1 /*
2  * Driver for BCM963xx builtin Ethernet mac
3  *
4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33 
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36 
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39 
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43 
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46 
47 /*
48  * io helpers to access mac registers
49  */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 	return bcm_readl(priv->base + off);
53 }
54 
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 			       u32 val, u32 off)
57 {
58 	bcm_writel(val, priv->base + off);
59 }
60 
61 /*
62  * io helpers to access switch registers
63  */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 	return bcm_readl(priv->base + off);
67 }
68 
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 				 u32 val, u32 off)
71 {
72 	bcm_writel(val, priv->base + off);
73 }
74 
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 	return bcm_readw(priv->base + off);
78 }
79 
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 				 u16 val, u32 off)
82 {
83 	bcm_writew(val, priv->base + off);
84 }
85 
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 	return bcm_readb(priv->base + off);
89 }
90 
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 				 u8 val, u32 off)
93 {
94 	bcm_writeb(val, priv->base + off);
95 }
96 
97 
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 	return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103 
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 				       u32 val, u32 off)
106 {
107 	bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109 
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 	return bcm_readl(bcm_enet_shared_base[1] +
113 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115 
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 				       u32 val, u32 off, int chan)
118 {
119 	bcm_writel(val, bcm_enet_shared_base[1] +
120 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122 
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127 
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 				       u32 val, u32 off, int chan)
130 {
131 	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133 
134 /*
135  * write given data into mii register and wait for transfer to end
136  * with timeout (average measured transfer time is 25us)
137  */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 	int limit;
141 
142 	/* make sure mii interrupt status is cleared */
143 	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144 
145 	enet_writel(priv, data, ENET_MIIDATA_REG);
146 	wmb();
147 
148 	/* busy wait on mii interrupt bit, with timeout */
149 	limit = 1000;
150 	do {
151 		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 			break;
153 		udelay(1);
154 	} while (limit-- > 0);
155 
156 	return (limit < 0) ? 1 : 0;
157 }
158 
159 /*
160  * MII internal read callback
161  */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 			      int regnum)
164 {
165 	u32 tmp, val;
166 
167 	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 	tmp |= ENET_MIIDATA_OP_READ_MASK;
171 
172 	if (do_mdio_op(priv, tmp))
173 		return -1;
174 
175 	val = enet_readl(priv, ENET_MIIDATA_REG);
176 	val &= 0xffff;
177 	return val;
178 }
179 
180 /*
181  * MII internal write callback
182  */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 			       int regnum, u16 value)
185 {
186 	u32 tmp;
187 
188 	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193 
194 	(void)do_mdio_op(priv, tmp);
195 	return 0;
196 }
197 
198 /*
199  * MII read callback from phylib
200  */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 				     int regnum)
203 {
204 	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206 
207 /*
208  * MII write callback from phylib
209  */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 				      int regnum, u16 value)
212 {
213 	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215 
216 /*
217  * MII read callback from mii core
218  */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 				  int regnum)
221 {
222 	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224 
225 /*
226  * MII write callback from mii core
227  */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 				    int regnum, int value)
230 {
231 	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233 
234 /*
235  * refill rx queue
236  */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 	struct bcm_enet_priv *priv;
240 
241 	priv = netdev_priv(dev);
242 
243 	while (priv->rx_desc_count < priv->rx_ring_size) {
244 		struct bcm_enet_desc *desc;
245 		struct sk_buff *skb;
246 		dma_addr_t p;
247 		int desc_idx;
248 		u32 len_stat;
249 
250 		desc_idx = priv->rx_dirty_desc;
251 		desc = &priv->rx_desc_cpu[desc_idx];
252 
253 		if (!priv->rx_skb[desc_idx]) {
254 			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 			if (!skb)
256 				break;
257 			priv->rx_skb[desc_idx] = skb;
258 			p = dma_map_single(&priv->pdev->dev, skb->data,
259 					   priv->rx_skb_size,
260 					   DMA_FROM_DEVICE);
261 			desc->address = p;
262 		}
263 
264 		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 		len_stat |= DMADESC_OWNER_MASK;
266 		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 			priv->rx_dirty_desc = 0;
269 		} else {
270 			priv->rx_dirty_desc++;
271 		}
272 		wmb();
273 		desc->len_stat = len_stat;
274 
275 		priv->rx_desc_count++;
276 
277 		/* tell dma engine we allocated one buffer */
278 		if (priv->dma_has_sram)
279 			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 		else
281 			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 	}
283 
284 	/* If rx ring is still empty, set a timer to try allocating
285 	 * again at a later time. */
286 	if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 		priv->rx_timeout.expires = jiffies + HZ;
289 		add_timer(&priv->rx_timeout);
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * timer callback to defer refill rx queue in case we're OOM
297  */
298 static void bcm_enet_refill_rx_timer(unsigned long data)
299 {
300 	struct net_device *dev;
301 	struct bcm_enet_priv *priv;
302 
303 	dev = (struct net_device *)data;
304 	priv = netdev_priv(dev);
305 
306 	spin_lock(&priv->rx_lock);
307 	bcm_enet_refill_rx((struct net_device *)data);
308 	spin_unlock(&priv->rx_lock);
309 }
310 
311 /*
312  * extract packet from rx queue
313  */
314 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
315 {
316 	struct bcm_enet_priv *priv;
317 	struct device *kdev;
318 	int processed;
319 
320 	priv = netdev_priv(dev);
321 	kdev = &priv->pdev->dev;
322 	processed = 0;
323 
324 	/* don't scan ring further than number of refilled
325 	 * descriptor */
326 	if (budget > priv->rx_desc_count)
327 		budget = priv->rx_desc_count;
328 
329 	do {
330 		struct bcm_enet_desc *desc;
331 		struct sk_buff *skb;
332 		int desc_idx;
333 		u32 len_stat;
334 		unsigned int len;
335 
336 		desc_idx = priv->rx_curr_desc;
337 		desc = &priv->rx_desc_cpu[desc_idx];
338 
339 		/* make sure we actually read the descriptor status at
340 		 * each loop */
341 		rmb();
342 
343 		len_stat = desc->len_stat;
344 
345 		/* break if dma ownership belongs to hw */
346 		if (len_stat & DMADESC_OWNER_MASK)
347 			break;
348 
349 		processed++;
350 		priv->rx_curr_desc++;
351 		if (priv->rx_curr_desc == priv->rx_ring_size)
352 			priv->rx_curr_desc = 0;
353 		priv->rx_desc_count--;
354 
355 		/* if the packet does not have start of packet _and_
356 		 * end of packet flag set, then just recycle it */
357 		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
358 			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
359 			dev->stats.rx_dropped++;
360 			continue;
361 		}
362 
363 		/* recycle packet if it's marked as bad */
364 		if (!priv->enet_is_sw &&
365 		    unlikely(len_stat & DMADESC_ERR_MASK)) {
366 			dev->stats.rx_errors++;
367 
368 			if (len_stat & DMADESC_OVSIZE_MASK)
369 				dev->stats.rx_length_errors++;
370 			if (len_stat & DMADESC_CRC_MASK)
371 				dev->stats.rx_crc_errors++;
372 			if (len_stat & DMADESC_UNDER_MASK)
373 				dev->stats.rx_frame_errors++;
374 			if (len_stat & DMADESC_OV_MASK)
375 				dev->stats.rx_fifo_errors++;
376 			continue;
377 		}
378 
379 		/* valid packet */
380 		skb = priv->rx_skb[desc_idx];
381 		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
382 		/* don't include FCS */
383 		len -= 4;
384 
385 		if (len < copybreak) {
386 			struct sk_buff *nskb;
387 
388 			nskb = napi_alloc_skb(&priv->napi, len);
389 			if (!nskb) {
390 				/* forget packet, just rearm desc */
391 				dev->stats.rx_dropped++;
392 				continue;
393 			}
394 
395 			dma_sync_single_for_cpu(kdev, desc->address,
396 						len, DMA_FROM_DEVICE);
397 			memcpy(nskb->data, skb->data, len);
398 			dma_sync_single_for_device(kdev, desc->address,
399 						   len, DMA_FROM_DEVICE);
400 			skb = nskb;
401 		} else {
402 			dma_unmap_single(&priv->pdev->dev, desc->address,
403 					 priv->rx_skb_size, DMA_FROM_DEVICE);
404 			priv->rx_skb[desc_idx] = NULL;
405 		}
406 
407 		skb_put(skb, len);
408 		skb->protocol = eth_type_trans(skb, dev);
409 		dev->stats.rx_packets++;
410 		dev->stats.rx_bytes += len;
411 		netif_receive_skb(skb);
412 
413 	} while (--budget > 0);
414 
415 	if (processed || !priv->rx_desc_count) {
416 		bcm_enet_refill_rx(dev);
417 
418 		/* kick rx dma */
419 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
420 					 ENETDMAC_CHANCFG, priv->rx_chan);
421 	}
422 
423 	return processed;
424 }
425 
426 
427 /*
428  * try to or force reclaim of transmitted buffers
429  */
430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
431 {
432 	struct bcm_enet_priv *priv;
433 	int released;
434 
435 	priv = netdev_priv(dev);
436 	released = 0;
437 
438 	while (priv->tx_desc_count < priv->tx_ring_size) {
439 		struct bcm_enet_desc *desc;
440 		struct sk_buff *skb;
441 
442 		/* We run in a bh and fight against start_xmit, which
443 		 * is called with bh disabled  */
444 		spin_lock(&priv->tx_lock);
445 
446 		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
447 
448 		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
449 			spin_unlock(&priv->tx_lock);
450 			break;
451 		}
452 
453 		/* ensure other field of the descriptor were not read
454 		 * before we checked ownership */
