xref: /openbmc/linux/drivers/net/ethernet/broadcom/bcm63xx_enet.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Driver for BCM963xx builtin Ethernet mac
3  *
4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33 
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36 
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39 
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43 
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46 
47 /*
48  * io helpers to access mac registers
49  */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 	return bcm_readl(priv->base + off);
53 }
54 
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 			       u32 val, u32 off)
57 {
58 	bcm_writel(val, priv->base + off);
59 }
60 
61 /*
62  * io helpers to access switch registers
63  */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 	return bcm_readl(priv->base + off);
67 }
68 
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 				 u32 val, u32 off)
71 {
72 	bcm_writel(val, priv->base + off);
73 }
74 
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 	return bcm_readw(priv->base + off);
78 }
79 
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 				 u16 val, u32 off)
82 {
83 	bcm_writew(val, priv->base + off);
84 }
85 
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 	return bcm_readb(priv->base + off);
89 }
90 
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 				 u8 val, u32 off)
93 {
94 	bcm_writeb(val, priv->base + off);
95 }
96 
97 
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 	return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103 
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 				       u32 val, u32 off)
106 {
107 	bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109 
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 	return bcm_readl(bcm_enet_shared_base[1] +
113 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115 
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 				       u32 val, u32 off, int chan)
118 {
119 	bcm_writel(val, bcm_enet_shared_base[1] +
120 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122 
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127 
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 				       u32 val, u32 off, int chan)
130 {
131 	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133 
134 /*
135  * write given data into mii register and wait for transfer to end
136  * with timeout (average measured transfer time is 25us)
137  */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 	int limit;
141 
142 	/* make sure mii interrupt status is cleared */
143 	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144 
145 	enet_writel(priv, data, ENET_MIIDATA_REG);
146 	wmb();
147 
148 	/* busy wait on mii interrupt bit, with timeout */
149 	limit = 1000;
150 	do {
151 		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 			break;
153 		udelay(1);
154 	} while (limit-- > 0);
155 
156 	return (limit < 0) ? 1 : 0;
157 }
158 
159 /*
160  * MII internal read callback
161  */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 			      int regnum)
164 {
165 	u32 tmp, val;
166 
167 	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 	tmp |= ENET_MIIDATA_OP_READ_MASK;
171 
172 	if (do_mdio_op(priv, tmp))
173 		return -1;
174 
175 	val = enet_readl(priv, ENET_MIIDATA_REG);
176 	val &= 0xffff;
177 	return val;
178 }
179 
180 /*
181  * MII internal write callback
182  */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 			       int regnum, u16 value)
185 {
186 	u32 tmp;
187 
188 	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193 
194 	(void)do_mdio_op(priv, tmp);
195 	return 0;
196 }
197 
198 /*
199  * MII read callback from phylib
200  */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 				     int regnum)
203 {
204 	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206 
207 /*
208  * MII write callback from phylib
209  */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 				      int regnum, u16 value)
212 {
213 	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215 
216 /*
217  * MII read callback from mii core
218  */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 				  int regnum)
221 {
222 	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224 
225 /*
226  * MII write callback from mii core
227  */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 				    int regnum, int value)
230 {
231 	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233 
234 /*
235  * refill rx queue
236  */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 	struct bcm_enet_priv *priv;
240 
241 	priv = netdev_priv(dev);
242 
243 	while (priv->rx_desc_count < priv->rx_ring_size) {
244 		struct bcm_enet_desc *desc;
245 		struct sk_buff *skb;
246 		dma_addr_t p;
247 		int desc_idx;
248 		u32 len_stat;
249 
250 		desc_idx = priv->rx_dirty_desc;
251 		desc = &priv->rx_desc_cpu[desc_idx];
252 
253 		if (!priv->rx_skb[desc_idx]) {
254 			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 			if (!skb)
256 				break;
257 			priv->rx_skb[desc_idx] = skb;
258 			p = dma_map_single(&priv->pdev->dev, skb->data,
259 					   priv->rx_skb_size,
260 					   DMA_FROM_DEVICE);
261 			desc->address = p;
262 		}
263 
264 		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 		len_stat |= DMADESC_OWNER_MASK;
266 		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 			priv->rx_dirty_desc = 0;
269 		} else {
270 			priv->rx_dirty_desc++;
271 		}
272 		wmb();
273 		desc->len_stat = len_stat;
274 
275 		priv->rx_desc_count++;
276 
277 		/* tell dma engine we allocated one buffer */
278 		if (priv->dma_has_sram)
279 			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 		else
281 			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 	}
283 
284 	/* If rx ring is still empty, set a timer to try allocating
285 	 * again at a later time. */
286 	if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 		priv->rx_timeout.expires = jiffies + HZ;
289 		add_timer(&priv->rx_timeout);
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * timer callback to defer refill rx queue in case we're OOM
297  */
298 static void bcm_enet_refill_rx_timer(unsigned long data)
299 {
300 	struct net_device *dev;
301 	struct bcm_enet_priv *priv;
302 
303 	dev = (struct net_device *)data;
304 	priv = netdev_priv(dev);
305 
306 	spin_lock(&priv->rx_lock);
307 	bcm_enet_refill_rx((struct net_device *)data);
308 	spin_unlock(&priv->rx_lock);
309 }
310 
311 /*
312  * extract packet from rx queue
313  */
314 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
315 {
316 	struct bcm_enet_priv *priv;
317 	struct device *kdev;
318 	int processed;
319 
320 	priv = netdev_priv(dev);
321 	kdev = &priv->pdev->dev;
322 	processed = 0;
323 
324 	/* don't scan ring further than number of refilled
325 	 * descriptor */
326 	if (budget > priv->rx_desc_count)
327 		budget = priv->rx_desc_count;
328 
329 	do {
330 		struct bcm_enet_desc *desc;
331 		struct sk_buff *skb;
332 		int desc_idx;
333 		u32 len_stat;
334 		unsigned int len;
335 
336 		desc_idx = priv->rx_curr_desc;
337 		desc = &priv->rx_desc_cpu[desc_idx];
338 
339 		/* make sure we actually read the descriptor status at
340 		 * each loop */
341 		rmb();
342 
343 		len_stat = desc->len_stat;
344 
345 		/* break if dma ownership belongs to hw */
346 		if (len_stat & DMADESC_OWNER_MASK)
347 			break;
348 
349 		processed++;
350 		priv->rx_curr_desc++;
351 		if (priv->rx_curr_desc == priv->rx_ring_size)
352 			priv->rx_curr_desc = 0;
353 		priv->rx_desc_count--;
354 
355 		/* if the packet does not have start of packet _and_
356 		 * end of packet flag set, then just recycle it */
357 		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
358 			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
359 			dev->stats.rx_dropped++;
360 			continue;
361 		}
362 
363 		/* recycle packet if it's marked as bad */
364 		if (!priv->enet_is_sw &&
365 		    unlikely(len_stat & DMADESC_ERR_MASK)) {
366 			dev->stats.rx_errors++;
367 
368 			if (len_stat & DMADESC_OVSIZE_MASK)
369 				dev->stats.rx_length_errors++;
370 			if (len_stat & DMADESC_CRC_MASK)
371 				dev->stats.rx_crc_errors++;
372 			if (len_stat & DMADESC_UNDER_MASK)
373 				dev->stats.rx_frame_errors++;
374 			if (len_stat & DMADESC_OV_MASK)
375 				dev->stats.rx_fifo_errors++;
376 			continue;
377 		}
378 
379 		/* valid packet */
380 		skb = priv->rx_skb[desc_idx];
381 		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
382 		/* don't include FCS */
383 		len -= 4;
384 
385 		if (len < copybreak) {
386 			struct sk_buff *nskb;
387 
388 			nskb = napi_alloc_skb(&priv->napi, len);
389 			if (!nskb) {
390 				/* forget packet, just rearm desc */
391 				dev->stats.rx_dropped++;
392 				continue;
393 			}
394 
395 			dma_sync_single_for_cpu(kdev, desc->address,
396 						len, DMA_FROM_DEVICE);
397 			memcpy(nskb->data, skb->data, len);
398 			dma_sync_single_for_device(kdev, desc->address,
399 						   len, DMA_FROM_DEVICE);
400 			skb = nskb;
401 		} else {
402 			dma_unmap_single(&priv->pdev->dev, desc->address,
403 					 priv->rx_skb_size, DMA_FROM_DEVICE);
404 			priv->rx_skb[desc_idx] = NULL;
405 		}
406 
407 		skb_put(skb, len);
408 		skb->protocol = eth_type_trans(skb, dev);
409 		dev->stats.rx_packets++;
410 		dev->stats.rx_bytes += len;
411 		netif_receive_skb(skb);
412 
413 	} while (--budget > 0);
414 
415 	if (processed || !priv->rx_desc_count) {
416 		bcm_enet_refill_rx(dev);
417 
418 		/* kick rx dma */
419 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
420 					 ENETDMAC_CHANCFG, priv->rx_chan);
421 	}
422 
423 	return processed;
424 }
425 
426 
427 /*
428  * try to or force reclaim of transmitted buffers
429  */
430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
431 {
432 	struct bcm_enet_priv *priv;
433 	int released;
434 
435 	priv = netdev_priv(dev);
436 	released = 0;
437 
438 	while (priv->tx_desc_count < priv->tx_ring_size) {
439 		struct bcm_enet_desc *desc;
440 		struct sk_buff *skb;
441 
442 		/* We run in a bh and fight against start_xmit, which
443 		 * is called with bh disabled  */
444 		spin_lock(&priv->tx_lock);
445 
446 		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
447 
448 		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
449 			spin_unlock(&priv->tx_lock);
450 			break;
451 		}
452 
453 		/* ensure other field of the descriptor were not read
