1 /* 2 * Driver for BCM963xx builtin Ethernet mac 3 * 4 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/clk.h> 24 #include <linux/etherdevice.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/ethtool.h> 28 #include <linux/crc32.h> 29 #include <linux/err.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/platform_device.h> 32 #include <linux/if_vlan.h> 33 34 #include <bcm63xx_dev_enet.h> 35 #include "bcm63xx_enet.h" 36 37 static char bcm_enet_driver_name[] = "bcm63xx_enet"; 38 static char bcm_enet_driver_version[] = "1.0"; 39 40 static int copybreak __read_mostly = 128; 41 module_param(copybreak, int, 0); 42 MODULE_PARM_DESC(copybreak, "Receive copy threshold"); 43 44 /* io registers memory shared between all devices */ 45 static void __iomem *bcm_enet_shared_base[3]; 46 47 /* 48 * io helpers to access mac registers 49 */ 50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off) 51 { 52 return bcm_readl(priv->base + off); 53 } 54 55 static inline void enet_writel(struct bcm_enet_priv *priv, 56 u32 val, u32 off) 57 { 58 bcm_writel(val, priv->base + off); 59 } 60 61 /* 62 * io helpers to access switch registers 63 */ 64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off) 65 { 66 return bcm_readl(priv->base + off); 67 } 68 69 static inline void enetsw_writel(struct bcm_enet_priv *priv, 70 u32 val, u32 off) 71 { 72 bcm_writel(val, priv->base + off); 73 } 74 75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off) 76 { 77 return bcm_readw(priv->base + off); 78 } 79 80 static inline void enetsw_writew(struct bcm_enet_priv *priv, 81 u16 val, u32 off) 82 { 83 bcm_writew(val, priv->base + off); 84 } 85 86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off) 87 { 88 return bcm_readb(priv->base + off); 89 } 90 91 static inline void enetsw_writeb(struct bcm_enet_priv *priv, 92 u8 val, u32 off) 93 { 94 bcm_writeb(val, priv->base + off); 95 } 96 97 98 /* io helpers to access shared registers */ 99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off) 100 { 101 return bcm_readl(bcm_enet_shared_base[0] + off); 102 } 103 104 static inline void enet_dma_writel(struct bcm_enet_priv *priv, 105 u32 val, u32 off) 106 { 107 bcm_writel(val, bcm_enet_shared_base[0] + off); 108 } 109 110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan) 111 { 112 return bcm_readl(bcm_enet_shared_base[1] + 113 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 114 } 115 116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv, 117 u32 val, u32 off, int chan) 118 { 119 bcm_writel(val, bcm_enet_shared_base[1] + 120 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 121 } 122 123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan) 124 { 125 return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 126 } 127 128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv, 129 u32 val, u32 off, int chan) 130 { 131 bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 132 } 133 134 /* 135 * write given data into mii register and wait for transfer to end 136 * with timeout (average measured transfer time is 25us) 137 */ 138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data) 139 { 140 int limit; 141 142 /* make sure mii interrupt status is cleared */ 143 enet_writel(priv, ENET_IR_MII, ENET_IR_REG); 144 145 enet_writel(priv, data, ENET_MIIDATA_REG); 146 wmb(); 147 148 /* busy wait on mii interrupt bit, with timeout */ 149 limit = 1000; 150 do { 151 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII) 152 break; 153 udelay(1); 154 } while (limit-- > 0); 155 156 return (limit < 0) ? 1 : 0; 157 } 158 159 /* 160 * MII internal read callback 161 */ 162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id, 163 int regnum) 164 { 165 u32 tmp, val; 166 167 tmp = regnum << ENET_MIIDATA_REG_SHIFT; 168 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 169 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 170 tmp |= ENET_MIIDATA_OP_READ_MASK; 171 172 if (do_mdio_op(priv, tmp)) 173 return -1; 174 175 val = enet_readl(priv, ENET_MIIDATA_REG); 176 val &= 0xffff; 177 return val; 178 } 179 180 /* 181 * MII internal write callback 182 */ 183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id, 184 int regnum, u16 value) 185 { 186 u32 tmp; 187 188 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT; 189 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 190 tmp |= regnum << ENET_MIIDATA_REG_SHIFT; 191 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 192 tmp |= ENET_MIIDATA_OP_WRITE_MASK; 193 194 (void)do_mdio_op(priv, tmp); 195 return 0; 196 } 197 198 /* 199 * MII read callback from phylib 200 */ 201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id, 202 int regnum) 203 { 204 return bcm_enet_mdio_read(bus->priv, mii_id, regnum); 205 } 206 207 /* 208 * MII write callback from phylib 209 */ 210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id, 211 int regnum, u16 value) 212 { 213 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value); 214 } 215 216 /* 217 * MII read callback from mii core 218 */ 219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id, 220 int regnum) 221 { 222 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum); 223 } 224 225 /* 226 * MII write callback from mii core 227 */ 228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id, 229 int regnum, int value) 230 { 231 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value); 232 } 233 234 /* 235 * refill rx queue 236 */ 237 static int bcm_enet_refill_rx(struct net_device *dev) 238 { 239 struct bcm_enet_priv *priv; 240 241 priv = netdev_priv(dev); 242 243 while (priv->rx_desc_count < priv->rx_ring_size) { 244 struct bcm_enet_desc *desc; 245 struct sk_buff *skb; 246 dma_addr_t p; 247 int desc_idx; 248 u32 len_stat; 249 250 desc_idx = priv->rx_dirty_desc; 251 desc = &priv->rx_desc_cpu[desc_idx]; 252 253 if (!priv->rx_skb[desc_idx]) { 254 skb = netdev_alloc_skb(dev, priv->rx_skb_size); 255 if (!skb) 256 break; 257 priv->rx_skb[desc_idx] = skb; 258 p = dma_map_single(&priv->pdev->dev, skb->data, 259 priv->rx_skb_size, 260 DMA_FROM_DEVICE); 261 desc->address = p; 262 } 263 264 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT; 265 len_stat |= DMADESC_OWNER_MASK; 266 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) { 267 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 268 priv->rx_dirty_desc = 0; 269 } else { 270 priv->rx_dirty_desc++; 271 } 272 wmb(); 273 desc->len_stat = len_stat; 274 275 priv->rx_desc_count++; 276 277 /* tell dma engine we allocated one buffer */ 278 if (priv->dma_has_sram) 279 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan)); 280 else 281 enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan); 282 } 283 284 /* If rx ring is still empty, set a timer to try allocating 285 * again at a later time. */ 286 if (priv->rx_desc_count == 0 && netif_running(dev)) { 287 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n"); 288 priv->rx_timeout.expires = jiffies + HZ; 289 add_timer(&priv->rx_timeout); 290 } 291 292 return 0; 293 } 294 295 /* 296 * timer callback to defer refill rx queue in case we're OOM 297 */ 298 static void bcm_enet_refill_rx_timer(unsigned long data) 299 { 300 struct net_device *dev; 301 struct bcm_enet_priv *priv; 302 303 dev = (struct net_device *)data; 304 priv = netdev_priv(dev); 305 306 spin_lock(&priv->rx_lock); 307 bcm_enet_refill_rx((struct net_device *)data); 308 spin_unlock(&priv->rx_lock); 309 } 310 311 /* 312 * extract packet from rx queue 313 */ 314 static int bcm_enet_receive_queue(struct net_device *dev, int budget) 315 { 316 struct bcm_enet_priv *priv; 317 struct device *kdev; 318 int processed; 319 320 priv = netdev_priv(dev); 321 kdev = &priv->pdev->dev; 322 processed = 0; 323 324 /* don't scan ring further than number of refilled 325 * descriptor */ 326 if (budget > priv->rx_desc_count) 327 budget = priv->rx_desc_count; 328 329 do { 330 struct bcm_enet_desc *desc; 331 struct sk_buff *skb; 332 int desc_idx; 333 u32 len_stat; 334 unsigned int len; 335 336 desc_idx = priv->rx_curr_desc; 337 desc = &priv->rx_desc_cpu[desc_idx]; 338 339 /* make sure we actually read the descriptor status at 340 * each loop */ 341 rmb(); 342 343 len_stat = desc->len_stat; 344 345 /* break if dma ownership belongs to hw */ 346 if (len_stat & DMADESC_OWNER_MASK) 347 break; 348 349 processed++; 350 priv->rx_curr_desc++; 351 if (priv->rx_curr_desc == priv->rx_ring_size) 352 priv->rx_curr_desc = 0; 353 priv->rx_desc_count--; 354 355 /* if the packet does not have start of packet _and_ 356 * end of packet flag set, then just recycle it */ 357 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) != 358 (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) { 359 dev->stats.rx_dropped++; 360 continue; 361 } 362 363 /* recycle packet if it's marked as bad */ 364 if (!priv->enet_is_sw && 365 unlikely(len_stat & DMADESC_ERR_MASK)) { 366 dev->stats.rx_errors++; 367 368 if (len_stat & DMADESC_OVSIZE_MASK) 369 dev->stats.rx_length_errors++; 370 if (len_stat & DMADESC_CRC_MASK) 371 dev->stats.rx_crc_errors++; 372 if (len_stat & DMADESC_UNDER_MASK) 373 dev->stats.rx_frame_errors++; 374 if (len_stat & DMADESC_OV_MASK) 375 dev->stats.rx_fifo_errors++; 376 continue; 377 } 378 379 /* valid packet */ 380 skb = priv->rx_skb[desc_idx]; 381 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT; 382 /* don't include FCS */ 383 len -= 4; 384 385 if (len < copybreak) { 386 struct sk_buff *nskb; 387 388 nskb = napi_alloc_skb(&priv->napi, len); 389 if (!nskb) { 390 /* forget packet, just rearm desc */ 391 dev->stats.rx_dropped++; 392 continue; 393 } 394 395 dma_sync_single_for_cpu(kdev, desc->address, 396 len, DMA_FROM_DEVICE); 397 memcpy(nskb->data, skb->data, len); 398 dma_sync_single_for_device(kdev, desc->address, 399 len, DMA_FROM_DEVICE); 400 skb = nskb; 401 } else { 402 dma_unmap_single(&priv->pdev->dev, desc->address, 403 