455 		rmb();
456 
457 		skb = priv->tx_skb[priv->tx_dirty_desc];
458 		priv->tx_skb[priv->tx_dirty_desc] = NULL;
459 		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
460 				 DMA_TO_DEVICE);
461 
462 		priv->tx_dirty_desc++;
463 		if (priv->tx_dirty_desc == priv->tx_ring_size)
464 			priv->tx_dirty_desc = 0;
465 		priv->tx_desc_count++;
466 
467 		spin_unlock(&priv->tx_lock);
468 
469 		if (desc->len_stat & DMADESC_UNDER_MASK)
470 			dev->stats.tx_errors++;
471 
472 		dev_kfree_skb(skb);
473 		released++;
474 	}
475 
476 	if (netif_queue_stopped(dev) && released)
477 		netif_wake_queue(dev);
478 
479 	return released;
480 }
481 
482 /*
483  * poll func, called by network core
484  */
485 static int bcm_enet_poll(struct napi_struct *napi, int budget)
486 {
487 	struct bcm_enet_priv *priv;
488 	struct net_device *dev;
489 	int rx_work_done;
490 
491 	priv = container_of(napi, struct bcm_enet_priv, napi);
492 	dev = priv->net_dev;
493 
494 	/* ack interrupts */
495 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
496 			 ENETDMAC_IR, priv->rx_chan);
497 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
498 			 ENETDMAC_IR, priv->tx_chan);
499 
500 	/* reclaim sent skb */
501 	bcm_enet_tx_reclaim(dev, 0);
502 
503 	spin_lock(&priv->rx_lock);
504 	rx_work_done = bcm_enet_receive_queue(dev, budget);
505 	spin_unlock(&priv->rx_lock);
506 
507 	if (rx_work_done >= budget) {
508 		/* rx queue is not yet empty/clean */
509 		return rx_work_done;
510 	}
511 
512 	/* no more packet in rx/tx queue, remove device from poll
513 	 * queue */
514 	napi_complete_done(napi, rx_work_done);
515 
516 	/* restore rx/tx interrupt */
517 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
518 			 ENETDMAC_IRMASK, priv->rx_chan);
519 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
520 			 ENETDMAC_IRMASK, priv->tx_chan);
521 
522 	return rx_work_done;
523 }
524 
525 /*
526  * mac interrupt handler
527  */
528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
529 {
530 	struct net_device *dev;
531 	struct bcm_enet_priv *priv;
532 	u32 stat;
533 
534 	dev = dev_id;
535 	priv = netdev_priv(dev);
536 
537 	stat = enet_readl(priv, ENET_IR_REG);
538 	if (!(stat & ENET_IR_MIB))
539 		return IRQ_NONE;
540 
541 	/* clear & mask interrupt */
542 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
543 	enet_writel(priv, 0, ENET_IRMASK_REG);
544 
545 	/* read mib registers in workqueue */
546 	schedule_work(&priv->mib_update_task);
547 
548 	return IRQ_HANDLED;
549 }
550 
551 /*
552  * rx/tx dma interrupt handler
553  */
554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
555 {
556 	struct net_device *dev;
557 	struct bcm_enet_priv *priv;
558 
559 	dev = dev_id;
560 	priv = netdev_priv(dev);
561 
562 	/* mask rx/tx interrupts */
563 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
564 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
565 
566 	napi_schedule(&priv->napi);
567 
568 	return IRQ_HANDLED;
569 }
570 
571 /*
572  * tx request callback
573  */
574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576 	struct bcm_enet_priv *priv;
577 	struct bcm_enet_desc *desc;
578 	u32 len_stat;
579 	int ret;
580 
581 	priv = netdev_priv(dev);
582 
583 	/* lock against tx reclaim */
584 	spin_lock(&priv->tx_lock);
585 
586 	/* make sure  the tx hw queue  is not full,  should not happen
587 	 * since we stop queue before it's the case */
588 	if (unlikely(!priv->tx_desc_count)) {
589 		netif_stop_queue(dev);
590 		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
591 			"available?\n");
592 		ret = NETDEV_TX_BUSY;
593 		goto out_unlock;
594 	}
595 
596 	/* pad small packets sent on a switch device */
597 	if (priv->enet_is_sw && skb->len < 64) {
598 		int needed = 64 - skb->len;
599 		char *data;
600 
601 		if (unlikely(skb_tailroom(skb) < needed)) {
602 			struct sk_buff *nskb;
603 
604 			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
605 			if (!nskb) {
606 				ret = NETDEV_TX_BUSY;
607 				goto out_unlock;
608 			}
609 			dev_kfree_skb(skb);
610 			skb = nskb;
611 		}
612 		data = skb_put_zero(skb, needed);
613 	}
614 
615 	/* point to the next available desc */
616 	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
617 	priv->tx_skb[priv->tx_curr_desc] = skb;
618 
619 	/* fill descriptor */
620 	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
621 				       DMA_TO_DEVICE);
622 
623 	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
624 	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
625 		DMADESC_APPEND_CRC |
626 		DMADESC_OWNER_MASK;
627 
628 	priv->tx_curr_desc++;
629 	if (priv->tx_curr_desc == priv->tx_ring_size) {
630 		priv->tx_curr_desc = 0;
631 		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
632 	}
633 	priv->tx_desc_count--;
634 
635 	/* dma might be already polling, make sure we update desc
636 	 * fields in correct order */
637 	wmb();
638 	desc->len_stat = len_stat;
639 	wmb();
640 
641 	/* kick tx dma */
642 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
643 				 ENETDMAC_CHANCFG, priv->tx_chan);
644 
645 	/* stop queue if no more desc available */
646 	if (!priv->tx_desc_count)
647 		netif_stop_queue(dev);
648 
649 	dev->stats.tx_bytes += skb->len;
650 	dev->stats.tx_packets++;
651 	ret = NETDEV_TX_OK;
652 
653 out_unlock:
654 	spin_unlock(&priv->tx_lock);
655 	return ret;
656 }
657 
658 /*
659  * Change the interface's mac address.
660  */
661 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
662 {
663 	struct bcm_enet_priv *priv;
664 	struct sockaddr *addr = p;
665 	u32 val;
666 
667 	priv = netdev_priv(dev);
668 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
669 
670 	/* use perfect match register 0 to store my mac address */
671 	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
672 		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
673 	enet_writel(priv, val, ENET_PML_REG(0));
674 
675 	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
676 	val |= ENET_PMH_DATAVALID_MASK;
677 	enet_writel(priv, val, ENET_PMH_REG(0));
678 
679 	return 0;
680 }
681 
682 /*
683  * Change rx mode (promiscuous/allmulti) and update multicast list
684  */
685 static void bcm_enet_set_multicast_list(struct net_device *dev)
686 {
687 	struct bcm_enet_priv *priv;
688 	struct netdev_hw_addr *ha;
689 	u32 val;
690 	int i;
691 
692 	priv = netdev_priv(dev);
693 
694 	val = enet_readl(priv, ENET_RXCFG_REG);
695 
696 	if (dev->flags & IFF_PROMISC)
697 		val |= ENET_RXCFG_PROMISC_MASK;
698 	else
699 		val &= ~ENET_RXCFG_PROMISC_MASK;
700 
701 	/* only 3 perfect match registers left, first one is used for
702 	 * own mac address */
703 	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
704 		val |= ENET_RXCFG_ALLMCAST_MASK;
705 	else
706 		val &= ~ENET_RXCFG_ALLMCAST_MASK;
707 
708 	/* no need to set perfect match registers if we catch all
709 	 * multicast */
710 	if (val & ENET_RXCFG_ALLMCAST_MASK) {
711 		enet_writel(priv, val, ENET_RXCFG_REG);
712 		return;
713 	}
714 
715 	i = 0;
716 	netdev_for_each_mc_addr(ha, dev) {
717 		u8 *dmi_addr;
718 		u32 tmp;
719 
720 		if (i == 3)
721 			break;
722 		/* update perfect match registers */
723 		dmi_addr = ha->addr;
724 		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
725 			(dmi_addr[4] << 8) | dmi_addr[5];
726 		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
727 
728 		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
729 		tmp |= ENET_PMH_DATAVALID_MASK;
730 		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
731 	}
732 
733 	for (; i < 3; i++) {
734 		enet_writel(priv, 0, ENET_PML_REG(i + 1));
735 		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
736 	}
737 
738 	enet_writel(priv, val, ENET_RXCFG_REG);
739 }
740 
741 /*
742  * set mac duplex parameters
743  */
744 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
745 {
746 	u32 val;
747 
748 	val = enet_readl(priv, ENET_TXCTL_REG);
749 	if (fullduplex)
750 		val |= ENET_TXCTL_FD_MASK;
751 	else
752 		val &= ~ENET_TXCTL_FD_MASK;
753 	enet_writel(priv, val, ENET_TXCTL_REG);
754 }
755 
756 /*
757  * set mac flow control parameters
758  */
759 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
760 {
761 	u32 val;
762 
763 	/* rx flow control (pause frame handling) */
764 	val = enet_readl(priv, ENET_RXCFG_REG);
765 	if (rx_en)
766 		val |= ENET_RXCFG_ENFLOW_MASK;
767 	else
768 		val &= ~ENET_RXCFG_ENFLOW_MASK;
769 	enet_writel(priv, val, ENET_RXCFG_REG);
770 
771 	if (!priv->dma_has_sram)
772 		return;
773 
774 	/* tx flow control (pause frame generation) */
775 	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
776 	if (tx_en)
777 		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
778 	else
779 		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
780 	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
781 }
782 
783 /*
784  * link changed callback (from phylib)
785  */
786 static void bcm_enet_adjust_phy_link(struct net_device *dev)
787 {
788 	struct bcm_enet_priv *priv;
789 	struct phy_device *phydev;
790 	int status_changed;
791 
792 	priv = netdev_priv(dev);
793 	phydev = dev->phydev;
794 	status_changed = 0;
795 
796 	if (priv->old_link != phydev->link) {
797 		status_changed = 1;
798 		priv->old_link = phydev->link;
799 	}
800 
801 	/* reflect duplex change in mac configuration */
802 	if (phydev->link && phydev->duplex != priv->old_duplex) {
803 		bcm_enet_set_duplex(priv,
804 				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
805 		status_changed = 1;
806 		priv->old_duplex = phydev->duplex;
807 	}
808 
809 	/* enable flow control if remote advertise it (trust phylib to
810 	 * check that duplex is full */
811 	if (phydev->link && phydev->pause != priv->old_pause) {
812 		int rx_pause_en, tx_pause_en;
813 
814 		if (phydev->pause) {
815 			/* pause was advertised by lpa and us */
816 			rx_pause_en = 1;
817 			tx_pause_en = 1;
818 		} else if (!priv->pause_auto) {
819 			/* pause setting overridden by user */
820 			rx_pause_en = priv->pause_rx;
821 			tx_pause_en = priv->pause_tx;
822 		} else {
823 			rx_pause_en = 0;
824 			tx_pause_en = 0;
825 		}
826 
827 		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
828 		status_changed = 1;
829 		priv->old_pause = phydev->pause;
830 	}
831 
832 	if (status_changed) {
833 		pr_info("%s: link %s", dev->name, phydev->link ?
