1 /*
2  * Driver for BCM963xx builtin Ethernet mac
3  *
4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33 
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36 
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39 
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43 
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46 
47 /*
48  * io helpers to access mac registers
49  */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 	return bcm_readl(priv->base + off);
53 }
54 
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 			       u32 val, u32 off)
57 {
58 	bcm_writel(val, priv->base + off);
59 }
60 
61 /*
62  * io helpers to access switch registers
63  */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 	return bcm_readl(priv->base + off);
67 }
68 
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 				 u32 val, u32 off)
71 {
72 	bcm_writel(val, priv->base + off);
73 }
74 
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 	return bcm_readw(priv->base + off);
78 }
79 
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 				 u16 val, u32 off)
82 {
83 	bcm_writew(val, priv->base + off);
84 }
85 
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 	return bcm_readb(priv->base + off);
89 }
90 
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 				 u8 val, u32 off)
93 {
94 	bcm_writeb(val, priv->base + off);
95 }
96 
97 
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 	return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103 
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 				       u32 val, u32 off)
106 {
107 	bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109 
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 	return bcm_readl(bcm_enet_shared_base[1] +
113 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115 
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 				       u32 val, u32 off, int chan)
118 {
119 	bcm_writel(val, bcm_enet_shared_base[1] +
120 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122 
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127 
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 				       u32 val, u32 off, int chan)
130 {
131 	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133 
134 /*
135  * write given data into mii register and wait for transfer to end
136  * with timeout (average measured transfer time is 25us)
137  */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 	int limit;
141 
142 	/* make sure mii interrupt status is cleared */
143 	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144 
145 	enet_writel(priv, data, ENET_MIIDATA_REG);
146 	wmb();
147 
148 	/* busy wait on mii interrupt bit, with timeout */
149 	limit = 1000;
150 	do {
151 		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 			break;
153 		udelay(1);
154 	} while (limit-- > 0);
155 
156 	return (limit < 0) ? 1 : 0;
157 }
158 
159 /*
160  * MII internal read callback
161  */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 			      int regnum)
164 {
165 	u32 tmp, val;
166 
167 	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 	tmp |= ENET_MIIDATA_OP_READ_MASK;
171 
172 	if (do_mdio_op(priv, tmp))
173 		return -1;
174 
175 	val = enet_readl(priv, ENET_MIIDATA_REG);
176 	val &= 0xffff;
177 	return val;
178 }
179 
180 /*
181  * MII internal write callback
182  */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 			       int regnum, u16 value)
185 {
186 	u32 tmp;
187 
188 	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193 
194 	(void)do_mdio_op(priv, tmp);
195 	return 0;
196 }
197 
198 /*
199  * MII read callback from phylib
200  */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 				     int regnum)
203 {
204 	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206 
207 /*
208  * MII write callback from phylib
209  */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 				      int regnum, u16 value)
212 {
213 	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215 
216 /*
217  * MII read callback from mii core
218  */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 				  int regnum)
221 {
222 	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224 
225 /*
226  * MII write callback from mii core
227  */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 				    int regnum, int value)
230 {
231 	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233 
234 /*
235  * refill rx queue
236  */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 	struct bcm_enet_priv *priv;
240 
241 	priv = netdev_priv(dev);
242 
243 	while (priv->rx_desc_count < priv->rx_ring_size) {
244 		struct bcm_enet_desc *desc;
245 		struct sk_buff *skb;
246 		dma_addr_t p;
247 		int desc_idx;
248 		u32 len_stat;
249 
250 		desc_idx = priv->rx_dirty_desc;
251 		desc = &priv->rx_desc_cpu[desc_idx];
252 
253 		if (!priv->rx_skb[desc_idx]) {
254 			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 			if (!skb)
256 				break;
257 			priv->rx_skb[desc_idx] = skb;
258 			p = dma_map_single(&priv->pdev->dev, skb->data,
259 					   priv->rx_skb_size,
260 					   DMA_FROM_DEVICE);
261 			desc->address = p;
262 		}
263 
264 		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 		len_stat |= DMADESC_OWNER_MASK;
266 		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 			priv->rx_dirty_desc = 0;
269 		} else {
270 			priv->rx_dirty_desc++;
271 		}
272 		wmb();
273 		desc->len_stat = len_stat;
274 
275 		priv->rx_desc_count++;
276 
277 		/* tell dma engine we allocated one buffer */
278 		if (priv->dma_has_sram)
279 			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 		else
281 			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 	}
283 
284 	/* If rx ring is still empty, set a timer to try allocating
285 	 * again at a later time. */
286 	if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 		priv->rx_timeout.expires = jiffies + HZ;
289 		add_timer(&priv->rx_timeout);
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * timer callback to defer refill rx queue in case we're OOM
297  */
298 static void bcm_enet_refill_rx_timer(unsigned long data)
299 {
300 	struct net_device *dev;
301 	struct bcm_enet_priv *priv;
302 
303 	dev = (struct net_device *)data;
304 	priv = netdev_priv(dev);
305 
306 	spin_lock(&priv->rx_lock);
307 	bcm_enet_refill_rx((struct net_device *)data);
308 	spin_unlock(&priv->rx_lock);
309 }
310 
311 /*
312  * extract packet from rx queue
313  */
314 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
315 {
316 	struct bcm_enet_priv *priv;
317 	struct device *kdev;
318 	int processed;
319 
320 	priv = netdev_priv(dev);
321 	kdev = &priv->pdev->dev;
322 	processed = 0;
323 
324 	/* don't scan ring further than number of refilled
325 	 * descriptor */
326 	if (budget > priv->rx_desc_count)
327 		budget = priv->rx_desc_count;
328 
329 	do {
330 		struct bcm_enet_desc *desc;
331 		struct sk_buff *skb;
332 		int desc_idx;
333 		u32 len_stat;
334 		unsigned int len;
335 
336 		desc_idx = priv->rx_curr_desc;
337 		desc = &priv->rx_desc_cpu[desc_idx];
338 
339 		/* make sure we actually read the descriptor status at
340 		 * each loop */
341 		rmb();
342 
343 		len_stat = desc->len_stat;
344 
345 		/* break if dma ownership belongs to hw */
346 		if (len_stat & DMADESC_OWNER_MASK)
347 			break;
348 
349 		processed++;
350 		priv->rx_curr_desc++;
351 		if (priv->rx_curr_desc == priv->rx_ring_size)
352 			priv->rx_curr_desc = 0;
353 		priv->rx_desc_count--;
354 
355 		/* if the packet does not have start of packet _and_
356 		 * end of packet flag set, then just recycle it */
357 		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
358 			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
359 			dev->stats.rx_dropped++;
360 			continue;
361 		}
362 
363 		/* recycle packet if it's marked as bad */
364 		if (!priv->enet_is_sw &&
365 		    unlikely(len_stat & DMADESC_ERR_MASK)) {
366 			dev->stats.rx_errors++;
367 
368 			if (len_stat & DMADESC_OVSIZE_MASK)
369 				dev->stats.rx_length_errors++;
370 			if (len_stat & DMADESC_CRC_MASK)
371 				dev->stats.rx_crc_errors++;
372 			if (len_stat & DMADESC_UNDER_MASK)
373 				dev->stats.rx_frame_errors++;
374 			if (len_stat & DMADESC_OV_MASK)
375 				dev->stats.rx_fifo_errors++;
376 			continue;
377 		}
378 
379 		/* valid packet */
380 		skb = priv->rx_skb[desc_idx];
381 		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
382 		/* don't include FCS */
383 		len -= 4;
384 
385 		if (len < copybreak) {
386 			struct sk_buff *nskb;
387 
388 			nskb = napi_alloc_skb(&priv->napi, len);
389 			if (!nskb) {
390 				/* forget packet, just rearm desc */
391 				dev->stats.rx_dropped++;
392 				continue;
393 			}
394 
395 			dma_sync_single_for_cpu(kdev, desc->address,
396 						len, DMA_FROM_DEVICE);
397 			memcpy(nskb->data, skb->data, len);
398 			dma_sync_single_for_device(kdev, desc->address,
399 						   len, DMA_FROM_DEVICE);
400 			skb = nskb;
401 		} else {
402 			dma_unmap_single(&priv->pdev->dev, desc->address,
403 					 priv->rx_skb_size, DMA_FROM_DEVICE);
404 			priv->rx_skb[desc_idx] = NULL;
405 		}
406 
407 		skb_put(skb, len);
408 		skb->protocol = eth_type_trans(skb, dev);
409 		dev->stats.rx_packets++;
410 		dev->stats.rx_bytes += len;
411 		netif_receive_skb(skb);
412 
413 	} while (--budget > 0);
414 
415 	if (processed || !priv->rx_desc_count) {
416 		bcm_enet_refill_rx(dev);
417 
418 		/* kick rx dma */
419 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
420 					 ENETDMAC_CHANCFG, priv->rx_chan);
421 	}
422 
423 	return processed;
424 }
425 
426 
427 /*
428  * try to or force reclaim of transmitted buffers
429  */
430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
431 {
432 	struct bcm_enet_priv *priv;
433 	int released;
434 
435 	priv = netdev_priv(dev);
436 	released = 0;
437 
438 	while (priv->tx_desc_count < priv->tx_ring_size) {
439 		struct bcm_enet_desc *desc;
440 		struct sk_buff *skb;
441 
442 		/* We run in a bh and fight against start_xmit, which
443 		 * is called with bh disabled  */
444 		spin_lock(&priv->tx_lock);
445 
446 		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
447 
448 		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
449 			spin_unlock(&priv->tx_lock);
450 			break;
451 		}
452 
453 		/* ensure other field of the descriptor were not read
454 		 * before we checked ownership */