priv->rx_skb_size, DMA_FROM_DEVICE); 404 priv->rx_skb[desc_idx] = NULL; 405 } 406 407 skb_put(skb, len); 408 skb->protocol = eth_type_trans(skb, dev); 409 dev->stats.rx_packets++; 410 dev->stats.rx_bytes += len; 411 netif_receive_skb(skb); 412 413 } while (--budget > 0); 414 415 if (processed || !priv->rx_desc_count) { 416 bcm_enet_refill_rx(dev); 417 418 /* kick rx dma */ 419 enet_dmac_writel(priv, priv->dma_chan_en_mask, 420 ENETDMAC_CHANCFG, priv->rx_chan); 421 } 422 423 return processed; 424 } 425 426 427 /* 428 * try to or force reclaim of transmitted buffers 429 */ 430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force) 431 { 432 struct bcm_enet_priv *priv; 433 int released; 434 435 priv = netdev_priv(dev); 436 released = 0; 437 438 while (priv->tx_desc_count < priv->tx_ring_size) { 439 struct bcm_enet_desc *desc; 440 struct sk_buff *skb; 441 442 /* We run in a bh and fight against start_xmit, which 443 * is called with bh disabled */ 444 spin_lock(&priv->tx_lock); 445 446 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc]; 447 448 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) { 449 spin_unlock(&priv->tx_lock); 450 break; 451 } 452 453 /* ensure other field of the descriptor were not read 454 * before we checked ownership */ 455 rmb(); 456 457 skb = priv->tx_skb[priv->tx_dirty_desc]; 458 priv->tx_skb[priv->tx_dirty_desc] = NULL; 459 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len, 460 DMA_TO_DEVICE); 461 462 priv->tx_dirty_desc++; 463 if (priv->tx_dirty_desc == priv->tx_ring_size) 464 priv->tx_dirty_desc = 0; 465 priv->tx_desc_count++; 466 467 spin_unlock(&priv->tx_lock); 468 469 if (desc->len_stat & DMADESC_UNDER_MASK) 470 dev->stats.tx_errors++; 471 472 dev_kfree_skb(skb); 473 released++; 474 } 475 476 if (netif_queue_stopped(dev) && released) 477 netif_wake_queue(dev); 478 479 return released; 480 } 481 482 /* 483 * poll func, called by network core 484 */ 485 static int bcm_enet_poll(struct napi_struct *napi, int budget) 486 { 487 struct bcm_enet_priv *priv; 488 struct net_device *dev; 489 int rx_work_done; 490 491 priv = container_of(napi, struct bcm_enet_priv, napi); 492 dev = priv->net_dev; 493 494 /* ack interrupts */ 495 enet_dmac_writel(priv, priv->dma_chan_int_mask, 496 ENETDMAC_IR, priv->rx_chan); 497 enet_dmac_writel(priv, priv->dma_chan_int_mask, 498 ENETDMAC_IR, priv->tx_chan); 499 500 /* reclaim sent skb */ 501 bcm_enet_tx_reclaim(dev, 0); 502 503 spin_lock(&priv->rx_lock); 504 rx_work_done = bcm_enet_receive_queue(dev, budget); 505 spin_unlock(&priv->rx_lock); 506 507 if (rx_work_done >= budget) { 508 /* rx queue is not yet empty/clean */ 509 return rx_work_done; 510 } 511 512 /* no more packet in rx/tx queue, remove device from poll 513 * queue */ 514 napi_complete(napi); 515 516 /* restore rx/tx interrupt */ 517 enet_dmac_writel(priv, priv->dma_chan_int_mask, 518 ENETDMAC_IRMASK, priv->rx_chan); 519 enet_dmac_writel(priv, priv->dma_chan_int_mask, 520 ENETDMAC_IRMASK, priv->tx_chan); 521 522 return rx_work_done; 523 } 524 525 /* 526 * mac interrupt handler 527 */ 528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id) 529 { 530 struct net_device *dev; 531 struct bcm_enet_priv *priv; 532 u32 stat; 533 534 dev = dev_id; 535 priv = netdev_priv(dev); 536 537 stat = enet_readl(priv, ENET_IR_REG); 538 if (!(stat & ENET_IR_MIB)) 539 return IRQ_NONE; 540 541 /* clear & mask interrupt */ 542 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 543 enet_writel(priv, 0, ENET_IRMASK_REG); 544 545 /* read mib registers in workqueue */ 546 schedule_work(&priv->mib_update_task); 547 548 return IRQ_HANDLED; 549 } 550 551 /* 552 * rx/tx dma interrupt handler 553 */ 554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id) 555 { 556 struct net_device *dev; 557 struct bcm_enet_priv *priv; 558 559 dev = dev_id; 560 priv = netdev_priv(dev); 561 562 /* mask rx/tx interrupts */ 563 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 564 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 565 566 napi_schedule(&priv->napi); 567 568 return IRQ_HANDLED; 569 } 570 571 /* 572 * tx request callback 573 */ 574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 575 { 576 struct bcm_enet_priv *priv; 577 struct bcm_enet_desc *desc; 578 u32 len_stat; 579 int ret; 580 581 priv = netdev_priv(dev); 582 583 /* lock against tx reclaim */ 584 spin_lock(&priv->tx_lock); 585 586 /* make sure the tx hw queue is not full, should not happen 587 * since we stop queue before it's the case */ 588 if (unlikely(!priv->tx_desc_count)) { 589 netif_stop_queue(dev); 590 dev_err(&priv->pdev->dev, "xmit called with no tx desc " 591 "available?\n"); 592 ret = NETDEV_TX_BUSY; 593 goto out_unlock; 594 } 595 596 /* pad small packets sent on a switch device */ 597 if (priv->enet_is_sw && skb->len < 64) { 598 int needed = 64 - skb->len; 599 char *data; 600 601 if (unlikely(skb_tailroom(skb) < needed)) { 602 struct sk_buff *nskb; 603 604 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC); 605 if (!nskb) { 606 ret = NETDEV_TX_BUSY; 607 goto out_unlock; 608 } 609 dev_kfree_skb(skb); 610 skb = nskb; 611 } 612 data = skb_put(skb, needed); 613 memset(data, 0, needed); 614 } 615 616 /* point to the next available desc */ 617 desc = &priv->tx_desc_cpu[priv->tx_curr_desc]; 618 priv->tx_skb[priv->tx_curr_desc] = skb; 619 620 /* fill descriptor */ 621 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len, 622 DMA_TO_DEVICE); 623 624 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK; 625 len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) | 626 DMADESC_APPEND_CRC | 627 DMADESC_OWNER_MASK; 628 629 priv->tx_curr_desc++; 630 if (priv->tx_curr_desc == priv->tx_ring_size) { 631 priv->tx_curr_desc = 0; 632 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 633 } 634 priv->tx_desc_count--; 635 636 /* dma might be already polling, make sure we update desc 637 * fields in correct order */ 638 wmb(); 639 desc->len_stat = len_stat; 640 wmb(); 641 642 /* kick tx dma */ 643 enet_dmac_writel(priv, priv->dma_chan_en_mask, 644 ENETDMAC_CHANCFG, priv->tx_chan); 645 646 /* stop queue if no more desc available */ 647 if (!priv->tx_desc_count) 648 netif_stop_queue(dev); 649 650 dev->stats.tx_bytes += skb->len; 651 dev->stats.tx_packets++; 652 ret = NETDEV_TX_OK; 653 654 out_unlock: 655 spin_unlock(&priv->tx_lock); 656 return ret; 657 } 658 659 /* 660 * Change the interface's mac address. 661 */ 662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p) 663 { 664 struct bcm_enet_priv *priv; 665 struct sockaddr *addr = p; 666 u32 val; 667 668 priv = netdev_priv(dev); 669 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 670 671 /* use perfect match register 0 to store my mac address */ 672 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) | 673 (dev->dev_addr[4] << 8) | dev->dev_addr[5]; 674 enet_writel(priv, val, ENET_PML_REG(0)); 675 676 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]); 677 val |= ENET_PMH_DATAVALID_MASK; 678 enet_writel(priv, val, ENET_PMH_REG(0)); 679 680 return 0; 681 } 682 683 /* 684 * Change rx mode (promiscuous/allmulti) and update multicast list 685 */ 686 static void bcm_enet_set_multicast_list(struct net_device *dev) 687 { 688 struct bcm_enet_priv *priv; 689 struct netdev_hw_addr *ha; 690 u32 val; 691 int i; 692 693 priv = netdev_priv(dev); 694 695 val = enet_readl(priv, ENET_RXCFG_REG); 696 697 if (dev->flags & IFF_PROMISC) 698 val |= ENET_RXCFG_PROMISC_MASK; 699 else 700 val &= ~ENET_RXCFG_PROMISC_MASK; 701 702 /* only 3 perfect match registers left, first one is used for 703 * own mac address */ 704 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3) 705 val |= ENET_RXCFG_ALLMCAST_MASK; 706 else 707 val &= ~ENET_RXCFG_ALLMCAST_MASK; 708 709 /* no need to set perfect match registers if we catch all 710 * multicast */ 711 if (val & ENET_RXCFG_ALLMCAST_MASK) { 712 enet_writel(priv, val, ENET_RXCFG_REG); 713 return; 714 } 715 716 i = 0; 717 netdev_for_each_mc_addr(ha, dev) { 718 u8 *dmi_addr; 719 u32 tmp; 720 721 if (i == 3) 722 break; 723 /* update perfect match registers */ 724 dmi_addr = ha->addr; 725 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) | 726 (dmi_addr[4] << 8) | dmi_addr[5]; 727 enet_writel(priv, tmp, ENET_PML_REG(i + 1)); 728 729 tmp = (dmi_addr[0] << 8 | dmi_addr[1]); 730 tmp |= ENET_PMH_DATAVALID_MASK; 731 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1)); 732 } 733 734 for (; i < 3; i++) { 735 enet_writel(priv, 0, ENET_PML_REG(i + 1)); 736 enet_writel(priv, 0, ENET_PMH_REG(i + 1)); 737 } 738 739 enet_writel(priv, val, ENET_RXCFG_REG); 740 } 741 742 /* 743 * set mac duplex parameters 744 */ 745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex) 746 { 747 u32 val; 748 749 val = enet_readl(priv, ENET_TXCTL_REG); 750 if (fullduplex) 751 val |= ENET_TXCTL_FD_MASK; 752 else 753 val &= ~ENET_TXCTL_FD_MASK; 754 enet_writel(priv, val, ENET_TXCTL_REG); 755 } 756 757 /* 758 * set mac flow control parameters 759 */ 760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en) 761 { 762 u32 val; 763 764 /* rx flow control (pause frame handling) */ 765 val = enet_readl(priv, ENET_RXCFG_REG); 766 if (rx_en) 767 val |= ENET_RXCFG_ENFLOW_MASK; 768 else 769 val &= ~ENET_RXCFG_ENFLOW_MASK; 770 enet_writel(priv, val, ENET_RXCFG_REG); 771 772 if (!priv->dma_has_sram) 773 return; 774 775 /* tx flow control (pause frame generation) */ 776 val = enet_dma_readl(priv, ENETDMA_CFG_REG); 777 if (tx_en) 778 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 779 else 780 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 781 enet_dma_writel(priv, val, ENETDMA_CFG_REG); 782 } 783 784 /* 785 * link changed callback (from phylib) 786 */ 787 static void bcm_enet_adjust_phy_link(struct net_device *dev) 788 { 789 struct bcm_enet_priv *priv; 790 struct phy_device *phydev; 791 int status_changed; 792 793 priv = netdev_priv(dev); 794 phydev = dev->phydev; 795 status_changed = 0; 796 797 if (priv->old_link != phydev->link) { 798 status_changed = 1; 799 priv->old_link = phydev->link; 800 } 801 802 /* reflect duplex change in mac configuration */ 803 if (phydev->link && phydev->duplex != priv->old_duplex) { 804 bcm_enet_set_duplex(priv, 805 (phydev->duplex == DUPLEX_FULL) ? 