1 /*
2  * Driver for BCM963xx builtin Ethernet mac
3  *
4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33 
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36 
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39 
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43 
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46 
47 /*
48  * io helpers to access mac registers
49  */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 	return bcm_readl(priv->base + off);
53 }
54 
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 			       u32 val, u32 off)
57 {
58 	bcm_writel(val, priv->base + off);
59 }
60 
61 /*
62  * io helpers to access switch registers
63  */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 	return bcm_readl(priv->base + off);
67 }
68 
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 				 u32 val, u32 off)
71 {
72 	bcm_writel(val, priv->base + off);
73 }
74 
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 	return bcm_readw(priv->base + off);
78 }
79 
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 				 u16 val, u32 off)
82 {
83 	bcm_writew(val, priv->base + off);
84 }
85 
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 	return bcm_readb(priv->base + off);
89 }
90 
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 				 u8 val, u32 off)
93 {
94 	bcm_writeb(val, priv->base + off);
95 }
96 
97 
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 	return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103 
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 				       u32 val, u32 off)
106 {
107 	bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109 
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 	return bcm_readl(bcm_enet_shared_base[1] +
113 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115 
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 				       u32 val, u32 off, int chan)
118 {
119 	bcm_writel(val, bcm_enet_shared_base[1] +
120 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122 
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127 
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 				       u32 val, u32 off, int chan)
130 {
131 	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133 
134 /*
135  * write given data into mii register and wait for transfer to end
136  * with timeout (average measured transfer time is 25us)
137  */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 	int limit;
141 
142 	/* make sure mii interrupt status is cleared */
143 	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144 
145 	enet_writel(priv, data, ENET_MIIDATA_REG);
146 	wmb();
147 
148 	/* busy wait on mii interrupt bit, with timeout */
149 	limit = 1000;
150 	do {
151 		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 			break;
153 		udelay(1);
154 	} while (limit-- > 0);
155 
156 	return (limit < 0) ? 1 : 0;
157 }
158 
159 /*
160  * MII internal read callback
161  */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 			      int regnum)
164 {
165 	u32 tmp, val;
166 
167 	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 	tmp |= ENET_MIIDATA_OP_READ_MASK;
171 
172 	if (do_mdio_op(priv, tmp))
173 		return -1;
174 
175 	val = enet_readl(priv, ENET_MIIDATA_REG);
176 	val &= 0xffff;
177 	return val;
178 }
179 
180 /*
181  * MII internal write callback
182  */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 			       int regnum, u16 value)
185 {
186 	u32 tmp;
187 
188 	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193 
194 	(void)do_mdio_op(priv, tmp);
195 	return 0;
196 }
197 
198 /*
199  * MII read callback from phylib
200  */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 				     int regnum)
203 {
204 	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206 
207 /*
208  * MII write callback from phylib
209  */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 				      int regnum, u16 value)
212 {
213 	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215 
216 /*
217  * MII read callback from mii core
218  */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 				  int regnum)
221 {
222 	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224 
225 /*
226  * MII write callback from mii core
227  */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 				    int regnum, int value)
230 {
231 	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233 
234 /*
235  * refill rx queue
236  */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 	struct bcm_enet_priv *priv;
240 
241 	priv = netdev_priv(dev);
242 
243 	while (priv->rx_desc_count < priv->rx_ring_size) {
244 		struct bcm_enet_desc *desc;
245 		struct sk_buff *skb;
246 		dma_addr_t p;
247 		int desc_idx;
248 		u32 len_stat;
249 
250 		desc_idx = priv->rx_dirty_desc;
251 		desc = &priv->rx_desc_cpu[desc_idx];
252 
253 		if (!priv->rx_skb[desc_idx]) {
254 			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 			if (!skb)
256 				break;
257 			priv->rx_skb[desc_idx] = skb;
258 			p = dma_map_single(&priv->pdev->dev, skb->data,
259 					   priv->rx_skb_size,
260 					   DMA_FROM_DEVICE);
261 			desc->address = p;
262 		}
263 
264 		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 		len_stat |= DMADESC_OWNER_MASK;
266 		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 			priv->rx_dirty_desc = 0;
269 		} else {
270 			priv->rx_dirty_desc++;
271 		}
272 		wmb();
273 		desc->len_stat = len_stat;
274 
275 		priv->rx_desc_count++;
276 
277 		/* tell dma engine we allocated one buffer */
278 		if (priv->dma_has_sram)
279 			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 		else
281 			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 	}
283 
284 	/* If rx ring is still empty, set a timer to try allocating
285 	 * again at a later time. */
286 	if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 		priv->rx_timeout.expires = jiffies + HZ;
289 		add_timer(&priv->rx_timeout);
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * timer callback to defer refill rx queue in case we're OOM
297  */
298 static void bcm_enet_refill_rx_timer(unsigned long data)
299 {
300 	struct net_device *dev;
301 	struct bcm_enet_priv *priv;
302 
303 	dev = (struct net_device *)data;
304 	priv = netdev_priv(dev);
305 
306 	spin_lock(&priv->rx_lock);
307 	bcm_enet_refill_rx((struct net_device *)data);
308 	spin_unlock(&priv->rx_lock);
309 }
310 
311 /*
312  * extract packet from rx queue
313  */
314 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
315 {
316 	struct bcm_enet_priv *priv;
317 	struct device *kdev;
318 	int processed;
319 
320 	priv = netdev_priv(dev);
321 	kdev = &priv->pdev->dev;
322 	processed = 0;
323 
324 	/* don't scan ring further than number of refilled
325 	 * descriptor */
326 	if (budget > priv->rx_desc_count)
327 		budget = priv->rx_desc_count;
328 
329 	do {
330 		struct bcm_enet_desc *desc;
331 		struct sk_buff *skb;
332 		int desc_idx;
333 		u32 len_stat;
334 		unsigned int len;
335 
336 		desc_idx = priv->rx_curr_desc;
337 		desc = &priv->rx_desc_cpu[desc_idx];
338 
339 		/* make sure we actually read the descriptor status at
340 		 * each loop */
341 		rmb();
342 
343 		len_stat = desc->len_stat;
344 
345 		/* break if dma ownership belongs to hw */
346 		if (len_stat & DMADESC_OWNER_MASK)
347 			break;
348 
349 		processed++;
350 		priv->rx_curr_desc++;
351 		if (priv->rx_curr_desc == priv->rx_ring_size)
352 			priv->rx_curr_desc = 0;
353 		priv->rx_desc_count--;
354 
355 		/* if the packet does not have start of packet _and_
356 		 * end of packet flag set, then just recycle it */
357 		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
358 			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
359 			dev->stats.rx_dropped++;
360 			continue;
361 		}
362 
363 		/* recycle packet if it's marked as bad */
364 		if (!priv->enet_is_sw &&
365 		    unlikely(len_stat & DMADESC_ERR_MASK)) {
366 			dev->stats.rx_errors++;
367 
368 			if (len_stat & DMADESC_OVSIZE_MASK)
369 				dev->stats.rx_length_errors++;
370 			if (len_stat & DMADESC_CRC_MASK)
371 				dev->stats.rx_crc_errors++;
372 			if (len_stat & DMADESC_UNDER_MASK)
373 				dev->stats.rx_frame_errors++;
374 			if (len_stat & DMADESC_OV_MASK)
375 				dev->stats.rx_fifo_errors++;
376 			continue;
377 		}
378 
379 		/* valid packet */
380 		skb = priv->rx_skb[desc_idx];
381 		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
382 		/* don't include FCS */
383 		len -= 4;
384 
385 		if (len < copybreak) {
386 			struct sk_buff *nskb;
387 
388 			nskb = napi_alloc_skb(&priv->napi, len);
389 			if (!nskb) {
390 				/* forget packet, just rearm desc */
391 				dev->stats.rx_dropped++;
392 				continue;
393 			}
394 
395 			dma_sync_single_for_cpu(kdev, desc->address,
396 						len, DMA_FROM_DEVICE);
397 			memcpy(nskb->data, skb->data, len);
398 			dma_sync_single_for_device(kdev, desc->address,
399 						   len, DMA_FROM_DEVICE);
400 			skb = nskb;
401 		} else {
402 			dma_unmap_single(&priv->pdev->dev, desc->address,
403 					 priv->rx_skb_size, DMA_FROM_DEVICE);
404 			priv->rx_skb[desc_idx] = NULL;
405 		}
406 
407 		skb_put(skb, len);
408 		skb->protocol = eth_type_trans(skb, dev);
409 		dev->stats.rx_packets++;
410 		dev->stats.rx_bytes += len;
411 		netif_receive_skb(skb);
412 
413 	} while (--budget > 0);
414 
415 	if (processed || !priv->rx_desc_count) {
416 		bcm_enet_refill_rx(dev);
417 
418 		/* kick rx dma */
419 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
420 					 ENETDMAC_CHANCFG, priv->rx_chan);
421 	}
422 
423 	return processed;
424 }
425 
426 
427 /*
428  * try to or force reclaim of transmitted buffers
429  */
430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
431 {
432 	struct bcm_enet_priv *priv;
433 	int released;
434 
435 	priv = netdev_priv(dev);
436 	released = 0;
437 
438 	while (priv->tx_desc_count < priv->tx_ring_size) {
439 		struct bcm_enet_desc *desc;
440 		struct sk_buff *skb;
441 
442 		/* We run in a bh and fight against start_xmit, which
443 		 * is called with bh disabled  */
444 		spin_lock(&priv->tx_lock);
445 
446 		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
447 
448 		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
449 			spin_unlock(&priv->tx_lock);
450 			break;
451 		}
452 
453 		/* ensure other field of the descriptor were not read
454 		 * before we checked ownership */
455 		rmb();