454 		 * before we checked ownership */
455 		rmb();
456 
457 		skb = priv->tx_skb[priv->tx_dirty_desc];
458 		priv->tx_skb[priv->tx_dirty_desc] = NULL;
459 		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
460 				 DMA_TO_DEVICE);
461 
462 		priv->tx_dirty_desc++;
463 		if (priv->tx_dirty_desc == priv->tx_ring_size)
464 			priv->tx_dirty_desc = 0;
465 		priv->tx_desc_count++;
466 
467 		spin_unlock(&priv->tx_lock);
468 
469 		if (desc->len_stat & DMADESC_UNDER_MASK)
470 			dev->stats.tx_errors++;
471 
472 		dev_kfree_skb(skb);
473 		released++;
474 	}
475 
476 	if (netif_queue_stopped(dev) && released)
477 		netif_wake_queue(dev);
478 
479 	return released;
480 }
481 
482 /*
483  * poll func, called by network core
484  */
485 static int bcm_enet_poll(struct napi_struct *napi, int budget)
486 {
487 	struct bcm_enet_priv *priv;
488 	struct net_device *dev;
489 	int rx_work_done;
490 
491 	priv = container_of(napi, struct bcm_enet_priv, napi);
492 	dev = priv->net_dev;
493 
494 	/* ack interrupts */
495 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
496 			 ENETDMAC_IR, priv->rx_chan);
497 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
498 			 ENETDMAC_IR, priv->tx_chan);
499 
500 	/* reclaim sent skb */
501 	bcm_enet_tx_reclaim(dev, 0);
502 
503 	spin_lock(&priv->rx_lock);
504 	rx_work_done = bcm_enet_receive_queue(dev, budget);
505 	spin_unlock(&priv->rx_lock);
506 
507 	if (rx_work_done >= budget) {
508 		/* rx queue is not yet empty/clean */
509 		return rx_work_done;
510 	}
511 
512 	/* no more packet in rx/tx queue, remove device from poll
513 	 * queue */
514 	napi_complete(napi);
515 
516 	/* restore rx/tx interrupt */
517 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
518 			 ENETDMAC_IRMASK, priv->rx_chan);
519 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
520 			 ENETDMAC_IRMASK, priv->tx_chan);
521 
522 	return rx_work_done;
523 }
524 
525 /*
526  * mac interrupt handler
527  */
528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
529 {
530 	struct net_device *dev;
531 	struct bcm_enet_priv *priv;
532 	u32 stat;
533 
534 	dev = dev_id;
535 	priv = netdev_priv(dev);
536 
537 	stat = enet_readl(priv, ENET_IR_REG);
538 	if (!(stat & ENET_IR_MIB))
539 		return IRQ_NONE;
540 
541 	/* clear & mask interrupt */
542 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
543 	enet_writel(priv, 0, ENET_IRMASK_REG);
544 
545 	/* read mib registers in workqueue */
546 	schedule_work(&priv->mib_update_task);
547 
548 	return IRQ_HANDLED;
549 }
550 
551 /*
552  * rx/tx dma interrupt handler
553  */
554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
555 {
556 	struct net_device *dev;
557 	struct bcm_enet_priv *priv;
558 
559 	dev = dev_id;
560 	priv = netdev_priv(dev);
561 
562 	/* mask rx/tx interrupts */
563 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
564 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
565 
566 	napi_schedule(&priv->napi);
567 
568 	return IRQ_HANDLED;
569 }
570 
571 /*
572  * tx request callback
573  */
574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576 	struct bcm_enet_priv *priv;
577 	struct bcm_enet_desc *desc;
578 	u32 len_stat;
579 	int ret;
580 
581 	priv = netdev_priv(dev);
582 
583 	/* lock against tx reclaim */
584 	spin_lock(&priv->tx_lock);
585 
586 	/* make sure  the tx hw queue  is not full,  should not happen
587 	 * since we stop queue before it's the case */
588 	if (unlikely(!priv->tx_desc_count)) {
589 		netif_stop_queue(dev);
590 		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
591 			"available?\n");
592 		ret = NETDEV_TX_BUSY;
593 		goto out_unlock;
594 	}
595 
596 	/* pad small packets sent on a switch device */
597 	if (priv->enet_is_sw && skb->len < 64) {
598 		int needed = 64 - skb->len;
599 		char *data;
600 
601 		if (unlikely(skb_tailroom(skb) < needed)) {
602 			struct sk_buff *nskb;
603 
604 			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
605 			if (!nskb) {
606 				ret = NETDEV_TX_BUSY;
607 				goto out_unlock;
608 			}
609 			dev_kfree_skb(skb);
610 			skb = nskb;
611 		}
612 		data = skb_put(skb, needed);
613 		memset(data, 0, needed);
614 	}
615 
616 	/* point to the next available desc */
617 	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
618 	priv->tx_skb[priv->tx_curr_desc] = skb;
619 
620 	/* fill descriptor */
621 	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
622 				       DMA_TO_DEVICE);
623 
624 	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
625 	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
626 		DMADESC_APPEND_CRC |
627 		DMADESC_OWNER_MASK;
628 
629 	priv->tx_curr_desc++;
630 	if (priv->tx_curr_desc == priv->tx_ring_size) {
631 		priv->tx_curr_desc = 0;
632 		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
633 	}
634 	priv->tx_desc_count--;
635 
636 	/* dma might be already polling, make sure we update desc
637 	 * fields in correct order */
638 	wmb();
639 	desc->len_stat = len_stat;
640 	wmb();
641 
642 	/* kick tx dma */
643 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
644 				 ENETDMAC_CHANCFG, priv->tx_chan);
645 
646 	/* stop queue if no more desc available */
647 	if (!priv->tx_desc_count)
648 		netif_stop_queue(dev);
649 
650 	dev->stats.tx_bytes += skb->len;
651 	dev->stats.tx_packets++;
652 	ret = NETDEV_TX_OK;
653 
654 out_unlock:
655 	spin_unlock(&priv->tx_lock);
656 	return ret;
657 }
658 
659 /*
660  * Change the interface's mac address.
661  */
662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
663 {
664 	struct bcm_enet_priv *priv;
665 	struct sockaddr *addr = p;
666 	u32 val;
667 
668 	priv = netdev_priv(dev);
669 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
670 
671 	/* use perfect match register 0 to store my mac address */
672 	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
673 		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
674 	enet_writel(priv, val, ENET_PML_REG(0));
675 
676 	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
677 	val |= ENET_PMH_DATAVALID_MASK;
678 	enet_writel(priv, val, ENET_PMH_REG(0));
679 
680 	return 0;
681 }
682 
683 /*
684  * Change rx mode (promiscuous/allmulti) and update multicast list
685  */
686 static void bcm_enet_set_multicast_list(struct net_device *dev)
687 {
688 	struct bcm_enet_priv *priv;
689 	struct netdev_hw_addr *ha;
690 	u32 val;
691 	int i;
692 
693 	priv = netdev_priv(dev);
694 
695 	val = enet_readl(priv, ENET_RXCFG_REG);
696 
697 	if (dev->flags & IFF_PROMISC)
698 		val |= ENET_RXCFG_PROMISC_MASK;
699 	else
700 		val &= ~ENET_RXCFG_PROMISC_MASK;
701 
702 	/* only 3 perfect match registers left, first one is used for
703 	 * own mac address */
704 	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
705 		val |= ENET_RXCFG_ALLMCAST_MASK;
706 	else
707 		val &= ~ENET_RXCFG_ALLMCAST_MASK;
708 
709 	/* no need to set perfect match registers if we catch all
710 	 * multicast */
711 	if (val & ENET_RXCFG_ALLMCAST_MASK) {
712 		enet_writel(priv, val, ENET_RXCFG_REG);
713 		return;
714 	}
715 
716 	i = 0;
717 	netdev_for_each_mc_addr(ha, dev) {
718 		u8 *dmi_addr;
719 		u32 tmp;
720 
721 		if (i == 3)
722 			break;
723 		/* update perfect match registers */
724 		dmi_addr = ha->addr;
725 		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
726 			(dmi_addr[4] << 8) | dmi_addr[5];
727 		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
728 
729 		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
730 		tmp |= ENET_PMH_DATAVALID_MASK;
731 		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
732 	}
733 
734 	for (; i < 3; i++) {
735 		enet_writel(priv, 0, ENET_PML_REG(i + 1));
736 		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
737 	}
738 
739 	enet_writel(priv, val, ENET_RXCFG_REG);
740 }
741 
742 /*
743  * set mac duplex parameters
744  */
745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
746 {
747 	u32 val;
748 
749 	val = enet_readl(priv, ENET_TXCTL_REG);
750 	if (fullduplex)
751 		val |= ENET_TXCTL_FD_MASK;
752 	else
753 		val &= ~ENET_TXCTL_FD_MASK;
754 	enet_writel(priv, val, ENET_TXCTL_REG);
755 }
756 
757 /*
758  * set mac flow control parameters
759  */
760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
761 {
762 	u32 val;
763 
764 	/* rx flow control (pause frame handling) */
765 	val = enet_readl(priv, ENET_RXCFG_REG);
766 	if (rx_en)
767 		val |= ENET_RXCFG_ENFLOW_MASK;
768 	else
769 		val &= ~ENET_RXCFG_ENFLOW_MASK;
770 	enet_writel(priv, val, ENET_RXCFG_REG);
771 
772 	if (!priv->dma_has_sram)
773 		return;
774 
775 	/* tx flow control (pause frame generation) */
776 	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
777 	if (tx_en)
778 		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
779 	else
780 		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
781 	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
782 }
783 
784 /*
785  * link changed callback (from phylib)
786  */
787 static void bcm_enet_adjust_phy_link(struct net_device *dev)
788 {
789 	struct bcm_enet_priv *priv;
790 	struct phy_device *phydev;
791 	int status_changed;
792 
793 	priv = netdev_priv(dev);
794 	phydev = dev->phydev;
795 	status_changed = 0;
796 
797 	if (priv->old_link != phydev->link) {
798 		status_changed = 1;
799 		priv->old_link = phydev->link;
800 	}
801 
802 	/* reflect duplex change in mac configuration */
803 	if (phydev->link && phydev->duplex != priv->old_duplex) {
804 		bcm_enet_set_duplex(priv,
805 				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
806 		status_changed = 1;
807 		priv->old_duplex = phydev->duplex;
808 	}
809 
810 	/* enable flow control if remote advertise it (trust phylib to
811 	 * check that duplex is full */
812 	if (phydev->link && phydev->pause != priv->old_pause) {
813 		int rx_pause_en, tx_pause_en;
814 
815 		if (phydev->pause) {
816 			/* pause was advertised by lpa and us */
817 			rx_pause_en = 1;
818 			tx_pause_en = 1;
819 		} else if (!priv->pause_auto) {
820 			/* pause setting overrided by user */
821 			rx_pause_en = priv->pause_rx;
822 			tx_pause_en = priv->pause_tx;
823 		} else {
824 			rx_pause_en = 0;
825 			tx_pause_en = 0;
826 		}
827 
828 		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
829 		status_changed = 1;
830 		priv->old_pause = phydev->pause;
831 	}
832 
833 	if (status_changed) {
834 		pr_info("%s: link %s", dev->name, phydev->link ?