455 		rmb();
456 
457 		skb = priv->tx_skb[priv->tx_dirty_desc];
458 		priv->tx_skb[priv->tx_dirty_desc] = NULL;
459 		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
460 				 DMA_TO_DEVICE);
461 
462 		priv->tx_dirty_desc++;
463 		if (priv->tx_dirty_desc == priv->tx_ring_size)
464 			priv->tx_dirty_desc = 0;
465 		priv->tx_desc_count++;
466 
467 		spin_unlock(&priv->tx_lock);
468 
469 		if (desc->len_stat & DMADESC_UNDER_MASK)
470 			dev->stats.tx_errors++;
471 
472 		dev_kfree_skb(skb);
473 		released++;
474 	}
475 
476 	if (netif_queue_stopped(dev) && released)
477 		netif_wake_queue(dev);
478 
479 	return released;
480 }
481 
482 /*
483  * poll func, called by network core
484  */
485 static int bcm_enet_poll(struct napi_struct *napi, int budget)
486 {
487 	struct bcm_enet_priv *priv;
488 	struct net_device *dev;
489 	int rx_work_done;
490 
491 	priv = container_of(napi, struct bcm_enet_priv, napi);
492 	dev = priv->net_dev;
493 
494 	/* ack interrupts */
495 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
496 			 ENETDMAC_IR, priv->rx_chan);
497 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
498 			 ENETDMAC_IR, priv->tx_chan);
499 
500 	/* reclaim sent skb */
501 	bcm_enet_tx_reclaim(dev, 0);
502 
503 	spin_lock(&priv->rx_lock);
504 	rx_work_done = bcm_enet_receive_queue(dev, budget);
505 	spin_unlock(&priv->rx_lock);
506 
507 	if (rx_work_done >= budget) {
508 		/* rx queue is not yet empty/clean */
509 		return rx_work_done;
510 	}
511 
512 	/* no more packet in rx/tx queue, remove device from poll
513 	 * queue */
514 	napi_complete(napi);
515 
516 	/* restore rx/tx interrupt */
517 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
518 			 ENETDMAC_IRMASK, priv->rx_chan);
519 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
520 			 ENETDMAC_IRMASK, priv->tx_chan);
521 
522 	return rx_work_done;
523 }
524 
525 /*
526  * mac interrupt handler
527  */
528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
529 {
530 	struct net_device *dev;
531 	struct bcm_enet_priv *priv;
532 	u32 stat;
533 
534 	dev = dev_id;
535 	priv = netdev_priv(dev);
536 
537 	stat = enet_readl(priv, ENET_IR_REG);
538 	if (!(stat & ENET_IR_MIB))
539 		return IRQ_NONE;
540 
541 	/* clear & mask interrupt */
542 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
543 	enet_writel(priv, 0, ENET_IRMASK_REG);
544 
545 	/* read mib registers in workqueue */
546 	schedule_work(&priv->mib_update_task);
547 
548 	return IRQ_HANDLED;
549 }
550 
551 /*
552  * rx/tx dma interrupt handler
553  */
554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
555 {
556 	struct net_device *dev;
557 	struct bcm_enet_priv *priv;
558 
559 	dev = dev_id;
560 	priv = netdev_priv(dev);
561 
562 	/* mask rx/tx interrupts */
563 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
564 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
565 
566 	napi_schedule(&priv->napi);
567 
568 	return IRQ_HANDLED;
569 }
570 
571 /*
572  * tx request callback
573  */
574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576 	struct bcm_enet_priv *priv;
577 	struct bcm_enet_desc *desc;
578 	u32 len_stat;
579 	int ret;
580 
581 	priv = netdev_priv(dev);
582 
583 	/* lock against tx reclaim */
584 	spin_lock(&priv->tx_lock);
585 
586 	/* make sure  the tx hw queue  is not full,  should not happen
587 	 * since we stop queue before it's the case */
588 	if (unlikely(!priv->tx_desc_count)) {
589 		netif_stop_queue(dev);
590 		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
591 			"available?\n");
592 		ret = NETDEV_TX_BUSY;
593 		goto out_unlock;
594 	}
595 
596 	/* pad small packets sent on a switch device */
597 	if (priv->enet_is_sw && skb->len < 64) {
598 		int needed = 64 - skb->len;
599 		char *data;
600 
601 		if (unlikely(skb_tailroom(skb) < needed)) {
602 			struct sk_buff *nskb;
603 
604 			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
605 			if (!nskb) {
606 				ret = NETDEV_TX_BUSY;
607 				goto out_unlock;
608 			}
609 			dev_kfree_skb(skb);
610 			skb = nskb;
611 		}
612 		data = skb_put(skb, needed);
613 		memset(data, 0, needed);
614 	}
615 
616 	/* point to the next available desc */
617 	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
618 	priv->tx_skb[priv->tx_curr_desc] = skb;
619 
620 	/* fill descriptor */
621 	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
622 				       DMA_TO_DEVICE);
623 
624 	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
625 	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
626 		DMADESC_APPEND_CRC |
627 		DMADESC_OWNER_MASK;
628 
629 	priv->tx_curr_desc++;
630 	if (priv->tx_curr_desc == priv->tx_ring_size) {
631 		priv->tx_curr_desc = 0;
632 		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
633 	}
634 	priv->tx_desc_count--;
635 
636 	/* dma might be already polling, make sure we update desc
637 	 * fields in correct order */
638 	wmb();
639 	desc->len_stat = len_stat;
640 	wmb();
641 
642 	/* kick tx dma */
643 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
644 				 ENETDMAC_CHANCFG, priv->tx_chan);
645 
646 	/* stop queue if no more desc available */
647 	if (!priv->tx_desc_count)
648 		netif_stop_queue(dev);
649 
650 	dev->stats.tx_bytes += skb->len;
651 	dev->stats.tx_packets++;
652 	ret = NETDEV_TX_OK;
653 
654 out_unlock:
655 	spin_unlock(&priv->tx_lock);
656 	return ret;
657 }
658 
659 /*
660  * Change the interface's mac address.
661  */
662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
663 {
664 	struct bcm_enet_priv *priv;
665 	struct sockaddr *addr = p;
666 	u32 val;
667 
668 	priv = netdev_priv(dev);
669 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
670 
671 	/* use perfect match register 0 to store my mac address */
672 	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
673 		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
674 	enet_writel(priv, val, ENET_PML_REG(0));
675 
676 	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
677 	val |= ENET_PMH_DATAVALID_MASK;
678 	enet_writel(priv, val, ENET_PMH_REG(0));
679 
680 	return 0;
681 }
682 
683 /*
684  * Change rx mode (promiscuous/allmulti) and update multicast list
685  */
686 static void bcm_enet_set_multicast_list(struct net_device *dev)
687 {
688 	struct bcm_enet_priv *priv;
689 	struct netdev_hw_addr *ha;
690 	u32 val;
691 	int i;
692 
693 	priv = netdev_priv(dev);
694 
695 	val = enet_readl(priv, ENET_RXCFG_REG);
696 
697 	if (dev->flags & IFF_PROMISC)
698 		val |= ENET_RXCFG_PROMISC_MASK;
699 	else
700 		val &= ~ENET_RXCFG_PROMISC_MASK;
701 
702 	/* only 3 perfect match registers left, first one is used for
703 	 * own mac address */
704 	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
705 		val |= ENET_RXCFG_ALLMCAST_MASK;
706 	else
707 		val &= ~ENET_RXCFG_ALLMCAST_MASK;
708 
709 	/* no need to set perfect match registers if we catch all
710 	 * multicast */
711 	if (val & ENET_RXCFG_ALLMCAST_MASK) {
712 		enet_writel(priv, val, ENET_RXCFG_REG);
713 		return;
714 	}
715 
716 	i = 0;
717 	netdev_for_each_mc_addr(ha, dev) {
718 		u8 *dmi_addr;
719 		u32 tmp;
720 
721 		if (i == 3)
722 			break;
723 		/* update perfect match registers */
724 		dmi_addr = ha->addr;
725 		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
726 			(dmi_addr[4] << 8) | dmi_addr[5];
727 		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
728 
729 		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
730 		tmp |= ENET_PMH_DATAVALID_MASK;
731 		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
732 	}
733 
734 	for (; i < 3; i++) {
735 		enet_writel(priv, 0, ENET_PML_REG(i + 1));
736 		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
737 	}
738 
739 	enet_writel(priv, val, ENET_RXCFG_REG);
740 }
741 
742 /*
743  * set mac duplex parameters
744  */
745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
746 {
747 	u32 val;
748 
749 	val = enet_readl(priv, ENET_TXCTL_REG);
750 	if (fullduplex)
751 		val |= ENET_TXCTL_FD_MASK;
752 	else
753 		val &= ~ENET_TXCTL_FD_MASK;
754 	enet_writel(priv, val, ENET_TXCTL_REG);
755 }
756 
757 /*
758  * set mac flow control parameters
759  */
760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
761 {
762 	u32 val;
763 
764 	/* rx flow control (pause frame handling) */
765 	val = enet_readl(priv, ENET_RXCFG_REG);
766 	if (rx_en)
767 		val |= ENET_RXCFG_ENFLOW_MASK;
768 	else
769 		val &= ~ENET_RXCFG_ENFLOW_MASK;
770 	enet_writel(priv, val, ENET_RXCFG_REG);
771 
772 	if (!priv->dma_has_sram)
773 		return;
774 
775 	/* tx flow control (pause frame generation) */
776 	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
777 	if (tx_en)
778 		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
779 	else
780 		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
781 	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
782 }
783 
784 /*
785  * link changed callback (from phylib)
786  */
787 static void bcm_enet_adjust_phy_link(struct net_device *dev)
788 {
789 	struct bcm_enet_priv *priv;
790 	struct phy_device *phydev;
791 	int status_changed;
792 
793 	priv = netdev_priv(dev);
794 	phydev = dev->phydev;
795 	status_changed = 0;
796 
797 	if (priv->old_link != phydev->link) {
798 		status_changed = 1;
799 		priv->old_link = phydev->link;
800 	}
801 
802 	/* reflect duplex change in mac configuration */
803 	if (phydev->link && phydev->duplex != priv->old_duplex) {
804 		bcm_enet_set_duplex(priv,
805 				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
806 		status_changed = 1;
807 		priv->old_duplex = phydev->duplex;
808 	}
809 
810 	/* enable flow control if remote advertise it (trust phylib to
811 	 * check that duplex is full */
812 	if (phydev->link && phydev->pause != priv->old_pause) {
813 		int rx_pause_en, tx_pause_en;
814 
815 		if (phydev->pause) {
816 			/* pause was advertised by lpa and us */
817 			rx_pause_en = 1;
818 			tx_pause_en = 1;
819 		} else if (!priv->pause_auto) {
820 			/* pause setting overrided by user */
821 			rx_pause_en = priv->pause_rx;
822 			tx_pause_en = priv->pause_tx;
823 		} else {
824 			rx_pause_en = 0;
825 			tx_pause_en = 0;
826 		}
827 
828 		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
829 		status_changed = 1;
830 		priv->old_pause = phydev->pause;
831 	}
832 
833 	if (status_changed) {
834 		pr_info("%s: link %s", dev->name, phydev->link ?