1 : 0); 806 status_changed = 1; 807 priv->old_duplex = phydev->duplex; 808 } 809 810 /* enable flow control if remote advertise it (trust phylib to 811 * check that duplex is full */ 812 if (phydev->link && phydev->pause != priv->old_pause) { 813 int rx_pause_en, tx_pause_en; 814 815 if (phydev->pause) { 816 /* pause was advertised by lpa and us */ 817 rx_pause_en = 1; 818 tx_pause_en = 1; 819 } else if (!priv->pause_auto) { 820 /* pause setting overrided by user */ 821 rx_pause_en = priv->pause_rx; 822 tx_pause_en = priv->pause_tx; 823 } else { 824 rx_pause_en = 0; 825 tx_pause_en = 0; 826 } 827 828 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en); 829 status_changed = 1; 830 priv->old_pause = phydev->pause; 831 } 832 833 if (status_changed) { 834 pr_info("%s: link %s", dev->name, phydev->link ? 835 "UP" : "DOWN"); 836 if (phydev->link) 837 pr_cont(" - %d/%s - flow control %s", phydev->speed, 838 DUPLEX_FULL == phydev->duplex ? "full" : "half", 839 phydev->pause == 1 ? "rx&tx" : "off"); 840 841 pr_cont("\n"); 842 } 843 } 844 845 /* 846 * link changed callback (if phylib is not used) 847 */ 848 static void bcm_enet_adjust_link(struct net_device *dev) 849 { 850 struct bcm_enet_priv *priv; 851 852 priv = netdev_priv(dev); 853 bcm_enet_set_duplex(priv, priv->force_duplex_full); 854 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx); 855 netif_carrier_on(dev); 856 857 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n", 858 dev->name, 859 priv->force_speed_100 ? 100 : 10, 860 priv->force_duplex_full ? "full" : "half", 861 priv->pause_rx ? "rx" : "off", 862 priv->pause_tx ? "tx" : "off"); 863 } 864 865 /* 866 * open callback, allocate dma rings & buffers and start rx operation 867 */ 868 static int bcm_enet_open(struct net_device *dev) 869 { 870 struct bcm_enet_priv *priv; 871 struct sockaddr addr; 872 struct device *kdev; 873 struct phy_device *phydev; 874 int i, ret; 875 unsigned int size; 876 char phy_id[MII_BUS_ID_SIZE + 3]; 877 void *p; 878 u32 val; 879 880 priv = netdev_priv(dev); 881 kdev = &priv->pdev->dev; 882 883 if (priv->has_phy) { 884 /* connect to PHY */ 885 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 886 priv->mii_bus->id, priv->phy_id); 887 888 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link, 889 PHY_INTERFACE_MODE_MII); 890 891 if (IS_ERR(phydev)) { 892 dev_err(kdev, "could not attach to PHY\n"); 893 return PTR_ERR(phydev); 894 } 895 896 /* mask with MAC supported features */ 897 phydev->supported &= (SUPPORTED_10baseT_Half | 898 SUPPORTED_10baseT_Full | 899 SUPPORTED_100baseT_Half | 900 SUPPORTED_100baseT_Full | 901 SUPPORTED_Autoneg | 902 SUPPORTED_Pause | 903 SUPPORTED_MII); 904 phydev->advertising = phydev->supported; 905 906 if (priv->pause_auto && priv->pause_rx && priv->pause_tx) 907 phydev->advertising |= SUPPORTED_Pause; 908 else 909 phydev->advertising &= ~SUPPORTED_Pause; 910 911 phy_attached_info(phydev); 912 913 priv->old_link = 0; 914 priv->old_duplex = -1; 915 priv->old_pause = -1; 916 } 917 918 /* mask all interrupts and request them */ 919 enet_writel(priv, 0, ENET_IRMASK_REG); 920 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 921 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 922 923 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev); 924 if (ret) 925 goto out_phy_disconnect; 926 927 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0, 928 dev->name, dev); 929 if (ret) 930 goto out_freeirq; 931 932 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 933 0, dev->name, dev); 934 if (ret) 935 goto out_freeirq_rx; 936 937 /* initialize perfect match registers */ 938 for (i = 0; i < 4; i++) { 939 enet_writel(priv, 0, ENET_PML_REG(i)); 940 enet_writel(priv, 0, ENET_PMH_REG(i)); 941 } 942 943 /* write device mac address */ 944 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN); 945 bcm_enet_set_mac_address(dev, &addr); 946 947 /* allocate rx dma ring */ 948 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 949 p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 950 if (!p) { 951 ret = -ENOMEM; 952 goto out_freeirq_tx; 953 } 954 955 priv->rx_desc_alloc_size = size; 956 priv->rx_desc_cpu = p; 957 958 /* allocate tx dma ring */ 959 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 960 p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 961 if (!p) { 962 ret = -ENOMEM; 963 goto out_free_rx_ring; 964 } 965 966 priv->tx_desc_alloc_size = size; 967 priv->tx_desc_cpu = p; 968 969 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *), 970 GFP_KERNEL); 971 if (!priv->tx_skb) { 972 ret = -ENOMEM; 973 goto out_free_tx_ring; 974 } 975 976 priv->tx_desc_count = priv->tx_ring_size; 977 priv->tx_dirty_desc = 0; 978 priv->tx_curr_desc = 0; 979 spin_lock_init(&priv->tx_lock); 980 981 /* init & fill rx ring with skbs */ 982 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *), 983 GFP_KERNEL); 984 if (!priv->rx_skb) { 985 ret = -ENOMEM; 986 goto out_free_tx_skb; 987 } 988 989 priv->rx_desc_count = 0; 990 priv->rx_dirty_desc = 0; 991 priv->rx_curr_desc = 0; 992 993 /* initialize flow control buffer allocation */ 994 if (priv->dma_has_sram) 995 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 996 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 997 else 998 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 999 ENETDMAC_BUFALLOC, priv->rx_chan); 1000 1001 if (bcm_enet_refill_rx(dev)) { 1002 dev_err(kdev, "cannot allocate rx skb queue\n"); 1003 ret = -ENOMEM; 1004 goto out; 1005 } 1006 1007 /* write rx & tx ring addresses */ 1008 if (priv->dma_has_sram) { 1009 enet_dmas_writel(priv, priv->rx_desc_dma, 1010 ENETDMAS_RSTART_REG, priv->rx_chan); 1011 enet_dmas_writel(priv, priv->tx_desc_dma, 1012 ENETDMAS_RSTART_REG, priv->tx_chan); 1013 } else { 1014 enet_dmac_writel(priv, priv->rx_desc_dma, 1015 ENETDMAC_RSTART, priv->rx_chan); 1016 enet_dmac_writel(priv, priv->tx_desc_dma, 1017 ENETDMAC_RSTART, priv->tx_chan); 1018 } 1019 1020 /* clear remaining state ram for rx & tx channel */ 1021 if (priv->dma_has_sram) { 1022 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 1023 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 1024 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 1025 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 1026 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 1027 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 1028 } else { 1029 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan); 1030 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan); 1031 } 1032 1033 /* set max rx/tx length */ 1034 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG); 1035 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG); 1036 1037 /* set dma maximum burst len */ 1038 enet_dmac_writel(priv, priv->dma_maxburst, 1039 ENETDMAC_MAXBURST, priv->rx_chan); 1040 enet_dmac_writel(priv, priv->dma_maxburst, 1041 ENETDMAC_MAXBURST, priv->tx_chan); 1042 1043 /* set correct transmit fifo watermark */ 1044 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG); 1045 1046 /* set flow control low/high threshold to 1/3 / 2/3 */ 1047 if (priv->dma_has_sram) { 1048 val = priv->rx_ring_size / 3; 1049 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 1050 val = (priv->rx_ring_size * 2) / 3; 1051 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 1052 } else { 1053 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan); 1054 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan); 1055 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan); 1056 } 1057 1058 /* all set, enable mac and interrupts, start dma engine and 1059 * kick rx dma channel */ 1060 wmb(); 1061 val = enet_readl(priv, ENET_CTL_REG); 1062 val |= ENET_CTL_ENABLE_MASK; 1063 enet_writel(priv, val, ENET_CTL_REG); 1064 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 1065 enet_dmac_writel(priv, priv->dma_chan_en_mask, 1066 ENETDMAC_CHANCFG, priv->rx_chan); 1067 1068 /* watch "mib counters about to overflow" interrupt */ 1069 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 1070 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1071 1072 /* watch "packet transferred" interrupt in rx and tx */ 1073 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1074 ENETDMAC_IR, priv->rx_chan); 1075 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1076 ENETDMAC_IR, priv->tx_chan); 1077 1078 /* make sure we enable napi before rx interrupt */ 1079 napi_enable(&priv->napi); 1080 1081 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1082 ENETDMAC_IRMASK, priv->rx_chan); 1083 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1084 ENETDMAC_IRMASK, priv->tx_chan); 1085 1086 if (priv->has_phy) 1087 phy_start(phydev); 1088 else 1089 bcm_enet_adjust_link(dev); 1090 1091 netif_start_queue(dev); 1092 return 0; 1093 1094 out: 1095 for (i = 0; i < priv->rx_ring_size; i++) { 1096 struct bcm_enet_desc *desc; 1097 1098 if (!priv->rx_skb[i]) 1099 continue; 1100 1101 desc = &priv->rx_desc_cpu[i]; 1102 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1103 DMA_FROM_DEVICE); 1104 kfree_skb(priv->rx_skb[i]); 1105 } 1106 kfree(priv->rx_skb); 1107 1108 out_free_tx_skb: 1109 kfree(priv->tx_skb); 1110 1111 out_free_tx_ring: 1112 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1113 priv->tx_desc_cpu, priv->tx_desc_dma); 1114 1115 out_free_rx_ring: 1116 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1117 priv->rx_desc_cpu, priv->rx_desc_dma); 1118 1119 out_freeirq_tx: 1120 free_irq(priv->irq_tx, dev); 1121 1122 out_freeirq_rx: 1123 free_irq(priv->irq_rx, dev); 1124 1125 out_freeirq: 1126 free_irq(dev->irq, dev); 1127 1128 out_phy_disconnect: 1129 if (priv->has_phy) 1130 phy_disconnect(phydev); 1131 1132 return ret; 1133 } 1134 1135 /* 1136 * disable mac 1137 */ 1138 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv) 1139 { 1140 int limit; 1141 u32 val; 1142 1143 val = enet_readl(priv, ENET_CTL_REG); 1144 val |= ENET_CTL_DISABLE_MASK; 1145 enet_writel(priv, val, ENET_CTL_REG); 1146 1147 limit = 1000; 1148 do { 1149 u32 val; 1150 1151 val = enet_readl(priv, ENET_CTL_REG); 1152 if (!