456 
457 		skb = priv->tx_skb[priv->tx_dirty_desc];
458 		priv->tx_skb[priv->tx_dirty_desc] = NULL;
459 		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
460 				 DMA_TO_DEVICE);
461 
462 		priv->tx_dirty_desc++;
463 		if (priv->tx_dirty_desc == priv->tx_ring_size)
464 			priv->tx_dirty_desc = 0;
465 		priv->tx_desc_count++;
466 
467 		spin_unlock(&priv->tx_lock);
468 
469 		if (desc->len_stat & DMADESC_UNDER_MASK)
470 			dev->stats.tx_errors++;
471 
472 		dev_kfree_skb(skb);
473 		released++;
474 	}
475 
476 	if (netif_queue_stopped(dev) && released)
477 		netif_wake_queue(dev);
478 
479 	return released;
480 }
481 
482 /*
483  * poll func, called by network core
484  */
485 static int bcm_enet_poll(struct napi_struct *napi, int budget)
486 {
487 	struct bcm_enet_priv *priv;
488 	struct net_device *dev;
489 	int tx_work_done, rx_work_done;
490 
491 	priv = container_of(napi, struct bcm_enet_priv, napi);
492 	dev = priv->net_dev;
493 
494 	/* ack interrupts */
495 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
496 			 ENETDMAC_IR, priv->rx_chan);
497 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
498 			 ENETDMAC_IR, priv->tx_chan);
499 
500 	/* reclaim sent skb */
501 	tx_work_done = bcm_enet_tx_reclaim(dev, 0);
502 
503 	spin_lock(&priv->rx_lock);
504 	rx_work_done = bcm_enet_receive_queue(dev, budget);
505 	spin_unlock(&priv->rx_lock);
506 
507 	if (rx_work_done >= budget || tx_work_done > 0) {
508 		/* rx/tx queue is not yet empty/clean */
509 		return rx_work_done;
510 	}
511 
512 	/* no more packet in rx/tx queue, remove device from poll
513 	 * queue */
514 	napi_complete(napi);
515 
516 	/* restore rx/tx interrupt */
517 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
518 			 ENETDMAC_IRMASK, priv->rx_chan);
519 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
520 			 ENETDMAC_IRMASK, priv->tx_chan);
521 
522 	return rx_work_done;
523 }
524 
525 /*
526  * mac interrupt handler
527  */
528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
529 {
530 	struct net_device *dev;
531 	struct bcm_enet_priv *priv;
532 	u32 stat;
533 
534 	dev = dev_id;
535 	priv = netdev_priv(dev);
536 
537 	stat = enet_readl(priv, ENET_IR_REG);
538 	if (!(stat & ENET_IR_MIB))
539 		return IRQ_NONE;
540 
541 	/* clear & mask interrupt */
542 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
543 	enet_writel(priv, 0, ENET_IRMASK_REG);
544 
545 	/* read mib registers in workqueue */
546 	schedule_work(&priv->mib_update_task);
547 
548 	return IRQ_HANDLED;
549 }
550 
551 /*
552  * rx/tx dma interrupt handler
553  */
554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
555 {
556 	struct net_device *dev;
557 	struct bcm_enet_priv *priv;
558 
559 	dev = dev_id;
560 	priv = netdev_priv(dev);
561 
562 	/* mask rx/tx interrupts */
563 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
564 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
565 
566 	napi_schedule(&priv->napi);
567 
568 	return IRQ_HANDLED;
569 }
570 
571 /*
572  * tx request callback
573  */
574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576 	struct bcm_enet_priv *priv;
577 	struct bcm_enet_desc *desc;
578 	u32 len_stat;
579 	int ret;
580 
581 	priv = netdev_priv(dev);
582 
583 	/* lock against tx reclaim */
584 	spin_lock(&priv->tx_lock);
585 
586 	/* make sure  the tx hw queue  is not full,  should not happen
587 	 * since we stop queue before it's the case */
588 	if (unlikely(!priv->tx_desc_count)) {
589 		netif_stop_queue(dev);
590 		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
591 			"available?\n");
592 		ret = NETDEV_TX_BUSY;
593 		goto out_unlock;
594 	}
595 
596 	/* pad small packets sent on a switch device */
597 	if (priv->enet_is_sw && skb->len < 64) {
598 		int needed = 64 - skb->len;
599 		char *data;
600 
601 		if (unlikely(skb_tailroom(skb) < needed)) {
602 			struct sk_buff *nskb;
603 
604 			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
605 			if (!nskb) {
606 				ret = NETDEV_TX_BUSY;
607 				goto out_unlock;
608 			}
609 			dev_kfree_skb(skb);
610 			skb = nskb;
611 		}
612 		data = skb_put(skb, needed);
613 		memset(data, 0, needed);
614 	}
615 
616 	/* point to the next available desc */
617 	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
618 	priv->tx_skb[priv->tx_curr_desc] = skb;
619 
620 	/* fill descriptor */
621 	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
622 				       DMA_TO_DEVICE);
623 
624 	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
625 	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
626 		DMADESC_APPEND_CRC |
627 		DMADESC_OWNER_MASK;
628 
629 	priv->tx_curr_desc++;
630 	if (priv->tx_curr_desc == priv->tx_ring_size) {
631 		priv->tx_curr_desc = 0;
632 		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
633 	}
634 	priv->tx_desc_count--;
635 
636 	/* dma might be already polling, make sure we update desc
637 	 * fields in correct order */
638 	wmb();
639 	desc->len_stat = len_stat;
640 	wmb();
641 
642 	/* kick tx dma */
643 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
644 				 ENETDMAC_CHANCFG, priv->tx_chan);
645 
646 	/* stop queue if no more desc available */
647 	if (!priv->tx_desc_count)
648 		netif_stop_queue(dev);
649 
650 	dev->stats.tx_bytes += skb->len;
651 	dev->stats.tx_packets++;
652 	ret = NETDEV_TX_OK;
653 
654 out_unlock:
655 	spin_unlock(&priv->tx_lock);
656 	return ret;
657 }
658 
659 /*
660  * Change the interface's mac address.
661  */
662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
663 {
664 	struct bcm_enet_priv *priv;
665 	struct sockaddr *addr = p;
666 	u32 val;
667 
668 	priv = netdev_priv(dev);
669 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
670 
671 	/* use perfect match register 0 to store my mac address */
672 	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
673 		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
674 	enet_writel(priv, val, ENET_PML_REG(0));
675 
676 	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
677 	val |= ENET_PMH_DATAVALID_MASK;
678 	enet_writel(priv, val, ENET_PMH_REG(0));
679 
680 	return 0;
681 }
682 
683 /*
684  * Change rx mode (promiscuous/allmulti) and update multicast list
685  */
686 static void bcm_enet_set_multicast_list(struct net_device *dev)
687 {
688 	struct bcm_enet_priv *priv;
689 	struct netdev_hw_addr *ha;
690 	u32 val;
691 	int i;
692 
693 	priv = netdev_priv(dev);
694 
695 	val = enet_readl(priv, ENET_RXCFG_REG);
696 
697 	if (dev->flags & IFF_PROMISC)
698 		val |= ENET_RXCFG_PROMISC_MASK;
699 	else
700 		val &= ~ENET_RXCFG_PROMISC_MASK;
701 
702 	/* only 3 perfect match registers left, first one is used for
703 	 * own mac address */
704 	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
705 		val |= ENET_RXCFG_ALLMCAST_MASK;
706 	else
707 		val &= ~ENET_RXCFG_ALLMCAST_MASK;
708 
709 	/* no need to set perfect match registers if we catch all
710 	 * multicast */
711 	if (val & ENET_RXCFG_ALLMCAST_MASK) {
712 		enet_writel(priv, val, ENET_RXCFG_REG);
713 		return;
714 	}
715 
716 	i = 0;
717 	netdev_for_each_mc_addr(ha, dev) {
718 		u8 *dmi_addr;
719 		u32 tmp;
720 
721 		if (i == 3)
722 			break;
723 		/* update perfect match registers */
724 		dmi_addr = ha->addr;
725 		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
726 			(dmi_addr[4] << 8) | dmi_addr[5];
727 		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
728 
729 		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
730 		tmp |= ENET_PMH_DATAVALID_MASK;
731 		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
732 	}
733 
734 	for (; i < 3; i++) {
735 		enet_writel(priv, 0, ENET_PML_REG(i + 1));
736 		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
737 	}
738 
739 	enet_writel(priv, val, ENET_RXCFG_REG);
740 }
741 
742 /*
743  * set mac duplex parameters
744  */
745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
746 {
747 	u32 val;
748 
749 	val = enet_readl(priv, ENET_TXCTL_REG);
750 	if (fullduplex)
751 		val |= ENET_TXCTL_FD_MASK;
752 	else
753 		val &= ~ENET_TXCTL_FD_MASK;
754 	enet_writel(priv, val, ENET_TXCTL_REG);
755 }
756 
757 /*
758  * set mac flow control parameters
759  */
760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
761 {
762 	u32 val;
763 
764 	/* rx flow control (pause frame handling) */
765 	val = enet_readl(priv, ENET_RXCFG_REG);
766 	if (rx_en)
767 		val |= ENET_RXCFG_ENFLOW_MASK;
768 	else
769 		val &= ~ENET_RXCFG_ENFLOW_MASK;
770 	enet_writel(priv, val, ENET_RXCFG_REG);
771 
772 	if (!priv->dma_has_sram)
773 		return;
774 
775 	/* tx flow control (pause frame generation) */
776 	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
777 	if (tx_en)
778 		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
779 	else
780 		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
781 	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
782 }
783 
784 /*
785  * link changed callback (from phylib)
786  */
787 static void bcm_enet_adjust_phy_link(struct net_device *dev)
788 {
789 	struct bcm_enet_priv *priv;
790 	struct phy_device *phydev;
791 	int status_changed;
792 
793 	priv = netdev_priv(dev);
794 	phydev = priv->phydev;
795 	status_changed = 0;
796 
797 	if (priv->old_link != phydev->link) {
798 		status_changed = 1;
799 		priv->old_link = phydev->link;
800 	}
801 
802 	/* reflect duplex change in mac configuration */
803 	if (phydev->link && phydev->duplex != priv->old_duplex) {
804 		bcm_enet_set_duplex(priv,
805 				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
806 		status_changed = 1;
807 		priv->old_duplex = phydev->duplex;
808 	}
809 
810 	/* enable flow control if remote advertise it (trust phylib to
811 	 * check that duplex is full */
812 	if (phydev->link && phydev->pause != priv->old_pause) {
813 		int rx_pause_en, tx_pause_en;
814 
815 		if (phydev->pause) {
816 			/* pause was advertised by lpa and us */
817 			rx_pause_en = 1;
818 			tx_pause_en = 1;
819 		} else if (!priv->pause_auto) {
820 			/* pause setting overrided by user */
821 			rx_pause_en = priv->pause_rx;
822 			tx_pause_en = priv->pause_tx;
823 		} else {
824 			rx_pause_en = 0;
825 			tx_pause_en = 0;
826 		}
827 
828 		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
829 		status_changed = 1;
830 		priv->old_pause = phydev->pause;
831 	}
832 
833 	if (status_changed) {
834 		pr_info("%s: link %s", dev->name, phydev->link ?