834 			"UP" : "DOWN");
835 		if (phydev->link)
836 			pr_cont(" - %d/%s - flow control %s", phydev->speed,
837 			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
838 			       phydev->pause == 1 ? "rx&tx" : "off");
839 
840 		pr_cont("\n");
841 	}
842 }
843 
844 /*
845  * link changed callback (if phylib is not used)
846  */
847 static void bcm_enet_adjust_link(struct net_device *dev)
848 {
849 	struct bcm_enet_priv *priv;
850 
851 	priv = netdev_priv(dev);
852 	bcm_enet_set_duplex(priv, priv->force_duplex_full);
853 	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
854 	netif_carrier_on(dev);
855 
856 	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
857 		dev->name,
858 		priv->force_speed_100 ? 100 : 10,
859 		priv->force_duplex_full ? "full" : "half",
860 		priv->pause_rx ? "rx" : "off",
861 		priv->pause_tx ? "tx" : "off");
862 }
863 
864 /*
865  * open callback, allocate dma rings & buffers and start rx operation
866  */
867 static int bcm_enet_open(struct net_device *dev)
868 {
869 	struct bcm_enet_priv *priv;
870 	struct sockaddr addr;
871 	struct device *kdev;
872 	struct phy_device *phydev;
873 	int i, ret;
874 	unsigned int size;
875 	char phy_id[MII_BUS_ID_SIZE + 3];
876 	void *p;
877 	u32 val;
878 
879 	priv = netdev_priv(dev);
880 	kdev = &priv->pdev->dev;
881 
882 	if (priv->has_phy) {
883 		/* connect to PHY */
884 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
885 			 priv->mii_bus->id, priv->phy_id);
886 
887 		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
888 				     PHY_INTERFACE_MODE_MII);
889 
890 		if (IS_ERR(phydev)) {
891 			dev_err(kdev, "could not attach to PHY\n");
892 			return PTR_ERR(phydev);
893 		}
894 
895 		/* mask with MAC supported features */
896 		phydev->supported &= (SUPPORTED_10baseT_Half |
897 				      SUPPORTED_10baseT_Full |
898 				      SUPPORTED_100baseT_Half |
899 				      SUPPORTED_100baseT_Full |
900 				      SUPPORTED_Autoneg |
901 				      SUPPORTED_Pause |
902 				      SUPPORTED_MII);
903 		phydev->advertising = phydev->supported;
904 
905 		if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
906 			phydev->advertising |= SUPPORTED_Pause;
907 		else
908 			phydev->advertising &= ~SUPPORTED_Pause;
909 
910 		phy_attached_info(phydev);
911 
912 		priv->old_link = 0;
913 		priv->old_duplex = -1;
914 		priv->old_pause = -1;
915 	} else {
916 		phydev = NULL;
917 	}
918 
919 	/* mask all interrupts and request them */
920 	enet_writel(priv, 0, ENET_IRMASK_REG);
921 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
922 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
923 
924 	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
925 	if (ret)
926 		goto out_phy_disconnect;
927 
928 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
929 			  dev->name, dev);
930 	if (ret)
931 		goto out_freeirq;
932 
933 	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
934 			  0, dev->name, dev);
935 	if (ret)
936 		goto out_freeirq_rx;
937 
938 	/* initialize perfect match registers */
939 	for (i = 0; i < 4; i++) {
940 		enet_writel(priv, 0, ENET_PML_REG(i));
941 		enet_writel(priv, 0, ENET_PMH_REG(i));
942 	}
943 
944 	/* write device mac address */
945 	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
946 	bcm_enet_set_mac_address(dev, &addr);
947 
948 	/* allocate rx dma ring */
949 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
950 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
951 	if (!p) {
952 		ret = -ENOMEM;
953 		goto out_freeirq_tx;
954 	}
955 
956 	priv->rx_desc_alloc_size = size;
957 	priv->rx_desc_cpu = p;
958 
959 	/* allocate tx dma ring */
960 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
961 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
962 	if (!p) {
963 		ret = -ENOMEM;
964 		goto out_free_rx_ring;
965 	}
966 
967 	priv->tx_desc_alloc_size = size;
968 	priv->tx_desc_cpu = p;
969 
970 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
971 			       GFP_KERNEL);
972 	if (!priv->tx_skb) {
973 		ret = -ENOMEM;
974 		goto out_free_tx_ring;
975 	}
976 
977 	priv->tx_desc_count = priv->tx_ring_size;
978 	priv->tx_dirty_desc = 0;
979 	priv->tx_curr_desc = 0;
980 	spin_lock_init(&priv->tx_lock);
981 
982 	/* init & fill rx ring with skbs */
983 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
984 			       GFP_KERNEL);
985 	if (!priv->rx_skb) {
986 		ret = -ENOMEM;
987 		goto out_free_tx_skb;
988 	}
989 
990 	priv->rx_desc_count = 0;
991 	priv->rx_dirty_desc = 0;
992 	priv->rx_curr_desc = 0;
993 
994 	/* initialize flow control buffer allocation */
995 	if (priv->dma_has_sram)
996 		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
997 				ENETDMA_BUFALLOC_REG(priv->rx_chan));
998 	else
999 		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1000 				ENETDMAC_BUFALLOC, priv->rx_chan);
1001 
1002 	if (bcm_enet_refill_rx(dev)) {
1003 		dev_err(kdev, "cannot allocate rx skb queue\n");
1004 		ret = -ENOMEM;
1005 		goto out;
1006 	}
1007 
1008 	/* write rx & tx ring addresses */
1009 	if (priv->dma_has_sram) {
1010 		enet_dmas_writel(priv, priv->rx_desc_dma,
1011 				 ENETDMAS_RSTART_REG, priv->rx_chan);
1012 		enet_dmas_writel(priv, priv->tx_desc_dma,
1013 			 ENETDMAS_RSTART_REG, priv->tx_chan);
1014 	} else {
1015 		enet_dmac_writel(priv, priv->rx_desc_dma,
1016 				ENETDMAC_RSTART, priv->rx_chan);
1017 		enet_dmac_writel(priv, priv->tx_desc_dma,
1018 				ENETDMAC_RSTART, priv->tx_chan);
1019 	}
1020 
1021 	/* clear remaining state ram for rx & tx channel */
1022 	if (priv->dma_has_sram) {
1023 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1024 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1025 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1026 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1027 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1028 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1029 	} else {
1030 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1031 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1032 	}
1033 
1034 	/* set max rx/tx length */
1035 	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1036 	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1037 
1038 	/* set dma maximum burst len */
1039 	enet_dmac_writel(priv, priv->dma_maxburst,
1040 			 ENETDMAC_MAXBURST, priv->rx_chan);
1041 	enet_dmac_writel(priv, priv->dma_maxburst,
1042 			 ENETDMAC_MAXBURST, priv->tx_chan);
1043 
1044 	/* set correct transmit fifo watermark */
1045 	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1046 
1047 	/* set flow control low/high threshold to 1/3 / 2/3 */
1048 	if (priv->dma_has_sram) {
1049 		val = priv->rx_ring_size / 3;
1050 		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1051 		val = (priv->rx_ring_size * 2) / 3;
1052 		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1053 	} else {
1054 		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1055 		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1056 		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1057 	}
1058 
1059 	/* all set, enable mac and interrupts, start dma engine and
1060 	 * kick rx dma channel */
1061 	wmb();
1062 	val = enet_readl(priv, ENET_CTL_REG);
1063 	val |= ENET_CTL_ENABLE_MASK;
1064 	enet_writel(priv, val, ENET_CTL_REG);
1065 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1066 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1067 			 ENETDMAC_CHANCFG, priv->rx_chan);
1068 
1069 	/* watch "mib counters about to overflow" interrupt */
1070 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1071 	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1072 
1073 	/* watch "packet transferred" interrupt in rx and tx */
1074 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1075 			 ENETDMAC_IR, priv->rx_chan);
1076 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1077 			 ENETDMAC_IR, priv->tx_chan);
1078 
1079 	/* make sure we enable napi before rx interrupt  */
1080 	napi_enable(&priv->napi);
1081 
1082 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1083 			 ENETDMAC_IRMASK, priv->rx_chan);
1084 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1085 			 ENETDMAC_IRMASK, priv->tx_chan);
1086 
1087 	if (phydev)
1088 		phy_start(phydev);
1089 	else
1090 		bcm_enet_adjust_link(dev);
1091 
1092 	netif_start_queue(dev);
1093 	return 0;
1094 
1095 out:
1096 	for (i = 0; i < priv->rx_ring_size; i++) {
1097 		struct bcm_enet_desc *desc;
1098 
1099 		if (!priv->rx_skb[i])
1100 			continue;
1101 
1102 		desc = &priv->rx_desc_cpu[i];
1103 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1104 				 DMA_FROM_DEVICE);
1105 		kfree_skb(priv->rx_skb[i]);
1106 	}
1107 	kfree(priv->rx_skb);
1108 
1109 out_free_tx_skb:
1110 	kfree(priv->tx_skb);
1111 
1112 out_free_tx_ring:
1113 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1114 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1115 
1116 out_free_rx_ring:
1117 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1118 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1119 
1120 out_freeirq_tx:
1121 	free_irq(priv->irq_tx, dev);
1122 
1123 out_freeirq_rx:
1124 	free_irq(priv->irq_rx, dev);
1125 
1126 out_freeirq:
1127 	free_irq(dev->irq, dev);
1128 
1129 out_phy_disconnect:
1130 	if (phydev)
1131 		phy_disconnect(phydev);
1132 
1133 	return ret;
1134 }
1135 
1136 /*
1137  * disable mac
1138  */
1139 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1140 {
1141 	int limit;
1142 	u32 val;
1143 
1144 	val = enet_readl(priv, ENET_CTL_REG);
1145 	val |= ENET_CTL_DISABLE_MASK;
1146 	enet_writel(priv, val, ENET_CTL_REG);
1147 
1148 	limit = 1000;
1149 	do {
1150 		u32 val;
1151 
1152 		val = enet_readl(priv, ENET_CTL_REG);
1153 		if (!(val & ENET_CTL_DISABLE_MASK))
1154 			break;
1155 		udelay(1);
1156 	} while (limit--);
1157 }
1158 
1159 /*
1160  * disable dma in given channel
1161  */
1162 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1163 {
1164 	int limit;
1165 
1166 	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1167 