(val & ENET_CTL_DISABLE_MASK)) 1153 break; 1154 udelay(1); 1155 } while (limit--); 1156 } 1157 1158 /* 1159 * disable dma in given channel 1160 */ 1161 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan) 1162 { 1163 int limit; 1164 1165 enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan); 1166 1167 limit = 1000; 1168 do { 1169 u32 val; 1170 1171 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan); 1172 if (!(val & ENETDMAC_CHANCFG_EN_MASK)) 1173 break; 1174 udelay(1); 1175 } while (limit--); 1176 } 1177 1178 /* 1179 * stop callback 1180 */ 1181 static int bcm_enet_stop(struct net_device *dev) 1182 { 1183 struct bcm_enet_priv *priv; 1184 struct device *kdev; 1185 int i; 1186 1187 priv = netdev_priv(dev); 1188 kdev = &priv->pdev->dev; 1189 1190 netif_stop_queue(dev); 1191 napi_disable(&priv->napi); 1192 if (priv->has_phy) 1193 phy_stop(dev->phydev); 1194 del_timer_sync(&priv->rx_timeout); 1195 1196 /* mask all interrupts */ 1197 enet_writel(priv, 0, ENET_IRMASK_REG); 1198 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 1199 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 1200 1201 /* make sure no mib update is scheduled */ 1202 cancel_work_sync(&priv->mib_update_task); 1203 1204 /* disable dma & mac */ 1205 bcm_enet_disable_dma(priv, priv->tx_chan); 1206 bcm_enet_disable_dma(priv, priv->rx_chan); 1207 bcm_enet_disable_mac(priv); 1208 1209 /* force reclaim of all tx buffers */ 1210 bcm_enet_tx_reclaim(dev, 1); 1211 1212 /* free the rx skb ring */ 1213 for (i = 0; i < priv->rx_ring_size; i++) { 1214 struct bcm_enet_desc *desc; 1215 1216 if (!priv->rx_skb[i]) 1217 continue; 1218 1219 desc = &priv->rx_desc_cpu[i]; 1220 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1221 DMA_FROM_DEVICE); 1222 kfree_skb(priv->rx_skb[i]); 1223 } 1224 1225 /* free remaining allocated memory */ 1226 kfree(priv->rx_skb); 1227 kfree(priv->tx_skb); 1228 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1229 priv->rx_desc_cpu, priv->rx_desc_dma); 1230 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1231 priv->tx_desc_cpu, priv->tx_desc_dma); 1232 free_irq(priv->irq_tx, dev); 1233 free_irq(priv->irq_rx, dev); 1234 free_irq(dev->irq, dev); 1235 1236 /* release phy */ 1237 if (priv->has_phy) 1238 phy_disconnect(dev->phydev); 1239 1240 return 0; 1241 } 1242 1243 /* 1244 * ethtool callbacks 1245 */ 1246 struct bcm_enet_stats { 1247 char stat_string[ETH_GSTRING_LEN]; 1248 int sizeof_stat; 1249 int stat_offset; 1250 int mib_reg; 1251 }; 1252 1253 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \ 1254 offsetof(struct bcm_enet_priv, m) 1255 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \ 1256 offsetof(struct net_device_stats, m) 1257 1258 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = { 1259 { "rx_packets", DEV_STAT(rx_packets), -1 }, 1260 { "tx_packets", DEV_STAT(tx_packets), -1 }, 1261 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 1262 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 1263 { "rx_errors", DEV_STAT(rx_errors), -1 }, 1264 { "tx_errors", DEV_STAT(tx_errors), -1 }, 1265 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 1266 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 1267 1268 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS}, 1269 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS }, 1270 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST }, 1271 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT }, 1272 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 }, 1273 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 }, 1274 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 }, 1275 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 }, 1276 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 }, 1277 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX }, 1278 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB }, 1279 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR }, 1280 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG }, 1281 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP }, 1282 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN }, 1283 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND }, 1284 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC }, 1285 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN }, 1286 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM }, 1287 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE }, 1288 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL }, 1289 1290 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS }, 1291 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS }, 1292 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST }, 1293 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT }, 1294 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 }, 1295 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 }, 1296 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 }, 1297 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 }, 1298 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023}, 1299 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX }, 1300 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB }, 1301 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR }, 1302 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG }, 1303 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN }, 1304 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL }, 1305 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL }, 1306 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL }, 1307 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL }, 1308 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE }, 1309 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF }, 1310 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS }, 1311 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE }, 1312 1313 }; 1314 1315 #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats) 1316 1317 static const u32 unused_mib_regs[] = { 1318 ETH_MIB_TX_ALL_OCTETS, 1319 ETH_MIB_TX_ALL_PKTS, 1320 ETH_MIB_RX_ALL_OCTETS, 1321 ETH_MIB_RX_ALL_PKTS, 1322 }; 1323 1324 1325 static void bcm_enet_get_drvinfo(struct net_device *netdev, 1326 struct ethtool_drvinfo *drvinfo) 1327 { 1328 strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver)); 1329 strlcpy(drvinfo->version, bcm_enet_driver_version, 1330 sizeof(drvinfo->version)); 1331 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version)); 1332 strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info)); 1333 } 1334 1335 static int bcm_enet_get_sset_count(struct net_device *netdev, 1336 int string_set) 1337 { 1338 switch (string_set) { 1339 case ETH_SS_STATS: 1340 return BCM_ENET_STATS_LEN; 1341 default: 1342 return -EINVAL; 1343 } 1344 } 1345 1346 static void bcm_enet_get_strings(struct net_device *netdev, 1347 u32 stringset, u8 *data) 1348 { 1349 int i; 1350 1351 switch (stringset) { 1352 case ETH_SS_STATS: 1353 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1354 memcpy(data + i * ETH_GSTRING_LEN, 1355 bcm_enet_gstrings_stats[i].stat_string, 1356 ETH_GSTRING_LEN); 1357 } 1358 break; 1359 } 1360 } 1361 1362 static void update_mib_counters(struct bcm_enet_priv *priv) 1363 { 1364 int i; 1365 1366 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1367 const struct bcm_enet_stats *s; 1368 u32 val; 1369 char *p; 1370 1371 s = &bcm_enet_gstrings_stats[i]; 1372 if (s->mib_reg == -1) 1373 continue; 1374 1375 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg)); 1376 p = (char *)priv + s->stat_offset; 1377 1378 if (s->sizeof_stat == sizeof(u64)) 1379 *(u64 *)p += val; 1380 else 1381 *(u32 *)p += val; 1382 } 1383 1384 /* also empty unused mib counters to make sure mib counter 1385 * overflow interrupt is cleared */ 1386 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++) 1387 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i])); 1388 } 1389 1390 static void bcm_enet_update_mib_counters_defer(struct work_struct *t) 1391 { 1392 struct bcm_enet_priv *priv; 1393 1394 priv = container_of(t, struct bcm_enet_priv, mib_update_task); 1395 mutex_lock(&priv->mib_update_lock); 1396 update_mib_counters(priv); 1397 mutex_unlock(&priv->mib_update_lock); 1398 1399 /* reenable mib interrupt */ 1400 if (netif_running(priv->net_dev)) 1401 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1402 } 1403 1404 static void bcm_enet_get_ethtool_stats(struct net_device *netdev, 1405 struct ethtool_stats *stats, 1406 u64 *data) 1407 { 1408 struct bcm_enet_priv *priv; 1409 int i; 1410 1411 priv = netdev_priv(netdev); 1412 1413 mutex_lock(&priv->mib_update_lock); 1414 update_mib_counters(priv); 1415 1416 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1417 const struct bcm_enet_stats *s; 1418 char *p; 1419 1420 s = &bcm_enet_gstrings_stats[i]; 1421 if (s->mib_reg == -1) 1422 p = (char *)&netdev->stats; 1423 else 1424 p = (char *)priv; 1425 p += s->stat_offset; 1426 data[i] = (s->sizeof_stat == sizeof(u64)) ? 