835 			"UP" : "DOWN");
836 		if (phydev->link)
837 			pr_cont(" - %d/%s - flow control %s", phydev->speed,
838 			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
839 			       phydev->pause == 1 ? "rx&tx" : "off");
840 
841 		pr_cont("\n");
842 	}
843 }
844 
845 /*
846  * link changed callback (if phylib is not used)
847  */
848 static void bcm_enet_adjust_link(struct net_device *dev)
849 {
850 	struct bcm_enet_priv *priv;
851 
852 	priv = netdev_priv(dev);
853 	bcm_enet_set_duplex(priv, priv->force_duplex_full);
854 	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
855 	netif_carrier_on(dev);
856 
857 	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
858 		dev->name,
859 		priv->force_speed_100 ? 100 : 10,
860 		priv->force_duplex_full ? "full" : "half",
861 		priv->pause_rx ? "rx" : "off",
862 		priv->pause_tx ? "tx" : "off");
863 }
864 
865 /*
866  * open callback, allocate dma rings & buffers and start rx operation
867  */
868 static int bcm_enet_open(struct net_device *dev)
869 {
870 	struct bcm_enet_priv *priv;
871 	struct sockaddr addr;
872 	struct device *kdev;
873 	struct phy_device *phydev;
874 	int i, ret;
875 	unsigned int size;
876 	char phy_id[MII_BUS_ID_SIZE + 3];
877 	void *p;
878 	u32 val;
879 
880 	priv = netdev_priv(dev);
881 	kdev = &priv->pdev->dev;
882 
883 	if (priv->has_phy) {
884 		/* connect to PHY */
885 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
886 			 priv->mii_bus->id, priv->phy_id);
887 
888 		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
889 				     PHY_INTERFACE_MODE_MII);
890 
891 		if (IS_ERR(phydev)) {
892 			dev_err(kdev, "could not attach to PHY\n");
893 			return PTR_ERR(phydev);
894 		}
895 
896 		/* mask with MAC supported features */
897 		phydev->supported &= (SUPPORTED_10baseT_Half |
898 				      SUPPORTED_10baseT_Full |
899 				      SUPPORTED_100baseT_Half |
900 				      SUPPORTED_100baseT_Full |
901 				      SUPPORTED_Autoneg |
902 				      SUPPORTED_Pause |
903 				      SUPPORTED_MII);
904 		phydev->advertising = phydev->supported;
905 
906 		if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
907 			phydev->advertising |= SUPPORTED_Pause;
908 		else
909 			phydev->advertising &= ~SUPPORTED_Pause;
910 
911 		dev_info(kdev, "attached PHY at address %d [%s]\n",
912 			 phydev->addr, phydev->drv->name);
913 
914 		priv->old_link = 0;
915 		priv->old_duplex = -1;
916 		priv->old_pause = -1;
917 		priv->phydev = phydev;
918 	}
919 
920 	/* mask all interrupts and request them */
921 	enet_writel(priv, 0, ENET_IRMASK_REG);
922 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
923 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
924 
925 	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
926 	if (ret)
927 		goto out_phy_disconnect;
928 
929 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
930 			  dev->name, dev);
931 	if (ret)
932 		goto out_freeirq;
933 
934 	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
935 			  0, dev->name, dev);
936 	if (ret)
937 		goto out_freeirq_rx;
938 
939 	/* initialize perfect match registers */
940 	for (i = 0; i < 4; i++) {
941 		enet_writel(priv, 0, ENET_PML_REG(i));
942 		enet_writel(priv, 0, ENET_PMH_REG(i));
943 	}
944 
945 	/* write device mac address */
946 	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
947 	bcm_enet_set_mac_address(dev, &addr);
948 
949 	/* allocate rx dma ring */
950 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
951 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
952 	if (!p) {
953 		ret = -ENOMEM;
954 		goto out_freeirq_tx;
955 	}
956 
957 	priv->rx_desc_alloc_size = size;
958 	priv->rx_desc_cpu = p;
959 
960 	/* allocate tx dma ring */
961 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
962 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
963 	if (!p) {
964 		ret = -ENOMEM;
965 		goto out_free_rx_ring;
966 	}
967 
968 	priv->tx_desc_alloc_size = size;
969 	priv->tx_desc_cpu = p;
970 
971 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
972 			       GFP_KERNEL);
973 	if (!priv->tx_skb) {
974 		ret = -ENOMEM;
975 		goto out_free_tx_ring;
976 	}
977 
978 	priv->tx_desc_count = priv->tx_ring_size;
979 	priv->tx_dirty_desc = 0;
980 	priv->tx_curr_desc = 0;
981 	spin_lock_init(&priv->tx_lock);
982 
983 	/* init & fill rx ring with skbs */
984 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
985 			       GFP_KERNEL);
986 	if (!priv->rx_skb) {
987 		ret = -ENOMEM;
988 		goto out_free_tx_skb;
989 	}
990 
991 	priv->rx_desc_count = 0;
992 	priv->rx_dirty_desc = 0;
993 	priv->rx_curr_desc = 0;
994 
995 	/* initialize flow control buffer allocation */
996 	if (priv->dma_has_sram)
997 		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
998 				ENETDMA_BUFALLOC_REG(priv->rx_chan));
999 	else
1000 		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1001 				ENETDMAC_BUFALLOC, priv->rx_chan);
1002 
1003 	if (bcm_enet_refill_rx(dev)) {
1004 		dev_err(kdev, "cannot allocate rx skb queue\n");
1005 		ret = -ENOMEM;
1006 		goto out;
1007 	}
1008 
1009 	/* write rx & tx ring addresses */
1010 	if (priv->dma_has_sram) {
1011 		enet_dmas_writel(priv, priv->rx_desc_dma,
1012 				 ENETDMAS_RSTART_REG, priv->rx_chan);
1013 		enet_dmas_writel(priv, priv->tx_desc_dma,
1014 			 ENETDMAS_RSTART_REG, priv->tx_chan);
1015 	} else {
1016 		enet_dmac_writel(priv, priv->rx_desc_dma,
1017 				ENETDMAC_RSTART, priv->rx_chan);
1018 		enet_dmac_writel(priv, priv->tx_desc_dma,
1019 				ENETDMAC_RSTART, priv->tx_chan);
1020 	}
1021 
1022 	/* clear remaining state ram for rx & tx channel */
1023 	if (priv->dma_has_sram) {
1024 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1025 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1026 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1027 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1028 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1029 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1030 	} else {
1031 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1032 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1033 	}
1034 
1035 	/* set max rx/tx length */
1036 	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1037 	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1038 
1039 	/* set dma maximum burst len */
1040 	enet_dmac_writel(priv, priv->dma_maxburst,
1041 			 ENETDMAC_MAXBURST, priv->rx_chan);
1042 	enet_dmac_writel(priv, priv->dma_maxburst,
1043 			 ENETDMAC_MAXBURST, priv->tx_chan);
1044 
1045 	/* set correct transmit fifo watermark */
1046 	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1047 
1048 	/* set flow control low/high threshold to 1/3 / 2/3 */
1049 	if (priv->dma_has_sram) {
1050 		val = priv->rx_ring_size / 3;
1051 		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1052 		val = (priv->rx_ring_size * 2) / 3;
1053 		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1054 	} else {
1055 		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1056 		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1057 		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1058 	}
1059 
1060 	/* all set, enable mac and interrupts, start dma engine and
1061 	 * kick rx dma channel */
1062 	wmb();
1063 	val = enet_readl(priv, ENET_CTL_REG);
1064 	val |= ENET_CTL_ENABLE_MASK;
1065 	enet_writel(priv, val, ENET_CTL_REG);
1066 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1067 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1068 			 ENETDMAC_CHANCFG, priv->rx_chan);
1069 
1070 	/* watch "mib counters about to overflow" interrupt */
1071 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1072 	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1073 
1074 	/* watch "packet transferred" interrupt in rx and tx */
1075 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1076 			 ENETDMAC_IR, priv->rx_chan);
1077 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1078 			 ENETDMAC_IR, priv->tx_chan);
1079 
1080 	/* make sure we enable napi before rx interrupt  */
1081 	napi_enable(&priv->napi);
1082 
1083 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1084 			 ENETDMAC_IRMASK, priv->rx_chan);
1085 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1086 			 ENETDMAC_IRMASK, priv->tx_chan);
1087 
1088 	if (priv->has_phy)
1089 		phy_start(priv->phydev);
1090 	else
1091 		bcm_enet_adjust_link(dev);
1092 
1093 	netif_start_queue(dev);
1094 	return 0;
1095 
1096 out:
1097 	for (i = 0; i < priv->rx_ring_size; i++) {
1098 		struct bcm_enet_desc *desc;
1099 
1100 		if (!priv->rx_skb[i])
1101 			continue;
1102 
1103 		desc = &priv->rx_desc_cpu[i];
1104 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1105 				 DMA_FROM_DEVICE);
1106 		kfree_skb(priv->rx_skb[i]);
1107 	}
1108 	kfree(priv->rx_skb);
1109 
1110 out_free_tx_skb:
1111 	kfree(priv->tx_skb);
1112 
1113 out_free_tx_ring:
1114 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1115 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1116 
1117 out_free_rx_ring:
1118 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1119 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1120 
1121 out_freeirq_tx:
1122 	free_irq(priv->irq_tx, dev);
1123 
1124 out_freeirq_rx:
1125 	free_irq(priv->irq_rx, dev);
1126 
1127 out_freeirq:
1128 	free_irq(dev->irq, dev);
1129 
1130 out_phy_disconnect:
1131 	phy_disconnect(priv->phydev);
1132 
1133 	return ret;
1134 }
1135 
1136 /*
1137  * disable mac
1138  */
1139 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1140 {
1141 	int limit;
1142 	u32 val;
1143 
1144 	val = enet_readl(priv, ENET_CTL_REG);
1145 	val |= ENET_CTL_DISABLE_MASK;
1146 	enet_writel(priv, val, ENET_CTL_REG);
1147 
1148 	limit = 1000;
1149 	do {
1150 		u32 val;
1151 
1152 		val = enet_readl(priv, ENET_CTL_REG);
1153 		if (!(val & ENET_CTL_DISABLE_MASK))
1154 			break;
1155 		udelay(1);
1156 	} while (limit--);
1157 }
1158 
1159 /*
1160  * disable dma in given channel
1161  */
1162 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1163 {
1164 	int limit;
1165 
1166 	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1167 