835 			"UP" : "DOWN");
836 		if (phydev->link)
837 			pr_cont(" - %d/%s - flow control %s", phydev->speed,
838 			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
839 			       phydev->pause == 1 ? "rx&tx" : "off");
840 
841 		pr_cont("\n");
842 	}
843 }
844 
845 /*
846  * link changed callback (if phylib is not used)
847  */
848 static void bcm_enet_adjust_link(struct net_device *dev)
849 {
850 	struct bcm_enet_priv *priv;
851 
852 	priv = netdev_priv(dev);
853 	bcm_enet_set_duplex(priv, priv->force_duplex_full);
854 	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
855 	netif_carrier_on(dev);
856 
857 	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
858 		dev->name,
859 		priv->force_speed_100 ? 100 : 10,
860 		priv->force_duplex_full ? "full" : "half",
861 		priv->pause_rx ? "rx" : "off",
862 		priv->pause_tx ? "tx" : "off");
863 }
864 
865 /*
866  * open callback, allocate dma rings & buffers and start rx operation
867  */
868 static int bcm_enet_open(struct net_device *dev)
869 {
870 	struct bcm_enet_priv *priv;
871 	struct sockaddr addr;
872 	struct device *kdev;
873 	struct phy_device *phydev;
874 	int i, ret;
875 	unsigned int size;
876 	char phy_id[MII_BUS_ID_SIZE + 3];
877 	void *p;
878 	u32 val;
879 
880 	priv = netdev_priv(dev);
881 	kdev = &priv->pdev->dev;
882 
883 	if (priv->has_phy) {
884 		/* connect to PHY */
885 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
886 			 priv->mii_bus->id, priv->phy_id);
887 
888 		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
889 				     PHY_INTERFACE_MODE_MII);
890 
891 		if (IS_ERR(phydev)) {
892 			dev_err(kdev, "could not attach to PHY\n");
893 			return PTR_ERR(phydev);
894 		}
895 
896 		/* mask with MAC supported features */
897 		phydev->supported &= (SUPPORTED_10baseT_Half |
898 				      SUPPORTED_10baseT_Full |
899 				      SUPPORTED_100baseT_Half |
900 				      SUPPORTED_100baseT_Full |
901 				      SUPPORTED_Autoneg |
902 				      SUPPORTED_Pause |
903 				      SUPPORTED_MII);
904 		phydev->advertising = phydev->supported;
905 
906 		if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
907 			phydev->advertising |= SUPPORTED_Pause;
908 		else
909 			phydev->advertising &= ~SUPPORTED_Pause;
910 
911 		phy_attached_info(phydev);
912 
913 		priv->old_link = 0;
914 		priv->old_duplex = -1;
915 		priv->old_pause = -1;
916 	}
917 
918 	/* mask all interrupts and request them */
919 	enet_writel(priv, 0, ENET_IRMASK_REG);
920 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
921 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
922 
923 	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
924 	if (ret)
925 		goto out_phy_disconnect;
926 
927 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
928 			  dev->name, dev);
929 	if (ret)
930 		goto out_freeirq;
931 
932 	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
933 			  0, dev->name, dev);
934 	if (ret)
935 		goto out_freeirq_rx;
936 
937 	/* initialize perfect match registers */
938 	for (i = 0; i < 4; i++) {
939 		enet_writel(priv, 0, ENET_PML_REG(i));
940 		enet_writel(priv, 0, ENET_PMH_REG(i));
941 	}
942 
943 	/* write device mac address */
944 	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
945 	bcm_enet_set_mac_address(dev, &addr);
946 
947 	/* allocate rx dma ring */
948 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
949 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
950 	if (!p) {
951 		ret = -ENOMEM;
952 		goto out_freeirq_tx;
953 	}
954 
955 	priv->rx_desc_alloc_size = size;
956 	priv->rx_desc_cpu = p;
957 
958 	/* allocate tx dma ring */
959 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
960 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
961 	if (!p) {
962 		ret = -ENOMEM;
963 		goto out_free_rx_ring;
964 	}
965 
966 	priv->tx_desc_alloc_size = size;
967 	priv->tx_desc_cpu = p;
968 
969 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
970 			       GFP_KERNEL);
971 	if (!priv->tx_skb) {
972 		ret = -ENOMEM;
973 		goto out_free_tx_ring;
974 	}
975 
976 	priv->tx_desc_count = priv->tx_ring_size;
977 	priv->tx_dirty_desc = 0;
978 	priv->tx_curr_desc = 0;
979 	spin_lock_init(&priv->tx_lock);
980 
981 	/* init & fill rx ring with skbs */
982 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
983 			       GFP_KERNEL);
984 	if (!priv->rx_skb) {
985 		ret = -ENOMEM;
986 		goto out_free_tx_skb;
987 	}
988 
989 	priv->rx_desc_count = 0;
990 	priv->rx_dirty_desc = 0;
991 	priv->rx_curr_desc = 0;
992 
993 	/* initialize flow control buffer allocation */
994 	if (priv->dma_has_sram)
995 		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
996 				ENETDMA_BUFALLOC_REG(priv->rx_chan));
997 	else
998 		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
999 				ENETDMAC_BUFALLOC, priv->rx_chan);
1000 
1001 	if (bcm_enet_refill_rx(dev)) {
1002 		dev_err(kdev, "cannot allocate rx skb queue\n");
1003 		ret = -ENOMEM;
1004 		goto out;
1005 	}
1006 
1007 	/* write rx & tx ring addresses */
1008 	if (priv->dma_has_sram) {
1009 		enet_dmas_writel(priv, priv->rx_desc_dma,
1010 				 ENETDMAS_RSTART_REG, priv->rx_chan);
1011 		enet_dmas_writel(priv, priv->tx_desc_dma,
1012 			 ENETDMAS_RSTART_REG, priv->tx_chan);
1013 	} else {
1014 		enet_dmac_writel(priv, priv->rx_desc_dma,
1015 				ENETDMAC_RSTART, priv->rx_chan);
1016 		enet_dmac_writel(priv, priv->tx_desc_dma,
1017 				ENETDMAC_RSTART, priv->tx_chan);
1018 	}
1019 
1020 	/* clear remaining state ram for rx & tx channel */
1021 	if (priv->dma_has_sram) {
1022 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1023 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1024 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1025 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1026 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1027 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1028 	} else {
1029 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1030 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1031 	}
1032 
1033 	/* set max rx/tx length */
1034 	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1035 	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1036 
1037 	/* set dma maximum burst len */
1038 	enet_dmac_writel(priv, priv->dma_maxburst,
1039 			 ENETDMAC_MAXBURST, priv->rx_chan);
1040 	enet_dmac_writel(priv, priv->dma_maxburst,
1041 			 ENETDMAC_MAXBURST, priv->tx_chan);
1042 
1043 	/* set correct transmit fifo watermark */
1044 	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1045 
1046 	/* set flow control low/high threshold to 1/3 / 2/3 */
1047 	if (priv->dma_has_sram) {
1048 		val = priv->rx_ring_size / 3;
1049 		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1050 		val = (priv->rx_ring_size * 2) / 3;
1051 		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1052 	} else {
1053 		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1054 		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1055 		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1056 	}
1057 
1058 	/* all set, enable mac and interrupts, start dma engine and
1059 	 * kick rx dma channel */
1060 	wmb();
1061 	val = enet_readl(priv, ENET_CTL_REG);
1062 	val |= ENET_CTL_ENABLE_MASK;
1063 	enet_writel(priv, val, ENET_CTL_REG);
1064 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1065 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1066 			 ENETDMAC_CHANCFG, priv->rx_chan);
1067 
1068 	/* watch "mib counters about to overflow" interrupt */
1069 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1070 	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1071 
1072 	/* watch "packet transferred" interrupt in rx and tx */
1073 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1074 			 ENETDMAC_IR, priv->rx_chan);
1075 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1076 			 ENETDMAC_IR, priv->tx_chan);
1077 
1078 	/* make sure we enable napi before rx interrupt  */
1079 	napi_enable(&priv->napi);
1080 
1081 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1082 			 ENETDMAC_IRMASK, priv->rx_chan);
1083 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1084 			 ENETDMAC_IRMASK, priv->tx_chan);
1085 
1086 	if (priv->has_phy)
1087 		phy_start(phydev);
1088 	else
1089 		bcm_enet_adjust_link(dev);
1090 
1091 	netif_start_queue(dev);
1092 	return 0;
1093 
1094 out:
1095 	for (i = 0; i < priv->rx_ring_size; i++) {
1096 		struct bcm_enet_desc *desc;
1097 
1098 		if (!priv->rx_skb[i])
1099 			continue;
1100 
1101 		desc = &priv->rx_desc_cpu[i];
1102 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1103 				 DMA_FROM_DEVICE);
1104 		kfree_skb(priv->rx_skb[i]);
1105 	}
1106 	kfree(priv->rx_skb);
1107 
1108 out_free_tx_skb:
1109 	kfree(priv->tx_skb);
1110 
1111 out_free_tx_ring:
1112 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1113 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1114 
1115 out_free_rx_ring:
1116 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1117 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1118 
1119 out_freeirq_tx:
1120 	free_irq(priv->irq_tx, dev);
1121 
1122 out_freeirq_rx:
1123 	free_irq(priv->irq_rx, dev);
1124 
1125 out_freeirq:
1126 	free_irq(dev->irq, dev);
1127 
1128 out_phy_disconnect:
1129 	if (priv->has_phy)
1130 		phy_disconnect(phydev);
1131 
1132 	return ret;
1133 }
1134 
1135 /*
1136  * disable mac
1137  */
1138 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1139 {
1140 	int limit;
1141 	u32 val;
1142 
1143 	val = enet_readl(priv, ENET_CTL_REG);
1144 	val |= ENET_CTL_DISABLE_MASK;
1145 	enet_writel(priv, val, ENET_CTL_REG);
1146 
1147 	limit = 1000;
1148 	do {
1149 		u32 val;
1150 
1151 		val = enet_readl(priv, ENET_CTL_REG);
1152 		if (!(val & ENET_CTL_DISABLE_MASK))
1153 			break;
1154 		udelay(1);
1155 	} while (limit--);
1156 }
1157 
1158 /*
1159  * disable dma in given channel
1160  */
1161 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1162 {
1163 	int limit;
1164 
1165 	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1166 
1167 	limit = 1000;