1168 	limit = 1000;
1169 	do {
1170 		u32 val;
1171 
1172 		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1173 		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1174 			break;
1175 		udelay(1);
1176 	} while (limit--);
1177 }
1178 
1179 /*
1180  * stop callback
1181  */
1182 static int bcm_enet_stop(struct net_device *dev)
1183 {
1184 	struct bcm_enet_priv *priv;
1185 	struct device *kdev;
1186 	int i;
1187 
1188 	priv = netdev_priv(dev);
1189 	kdev = &priv->pdev->dev;
1190 
1191 	netif_stop_queue(dev);
1192 	napi_disable(&priv->napi);
1193 	if (priv->has_phy)
1194 		phy_stop(dev->phydev);
1195 	del_timer_sync(&priv->rx_timeout);
1196 
1197 	/* mask all interrupts */
1198 	enet_writel(priv, 0, ENET_IRMASK_REG);
1199 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1200 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1201 
1202 	/* make sure no mib update is scheduled */
1203 	cancel_work_sync(&priv->mib_update_task);
1204 
1205 	/* disable dma & mac */
1206 	bcm_enet_disable_dma(priv, priv->tx_chan);
1207 	bcm_enet_disable_dma(priv, priv->rx_chan);
1208 	bcm_enet_disable_mac(priv);
1209 
1210 	/* force reclaim of all tx buffers */
1211 	bcm_enet_tx_reclaim(dev, 1);
1212 
1213 	/* free the rx skb ring */
1214 	for (i = 0; i < priv->rx_ring_size; i++) {
1215 		struct bcm_enet_desc *desc;
1216 
1217 		if (!priv->rx_skb[i])
1218 			continue;
1219 
1220 		desc = &priv->rx_desc_cpu[i];
1221 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1222 				 DMA_FROM_DEVICE);
1223 		kfree_skb(priv->rx_skb[i]);
1224 	}
1225 
1226 	/* free remaining allocated memory */
1227 	kfree(priv->rx_skb);
1228 	kfree(priv->tx_skb);
1229 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1230 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1231 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1232 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1233 	free_irq(priv->irq_tx, dev);
1234 	free_irq(priv->irq_rx, dev);
1235 	free_irq(dev->irq, dev);
1236 
1237 	/* release phy */
1238 	if (priv->has_phy)
1239 		phy_disconnect(dev->phydev);
1240 
1241 	return 0;
1242 }
1243 
1244 /*
1245  * ethtool callbacks
1246  */
1247 struct bcm_enet_stats {
1248 	char stat_string[ETH_GSTRING_LEN];
1249 	int sizeof_stat;
1250 	int stat_offset;
1251 	int mib_reg;
1252 };
1253 
1254 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1255 		     offsetof(struct bcm_enet_priv, m)
1256 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1257 		     offsetof(struct net_device_stats, m)
1258 
1259 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1260 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1261 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1262 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1263 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1264 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1265 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1266 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1267 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1268 
1269 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1270 	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1271 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1272 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1273 	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1274 	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1275 	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1276 	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1277 	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1278 	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1279 	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1280 	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1281 	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1282 	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1283 	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1284 	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1285 	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1286 	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1287 	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1288 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1289 	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1290 
1291 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1292 	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1293 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1294 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1295 	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1296 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1297 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1298 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1299 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1300 	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1301 	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1302 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1303 	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1304 	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1305 	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1306 	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1307 	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1308 	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1309 	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1310 	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1311 	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1312 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1313 
1314 };
1315 
1316 #define BCM_ENET_STATS_LEN	ARRAY_SIZE(bcm_enet_gstrings_stats)
1317 
1318 static const u32 unused_mib_regs[] = {
1319 	ETH_MIB_TX_ALL_OCTETS,
1320 	ETH_MIB_TX_ALL_PKTS,
1321 	ETH_MIB_RX_ALL_OCTETS,
1322 	ETH_MIB_RX_ALL_PKTS,
1323 };
1324 
1325 
1326 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1327 				 struct ethtool_drvinfo *drvinfo)
1328 {
1329 	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1330 	strlcpy(drvinfo->version, bcm_enet_driver_version,
1331 		sizeof(drvinfo->version));
1332 	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1333 	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1334 }
1335 
1336 static int bcm_enet_get_sset_count(struct net_device *netdev,
1337 					int string_set)
1338 {
1339 	switch (string_set) {
1340 	case ETH_SS_STATS:
1341 		return BCM_ENET_STATS_LEN;
1342 	default:
1343 		return -EINVAL;
1344 	}
1345 }
1346 
1347 static void bcm_enet_get_strings(struct net_device *netdev,
1348 				 u32 stringset, u8 *data)
1349 {
1350 	int i;
1351 
1352 	switch (stringset) {
1353 	case ETH_SS_STATS:
1354 		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1355 			memcpy(data + i * ETH_GSTRING_LEN,
1356 			       bcm_enet_gstrings_stats[i].stat_string,
1357 			       ETH_GSTRING_LEN);
1358 		}
1359 		break;
1360 	}
1361 }
1362 
1363 static void update_mib_counters(struct bcm_enet_priv *priv)
1364 {
1365 	int i;
1366 
1367 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1368 		const struct bcm_enet_stats *s;
1369 		u32 val;
1370 		char *p;
1371 
1372 		s = &bcm_enet_gstrings_stats[i];
1373 		if (s->mib_reg == -1)
1374 			continue;
1375 
1376 		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1377 		p = (char *)priv + s->stat_offset;
1378 
1379 		if (s->sizeof_stat == sizeof(u64))
1380 			*(u64 *)p += val;
1381 		else
1382 			*(u32 *)p += val;
1383 	}
1384 
1385 	/* also empty unused mib counters to make sure mib counter
1386 	 * overflow interrupt is cleared */
1387 	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1388 		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1389 }
1390 
1391 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1392 {
1393 	struct bcm_enet_priv *priv;
1394 
1395 	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1396 	mutex_lock(&priv->mib_update_lock);
1397 	update_mib_counters(priv);
1398 	mutex_unlock(&priv->mib_update_lock);
1399 
1400 	/* reenable mib interrupt */
1401 	if (netif_running(priv->net_dev))
1402 		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1403 }
1404 
1405 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1406 				       struct ethtool_stats *stats,
1407 				       u64 *data)
1408 {
1409 	struct bcm_enet_priv *priv;
1410 	int i;
1411 
1412 	priv = netdev_priv(netdev);
1413 
1414 	mutex_lock(&priv->mib_update_lock);
1415 	update_mib_counters(priv);
1416 
1417 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1418 		const struct bcm_enet_stats *s;
1419 		char *p;
1420 
1421 		s = &bcm_enet_gstrings_stats[i];
1422 		if (s->mib_reg == -1)
1423 			p = (char *)&netdev->stats;
1424 		else
1425 			p = (char *)priv;
1426 		p += s->stat_offset;
1427 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1428 			*(u64 *)p : *(u32 *)p;
1429 	}
1430 	mutex_unlock(&priv->mib_update_lock);
1431 }
1432 
1433 static int bcm_enet_nway_reset(struct net_device *dev)
1434 {
1435 	struct bcm_enet_priv *priv;
1436 
1437 	priv = netdev_priv(dev);
1438 	if (priv->has_phy)
1439 		return phy_ethtool_nway_reset(dev);
1440 
1441 	return -EOPNOTSUPP;
1442 }
1443 
1444 static int bcm_enet_get_link_ksettings(struct net_device *dev,
1445 				       struct ethtool_link_ksettings *cmd)
1446 {
1447 	struct bcm_enet_priv *priv;
1448 	u32 supported, advertising;
1449 
1450 	priv = netdev_priv(dev);
1451 
1452 	if (priv->has_phy) {
1453 		if (!dev->phydev)
1454 			return -ENODEV;
1455 
1456 		phy_ethtool_ksettings_get(dev->phydev, cmd);
1457 
1458 		return 0;
1459 	} else {
1460 		cmd->base.autoneg = 0;
1461 		cmd->base.speed = (priv->force_speed_100) ?
1462 			SPEED_100 : SPEED_10;
1463 		cmd->base.duplex = (priv->force_duplex_full) ?
1464 			DUPLEX_FULL : DUPLEX_HALF;
1465 		supported = ADVERTISED_10baseT_Half |
1466 			ADVERTISED_10baseT_Full |
1467 			ADVERTISED_100baseT_Half |
1468 			ADVERTISED_100baseT_Full;
1469 		advertising = 0;
1470 		ethtool_convert_legacy_u32_to_link_mode(
1471 			cmd->link_modes.supported, supported);