1168 	limit = 1000;
1169 	do {
1170 		u32 val;
1171 
1172 		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1173 		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1174 			break;
1175 		udelay(1);
1176 	} while (limit--);
1177 }
1178 
1179 /*
1180  * stop callback
1181  */
1182 static int bcm_enet_stop(struct net_device *dev)
1183 {
1184 	struct bcm_enet_priv *priv;
1185 	struct device *kdev;
1186 	int i;
1187 
1188 	priv = netdev_priv(dev);
1189 	kdev = &priv->pdev->dev;
1190 
1191 	netif_stop_queue(dev);
1192 	napi_disable(&priv->napi);
1193 	if (priv->has_phy)
1194 		phy_stop(priv->phydev);
1195 	del_timer_sync(&priv->rx_timeout);
1196 
1197 	/* mask all interrupts */
1198 	enet_writel(priv, 0, ENET_IRMASK_REG);
1199 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1200 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1201 
1202 	/* make sure no mib update is scheduled */
1203 	cancel_work_sync(&priv->mib_update_task);
1204 
1205 	/* disable dma & mac */
1206 	bcm_enet_disable_dma(priv, priv->tx_chan);
1207 	bcm_enet_disable_dma(priv, priv->rx_chan);
1208 	bcm_enet_disable_mac(priv);
1209 
1210 	/* force reclaim of all tx buffers */
1211 	bcm_enet_tx_reclaim(dev, 1);
1212 
1213 	/* free the rx skb ring */
1214 	for (i = 0; i < priv->rx_ring_size; i++) {
1215 		struct bcm_enet_desc *desc;
1216 
1217 		if (!priv->rx_skb[i])
1218 			continue;
1219 
1220 		desc = &priv->rx_desc_cpu[i];
1221 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1222 				 DMA_FROM_DEVICE);
1223 		kfree_skb(priv->rx_skb[i]);
1224 	}
1225 
1226 	/* free remaining allocated memory */
1227 	kfree(priv->rx_skb);
1228 	kfree(priv->tx_skb);
1229 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1230 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1231 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1232 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1233 	free_irq(priv->irq_tx, dev);
1234 	free_irq(priv->irq_rx, dev);
1235 	free_irq(dev->irq, dev);
1236 
1237 	/* release phy */
1238 	if (priv->has_phy) {
1239 		phy_disconnect(priv->phydev);
1240 		priv->phydev = NULL;
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 /*
1247  * ethtool callbacks
1248  */
1249 struct bcm_enet_stats {
1250 	char stat_string[ETH_GSTRING_LEN];
1251 	int sizeof_stat;
1252 	int stat_offset;
1253 	int mib_reg;
1254 };
1255 
1256 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1257 		     offsetof(struct bcm_enet_priv, m)
1258 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1259 		     offsetof(struct net_device_stats, m)
1260 
1261 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1262 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1263 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1264 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1265 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1266 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1267 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1268 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1269 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1270 
1271 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1272 	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1273 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1274 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1275 	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1276 	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1277 	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1278 	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1279 	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1280 	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1281 	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1282 	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1283 	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1284 	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1285 	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1286 	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1287 	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1288 	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1289 	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1290 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1291 	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1292 
1293 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1294 	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1295 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1296 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1297 	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1298 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1299 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1300 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1301 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1302 	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1303 	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1304 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1305 	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1306 	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1307 	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1308 	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1309 	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1310 	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1311 	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1312 	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1313 	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1314 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1315 
1316 };
1317 
1318 #define BCM_ENET_STATS_LEN	ARRAY_SIZE(bcm_enet_gstrings_stats)
1319 
1320 static const u32 unused_mib_regs[] = {
1321 	ETH_MIB_TX_ALL_OCTETS,
1322 	ETH_MIB_TX_ALL_PKTS,
1323 	ETH_MIB_RX_ALL_OCTETS,
1324 	ETH_MIB_RX_ALL_PKTS,
1325 };
1326 
1327 
1328 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1329 				 struct ethtool_drvinfo *drvinfo)
1330 {
1331 	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1332 	strlcpy(drvinfo->version, bcm_enet_driver_version,
1333 		sizeof(drvinfo->version));
1334 	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1335 	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1336 	drvinfo->n_stats = BCM_ENET_STATS_LEN;
1337 }
1338 
1339 static int bcm_enet_get_sset_count(struct net_device *netdev,
1340 					int string_set)
1341 {
1342 	switch (string_set) {
1343 	case ETH_SS_STATS:
1344 		return BCM_ENET_STATS_LEN;
1345 	default:
1346 		return -EINVAL;
1347 	}
1348 }
1349 
1350 static void bcm_enet_get_strings(struct net_device *netdev,
1351 				 u32 stringset, u8 *data)
1352 {
1353 	int i;
1354 
1355 	switch (stringset) {
1356 	case ETH_SS_STATS:
1357 		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1358 			memcpy(data + i * ETH_GSTRING_LEN,
1359 			       bcm_enet_gstrings_stats[i].stat_string,
1360 			       ETH_GSTRING_LEN);
1361 		}
1362 		break;
1363 	}
1364 }
1365 
1366 static void update_mib_counters(struct bcm_enet_priv *priv)
1367 {
1368 	int i;
1369 
1370 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1371 		const struct bcm_enet_stats *s;
1372 		u32 val;
1373 		char *p;
1374 
1375 		s = &bcm_enet_gstrings_stats[i];
1376 		if (s->mib_reg == -1)
1377 			continue;
1378 
1379 		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1380 		p = (char *)priv + s->stat_offset;
1381 
1382 		if (s->sizeof_stat == sizeof(u64))
1383 			*(u64 *)p += val;
1384 		else
1385 			*(u32 *)p += val;
1386 	}
1387 
1388 	/* also empty unused mib counters to make sure mib counter
1389 	 * overflow interrupt is cleared */
1390 	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1391 		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1392 }
1393 
1394 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1395 {
1396 	struct bcm_enet_priv *priv;
1397 
1398 	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1399 	mutex_lock(&priv->mib_update_lock);
1400 	update_mib_counters(priv);
1401 	mutex_unlock(&priv->mib_update_lock);
1402 
1403 	/* reenable mib interrupt */
1404 	if (netif_running(priv->net_dev))
1405 		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1406 }
1407 
1408 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1409 				       struct ethtool_stats *stats,
1410 				       u64 *data)
1411 {
1412 	struct bcm_enet_priv *priv;
1413 	int i;
1414 
1415 	priv = netdev_priv(netdev);
1416 
1417 	mutex_lock(&priv->mib_update_lock);
1418 	update_mib_counters(priv);
1419 
1420 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1421 		const struct bcm_enet_stats *s;
1422 		char *p;
1423 
1424 		s = &bcm_enet_gstrings_stats[i];
1425 		if (s->mib_reg == -1)
1426 			p = (char *)&netdev->stats;
1427 		else
1428 			p = (char *)priv;
1429 		p += s->stat_offset;
1430 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1431 			*(u64 *)p : *(u32 *)p;
1432 	}
1433 	mutex_unlock(&priv->mib_update_lock);
1434 }
1435 
1436 static int bcm_enet_nway_reset(struct net_device *dev)
1437 {
1438 	struct bcm_enet_priv *priv;
1439 
1440 	priv = netdev_priv(dev);
1441 	if (priv->has_phy) {
1442 		if (!priv->phydev)
1443 			return -ENODEV;
1444 		return genphy_restart_aneg(priv->phydev);
1445 	}
1446 
1447 	return -EOPNOTSUPP;
1448 }
1449 
1450 static int bcm_enet_get_settings(struct net_device *dev,
1451 				 struct ethtool_cmd *cmd)
1452 {
1453 	struct bcm_enet_priv *priv;
1454 
1455 	priv = netdev_priv(dev);
1456 
1457 	cmd->maxrxpkt = 0;
1458 	cmd->maxtxpkt = 0;
1459 
1460 	if (priv->has_phy) {
1461 		if (!priv->phydev)
1462 			return -ENODEV;
1463 		return phy_ethtool_gset(priv->phydev, cmd);
1464 	} else {
1465 		cmd->autoneg = 0;
1466 		ethtool_cmd_speed_set(cmd, ((priv->force_speed_100)
1467 					    ? SPEED_100 : SPEED_10));
1468 		cmd->duplex = (priv->force_duplex_full) ?
1469 			DUPLEX_FULL : DUPLEX_HALF;
1470 		cmd->supported = ADVERTISED_10baseT_Half  |
1471 			ADVERTISED_10baseT_Full |
1472 			ADVERTISED_100baseT_Half |