1168 	do {
1169 		u32 val;
1170 
1171 		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1172 		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1173 			break;
1174 		udelay(1);
1175 	} while (limit--);
1176 }
1177 
1178 /*
1179  * stop callback
1180  */
1181 static int bcm_enet_stop(struct net_device *dev)
1182 {
1183 	struct bcm_enet_priv *priv;
1184 	struct device *kdev;
1185 	int i;
1186 
1187 	priv = netdev_priv(dev);
1188 	kdev = &priv->pdev->dev;
1189 
1190 	netif_stop_queue(dev);
1191 	napi_disable(&priv->napi);
1192 	if (priv->has_phy)
1193 		phy_stop(dev->phydev);
1194 	del_timer_sync(&priv->rx_timeout);
1195 
1196 	/* mask all interrupts */
1197 	enet_writel(priv, 0, ENET_IRMASK_REG);
1198 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1199 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1200 
1201 	/* make sure no mib update is scheduled */
1202 	cancel_work_sync(&priv->mib_update_task);
1203 
1204 	/* disable dma & mac */
1205 	bcm_enet_disable_dma(priv, priv->tx_chan);
1206 	bcm_enet_disable_dma(priv, priv->rx_chan);
1207 	bcm_enet_disable_mac(priv);
1208 
1209 	/* force reclaim of all tx buffers */
1210 	bcm_enet_tx_reclaim(dev, 1);
1211 
1212 	/* free the rx skb ring */
1213 	for (i = 0; i < priv->rx_ring_size; i++) {
1214 		struct bcm_enet_desc *desc;
1215 
1216 		if (!priv->rx_skb[i])
1217 			continue;
1218 
1219 		desc = &priv->rx_desc_cpu[i];
1220 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1221 				 DMA_FROM_DEVICE);
1222 		kfree_skb(priv->rx_skb[i]);
1223 	}
1224 
1225 	/* free remaining allocated memory */
1226 	kfree(priv->rx_skb);
1227 	kfree(priv->tx_skb);
1228 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1229 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1230 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1231 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1232 	free_irq(priv->irq_tx, dev);
1233 	free_irq(priv->irq_rx, dev);
1234 	free_irq(dev->irq, dev);
1235 
1236 	/* release phy */
1237 	if (priv->has_phy)
1238 		phy_disconnect(dev->phydev);
1239 
1240 	return 0;
1241 }
1242 
1243 /*
1244  * ethtool callbacks
1245  */
1246 struct bcm_enet_stats {
1247 	char stat_string[ETH_GSTRING_LEN];
1248 	int sizeof_stat;
1249 	int stat_offset;
1250 	int mib_reg;
1251 };
1252 
1253 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1254 		     offsetof(struct bcm_enet_priv, m)
1255 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1256 		     offsetof(struct net_device_stats, m)
1257 
1258 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1259 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1260 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1261 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1262 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1263 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1264 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1265 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1266 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1267 
1268 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1269 	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1270 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1271 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1272 	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1273 	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1274 	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1275 	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1276 	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1277 	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1278 	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1279 	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1280 	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1281 	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1282 	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1283 	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1284 	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1285 	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1286 	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1287 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1288 	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1289 
1290 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1291 	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1292 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1293 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1294 	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1295 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1296 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1297 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1298 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1299 	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1300 	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1301 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1302 	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1303 	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1304 	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1305 	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1306 	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1307 	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1308 	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1309 	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1310 	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1311 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1312 
1313 };
1314 
1315 #define BCM_ENET_STATS_LEN	ARRAY_SIZE(bcm_enet_gstrings_stats)
1316 
1317 static const u32 unused_mib_regs[] = {
1318 	ETH_MIB_TX_ALL_OCTETS,
1319 	ETH_MIB_TX_ALL_PKTS,
1320 	ETH_MIB_RX_ALL_OCTETS,
1321 	ETH_MIB_RX_ALL_PKTS,
1322 };
1323 
1324 
1325 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1326 				 struct ethtool_drvinfo *drvinfo)
1327 {
1328 	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1329 	strlcpy(drvinfo->version, bcm_enet_driver_version,
1330 		sizeof(drvinfo->version));
1331 	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1332 	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1333 }
1334 
1335 static int bcm_enet_get_sset_count(struct net_device *netdev,
1336 					int string_set)
1337 {
1338 	switch (string_set) {
1339 	case ETH_SS_STATS:
1340 		return BCM_ENET_STATS_LEN;
1341 	default:
1342 		return -EINVAL;
1343 	}
1344 }
1345 
1346 static void bcm_enet_get_strings(struct net_device *netdev,
1347 				 u32 stringset, u8 *data)
1348 {
1349 	int i;
1350 
1351 	switch (stringset) {
1352 	case ETH_SS_STATS:
1353 		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1354 			memcpy(data + i * ETH_GSTRING_LEN,
1355 			       bcm_enet_gstrings_stats[i].stat_string,
1356 			       ETH_GSTRING_LEN);
1357 		}
1358 		break;
1359 	}
1360 }
1361 
1362 static void update_mib_counters(struct bcm_enet_priv *priv)
1363 {
1364 	int i;
1365 
1366 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1367 		const struct bcm_enet_stats *s;
1368 		u32 val;
1369 		char *p;
1370 
1371 		s = &bcm_enet_gstrings_stats[i];
1372 		if (s->mib_reg == -1)
1373 			continue;
1374 
1375 		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1376 		p = (char *)priv + s->stat_offset;
1377 
1378 		if (s->sizeof_stat == sizeof(u64))
1379 			*(u64 *)p += val;
1380 		else
1381 			*(u32 *)p += val;
1382 	}
1383 
1384 	/* also empty unused mib counters to make sure mib counter
1385 	 * overflow interrupt is cleared */
1386 	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1387 		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1388 }
1389 
1390 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1391 {
1392 	struct bcm_enet_priv *priv;
1393 
1394 	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1395 	mutex_lock(&priv->mib_update_lock);
1396 	update_mib_counters(priv);
1397 	mutex_unlock(&priv->mib_update_lock);
1398 
1399 	/* reenable mib interrupt */
1400 	if (netif_running(priv->net_dev))
1401 		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1402 }
1403 
1404 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1405 				       struct ethtool_stats *stats,
1406 				       u64 *data)
1407 {
1408 	struct bcm_enet_priv *priv;
1409 	int i;
1410 
1411 	priv = netdev_priv(netdev);
1412 
1413 	mutex_lock(&priv->mib_update_lock);
1414 	update_mib_counters(priv);
1415 
1416 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1417 		const struct bcm_enet_stats *s;
1418 		char *p;
1419 
1420 		s = &bcm_enet_gstrings_stats[i];
1421 		if (s->mib_reg == -1)
1422 			p = (char *)&netdev->stats;
1423 		else
1424 			p = (char *)priv;
1425 		p += s->stat_offset;
1426 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1427 			*(u64 *)p : *(u32 *)p;
1428 	}
1429 	mutex_unlock(&priv->mib_update_lock);
1430 }
1431 
1432 static int bcm_enet_nway_reset(struct net_device *dev)
1433 {
1434 	struct bcm_enet_priv *priv;
1435 
1436 	priv = netdev_priv(dev);
1437 	if (priv->has_phy)
1438 		return phy_ethtool_nway_reset(dev);
1439 
1440 	return -EOPNOTSUPP;
1441 }
1442 
1443 static int bcm_enet_get_link_ksettings(struct net_device *dev,
1444 				       struct ethtool_link_ksettings *cmd)
1445 {
1446 	struct bcm_enet_priv *priv;
1447 	u32 supported, advertising;
1448 
1449 	priv = netdev_priv(dev);
1450 
1451 	if (priv->has_phy) {
1452 		if (!dev->phydev)
1453 			return -ENODEV;
1454 		return phy_ethtool_ksettings_get(dev->phydev, cmd);
1455 	} else {
1456 		cmd->base.autoneg = 0;
1457 		cmd->base.speed = (priv->force_speed_100) ?
1458 			SPEED_100 : SPEED_10;
1459 		cmd->base.duplex = (priv->force_duplex_full) ?
1460 			DUPLEX_FULL : DUPLEX_HALF;
1461 		supported = ADVERTISED_10baseT_Half |
1462 			ADVERTISED_10baseT_Full |
1463 			ADVERTISED_100baseT_Half |
1464 			ADVERTISED_100baseT_Full;
1465 		advertising = 0;
1466 		ethtool_convert_legacy_u32_to_link_mode(
1467 			cmd->link_modes.supported, supported);
1468 		ethtool_convert_legacy_u32_to_link_mode(