1427 *(u64 *)p : *(u32 *)p; 1428 } 1429 mutex_unlock(&priv->mib_update_lock); 1430 } 1431 1432 static int bcm_enet_nway_reset(struct net_device *dev) 1433 { 1434 struct bcm_enet_priv *priv; 1435 1436 priv = netdev_priv(dev); 1437 if (priv->has_phy) 1438 return phy_ethtool_nway_reset(dev); 1439 1440 return -EOPNOTSUPP; 1441 } 1442 1443 static int bcm_enet_get_link_ksettings(struct net_device *dev, 1444 struct ethtool_link_ksettings *cmd) 1445 { 1446 struct bcm_enet_priv *priv; 1447 u32 supported, advertising; 1448 1449 priv = netdev_priv(dev); 1450 1451 if (priv->has_phy) { 1452 if (!dev->phydev) 1453 return -ENODEV; 1454 return phy_ethtool_ksettings_get(dev->phydev, cmd); 1455 } else { 1456 cmd->base.autoneg = 0; 1457 cmd->base.speed = (priv->force_speed_100) ? 1458 SPEED_100 : SPEED_10; 1459 cmd->base.duplex = (priv->force_duplex_full) ? 1460 DUPLEX_FULL : DUPLEX_HALF; 1461 supported = ADVERTISED_10baseT_Half | 1462 ADVERTISED_10baseT_Full | 1463 ADVERTISED_100baseT_Half | 1464 ADVERTISED_100baseT_Full; 1465 advertising = 0; 1466 ethtool_convert_legacy_u32_to_link_mode( 1467 cmd->link_modes.supported, supported); 1468 ethtool_convert_legacy_u32_to_link_mode( 1469 cmd->link_modes.advertising, advertising); 1470 cmd->base.port = PORT_MII; 1471 } 1472 return 0; 1473 } 1474 1475 static int bcm_enet_set_link_ksettings(struct net_device *dev, 1476 const struct ethtool_link_ksettings *cmd) 1477 { 1478 struct bcm_enet_priv *priv; 1479 1480 priv = netdev_priv(dev); 1481 if (priv->has_phy) { 1482 if (!dev->phydev) 1483 return -ENODEV; 1484 return phy_ethtool_ksettings_set(dev->phydev, cmd); 1485 } else { 1486 1487 if (cmd->base.autoneg || 1488 (cmd->base.speed != SPEED_100 && 1489 cmd->base.speed != SPEED_10) || 1490 cmd->base.port != PORT_MII) 1491 return -EINVAL; 1492 1493 priv->force_speed_100 = 1494 (cmd->base.speed == SPEED_100) ? 1 : 0; 1495 priv->force_duplex_full = 1496 (cmd->base.duplex == DUPLEX_FULL) ? 1 : 0; 1497 1498 if (netif_running(dev)) 1499 bcm_enet_adjust_link(dev); 1500 return 0; 1501 } 1502 } 1503 1504 static void bcm_enet_get_ringparam(struct net_device *dev, 1505 struct ethtool_ringparam *ering) 1506 { 1507 struct bcm_enet_priv *priv; 1508 1509 priv = netdev_priv(dev); 1510 1511 /* rx/tx ring is actually only limited by memory */ 1512 ering->rx_max_pending = 8192; 1513 ering->tx_max_pending = 8192; 1514 ering->rx_pending = priv->rx_ring_size; 1515 ering->tx_pending = priv->tx_ring_size; 1516 } 1517 1518 static int bcm_enet_set_ringparam(struct net_device *dev, 1519 struct ethtool_ringparam *ering) 1520 { 1521 struct bcm_enet_priv *priv; 1522 int was_running; 1523 1524 priv = netdev_priv(dev); 1525 1526 was_running = 0; 1527 if (netif_running(dev)) { 1528 bcm_enet_stop(dev); 1529 was_running = 1; 1530 } 1531 1532 priv->rx_ring_size = ering->rx_pending; 1533 priv->tx_ring_size = ering->tx_pending; 1534 1535 if (was_running) { 1536 int err; 1537 1538 err = bcm_enet_open(dev); 1539 if (err) 1540 dev_close(dev); 1541 else 1542 bcm_enet_set_multicast_list(dev); 1543 } 1544 return 0; 1545 } 1546 1547 static void bcm_enet_get_pauseparam(struct net_device *dev, 1548 struct ethtool_pauseparam *ecmd) 1549 { 1550 struct bcm_enet_priv *priv; 1551 1552 priv = netdev_priv(dev); 1553 ecmd->autoneg = priv->pause_auto; 1554 ecmd->rx_pause = priv->pause_rx; 1555 ecmd->tx_pause = priv->pause_tx; 1556 } 1557 1558 static int bcm_enet_set_pauseparam(struct net_device *dev, 1559 struct ethtool_pauseparam *ecmd) 1560 { 1561 struct bcm_enet_priv *priv; 1562 1563 priv = netdev_priv(dev); 1564 1565 if (priv->has_phy) { 1566 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) { 1567 /* asymetric pause mode not supported, 1568 * actually possible but integrated PHY has RO 1569 * asym_pause bit */ 1570 return -EINVAL; 1571 } 1572 } else { 1573 /* no pause autoneg on direct mii connection */ 1574 if (ecmd->autoneg) 1575 return -EINVAL; 1576 } 1577 1578 priv->pause_auto = ecmd->autoneg; 1579 priv->pause_rx = ecmd->rx_pause; 1580 priv->pause_tx = ecmd->tx_pause; 1581 1582 return 0; 1583 } 1584 1585 static const struct ethtool_ops bcm_enet_ethtool_ops = { 1586 .get_strings = bcm_enet_get_strings, 1587 .get_sset_count = bcm_enet_get_sset_count, 1588 .get_ethtool_stats = bcm_enet_get_ethtool_stats, 1589 .nway_reset = bcm_enet_nway_reset, 1590 .get_drvinfo = bcm_enet_get_drvinfo, 1591 .get_link = ethtool_op_get_link, 1592 .get_ringparam = bcm_enet_get_ringparam, 1593 .set_ringparam = bcm_enet_set_ringparam, 1594 .get_pauseparam = bcm_enet_get_pauseparam, 1595 .set_pauseparam = bcm_enet_set_pauseparam, 1596 .get_link_ksettings = bcm_enet_get_link_ksettings, 1597 .set_link_ksettings = bcm_enet_set_link_ksettings, 1598 }; 1599 1600 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1601 { 1602 struct bcm_enet_priv *priv; 1603 1604 priv = netdev_priv(dev); 1605 if (priv->has_phy) { 1606 if (!dev->phydev) 1607 return -ENODEV; 1608 return phy_mii_ioctl(dev->phydev, rq, cmd); 1609 } else { 1610 struct mii_if_info mii; 1611 1612 mii.dev = dev; 1613 mii.mdio_read = bcm_enet_mdio_read_mii; 1614 mii.mdio_write = bcm_enet_mdio_write_mii; 1615 mii.phy_id = 0; 1616 mii.phy_id_mask = 0x3f; 1617 mii.reg_num_mask = 0x1f; 1618 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 1619 } 1620 } 1621 1622 /* 1623 * adjust mtu, can't be called while device is running 1624 */ 1625 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu) 1626 { 1627 struct bcm_enet_priv *priv = netdev_priv(dev); 1628 int actual_mtu = new_mtu; 1629 1630 if (netif_running(dev)) 1631 return -EBUSY; 1632 1633 /* add ethernet header + vlan tag size */ 1634 actual_mtu += VLAN_ETH_HLEN; 1635 1636 /* 1637 * setup maximum size before we get overflow mark in 1638 * descriptor, note that this will not prevent reception of 1639 * big frames, they will be split into multiple buffers 1640 * anyway 1641 */ 1642 priv->hw_mtu = actual_mtu; 1643 1644 /* 1645 * align rx buffer size to dma burst len, account FCS since 1646 * it's appended 1647 */ 1648 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN, 1649 priv->dma_maxburst * 4); 1650 1651 dev->mtu = new_mtu; 1652 return 0; 1653 } 1654 1655 /* 1656 * preinit hardware to allow mii operation while device is down 1657 */ 1658 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv) 1659 { 1660 u32 val; 1661 int limit; 1662 1663 /* make sure mac is disabled */ 1664 bcm_enet_disable_mac(priv); 1665 1666 /* soft reset mac */ 1667 val = ENET_CTL_SRESET_MASK; 1668 enet_writel(priv, val, ENET_CTL_REG); 1669 wmb(); 1670 1671 limit = 1000; 1672 do { 1673 val = enet_readl(priv, ENET_CTL_REG); 1674 if (!(val & ENET_CTL_SRESET_MASK)) 1675 break; 1676 udelay(1); 1677 } while (limit--); 1678 1679 /* select correct mii interface */ 1680 val = enet_readl(priv, ENET_CTL_REG); 1681 if (priv->use_external_mii) 1682 val |= ENET_CTL_EPHYSEL_MASK; 1683 else 1684 val &= ~ENET_CTL_EPHYSEL_MASK; 1685 enet_writel(priv, val, ENET_CTL_REG); 1686 1687 /* turn on mdc clock */ 1688 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) | 1689 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG); 1690 1691 /* set mib counters to self-clear when read */ 1692 val = enet_readl(priv, ENET_MIBCTL_REG); 1693 val |= ENET_MIBCTL_RDCLEAR_MASK; 1694 enet_writel(priv, val, ENET_MIBCTL_REG); 1695 } 1696 1697 static const struct net_device_ops bcm_enet_ops = { 1698 .ndo_open = bcm_enet_open, 1699 .ndo_stop = bcm_enet_stop, 1700 .ndo_start_xmit = bcm_enet_start_xmit, 1701 .ndo_set_mac_address = bcm_enet_set_mac_address, 1702 .ndo_set_rx_mode = bcm_enet_set_multicast_list, 1703 .ndo_do_ioctl = bcm_enet_ioctl, 1704 .ndo_change_mtu = bcm_enet_change_mtu, 1705 }; 1706 1707 /* 1708 * allocate netdevice, request register memory and register device. 1709 */ 1710 static int bcm_enet_probe(struct platform_device *pdev) 1711 { 1712 struct bcm_enet_priv *priv; 1713 struct net_device *dev; 1714 struct bcm63xx_enet_platform_data *pd; 1715 struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx; 1716 struct mii_bus *bus; 1717 const char *clk_name; 1718 int i, ret; 1719 1720 /* stop if shared driver failed, assume driver->probe will be 1721 * called in the same order we register devices (correct ?) */ 1722 if (!bcm_enet_shared_base[0]) 1723 return -ENODEV; 1724 1725 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1726 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1); 1727 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2); 1728 if (!res_irq || !res_irq_rx || !res_irq_tx) 1729 return -ENODEV; 1730 1731 ret = 0; 1732 dev = alloc_etherdev(sizeof(*priv)); 1733 if (!dev) 1734 return -ENOMEM; 1735 priv = netdev_priv(dev); 1736 1737 priv->enet_is_sw = false; 1738 priv->dma_maxburst = BCMENET_DMA_MAXBURST; 1739 1740 ret = bcm_enet_change_mtu(dev, dev->mtu); 1741 if (ret) 1742 goto out; 1743 1744 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1745 priv->base = devm_ioremap_resource(&pdev->dev, res_mem); 1746 if (IS_ERR(priv->base)) { 1747 ret = PTR_ERR(priv->base); 1748 goto out; 1749 } 1750 1751 dev->irq = priv->irq = res_irq->start; 1752 priv->irq_rx = res_irq_rx->start; 1753 priv->irq_tx = res_irq_tx->start; 1754 priv->mac_id = pdev->id; 1755 1756 /* get rx & tx dma channel id for this mac */ 1757 if (priv->mac_id == 0) { 1758 priv->rx_chan = 0; 1759 priv->tx_chan = 1; 1760 clk_name = "enet0"; 1761 } else { 1762 priv->rx_chan = 2; 1763 priv->tx_chan = 3; 1764 clk_name = "enet1"; 1765 } 1766 1767 priv->mac_clk = clk_get(&pdev->dev, clk_name); 1768 if (IS_ERR(priv->mac_clk)) { 1769 ret = PTR_ERR(priv->mac_clk); 1770 goto out; 1771 } 1772 clk_prepare_enable(priv->mac_clk); 1773 1774 /* initialize default and fetch platform data */ 1775 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 1776 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 1777 1778 pd = dev_get_platdata(&pdev->dev); 1779 if (pd) { 1780 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 1781 priv->has_phy = pd->has_phy; 1782 priv->phy_id = pd->phy_id; 1783 priv->has_phy_interrupt = pd->has_phy_interrupt; 1784 priv->phy_interrupt = pd->phy_interrupt; 1785 priv->use_external_mii = !pd->use_internal_phy; 1786 priv->pause_auto = pd->pause_auto; 1787 priv->pause_rx = pd->pause_rx; 