1473 			ADVERTISED_100baseT_Full;
1474 		cmd->advertising = 0;
1475 		cmd->port = PORT_MII;
1476 		cmd->transceiver = XCVR_EXTERNAL;
1477 	}
1478 	return 0;
1479 }
1480 
1481 static int bcm_enet_set_settings(struct net_device *dev,
1482 				 struct ethtool_cmd *cmd)
1483 {
1484 	struct bcm_enet_priv *priv;
1485 
1486 	priv = netdev_priv(dev);
1487 	if (priv->has_phy) {
1488 		if (!priv->phydev)
1489 			return -ENODEV;
1490 		return phy_ethtool_sset(priv->phydev, cmd);
1491 	} else {
1492 
1493 		if (cmd->autoneg ||
1494 		    (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
1495 		    cmd->port != PORT_MII)
1496 			return -EINVAL;
1497 
1498 		priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
1499 		priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
1500 
1501 		if (netif_running(dev))
1502 			bcm_enet_adjust_link(dev);
1503 		return 0;
1504 	}
1505 }
1506 
1507 static void bcm_enet_get_ringparam(struct net_device *dev,
1508 				   struct ethtool_ringparam *ering)
1509 {
1510 	struct bcm_enet_priv *priv;
1511 
1512 	priv = netdev_priv(dev);
1513 
1514 	/* rx/tx ring is actually only limited by memory */
1515 	ering->rx_max_pending = 8192;
1516 	ering->tx_max_pending = 8192;
1517 	ering->rx_pending = priv->rx_ring_size;
1518 	ering->tx_pending = priv->tx_ring_size;
1519 }
1520 
1521 static int bcm_enet_set_ringparam(struct net_device *dev,
1522 				  struct ethtool_ringparam *ering)
1523 {
1524 	struct bcm_enet_priv *priv;
1525 	int was_running;
1526 
1527 	priv = netdev_priv(dev);
1528 
1529 	was_running = 0;
1530 	if (netif_running(dev)) {
1531 		bcm_enet_stop(dev);
1532 		was_running = 1;
1533 	}
1534 
1535 	priv->rx_ring_size = ering->rx_pending;
1536 	priv->tx_ring_size = ering->tx_pending;
1537 
1538 	if (was_running) {
1539 		int err;
1540 
1541 		err = bcm_enet_open(dev);
1542 		if (err)
1543 			dev_close(dev);
1544 		else
1545 			bcm_enet_set_multicast_list(dev);
1546 	}
1547 	return 0;
1548 }
1549 
1550 static void bcm_enet_get_pauseparam(struct net_device *dev,
1551 				    struct ethtool_pauseparam *ecmd)
1552 {
1553 	struct bcm_enet_priv *priv;
1554 
1555 	priv = netdev_priv(dev);
1556 	ecmd->autoneg = priv->pause_auto;
1557 	ecmd->rx_pause = priv->pause_rx;
1558 	ecmd->tx_pause = priv->pause_tx;
1559 }
1560 
1561 static int bcm_enet_set_pauseparam(struct net_device *dev,
1562 				   struct ethtool_pauseparam *ecmd)
1563 {
1564 	struct bcm_enet_priv *priv;
1565 
1566 	priv = netdev_priv(dev);
1567 
1568 	if (priv->has_phy) {
1569 		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1570 			/* asymetric pause mode not supported,
1571 			 * actually possible but integrated PHY has RO
1572 			 * asym_pause bit */
1573 			return -EINVAL;
1574 		}
1575 	} else {
1576 		/* no pause autoneg on direct mii connection */
1577 		if (ecmd->autoneg)
1578 			return -EINVAL;
1579 	}
1580 
1581 	priv->pause_auto = ecmd->autoneg;
1582 	priv->pause_rx = ecmd->rx_pause;
1583 	priv->pause_tx = ecmd->tx_pause;
1584 
1585 	return 0;
1586 }
1587 
1588 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1589 	.get_strings		= bcm_enet_get_strings,
1590 	.get_sset_count		= bcm_enet_get_sset_count,
1591 	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1592 	.nway_reset		= bcm_enet_nway_reset,
1593 	.get_settings		= bcm_enet_get_settings,
1594 	.set_settings		= bcm_enet_set_settings,
1595 	.get_drvinfo		= bcm_enet_get_drvinfo,
1596 	.get_link		= ethtool_op_get_link,
1597 	.get_ringparam		= bcm_enet_get_ringparam,
1598 	.set_ringparam		= bcm_enet_set_ringparam,
1599 	.get_pauseparam		= bcm_enet_get_pauseparam,
1600 	.set_pauseparam		= bcm_enet_set_pauseparam,
1601 };
1602 
1603 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1604 {
1605 	struct bcm_enet_priv *priv;
1606 
1607 	priv = netdev_priv(dev);
1608 	if (priv->has_phy) {
1609 		if (!priv->phydev)
1610 			return -ENODEV;
1611 		return phy_mii_ioctl(priv->phydev, rq, cmd);
1612 	} else {
1613 		struct mii_if_info mii;
1614 
1615 		mii.dev = dev;
1616 		mii.mdio_read = bcm_enet_mdio_read_mii;
1617 		mii.mdio_write = bcm_enet_mdio_write_mii;
1618 		mii.phy_id = 0;
1619 		mii.phy_id_mask = 0x3f;
1620 		mii.reg_num_mask = 0x1f;
1621 		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1622 	}
1623 }
1624 
1625 /*
1626  * calculate actual hardware mtu
1627  */
1628 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
1629 {
1630 	int actual_mtu;
1631 
1632 	actual_mtu = mtu;
1633 
1634 	/* add ethernet header + vlan tag size */
1635 	actual_mtu += VLAN_ETH_HLEN;
1636 
1637 	if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
1638 		return -EINVAL;
1639 
1640 	/*
1641 	 * setup maximum size before we get overflow mark in
1642 	 * descriptor, note that this will not prevent reception of
1643 	 * big frames, they will be split into multiple buffers
1644 	 * anyway
1645 	 */
1646 	priv->hw_mtu = actual_mtu;
1647 
1648 	/*
1649 	 * align rx buffer size to dma burst len, account FCS since
1650 	 * it's appended
1651 	 */
1652 	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1653 				  priv->dma_maxburst * 4);
1654 	return 0;
1655 }
1656 
1657 /*
1658  * adjust mtu, can't be called while device is running
1659  */
1660 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1661 {
1662 	int ret;
1663 
1664 	if (netif_running(dev))
1665 		return -EBUSY;
1666 
1667 	ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
1668 	if (ret)
1669 		return ret;
1670 	dev->mtu = new_mtu;
1671 	return 0;
1672 }
1673 
1674 /*
1675  * preinit hardware to allow mii operation while device is down
1676  */
1677 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1678 {
1679 	u32 val;
1680 	int limit;
1681 
1682 	/* make sure mac is disabled */
1683 	bcm_enet_disable_mac(priv);
1684 
1685 	/* soft reset mac */
1686 	val = ENET_CTL_SRESET_MASK;
1687 	enet_writel(priv, val, ENET_CTL_REG);
1688 	wmb();
1689 
1690 	limit = 1000;
1691 	do {
1692 		val = enet_readl(priv, ENET_CTL_REG);
1693 		if (!(val & ENET_CTL_SRESET_MASK))
1694 			break;
1695 		udelay(1);
1696 	} while (limit--);
1697 
1698 	/* select correct mii interface */
1699 	val = enet_readl(priv, ENET_CTL_REG);
1700 	if (priv->use_external_mii)
1701 		val |= ENET_CTL_EPHYSEL_MASK;
1702 	else
1703 		val &= ~ENET_CTL_EPHYSEL_MASK;
1704 	enet_writel(priv, val, ENET_CTL_REG);
1705 
1706 	/* turn on mdc clock */
1707 	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1708 		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1709 
1710 	/* set mib counters to self-clear when read */
1711 	val = enet_readl(priv, ENET_MIBCTL_REG);
1712 	val |= ENET_MIBCTL_RDCLEAR_MASK;
1713 	enet_writel(priv, val, ENET_MIBCTL_REG);
1714 }
1715 
1716 static const struct net_device_ops bcm_enet_ops = {
1717 	.ndo_open		= bcm_enet_open,
1718 	.ndo_stop		= bcm_enet_stop,
1719 	.ndo_start_xmit		= bcm_enet_start_xmit,
1720 	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1721 	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1722 	.ndo_do_ioctl		= bcm_enet_ioctl,
1723 	.ndo_change_mtu		= bcm_enet_change_mtu,
1724 };
1725 
1726 /*
1727  * allocate netdevice, request register memory and register device.
1728  */
1729 static int bcm_enet_probe(struct platform_device *pdev)
1730 {
1731 	struct bcm_enet_priv *priv;
1732 	struct net_device *dev;
1733 	struct bcm63xx_enet_platform_data *pd;
1734 	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1735 	struct mii_bus *bus;
1736 	const char *clk_name;
1737 	int i, ret;
1738 
1739 	/* stop if shared driver failed, assume driver->probe will be
1740 	 * called in the same order we register devices (correct ?) */
1741 	if (!bcm_enet_shared_base[0])
1742 		return -ENODEV;
1743 
1744 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1745 	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1746 	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1747 	if (!res_irq || !res_irq_rx || !res_irq_tx)
1748 		return -ENODEV;
1749 
1750 	ret = 0;
1751 	dev = alloc_etherdev(sizeof(*priv));
1752 	if (!dev)
1753 		return -ENOMEM;
1754 	priv = netdev_priv(dev);
1755 
1756 	priv->enet_is_sw = false;
1757 	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1758 
1759 	ret = compute_hw_mtu(priv, dev->mtu);
1760 	if (ret)
1761 		goto out;
1762 
1763 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1764 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1765 	if (IS_ERR(priv->base)) {
1766 		ret = PTR_ERR(priv->base);
1767 		goto out;
1768 	}
1769 
1770 	dev->irq = priv->irq = res_irq->start;
1771 	priv->irq_rx = res_irq_rx->start;
1772 	priv->irq_tx = res_irq_tx->start;
1773 	priv->mac_id = pdev->id;
1774 
1775 	/* get rx & tx dma channel id for this mac */
1776 	if (priv->mac_id == 0) {
1777 		priv->rx_chan = 0;
1778 		priv->tx_chan = 1;
1779 		clk_name = "enet0";
1780 	} else {
1781 		priv->rx_chan = 2;
1782 		priv->tx_chan = 3;
1783 		clk_name = "enet1";
1784 	}
1785 
1786 	priv->mac_clk = clk_get(&pdev->dev, clk_name);
1787 	if (IS_ERR(priv->mac_clk)) {
1788 		ret = PTR_ERR(priv->mac_clk);
1789 		goto out;
1790 	}
1791 	clk_prepare_enable(priv->mac_clk);
1792 
1793 	/* initialize default and fetch platform data */
1794 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1795 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1796 
1797 	pd = dev_get_platdata(&pdev->dev);
1798 	if (pd) {
1799 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1800 		priv->has_phy = pd->has_phy;
1801 		priv->phy_id = pd->phy_id;
1802 		priv->has_phy_interrupt = pd->has_phy_interrupt;
1803 		priv->phy_interrupt = pd->phy_interrupt;
1804 		priv->use_external_mii = !pd->use_internal_phy;
1805 		priv->pause_auto = pd->pause_auto;
1806 		priv->pause_rx = pd->pause_rx;
1807 		priv->pause_tx = pd->pause_tx;
1808 		priv->force_duplex_full = pd->force_duplex_full;
1809 		priv->force_speed_100 = pd->force_speed_100;
1810 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1811 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1812 		priv->dma_chan_width = pd->dma_chan_width;
1813 		priv->dma_has_sram = pd->dma_has_sram;
1814 		priv->dma_desc_shift = pd->dma_desc_shift;