835 			"UP" : "DOWN");
836 		if (phydev->link)
837 			pr_cont(" - %d/%s - flow control %s", phydev->speed,
838 			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
839 			       phydev->pause == 1 ? "rx&tx" : "off");
840 
841 		pr_cont("\n");
842 	}
843 }
844 
845 /*
846  * link changed callback (if phylib is not used)
847  */
848 static void bcm_enet_adjust_link(struct net_device *dev)
849 {
850 	struct bcm_enet_priv *priv;
851 
852 	priv = netdev_priv(dev);
853 	bcm_enet_set_duplex(priv, priv->force_duplex_full);
854 	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
855 	netif_carrier_on(dev);
856 
857 	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
858 		dev->name,
859 		priv->force_speed_100 ? 100 : 10,
860 		priv->force_duplex_full ? "full" : "half",
861 		priv->pause_rx ? "rx" : "off",
862 		priv->pause_tx ? "tx" : "off");
863 }
864 
865 /*
866  * open callback, allocate dma rings & buffers and start rx operation
867  */
868 static int bcm_enet_open(struct net_device *dev)
869 {
870 	struct bcm_enet_priv *priv;
871 	struct sockaddr addr;
872 	struct device *kdev;
873 	struct phy_device *phydev;
874 	int i, ret;
875 	unsigned int size;
876 	char phy_id[MII_BUS_ID_SIZE + 3];
877 	void *p;
878 	u32 val;
879 
880 	priv = netdev_priv(dev);
881 	kdev = &priv->pdev->dev;
882 
883 	if (priv->has_phy) {
884 		/* connect to PHY */
885 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
886 			 priv->mii_bus->id, priv->phy_id);
887 
888 		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
889 				     PHY_INTERFACE_MODE_MII);
890 
891 		if (IS_ERR(phydev)) {
892 			dev_err(kdev, "could not attach to PHY\n");
893 			return PTR_ERR(phydev);
894 		}
895 
896 		/* mask with MAC supported features */
897 		phydev->supported &= (SUPPORTED_10baseT_Half |
898 				      SUPPORTED_10baseT_Full |
899 				      SUPPORTED_100baseT_Half |
900 				      SUPPORTED_100baseT_Full |
901 				      SUPPORTED_Autoneg |
902 				      SUPPORTED_Pause |
903 				      SUPPORTED_MII);
904 		phydev->advertising = phydev->supported;
905 
906 		if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
907 			phydev->advertising |= SUPPORTED_Pause;
908 		else
909 			phydev->advertising &= ~SUPPORTED_Pause;
910 
911 		phy_attached_info(phydev);
912 
913 		priv->old_link = 0;
914 		priv->old_duplex = -1;
915 		priv->old_pause = -1;
916 	}
917 
918 	/* mask all interrupts and request them */
919 	enet_writel(priv, 0, ENET_IRMASK_REG);
920 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
921 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
922 
923 	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
924 	if (ret)
925 		goto out_phy_disconnect;
926 
927 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
928 			  dev->name, dev);
929 	if (ret)
930 		goto out_freeirq;
931 
932 	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
933 			  0, dev->name, dev);
934 	if (ret)
935 		goto out_freeirq_rx;
936 
937 	/* initialize perfect match registers */
938 	for (i = 0; i < 4; i++) {
939 		enet_writel(priv, 0, ENET_PML_REG(i));
940 		enet_writel(priv, 0, ENET_PMH_REG(i));
941 	}
942 
943 	/* write device mac address */
944 	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
945 	bcm_enet_set_mac_address(dev, &addr);
946 
947 	/* allocate rx dma ring */
948 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
949 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
950 	if (!p) {
951 		ret = -ENOMEM;
952 		goto out_freeirq_tx;
953 	}
954 
955 	priv->rx_desc_alloc_size = size;
956 	priv->rx_desc_cpu = p;
957 
958 	/* allocate tx dma ring */
959 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
960 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
961 	if (!p) {
962 		ret = -ENOMEM;
963 		goto out_free_rx_ring;
964 	}
965 
966 	priv->tx_desc_alloc_size = size;
967 	priv->tx_desc_cpu = p;
968 
969 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
970 			       GFP_KERNEL);
971 	if (!priv->tx_skb) {
972 		ret = -ENOMEM;
973 		goto out_free_tx_ring;
974 	}
975 
976 	priv->tx_desc_count = priv->tx_ring_size;
977 	priv->tx_dirty_desc = 0;
978 	priv->tx_curr_desc = 0;
979 	spin_lock_init(&priv->tx_lock);
980 
981 	/* init & fill rx ring with skbs */
982 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
983 			       GFP_KERNEL);
984 	if (!priv->rx_skb) {
985 		ret = -ENOMEM;
986 		goto out_free_tx_skb;
987 	}
988 
989 	priv->rx_desc_count = 0;
990 	priv->rx_dirty_desc = 0;
991 	priv->rx_curr_desc = 0;
992 
993 	/* initialize flow control buffer allocation */
994 	if (priv->dma_has_sram)
995 		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
996 				ENETDMA_BUFALLOC_REG(priv->rx_chan));
997 	else
998 		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
999 				ENETDMAC_BUFALLOC, priv->rx_chan);
1000 
1001 	if (bcm_enet_refill_rx(dev)) {
1002 		dev_err(kdev, "cannot allocate rx skb queue\n");
1003 		ret = -ENOMEM;
1004 		goto out;
1005 	}
1006 
1007 	/* write rx & tx ring addresses */
1008 	if (priv->dma_has_sram) {
1009 		enet_dmas_writel(priv, priv->rx_desc_dma,
1010 				 ENETDMAS_RSTART_REG, priv->rx_chan);
1011 		enet_dmas_writel(priv, priv->tx_desc_dma,
1012 			 ENETDMAS_RSTART_REG, priv->tx_chan);
1013 	} else {
1014 		enet_dmac_writel(priv, priv->rx_desc_dma,
1015 				ENETDMAC_RSTART, priv->rx_chan);
1016 		enet_dmac_writel(priv, priv->tx_desc_dma,
1017 				ENETDMAC_RSTART, priv->tx_chan);
1018 	}
1019 
1020 	/* clear remaining state ram for rx & tx channel */
1021 	if (priv->dma_has_sram) {
1022 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1023 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1024 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1025 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1026 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1027 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1028 	} else {
1029 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1030 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1031 	}
1032 
1033 	/* set max rx/tx length */
1034 	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1035 	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1036 
1037 	/* set dma maximum burst len */
1038 	enet_dmac_writel(priv, priv->dma_maxburst,
1039 			 ENETDMAC_MAXBURST, priv->rx_chan);
1040 	enet_dmac_writel(priv, priv->dma_maxburst,
1041 			 ENETDMAC_MAXBURST, priv->tx_chan);
1042 
1043 	/* set correct transmit fifo watermark */
1044 	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1045 
1046 	/* set flow control low/high threshold to 1/3 / 2/3 */
1047 	if (priv->dma_has_sram) {
1048 		val = priv->rx_ring_size / 3;
1049 		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1050 		val = (priv->rx_ring_size * 2) / 3;
1051 		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1052 	} else {
1053 		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1054 		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1055 		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1056 	}
1057 
1058 	/* all set, enable mac and interrupts, start dma engine and
1059 	 * kick rx dma channel */
1060 	wmb();
1061 	val = enet_readl(priv, ENET_CTL_REG);
1062 	val |= ENET_CTL_ENABLE_MASK;
1063 	enet_writel(priv, val, ENET_CTL_REG);
1064 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1065 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1066 			 ENETDMAC_CHANCFG, priv->rx_chan);
1067 
1068 	/* watch "mib counters about to overflow" interrupt */
1069 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1070 	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1071 
1072 	/* watch "packet transferred" interrupt in rx and tx */
1073 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1074 			 ENETDMAC_IR, priv->rx_chan);
1075 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1076 			 ENETDMAC_IR, priv->tx_chan);
1077 
1078 	/* make sure we enable napi before rx interrupt  */
1079 	napi_enable(&priv->napi);
1080 
1081 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1082 			 ENETDMAC_IRMASK, priv->rx_chan);
1083 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1084 			 ENETDMAC_IRMASK, priv->tx_chan);
1085 
1086 	if (priv->has_phy)
1087 		phy_start(phydev);
1088 	else
1089 		bcm_enet_adjust_link(dev);
1090 
1091 	netif_start_queue(dev);
1092 	return 0;
1093 
1094 out:
1095 	for (i = 0; i < priv->rx_ring_size; i++) {
1096 		struct bcm_enet_desc *desc;
1097 
1098 		if (!priv->rx_skb[i])
1099 			continue;
1100 
1101 		desc = &priv->rx_desc_cpu[i];
1102 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1103 				 DMA_FROM_DEVICE);
1104 		kfree_skb(priv->rx_skb[i]);
1105 	}
1106 	kfree(priv->rx_skb);
1107 
1108 out_free_tx_skb:
1109 	kfree(priv->tx_skb);
1110 
1111 out_free_tx_ring:
1112 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1113 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1114 
1115 out_free_rx_ring:
1116 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1117 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1118 
1119 out_freeirq_tx:
1120 	free_irq(priv->irq_tx, dev);
1121 
1122 out_freeirq_rx:
1123 	free_irq(priv->irq_rx, dev);
1124 
1125 out_freeirq:
1126 	free_irq(dev->irq, dev);
1127 
1128 out_phy_disconnect:
1129 	phy_disconnect(phydev);
1130 
1131 	return ret;
1132 }
1133 
1134 /*
1135  * disable mac
1136  */
1137 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1138 {
1139 	int limit;
1140 	u32 val;
1141 
1142 	val = enet_readl(priv, ENET_CTL_REG);
1143 	val |= ENET_CTL_DISABLE_MASK;
1144 	enet_writel(priv, val, ENET_CTL_REG);
1145 
1146 	limit = 1000;
1147 	do {
1148 		u32 val;
1149 
1150 		val = enet_readl(priv, ENET_CTL_REG);
1151 		if (!(val & ENET_CTL_DISABLE_MASK))
1152 			break;
1153 		udelay(1);
1154 	} while (limit--);
1155 }
1156 
1157 /*
1158  * disable dma in given channel
1159  */
1160 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1161 {
1162 	int limit;
1163 
1164 	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1165 
1166 	limit = 1000;
1167 	do {
1168 		u32 val;
1169 