1788 priv->pause_tx = pd->pause_tx; 1789 priv->force_duplex_full = pd->force_duplex_full; 1790 priv->force_speed_100 = pd->force_speed_100; 1791 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 1792 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 1793 priv->dma_chan_width = pd->dma_chan_width; 1794 priv->dma_has_sram = pd->dma_has_sram; 1795 priv->dma_desc_shift = pd->dma_desc_shift; 1796 } 1797 1798 if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) { 1799 /* using internal PHY, enable clock */ 1800 priv->phy_clk = clk_get(&pdev->dev, "ephy"); 1801 if (IS_ERR(priv->phy_clk)) { 1802 ret = PTR_ERR(priv->phy_clk); 1803 priv->phy_clk = NULL; 1804 goto out_put_clk_mac; 1805 } 1806 clk_prepare_enable(priv->phy_clk); 1807 } 1808 1809 /* do minimal hardware init to be able to probe mii bus */ 1810 bcm_enet_hw_preinit(priv); 1811 1812 /* MII bus registration */ 1813 if (priv->has_phy) { 1814 1815 priv->mii_bus = mdiobus_alloc(); 1816 if (!priv->mii_bus) { 1817 ret = -ENOMEM; 1818 goto out_uninit_hw; 1819 } 1820 1821 bus = priv->mii_bus; 1822 bus->name = "bcm63xx_enet MII bus"; 1823 bus->parent = &pdev->dev; 1824 bus->priv = priv; 1825 bus->read = bcm_enet_mdio_read_phylib; 1826 bus->write = bcm_enet_mdio_write_phylib; 1827 sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id); 1828 1829 /* only probe bus where we think the PHY is, because 1830 * the mdio read operation return 0 instead of 0xffff 1831 * if a slave is not present on hw */ 1832 bus->phy_mask = ~(1 << priv->phy_id); 1833 1834 if (priv->has_phy_interrupt) 1835 bus->irq[priv->phy_id] = priv->phy_interrupt; 1836 1837 ret = mdiobus_register(bus); 1838 if (ret) { 1839 dev_err(&pdev->dev, "unable to register mdio bus\n"); 1840 goto out_free_mdio; 1841 } 1842 } else { 1843 1844 /* run platform code to initialize PHY device */ 1845 if (pd && pd->mii_config && 1846 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii, 1847 bcm_enet_mdio_write_mii)) { 1848 dev_err(&pdev->dev, "unable to configure mdio bus\n"); 1849 goto out_uninit_hw; 1850 } 1851 } 1852 1853 spin_lock_init(&priv->rx_lock); 1854 1855 /* init rx timeout (used for oom) */ 1856 init_timer(&priv->rx_timeout); 1857 priv->rx_timeout.function = bcm_enet_refill_rx_timer; 1858 priv->rx_timeout.data = (unsigned long)dev; 1859 1860 /* init the mib update lock&work */ 1861 mutex_init(&priv->mib_update_lock); 1862 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer); 1863 1864 /* zero mib counters */ 1865 for (i = 0; i < ENET_MIB_REG_COUNT; i++) 1866 enet_writel(priv, 0, ENET_MIB_REG(i)); 1867 1868 /* register netdevice */ 1869 dev->netdev_ops = &bcm_enet_ops; 1870 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 1871 1872 dev->ethtool_ops = &bcm_enet_ethtool_ops; 1873 /* MTU range: 46 - 2028 */ 1874 dev->min_mtu = ETH_ZLEN - ETH_HLEN; 1875 dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN; 1876 SET_NETDEV_DEV(dev, &pdev->dev); 1877 1878 ret = register_netdev(dev); 1879 if (ret) 1880 goto out_unregister_mdio; 1881 1882 netif_carrier_off(dev); 1883 platform_set_drvdata(pdev, dev); 1884 priv->pdev = pdev; 1885 priv->net_dev = dev; 1886 1887 return 0; 1888 1889 out_unregister_mdio: 1890 if (priv->mii_bus) 1891 mdiobus_unregister(priv->mii_bus); 1892 1893 out_free_mdio: 1894 if (priv->mii_bus) 1895 mdiobus_free(priv->mii_bus); 1896 1897 out_uninit_hw: 1898 /* turn off mdc clock */ 1899 enet_writel(priv, 0, ENET_MIISC_REG); 1900 if (priv->phy_clk) { 1901 clk_disable_unprepare(priv->phy_clk); 1902 clk_put(priv->phy_clk); 1903 } 1904 1905 out_put_clk_mac: 1906 clk_disable_unprepare(priv->mac_clk); 1907 clk_put(priv->mac_clk); 1908 out: 1909 free_netdev(dev); 1910 return ret; 1911 } 1912 1913 1914 /* 1915 * exit func, stops hardware and unregisters netdevice 1916 */ 1917 static int bcm_enet_remove(struct platform_device *pdev) 1918 { 1919 struct bcm_enet_priv *priv; 1920 struct net_device *dev; 1921 1922 /* stop netdevice */ 1923 dev = platform_get_drvdata(pdev); 1924 priv = netdev_priv(dev); 1925 unregister_netdev(dev); 1926 1927 /* turn off mdc clock */ 1928 enet_writel(priv, 0, ENET_MIISC_REG); 1929 1930 if (priv->has_phy) { 1931 mdiobus_unregister(priv->mii_bus); 1932 mdiobus_free(priv->mii_bus); 1933 } else { 1934 struct bcm63xx_enet_platform_data *pd; 1935 1936 pd = dev_get_platdata(&pdev->dev); 1937 if (pd && pd->mii_config) 1938 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii, 1939 bcm_enet_mdio_write_mii); 1940 } 1941 1942 /* disable hw block clocks */ 1943 if (priv->phy_clk) { 1944 clk_disable_unprepare(priv->phy_clk); 1945 clk_put(priv->phy_clk); 1946 } 1947 clk_disable_unprepare(priv->mac_clk); 1948 clk_put(priv->mac_clk); 1949 1950 free_netdev(dev); 1951 return 0; 1952 } 1953 1954 struct platform_driver bcm63xx_enet_driver = { 1955 .probe = bcm_enet_probe, 1956 .remove = bcm_enet_remove, 1957 .driver = { 1958 .name = "bcm63xx_enet", 1959 .owner = THIS_MODULE, 1960 }, 1961 }; 1962 1963 /* 1964 * switch mii access callbacks 1965 */ 1966 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv, 1967 int ext, int phy_id, int location) 1968 { 1969 u32 reg; 1970 int ret; 1971 1972 spin_lock_bh(&priv->enetsw_mdio_lock); 1973 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 1974 1975 reg = ENETSW_MDIOC_RD_MASK | 1976 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 1977 (location << ENETSW_MDIOC_REG_SHIFT); 1978 1979 if (ext) 1980 reg |= ENETSW_MDIOC_EXT_MASK; 1981 1982 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 1983 udelay(50); 1984 ret = enetsw_readw(priv, ENETSW_MDIOD_REG); 1985 spin_unlock_bh(&priv->enetsw_mdio_lock); 1986 return ret; 1987 } 1988 1989 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv, 1990 int ext, int phy_id, int location, 1991 uint16_t data) 1992 { 1993 u32 reg; 1994 1995 spin_lock_bh(&priv->enetsw_mdio_lock); 1996 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 1997 1998 reg = ENETSW_MDIOC_WR_MASK | 1999 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 2000 (location << ENETSW_MDIOC_REG_SHIFT); 2001 2002 if (ext) 2003 reg |= ENETSW_MDIOC_EXT_MASK; 2004 2005 reg |= data; 2006 2007 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 2008 udelay(50); 2009 spin_unlock_bh(&priv->enetsw_mdio_lock); 2010 } 2011 2012 static inline int bcm_enet_port_is_rgmii(int portid) 2013 { 2014 return portid >= ENETSW_RGMII_PORT0; 2015 } 2016 2017 /* 2018 * enet sw PHY polling 2019 */ 2020 static void swphy_poll_timer(unsigned long data) 2021 { 2022 struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data; 2023 unsigned int i; 2024 2025 for (i = 0; i < priv->num_ports; i++) { 2026 struct bcm63xx_enetsw_port *port; 2027 int val, j, up, advertise, lpa, speed, duplex, media; 2028 int external_phy = bcm_enet_port_is_rgmii(i); 2029 u8 override; 2030 2031 port = &priv->used_ports[i]; 2032 if (!port->used) 2033 continue; 2034 2035 if (port->bypass_link) 2036 continue; 2037 2038 /* dummy read to clear */ 2039 for (j = 0; j < 2; j++) 2040 val = bcmenet_sw_mdio_read(priv, external_phy, 2041 port->phy_id, MII_BMSR); 2042 2043 if (val == 0xffff) 2044 continue; 2045 2046 up = (val & BMSR_LSTATUS) ? 1 : 0; 2047 if (!(up ^ priv->sw_port_link[i])) 2048 continue; 2049 2050 priv->sw_port_link[i] = up; 2051 2052 /* link changed */ 2053 if (!up) { 2054 dev_info(&priv->pdev->dev, "link DOWN on %s\n", 2055 port->name); 2056 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2057 ENETSW_PORTOV_REG(i)); 2058 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2059 ENETSW_PTCTRL_TXDIS_MASK, 2060 ENETSW_PTCTRL_REG(i)); 2061 continue; 2062 } 2063 2064 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2065 port->phy_id, MII_ADVERTISE); 2066 2067 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id, 2068 MII_LPA); 2069 2070 /* figure out media and duplex from advertise and LPA values */ 2071 media = mii_nway_result(lpa & advertise); 2072 duplex = (media & ADVERTISE_FULL) ? 1 : 0; 2073 2074 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF)) 2075 speed = 100; 2076 else 2077 speed = 10; 2078 2079 if (val & BMSR_ESTATEN) { 2080 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2081 port->phy_id, MII_CTRL1000); 2082 2083 lpa = bcmenet_sw_mdio_read(priv, external_phy, 2084 port->phy_id, MII_STAT1000); 2085 2086 if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF) 2087 && lpa & (LPA_1000FULL | LPA_1000HALF)) { 2088 speed = 1000; 2089 duplex = (lpa & LPA_1000FULL); 2090 } 2091 } 2092 2093 dev_info(&priv->pdev->dev, 2094 "link UP on %s, %dMbps, %s-duplex\n", 2095 port->name, speed, duplex ? "full" : "half"); 2096 2097 override = ENETSW_PORTOV_ENABLE_MASK | 2098 ENETSW_PORTOV_LINKUP_MASK; 2099 2100 if (speed == 1000) 2101 override |= ENETSW_IMPOV_1000_MASK; 2102 else if (speed == 100) 2103 override |= ENETSW_IMPOV_100_MASK; 2104 if (duplex) 2105 override |= ENETSW_IMPOV_FDX_MASK; 2106 2107 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2108 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2109 } 2110 2111 priv->swphy_poll.expires = jiffies + HZ; 2112 add_timer(&priv->swphy_poll); 2113 } 2114 2115 /* 2116 * open callback, allocate dma rings & buffers and start rx operation 2117 */ 2118 static int bcm_enetsw_open(struct net_device *dev) 2119 { 2120 struct bcm_enet_priv *priv; 2121 struct device *kdev; 2122 int i, ret; 2123 unsigned int size; 2124 void *p; 2125 u32 val; 2126 2127 priv = netdev_priv(dev); 2128 kdev = &priv->pdev->dev; 2129 2130 /* mask all interrupts and request them */ 2131 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2132 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2133 2134 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 2135 0, dev->name, dev); 2136 if (ret) 2137 goto out_freeirq; 2138 2139 if (priv->irq_tx != -1) { 2140 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 2141 0, dev->name, dev); 2142 if (ret) 2143 goto out_freeirq_rx; 2144 } 