1815 	}
1816 
1817 	if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1818 		/* using internal PHY, enable clock */
1819 		priv->phy_clk = clk_get(&pdev->dev, "ephy");
1820 		if (IS_ERR(priv->phy_clk)) {
1821 			ret = PTR_ERR(priv->phy_clk);
1822 			priv->phy_clk = NULL;
1823 			goto out_put_clk_mac;
1824 		}
1825 		clk_prepare_enable(priv->phy_clk);
1826 	}
1827 
1828 	/* do minimal hardware init to be able to probe mii bus */
1829 	bcm_enet_hw_preinit(priv);
1830 
1831 	/* MII bus registration */
1832 	if (priv->has_phy) {
1833 
1834 		priv->mii_bus = mdiobus_alloc();
1835 		if (!priv->mii_bus) {
1836 			ret = -ENOMEM;
1837 			goto out_uninit_hw;
1838 		}
1839 
1840 		bus = priv->mii_bus;
1841 		bus->name = "bcm63xx_enet MII bus";
1842 		bus->parent = &pdev->dev;
1843 		bus->priv = priv;
1844 		bus->read = bcm_enet_mdio_read_phylib;
1845 		bus->write = bcm_enet_mdio_write_phylib;
1846 		sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
1847 
1848 		/* only probe bus where we think the PHY is, because
1849 		 * the mdio read operation return 0 instead of 0xffff
1850 		 * if a slave is not present on hw */
1851 		bus->phy_mask = ~(1 << priv->phy_id);
1852 
1853 		bus->irq = devm_kzalloc(&pdev->dev, sizeof(int) * PHY_MAX_ADDR,
1854 					GFP_KERNEL);
1855 		if (!bus->irq) {
1856 			ret = -ENOMEM;
1857 			goto out_free_mdio;
1858 		}
1859 
1860 		if (priv->has_phy_interrupt)
1861 			bus->irq[priv->phy_id] = priv->phy_interrupt;
1862 		else
1863 			bus->irq[priv->phy_id] = PHY_POLL;
1864 
1865 		ret = mdiobus_register(bus);
1866 		if (ret) {
1867 			dev_err(&pdev->dev, "unable to register mdio bus\n");
1868 			goto out_free_mdio;
1869 		}
1870 	} else {
1871 
1872 		/* run platform code to initialize PHY device */
1873 		if (pd->mii_config &&
1874 		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1875 				   bcm_enet_mdio_write_mii)) {
1876 			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1877 			goto out_uninit_hw;
1878 		}
1879 	}
1880 
1881 	spin_lock_init(&priv->rx_lock);
1882 
1883 	/* init rx timeout (used for oom) */
1884 	init_timer(&priv->rx_timeout);
1885 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1886 	priv->rx_timeout.data = (unsigned long)dev;
1887 
1888 	/* init the mib update lock&work */
1889 	mutex_init(&priv->mib_update_lock);
1890 	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1891 
1892 	/* zero mib counters */
1893 	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1894 		enet_writel(priv, 0, ENET_MIB_REG(i));
1895 
1896 	/* register netdevice */
1897 	dev->netdev_ops = &bcm_enet_ops;
1898 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1899 
1900 	dev->ethtool_ops = &bcm_enet_ethtool_ops;
1901 	SET_NETDEV_DEV(dev, &pdev->dev);
1902 
1903 	ret = register_netdev(dev);
1904 	if (ret)
1905 		goto out_unregister_mdio;
1906 
1907 	netif_carrier_off(dev);
1908 	platform_set_drvdata(pdev, dev);
1909 	priv->pdev = pdev;
1910 	priv->net_dev = dev;
1911 
1912 	return 0;
1913 
1914 out_unregister_mdio:
1915 	if (priv->mii_bus)
1916 		mdiobus_unregister(priv->mii_bus);
1917 
1918 out_free_mdio:
1919 	if (priv->mii_bus)
1920 		mdiobus_free(priv->mii_bus);
1921 
1922 out_uninit_hw:
1923 	/* turn off mdc clock */
1924 	enet_writel(priv, 0, ENET_MIISC_REG);
1925 	if (priv->phy_clk) {
1926 		clk_disable_unprepare(priv->phy_clk);
1927 		clk_put(priv->phy_clk);
1928 	}
1929 
1930 out_put_clk_mac:
1931 	clk_disable_unprepare(priv->mac_clk);
1932 	clk_put(priv->mac_clk);
1933 out:
1934 	free_netdev(dev);
1935 	return ret;
1936 }
1937 
1938 
1939 /*
1940  * exit func, stops hardware and unregisters netdevice
1941  */
1942 static int bcm_enet_remove(struct platform_device *pdev)
1943 {
1944 	struct bcm_enet_priv *priv;
1945 	struct net_device *dev;
1946 
1947 	/* stop netdevice */
1948 	dev = platform_get_drvdata(pdev);
1949 	priv = netdev_priv(dev);
1950 	unregister_netdev(dev);
1951 
1952 	/* turn off mdc clock */
1953 	enet_writel(priv, 0, ENET_MIISC_REG);
1954 
1955 	if (priv->has_phy) {
1956 		mdiobus_unregister(priv->mii_bus);
1957 		mdiobus_free(priv->mii_bus);
1958 	} else {
1959 		struct bcm63xx_enet_platform_data *pd;
1960 
1961 		pd = dev_get_platdata(&pdev->dev);
1962 		if (pd && pd->mii_config)
1963 			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1964 				       bcm_enet_mdio_write_mii);
1965 	}
1966 
1967 	/* disable hw block clocks */
1968 	if (priv->phy_clk) {
1969 		clk_disable_unprepare(priv->phy_clk);
1970 		clk_put(priv->phy_clk);
1971 	}
1972 	clk_disable_unprepare(priv->mac_clk);
1973 	clk_put(priv->mac_clk);
1974 
1975 	free_netdev(dev);
1976 	return 0;
1977 }
1978 
1979 struct platform_driver bcm63xx_enet_driver = {
1980 	.probe	= bcm_enet_probe,
1981 	.remove	= bcm_enet_remove,
1982 	.driver	= {
1983 		.name	= "bcm63xx_enet",
1984 		.owner  = THIS_MODULE,
1985 	},
1986 };
1987 
1988 /*
1989  * switch mii access callbacks
1990  */
1991 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1992 				int ext, int phy_id, int location)
1993 {
1994 	u32 reg;
1995 	int ret;
1996 
1997 	spin_lock_bh(&priv->enetsw_mdio_lock);
1998 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1999 
2000 	reg = ENETSW_MDIOC_RD_MASK |
2001 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2002 		(location << ENETSW_MDIOC_REG_SHIFT);
2003 
2004 	if (ext)
2005 		reg |= ENETSW_MDIOC_EXT_MASK;
2006 
2007 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2008 	udelay(50);
2009 	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
2010 	spin_unlock_bh(&priv->enetsw_mdio_lock);
2011 	return ret;
2012 }
2013 
2014 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
2015 				 int ext, int phy_id, int location,
2016 				 uint16_t data)
2017 {
2018 	u32 reg;
2019 
2020 	spin_lock_bh(&priv->enetsw_mdio_lock);
2021 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
2022 
2023 	reg = ENETSW_MDIOC_WR_MASK |
2024 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2025 		(location << ENETSW_MDIOC_REG_SHIFT);
2026 
2027 	if (ext)
2028 		reg |= ENETSW_MDIOC_EXT_MASK;
2029 
2030 	reg |= data;
2031 
2032 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2033 	udelay(50);
2034 	spin_unlock_bh(&priv->enetsw_mdio_lock);
2035 }
2036 
2037 static inline int bcm_enet_port_is_rgmii(int portid)
2038 {
2039 	return portid >= ENETSW_RGMII_PORT0;
2040 }
2041 
2042 /*
2043  * enet sw PHY polling
2044  */
2045 static void swphy_poll_timer(unsigned long data)
2046 {
2047 	struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
2048 	unsigned int i;
2049 
2050 	for (i = 0; i < priv->num_ports; i++) {
2051 		struct bcm63xx_enetsw_port *port;
2052 		int val, j, up, advertise, lpa, lpa2, speed, duplex, media;
2053 		int external_phy = bcm_enet_port_is_rgmii(i);
2054 		u8 override;
2055 
2056 		port = &priv->used_ports[i];
2057 		if (!port->used)
2058 			continue;
2059 
2060 		if (port->bypass_link)
2061 			continue;
2062 
2063 		/* dummy read to clear */
2064 		for (j = 0; j < 2; j++)
2065 			val = bcmenet_sw_mdio_read(priv, external_phy,
2066 						   port->phy_id, MII_BMSR);
2067 
2068 		if (val == 0xffff)
2069 			continue;
2070 
2071 		up = (val & BMSR_LSTATUS) ? 1 : 0;
2072 		if (!(up ^ priv->sw_port_link[i]))
2073 			continue;
2074 
2075 		priv->sw_port_link[i] = up;
2076 
2077 		/* link changed */
2078 		if (!up) {
2079 			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2080 				 port->name);
2081 			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2082 				      ENETSW_PORTOV_REG(i));
2083 			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2084 				      ENETSW_PTCTRL_TXDIS_MASK,
2085 				      ENETSW_PTCTRL_REG(i));
2086 			continue;
2087 		}
2088 
2089 		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2090 						 port->phy_id, MII_ADVERTISE);
2091 
2092 		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2093 					   MII_LPA);
2094 
2095 		lpa2 = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2096 					    MII_STAT1000);
2097 
2098 		/* figure out media and duplex from advertise and LPA values */
2099 		media = mii_nway_result(lpa & advertise);
2100 		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2101 		if (lpa2 & LPA_1000FULL)
2102 			duplex = 1;
2103 
2104 		if (lpa2 & (LPA_1000FULL | LPA_1000HALF))
2105 			speed = 1000;
2106 		else {
2107 			if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2108 				speed = 100;
2109 			else
2110 				speed = 10;
2111 		}
2112 
2113 		dev_info(&priv->pdev->dev,
2114 			 "link UP on %s, %dMbps, %s-duplex\n",
2115 			 port->name, speed, duplex ? "full" : "half");
2116 
2117 		override = ENETSW_PORTOV_ENABLE_MASK |
2118 			ENETSW_PORTOV_LINKUP_MASK;
2119 
2120 		if (speed == 1000)
2121 			override |= ENETSW_IMPOV_1000_MASK;
2122 		else if (speed == 100)
2123 			override |= ENETSW_IMPOV_100_MASK;
2124 		if (duplex)
2125 			override |= ENETSW_IMPOV_FDX_MASK;
2126 
2127 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2128 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2129 	}
2130 
2131 	priv->swphy_poll.expires = jiffies + HZ;
2132 	add_timer(&priv->swphy_poll);
2133 }
2134 
2135 /*
2136  * open callback, allocate dma rings & buffers and start rx operation
2137  */
2138 static int bcm_enetsw_open(struct net_device *dev)
2139 {
2140 	struct bcm_enet_priv *priv;
2141 	struct device *kdev;
2142 	int i, ret;
2143 	unsigned int size;
2144 	void *p;
2145 	u32 val;
2146 
2147 	priv = netdev_priv(dev);
2148 	kdev = &priv->pdev->dev;
2149 
2150 	/* mask all interrupts and request them */
2151 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2152 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2153 
2154 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2155 			  0, dev->name, dev);
2156 	if (ret)
2157 		goto out_freeirq;
2158 
2159 	if (priv->irq_tx != -1) {
2160 		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2161 				  0, dev->name, dev);
2162 		if (ret)
2163 			goto out_freeirq_rx;
2164 	}
2165 
2166 	/* allocate rx dma ring */