1170 		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1171 		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1172 			break;
1173 		udelay(1);
1174 	} while (limit--);
1175 }
1176 
1177 /*
1178  * stop callback
1179  */
1180 static int bcm_enet_stop(struct net_device *dev)
1181 {
1182 	struct bcm_enet_priv *priv;
1183 	struct device *kdev;
1184 	int i;
1185 
1186 	priv = netdev_priv(dev);
1187 	kdev = &priv->pdev->dev;
1188 
1189 	netif_stop_queue(dev);
1190 	napi_disable(&priv->napi);
1191 	if (priv->has_phy)
1192 		phy_stop(dev->phydev);
1193 	del_timer_sync(&priv->rx_timeout);
1194 
1195 	/* mask all interrupts */
1196 	enet_writel(priv, 0, ENET_IRMASK_REG);
1197 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1198 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1199 
1200 	/* make sure no mib update is scheduled */
1201 	cancel_work_sync(&priv->mib_update_task);
1202 
1203 	/* disable dma & mac */
1204 	bcm_enet_disable_dma(priv, priv->tx_chan);
1205 	bcm_enet_disable_dma(priv, priv->rx_chan);
1206 	bcm_enet_disable_mac(priv);
1207 
1208 	/* force reclaim of all tx buffers */
1209 	bcm_enet_tx_reclaim(dev, 1);
1210 
1211 	/* free the rx skb ring */
1212 	for (i = 0; i < priv->rx_ring_size; i++) {
1213 		struct bcm_enet_desc *desc;
1214 
1215 		if (!priv->rx_skb[i])
1216 			continue;
1217 
1218 		desc = &priv->rx_desc_cpu[i];
1219 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1220 				 DMA_FROM_DEVICE);
1221 		kfree_skb(priv->rx_skb[i]);
1222 	}
1223 
1224 	/* free remaining allocated memory */
1225 	kfree(priv->rx_skb);
1226 	kfree(priv->tx_skb);
1227 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1228 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1229 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1230 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1231 	free_irq(priv->irq_tx, dev);
1232 	free_irq(priv->irq_rx, dev);
1233 	free_irq(dev->irq, dev);
1234 
1235 	/* release phy */
1236 	if (priv->has_phy)
1237 		phy_disconnect(dev->phydev);
1238 
1239 	return 0;
1240 }
1241 
1242 /*
1243  * ethtool callbacks
1244  */
1245 struct bcm_enet_stats {
1246 	char stat_string[ETH_GSTRING_LEN];
1247 	int sizeof_stat;
1248 	int stat_offset;
1249 	int mib_reg;
1250 };
1251 
1252 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1253 		     offsetof(struct bcm_enet_priv, m)
1254 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1255 		     offsetof(struct net_device_stats, m)
1256 
1257 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1258 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1259 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1260 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1261 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1262 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1263 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1264 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1265 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1266 
1267 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1268 	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1269 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1270 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1271 	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1272 	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1273 	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1274 	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1275 	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1276 	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1277 	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1278 	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1279 	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1280 	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1281 	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1282 	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1283 	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1284 	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1285 	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1286 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1287 	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1288 
1289 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1290 	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1291 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1292 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1293 	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1294 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1295 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1296 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1297 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1298 	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1299 	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1300 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1301 	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1302 	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1303 	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1304 	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1305 	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1306 	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1307 	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1308 	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1309 	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1310 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1311 
1312 };
1313 
1314 #define BCM_ENET_STATS_LEN	ARRAY_SIZE(bcm_enet_gstrings_stats)
1315 
1316 static const u32 unused_mib_regs[] = {
1317 	ETH_MIB_TX_ALL_OCTETS,
1318 	ETH_MIB_TX_ALL_PKTS,
1319 	ETH_MIB_RX_ALL_OCTETS,
1320 	ETH_MIB_RX_ALL_PKTS,
1321 };
1322 
1323 
1324 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1325 				 struct ethtool_drvinfo *drvinfo)
1326 {
1327 	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1328 	strlcpy(drvinfo->version, bcm_enet_driver_version,
1329 		sizeof(drvinfo->version));
1330 	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1331 	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1332 }
1333 
1334 static int bcm_enet_get_sset_count(struct net_device *netdev,
1335 					int string_set)
1336 {
1337 	switch (string_set) {
1338 	case ETH_SS_STATS:
1339 		return BCM_ENET_STATS_LEN;
1340 	default:
1341 		return -EINVAL;
1342 	}
1343 }
1344 
1345 static void bcm_enet_get_strings(struct net_device *netdev,
1346 				 u32 stringset, u8 *data)
1347 {
1348 	int i;
1349 
1350 	switch (stringset) {
1351 	case ETH_SS_STATS:
1352 		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1353 			memcpy(data + i * ETH_GSTRING_LEN,
1354 			       bcm_enet_gstrings_stats[i].stat_string,
1355 			       ETH_GSTRING_LEN);
1356 		}
1357 		break;
1358 	}
1359 }
1360 
1361 static void update_mib_counters(struct bcm_enet_priv *priv)
1362 {
1363 	int i;
1364 
1365 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1366 		const struct bcm_enet_stats *s;
1367 		u32 val;
1368 		char *p;
1369 
1370 		s = &bcm_enet_gstrings_stats[i];
1371 		if (s->mib_reg == -1)
1372 			continue;
1373 
1374 		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1375 		p = (char *)priv + s->stat_offset;
1376 
1377 		if (s->sizeof_stat == sizeof(u64))
1378 			*(u64 *)p += val;
1379 		else
1380 			*(u32 *)p += val;
1381 	}
1382 
1383 	/* also empty unused mib counters to make sure mib counter
1384 	 * overflow interrupt is cleared */
1385 	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1386 		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1387 }
1388 
1389 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1390 {
1391 	struct bcm_enet_priv *priv;
1392 
1393 	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1394 	mutex_lock(&priv->mib_update_lock);
1395 	update_mib_counters(priv);
1396 	mutex_unlock(&priv->mib_update_lock);
1397 
1398 	/* reenable mib interrupt */
1399 	if (netif_running(priv->net_dev))
1400 		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1401 }
1402 
1403 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1404 				       struct ethtool_stats *stats,
1405 				       u64 *data)
1406 {
1407 	struct bcm_enet_priv *priv;
1408 	int i;
1409 
1410 	priv = netdev_priv(netdev);
1411 
1412 	mutex_lock(&priv->mib_update_lock);
1413 	update_mib_counters(priv);
1414 
1415 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1416 		const struct bcm_enet_stats *s;
1417 		char *p;
1418 
1419 		s = &bcm_enet_gstrings_stats[i];
1420 		if (s->mib_reg == -1)
1421 			p = (char *)&netdev->stats;
1422 		else
1423 			p = (char *)priv;
1424 		p += s->stat_offset;
1425 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1426 			*(u64 *)p : *(u32 *)p;
1427 	}
1428 	mutex_unlock(&priv->mib_update_lock);
1429 }
1430 
1431 static int bcm_enet_nway_reset(struct net_device *dev)
1432 {
1433 	struct bcm_enet_priv *priv;
1434 
1435 	priv = netdev_priv(dev);
1436 	if (priv->has_phy) {
1437 		if (!dev->phydev)
1438 			return -ENODEV;
1439 		return genphy_restart_aneg(dev->phydev);
1440 	}
1441 
1442 	return -EOPNOTSUPP;
1443 }
1444 
1445 static int bcm_enet_get_link_ksettings(struct net_device *dev,
1446 				       struct ethtool_link_ksettings *cmd)
1447 {
1448 	struct bcm_enet_priv *priv;
1449 	u32 supported, advertising;
1450 
1451 	priv = netdev_priv(dev);
1452 
1453 	if (priv->has_phy) {
1454 		if (!dev->phydev)
1455 			return -ENODEV;
1456 		return phy_ethtool_ksettings_get(dev->phydev, cmd);
1457 	} else {
1458 		cmd->base.autoneg = 0;
1459 		cmd->base.speed = (priv->force_speed_100) ?
1460 			SPEED_100 : SPEED_10;
1461 		cmd->base.duplex = (priv->force_duplex_full) ?
1462 			DUPLEX_FULL : DUPLEX_HALF;
1463 		supported = ADVERTISED_10baseT_Half |
1464 			ADVERTISED_10baseT_Full |
1465 			ADVERTISED_100baseT_Half |
1466 			ADVERTISED_100baseT_Full;
1467 		advertising = 0;
1468 		ethtool_convert_legacy_u32_to_link_mode(
1469 			cmd->link_modes.supported, supported);
1470 		ethtool_convert_legacy_u32_to_link_mode(
1471 			cmd->link_modes.advertising, advertising);