1469 			cmd->link_modes.advertising, advertising);
1470 		cmd->base.port = PORT_MII;
1471 	}
1472 	return 0;
1473 }
1474 
1475 static int bcm_enet_set_link_ksettings(struct net_device *dev,
1476 				       const struct ethtool_link_ksettings *cmd)
1477 {
1478 	struct bcm_enet_priv *priv;
1479 
1480 	priv = netdev_priv(dev);
1481 	if (priv->has_phy) {
1482 		if (!dev->phydev)
1483 			return -ENODEV;
1484 		return phy_ethtool_ksettings_set(dev->phydev, cmd);
1485 	} else {
1486 
1487 		if (cmd->base.autoneg ||
1488 		    (cmd->base.speed != SPEED_100 &&
1489 		     cmd->base.speed != SPEED_10) ||
1490 		    cmd->base.port != PORT_MII)
1491 			return -EINVAL;
1492 
1493 		priv->force_speed_100 =
1494 			(cmd->base.speed == SPEED_100) ? 1 : 0;
1495 		priv->force_duplex_full =
1496 			(cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1497 
1498 		if (netif_running(dev))
1499 			bcm_enet_adjust_link(dev);
1500 		return 0;
1501 	}
1502 }
1503 
1504 static void bcm_enet_get_ringparam(struct net_device *dev,
1505 				   struct ethtool_ringparam *ering)
1506 {
1507 	struct bcm_enet_priv *priv;
1508 
1509 	priv = netdev_priv(dev);
1510 
1511 	/* rx/tx ring is actually only limited by memory */
1512 	ering->rx_max_pending = 8192;
1513 	ering->tx_max_pending = 8192;
1514 	ering->rx_pending = priv->rx_ring_size;
1515 	ering->tx_pending = priv->tx_ring_size;
1516 }
1517 
1518 static int bcm_enet_set_ringparam(struct net_device *dev,
1519 				  struct ethtool_ringparam *ering)
1520 {
1521 	struct bcm_enet_priv *priv;
1522 	int was_running;
1523 
1524 	priv = netdev_priv(dev);
1525 
1526 	was_running = 0;
1527 	if (netif_running(dev)) {
1528 		bcm_enet_stop(dev);
1529 		was_running = 1;
1530 	}
1531 
1532 	priv->rx_ring_size = ering->rx_pending;
1533 	priv->tx_ring_size = ering->tx_pending;
1534 
1535 	if (was_running) {
1536 		int err;
1537 
1538 		err = bcm_enet_open(dev);
1539 		if (err)
1540 			dev_close(dev);
1541 		else
1542 			bcm_enet_set_multicast_list(dev);
1543 	}
1544 	return 0;
1545 }
1546 
1547 static void bcm_enet_get_pauseparam(struct net_device *dev,
1548 				    struct ethtool_pauseparam *ecmd)
1549 {
1550 	struct bcm_enet_priv *priv;
1551 
1552 	priv = netdev_priv(dev);
1553 	ecmd->autoneg = priv->pause_auto;
1554 	ecmd->rx_pause = priv->pause_rx;
1555 	ecmd->tx_pause = priv->pause_tx;
1556 }
1557 
1558 static int bcm_enet_set_pauseparam(struct net_device *dev,
1559 				   struct ethtool_pauseparam *ecmd)
1560 {
1561 	struct bcm_enet_priv *priv;
1562 
1563 	priv = netdev_priv(dev);
1564 
1565 	if (priv->has_phy) {
1566 		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1567 			/* asymetric pause mode not supported,
1568 			 * actually possible but integrated PHY has RO
1569 			 * asym_pause bit */
1570 			return -EINVAL;
1571 		}
1572 	} else {
1573 		/* no pause autoneg on direct mii connection */
1574 		if (ecmd->autoneg)
1575 			return -EINVAL;
1576 	}
1577 
1578 	priv->pause_auto = ecmd->autoneg;
1579 	priv->pause_rx = ecmd->rx_pause;
1580 	priv->pause_tx = ecmd->tx_pause;
1581 
1582 	return 0;
1583 }
1584 
1585 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1586 	.get_strings		= bcm_enet_get_strings,
1587 	.get_sset_count		= bcm_enet_get_sset_count,
1588 	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1589 	.nway_reset		= bcm_enet_nway_reset,
1590 	.get_drvinfo		= bcm_enet_get_drvinfo,
1591 	.get_link		= ethtool_op_get_link,
1592 	.get_ringparam		= bcm_enet_get_ringparam,
1593 	.set_ringparam		= bcm_enet_set_ringparam,
1594 	.get_pauseparam		= bcm_enet_get_pauseparam,
1595 	.set_pauseparam		= bcm_enet_set_pauseparam,
1596 	.get_link_ksettings	= bcm_enet_get_link_ksettings,
1597 	.set_link_ksettings	= bcm_enet_set_link_ksettings,
1598 };
1599 
1600 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1601 {
1602 	struct bcm_enet_priv *priv;
1603 
1604 	priv = netdev_priv(dev);
1605 	if (priv->has_phy) {
1606 		if (!dev->phydev)
1607 			return -ENODEV;
1608 		return phy_mii_ioctl(dev->phydev, rq, cmd);
1609 	} else {
1610 		struct mii_if_info mii;
1611 
1612 		mii.dev = dev;
1613 		mii.mdio_read = bcm_enet_mdio_read_mii;
1614 		mii.mdio_write = bcm_enet_mdio_write_mii;
1615 		mii.phy_id = 0;
1616 		mii.phy_id_mask = 0x3f;
1617 		mii.reg_num_mask = 0x1f;
1618 		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1619 	}
1620 }
1621 
1622 /*
1623  * adjust mtu, can't be called while device is running
1624  */
1625 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1626 {
1627 	struct bcm_enet_priv *priv = netdev_priv(dev);
1628 	int actual_mtu = new_mtu;
1629 
1630 	if (netif_running(dev))
1631 		return -EBUSY;
1632 
1633 	/* add ethernet header + vlan tag size */
1634 	actual_mtu += VLAN_ETH_HLEN;
1635 
1636 	/*
1637 	 * setup maximum size before we get overflow mark in
1638 	 * descriptor, note that this will not prevent reception of
1639 	 * big frames, they will be split into multiple buffers
1640 	 * anyway
1641 	 */
1642 	priv->hw_mtu = actual_mtu;
1643 
1644 	/*
1645 	 * align rx buffer size to dma burst len, account FCS since
1646 	 * it's appended
1647 	 */
1648 	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1649 				  priv->dma_maxburst * 4);
1650 
1651 	dev->mtu = new_mtu;
1652 	return 0;
1653 }
1654 
1655 /*
1656  * preinit hardware to allow mii operation while device is down
1657  */
1658 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1659 {
1660 	u32 val;
1661 	int limit;
1662 
1663 	/* make sure mac is disabled */
1664 	bcm_enet_disable_mac(priv);
1665 
1666 	/* soft reset mac */
1667 	val = ENET_CTL_SRESET_MASK;
1668 	enet_writel(priv, val, ENET_CTL_REG);
1669 	wmb();
1670 
1671 	limit = 1000;
1672 	do {
1673 		val = enet_readl(priv, ENET_CTL_REG);
1674 		if (!(val & ENET_CTL_SRESET_MASK))
1675 			break;
1676 		udelay(1);
1677 	} while (limit--);
1678 
1679 	/* select correct mii interface */
1680 	val = enet_readl(priv, ENET_CTL_REG);
1681 	if (priv->use_external_mii)
1682 		val |= ENET_CTL_EPHYSEL_MASK;
1683 	else
1684 		val &= ~ENET_CTL_EPHYSEL_MASK;
1685 	enet_writel(priv, val, ENET_CTL_REG);
1686 
1687 	/* turn on mdc clock */
1688 	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1689 		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1690 
1691 	/* set mib counters to self-clear when read */
1692 	val = enet_readl(priv, ENET_MIBCTL_REG);
1693 	val |= ENET_MIBCTL_RDCLEAR_MASK;
1694 	enet_writel(priv, val, ENET_MIBCTL_REG);
1695 }
1696 
1697 static const struct net_device_ops bcm_enet_ops = {
1698 	.ndo_open		= bcm_enet_open,
1699 	.ndo_stop		= bcm_enet_stop,
1700 	.ndo_start_xmit		= bcm_enet_start_xmit,
1701 	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1702 	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1703 	.ndo_do_ioctl		= bcm_enet_ioctl,
1704 	.ndo_change_mtu		= bcm_enet_change_mtu,
1705 };
1706 
1707 /*
1708  * allocate netdevice, request register memory and register device.
1709  */
1710 static int bcm_enet_probe(struct platform_device *pdev)
1711 {
1712 	struct bcm_enet_priv *priv;
1713 	struct net_device *dev;
1714 	struct bcm63xx_enet_platform_data *pd;
1715 	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1716 	struct mii_bus *bus;
1717 	const char *clk_name;
1718 	int i, ret;
1719 
1720 	/* stop if shared driver failed, assume driver->probe will be
1721 	 * called in the same order we register devices (correct ?) */
1722 	if (!bcm_enet_shared_base[0])
1723 		return -ENODEV;
1724 
1725 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1726 	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1727 	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1728 	if (!res_irq || !res_irq_rx || !res_irq_tx)
1729 		return -ENODEV;
1730 
1731 	ret = 0;
1732 	dev = alloc_etherdev(sizeof(*priv));
1733 	if (!dev)
1734 		return -ENOMEM;
1735 	priv = netdev_priv(dev);
1736 
1737 	priv->enet_is_sw = false;
1738 	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1739 
1740 	ret = bcm_enet_change_mtu(dev, dev->mtu);
1741 	if (ret)
1742 		goto out;
1743 
1744 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1745 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1746 	if (IS_ERR(priv->base)) {
1747 		ret = PTR_ERR(priv->base);
1748 		goto out;
1749 	}
1750 
1751 	dev->irq = priv->irq = res_irq->start;
1752 	priv->irq_rx = res_irq_rx->start;
1753 	priv->irq_tx = res_irq_tx->start;
1754 	priv->mac_id = pdev->id;
1755 
1756 	/* get rx & tx dma channel id for this mac */
1757 	if (priv->mac_id == 0) {
1758 		priv->rx_chan = 0;
1759 		priv->tx_chan = 1;
1760 		clk_name = "enet0";
1761 	} else {
1762 		priv->rx_chan = 2;
1763 		priv->tx_chan = 3;
1764 		clk_name = "enet1";
1765 	}
1766 
1767 	priv->mac_clk = clk_get(&pdev->dev, clk_name);
1768 	if (IS_ERR(priv->mac_clk)) {
1769 		ret = PTR_ERR(priv->mac_clk);
1770 		goto out;
1771 	}
1772 	clk_prepare_enable(priv->mac_clk);
1773 
1774 	/* initialize default and fetch platform data */
1775 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1776 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1777 
1778 	pd = dev_get_platdata(&pdev->dev);
1779 	if (pd) {
1780 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1781 		priv->has_phy = pd->has_phy;
1782 		priv->phy_id = pd->phy_id;
1783 		priv->has_phy_interrupt = pd->has_phy_interrupt;
1784 		priv->phy_interrupt = pd->phy_interrupt;
1785 		priv->use_external_mii = !pd->use_internal_phy;
1786 		priv->pause_auto = pd->pause_auto;
1787 		priv->pause_rx = pd->pause_rx;
1788 		priv->pause_tx = pd->pause_tx;
1789 		priv->force_duplex_full = pd->force_duplex_full;
1790 		priv->force_speed_100 = pd->force_speed_100;
1791 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1792 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1793 		priv->dma_chan_width = pd->dma_chan_width;
1794 		priv->dma_has_sram = pd->dma_has_sram;
1795 		priv->dma_desc_shift = pd->dma_desc_shift;
1796 	}
1797 
1798 	if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1799 		/* using internal PHY, enable clock */