1472 		ethtool_convert_legacy_u32_to_link_mode(
1473 			cmd->link_modes.advertising, advertising);
1474 		cmd->base.port = PORT_MII;
1475 	}
1476 	return 0;
1477 }
1478 
1479 static int bcm_enet_set_link_ksettings(struct net_device *dev,
1480 				       const struct ethtool_link_ksettings *cmd)
1481 {
1482 	struct bcm_enet_priv *priv;
1483 
1484 	priv = netdev_priv(dev);
1485 	if (priv->has_phy) {
1486 		if (!dev->phydev)
1487 			return -ENODEV;
1488 		return phy_ethtool_ksettings_set(dev->phydev, cmd);
1489 	} else {
1490 
1491 		if (cmd->base.autoneg ||
1492 		    (cmd->base.speed != SPEED_100 &&
1493 		     cmd->base.speed != SPEED_10) ||
1494 		    cmd->base.port != PORT_MII)
1495 			return -EINVAL;
1496 
1497 		priv->force_speed_100 =
1498 			(cmd->base.speed == SPEED_100) ? 1 : 0;
1499 		priv->force_duplex_full =
1500 			(cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1501 
1502 		if (netif_running(dev))
1503 			bcm_enet_adjust_link(dev);
1504 		return 0;
1505 	}
1506 }
1507 
1508 static void bcm_enet_get_ringparam(struct net_device *dev,
1509 				   struct ethtool_ringparam *ering)
1510 {
1511 	struct bcm_enet_priv *priv;
1512 
1513 	priv = netdev_priv(dev);
1514 
1515 	/* rx/tx ring is actually only limited by memory */
1516 	ering->rx_max_pending = 8192;
1517 	ering->tx_max_pending = 8192;
1518 	ering->rx_pending = priv->rx_ring_size;
1519 	ering->tx_pending = priv->tx_ring_size;
1520 }
1521 
1522 static int bcm_enet_set_ringparam(struct net_device *dev,
1523 				  struct ethtool_ringparam *ering)
1524 {
1525 	struct bcm_enet_priv *priv;
1526 	int was_running;
1527 
1528 	priv = netdev_priv(dev);
1529 
1530 	was_running = 0;
1531 	if (netif_running(dev)) {
1532 		bcm_enet_stop(dev);
1533 		was_running = 1;
1534 	}
1535 
1536 	priv->rx_ring_size = ering->rx_pending;
1537 	priv->tx_ring_size = ering->tx_pending;
1538 
1539 	if (was_running) {
1540 		int err;
1541 
1542 		err = bcm_enet_open(dev);
1543 		if (err)
1544 			dev_close(dev);
1545 		else
1546 			bcm_enet_set_multicast_list(dev);
1547 	}
1548 	return 0;
1549 }
1550 
1551 static void bcm_enet_get_pauseparam(struct net_device *dev,
1552 				    struct ethtool_pauseparam *ecmd)
1553 {
1554 	struct bcm_enet_priv *priv;
1555 
1556 	priv = netdev_priv(dev);
1557 	ecmd->autoneg = priv->pause_auto;
1558 	ecmd->rx_pause = priv->pause_rx;
1559 	ecmd->tx_pause = priv->pause_tx;
1560 }
1561 
1562 static int bcm_enet_set_pauseparam(struct net_device *dev,
1563 				   struct ethtool_pauseparam *ecmd)
1564 {
1565 	struct bcm_enet_priv *priv;
1566 
1567 	priv = netdev_priv(dev);
1568 
1569 	if (priv->has_phy) {
1570 		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1571 			/* asymetric pause mode not supported,
1572 			 * actually possible but integrated PHY has RO
1573 			 * asym_pause bit */
1574 			return -EINVAL;
1575 		}
1576 	} else {
1577 		/* no pause autoneg on direct mii connection */
1578 		if (ecmd->autoneg)
1579 			return -EINVAL;
1580 	}
1581 
1582 	priv->pause_auto = ecmd->autoneg;
1583 	priv->pause_rx = ecmd->rx_pause;
1584 	priv->pause_tx = ecmd->tx_pause;
1585 
1586 	return 0;
1587 }
1588 
1589 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1590 	.get_strings		= bcm_enet_get_strings,
1591 	.get_sset_count		= bcm_enet_get_sset_count,
1592 	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1593 	.nway_reset		= bcm_enet_nway_reset,
1594 	.get_drvinfo		= bcm_enet_get_drvinfo,
1595 	.get_link		= ethtool_op_get_link,
1596 	.get_ringparam		= bcm_enet_get_ringparam,
1597 	.set_ringparam		= bcm_enet_set_ringparam,
1598 	.get_pauseparam		= bcm_enet_get_pauseparam,
1599 	.set_pauseparam		= bcm_enet_set_pauseparam,
1600 	.get_link_ksettings	= bcm_enet_get_link_ksettings,
1601 	.set_link_ksettings	= bcm_enet_set_link_ksettings,
1602 };
1603 
1604 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1605 {
1606 	struct bcm_enet_priv *priv;
1607 
1608 	priv = netdev_priv(dev);
1609 	if (priv->has_phy) {
1610 		if (!dev->phydev)
1611 			return -ENODEV;
1612 		return phy_mii_ioctl(dev->phydev, rq, cmd);
1613 	} else {
1614 		struct mii_if_info mii;
1615 
1616 		mii.dev = dev;
1617 		mii.mdio_read = bcm_enet_mdio_read_mii;
1618 		mii.mdio_write = bcm_enet_mdio_write_mii;
1619 		mii.phy_id = 0;
1620 		mii.phy_id_mask = 0x3f;
1621 		mii.reg_num_mask = 0x1f;
1622 		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1623 	}
1624 }
1625 
1626 /*
1627  * adjust mtu, can't be called while device is running
1628  */
1629 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1630 {
1631 	struct bcm_enet_priv *priv = netdev_priv(dev);
1632 	int actual_mtu = new_mtu;
1633 
1634 	if (netif_running(dev))
1635 		return -EBUSY;
1636 
1637 	/* add ethernet header + vlan tag size */
1638 	actual_mtu += VLAN_ETH_HLEN;
1639 
1640 	/*
1641 	 * setup maximum size before we get overflow mark in
1642 	 * descriptor, note that this will not prevent reception of
1643 	 * big frames, they will be split into multiple buffers
1644 	 * anyway
1645 	 */
1646 	priv->hw_mtu = actual_mtu;
1647 
1648 	/*
1649 	 * align rx buffer size to dma burst len, account FCS since
1650 	 * it's appended
1651 	 */
1652 	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1653 				  priv->dma_maxburst * 4);
1654 
1655 	dev->mtu = new_mtu;
1656 	return 0;
1657 }
1658 
1659 /*
1660  * preinit hardware to allow mii operation while device is down
1661  */
1662 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1663 {
1664 	u32 val;
1665 	int limit;
1666 
1667 	/* make sure mac is disabled */
1668 	bcm_enet_disable_mac(priv);
1669 
1670 	/* soft reset mac */
1671 	val = ENET_CTL_SRESET_MASK;
1672 	enet_writel(priv, val, ENET_CTL_REG);
1673 	wmb();
1674 
1675 	limit = 1000;
1676 	do {
1677 		val = enet_readl(priv, ENET_CTL_REG);
1678 		if (!(val & ENET_CTL_SRESET_MASK))
1679 			break;
1680 		udelay(1);
1681 	} while (limit--);
1682 
1683 	/* select correct mii interface */
1684 	val = enet_readl(priv, ENET_CTL_REG);
1685 	if (priv->use_external_mii)
1686 		val |= ENET_CTL_EPHYSEL_MASK;
1687 	else
1688 		val &= ~ENET_CTL_EPHYSEL_MASK;
1689 	enet_writel(priv, val, ENET_CTL_REG);
1690 
1691 	/* turn on mdc clock */
1692 	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1693 		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1694 
1695 	/* set mib counters to self-clear when read */
1696 	val = enet_readl(priv, ENET_MIBCTL_REG);
1697 	val |= ENET_MIBCTL_RDCLEAR_MASK;
1698 	enet_writel(priv, val, ENET_MIBCTL_REG);
1699 }
1700 
1701 static const struct net_device_ops bcm_enet_ops = {
1702 	.ndo_open		= bcm_enet_open,
1703 	.ndo_stop		= bcm_enet_stop,
1704 	.ndo_start_xmit		= bcm_enet_start_xmit,
1705 	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1706 	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1707 	.ndo_do_ioctl		= bcm_enet_ioctl,
1708 	.ndo_change_mtu		= bcm_enet_change_mtu,
1709 };
1710 
1711 /*
1712  * allocate netdevice, request register memory and register device.
1713  */
1714 static int bcm_enet_probe(struct platform_device *pdev)
1715 {
1716 	struct bcm_enet_priv *priv;
1717 	struct net_device *dev;
1718 	struct bcm63xx_enet_platform_data *pd;
1719 	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1720 	struct mii_bus *bus;
1721 	const char *clk_name;
1722 	int i, ret;
1723 
1724 	/* stop if shared driver failed, assume driver->probe will be
1725 	 * called in the same order we register devices (correct ?) */
1726 	if (!bcm_enet_shared_base[0])
1727 		return -ENODEV;
1728 
1729 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1730 	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1731 	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1732 	if (!res_irq || !res_irq_rx || !res_irq_tx)
1733 		return -ENODEV;
1734 
1735 	ret = 0;
1736 	dev = alloc_etherdev(sizeof(*priv));
1737 	if (!dev)
1738 		return -ENOMEM;
1739 	priv = netdev_priv(dev);
1740 
1741 	priv->enet_is_sw = false;
1742 	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1743 
1744 	ret = bcm_enet_change_mtu(dev, dev->mtu);
1745 	if (ret)
1746 		goto out;
1747 
1748 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1749 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1750 	if (IS_ERR(priv->base)) {
1751 		ret = PTR_ERR(priv->base);
1752 		goto out;
1753 	}
1754 
1755 	dev->irq = priv->irq = res_irq->start;
1756 	priv->irq_rx = res_irq_rx->start;
1757 	priv->irq_tx = res_irq_tx->start;
1758 	priv->mac_id = pdev->id;
1759 
1760 	/* get rx & tx dma channel id for this mac */
1761 	if (priv->mac_id == 0) {
1762 		priv->rx_chan = 0;
1763 		priv->tx_chan = 1;
1764 		clk_name = "enet0";
1765 	} else {
1766 		priv->rx_chan = 2;
1767 		priv->tx_chan = 3;
1768 		clk_name = "enet1";
1769 	}
1770 
1771 	priv->mac_clk = clk_get(&pdev->dev, clk_name);
1772 	if (IS_ERR(priv->mac_clk)) {
1773 		ret = PTR_ERR(priv->mac_clk);
1774 		goto out;
1775 	}
1776 	clk_prepare_enable(priv->mac_clk);
1777 
1778 	/* initialize default and fetch platform data */
1779 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1780 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1781 
1782 	pd = dev_get_platdata(&pdev->dev);
1783 	if (pd) {
1784 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1785 		priv->has_phy = pd->has_phy;
1786 		priv->phy_id = pd->phy_id;
1787 		priv->has_phy_interrupt = pd->has_phy_interrupt;
1788 		priv->phy_interrupt = pd->phy_interrupt;
1789 		priv->use_external_mii = !pd->use_internal_phy;
1790 		priv->pause_auto = pd->pause_auto;
1791 		priv->pause_rx = pd->pause_rx;
1792 		priv->pause_tx = pd->pause_tx;
1793 		priv->force_duplex_full = pd->force_duplex_full;
1794 		priv->force_speed_100 = pd->force_speed_100;
1795 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1796 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1797 		priv->dma_chan_width = pd->dma_chan_width;
1798 		priv->dma_has_sram = pd->dma_has_sram;
1799 		priv->dma_desc_shift = pd->dma_desc_shift;
1800 	}
1801 
1802 	if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1803 		/* using internal PHY, enable clock */