1472 		cmd->base.port = PORT_MII;
1473 	}
1474 	return 0;
1475 }
1476 
1477 static int bcm_enet_set_link_ksettings(struct net_device *dev,
1478 				       const struct ethtool_link_ksettings *cmd)
1479 {
1480 	struct bcm_enet_priv *priv;
1481 
1482 	priv = netdev_priv(dev);
1483 	if (priv->has_phy) {
1484 		if (!dev->phydev)
1485 			return -ENODEV;
1486 		return phy_ethtool_ksettings_set(dev->phydev, cmd);
1487 	} else {
1488 
1489 		if (cmd->base.autoneg ||
1490 		    (cmd->base.speed != SPEED_100 &&
1491 		     cmd->base.speed != SPEED_10) ||
1492 		    cmd->base.port != PORT_MII)
1493 			return -EINVAL;
1494 
1495 		priv->force_speed_100 =
1496 			(cmd->base.speed == SPEED_100) ? 1 : 0;
1497 		priv->force_duplex_full =
1498 			(cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1499 
1500 		if (netif_running(dev))
1501 			bcm_enet_adjust_link(dev);
1502 		return 0;
1503 	}
1504 }
1505 
1506 static void bcm_enet_get_ringparam(struct net_device *dev,
1507 				   struct ethtool_ringparam *ering)
1508 {
1509 	struct bcm_enet_priv *priv;
1510 
1511 	priv = netdev_priv(dev);
1512 
1513 	/* rx/tx ring is actually only limited by memory */
1514 	ering->rx_max_pending = 8192;
1515 	ering->tx_max_pending = 8192;
1516 	ering->rx_pending = priv->rx_ring_size;
1517 	ering->tx_pending = priv->tx_ring_size;
1518 }
1519 
1520 static int bcm_enet_set_ringparam(struct net_device *dev,
1521 				  struct ethtool_ringparam *ering)
1522 {
1523 	struct bcm_enet_priv *priv;
1524 	int was_running;
1525 
1526 	priv = netdev_priv(dev);
1527 
1528 	was_running = 0;
1529 	if (netif_running(dev)) {
1530 		bcm_enet_stop(dev);
1531 		was_running = 1;
1532 	}
1533 
1534 	priv->rx_ring_size = ering->rx_pending;
1535 	priv->tx_ring_size = ering->tx_pending;
1536 
1537 	if (was_running) {
1538 		int err;
1539 
1540 		err = bcm_enet_open(dev);
1541 		if (err)
1542 			dev_close(dev);
1543 		else
1544 			bcm_enet_set_multicast_list(dev);
1545 	}
1546 	return 0;
1547 }
1548 
1549 static void bcm_enet_get_pauseparam(struct net_device *dev,
1550 				    struct ethtool_pauseparam *ecmd)
1551 {
1552 	struct bcm_enet_priv *priv;
1553 
1554 	priv = netdev_priv(dev);
1555 	ecmd->autoneg = priv->pause_auto;
1556 	ecmd->rx_pause = priv->pause_rx;
1557 	ecmd->tx_pause = priv->pause_tx;
1558 }
1559 
1560 static int bcm_enet_set_pauseparam(struct net_device *dev,
1561 				   struct ethtool_pauseparam *ecmd)
1562 {
1563 	struct bcm_enet_priv *priv;
1564 
1565 	priv = netdev_priv(dev);
1566 
1567 	if (priv->has_phy) {
1568 		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1569 			/* asymetric pause mode not supported,
1570 			 * actually possible but integrated PHY has RO
1571 			 * asym_pause bit */
1572 			return -EINVAL;
1573 		}
1574 	} else {
1575 		/* no pause autoneg on direct mii connection */
1576 		if (ecmd->autoneg)
1577 			return -EINVAL;
1578 	}
1579 
1580 	priv->pause_auto = ecmd->autoneg;
1581 	priv->pause_rx = ecmd->rx_pause;
1582 	priv->pause_tx = ecmd->tx_pause;
1583 
1584 	return 0;
1585 }
1586 
1587 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1588 	.get_strings		= bcm_enet_get_strings,
1589 	.get_sset_count		= bcm_enet_get_sset_count,
1590 	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1591 	.nway_reset		= bcm_enet_nway_reset,
1592 	.get_drvinfo		= bcm_enet_get_drvinfo,
1593 	.get_link		= ethtool_op_get_link,
1594 	.get_ringparam		= bcm_enet_get_ringparam,
1595 	.set_ringparam		= bcm_enet_set_ringparam,
1596 	.get_pauseparam		= bcm_enet_get_pauseparam,
1597 	.set_pauseparam		= bcm_enet_set_pauseparam,
1598 	.get_link_ksettings	= bcm_enet_get_link_ksettings,
1599 	.set_link_ksettings	= bcm_enet_set_link_ksettings,
1600 };
1601 
1602 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1603 {
1604 	struct bcm_enet_priv *priv;
1605 
1606 	priv = netdev_priv(dev);
1607 	if (priv->has_phy) {
1608 		if (!dev->phydev)
1609 			return -ENODEV;
1610 		return phy_mii_ioctl(dev->phydev, rq, cmd);
1611 	} else {
1612 		struct mii_if_info mii;
1613 
1614 		mii.dev = dev;
1615 		mii.mdio_read = bcm_enet_mdio_read_mii;
1616 		mii.mdio_write = bcm_enet_mdio_write_mii;
1617 		mii.phy_id = 0;
1618 		mii.phy_id_mask = 0x3f;
1619 		mii.reg_num_mask = 0x1f;
1620 		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1621 	}
1622 }
1623 
1624 /*
1625  * calculate actual hardware mtu
1626  */
1627 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
1628 {
1629 	int actual_mtu;
1630 
1631 	actual_mtu = mtu;
1632 
1633 	/* add ethernet header + vlan tag size */
1634 	actual_mtu += VLAN_ETH_HLEN;
1635 
1636 	if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
1637 		return -EINVAL;
1638 
1639 	/*
1640 	 * setup maximum size before we get overflow mark in
1641 	 * descriptor, note that this will not prevent reception of
1642 	 * big frames, they will be split into multiple buffers
1643 	 * anyway
1644 	 */
1645 	priv->hw_mtu = actual_mtu;
1646 
1647 	/*
1648 	 * align rx buffer size to dma burst len, account FCS since
1649 	 * it's appended
1650 	 */
1651 	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1652 				  priv->dma_maxburst * 4);
1653 	return 0;
1654 }
1655 
1656 /*
1657  * adjust mtu, can't be called while device is running
1658  */
1659 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1660 {
1661 	int ret;
1662 
1663 	if (netif_running(dev))
1664 		return -EBUSY;
1665 
1666 	ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
1667 	if (ret)
1668 		return ret;
1669 	dev->mtu = new_mtu;
1670 	return 0;
1671 }
1672 
1673 /*
1674  * preinit hardware to allow mii operation while device is down
1675  */
1676 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1677 {
1678 	u32 val;
1679 	int limit;
1680 
1681 	/* make sure mac is disabled */
1682 	bcm_enet_disable_mac(priv);
1683 
1684 	/* soft reset mac */
1685 	val = ENET_CTL_SRESET_MASK;
1686 	enet_writel(priv, val, ENET_CTL_REG);
1687 	wmb();
1688 
1689 	limit = 1000;
1690 	do {
1691 		val = enet_readl(priv, ENET_CTL_REG);
1692 		if (!(val & ENET_CTL_SRESET_MASK))
1693 			break;
1694 		udelay(1);
1695 	} while (limit--);
1696 
1697 	/* select correct mii interface */
1698 	val = enet_readl(priv, ENET_CTL_REG);
1699 	if (priv->use_external_mii)
1700 		val |= ENET_CTL_EPHYSEL_MASK;
1701 	else
1702 		val &= ~ENET_CTL_EPHYSEL_MASK;
1703 	enet_writel(priv, val, ENET_CTL_REG);
1704 
1705 	/* turn on mdc clock */
1706 	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1707 		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1708 
1709 	/* set mib counters to self-clear when read */
1710 	val = enet_readl(priv, ENET_MIBCTL_REG);
1711 	val |= ENET_MIBCTL_RDCLEAR_MASK;
1712 	enet_writel(priv, val, ENET_MIBCTL_REG);
1713 }
1714 
1715 static const struct net_device_ops bcm_enet_ops = {
1716 	.ndo_open		= bcm_enet_open,
1717 	.ndo_stop		= bcm_enet_stop,
1718 	.ndo_start_xmit		= bcm_enet_start_xmit,
1719 	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1720 	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1721 	.ndo_do_ioctl		= bcm_enet_ioctl,
1722 	.ndo_change_mtu		= bcm_enet_change_mtu,
1723 };
1724 
1725 /*
1726  * allocate netdevice, request register memory and register device.
1727  */
1728 static int bcm_enet_probe(struct platform_device *pdev)
1729 {
1730 	struct bcm_enet_priv *priv;
1731 	struct net_device *dev;
1732 	struct bcm63xx_enet_platform_data *pd;
1733 	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1734 	struct mii_bus *bus;
1735 	const char *clk_name;
1736 	int i, ret;
1737 
1738 	/* stop if shared driver failed, assume driver->probe will be
1739 	 * called in the same order we register devices (correct ?) */
1740 	if (!bcm_enet_shared_base[0])
1741 		return -ENODEV;
1742 
1743 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1744 	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1745 	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1746 	if (!res_irq || !res_irq_rx || !res_irq_tx)
1747 		return -ENODEV;
1748 
1749 	ret = 0;
1750 	dev = alloc_etherdev(sizeof(*priv));
1751 	if (!dev)
1752 		return -ENOMEM;
1753 	priv = netdev_priv(dev);
1754 
1755 	priv->enet_is_sw = false;
1756 	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1757 
1758 	ret = compute_hw_mtu(priv, dev->mtu);
1759 	if (ret)
1760 		goto out;
1761 
1762 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1763 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1764 	if (IS_ERR(priv->base)) {
1765 		ret = PTR_ERR(priv->base);
1766 		goto out;
1767 	}
1768 
1769 	dev->irq = priv->irq = res_irq->start;
1770 	priv->irq_rx = res_irq_rx->start;
1771 	priv->irq_tx = res_irq_tx->start;
1772 	priv->mac_id = pdev->id;
1773 
1774 	/* get rx & tx dma channel id for this mac */
1775 	if (priv->mac_id == 0) {
1776 		priv->rx_chan = 0;
1777 		priv->tx_chan = 1;
1778 		clk_name = "enet0";
1779 	} else {
1780 		priv->rx_chan = 2;
1781 		priv->tx_chan = 3;
1782 		clk_name = "enet1";
1783 	}
1784 
1785 	priv->mac_clk = clk_get(&pdev->dev, clk_name);
1786 	if (IS_ERR(priv->mac_clk)) {
1787 		ret = PTR_ERR(priv->mac_clk);
1788 		goto out;
1789 	}
1790 	clk_prepare_enable(priv->mac_clk);
1791 
1792 	/* initialize default and fetch platform data */
1793 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1794 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1795 
1796 	pd = dev_get_platdata(&pdev->dev);
1797 	if (pd) {
1798 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1799 		priv->has_phy = pd->has_phy;
1800 		priv->phy_id = pd->phy_id;
1801 		priv->has_phy_interrupt = pd->has_phy_interrupt;
1802 		priv->phy_interrupt = pd->phy_interrupt;
1803 		priv->use_external_mii = !pd->use_internal_phy;
1804 		priv->pause_auto = pd->pause_auto;
1805 		priv->pause_rx = pd->pause_rx;
1806 		priv->pause_tx = pd->pause_tx;
1807 		priv->force_duplex_full = pd->force_duplex_full;
1808 		priv->force_speed_100 = pd->force_speed_100;
1809 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1810 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1811 		priv->dma_chan_width = pd->dma_chan_width;