2145 2146 /* allocate rx dma ring */ 2147 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 2148 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 2149 if (!p) { 2150 dev_err(kdev, "cannot allocate rx ring %u\n", size); 2151 ret = -ENOMEM; 2152 goto out_freeirq_tx; 2153 } 2154 2155 memset(p, 0, size); 2156 priv->rx_desc_alloc_size = size; 2157 priv->rx_desc_cpu = p; 2158 2159 /* allocate tx dma ring */ 2160 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 2161 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 2162 if (!p) { 2163 dev_err(kdev, "cannot allocate tx ring\n"); 2164 ret = -ENOMEM; 2165 goto out_free_rx_ring; 2166 } 2167 2168 memset(p, 0, size); 2169 priv->tx_desc_alloc_size = size; 2170 priv->tx_desc_cpu = p; 2171 2172 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size, 2173 GFP_KERNEL); 2174 if (!priv->tx_skb) { 2175 dev_err(kdev, "cannot allocate rx skb queue\n"); 2176 ret = -ENOMEM; 2177 goto out_free_tx_ring; 2178 } 2179 2180 priv->tx_desc_count = priv->tx_ring_size; 2181 priv->tx_dirty_desc = 0; 2182 priv->tx_curr_desc = 0; 2183 spin_lock_init(&priv->tx_lock); 2184 2185 /* init & fill rx ring with skbs */ 2186 priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size, 2187 GFP_KERNEL); 2188 if (!priv->rx_skb) { 2189 dev_err(kdev, "cannot allocate rx skb queue\n"); 2190 ret = -ENOMEM; 2191 goto out_free_tx_skb; 2192 } 2193 2194 priv->rx_desc_count = 0; 2195 priv->rx_dirty_desc = 0; 2196 priv->rx_curr_desc = 0; 2197 2198 /* disable all ports */ 2199 for (i = 0; i < priv->num_ports; i++) { 2200 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2201 ENETSW_PORTOV_REG(i)); 2202 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2203 ENETSW_PTCTRL_TXDIS_MASK, 2204 ENETSW_PTCTRL_REG(i)); 2205 2206 priv->sw_port_link[i] = 0; 2207 } 2208 2209 /* reset mib */ 2210 val = enetsw_readb(priv, ENETSW_GMCR_REG); 2211 val |= ENETSW_GMCR_RST_MIB_MASK; 2212 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2213 mdelay(1); 2214 val &= ~ENETSW_GMCR_RST_MIB_MASK; 2215 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2216 mdelay(1); 2217 2218 /* force CPU port state */ 2219 val = enetsw_readb(priv, ENETSW_IMPOV_REG); 2220 val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK; 2221 enetsw_writeb(priv, val, ENETSW_IMPOV_REG); 2222 2223 /* enable switch forward engine */ 2224 val = enetsw_readb(priv, ENETSW_SWMODE_REG); 2225 val |= ENETSW_SWMODE_FWD_EN_MASK; 2226 enetsw_writeb(priv, val, ENETSW_SWMODE_REG); 2227 2228 /* enable jumbo on all ports */ 2229 enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG); 2230 enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG); 2231 2232 /* initialize flow control buffer allocation */ 2233 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 2234 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 2235 2236 if (bcm_enet_refill_rx(dev)) { 2237 dev_err(kdev, "cannot allocate rx skb queue\n"); 2238 ret = -ENOMEM; 2239 goto out; 2240 } 2241 2242 /* write rx & tx ring addresses */ 2243 enet_dmas_writel(priv, priv->rx_desc_dma, 2244 ENETDMAS_RSTART_REG, priv->rx_chan); 2245 enet_dmas_writel(priv, priv->tx_desc_dma, 2246 ENETDMAS_RSTART_REG, priv->tx_chan); 2247 2248 /* clear remaining state ram for rx & tx channel */ 2249 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 2250 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 2251 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 2252 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 2253 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 2254 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 2255 2256 /* set dma maximum burst len */ 2257 enet_dmac_writel(priv, priv->dma_maxburst, 2258 ENETDMAC_MAXBURST, priv->rx_chan); 2259 enet_dmac_writel(priv, priv->dma_maxburst, 2260 ENETDMAC_MAXBURST, priv->tx_chan); 2261 2262 /* set flow control low/high threshold to 1/3 / 2/3 */ 2263 val = priv->rx_ring_size / 3; 2264 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 2265 val = (priv->rx_ring_size * 2) / 3; 2266 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 2267 2268 /* all set, enable mac and interrupts, start dma engine and 2269 * kick rx dma channel 2270 */ 2271 wmb(); 2272 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 2273 enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK, 2274 ENETDMAC_CHANCFG, priv->rx_chan); 2275 2276 /* watch "packet transferred" interrupt in rx and tx */ 2277 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2278 ENETDMAC_IR, priv->rx_chan); 2279 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2280 ENETDMAC_IR, priv->tx_chan); 2281 2282 /* make sure we enable napi before rx interrupt */ 2283 napi_enable(&priv->napi); 2284 2285 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2286 ENETDMAC_IRMASK, priv->rx_chan); 2287 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2288 ENETDMAC_IRMASK, priv->tx_chan); 2289 2290 netif_carrier_on(dev); 2291 netif_start_queue(dev); 2292 2293 /* apply override config for bypass_link ports here. */ 2294 for (i = 0; i < priv->num_ports; i++) { 2295 struct bcm63xx_enetsw_port *port; 2296 u8 override; 2297 port = &priv->used_ports[i]; 2298 if (!port->used) 2299 continue; 2300 2301 if (!port->bypass_link) 2302 continue; 2303 2304 override = ENETSW_PORTOV_ENABLE_MASK | 2305 ENETSW_PORTOV_LINKUP_MASK; 2306 2307 switch (port->force_speed) { 2308 case 1000: 2309 override |= ENETSW_IMPOV_1000_MASK; 2310 break; 2311 case 100: 2312 override |= ENETSW_IMPOV_100_MASK; 2313 break; 2314 case 10: 2315 break; 2316 default: 2317 pr_warn("invalid forced speed on port %s: assume 10\n", 2318 port->name); 2319 break; 2320 } 2321 2322 if (port->force_duplex_full) 2323 override |= ENETSW_IMPOV_FDX_MASK; 2324 2325 2326 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2327 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2328 } 2329 2330 /* start phy polling timer */ 2331 init_timer(&priv->swphy_poll); 2332 priv->swphy_poll.function = swphy_poll_timer; 2333 priv->swphy_poll.data = (unsigned long)priv; 2334 priv->swphy_poll.expires = jiffies; 2335 add_timer(&priv->swphy_poll); 2336 return 0; 2337 2338 out: 2339 for (i = 0; i < priv->rx_ring_size; i++) { 2340 struct bcm_enet_desc *desc; 2341 2342 if (!priv->rx_skb[i]) 2343 continue; 2344 2345 desc = &priv->rx_desc_cpu[i]; 2346 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 2347 DMA_FROM_DEVICE); 2348 kfree_skb(priv->rx_skb[i]); 2349 } 2350 kfree(priv->rx_skb); 2351 2352 out_free_tx_skb: 2353 kfree(priv->tx_skb); 2354 2355 out_free_tx_ring: 2356 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2357 priv->tx_desc_cpu, priv->tx_desc_dma); 2358 2359 out_free_rx_ring: 2360 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2361 priv->rx_desc_cpu, priv->rx_desc_dma); 2362 2363 out_freeirq_tx: 2364 if (priv->irq_tx != -1) 2365 free_irq(priv->irq_tx, dev); 2366 2367 out_freeirq_rx: 2368 free_irq(priv->irq_rx, dev); 2369 2370 out_freeirq: 2371 return ret; 2372 } 2373 2374 /* stop callback */ 2375 static int bcm_enetsw_stop(struct net_device *dev) 2376 { 2377 struct bcm_enet_priv *priv; 2378 struct device *kdev; 2379 int i; 2380 2381 priv = netdev_priv(dev); 2382 kdev = &priv->pdev->dev; 2383 2384 del_timer_sync(&priv->swphy_poll); 2385 netif_stop_queue(dev); 2386 napi_disable(&priv->napi); 2387 del_timer_sync(&priv->rx_timeout); 2388 2389 /* mask all interrupts */ 2390 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2391 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2392 2393 /* disable dma & mac */ 2394 bcm_enet_disable_dma(priv, priv->tx_chan); 2395 bcm_enet_disable_dma(priv, priv->rx_chan); 2396 2397 /* force reclaim of all tx buffers */ 2398 bcm_enet_tx_reclaim(dev, 1); 2399 2400 /* free the rx skb ring */ 2401 for (i = 0; i < priv->rx_ring_size; i++) { 2402 struct bcm_enet_desc *desc; 2403 2404 if (!priv->rx_skb[i]) 2405 continue; 2406 2407 desc = &priv->rx_desc_cpu[i]; 2408 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 2409 DMA_FROM_DEVICE); 2410 kfree_skb(priv->rx_skb[i]); 2411 } 2412 2413 /* free remaining allocated memory */ 2414 kfree(priv->rx_skb); 2415 kfree(priv->tx_skb); 2416 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2417 priv->rx_desc_cpu, priv->rx_desc_dma); 2418 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2419 priv->tx_desc_cpu, priv->tx_desc_dma); 2420 if (priv->irq_tx != -1) 2421 free_irq(priv->irq_tx, dev); 2422 free_irq(priv->irq_rx, dev); 2423 2424 return 0; 2425 } 2426 2427 /* try to sort out phy external status by walking the used_port field 2428 * in the bcm_enet_priv structure. in case the phy address is not 2429 * assigned to any physical port on the switch, assume it is external 2430 * (and yell at the user). 2431 */ 2432 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id) 2433 { 2434 int i; 2435 2436 for (i = 0; i < priv->num_ports; ++i) { 2437 if (!priv->used_ports[i].used) 2438 continue; 2439 if (priv->used_ports[i].phy_id == phy_id) 2440 return bcm_enet_port_is_rgmii(i); 2441 } 2442 2443 printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n", 2444 phy_id); 2445 return 1; 2446 } 2447 2448 /* can't use bcmenet_sw_mdio_read directly as we need to sort out 2449 * external/internal status of the given phy_id first. 2450 */ 2451 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id, 2452 int location) 2453 { 2454 struct bcm_enet_priv *priv; 2455 2456 priv = netdev_priv(dev); 2457 return bcmenet_sw_mdio_read(priv, 2458 bcm_enetsw_phy_is_external(priv, phy_id), 2459 phy_id, location); 2460 } 2461 2462 /* can't use bcmenet_sw_mdio_write directly as we need to sort out 2463 * external/internal status of the given phy_id first. 