1800 		priv->phy_clk = clk_get(&pdev->dev, "ephy");
1801 		if (IS_ERR(priv->phy_clk)) {
1802 			ret = PTR_ERR(priv->phy_clk);
1803 			priv->phy_clk = NULL;
1804 			goto out_put_clk_mac;
1805 		}
1806 		clk_prepare_enable(priv->phy_clk);
1807 	}
1808 
1809 	/* do minimal hardware init to be able to probe mii bus */
1810 	bcm_enet_hw_preinit(priv);
1811 
1812 	/* MII bus registration */
1813 	if (priv->has_phy) {
1814 
1815 		priv->mii_bus = mdiobus_alloc();
1816 		if (!priv->mii_bus) {
1817 			ret = -ENOMEM;
1818 			goto out_uninit_hw;
1819 		}
1820 
1821 		bus = priv->mii_bus;
1822 		bus->name = "bcm63xx_enet MII bus";
1823 		bus->parent = &pdev->dev;
1824 		bus->priv = priv;
1825 		bus->read = bcm_enet_mdio_read_phylib;
1826 		bus->write = bcm_enet_mdio_write_phylib;
1827 		sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
1828 
1829 		/* only probe bus where we think the PHY is, because
1830 		 * the mdio read operation return 0 instead of 0xffff
1831 		 * if a slave is not present on hw */
1832 		bus->phy_mask = ~(1 << priv->phy_id);
1833 
1834 		if (priv->has_phy_interrupt)
1835 			bus->irq[priv->phy_id] = priv->phy_interrupt;
1836 
1837 		ret = mdiobus_register(bus);
1838 		if (ret) {
1839 			dev_err(&pdev->dev, "unable to register mdio bus\n");
1840 			goto out_free_mdio;
1841 		}
1842 	} else {
1843 
1844 		/* run platform code to initialize PHY device */
1845 		if (pd && pd->mii_config &&
1846 		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1847 				   bcm_enet_mdio_write_mii)) {
1848 			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1849 			goto out_uninit_hw;
1850 		}
1851 	}
1852 
1853 	spin_lock_init(&priv->rx_lock);
1854 
1855 	/* init rx timeout (used for oom) */
1856 	init_timer(&priv->rx_timeout);
1857 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1858 	priv->rx_timeout.data = (unsigned long)dev;
1859 
1860 	/* init the mib update lock&work */
1861 	mutex_init(&priv->mib_update_lock);
1862 	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1863 
1864 	/* zero mib counters */
1865 	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1866 		enet_writel(priv, 0, ENET_MIB_REG(i));
1867 
1868 	/* register netdevice */
1869 	dev->netdev_ops = &bcm_enet_ops;
1870 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1871 
1872 	dev->ethtool_ops = &bcm_enet_ethtool_ops;
1873 	/* MTU range: 46 - 2028 */
1874 	dev->min_mtu = ETH_ZLEN - ETH_HLEN;
1875 	dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN;
1876 	SET_NETDEV_DEV(dev, &pdev->dev);
1877 
1878 	ret = register_netdev(dev);
1879 	if (ret)
1880 		goto out_unregister_mdio;
1881 
1882 	netif_carrier_off(dev);
1883 	platform_set_drvdata(pdev, dev);
1884 	priv->pdev = pdev;
1885 	priv->net_dev = dev;
1886 
1887 	return 0;
1888 
1889 out_unregister_mdio:
1890 	if (priv->mii_bus)
1891 		mdiobus_unregister(priv->mii_bus);
1892 
1893 out_free_mdio:
1894 	if (priv->mii_bus)
1895 		mdiobus_free(priv->mii_bus);
1896 
1897 out_uninit_hw:
1898 	/* turn off mdc clock */
1899 	enet_writel(priv, 0, ENET_MIISC_REG);
1900 	if (priv->phy_clk) {
1901 		clk_disable_unprepare(priv->phy_clk);
1902 		clk_put(priv->phy_clk);
1903 	}
1904 
1905 out_put_clk_mac:
1906 	clk_disable_unprepare(priv->mac_clk);
1907 	clk_put(priv->mac_clk);
1908 out:
1909 	free_netdev(dev);
1910 	return ret;
1911 }
1912 
1913 
1914 /*
1915  * exit func, stops hardware and unregisters netdevice
1916  */
1917 static int bcm_enet_remove(struct platform_device *pdev)
1918 {
1919 	struct bcm_enet_priv *priv;
1920 	struct net_device *dev;
1921 
1922 	/* stop netdevice */
1923 	dev = platform_get_drvdata(pdev);
1924 	priv = netdev_priv(dev);
1925 	unregister_netdev(dev);
1926 
1927 	/* turn off mdc clock */
1928 	enet_writel(priv, 0, ENET_MIISC_REG);
1929 
1930 	if (priv->has_phy) {
1931 		mdiobus_unregister(priv->mii_bus);
1932 		mdiobus_free(priv->mii_bus);
1933 	} else {
1934 		struct bcm63xx_enet_platform_data *pd;
1935 
1936 		pd = dev_get_platdata(&pdev->dev);
1937 		if (pd && pd->mii_config)
1938 			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1939 				       bcm_enet_mdio_write_mii);
1940 	}
1941 
1942 	/* disable hw block clocks */
1943 	if (priv->phy_clk) {
1944 		clk_disable_unprepare(priv->phy_clk);
1945 		clk_put(priv->phy_clk);
1946 	}
1947 	clk_disable_unprepare(priv->mac_clk);
1948 	clk_put(priv->mac_clk);
1949 
1950 	free_netdev(dev);
1951 	return 0;
1952 }
1953 
1954 struct platform_driver bcm63xx_enet_driver = {
1955 	.probe	= bcm_enet_probe,
1956 	.remove	= bcm_enet_remove,
1957 	.driver	= {
1958 		.name	= "bcm63xx_enet",
1959 		.owner  = THIS_MODULE,
1960 	},
1961 };
1962 
1963 /*
1964  * switch mii access callbacks
1965  */
1966 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1967 				int ext, int phy_id, int location)
1968 {
1969 	u32 reg;
1970 	int ret;
1971 
1972 	spin_lock_bh(&priv->enetsw_mdio_lock);
1973 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1974 
1975 	reg = ENETSW_MDIOC_RD_MASK |
1976 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1977 		(location << ENETSW_MDIOC_REG_SHIFT);
1978 
1979 	if (ext)
1980 		reg |= ENETSW_MDIOC_EXT_MASK;
1981 
1982 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1983 	udelay(50);
1984 	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
1985 	spin_unlock_bh(&priv->enetsw_mdio_lock);
1986 	return ret;
1987 }
1988 
1989 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
1990 				 int ext, int phy_id, int location,
1991 				 uint16_t data)
1992 {
1993 	u32 reg;
1994 
1995 	spin_lock_bh(&priv->enetsw_mdio_lock);
1996 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1997 
1998 	reg = ENETSW_MDIOC_WR_MASK |
1999 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2000 		(location << ENETSW_MDIOC_REG_SHIFT);
2001 
2002 	if (ext)
2003 		reg |= ENETSW_MDIOC_EXT_MASK;
2004 
2005 	reg |= data;
2006 
2007 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2008 	udelay(50);
2009 	spin_unlock_bh(&priv->enetsw_mdio_lock);
2010 }
2011 
2012 static inline int bcm_enet_port_is_rgmii(int portid)
2013 {
2014 	return portid >= ENETSW_RGMII_PORT0;
2015 }
2016 
2017 /*
2018  * enet sw PHY polling
2019  */
2020 static void swphy_poll_timer(unsigned long data)
2021 {
2022 	struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
2023 	unsigned int i;
2024 
2025 	for (i = 0; i < priv->num_ports; i++) {
2026 		struct bcm63xx_enetsw_port *port;
2027 		int val, j, up, advertise, lpa, speed, duplex, media;
2028 		int external_phy = bcm_enet_port_is_rgmii(i);
2029 		u8 override;
2030 
2031 		port = &priv->used_ports[i];
2032 		if (!port->used)
2033 			continue;
2034 
2035 		if (port->bypass_link)
2036 			continue;
2037 
2038 		/* dummy read to clear */
2039 		for (j = 0; j < 2; j++)
2040 			val = bcmenet_sw_mdio_read(priv, external_phy,
2041 						   port->phy_id, MII_BMSR);
2042 
2043 		if (val == 0xffff)
2044 			continue;
2045 
2046 		up = (val & BMSR_LSTATUS) ? 1 : 0;
2047 		if (!(up ^ priv->sw_port_link[i]))
2048 			continue;
2049 
2050 		priv->sw_port_link[i] = up;
2051 
2052 		/* link changed */
2053 		if (!up) {
2054 			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2055 				 port->name);
2056 			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2057 				      ENETSW_PORTOV_REG(i));
2058 			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2059 				      ENETSW_PTCTRL_TXDIS_MASK,
2060 				      ENETSW_PTCTRL_REG(i));
2061 			continue;
2062 		}
2063 
2064 		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2065 						 port->phy_id, MII_ADVERTISE);
2066 
2067 		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2068 					   MII_LPA);
2069 
2070 		/* figure out media and duplex from advertise and LPA values */
2071 		media = mii_nway_result(lpa & advertise);
2072 		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2073 
2074 		if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2075 			speed = 100;
2076 		else
2077 			speed = 10;
2078 
2079 		if (val & BMSR_ESTATEN) {
2080 			advertise = bcmenet_sw_mdio_read(priv, external_phy,
2081 						port->phy_id, MII_CTRL1000);
2082 
2083 			lpa = bcmenet_sw_mdio_read(priv, external_phy,
2084 						port->phy_id, MII_STAT1000);
2085 
2086 			if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2087 					&& lpa & (LPA_1000FULL | LPA_1000HALF)) {
2088 				speed = 1000;
2089 				duplex = (lpa & LPA_1000FULL);
2090 			}
2091 		}
2092 
2093 		dev_info(&priv->pdev->dev,
2094 			 "link UP on %s, %dMbps, %s-duplex\n",
2095 			 port->name, speed, duplex ? "full" : "half");
2096 
2097 		override = ENETSW_PORTOV_ENABLE_MASK |
2098 			ENETSW_PORTOV_LINKUP_MASK;
2099 
2100 		if (speed == 1000)
2101 			override |= ENETSW_IMPOV_1000_MASK;
2102 		else if (speed == 100)
2103 			override |= ENETSW_IMPOV_100_MASK;
2104 		if (duplex)
2105 			override |= ENETSW_IMPOV_FDX_MASK;
2106 
2107 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2108 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2109 	}
2110 
2111 	priv->swphy_poll.expires = jiffies + HZ;
2112 	add_timer(&priv->swphy_poll);
2113 }
2114 
2115 /*
2116  * open callback, allocate dma rings & buffers and start rx operation
2117  */
2118 static int bcm_enetsw_open(struct net_device *dev)
2119 {
2120 	struct bcm_enet_priv *priv;
2121 	struct device *kdev;
2122 	int i, ret;
2123 	unsigned int size;
2124 	void *p;
2125 	u32 val;
2126 
2127 	priv = netdev_priv(dev);
2128 	kdev = &priv->pdev->dev;
2129 
2130 	/* mask all interrupts and request them */
2131 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2132 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2133 
2134 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2135 			  0, dev->name, dev);
2136 	if (ret)
2137 		goto out_freeirq;
2138 
2139 	if (priv->irq_tx != -1) {
2140 		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2141 				  0, dev->name, dev);
2142 		if (ret)
2143 			goto out_freeirq_rx;
2144 	}
2145 
2146 	/* allocate rx dma ring */
2147 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2148 	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2149 	if (!p) {