1812 		priv->dma_has_sram = pd->dma_has_sram;
1813 		priv->dma_desc_shift = pd->dma_desc_shift;
1814 	}
1815 
1816 	if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1817 		/* using internal PHY, enable clock */
1818 		priv->phy_clk = clk_get(&pdev->dev, "ephy");
1819 		if (IS_ERR(priv->phy_clk)) {
1820 			ret = PTR_ERR(priv->phy_clk);
1821 			priv->phy_clk = NULL;
1822 			goto out_put_clk_mac;
1823 		}
1824 		clk_prepare_enable(priv->phy_clk);
1825 	}
1826 
1827 	/* do minimal hardware init to be able to probe mii bus */
1828 	bcm_enet_hw_preinit(priv);
1829 
1830 	/* MII bus registration */
1831 	if (priv->has_phy) {
1832 
1833 		priv->mii_bus = mdiobus_alloc();
1834 		if (!priv->mii_bus) {
1835 			ret = -ENOMEM;
1836 			goto out_uninit_hw;
1837 		}
1838 
1839 		bus = priv->mii_bus;
1840 		bus->name = "bcm63xx_enet MII bus";
1841 		bus->parent = &pdev->dev;
1842 		bus->priv = priv;
1843 		bus->read = bcm_enet_mdio_read_phylib;
1844 		bus->write = bcm_enet_mdio_write_phylib;
1845 		sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
1846 
1847 		/* only probe bus where we think the PHY is, because
1848 		 * the mdio read operation return 0 instead of 0xffff
1849 		 * if a slave is not present on hw */
1850 		bus->phy_mask = ~(1 << priv->phy_id);
1851 
1852 		if (priv->has_phy_interrupt)
1853 			bus->irq[priv->phy_id] = priv->phy_interrupt;
1854 
1855 		ret = mdiobus_register(bus);
1856 		if (ret) {
1857 			dev_err(&pdev->dev, "unable to register mdio bus\n");
1858 			goto out_free_mdio;
1859 		}
1860 	} else {
1861 
1862 		/* run platform code to initialize PHY device */
1863 		if (pd && pd->mii_config &&
1864 		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1865 				   bcm_enet_mdio_write_mii)) {
1866 			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1867 			goto out_uninit_hw;
1868 		}
1869 	}
1870 
1871 	spin_lock_init(&priv->rx_lock);
1872 
1873 	/* init rx timeout (used for oom) */
1874 	init_timer(&priv->rx_timeout);
1875 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1876 	priv->rx_timeout.data = (unsigned long)dev;
1877 
1878 	/* init the mib update lock&work */
1879 	mutex_init(&priv->mib_update_lock);
1880 	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1881 
1882 	/* zero mib counters */
1883 	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1884 		enet_writel(priv, 0, ENET_MIB_REG(i));
1885 
1886 	/* register netdevice */
1887 	dev->netdev_ops = &bcm_enet_ops;
1888 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1889 
1890 	dev->ethtool_ops = &bcm_enet_ethtool_ops;
1891 	SET_NETDEV_DEV(dev, &pdev->dev);
1892 
1893 	ret = register_netdev(dev);
1894 	if (ret)
1895 		goto out_unregister_mdio;
1896 
1897 	netif_carrier_off(dev);
1898 	platform_set_drvdata(pdev, dev);
1899 	priv->pdev = pdev;
1900 	priv->net_dev = dev;
1901 
1902 	return 0;
1903 
1904 out_unregister_mdio:
1905 	if (priv->mii_bus)
1906 		mdiobus_unregister(priv->mii_bus);
1907 
1908 out_free_mdio:
1909 	if (priv->mii_bus)
1910 		mdiobus_free(priv->mii_bus);
1911 
1912 out_uninit_hw:
1913 	/* turn off mdc clock */
1914 	enet_writel(priv, 0, ENET_MIISC_REG);
1915 	if (priv->phy_clk) {
1916 		clk_disable_unprepare(priv->phy_clk);
1917 		clk_put(priv->phy_clk);
1918 	}
1919 
1920 out_put_clk_mac:
1921 	clk_disable_unprepare(priv->mac_clk);
1922 	clk_put(priv->mac_clk);
1923 out:
1924 	free_netdev(dev);
1925 	return ret;
1926 }
1927 
1928 
1929 /*
1930  * exit func, stops hardware and unregisters netdevice
1931  */
1932 static int bcm_enet_remove(struct platform_device *pdev)
1933 {
1934 	struct bcm_enet_priv *priv;
1935 	struct net_device *dev;
1936 
1937 	/* stop netdevice */
1938 	dev = platform_get_drvdata(pdev);
1939 	priv = netdev_priv(dev);
1940 	unregister_netdev(dev);
1941 
1942 	/* turn off mdc clock */
1943 	enet_writel(priv, 0, ENET_MIISC_REG);
1944 
1945 	if (priv->has_phy) {
1946 		mdiobus_unregister(priv->mii_bus);
1947 		mdiobus_free(priv->mii_bus);
1948 	} else {
1949 		struct bcm63xx_enet_platform_data *pd;
1950 
1951 		pd = dev_get_platdata(&pdev->dev);
1952 		if (pd && pd->mii_config)
1953 			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1954 				       bcm_enet_mdio_write_mii);
1955 	}
1956 
1957 	/* disable hw block clocks */
1958 	if (priv->phy_clk) {
1959 		clk_disable_unprepare(priv->phy_clk);
1960 		clk_put(priv->phy_clk);
1961 	}
1962 	clk_disable_unprepare(priv->mac_clk);
1963 	clk_put(priv->mac_clk);
1964 
1965 	free_netdev(dev);
1966 	return 0;
1967 }
1968 
1969 struct platform_driver bcm63xx_enet_driver = {
1970 	.probe	= bcm_enet_probe,
1971 	.remove	= bcm_enet_remove,
1972 	.driver	= {
1973 		.name	= "bcm63xx_enet",
1974 		.owner  = THIS_MODULE,
1975 	},
1976 };
1977 
1978 /*
1979  * switch mii access callbacks
1980  */
1981 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1982 				int ext, int phy_id, int location)
1983 {
1984 	u32 reg;
1985 	int ret;
1986 
1987 	spin_lock_bh(&priv->enetsw_mdio_lock);
1988 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1989 
1990 	reg = ENETSW_MDIOC_RD_MASK |
1991 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1992 		(location << ENETSW_MDIOC_REG_SHIFT);
1993 
1994 	if (ext)
1995 		reg |= ENETSW_MDIOC_EXT_MASK;
1996 
1997 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1998 	udelay(50);
1999 	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
2000 	spin_unlock_bh(&priv->enetsw_mdio_lock);
2001 	return ret;
2002 }
2003 
2004 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
2005 				 int ext, int phy_id, int location,
2006 				 uint16_t data)
2007 {
2008 	u32 reg;
2009 
2010 	spin_lock_bh(&priv->enetsw_mdio_lock);
2011 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
2012 
2013 	reg = ENETSW_MDIOC_WR_MASK |
2014 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2015 		(location << ENETSW_MDIOC_REG_SHIFT);
2016 
2017 	if (ext)
2018 		reg |= ENETSW_MDIOC_EXT_MASK;
2019 
2020 	reg |= data;
2021 
2022 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2023 	udelay(50);
2024 	spin_unlock_bh(&priv->enetsw_mdio_lock);
2025 }
2026 
2027 static inline int bcm_enet_port_is_rgmii(int portid)
2028 {
2029 	return portid >= ENETSW_RGMII_PORT0;
2030 }
2031 
2032 /*
2033  * enet sw PHY polling
2034  */
2035 static void swphy_poll_timer(unsigned long data)
2036 {
2037 	struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
2038 	unsigned int i;
2039 
2040 	for (i = 0; i < priv->num_ports; i++) {
2041 		struct bcm63xx_enetsw_port *port;
2042 		int val, j, up, advertise, lpa, speed, duplex, media;
2043 		int external_phy = bcm_enet_port_is_rgmii(i);
2044 		u8 override;
2045 
2046 		port = &priv->used_ports[i];
2047 		if (!port->used)
2048 			continue;
2049 
2050 		if (port->bypass_link)
2051 			continue;
2052 
2053 		/* dummy read to clear */
2054 		for (j = 0; j < 2; j++)
2055 			val = bcmenet_sw_mdio_read(priv, external_phy,
2056 						   port->phy_id, MII_BMSR);
2057 
2058 		if (val == 0xffff)
2059 			continue;
2060 
2061 		up = (val & BMSR_LSTATUS) ? 1 : 0;
2062 		if (!(up ^ priv->sw_port_link[i]))
2063 			continue;
2064 
2065 		priv->sw_port_link[i] = up;
2066 
2067 		/* link changed */
2068 		if (!up) {
2069 			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2070 				 port->name);
2071 			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2072 				      ENETSW_PORTOV_REG(i));
2073 			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2074 				      ENETSW_PTCTRL_TXDIS_MASK,
2075 				      ENETSW_PTCTRL_REG(i));
2076 			continue;
2077 		}
2078 
2079 		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2080 						 port->phy_id, MII_ADVERTISE);
2081 
2082 		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2083 					   MII_LPA);
2084 
2085 		/* figure out media and duplex from advertise and LPA values */
2086 		media = mii_nway_result(lpa & advertise);
2087 		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2088 
2089 		if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2090 			speed = 100;
2091 		else
2092 			speed = 10;
2093 
2094 		if (val & BMSR_ESTATEN) {
2095 			advertise = bcmenet_sw_mdio_read(priv, external_phy,
2096 						port->phy_id, MII_CTRL1000);
2097 
2098 			lpa = bcmenet_sw_mdio_read(priv, external_phy,
2099 						port->phy_id, MII_STAT1000);
2100 
2101 			if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2102 					&& lpa & (LPA_1000FULL | LPA_1000HALF)) {
2103 				speed = 1000;
2104 				duplex = (lpa & LPA_1000FULL);
2105 			}
2106 		}
2107 
2108 		dev_info(&priv->pdev->dev,
2109 			 "link UP on %s, %dMbps, %s-duplex\n",
2110 			 port->name, speed, duplex ? "full" : "half");
2111 
2112 		override = ENETSW_PORTOV_ENABLE_MASK |
2113 			ENETSW_PORTOV_LINKUP_MASK;
2114 
2115 		if (speed == 1000)
2116 			override |= ENETSW_IMPOV_1000_MASK;
2117 		else if (speed == 100)
2118 			override |= ENETSW_IMPOV_100_MASK;
2119 		if (duplex)
2120 			override |= ENETSW_IMPOV_FDX_MASK;
2121 
2122 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2123 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2124 	}
2125 
2126 	priv->swphy_poll.expires = jiffies + HZ;
2127 	add_timer(&priv->swphy_poll);
2128 }
2129 
2130 /*
2131  * open callback, allocate dma rings & buffers and start rx operation
2132  */
2133 static int bcm_enetsw_open(struct net_device *dev)
2134 {
2135 	struct bcm_enet_priv *priv;
2136 	struct device *kdev;
2137 	int i, ret;
2138 	unsigned int size;
2139 	void *p;
2140 	u32 val;
2141 
2142 	priv = netdev_priv(dev);
2143 	kdev = &priv->pdev->dev;
2144 
2145 	/* mask all interrupts and request them */
2146 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2147 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2148 
2149 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2150 			  0, dev->name, dev);
2151 	if (ret)
2152 		goto out_freeirq;
2153 
2154 	if (priv->irq_tx != -1) {
2155 		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2156 				  0, dev->name, dev);
2157 		if (ret)
2158 			goto out_freeirq_rx;
2159 	}
2160 
2161 	/* allocate rx dma ring */