1804 		priv->phy_clk = clk_get(&pdev->dev, "ephy");
1805 		if (IS_ERR(priv->phy_clk)) {
1806 			ret = PTR_ERR(priv->phy_clk);
1807 			priv->phy_clk = NULL;
1808 			goto out_put_clk_mac;
1809 		}
1810 		clk_prepare_enable(priv->phy_clk);
1811 	}
1812 
1813 	/* do minimal hardware init to be able to probe mii bus */
1814 	bcm_enet_hw_preinit(priv);
1815 
1816 	/* MII bus registration */
1817 	if (priv->has_phy) {
1818 
1819 		priv->mii_bus = mdiobus_alloc();
1820 		if (!priv->mii_bus) {
1821 			ret = -ENOMEM;
1822 			goto out_uninit_hw;
1823 		}
1824 
1825 		bus = priv->mii_bus;
1826 		bus->name = "bcm63xx_enet MII bus";
1827 		bus->parent = &pdev->dev;
1828 		bus->priv = priv;
1829 		bus->read = bcm_enet_mdio_read_phylib;
1830 		bus->write = bcm_enet_mdio_write_phylib;
1831 		sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
1832 
1833 		/* only probe bus where we think the PHY is, because
1834 		 * the mdio read operation return 0 instead of 0xffff
1835 		 * if a slave is not present on hw */
1836 		bus->phy_mask = ~(1 << priv->phy_id);
1837 
1838 		if (priv->has_phy_interrupt)
1839 			bus->irq[priv->phy_id] = priv->phy_interrupt;
1840 
1841 		ret = mdiobus_register(bus);
1842 		if (ret) {
1843 			dev_err(&pdev->dev, "unable to register mdio bus\n");
1844 			goto out_free_mdio;
1845 		}
1846 	} else {
1847 
1848 		/* run platform code to initialize PHY device */
1849 		if (pd && pd->mii_config &&
1850 		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1851 				   bcm_enet_mdio_write_mii)) {
1852 			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1853 			goto out_uninit_hw;
1854 		}
1855 	}
1856 
1857 	spin_lock_init(&priv->rx_lock);
1858 
1859 	/* init rx timeout (used for oom) */
1860 	init_timer(&priv->rx_timeout);
1861 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1862 	priv->rx_timeout.data = (unsigned long)dev;
1863 
1864 	/* init the mib update lock&work */
1865 	mutex_init(&priv->mib_update_lock);
1866 	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1867 
1868 	/* zero mib counters */
1869 	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1870 		enet_writel(priv, 0, ENET_MIB_REG(i));
1871 
1872 	/* register netdevice */
1873 	dev->netdev_ops = &bcm_enet_ops;
1874 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1875 
1876 	dev->ethtool_ops = &bcm_enet_ethtool_ops;
1877 	/* MTU range: 46 - 2028 */
1878 	dev->min_mtu = ETH_ZLEN - ETH_HLEN;
1879 	dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN;
1880 	SET_NETDEV_DEV(dev, &pdev->dev);
1881 
1882 	ret = register_netdev(dev);
1883 	if (ret)
1884 		goto out_unregister_mdio;
1885 
1886 	netif_carrier_off(dev);
1887 	platform_set_drvdata(pdev, dev);
1888 	priv->pdev = pdev;
1889 	priv->net_dev = dev;
1890 
1891 	return 0;
1892 
1893 out_unregister_mdio:
1894 	if (priv->mii_bus)
1895 		mdiobus_unregister(priv->mii_bus);
1896 
1897 out_free_mdio:
1898 	if (priv->mii_bus)
1899 		mdiobus_free(priv->mii_bus);
1900 
1901 out_uninit_hw:
1902 	/* turn off mdc clock */
1903 	enet_writel(priv, 0, ENET_MIISC_REG);
1904 	if (priv->phy_clk) {
1905 		clk_disable_unprepare(priv->phy_clk);
1906 		clk_put(priv->phy_clk);
1907 	}
1908 
1909 out_put_clk_mac:
1910 	clk_disable_unprepare(priv->mac_clk);
1911 	clk_put(priv->mac_clk);
1912 out:
1913 	free_netdev(dev);
1914 	return ret;
1915 }
1916 
1917 
1918 /*
1919  * exit func, stops hardware and unregisters netdevice
1920  */
1921 static int bcm_enet_remove(struct platform_device *pdev)
1922 {
1923 	struct bcm_enet_priv *priv;
1924 	struct net_device *dev;
1925 
1926 	/* stop netdevice */
1927 	dev = platform_get_drvdata(pdev);
1928 	priv = netdev_priv(dev);
1929 	unregister_netdev(dev);
1930 
1931 	/* turn off mdc clock */
1932 	enet_writel(priv, 0, ENET_MIISC_REG);
1933 
1934 	if (priv->has_phy) {
1935 		mdiobus_unregister(priv->mii_bus);
1936 		mdiobus_free(priv->mii_bus);
1937 	} else {
1938 		struct bcm63xx_enet_platform_data *pd;
1939 
1940 		pd = dev_get_platdata(&pdev->dev);
1941 		if (pd && pd->mii_config)
1942 			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1943 				       bcm_enet_mdio_write_mii);
1944 	}
1945 
1946 	/* disable hw block clocks */
1947 	if (priv->phy_clk) {
1948 		clk_disable_unprepare(priv->phy_clk);
1949 		clk_put(priv->phy_clk);
1950 	}
1951 	clk_disable_unprepare(priv->mac_clk);
1952 	clk_put(priv->mac_clk);
1953 
1954 	free_netdev(dev);
1955 	return 0;
1956 }
1957 
1958 struct platform_driver bcm63xx_enet_driver = {
1959 	.probe	= bcm_enet_probe,
1960 	.remove	= bcm_enet_remove,
1961 	.driver	= {
1962 		.name	= "bcm63xx_enet",
1963 		.owner  = THIS_MODULE,
1964 	},
1965 };
1966 
1967 /*
1968  * switch mii access callbacks
1969  */
1970 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1971 				int ext, int phy_id, int location)
1972 {
1973 	u32 reg;
1974 	int ret;
1975 
1976 	spin_lock_bh(&priv->enetsw_mdio_lock);
1977 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1978 
1979 	reg = ENETSW_MDIOC_RD_MASK |
1980 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1981 		(location << ENETSW_MDIOC_REG_SHIFT);
1982 
1983 	if (ext)
1984 		reg |= ENETSW_MDIOC_EXT_MASK;
1985 
1986 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1987 	udelay(50);
1988 	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
1989 	spin_unlock_bh(&priv->enetsw_mdio_lock);
1990 	return ret;
1991 }
1992 
1993 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
1994 				 int ext, int phy_id, int location,
1995 				 uint16_t data)
1996 {
1997 	u32 reg;
1998 
1999 	spin_lock_bh(&priv->enetsw_mdio_lock);
2000 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
2001 
2002 	reg = ENETSW_MDIOC_WR_MASK |
2003 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2004 		(location << ENETSW_MDIOC_REG_SHIFT);
2005 
2006 	if (ext)
2007 		reg |= ENETSW_MDIOC_EXT_MASK;
2008 
2009 	reg |= data;
2010 
2011 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2012 	udelay(50);
2013 	spin_unlock_bh(&priv->enetsw_mdio_lock);
2014 }
2015 
2016 static inline int bcm_enet_port_is_rgmii(int portid)
2017 {
2018 	return portid >= ENETSW_RGMII_PORT0;
2019 }
2020 
2021 /*
2022  * enet sw PHY polling
2023  */
2024 static void swphy_poll_timer(unsigned long data)
2025 {
2026 	struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
2027 	unsigned int i;
2028 
2029 	for (i = 0; i < priv->num_ports; i++) {
2030 		struct bcm63xx_enetsw_port *port;
2031 		int val, j, up, advertise, lpa, speed, duplex, media;
2032 		int external_phy = bcm_enet_port_is_rgmii(i);
2033 		u8 override;
2034 
2035 		port = &priv->used_ports[i];
2036 		if (!port->used)
2037 			continue;
2038 
2039 		if (port->bypass_link)
2040 			continue;
2041 
2042 		/* dummy read to clear */
2043 		for (j = 0; j < 2; j++)
2044 			val = bcmenet_sw_mdio_read(priv, external_phy,
2045 						   port->phy_id, MII_BMSR);
2046 
2047 		if (val == 0xffff)
2048 			continue;
2049 
2050 		up = (val & BMSR_LSTATUS) ? 1 : 0;
2051 		if (!(up ^ priv->sw_port_link[i]))
2052 			continue;
2053 
2054 		priv->sw_port_link[i] = up;
2055 
2056 		/* link changed */
2057 		if (!up) {
2058 			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2059 				 port->name);
2060 			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2061 				      ENETSW_PORTOV_REG(i));
2062 			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2063 				      ENETSW_PTCTRL_TXDIS_MASK,
2064 				      ENETSW_PTCTRL_REG(i));
2065 			continue;
2066 		}
2067 
2068 		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2069 						 port->phy_id, MII_ADVERTISE);
2070 
2071 		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2072 					   MII_LPA);
2073 
2074 		/* figure out media and duplex from advertise and LPA values */
2075 		media = mii_nway_result(lpa & advertise);
2076 		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2077 
2078 		if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2079 			speed = 100;
2080 		else
2081 			speed = 10;
2082 
2083 		if (val & BMSR_ESTATEN) {
2084 			advertise = bcmenet_sw_mdio_read(priv, external_phy,
2085 						port->phy_id, MII_CTRL1000);
2086 
2087 			lpa = bcmenet_sw_mdio_read(priv, external_phy,
2088 						port->phy_id, MII_STAT1000);
2089 
2090 			if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2091 					&& lpa & (LPA_1000FULL | LPA_1000HALF)) {
2092 				speed = 1000;
2093 				duplex = (lpa & LPA_1000FULL);
2094 			}
2095 		}
2096 
2097 		dev_info(&priv->pdev->dev,
2098 			 "link UP on %s, %dMbps, %s-duplex\n",
2099 			 port->name, speed, duplex ? "full" : "half");
2100 
2101 		override = ENETSW_PORTOV_ENABLE_MASK |
2102 			ENETSW_PORTOV_LINKUP_MASK;
2103 
2104 		if (speed == 1000)
2105 			override |= ENETSW_IMPOV_1000_MASK;
2106 		else if (speed == 100)
2107 			override |= ENETSW_IMPOV_100_MASK;
2108 		if (duplex)
2109 			override |= ENETSW_IMPOV_FDX_MASK;
2110 
2111 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2112 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2113 	}
2114 
2115 	priv->swphy_poll.expires = jiffies + HZ;
2116 	add_timer(&priv->swphy_poll);
2117 }
2118 
2119 /*
2120  * open callback, allocate dma rings & buffers and start rx operation
2121  */
2122 static int bcm_enetsw_open(struct net_device *dev)
2123 {
2124 	struct bcm_enet_priv *priv;
2125 	struct device *kdev;
2126 	int i, ret;
2127 	unsigned int size;
2128 	void *p;
2129 	u32 val;
2130 
2131 	priv = netdev_priv(dev);
2132 	kdev = &priv->pdev->dev;
2133 
2134 	/* mask all interrupts and request them */
2135 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2136 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2137 
2138 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2139 			  0, dev->name, dev);
2140 	if (ret)
2141 		goto out_freeirq;
2142 
2143 	if (priv->irq_tx != -1) {
2144 		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2145 				  0, dev->name, dev);
2146 		if (ret)
2147 			goto out_freeirq_rx;
2148 	}
2149 
2150 	/* allocate rx dma ring */
2151 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2152 	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2153 	if (!p) {