2150 		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2151 		ret = -ENOMEM;
2152 		goto out_freeirq_tx;
2153 	}
2154 
2155 	memset(p, 0, size);
2156 	priv->rx_desc_alloc_size = size;
2157 	priv->rx_desc_cpu = p;
2158 
2159 	/* allocate tx dma ring */
2160 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2161 	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2162 	if (!p) {
2163 		dev_err(kdev, "cannot allocate tx ring\n");
2164 		ret = -ENOMEM;
2165 		goto out_free_rx_ring;
2166 	}
2167 
2168 	memset(p, 0, size);
2169 	priv->tx_desc_alloc_size = size;
2170 	priv->tx_desc_cpu = p;
2171 
2172 	priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2173 			       GFP_KERNEL);
2174 	if (!priv->tx_skb) {
2175 		dev_err(kdev, "cannot allocate rx skb queue\n");
2176 		ret = -ENOMEM;
2177 		goto out_free_tx_ring;
2178 	}
2179 
2180 	priv->tx_desc_count = priv->tx_ring_size;
2181 	priv->tx_dirty_desc = 0;
2182 	priv->tx_curr_desc = 0;
2183 	spin_lock_init(&priv->tx_lock);
2184 
2185 	/* init & fill rx ring with skbs */
2186 	priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2187 			       GFP_KERNEL);
2188 	if (!priv->rx_skb) {
2189 		dev_err(kdev, "cannot allocate rx skb queue\n");
2190 		ret = -ENOMEM;
2191 		goto out_free_tx_skb;
2192 	}
2193 
2194 	priv->rx_desc_count = 0;
2195 	priv->rx_dirty_desc = 0;
2196 	priv->rx_curr_desc = 0;
2197 
2198 	/* disable all ports */
2199 	for (i = 0; i < priv->num_ports; i++) {
2200 		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2201 			      ENETSW_PORTOV_REG(i));
2202 		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2203 			      ENETSW_PTCTRL_TXDIS_MASK,
2204 			      ENETSW_PTCTRL_REG(i));
2205 
2206 		priv->sw_port_link[i] = 0;
2207 	}
2208 
2209 	/* reset mib */
2210 	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2211 	val |= ENETSW_GMCR_RST_MIB_MASK;
2212 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2213 	mdelay(1);
2214 	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2215 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2216 	mdelay(1);
2217 
2218 	/* force CPU port state */
2219 	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2220 	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2221 	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2222 
2223 	/* enable switch forward engine */
2224 	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2225 	val |= ENETSW_SWMODE_FWD_EN_MASK;
2226 	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2227 
2228 	/* enable jumbo on all ports */
2229 	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2230 	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2231 
2232 	/* initialize flow control buffer allocation */
2233 	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2234 			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2235 
2236 	if (bcm_enet_refill_rx(dev)) {
2237 		dev_err(kdev, "cannot allocate rx skb queue\n");
2238 		ret = -ENOMEM;
2239 		goto out;
2240 	}
2241 
2242 	/* write rx & tx ring addresses */
2243 	enet_dmas_writel(priv, priv->rx_desc_dma,
2244 			 ENETDMAS_RSTART_REG, priv->rx_chan);
2245 	enet_dmas_writel(priv, priv->tx_desc_dma,
2246 			 ENETDMAS_RSTART_REG, priv->tx_chan);
2247 
2248 	/* clear remaining state ram for rx & tx channel */
2249 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2250 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2251 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2252 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2253 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2254 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2255 
2256 	/* set dma maximum burst len */
2257 	enet_dmac_writel(priv, priv->dma_maxburst,
2258 			 ENETDMAC_MAXBURST, priv->rx_chan);
2259 	enet_dmac_writel(priv, priv->dma_maxburst,
2260 			 ENETDMAC_MAXBURST, priv->tx_chan);
2261 
2262 	/* set flow control low/high threshold to 1/3 / 2/3 */
2263 	val = priv->rx_ring_size / 3;
2264 	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2265 	val = (priv->rx_ring_size * 2) / 3;
2266 	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2267 
2268 	/* all set, enable mac and interrupts, start dma engine and
2269 	 * kick rx dma channel
2270 	 */
2271 	wmb();
2272 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2273 	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2274 			 ENETDMAC_CHANCFG, priv->rx_chan);
2275 
2276 	/* watch "packet transferred" interrupt in rx and tx */
2277 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2278 			 ENETDMAC_IR, priv->rx_chan);
2279 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2280 			 ENETDMAC_IR, priv->tx_chan);
2281 
2282 	/* make sure we enable napi before rx interrupt  */
2283 	napi_enable(&priv->napi);
2284 
2285 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2286 			 ENETDMAC_IRMASK, priv->rx_chan);
2287 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2288 			 ENETDMAC_IRMASK, priv->tx_chan);
2289 
2290 	netif_carrier_on(dev);
2291 	netif_start_queue(dev);
2292 
2293 	/* apply override config for bypass_link ports here. */
2294 	for (i = 0; i < priv->num_ports; i++) {
2295 		struct bcm63xx_enetsw_port *port;
2296 		u8 override;
2297 		port = &priv->used_ports[i];
2298 		if (!port->used)
2299 			continue;
2300 
2301 		if (!port->bypass_link)
2302 			continue;
2303 
2304 		override = ENETSW_PORTOV_ENABLE_MASK |
2305 			ENETSW_PORTOV_LINKUP_MASK;
2306 
2307 		switch (port->force_speed) {
2308 		case 1000:
2309 			override |= ENETSW_IMPOV_1000_MASK;
2310 			break;
2311 		case 100:
2312 			override |= ENETSW_IMPOV_100_MASK;
2313 			break;
2314 		case 10:
2315 			break;
2316 		default:
2317 			pr_warn("invalid forced speed on port %s: assume 10\n",
2318 			       port->name);
2319 			break;
2320 		}
2321 
2322 		if (port->force_duplex_full)
2323 			override |= ENETSW_IMPOV_FDX_MASK;
2324 
2325 
2326 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2327 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2328 	}
2329 
2330 	/* start phy polling timer */
2331 	init_timer(&priv->swphy_poll);
2332 	priv->swphy_poll.function = swphy_poll_timer;
2333 	priv->swphy_poll.data = (unsigned long)priv;
2334 	priv->swphy_poll.expires = jiffies;
2335 	add_timer(&priv->swphy_poll);
2336 	return 0;
2337 
2338 out:
2339 	for (i = 0; i < priv->rx_ring_size; i++) {
2340 		struct bcm_enet_desc *desc;
2341 
2342 		if (!priv->rx_skb[i])
2343 			continue;
2344 
2345 		desc = &priv->rx_desc_cpu[i];
2346 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2347 				 DMA_FROM_DEVICE);
2348 		kfree_skb(priv->rx_skb[i]);
2349 	}
2350 	kfree(priv->rx_skb);
2351 
2352 out_free_tx_skb:
2353 	kfree(priv->tx_skb);
2354 
2355 out_free_tx_ring:
2356 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2357 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2358 
2359 out_free_rx_ring:
2360 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2361 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2362 
2363 out_freeirq_tx:
2364 	if (priv->irq_tx != -1)
2365 		free_irq(priv->irq_tx, dev);
2366 
2367 out_freeirq_rx:
2368 	free_irq(priv->irq_rx, dev);
2369 
2370 out_freeirq:
2371 	return ret;
2372 }
2373 
2374 /* stop callback */
2375 static int bcm_enetsw_stop(struct net_device *dev)
2376 {
2377 	struct bcm_enet_priv *priv;
2378 	struct device *kdev;
2379 	int i;
2380 
2381 	priv = netdev_priv(dev);
2382 	kdev = &priv->pdev->dev;
2383 
2384 	del_timer_sync(&priv->swphy_poll);
2385 	netif_stop_queue(dev);
2386 	napi_disable(&priv->napi);
2387 	del_timer_sync(&priv->rx_timeout);
2388 
2389 	/* mask all interrupts */
2390 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2391 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2392 
2393 	/* disable dma & mac */
2394 	bcm_enet_disable_dma(priv, priv->tx_chan);
2395 	bcm_enet_disable_dma(priv, priv->rx_chan);
2396 
2397 	/* force reclaim of all tx buffers */
2398 	bcm_enet_tx_reclaim(dev, 1);
2399 
2400 	/* free the rx skb ring */
2401 	for (i = 0; i < priv->rx_ring_size; i++) {
2402 		struct bcm_enet_desc *desc;
2403 
2404 		if (!priv->rx_skb[i])
2405 			continue;
2406 
2407 		desc = &priv->rx_desc_cpu[i];
2408 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2409 				 DMA_FROM_DEVICE);
2410 		kfree_skb(priv->rx_skb[i]);
2411 	}
2412 
2413 	/* free remaining allocated memory */
2414 	kfree(priv->rx_skb);
2415 	kfree(priv->tx_skb);
2416 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2417 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2418 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2419 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2420 	if (priv->irq_tx != -1)
2421 		free_irq(priv->irq_tx, dev);
2422 	free_irq(priv->irq_rx, dev);
2423 
2424 	return 0;
2425 }
2426 
2427 /* try to sort out phy external status by walking the used_port field
2428  * in the bcm_enet_priv structure. in case the phy address is not
2429  * assigned to any physical port on the switch, assume it is external
2430  * (and yell at the user).
2431  */
2432 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2433 {
2434 	int i;
2435 
2436 	for (i = 0; i < priv->num_ports; ++i) {
2437 		if (!priv->used_ports[i].used)
2438 			continue;
2439 		if (priv->used_ports[i].phy_id == phy_id)
2440 			return bcm_enet_port_is_rgmii(i);
2441 	}
2442 
2443 	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2444 		    phy_id);
2445 	return 1;
2446 }
2447 
2448 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2449  * external/internal status of the given phy_id first.
2450  */
2451 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2452 				    int location)
2453 {
2454 	struct bcm_enet_priv *priv;
2455 
2456 	priv = netdev_priv(dev);
2457 	return bcmenet_sw_mdio_read(priv,
2458 				    bcm_enetsw_phy_is_external(priv, phy_id),
2459 				    phy_id, location);
2460 }
2461 
2462 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2463  * external/internal status of the given phy_id first.