2162 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2163 	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2164 	if (!p) {
2165 		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2166 		ret = -ENOMEM;
2167 		goto out_freeirq_tx;
2168 	}
2169 
2170 	memset(p, 0, size);
2171 	priv->rx_desc_alloc_size = size;
2172 	priv->rx_desc_cpu = p;
2173 
2174 	/* allocate tx dma ring */
2175 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2176 	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2177 	if (!p) {
2178 		dev_err(kdev, "cannot allocate tx ring\n");
2179 		ret = -ENOMEM;
2180 		goto out_free_rx_ring;
2181 	}
2182 
2183 	memset(p, 0, size);
2184 	priv->tx_desc_alloc_size = size;
2185 	priv->tx_desc_cpu = p;
2186 
2187 	priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2188 			       GFP_KERNEL);
2189 	if (!priv->tx_skb) {
2190 		dev_err(kdev, "cannot allocate rx skb queue\n");
2191 		ret = -ENOMEM;
2192 		goto out_free_tx_ring;
2193 	}
2194 
2195 	priv->tx_desc_count = priv->tx_ring_size;
2196 	priv->tx_dirty_desc = 0;
2197 	priv->tx_curr_desc = 0;
2198 	spin_lock_init(&priv->tx_lock);
2199 
2200 	/* init & fill rx ring with skbs */
2201 	priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2202 			       GFP_KERNEL);
2203 	if (!priv->rx_skb) {
2204 		dev_err(kdev, "cannot allocate rx skb queue\n");
2205 		ret = -ENOMEM;
2206 		goto out_free_tx_skb;
2207 	}
2208 
2209 	priv->rx_desc_count = 0;
2210 	priv->rx_dirty_desc = 0;
2211 	priv->rx_curr_desc = 0;
2212 
2213 	/* disable all ports */
2214 	for (i = 0; i < priv->num_ports; i++) {
2215 		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2216 			      ENETSW_PORTOV_REG(i));
2217 		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2218 			      ENETSW_PTCTRL_TXDIS_MASK,
2219 			      ENETSW_PTCTRL_REG(i));
2220 
2221 		priv->sw_port_link[i] = 0;
2222 	}
2223 
2224 	/* reset mib */
2225 	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2226 	val |= ENETSW_GMCR_RST_MIB_MASK;
2227 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2228 	mdelay(1);
2229 	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2230 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2231 	mdelay(1);
2232 
2233 	/* force CPU port state */
2234 	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2235 	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2236 	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2237 
2238 	/* enable switch forward engine */
2239 	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2240 	val |= ENETSW_SWMODE_FWD_EN_MASK;
2241 	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2242 
2243 	/* enable jumbo on all ports */
2244 	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2245 	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2246 
2247 	/* initialize flow control buffer allocation */
2248 	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2249 			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2250 
2251 	if (bcm_enet_refill_rx(dev)) {
2252 		dev_err(kdev, "cannot allocate rx skb queue\n");
2253 		ret = -ENOMEM;
2254 		goto out;
2255 	}
2256 
2257 	/* write rx & tx ring addresses */
2258 	enet_dmas_writel(priv, priv->rx_desc_dma,
2259 			 ENETDMAS_RSTART_REG, priv->rx_chan);
2260 	enet_dmas_writel(priv, priv->tx_desc_dma,
2261 			 ENETDMAS_RSTART_REG, priv->tx_chan);
2262 
2263 	/* clear remaining state ram for rx & tx channel */
2264 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2265 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2266 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2267 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2268 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2269 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2270 
2271 	/* set dma maximum burst len */
2272 	enet_dmac_writel(priv, priv->dma_maxburst,
2273 			 ENETDMAC_MAXBURST, priv->rx_chan);
2274 	enet_dmac_writel(priv, priv->dma_maxburst,
2275 			 ENETDMAC_MAXBURST, priv->tx_chan);
2276 
2277 	/* set flow control low/high threshold to 1/3 / 2/3 */
2278 	val = priv->rx_ring_size / 3;
2279 	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2280 	val = (priv->rx_ring_size * 2) / 3;
2281 	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2282 
2283 	/* all set, enable mac and interrupts, start dma engine and
2284 	 * kick rx dma channel
2285 	 */
2286 	wmb();
2287 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2288 	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2289 			 ENETDMAC_CHANCFG, priv->rx_chan);
2290 
2291 	/* watch "packet transferred" interrupt in rx and tx */
2292 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2293 			 ENETDMAC_IR, priv->rx_chan);
2294 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2295 			 ENETDMAC_IR, priv->tx_chan);
2296 
2297 	/* make sure we enable napi before rx interrupt  */
2298 	napi_enable(&priv->napi);
2299 
2300 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2301 			 ENETDMAC_IRMASK, priv->rx_chan);
2302 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2303 			 ENETDMAC_IRMASK, priv->tx_chan);
2304 
2305 	netif_carrier_on(dev);
2306 	netif_start_queue(dev);
2307 
2308 	/* apply override config for bypass_link ports here. */
2309 	for (i = 0; i < priv->num_ports; i++) {
2310 		struct bcm63xx_enetsw_port *port;
2311 		u8 override;
2312 		port = &priv->used_ports[i];
2313 		if (!port->used)
2314 			continue;
2315 
2316 		if (!port->bypass_link)
2317 			continue;
2318 
2319 		override = ENETSW_PORTOV_ENABLE_MASK |
2320 			ENETSW_PORTOV_LINKUP_MASK;
2321 
2322 		switch (port->force_speed) {
2323 		case 1000:
2324 			override |= ENETSW_IMPOV_1000_MASK;
2325 			break;
2326 		case 100:
2327 			override |= ENETSW_IMPOV_100_MASK;
2328 			break;
2329 		case 10:
2330 			break;
2331 		default:
2332 			pr_warn("invalid forced speed on port %s: assume 10\n",
2333 			       port->name);
2334 			break;
2335 		}
2336 
2337 		if (port->force_duplex_full)
2338 			override |= ENETSW_IMPOV_FDX_MASK;
2339 
2340 
2341 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2342 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2343 	}
2344 
2345 	/* start phy polling timer */
2346 	init_timer(&priv->swphy_poll);
2347 	priv->swphy_poll.function = swphy_poll_timer;
2348 	priv->swphy_poll.data = (unsigned long)priv;
2349 	priv->swphy_poll.expires = jiffies;
2350 	add_timer(&priv->swphy_poll);
2351 	return 0;
2352 
2353 out:
2354 	for (i = 0; i < priv->rx_ring_size; i++) {
2355 		struct bcm_enet_desc *desc;
2356 
2357 		if (!priv->rx_skb[i])
2358 			continue;
2359 
2360 		desc = &priv->rx_desc_cpu[i];
2361 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2362 				 DMA_FROM_DEVICE);
2363 		kfree_skb(priv->rx_skb[i]);
2364 	}
2365 	kfree(priv->rx_skb);
2366 
2367 out_free_tx_skb:
2368 	kfree(priv->tx_skb);
2369 
2370 out_free_tx_ring:
2371 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2372 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2373 
2374 out_free_rx_ring:
2375 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2376 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2377 
2378 out_freeirq_tx:
2379 	if (priv->irq_tx != -1)
2380 		free_irq(priv->irq_tx, dev);
2381 
2382 out_freeirq_rx:
2383 	free_irq(priv->irq_rx, dev);
2384 
2385 out_freeirq:
2386 	return ret;
2387 }
2388 
2389 /* stop callback */
2390 static int bcm_enetsw_stop(struct net_device *dev)
2391 {
2392 	struct bcm_enet_priv *priv;
2393 	struct device *kdev;
2394 	int i;
2395 
2396 	priv = netdev_priv(dev);
2397 	kdev = &priv->pdev->dev;
2398 
2399 	del_timer_sync(&priv->swphy_poll);
2400 	netif_stop_queue(dev);
2401 	napi_disable(&priv->napi);
2402 	del_timer_sync(&priv->rx_timeout);
2403 
2404 	/* mask all interrupts */
2405 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2406 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2407 
2408 	/* disable dma & mac */
2409 	bcm_enet_disable_dma(priv, priv->tx_chan);
2410 	bcm_enet_disable_dma(priv, priv->rx_chan);
2411 
2412 	/* force reclaim of all tx buffers */
2413 	bcm_enet_tx_reclaim(dev, 1);
2414 
2415 	/* free the rx skb ring */
2416 	for (i = 0; i < priv->rx_ring_size; i++) {
2417 		struct bcm_enet_desc *desc;
2418 
2419 		if (!priv->rx_skb[i])
2420 			continue;
2421 
2422 		desc = &priv->rx_desc_cpu[i];
2423 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2424 				 DMA_FROM_DEVICE);
2425 		kfree_skb(priv->rx_skb[i]);
2426 	}
2427 
2428 	/* free remaining allocated memory */
2429 	kfree(priv->rx_skb);
2430 	kfree(priv->tx_skb);
2431 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2432 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2433 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2434 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2435 	if (priv->irq_tx != -1)
2436 		free_irq(priv->irq_tx, dev);
2437 	free_irq(priv->irq_rx, dev);
2438 
2439 	return 0;
2440 }
2441 
2442 /* try to sort out phy external status by walking the used_port field
2443  * in the bcm_enet_priv structure. in case the phy address is not
2444  * assigned to any physical port on the switch, assume it is external
2445  * (and yell at the user).
2446  */
2447 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2448 {
2449 	int i;
2450 
2451 	for (i = 0; i < priv->num_ports; ++i) {
2452 		if (!priv->used_ports[i].used)
2453 			continue;
2454 		if (priv->used_ports[i].phy_id == phy_id)
2455 			return bcm_enet_port_is_rgmii(i);
2456 	}
2457 
2458 	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2459 		    phy_id);
2460 	return 1;
2461 }
2462 
2463 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2464  * external/internal status of the given phy_id first.
2465  */
2466 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2467 				    int location)
2468 {
2469 	struct bcm_enet_priv *priv;
2470 
2471 	priv = netdev_priv(dev);
2472 	return bcmenet_sw_mdio_read(priv,
2473 				    bcm_enetsw_phy_is_external(priv, phy_id),
2474 				    phy_id, location);
2475 }
2476 
2477 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2478  * external/internal status of the given phy_id first.