2154 		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2155 		ret = -ENOMEM;
2156 		goto out_freeirq_tx;
2157 	}
2158 
2159 	memset(p, 0, size);
2160 	priv->rx_desc_alloc_size = size;
2161 	priv->rx_desc_cpu = p;
2162 
2163 	/* allocate tx dma ring */
2164 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2165 	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2166 	if (!p) {
2167 		dev_err(kdev, "cannot allocate tx ring\n");
2168 		ret = -ENOMEM;
2169 		goto out_free_rx_ring;
2170 	}
2171 
2172 	memset(p, 0, size);
2173 	priv->tx_desc_alloc_size = size;
2174 	priv->tx_desc_cpu = p;
2175 
2176 	priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2177 			       GFP_KERNEL);
2178 	if (!priv->tx_skb) {
2179 		dev_err(kdev, "cannot allocate rx skb queue\n");
2180 		ret = -ENOMEM;
2181 		goto out_free_tx_ring;
2182 	}
2183 
2184 	priv->tx_desc_count = priv->tx_ring_size;
2185 	priv->tx_dirty_desc = 0;
2186 	priv->tx_curr_desc = 0;
2187 	spin_lock_init(&priv->tx_lock);
2188 
2189 	/* init & fill rx ring with skbs */
2190 	priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2191 			       GFP_KERNEL);
2192 	if (!priv->rx_skb) {
2193 		dev_err(kdev, "cannot allocate rx skb queue\n");
2194 		ret = -ENOMEM;
2195 		goto out_free_tx_skb;
2196 	}
2197 
2198 	priv->rx_desc_count = 0;
2199 	priv->rx_dirty_desc = 0;
2200 	priv->rx_curr_desc = 0;
2201 
2202 	/* disable all ports */
2203 	for (i = 0; i < priv->num_ports; i++) {
2204 		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2205 			      ENETSW_PORTOV_REG(i));
2206 		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2207 			      ENETSW_PTCTRL_TXDIS_MASK,
2208 			      ENETSW_PTCTRL_REG(i));
2209 
2210 		priv->sw_port_link[i] = 0;
2211 	}
2212 
2213 	/* reset mib */
2214 	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2215 	val |= ENETSW_GMCR_RST_MIB_MASK;
2216 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2217 	mdelay(1);
2218 	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2219 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2220 	mdelay(1);
2221 
2222 	/* force CPU port state */
2223 	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2224 	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2225 	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2226 
2227 	/* enable switch forward engine */
2228 	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2229 	val |= ENETSW_SWMODE_FWD_EN_MASK;
2230 	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2231 
2232 	/* enable jumbo on all ports */
2233 	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2234 	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2235 
2236 	/* initialize flow control buffer allocation */
2237 	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2238 			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2239 
2240 	if (bcm_enet_refill_rx(dev)) {
2241 		dev_err(kdev, "cannot allocate rx skb queue\n");
2242 		ret = -ENOMEM;
2243 		goto out;
2244 	}
2245 
2246 	/* write rx & tx ring addresses */
2247 	enet_dmas_writel(priv, priv->rx_desc_dma,
2248 			 ENETDMAS_RSTART_REG, priv->rx_chan);
2249 	enet_dmas_writel(priv, priv->tx_desc_dma,
2250 			 ENETDMAS_RSTART_REG, priv->tx_chan);
2251 
2252 	/* clear remaining state ram for rx & tx channel */
2253 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2254 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2255 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2256 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2257 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2258 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2259 
2260 	/* set dma maximum burst len */
2261 	enet_dmac_writel(priv, priv->dma_maxburst,
2262 			 ENETDMAC_MAXBURST, priv->rx_chan);
2263 	enet_dmac_writel(priv, priv->dma_maxburst,
2264 			 ENETDMAC_MAXBURST, priv->tx_chan);
2265 
2266 	/* set flow control low/high threshold to 1/3 / 2/3 */
2267 	val = priv->rx_ring_size / 3;
2268 	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2269 	val = (priv->rx_ring_size * 2) / 3;
2270 	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2271 
2272 	/* all set, enable mac and interrupts, start dma engine and
2273 	 * kick rx dma channel
2274 	 */
2275 	wmb();
2276 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2277 	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2278 			 ENETDMAC_CHANCFG, priv->rx_chan);
2279 
2280 	/* watch "packet transferred" interrupt in rx and tx */
2281 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2282 			 ENETDMAC_IR, priv->rx_chan);
2283 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2284 			 ENETDMAC_IR, priv->tx_chan);
2285 
2286 	/* make sure we enable napi before rx interrupt  */
2287 	napi_enable(&priv->napi);
2288 
2289 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2290 			 ENETDMAC_IRMASK, priv->rx_chan);
2291 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2292 			 ENETDMAC_IRMASK, priv->tx_chan);
2293 
2294 	netif_carrier_on(dev);
2295 	netif_start_queue(dev);
2296 
2297 	/* apply override config for bypass_link ports here. */
2298 	for (i = 0; i < priv->num_ports; i++) {
2299 		struct bcm63xx_enetsw_port *port;
2300 		u8 override;
2301 		port = &priv->used_ports[i];
2302 		if (!port->used)
2303 			continue;
2304 
2305 		if (!port->bypass_link)
2306 			continue;
2307 
2308 		override = ENETSW_PORTOV_ENABLE_MASK |
2309 			ENETSW_PORTOV_LINKUP_MASK;
2310 
2311 		switch (port->force_speed) {
2312 		case 1000:
2313 			override |= ENETSW_IMPOV_1000_MASK;
2314 			break;
2315 		case 100:
2316 			override |= ENETSW_IMPOV_100_MASK;
2317 			break;
2318 		case 10:
2319 			break;
2320 		default:
2321 			pr_warn("invalid forced speed on port %s: assume 10\n",
2322 			       port->name);
2323 			break;
2324 		}
2325 
2326 		if (port->force_duplex_full)
2327 			override |= ENETSW_IMPOV_FDX_MASK;
2328 
2329 
2330 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2331 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2332 	}
2333 
2334 	/* start phy polling timer */
2335 	init_timer(&priv->swphy_poll);
2336 	priv->swphy_poll.function = swphy_poll_timer;
2337 	priv->swphy_poll.data = (unsigned long)priv;
2338 	priv->swphy_poll.expires = jiffies;
2339 	add_timer(&priv->swphy_poll);
2340 	return 0;
2341 
2342 out:
2343 	for (i = 0; i < priv->rx_ring_size; i++) {
2344 		struct bcm_enet_desc *desc;
2345 
2346 		if (!priv->rx_skb[i])
2347 			continue;
2348 
2349 		desc = &priv->rx_desc_cpu[i];
2350 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2351 				 DMA_FROM_DEVICE);
2352 		kfree_skb(priv->rx_skb[i]);
2353 	}
2354 	kfree(priv->rx_skb);
2355 
2356 out_free_tx_skb:
2357 	kfree(priv->tx_skb);
2358 
2359 out_free_tx_ring:
2360 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2361 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2362 
2363 out_free_rx_ring:
2364 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2365 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2366 
2367 out_freeirq_tx:
2368 	if (priv->irq_tx != -1)
2369 		free_irq(priv->irq_tx, dev);
2370 
2371 out_freeirq_rx:
2372 	free_irq(priv->irq_rx, dev);
2373 
2374 out_freeirq:
2375 	return ret;
2376 }
2377 
2378 /* stop callback */
2379 static int bcm_enetsw_stop(struct net_device *dev)
2380 {
2381 	struct bcm_enet_priv *priv;
2382 	struct device *kdev;
2383 	int i;
2384 
2385 	priv = netdev_priv(dev);
2386 	kdev = &priv->pdev->dev;
2387 
2388 	del_timer_sync(&priv->swphy_poll);
2389 	netif_stop_queue(dev);
2390 	napi_disable(&priv->napi);
2391 	del_timer_sync(&priv->rx_timeout);
2392 
2393 	/* mask all interrupts */
2394 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2395 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2396 
2397 	/* disable dma & mac */
2398 	bcm_enet_disable_dma(priv, priv->tx_chan);
2399 	bcm_enet_disable_dma(priv, priv->rx_chan);
2400 
2401 	/* force reclaim of all tx buffers */
2402 	bcm_enet_tx_reclaim(dev, 1);
2403 
2404 	/* free the rx skb ring */
2405 	for (i = 0; i < priv->rx_ring_size; i++) {
2406 		struct bcm_enet_desc *desc;
2407 
2408 		if (!priv->rx_skb[i])
2409 			continue;
2410 
2411 		desc = &priv->rx_desc_cpu[i];
2412 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2413 				 DMA_FROM_DEVICE);
2414 		kfree_skb(priv->rx_skb[i]);
2415 	}
2416 
2417 	/* free remaining allocated memory */
2418 	kfree(priv->rx_skb);
2419 	kfree(priv->tx_skb);
2420 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2421 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2422 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2423 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2424 	if (priv->irq_tx != -1)
2425 		free_irq(priv->irq_tx, dev);
2426 	free_irq(priv->irq_rx, dev);
2427 
2428 	return 0;
2429 }
2430 
2431 /* try to sort out phy external status by walking the used_port field
2432  * in the bcm_enet_priv structure. in case the phy address is not
2433  * assigned to any physical port on the switch, assume it is external
2434  * (and yell at the user).
2435  */
2436 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2437 {
2438 	int i;
2439 
2440 	for (i = 0; i < priv->num_ports; ++i) {
2441 		if (!priv->used_ports[i].used)
2442 			continue;
2443 		if (priv->used_ports[i].phy_id == phy_id)
2444 			return bcm_enet_port_is_rgmii(i);
2445 	}
2446 
2447 	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2448 		    phy_id);
2449 	return 1;
2450 }
2451 
2452 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2453  * external/internal status of the given phy_id first.
2454  */
2455 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2456 				    int location)
2457 {
2458 	struct bcm_enet_priv *priv;
2459 
2460 	priv = netdev_priv(dev);
2461 	return bcmenet_sw_mdio_read(priv,
2462 				    bcm_enetsw_phy_is_external(priv, phy_id),
2463 				    phy_id, location);
2464 }
2465 
2466 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2467  * external/internal status of the given phy_id first.