2464  */
2465 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2466 				      int location,
2467 				      int val)
2468 {
2469 	struct bcm_enet_priv *priv;
2470 
2471 	priv = netdev_priv(dev);
2472 	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2473 			      phy_id, location, val);
2474 }
2475 
2476 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2477 {
2478 	struct mii_if_info mii;
2479 
2480 	mii.dev = dev;
2481 	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2482 	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2483 	mii.phy_id = 0;
2484 	mii.phy_id_mask = 0x3f;
2485 	mii.reg_num_mask = 0x1f;
2486 	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2487 
2488 }
2489 
2490 static const struct net_device_ops bcm_enetsw_ops = {
2491 	.ndo_open		= bcm_enetsw_open,
2492 	.ndo_stop		= bcm_enetsw_stop,
2493 	.ndo_start_xmit		= bcm_enet_start_xmit,
2494 	.ndo_change_mtu		= bcm_enet_change_mtu,
2495 	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2496 };
2497 
2498 
2499 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2500 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2501 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2502 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2503 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2504 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2505 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2506 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2507 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2508 
2509 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2510 	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2511 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2512 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2513 	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2514 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2515 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2516 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2517 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2518 	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2519 	  ETHSW_MIB_RX_1024_1522 },
2520 	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2521 	  ETHSW_MIB_RX_1523_2047 },
2522 	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2523 	  ETHSW_MIB_RX_2048_4095 },
2524 	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2525 	  ETHSW_MIB_RX_4096_8191 },
2526 	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2527 	  ETHSW_MIB_RX_8192_9728 },
2528 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2529 	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2530 	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2531 	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2532 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2533 
2534 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2535 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2536 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2537 	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2538 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2539 	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2540 
2541 };
2542 
2543 #define BCM_ENETSW_STATS_LEN	\
2544 	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2545 
2546 static void bcm_enetsw_get_strings(struct net_device *netdev,
2547 				   u32 stringset, u8 *data)
2548 {
2549 	int i;
2550 
2551 	switch (stringset) {
2552 	case ETH_SS_STATS:
2553 		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2554 			memcpy(data + i * ETH_GSTRING_LEN,
2555 			       bcm_enetsw_gstrings_stats[i].stat_string,
2556 			       ETH_GSTRING_LEN);
2557 		}
2558 		break;
2559 	}
2560 }
2561 
2562 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2563 				     int string_set)
2564 {
2565 	switch (string_set) {
2566 	case ETH_SS_STATS:
2567 		return BCM_ENETSW_STATS_LEN;
2568 	default:
2569 		return -EINVAL;
2570 	}
2571 }
2572 
2573 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2574 				   struct ethtool_drvinfo *drvinfo)
2575 {
2576 	strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2577 	strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2578 	strncpy(drvinfo->fw_version, "N/A", 32);
2579 	strncpy(drvinfo->bus_info, "bcm63xx", 32);
2580 }
2581 
2582 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2583 					 struct ethtool_stats *stats,
2584 					 u64 *data)
2585 {
2586 	struct bcm_enet_priv *priv;
2587 	int i;
2588 
2589 	priv = netdev_priv(netdev);
2590 
2591 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2592 		const struct bcm_enet_stats *s;
2593 		u32 lo, hi;
2594 		char *p;
2595 		int reg;
2596 
2597 		s = &bcm_enetsw_gstrings_stats[i];
2598 
2599 		reg = s->mib_reg;
2600 		if (reg == -1)
2601 			continue;
2602 
2603 		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2604 		p = (char *)priv + s->stat_offset;
2605 
2606 		if (s->sizeof_stat == sizeof(u64)) {
2607 			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2608 			*(u64 *)p = ((u64)hi << 32 | lo);
2609 		} else {
2610 			*(u32 *)p = lo;
2611 		}
2612 	}
2613 
2614 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2615 		const struct bcm_enet_stats *s;
2616 		char *p;
2617 
2618 		s = &bcm_enetsw_gstrings_stats[i];
2619 
2620 		if (s->mib_reg == -1)
2621 			p = (char *)&netdev->stats + s->stat_offset;
2622 		else
2623 			p = (char *)priv + s->stat_offset;
2624 
2625 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2626 			*(u64 *)p : *(u32 *)p;
2627 	}
2628 }
2629 
2630 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2631 				     struct ethtool_ringparam *ering)
2632 {
2633 	struct bcm_enet_priv *priv;
2634 
2635 	priv = netdev_priv(dev);
2636 
2637 	/* rx/tx ring is actually only limited by memory */
2638 	ering->rx_max_pending = 8192;
2639 	ering->tx_max_pending = 8192;
2640 	ering->rx_mini_max_pending = 0;
2641 	ering->rx_jumbo_max_pending = 0;
2642 	ering->rx_pending = priv->rx_ring_size;
2643 	ering->tx_pending = priv->tx_ring_size;
2644 }
2645 
2646 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2647 				    struct ethtool_ringparam *ering)
2648 {
2649 	struct bcm_enet_priv *priv;
2650 	int was_running;
2651 
2652 	priv = netdev_priv(dev);
2653 
2654 	was_running = 0;
2655 	if (netif_running(dev)) {
2656 		bcm_enetsw_stop(dev);
2657 		was_running = 1;
2658 	}
2659 
2660 	priv->rx_ring_size = ering->rx_pending;
2661 	priv->tx_ring_size = ering->tx_pending;
2662 
2663 	if (was_running) {
2664 		int err;
2665 
2666 		err = bcm_enetsw_open(dev);
2667 		if (err)
2668 			dev_close(dev);
2669 	}
2670 	return 0;
2671 }
2672 
2673 static struct ethtool_ops bcm_enetsw_ethtool_ops = {
2674 	.get_strings		= bcm_enetsw_get_strings,
2675 	.get_sset_count		= bcm_enetsw_get_sset_count,
2676 	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2677 	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2678 	.get_ringparam		= bcm_enetsw_get_ringparam,
2679 	.set_ringparam		= bcm_enetsw_set_ringparam,
2680 };
2681 
2682 /* allocate netdevice, request register memory and register device. */
2683 static int bcm_enetsw_probe(struct platform_device *pdev)
2684 {
2685 	struct bcm_enet_priv *priv;
2686 	struct net_device *dev;
2687 	struct bcm63xx_enetsw_platform_data *pd;
2688 	struct resource *res_mem;
2689 	int ret, irq_rx, irq_tx;
2690 
2691 	/* stop if shared driver failed, assume driver->probe will be
2692 	 * called in the same order we register devices (correct ?)
2693 	 */
2694 	if (!bcm_enet_shared_base[0])
2695 		return -ENODEV;
2696 
2697 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2698 	irq_rx = platform_get_irq(pdev, 0);
2699 	irq_tx = platform_get_irq(pdev, 1);
2700 	if (!res_mem || irq_rx < 0)
2701 		return -ENODEV;
2702 
2703 	ret = 0;
2704 	dev = alloc_etherdev(sizeof(*priv));
2705 	if (!dev)
2706 		return -ENOMEM;
2707 	priv = netdev_priv(dev);
2708 	memset(priv, 0, sizeof(*priv));
2709 
2710 	/* initialize default and fetch platform data */
2711 	priv->enet_is_sw = true;
2712 	priv->irq_rx = irq_rx;
2713 	priv->irq_tx = irq_tx;
2714 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2715 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2716 	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2717 
2718 	pd = dev_get_platdata(&pdev->dev);
2719 	if (pd) {
2720 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2721 		memcpy(priv->used_ports, pd->used_ports,
2722 		       sizeof(pd->used_ports));
2723 		priv->num_ports = pd->num_ports;
2724 		priv->dma_has_sram = pd->dma_has_sram;
2725 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2726 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2727 		priv->dma_chan_width = pd->dma_chan_width;
2728 	}
2729 
2730 	ret = bcm_enet_change_mtu(dev, dev->mtu);
2731 	if (ret)
2732 		goto out;
2733 
2734 	if (!request_mem_region(res_mem->start, resource_size(res_mem),
2735 				"bcm63xx_enetsw")) {
2736 		ret = -EBUSY;
2737 		goto out;
2738 	}
2739 
2740 	priv->base = ioremap(res_mem->start, resource_size(res_mem));
2741 	if (priv->base == NULL) {
2742 		ret = -ENOMEM;
2743 		goto out_release_mem;
2744 	}
2745 
2746 	priv->mac_clk = clk_get(&pdev->dev, "enetsw");
2747 	if (IS_ERR(priv->mac_clk)) {
2748 		ret = PTR_ERR(priv->mac_clk);
2749 		goto out_unmap;
2750 	}
2751 	clk_enable(priv->mac_clk);
2752 
2753 	priv->rx_chan = 0;
2754 	priv->tx_chan = 1;
2755 	spin_lock_init(&priv->rx_lock);
2756 
2757 	/* init rx timeout (used for oom) */
2758 	init_timer(&priv->rx_timeout);
2759 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
2760 	priv->rx_timeout.data = (unsigned long)dev;
2761 
2762 	/* register netdevice */
2763 	dev->netdev_ops = &bcm_enetsw_ops;
2764 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2765 	dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2766 	SET_NETDEV_DEV(dev, &pdev->dev);
2767 
2768 	spin_lock_init(&priv->enetsw_mdio_lock);
2769 
2770 	ret = register_netdev(dev);
2771 	if (ret)
2772 		goto out_put_clk;
2773 
2774 	netif_carrier_off(dev);
2775 	platform_set_drvdata(pdev, dev);
2776 	priv->pdev = pdev;
2777 	priv->net_dev = dev;
2778 
2779 	return 0;
2780 
2781 out_put_clk:
2782 	clk_put(priv->mac_clk);
2783 
2784 out_unmap:
2785 	iounmap(priv->base);
2786 
2787 out_release_mem:
2788 	release_mem_region(res_mem->start, resource_size(res_mem));
2789 out:
2790 	free_netdev(dev);
2791 	return ret;
2792 }
2793 
2794 
2795 /* exit func, stops hardware and unregisters netdevice */
2796 static int bcm_enetsw_remove(struct platform_device *pdev)
2797 {
2798 	struct bcm_enet_priv *priv;
2799 	struct net_device *dev;
2800 	struct resource *res;
2801 
2802 	/* stop netdevice */
2803 	dev = platform_get_drvdata(pdev);
2804 	priv = netdev_priv(dev);
2805 	unregister_netdev(dev);
2806 
2807 	/* release device resources */
2808 	iounmap(priv->base);
2809 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2810 	release_mem_region(res->start, resource_size(res));
2811 
2812 	free_netdev(dev);
2813 	return 0;
2814 }
2815 
2816 struct platform_driver bcm63xx_enetsw_driver = {
2817 	.probe	= bcm_enetsw_probe,
2818 	.remove	= bcm_enetsw_remove,
2819 	.driver	= {
2820 		.name	= "bcm63xx_enetsw",
2821 		.owner  = THIS_MODULE,
2822 	},
2823 };
2824 
2825 /* reserve & remap memory space shared between all macs */
2826 static int bcm_enet_shared_probe(struct platform_device *pdev)
2827 {
2828 	struct resource *res;
2829 	void __iomem *p[3];
2830 	unsigned int i;
2831 
2832 	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2833 
2834 	for (i = 0; i < 3; i++) {
2835 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2836 		p[i] = devm_ioremap_resource(&pdev->dev, res);
2837 		if (IS_ERR(p[i]))
2838 			return PTR_ERR(p[i]);
2839 	}
2840 
2841 	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2842 
2843 	return 0;
2844 }
2845 
2846 static int bcm_enet_shared_remove(struct platform_device *pdev)
2847 {
2848 	return 0;
2849 }
2850 
2851 /* this "shared" driver is needed because both macs share a single
2852  * address space
2853  */
2854 struct platform_driver bcm63xx_enet_shared_driver = {
2855 	.probe	= bcm_enet_shared_probe,
2856 	.remove	= bcm_enet_shared_remove,
2857 	.driver	= {
2858 		.name	= "bcm63xx_enet_shared",
2859 		.owner  = THIS_MODULE,
2860 	},
2861 };
2862 
2863 static struct platform_driver * const drivers[] = {
2864 	&bcm63xx_enet_shared_driver,
2865 	&bcm63xx_enet_driver,
2866 	&bcm63xx_enetsw_driver,
2867 };
2868 
2869 /* entry point */
2870 static int __init bcm_enet_init(void)
2871 {
2872 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2873 }
2874 
2875 static void __exit bcm_enet_exit(void)
2876 {
2877 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2878 }
2879 
2880 
2881 module_init(bcm_enet_init);
2882 module_exit(bcm_enet_exit);
2883 
2884 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2885 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2886 MODULE_LICENSE("GPL");
2887