2479  */
2480 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2481 				      int location,
2482 				      int val)
2483 {
2484 	struct bcm_enet_priv *priv;
2485 
2486 	priv = netdev_priv(dev);
2487 	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2488 			      phy_id, location, val);
2489 }
2490 
2491 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2492 {
2493 	struct mii_if_info mii;
2494 
2495 	mii.dev = dev;
2496 	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2497 	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2498 	mii.phy_id = 0;
2499 	mii.phy_id_mask = 0x3f;
2500 	mii.reg_num_mask = 0x1f;
2501 	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2502 
2503 }
2504 
2505 static const struct net_device_ops bcm_enetsw_ops = {
2506 	.ndo_open		= bcm_enetsw_open,
2507 	.ndo_stop		= bcm_enetsw_stop,
2508 	.ndo_start_xmit		= bcm_enet_start_xmit,
2509 	.ndo_change_mtu		= bcm_enet_change_mtu,
2510 	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2511 };
2512 
2513 
2514 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2515 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2516 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2517 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2518 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2519 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2520 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2521 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2522 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2523 
2524 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2525 	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2526 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2527 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2528 	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2529 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2530 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2531 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2532 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2533 	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2534 	  ETHSW_MIB_RX_1024_1522 },
2535 	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2536 	  ETHSW_MIB_RX_1523_2047 },
2537 	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2538 	  ETHSW_MIB_RX_2048_4095 },
2539 	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2540 	  ETHSW_MIB_RX_4096_8191 },
2541 	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2542 	  ETHSW_MIB_RX_8192_9728 },
2543 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2544 	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2545 	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2546 	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2547 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2548 
2549 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2550 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2551 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2552 	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2553 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2554 	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2555 
2556 };
2557 
2558 #define BCM_ENETSW_STATS_LEN	\
2559 	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2560 
2561 static void bcm_enetsw_get_strings(struct net_device *netdev,
2562 				   u32 stringset, u8 *data)
2563 {
2564 	int i;
2565 
2566 	switch (stringset) {
2567 	case ETH_SS_STATS:
2568 		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2569 			memcpy(data + i * ETH_GSTRING_LEN,
2570 			       bcm_enetsw_gstrings_stats[i].stat_string,
2571 			       ETH_GSTRING_LEN);
2572 		}
2573 		break;
2574 	}
2575 }
2576 
2577 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2578 				     int string_set)
2579 {
2580 	switch (string_set) {
2581 	case ETH_SS_STATS:
2582 		return BCM_ENETSW_STATS_LEN;
2583 	default:
2584 		return -EINVAL;
2585 	}
2586 }
2587 
2588 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2589 				   struct ethtool_drvinfo *drvinfo)
2590 {
2591 	strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2592 	strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2593 	strncpy(drvinfo->fw_version, "N/A", 32);
2594 	strncpy(drvinfo->bus_info, "bcm63xx", 32);
2595 }
2596 
2597 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2598 					 struct ethtool_stats *stats,
2599 					 u64 *data)
2600 {
2601 	struct bcm_enet_priv *priv;
2602 	int i;
2603 
2604 	priv = netdev_priv(netdev);
2605 
2606 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2607 		const struct bcm_enet_stats *s;
2608 		u32 lo, hi;
2609 		char *p;
2610 		int reg;
2611 
2612 		s = &bcm_enetsw_gstrings_stats[i];
2613 
2614 		reg = s->mib_reg;
2615 		if (reg == -1)
2616 			continue;
2617 
2618 		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2619 		p = (char *)priv + s->stat_offset;
2620 
2621 		if (s->sizeof_stat == sizeof(u64)) {
2622 			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2623 			*(u64 *)p = ((u64)hi << 32 | lo);
2624 		} else {
2625 			*(u32 *)p = lo;
2626 		}
2627 	}
2628 
2629 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2630 		const struct bcm_enet_stats *s;
2631 		char *p;
2632 
2633 		s = &bcm_enetsw_gstrings_stats[i];
2634 
2635 		if (s->mib_reg == -1)
2636 			p = (char *)&netdev->stats + s->stat_offset;
2637 		else
2638 			p = (char *)priv + s->stat_offset;
2639 
2640 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2641 			*(u64 *)p : *(u32 *)p;
2642 	}
2643 }
2644 
2645 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2646 				     struct ethtool_ringparam *ering)
2647 {
2648 	struct bcm_enet_priv *priv;
2649 
2650 	priv = netdev_priv(dev);
2651 
2652 	/* rx/tx ring is actually only limited by memory */
2653 	ering->rx_max_pending = 8192;
2654 	ering->tx_max_pending = 8192;
2655 	ering->rx_mini_max_pending = 0;
2656 	ering->rx_jumbo_max_pending = 0;
2657 	ering->rx_pending = priv->rx_ring_size;
2658 	ering->tx_pending = priv->tx_ring_size;
2659 }
2660 
2661 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2662 				    struct ethtool_ringparam *ering)
2663 {
2664 	struct bcm_enet_priv *priv;
2665 	int was_running;
2666 
2667 	priv = netdev_priv(dev);
2668 
2669 	was_running = 0;
2670 	if (netif_running(dev)) {
2671 		bcm_enetsw_stop(dev);
2672 		was_running = 1;
2673 	}
2674 
2675 	priv->rx_ring_size = ering->rx_pending;
2676 	priv->tx_ring_size = ering->tx_pending;
2677 
2678 	if (was_running) {
2679 		int err;
2680 
2681 		err = bcm_enetsw_open(dev);
2682 		if (err)
2683 			dev_close(dev);
2684 	}
2685 	return 0;
2686 }
2687 
2688 static struct ethtool_ops bcm_enetsw_ethtool_ops = {
2689 	.get_strings		= bcm_enetsw_get_strings,
2690 	.get_sset_count		= bcm_enetsw_get_sset_count,
2691 	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2692 	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2693 	.get_ringparam		= bcm_enetsw_get_ringparam,
2694 	.set_ringparam		= bcm_enetsw_set_ringparam,
2695 };
2696 
2697 /* allocate netdevice, request register memory and register device. */
2698 static int bcm_enetsw_probe(struct platform_device *pdev)
2699 {
2700 	struct bcm_enet_priv *priv;
2701 	struct net_device *dev;
2702 	struct bcm63xx_enetsw_platform_data *pd;
2703 	struct resource *res_mem;
2704 	int ret, irq_rx, irq_tx;
2705 
2706 	/* stop if shared driver failed, assume driver->probe will be
2707 	 * called in the same order we register devices (correct ?)
2708 	 */
2709 	if (!bcm_enet_shared_base[0])
2710 		return -ENODEV;
2711 
2712 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2713 	irq_rx = platform_get_irq(pdev, 0);
2714 	irq_tx = platform_get_irq(pdev, 1);
2715 	if (!res_mem || irq_rx < 0)
2716 		return -ENODEV;
2717 
2718 	ret = 0;
2719 	dev = alloc_etherdev(sizeof(*priv));
2720 	if (!dev)
2721 		return -ENOMEM;
2722 	priv = netdev_priv(dev);
2723 	memset(priv, 0, sizeof(*priv));
2724 
2725 	/* initialize default and fetch platform data */
2726 	priv->enet_is_sw = true;
2727 	priv->irq_rx = irq_rx;
2728 	priv->irq_tx = irq_tx;
2729 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2730 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2731 	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2732 
2733 	pd = dev_get_platdata(&pdev->dev);
2734 	if (pd) {
2735 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2736 		memcpy(priv->used_ports, pd->used_ports,
2737 		       sizeof(pd->used_ports));
2738 		priv->num_ports = pd->num_ports;
2739 		priv->dma_has_sram = pd->dma_has_sram;
2740 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2741 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2742 		priv->dma_chan_width = pd->dma_chan_width;
2743 	}
2744 
2745 	ret = compute_hw_mtu(priv, dev->mtu);
2746 	if (ret)
2747 		goto out;
2748 
2749 	if (!request_mem_region(res_mem->start, resource_size(res_mem),
2750 				"bcm63xx_enetsw")) {
2751 		ret = -EBUSY;
2752 		goto out;
2753 	}
2754 
2755 	priv->base = ioremap(res_mem->start, resource_size(res_mem));
2756 	if (priv->base == NULL) {
2757 		ret = -ENOMEM;
2758 		goto out_release_mem;
2759 	}
2760 
2761 	priv->mac_clk = clk_get(&pdev->dev, "enetsw");
2762 	if (IS_ERR(priv->mac_clk)) {
2763 		ret = PTR_ERR(priv->mac_clk);
2764 		goto out_unmap;
2765 	}
2766 	clk_enable(priv->mac_clk);
2767 
2768 	priv->rx_chan = 0;
2769 	priv->tx_chan = 1;
2770 	spin_lock_init(&priv->rx_lock);
2771 
2772 	/* init rx timeout (used for oom) */
2773 	init_timer(&priv->rx_timeout);
2774 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
2775 	priv->rx_timeout.data = (unsigned long)dev;
2776 
2777 	/* register netdevice */
2778 	dev->netdev_ops = &bcm_enetsw_ops;
2779 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2780 	dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2781 	SET_NETDEV_DEV(dev, &pdev->dev);
2782 
2783 	spin_lock_init(&priv->enetsw_mdio_lock);
2784 
2785 	ret = register_netdev(dev);
2786 	if (ret)
2787 		goto out_put_clk;
2788 
2789 	netif_carrier_off(dev);
2790 	platform_set_drvdata(pdev, dev);
2791 	priv->pdev = pdev;
2792 	priv->net_dev = dev;
2793 
2794 	return 0;
2795 
2796 out_put_clk:
2797 	clk_put(priv->mac_clk);
2798 
2799 out_unmap:
2800 	iounmap(priv->base);
2801 
2802 out_release_mem:
2803 	release_mem_region(res_mem->start, resource_size(res_mem));
2804 out:
2805 	free_netdev(dev);
2806 	return ret;
2807 }
2808 
2809 
2810 /* exit func, stops hardware and unregisters netdevice */
2811 static int bcm_enetsw_remove(struct platform_device *pdev)
2812 {
2813 	struct bcm_enet_priv *priv;
2814 	struct net_device *dev;
2815 	struct resource *res;
2816 
2817 	/* stop netdevice */
2818 	dev = platform_get_drvdata(pdev);
2819 	priv = netdev_priv(dev);
2820 	unregister_netdev(dev);
2821 
2822 	/* release device resources */
2823 	iounmap(priv->base);
2824 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2825 	release_mem_region(res->start, resource_size(res));
2826 
2827 	free_netdev(dev);
2828 	return 0;
2829 }
2830 
2831 struct platform_driver bcm63xx_enetsw_driver = {
2832 	.probe	= bcm_enetsw_probe,
2833 	.remove	= bcm_enetsw_remove,
2834 	.driver	= {
2835 		.name	= "bcm63xx_enetsw",
2836 		.owner  = THIS_MODULE,
2837 	},
2838 };
2839 
2840 /* reserve & remap memory space shared between all macs */
2841 static int bcm_enet_shared_probe(struct platform_device *pdev)
2842 {
2843 	struct resource *res;
2844 	void __iomem *p[3];
2845 	unsigned int i;
2846 
2847 	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2848 
2849 	for (i = 0; i < 3; i++) {
2850 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2851 		p[i] = devm_ioremap_resource(&pdev->dev, res);
2852 		if (IS_ERR(p[i]))
2853 			return PTR_ERR(p[i]);
2854 	}
2855 
2856 	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2857 
2858 	return 0;
2859 }
2860 
2861 static int bcm_enet_shared_remove(struct platform_device *pdev)
2862 {
2863 	return 0;
2864 }
2865 
2866 /* this "shared" driver is needed because both macs share a single
2867  * address space
2868  */
2869 struct platform_driver bcm63xx_enet_shared_driver = {
2870 	.probe	= bcm_enet_shared_probe,
2871 	.remove	= bcm_enet_shared_remove,
2872 	.driver	= {
2873 		.name	= "bcm63xx_enet_shared",
2874 		.owner  = THIS_MODULE,
2875 	},
2876 };
2877 
2878 static struct platform_driver * const drivers[] = {
2879 	&bcm63xx_enet_shared_driver,
2880 	&bcm63xx_enet_driver,
2881 	&bcm63xx_enetsw_driver,
2882 };
2883 
2884 /* entry point */
2885 static int __init bcm_enet_init(void)
2886 {
2887 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2888 }
2889 
2890 static void __exit bcm_enet_exit(void)
2891 {
2892 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2893 }
2894 
2895 
2896 module_init(bcm_enet_init);
2897 module_exit(bcm_enet_exit);
2898 
2899 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2900 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2901 MODULE_LICENSE("GPL");
2902