2167 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2168 	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2169 	if (!p) {
2170 		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2171 		ret = -ENOMEM;
2172 		goto out_freeirq_tx;
2173 	}
2174 
2175 	memset(p, 0, size);
2176 	priv->rx_desc_alloc_size = size;
2177 	priv->rx_desc_cpu = p;
2178 
2179 	/* allocate tx dma ring */
2180 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2181 	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2182 	if (!p) {
2183 		dev_err(kdev, "cannot allocate tx ring\n");
2184 		ret = -ENOMEM;
2185 		goto out_free_rx_ring;
2186 	}
2187 
2188 	memset(p, 0, size);
2189 	priv->tx_desc_alloc_size = size;
2190 	priv->tx_desc_cpu = p;
2191 
2192 	priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2193 			       GFP_KERNEL);
2194 	if (!priv->tx_skb) {
2195 		dev_err(kdev, "cannot allocate rx skb queue\n");
2196 		ret = -ENOMEM;
2197 		goto out_free_tx_ring;
2198 	}
2199 
2200 	priv->tx_desc_count = priv->tx_ring_size;
2201 	priv->tx_dirty_desc = 0;
2202 	priv->tx_curr_desc = 0;
2203 	spin_lock_init(&priv->tx_lock);
2204 
2205 	/* init & fill rx ring with skbs */
2206 	priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2207 			       GFP_KERNEL);
2208 	if (!priv->rx_skb) {
2209 		dev_err(kdev, "cannot allocate rx skb queue\n");
2210 		ret = -ENOMEM;
2211 		goto out_free_tx_skb;
2212 	}
2213 
2214 	priv->rx_desc_count = 0;
2215 	priv->rx_dirty_desc = 0;
2216 	priv->rx_curr_desc = 0;
2217 
2218 	/* disable all ports */
2219 	for (i = 0; i < priv->num_ports; i++) {
2220 		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2221 			      ENETSW_PORTOV_REG(i));
2222 		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2223 			      ENETSW_PTCTRL_TXDIS_MASK,
2224 			      ENETSW_PTCTRL_REG(i));
2225 
2226 		priv->sw_port_link[i] = 0;
2227 	}
2228 
2229 	/* reset mib */
2230 	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2231 	val |= ENETSW_GMCR_RST_MIB_MASK;
2232 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2233 	mdelay(1);
2234 	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2235 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2236 	mdelay(1);
2237 
2238 	/* force CPU port state */
2239 	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2240 	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2241 	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2242 
2243 	/* enable switch forward engine */
2244 	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2245 	val |= ENETSW_SWMODE_FWD_EN_MASK;
2246 	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2247 
2248 	/* enable jumbo on all ports */
2249 	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2250 	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2251 
2252 	/* initialize flow control buffer allocation */
2253 	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2254 			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2255 
2256 	if (bcm_enet_refill_rx(dev)) {
2257 		dev_err(kdev, "cannot allocate rx skb queue\n");
2258 		ret = -ENOMEM;
2259 		goto out;
2260 	}
2261 
2262 	/* write rx & tx ring addresses */
2263 	enet_dmas_writel(priv, priv->rx_desc_dma,
2264 			 ENETDMAS_RSTART_REG, priv->rx_chan);
2265 	enet_dmas_writel(priv, priv->tx_desc_dma,
2266 			 ENETDMAS_RSTART_REG, priv->tx_chan);
2267 
2268 	/* clear remaining state ram for rx & tx channel */
2269 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2270 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2271 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2272 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2273 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2274 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2275 
2276 	/* set dma maximum burst len */
2277 	enet_dmac_writel(priv, priv->dma_maxburst,
2278 			 ENETDMAC_MAXBURST, priv->rx_chan);
2279 	enet_dmac_writel(priv, priv->dma_maxburst,
2280 			 ENETDMAC_MAXBURST, priv->tx_chan);
2281 
2282 	/* set flow control low/high threshold to 1/3 / 2/3 */
2283 	val = priv->rx_ring_size / 3;
2284 	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2285 	val = (priv->rx_ring_size * 2) / 3;
2286 	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2287 
2288 	/* all set, enable mac and interrupts, start dma engine and
2289 	 * kick rx dma channel
2290 	 */
2291 	wmb();
2292 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2293 	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2294 			 ENETDMAC_CHANCFG, priv->rx_chan);
2295 
2296 	/* watch "packet transferred" interrupt in rx and tx */
2297 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2298 			 ENETDMAC_IR, priv->rx_chan);
2299 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2300 			 ENETDMAC_IR, priv->tx_chan);
2301 
2302 	/* make sure we enable napi before rx interrupt  */
2303 	napi_enable(&priv->napi);
2304 
2305 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2306 			 ENETDMAC_IRMASK, priv->rx_chan);
2307 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2308 			 ENETDMAC_IRMASK, priv->tx_chan);
2309 
2310 	netif_carrier_on(dev);
2311 	netif_start_queue(dev);
2312 
2313 	/* apply override config for bypass_link ports here. */
2314 	for (i = 0; i < priv->num_ports; i++) {
2315 		struct bcm63xx_enetsw_port *port;
2316 		u8 override;
2317 		port = &priv->used_ports[i];
2318 		if (!port->used)
2319 			continue;
2320 
2321 		if (!port->bypass_link)
2322 			continue;
2323 
2324 		override = ENETSW_PORTOV_ENABLE_MASK |
2325 			ENETSW_PORTOV_LINKUP_MASK;
2326 
2327 		switch (port->force_speed) {
2328 		case 1000:
2329 			override |= ENETSW_IMPOV_1000_MASK;
2330 			break;
2331 		case 100:
2332 			override |= ENETSW_IMPOV_100_MASK;
2333 			break;
2334 		case 10:
2335 			break;
2336 		default:
2337 			pr_warn("invalid forced speed on port %s: assume 10\n",
2338 			       port->name);
2339 			break;
2340 		}
2341 
2342 		if (port->force_duplex_full)
2343 			override |= ENETSW_IMPOV_FDX_MASK;
2344 
2345 
2346 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2347 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2348 	}
2349 
2350 	/* start phy polling timer */
2351 	init_timer(&priv->swphy_poll);
2352 	priv->swphy_poll.function = swphy_poll_timer;
2353 	priv->swphy_poll.data = (unsigned long)priv;
2354 	priv->swphy_poll.expires = jiffies;
2355 	add_timer(&priv->swphy_poll);
2356 	return 0;
2357 
2358 out:
2359 	for (i = 0; i < priv->rx_ring_size; i++) {
2360 		struct bcm_enet_desc *desc;
2361 
2362 		if (!priv->rx_skb[i])
2363 			continue;
2364 
2365 		desc = &priv->rx_desc_cpu[i];
2366 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2367 				 DMA_FROM_DEVICE);
2368 		kfree_skb(priv->rx_skb[i]);
2369 	}
2370 	kfree(priv->rx_skb);
2371 
2372 out_free_tx_skb:
2373 	kfree(priv->tx_skb);
2374 
2375 out_free_tx_ring:
2376 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2377 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2378 
2379 out_free_rx_ring:
2380 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2381 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2382 
2383 out_freeirq_tx:
2384 	if (priv->irq_tx != -1)
2385 		free_irq(priv->irq_tx, dev);
2386 
2387 out_freeirq_rx:
2388 	free_irq(priv->irq_rx, dev);
2389 
2390 out_freeirq:
2391 	return ret;
2392 }
2393 
2394 /* stop callback */
2395 static int bcm_enetsw_stop(struct net_device *dev)
2396 {
2397 	struct bcm_enet_priv *priv;
2398 	struct device *kdev;
2399 	int i;
2400 
2401 	priv = netdev_priv(dev);
2402 	kdev = &priv->pdev->dev;
2403 
2404 	del_timer_sync(&priv->swphy_poll);
2405 	netif_stop_queue(dev);
2406 	napi_disable(&priv->napi);
2407 	del_timer_sync(&priv->rx_timeout);
2408 
2409 	/* mask all interrupts */
2410 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2411 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2412 
2413 	/* disable dma & mac */
2414 	bcm_enet_disable_dma(priv, priv->tx_chan);
2415 	bcm_enet_disable_dma(priv, priv->rx_chan);
2416 
2417 	/* force reclaim of all tx buffers */
2418 	bcm_enet_tx_reclaim(dev, 1);
2419 
2420 	/* free the rx skb ring */
2421 	for (i = 0; i < priv->rx_ring_size; i++) {
2422 		struct bcm_enet_desc *desc;
2423 
2424 		if (!priv->rx_skb[i])
2425 			continue;
2426 
2427 		desc = &priv->rx_desc_cpu[i];
2428 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2429 				 DMA_FROM_DEVICE);
2430 		kfree_skb(priv->rx_skb[i]);
2431 	}
2432 
2433 	/* free remaining allocated memory */
2434 	kfree(priv->rx_skb);
2435 	kfree(priv->tx_skb);
2436 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2437 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2438 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2439 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2440 	if (priv->irq_tx != -1)
2441 		free_irq(priv->irq_tx, dev);
2442 	free_irq(priv->irq_rx, dev);
2443 
2444 	return 0;
2445 }
2446 
2447 /* try to sort out phy external status by walking the used_port field
2448  * in the bcm_enet_priv structure. in case the phy address is not
2449  * assigned to any physical port on the switch, assume it is external
2450  * (and yell at the user).
2451  */
2452 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2453 {
2454 	int i;
2455 
2456 	for (i = 0; i < priv->num_ports; ++i) {
2457 		if (!priv->used_ports[i].used)
2458 			continue;
2459 		if (priv->used_ports[i].phy_id == phy_id)
2460 			return bcm_enet_port_is_rgmii(i);
2461 	}
2462 
2463 	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2464 		    phy_id);
2465 	return 1;
2466 }
2467 
2468 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2469  * external/internal status of the given phy_id first.
2470  */
2471 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2472 				    int location)
2473 {
2474 	struct bcm_enet_priv *priv;
2475 
2476 	priv = netdev_priv(dev);
2477 	return bcmenet_sw_mdio_read(priv,
2478 				    bcm_enetsw_phy_is_external(priv, phy_id),
2479 				    phy_id, location);
2480 }
2481 
2482 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2483  * external/internal status of the given phy_id first.
