2616 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2617 				    struct ethtool_ringparam *ering)
2618 {
2619 	struct bcm_enet_priv *priv;
2620 	int was_running;
2621 
2622 	priv = netdev_priv(dev);
2623 
2624 	was_running = 0;
2625 	if (netif_running(dev)) {
2626 		bcm_enetsw_stop(dev);
2627 		was_running = 1;
2628 	}
2629 
2630 	priv->rx_ring_size = ering->rx_pending;
2631 	priv->tx_ring_size = ering->tx_pending;
2632 
2633 	if (was_running) {
2634 		int err;
2635 
2636 		err = bcm_enetsw_open(dev);
2637 		if (err)
2638 			dev_close(dev);
2639 	}
2640 	return 0;
2641 }
2642 
2643 static const struct ethtool_ops bcm_enetsw_ethtool_ops = {
2644 	.get_strings		= bcm_enetsw_get_strings,
2645 	.get_sset_count		= bcm_enetsw_get_sset_count,
2646 	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2647 	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2648 	.get_ringparam		= bcm_enetsw_get_ringparam,
2649 	.set_ringparam		= bcm_enetsw_set_ringparam,
2650 };
2651 
2652 /* allocate netdevice, request register memory and register device. */
2653 static int bcm_enetsw_probe(struct platform_device *pdev)
2654 {
2655 	struct bcm_enet_priv *priv;
2656 	struct net_device *dev;
2657 	struct bcm63xx_enetsw_platform_data *pd;
2658 	struct resource *res_mem;
2659 	int ret, irq_rx, irq_tx;
2660 
2661 	if (!bcm_enet_shared_base[0])
2662 		return -EPROBE_DEFER;
2663 
2664 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2665 	irq_rx = platform_get_irq(pdev, 0);
2666 	irq_tx = platform_get_irq(pdev, 1);
2667 	if (!res_mem || irq_rx < 0)
2668 		return -ENODEV;
2669 
2670 	ret = 0;
2671 	dev = alloc_etherdev(sizeof(*priv));
2672 	if (!dev)
2673 		return -ENOMEM;
2674 	priv = netdev_priv(dev);
2675 	memset(priv, 0, sizeof(*priv));
2676 
2677 	/* initialize default and fetch platform data */
2678 	priv->enet_is_sw = true;
2679 	priv->irq_rx = irq_rx;
2680 	priv->irq_tx = irq_tx;
2681 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2682 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2683 	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2684 
2685 	pd = dev_get_platdata(&pdev->dev);
2686 	if (pd) {
2687 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2688 		memcpy(priv->used_ports, pd->used_ports,
2689 		       sizeof(pd->used_ports));
2690 		priv->num_ports = pd->num_ports;
2691 		priv->dma_has_sram = pd->dma_has_sram;
2692 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2693 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2694 		priv->dma_chan_width = pd->dma_chan_width;
2695 	}
2696 
2697 	ret = bcm_enet_change_mtu(dev, dev->mtu);
2698 	if (ret)
2699 		goto out;
2700 
2701 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
2702 	if (IS_ERR(priv->base)) {
2703 		ret = PTR_ERR(priv->base);
2704 		goto out;
2705 	}
2706 
2707 	priv->mac_clk = devm_clk_get(&pdev->dev, "enetsw");
2708 	if (IS_ERR(priv->mac_clk)) {
2709 		ret = PTR_ERR(priv->mac_clk);
2710 		goto out;
2711 	}
2712 	ret = clk_prepare_enable(priv->mac_clk);
2713 	if (ret)
2714 		goto out;
2715 
2716 	priv->rx_chan = 0;
2717 	priv->tx_chan = 1;
2718 	spin_lock_init(&priv->rx_lock);
2719 
2720 	/* init rx timeout (used for oom) */
2721 	timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
2722 
2723 	/* register netdevice */
2724 	dev->netdev_ops = &bcm_enetsw_ops;
2725 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2726 	dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2727 	SET_NETDEV_DEV(dev, &pdev->dev);
2728 
2729 	spin_lock_init(&priv->enetsw_mdio_lock);
2730 
2731 	ret = register_netdev(dev);
2732 	if (ret)
2733 		goto out_disable_clk;
2734 
2735 	netif_carrier_off(dev);
2736 	platform_set_drvdata(pdev, dev);
2737 	priv->pdev = pdev;
2738 	priv->net_dev = dev;
2739 
2740 	return 0;
2741 
2742 out_disable_clk:
2743 	clk_disable_unprepare(priv->mac_clk);
2744 out:
2745 	free_netdev(dev);
2746 	return ret;
2747 }
2748 
2749 
2750 /* exit func, stops hardware and unregisters netdevice */
2751 static int bcm_enetsw_remove(struct platform_device *pdev)
2752 {
2753 	struct bcm_enet_priv *priv;
2754 	struct net_device *dev;
2755 
2756 	/* stop netdevice */
2757 	dev = platform_get_drvdata(pdev);
2758 	priv = netdev_priv(dev);
2759 	unregister_netdev(dev);
2760 
2761 	clk_disable_unprepare(priv->mac_clk);
2762 
2763 	free_netdev(dev);
2764 	return 0;
2765 }
2766 
2767 struct platform_driver bcm63xx_enetsw_driver = {
2768 	.probe	= bcm_enetsw_probe,
2769 	.remove	= bcm_enetsw_remove,
2770 	.driver	= {
2771 		.name	= "bcm63xx_enetsw",
2772 		.owner  = THIS_MODULE,
2773 	},
2774 };
2775 
2776 /* reserve & remap memory space shared between all macs */
2777 static int bcm_enet_shared_probe(struct platform_device *pdev)
2778 {
2779 	struct resource *res;
2780 	void __iomem *p[3];
2781 	unsigned int i;
2782 
2783 	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2784 
2785 	for (i = 0; i < 3; i++) {
2786 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2787 		p[i] = devm_ioremap_resource(&pdev->dev, res);
2788 		if (IS_ERR(p[i]))
2789 			return PTR_ERR(p[i]);
2790 	}
2791 
2792 	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2793 
2794 	return 0;
2795 }
2796 
2797 static int bcm_enet_shared_remove(struct platform_device *pdev)
2798 {
2799 	return 0;
2800 }
2801 
2802 /* this "shared" driver is needed because both macs share a single
2803  * address space
2804  */
2805 struct platform_driver bcm63xx_enet_shared_driver = {
2806 	.probe	= bcm_enet_shared_probe,
2807 	.remove	= bcm_enet_shared_remove,
2808 	.driver	= {
2809 		.name	= "bcm63xx_enet_shared",
2810 		.owner  = THIS_MODULE,
2811 	},
2812 };
2813 
2814 static struct platform_driver * const drivers[] = {
2815 	&bcm63xx_enet_shared_driver,
2816 	&bcm63xx_enet_driver,
2817 	&bcm63xx_enetsw_driver,
2818 };
2819 
2820 /* entry point */
2821 static int __init bcm_enet_init(void)
2822 {
2823 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2824 }
2825 
2826 static void __exit bcm_enet_exit(void)
2827 {
2828 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2829 }
2830 
2831 
2832 module_init(bcm_enet_init);
2833 module_exit(bcm_enet_exit);
2834 
2835 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2836 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2837 MODULE_LICENSE("GPL");
2838