2468  */
2469 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2470 				      int location,
2471 				      int val)
2472 {
2473 	struct bcm_enet_priv *priv;
2474 
2475 	priv = netdev_priv(dev);
2476 	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2477 			      phy_id, location, val);
2478 }
2479 
2480 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2481 {
2482 	struct mii_if_info mii;
2483 
2484 	mii.dev = dev;
2485 	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2486 	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2487 	mii.phy_id = 0;
2488 	mii.phy_id_mask = 0x3f;
2489 	mii.reg_num_mask = 0x1f;
2490 	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2491 
2492 }
2493 
2494 static const struct net_device_ops bcm_enetsw_ops = {
2495 	.ndo_open		= bcm_enetsw_open,
2496 	.ndo_stop		= bcm_enetsw_stop,
2497 	.ndo_start_xmit		= bcm_enet_start_xmit,
2498 	.ndo_change_mtu		= bcm_enet_change_mtu,
2499 	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2500 };
2501 
2502 
2503 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2504 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2505 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2506 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2507 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2508 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2509 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2510 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2511 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2512 
2513 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2514 	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2515 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2516 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2517 	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2518 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2519 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2520 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2521 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2522 	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2523 	  ETHSW_MIB_RX_1024_1522 },
2524 	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2525 	  ETHSW_MIB_RX_1523_2047 },
2526 	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2527 	  ETHSW_MIB_RX_2048_4095 },
2528 	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2529 	  ETHSW_MIB_RX_4096_8191 },
2530 	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2531 	  ETHSW_MIB_RX_8192_9728 },
2532 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2533 	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2534 	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2535 	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2536 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2537 
2538 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2539 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2540 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2541 	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2542 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2543 	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2544 
2545 };
2546 
2547 #define BCM_ENETSW_STATS_LEN	\
2548 	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2549 
2550 static void bcm_enetsw_get_strings(struct net_device *netdev,
2551 				   u32 stringset, u8 *data)
2552 {
2553 	int i;
2554 
2555 	switch (stringset) {
2556 	case ETH_SS_STATS:
2557 		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2558 			memcpy(data + i * ETH_GSTRING_LEN,
2559 			       bcm_enetsw_gstrings_stats[i].stat_string,
2560 			       ETH_GSTRING_LEN);
2561 		}
2562 		break;
2563 	}
2564 }
2565 
2566 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2567 				     int string_set)
2568 {
2569 	switch (string_set) {
2570 	case ETH_SS_STATS:
2571 		return BCM_ENETSW_STATS_LEN;
2572 	default:
2573 		return -EINVAL;
2574 	}
2575 }
2576 
2577 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2578 				   struct ethtool_drvinfo *drvinfo)
2579 {
2580 	strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2581 	strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2582 	strncpy(drvinfo->fw_version, "N/A", 32);
2583 	strncpy(drvinfo->bus_info, "bcm63xx", 32);
2584 }
2585 
2586 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2587 					 struct ethtool_stats *stats,
2588 					 u64 *data)
2589 {
2590 	struct bcm_enet_priv *priv;
2591 	int i;
2592 
2593 	priv = netdev_priv(netdev);
2594 
2595 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2596 		const struct bcm_enet_stats *s;
2597 		u32 lo, hi;
2598 		char *p;
2599 		int reg;
2600 
2601 		s = &bcm_enetsw_gstrings_stats[i];
2602 
2603 		reg = s->mib_reg;
2604 		if (reg == -1)
2605 			continue;
2606 
2607 		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2608 		p = (char *)priv + s->stat_offset;
2609 
2610 		if (s->sizeof_stat == sizeof(u64)) {
2611 			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2612 			*(u64 *)p = ((u64)hi << 32 | lo);
2613 		} else {
2614 			*(u32 *)p = lo;
2615 		}
2616 	}
2617 
2618 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2619 		const struct bcm_enet_stats *s;
2620 		char *p;
2621 
2622 		s = &bcm_enetsw_gstrings_stats[i];
2623 
2624 		if (s->mib_reg == -1)
2625 			p = (char *)&netdev->stats + s->stat_offset;
2626 		else
2627 			p = (char *)priv + s->stat_offset;
2628 
2629 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2630 			*(u64 *)p : *(u32 *)p;
2631 	}
2632 }
2633 
2634 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2635 				     struct ethtool_ringparam *ering)
2636 {
2637 	struct bcm_enet_priv *priv;
2638 
2639 	priv = netdev_priv(dev);
2640 
2641 	/* rx/tx ring is actually only limited by memory */
2642 	ering->rx_max_pending = 8192;
2643 	ering->tx_max_pending = 8192;
2644 	ering->rx_mini_max_pending = 0;
2645 	ering->rx_jumbo_max_pending = 0;
2646 	ering->rx_pending = priv->rx_ring_size;
2647 	ering->tx_pending = priv->tx_ring_size;
2648 }
2649 
2650 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2651 				    struct ethtool_ringparam *ering)
2652 {
2653 	struct bcm_enet_priv *priv;
2654 	int was_running;
2655 
2656 	priv = netdev_priv(dev);
2657 
2658 	was_running = 0;
2659 	if (netif_running(dev)) {
2660 		bcm_enetsw_stop(dev);
2661 		was_running = 1;
2662 	}
2663 
2664 	priv->rx_ring_size = ering->rx_pending;
2665 	priv->tx_ring_size = ering->tx_pending;
2666 
2667 	if (was_running) {
2668 		int err;
2669 
2670 		err = bcm_enetsw_open(dev);
2671 		if (err)
2672 			dev_close(dev);
2673 	}
2674 	return 0;
2675 }
2676 
2677 static struct ethtool_ops bcm_enetsw_ethtool_ops = {
2678 	.get_strings		= bcm_enetsw_get_strings,
2679 	.get_sset_count		= bcm_enetsw_get_sset_count,
2680 	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2681 	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2682 	.get_ringparam		= bcm_enetsw_get_ringparam,
2683 	.set_ringparam		= bcm_enetsw_set_ringparam,
2684 };
2685 
2686 /* allocate netdevice, request register memory and register device. */
2687 static int bcm_enetsw_probe(struct platform_device *pdev)
2688 {
2689 	struct bcm_enet_priv *priv;
2690 	struct net_device *dev;
2691 	struct bcm63xx_enetsw_platform_data *pd;
2692 	struct resource *res_mem;
2693 	int ret, irq_rx, irq_tx;
2694 
2695 	/* stop if shared driver failed, assume driver->probe will be
2696 	 * called in the same order we register devices (correct ?)
2697 	 */
2698 	if (!bcm_enet_shared_base[0])
2699 		return -ENODEV;
2700 
2701 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2702 	irq_rx = platform_get_irq(pdev, 0);
2703 	irq_tx = platform_get_irq(pdev, 1);
2704 	if (!res_mem || irq_rx < 0)
2705 		return -ENODEV;
2706 
2707 	ret = 0;
2708 	dev = alloc_etherdev(sizeof(*priv));
2709 	if (!dev)
2710 		return -ENOMEM;
2711 	priv = netdev_priv(dev);
2712 	memset(priv, 0, sizeof(*priv));
2713 
2714 	/* initialize default and fetch platform data */
2715 	priv->enet_is_sw = true;
2716 	priv->irq_rx = irq_rx;
2717 	priv->irq_tx = irq_tx;
2718 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2719 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2720 	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2721 
2722 	pd = dev_get_platdata(&pdev->dev);
2723 	if (pd) {
2724 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2725 		memcpy(priv->used_ports, pd->used_ports,
2726 		       sizeof(pd->used_ports));
2727 		priv->num_ports = pd->num_ports;
2728 		priv->dma_has_sram = pd->dma_has_sram;
2729 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2730 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2731 		priv->dma_chan_width = pd->dma_chan_width;
2732 	}
2733 
2734 	ret = bcm_enet_change_mtu(dev, dev->mtu);
2735 	if (ret)
2736 		goto out;
2737 
2738 	if (!request_mem_region(res_mem->start, resource_size(res_mem),
2739 				"bcm63xx_enetsw")) {
2740 		ret = -EBUSY;
2741 		goto out;
2742 	}
2743 
2744 	priv->base = ioremap(res_mem->start, resource_size(res_mem));
2745 	if (priv->base == NULL) {
2746 		ret = -ENOMEM;
2747 		goto out_release_mem;
2748 	}
2749 
2750 	priv->mac_clk = clk_get(&pdev->dev, "enetsw");
2751 	if (IS_ERR(priv->mac_clk)) {
2752 		ret = PTR_ERR(priv->mac_clk);
2753 		goto out_unmap;
2754 	}
2755 	clk_enable(priv->mac_clk);
2756 
2757 	priv->rx_chan = 0;
2758 	priv->tx_chan = 1;
2759 	spin_lock_init(&priv->rx_lock);
2760 
2761 	/* init rx timeout (used for oom) */
2762 	init_timer(&priv->rx_timeout);
2763 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
2764 	priv->rx_timeout.data = (unsigned long)dev;
2765 
2766 	/* register netdevice */
2767 	dev->netdev_ops = &bcm_enetsw_ops;
2768 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2769 	dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2770 	SET_NETDEV_DEV(dev, &pdev->dev);
2771 
2772 	spin_lock_init(&priv->enetsw_mdio_lock);
2773 
2774 	ret = register_netdev(dev);
2775 	if (ret)
2776 		goto out_put_clk;
2777 
2778 	netif_carrier_off(dev);
2779 	platform_set_drvdata(pdev, dev);
2780 	priv->pdev = pdev;
2781 	priv->net_dev = dev;
2782 
2783 	return 0;
2784 
2785 out_put_clk:
2786 	clk_put(priv->mac_clk);
2787 
2788 out_unmap:
2789 	iounmap(priv->base);
2790 
2791 out_release_mem:
2792 	release_mem_region(res_mem->start, resource_size(res_mem));
2793 out:
2794 	free_netdev(dev);
2795 	return ret;
2796 }
2797 
2798 
2799 /* exit func, stops hardware and unregisters netdevice */
2800 static int bcm_enetsw_remove(struct platform_device *pdev)
2801 {
2802 	struct bcm_enet_priv *priv;
2803 	struct net_device *dev;
2804 	struct resource *res;
2805 
2806 	/* stop netdevice */
2807 	dev = platform_get_drvdata(pdev);
2808 	priv = netdev_priv(dev);
2809 	unregister_netdev(dev);
2810 
2811 	/* release device resources */
2812 	iounmap(priv->base);
2813 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2814 	release_mem_region(res->start, resource_size(res));
2815 
2816 	free_netdev(dev);
2817 	return 0;
2818 }
2819 
2820 struct platform_driver bcm63xx_enetsw_driver = {
2821 	.probe	= bcm_enetsw_probe,
2822 	.remove	= bcm_enetsw_remove,
2823 	.driver	= {
2824 		.name	= "bcm63xx_enetsw",
2825 		.owner  = THIS_MODULE,
2826 	},
2827 };
2828 
2829 /* reserve & remap memory space shared between all macs */
2830 static int bcm_enet_shared_probe(struct platform_device *pdev)
2831 {
2832 	struct resource *res;
2833 	void __iomem *p[3];
2834 	unsigned int i;
2835 
2836 	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2837 
2838 	for (i = 0; i < 3; i++) {
2839 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2840 		p[i] = devm_ioremap_resource(&pdev->dev, res);
2841 		if (IS_ERR(p[i]))
2842 			return PTR_ERR(p[i]);
2843 	}
2844 
2845 	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2846 
2847 	return 0;
2848 }
2849 
2850 static int bcm_enet_shared_remove(struct platform_device *pdev)
2851 {
2852 	return 0;
2853 }
2854 
2855 /* this "shared" driver is needed because both macs share a single
2856  * address space
2857  */
2858 struct platform_driver bcm63xx_enet_shared_driver = {
2859 	.probe	= bcm_enet_shared_probe,
2860 	.remove	= bcm_enet_shared_remove,
2861 	.driver	= {
2862 		.name	= "bcm63xx_enet_shared",
2863 		.owner  = THIS_MODULE,
2864 	},
2865 };
2866 
2867 static struct platform_driver * const drivers[] = {
2868 	&bcm63xx_enet_shared_driver,
2869 	&bcm63xx_enet_driver,
2870 	&bcm63xx_enetsw_driver,
2871 };
2872 
2873 /* entry point */
2874 static int __init bcm_enet_init(void)
2875 {
2876 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2877 }
2878 
2879 static void __exit bcm_enet_exit(void)
2880 {
2881 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2882 }
2883 
2884 
2885 module_init(bcm_enet_init);
2886 module_exit(bcm_enet_exit);
2887 
2888 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2889 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2890 MODULE_LICENSE("GPL");
2891