2484  */
2485 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2486 				      int location,
2487 				      int val)
2488 {
2489 	struct bcm_enet_priv *priv;
2490 
2491 	priv = netdev_priv(dev);
2492 	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2493 			      phy_id, location, val);
2494 }
2495 
2496 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2497 {
2498 	struct mii_if_info mii;
2499 
2500 	mii.dev = dev;
2501 	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2502 	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2503 	mii.phy_id = 0;
2504 	mii.phy_id_mask = 0x3f;
2505 	mii.reg_num_mask = 0x1f;
2506 	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2507 
2508 }
2509 
2510 static const struct net_device_ops bcm_enetsw_ops = {
2511 	.ndo_open		= bcm_enetsw_open,
2512 	.ndo_stop		= bcm_enetsw_stop,
2513 	.ndo_start_xmit		= bcm_enet_start_xmit,
2514 	.ndo_change_mtu		= bcm_enet_change_mtu,
2515 	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2516 };
2517 
2518 
2519 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2520 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2521 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2522 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2523 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2524 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2525 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2526 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2527 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2528 
2529 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2530 	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2531 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2532 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2533 	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2534 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2535 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2536 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2537 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2538 	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2539 	  ETHSW_MIB_RX_1024_1522 },
2540 	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2541 	  ETHSW_MIB_RX_1523_2047 },
2542 	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2543 	  ETHSW_MIB_RX_2048_4095 },
2544 	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2545 	  ETHSW_MIB_RX_4096_8191 },
2546 	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2547 	  ETHSW_MIB_RX_8192_9728 },
2548 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2549 	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2550 	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2551 	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2552 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2553 
2554 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2555 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2556 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2557 	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2558 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2559 	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2560 
2561 };
2562 
2563 #define BCM_ENETSW_STATS_LEN	\
2564 	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2565 
2566 static void bcm_enetsw_get_strings(struct net_device *netdev,
2567 				   u32 stringset, u8 *data)
2568 {
2569 	int i;
2570 
2571 	switch (stringset) {
2572 	case ETH_SS_STATS:
2573 		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2574 			memcpy(data + i * ETH_GSTRING_LEN,
2575 			       bcm_enetsw_gstrings_stats[i].stat_string,
2576 			       ETH_GSTRING_LEN);
2577 		}
2578 		break;
2579 	}
2580 }
2581 
2582 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2583 				     int string_set)
2584 {
2585 	switch (string_set) {
2586 	case ETH_SS_STATS:
2587 		return BCM_ENETSW_STATS_LEN;
2588 	default:
2589 		return -EINVAL;
2590 	}
2591 }
2592 
2593 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2594 				   struct ethtool_drvinfo *drvinfo)
2595 {
2596 	strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2597 	strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2598 	strncpy(drvinfo->fw_version, "N/A", 32);
2599 	strncpy(drvinfo->bus_info, "bcm63xx", 32);
2600 	drvinfo->n_stats = BCM_ENETSW_STATS_LEN;
2601 }
2602 
2603 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2604 					 struct ethtool_stats *stats,
2605 					 u64 *data)
2606 {
2607 	struct bcm_enet_priv *priv;
2608 	int i;
2609 
2610 	priv = netdev_priv(netdev);
2611 
2612 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2613 		const struct bcm_enet_stats *s;
2614 		u32 lo, hi;
2615 		char *p;
2616 		int reg;
2617 
2618 		s = &bcm_enetsw_gstrings_stats[i];
2619 
2620 		reg = s->mib_reg;
2621 		if (reg == -1)
2622 			continue;
2623 
2624 		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2625 		p = (char *)priv + s->stat_offset;
2626 
2627 		if (s->sizeof_stat == sizeof(u64)) {
2628 			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2629 			*(u64 *)p = ((u64)hi << 32 | lo);
2630 		} else {
2631 			*(u32 *)p = lo;
2632 		}
2633 	}
2634 
2635 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2636 		const struct bcm_enet_stats *s;
2637 		char *p;
2638 
2639 		s = &bcm_enetsw_gstrings_stats[i];
2640 
2641 		if (s->mib_reg == -1)
2642 			p = (char *)&netdev->stats + s->stat_offset;
2643 		else
2644 			p = (char *)priv + s->stat_offset;
2645 
2646 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2647 			*(u64 *)p : *(u32 *)p;
2648 	}
2649 }
2650 
2651 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2652 				     struct ethtool_ringparam *ering)
2653 {
2654 	struct bcm_enet_priv *priv;
2655 
2656 	priv = netdev_priv(dev);
2657 
2658 	/* rx/tx ring is actually only limited by memory */
2659 	ering->rx_max_pending = 8192;
2660 	ering->tx_max_pending = 8192;
2661 	ering->rx_mini_max_pending = 0;
2662 	ering->rx_jumbo_max_pending = 0;
2663 	ering->rx_pending = priv->rx_ring_size;
2664 	ering->tx_pending = priv->tx_ring_size;
2665 }
2666 
2667 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2668 				    struct ethtool_ringparam *ering)
2669 {
2670 	struct bcm_enet_priv *priv;
2671 	int was_running;
2672 
2673 	priv = netdev_priv(dev);
2674 
2675 	was_running = 0;
2676 	if (netif_running(dev)) {
2677 		bcm_enetsw_stop(dev);
2678 		was_running = 1;
2679 	}
2680 
2681 	priv->rx_ring_size = ering->rx_pending;
2682 	priv->tx_ring_size = ering->tx_pending;
2683 
2684 	if (was_running) {
2685 		int err;
2686 
2687 		err = bcm_enetsw_open(dev);
2688 		if (err)
2689 			dev_close(dev);
2690 	}
2691 	return 0;
2692 }
2693 
2694 static struct ethtool_ops bcm_enetsw_ethtool_ops = {
2695 	.get_strings		= bcm_enetsw_get_strings,
2696 	.get_sset_count		= bcm_enetsw_get_sset_count,
2697 	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2698 	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2699 	.get_ringparam		= bcm_enetsw_get_ringparam,
2700 	.set_ringparam		= bcm_enetsw_set_ringparam,
2701 };
2702 
2703 /* allocate netdevice, request register memory and register device. */
2704 static int bcm_enetsw_probe(struct platform_device *pdev)
2705 {
2706 	struct bcm_enet_priv *priv;
2707 	struct net_device *dev;
2708 	struct bcm63xx_enetsw_platform_data *pd;
2709 	struct resource *res_mem;
2710 	int ret, irq_rx, irq_tx;
2711 
2712 	/* stop if shared driver failed, assume driver->probe will be
2713 	 * called in the same order we register devices (correct ?)
2714 	 */
2715 	if (!bcm_enet_shared_base[0])
2716 		return -ENODEV;
2717 
2718 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2719 	irq_rx = platform_get_irq(pdev, 0);
2720 	irq_tx = platform_get_irq(pdev, 1);
2721 	if (!res_mem || irq_rx < 0)
2722 		return -ENODEV;
2723 
2724 	ret = 0;
2725 	dev = alloc_etherdev(sizeof(*priv));
2726 	if (!dev)
2727 		return -ENOMEM;
2728 	priv = netdev_priv(dev);
2729 	memset(priv, 0, sizeof(*priv));
2730 
2731 	/* initialize default and fetch platform data */
2732 	priv->enet_is_sw = true;
2733 	priv->irq_rx = irq_rx;
2734 	priv->irq_tx = irq_tx;
2735 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2736 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2737 	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2738 
2739 	pd = dev_get_platdata(&pdev->dev);
2740 	if (pd) {
2741 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2742 		memcpy(priv->used_ports, pd->used_ports,
2743 		       sizeof(pd->used_ports));
2744 		priv->num_ports = pd->num_ports;
2745 		priv->dma_has_sram = pd->dma_has_sram;
2746 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2747 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2748 		priv->dma_chan_width = pd->dma_chan_width;
2749 	}
2750 
2751 	ret = compute_hw_mtu(priv, dev->mtu);
2752 	if (ret)
2753 		goto out;
2754 
2755 	if (!request_mem_region(res_mem->start, resource_size(res_mem),
2756 				"bcm63xx_enetsw")) {
2757 		ret = -EBUSY;
2758 		goto out;
2759 	}
2760 
2761 	priv->base = ioremap(res_mem->start, resource_size(res_mem));
2762 	if (priv->base == NULL) {
2763 		ret = -ENOMEM;
2764 		goto out_release_mem;
2765 	}
2766 
2767 	priv->mac_clk = clk_get(&pdev->dev, "enetsw");
2768 	if (IS_ERR(priv->mac_clk)) {
2769 		ret = PTR_ERR(priv->mac_clk);
2770 		goto out_unmap;
2771 	}
2772 	clk_enable(priv->mac_clk);
2773 
2774 	priv->rx_chan = 0;
2775 	priv->tx_chan = 1;
2776 	spin_lock_init(&priv->rx_lock);
2777 
2778 	/* init rx timeout (used for oom) */
2779 	init_timer(&priv->rx_timeout);
2780 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
2781 	priv->rx_timeout.data = (unsigned long)dev;
2782 
2783 	/* register netdevice */
2784 	dev->netdev_ops = &bcm_enetsw_ops;
2785 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2786 	dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2787 	SET_NETDEV_DEV(dev, &pdev->dev);
2788 
2789 	spin_lock_init(&priv->enetsw_mdio_lock);
2790 
2791 	ret = register_netdev(dev);
2792 	if (ret)
2793 		goto out_put_clk;
2794 
2795 	netif_carrier_off(dev);
2796 	platform_set_drvdata(pdev, dev);
2797 	priv->pdev = pdev;
2798 	priv->net_dev = dev;
2799 
2800 	return 0;
2801 
2802 out_put_clk:
2803 	clk_put(priv->mac_clk);
2804 
2805 out_unmap:
2806 	iounmap(priv->base);
2807 
2808 out_release_mem:
2809 	release_mem_region(res_mem->start, resource_size(res_mem));
2810 out:
2811 	free_netdev(dev);
2812 	return ret;
2813 }
2814 
2815 
2816 /* exit func, stops hardware and unregisters netdevice */
2817 static int bcm_enetsw_remove(struct platform_device *pdev)
2818 {
2819 	struct bcm_enet_priv *priv;
2820 	struct net_device *dev;
2821 	struct resource *res;
2822 
2823 	/* stop netdevice */
2824 	dev = platform_get_drvdata(pdev);
2825 	priv = netdev_priv(dev);
2826 	unregister_netdev(dev);
2827 
2828 	/* release device resources */
2829 	iounmap(priv->base);
2830 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2831 	release_mem_region(res->start, resource_size(res));
2832 
2833 	free_netdev(dev);
2834 	return 0;
2835 }
2836 
2837 struct platform_driver bcm63xx_enetsw_driver = {
2838 	.probe	= bcm_enetsw_probe,
2839 	.remove	= bcm_enetsw_remove,
2840 	.driver	= {
2841 		.name	= "bcm63xx_enetsw",
2842 		.owner  = THIS_MODULE,
2843 	},
2844 };
2845 
2846 /* reserve & remap memory space shared between all macs */
2847 static int bcm_enet_shared_probe(struct platform_device *pdev)
2848 {
2849 	struct resource *res;
2850 	void __iomem *p[3];
2851 	unsigned int i;
2852 
2853 	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2854 
2855 	for (i = 0; i < 3; i++) {
2856 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2857 		p[i] = devm_ioremap_resource(&pdev->dev, res);
2858 		if (IS_ERR(p[i]))
2859 			return PTR_ERR(p[i]);
2860 	}
2861 
2862 	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2863 
2864 	return 0;
2865 }
2866 
2867 static int bcm_enet_shared_remove(struct platform_device *pdev)
2868 {
2869 	return 0;
2870 }
2871 
2872 /* this "shared" driver is needed because both macs share a single
2873  * address space
2874  */
2875 struct platform_driver bcm63xx_enet_shared_driver = {
2876 	.probe	= bcm_enet_shared_probe,
2877 	.remove	= bcm_enet_shared_remove,
2878 	.driver	= {
2879 		.name	= "bcm63xx_enet_shared",
2880 		.owner  = THIS_MODULE,
2881 	},
2882 };
2883 
2884 /* entry point */
2885 static int __init bcm_enet_init(void)
2886 {
2887 	int ret;
2888 
2889 	ret = platform_driver_register(&bcm63xx_enet_shared_driver);
2890 	if (ret)
2891 		return ret;
2892 
2893 	ret = platform_driver_register(&bcm63xx_enet_driver);
2894 	if (ret)
2895 		platform_driver_unregister(&bcm63xx_enet_shared_driver);
2896 
2897 	ret = platform_driver_register(&bcm63xx_enetsw_driver);
2898 	if (ret) {
2899 		platform_driver_unregister(&bcm63xx_enet_driver);
2900 		platform_driver_unregister(&bcm63xx_enet_shared_driver);
2901 	}
2902 
2903 	return ret;
2904 }
2905 
2906 static void __exit bcm_enet_exit(void)
2907 {
2908 	platform_driver_unregister(&bcm63xx_enet_driver);
2909 	platform_driver_unregister(&bcm63xx_enetsw_driver);
2910 	platform_driver_unregister(&bcm63xx_enet_shared_driver);
2911 }
2912 
2913 
2914 module_init(bcm_enet_init);
2915 module_exit(bcm_enet_exit);
2916 
2917 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2918 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2919 MODULE_LICENSE("GPL");
2920