2464 */ 2465 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id, 2466 int location, 2467 int val) 2468 { 2469 struct bcm_enet_priv *priv; 2470 2471 priv = netdev_priv(dev); 2472 bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id), 2473 phy_id, location, val); 2474 } 2475 2476 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2477 { 2478 struct mii_if_info mii; 2479 2480 mii.dev = dev; 2481 mii.mdio_read = bcm_enetsw_mii_mdio_read; 2482 mii.mdio_write = bcm_enetsw_mii_mdio_write; 2483 mii.phy_id = 0; 2484 mii.phy_id_mask = 0x3f; 2485 mii.reg_num_mask = 0x1f; 2486 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 2487 2488 } 2489 2490 static const struct net_device_ops bcm_enetsw_ops = { 2491 .ndo_open = bcm_enetsw_open, 2492 .ndo_stop = bcm_enetsw_stop, 2493 .ndo_start_xmit = bcm_enet_start_xmit, 2494 .ndo_change_mtu = bcm_enet_change_mtu, 2495 .ndo_do_ioctl = bcm_enetsw_ioctl, 2496 }; 2497 2498 2499 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = { 2500 { "rx_packets", DEV_STAT(rx_packets), -1 }, 2501 { "tx_packets", DEV_STAT(tx_packets), -1 }, 2502 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 2503 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 2504 { "rx_errors", DEV_STAT(rx_errors), -1 }, 2505 { "tx_errors", DEV_STAT(tx_errors), -1 }, 2506 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 2507 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 2508 2509 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT }, 2510 { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST }, 2511 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST }, 2512 { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT }, 2513 { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 }, 2514 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 }, 2515 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 }, 2516 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 }, 2517 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023}, 2518 { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max), 2519 ETHSW_MIB_RX_1024_1522 }, 2520 { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047), 2521 ETHSW_MIB_RX_1523_2047 }, 2522 { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095), 2523 ETHSW_MIB_RX_2048_4095 }, 2524 { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191), 2525 ETHSW_MIB_RX_4096_8191 }, 2526 { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728), 2527 ETHSW_MIB_RX_8192_9728 }, 2528 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR }, 2529 { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC }, 2530 { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP }, 2531 { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND }, 2532 { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE }, 2533 2534 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT }, 2535 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST }, 2536 { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT }, 2537 { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT }, 2538 { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE }, 2539 { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS }, 2540 2541 }; 2542 2543 #define BCM_ENETSW_STATS_LEN \ 2544 (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats)) 2545 2546 static void bcm_enetsw_get_strings(struct net_device *netdev, 2547 u32 stringset, u8 *data) 2548 { 2549 int i; 2550 2551 switch (stringset) { 2552 case ETH_SS_STATS: 2553 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2554 memcpy(data + i * ETH_GSTRING_LEN, 2555 bcm_enetsw_gstrings_stats[i].stat_string, 2556 ETH_GSTRING_LEN); 2557 } 2558 break; 2559 } 2560 } 2561 2562 static int bcm_enetsw_get_sset_count(struct net_device *netdev, 2563 int string_set) 2564 { 2565 switch (string_set) { 2566 case ETH_SS_STATS: 2567 return BCM_ENETSW_STATS_LEN; 2568 default: 2569 return -EINVAL; 2570 } 2571 } 2572 2573 static void bcm_enetsw_get_drvinfo(struct net_device *netdev, 2574 struct ethtool_drvinfo *drvinfo) 2575 { 2576 strncpy(drvinfo->driver, bcm_enet_driver_name, 32); 2577 strncpy(drvinfo->version, bcm_enet_driver_version, 32); 2578 strncpy(drvinfo->fw_version, "N/A", 32); 2579 strncpy(drvinfo->bus_info, "bcm63xx", 32); 2580 } 2581 2582 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev, 2583 struct ethtool_stats *stats, 2584 u64 *data) 2585 { 2586 struct bcm_enet_priv *priv; 2587 int i; 2588 2589 priv = netdev_priv(netdev); 2590 2591 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2592 const struct bcm_enet_stats *s; 2593 u32 lo, hi; 2594 char *p; 2595 int reg; 2596 2597 s = &bcm_enetsw_gstrings_stats[i]; 2598 2599 reg = s->mib_reg; 2600 if (reg == -1) 2601 continue; 2602 2603 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg)); 2604 p = (char *)priv + s->stat_offset; 2605 2606 if (s->sizeof_stat == sizeof(u64)) { 2607 hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1)); 2608 *(u64 *)p = ((u64)hi << 32 | lo); 2609 } else { 2610 *(u32 *)p = lo; 2611 } 2612 } 2613 2614 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2615 const struct bcm_enet_stats *s; 2616 char *p; 2617 2618 s = &bcm_enetsw_gstrings_stats[i]; 2619 2620 if (s->mib_reg == -1) 2621 p = (char *)&netdev->stats + s->stat_offset; 2622 else 2623 p = (char *)priv + s->stat_offset; 2624 2625 data[i] = (s->sizeof_stat == sizeof(u64)) ? 2626 *(u64 *)p : *(u32 *)p; 2627 } 2628 } 2629 2630 static void bcm_enetsw_get_ringparam(struct net_device *dev, 2631 struct ethtool_ringparam *ering) 2632 { 2633 struct bcm_enet_priv *priv; 2634 2635 priv = netdev_priv(dev); 2636 2637 /* rx/tx ring is actually only limited by memory */ 2638 ering->rx_max_pending = 8192; 2639 ering->tx_max_pending = 8192; 2640 ering->rx_mini_max_pending = 0; 2641 ering->rx_jumbo_max_pending = 0; 2642 ering->rx_pending = priv->rx_ring_size; 2643 ering->tx_pending = priv->tx_ring_size; 2644 } 2645 2646 static int bcm_enetsw_set_ringparam(struct net_device *dev, 2647 struct ethtool_ringparam *ering) 2648 { 2649 struct bcm_enet_priv *priv; 2650 int was_running; 2651 2652 priv = netdev_priv(dev); 2653 2654 was_running = 0; 2655 if (netif_running(dev)) { 2656 bcm_enetsw_stop(dev); 2657 was_running = 1; 2658 } 2659 2660 priv->rx_ring_size = ering->rx_pending; 2661 priv->tx_ring_size = ering->tx_pending; 2662 2663 if (was_running) { 2664 int err; 2665 2666 err = bcm_enetsw_open(dev); 2667 if (err) 2668 dev_close(dev); 2669 } 2670 return 0; 2671 } 2672 2673 static struct ethtool_ops bcm_enetsw_ethtool_ops = { 2674 .get_strings = bcm_enetsw_get_strings, 2675 .get_sset_count = bcm_enetsw_get_sset_count, 2676 .get_ethtool_stats = bcm_enetsw_get_ethtool_stats, 2677 .get_drvinfo = bcm_enetsw_get_drvinfo, 2678 .get_ringparam = bcm_enetsw_get_ringparam, 2679 .set_ringparam = bcm_enetsw_set_ringparam, 2680 }; 2681 2682 /* allocate netdevice, request register memory and register device. */ 2683 static int bcm_enetsw_probe(struct platform_device *pdev) 2684 { 2685 struct bcm_enet_priv *priv; 2686 struct net_device *dev; 2687 struct bcm63xx_enetsw_platform_data *pd; 2688 struct resource *res_mem; 2689 int ret, irq_rx, irq_tx; 2690 2691 /* stop if shared driver failed, assume driver->probe will be 2692 * called in the same order we register devices (correct ?) 2693 */ 2694 if (!bcm_enet_shared_base[0]) 2695 return -ENODEV; 2696 2697 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2698 irq_rx = platform_get_irq(pdev, 0); 2699 irq_tx = platform_get_irq(pdev, 1); 2700 if (!res_mem || irq_rx < 0) 2701 return -ENODEV; 2702 2703 ret = 0; 2704 dev = alloc_etherdev(sizeof(*priv)); 2705 if (!dev) 2706 return -ENOMEM; 2707 priv = netdev_priv(dev); 2708 memset(priv, 0, sizeof(*priv)); 2709 2710 /* initialize default and fetch platform data */ 2711 priv->enet_is_sw = true; 2712 priv->irq_rx = irq_rx; 2713 priv->irq_tx = irq_tx; 2714 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 2715 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 2716 priv->dma_maxburst = BCMENETSW_DMA_MAXBURST; 2717 2718 pd = dev_get_platdata(&pdev->dev); 2719 if (pd) { 2720 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 2721 memcpy(priv->used_ports, pd->used_ports, 2722 sizeof(pd->used_ports)); 2723 priv->num_ports = pd->num_ports; 2724 priv->dma_has_sram = pd->dma_has_sram; 2725 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 2726 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 2727 priv->dma_chan_width = pd->dma_chan_width; 2728 } 2729 2730 ret = bcm_enet_change_mtu(dev, dev->mtu); 2731 if (ret) 2732 goto out; 2733 2734 if (!request_mem_region(res_mem->start, resource_size(res_mem), 2735 "bcm63xx_enetsw")) { 2736 ret = -EBUSY; 2737 goto out; 2738 } 2739 2740 priv->base = ioremap(res_mem->start, resource_size(res_mem)); 2741 if (priv->base == NULL) { 2742 ret = -ENOMEM; 2743 goto out_release_mem; 2744 } 2745 2746 priv->mac_clk = clk_get(&pdev->dev, "enetsw"); 2747 if (IS_ERR(priv->mac_clk)) { 2748 ret = PTR_ERR(priv->mac_clk); 2749 goto out_unmap; 2750 } 2751 clk_enable(priv->mac_clk); 2752 2753 priv->rx_chan = 0; 2754 priv->tx_chan = 1; 2755 spin_lock_init(&priv->rx_lock); 2756 2757 /* init rx timeout (used for oom) */ 2758 init_timer(&priv->rx_timeout); 2759 priv->rx_timeout.function = bcm_enet_refill_rx_timer; 2760 priv->rx_timeout.data = (unsigned long)dev; 2761 2762 /* register netdevice */ 2763 dev->netdev_ops = &bcm_enetsw_ops; 2764 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 2765 dev->ethtool_ops = &bcm_enetsw_ethtool_ops; 2766 SET_NETDEV_DEV(dev, &pdev->dev); 2767 2768 spin_lock_init(&priv->enetsw_mdio_lock); 2769 2770 ret = register_netdev(dev); 2771 if (ret) 2772 goto out_put_clk; 2773 2774 netif_carrier_off(dev); 2775 platform_set_drvdata(pdev, dev); 2776 priv->pdev = pdev; 2777 priv->net_dev = dev; 2778 2779 return 0; 2780 2781 out_put_clk: 2782 clk_put(priv->mac_clk); 2783 2784 out_unmap: 2785 iounmap(priv->base); 2786 2787 out_release_mem: 2788 release_mem_region(res_mem->start, resource_size(res_mem)); 2789 out: 2790 free_netdev(dev); 2791 return ret; 2792 } 2793 2794 2795 /* exit func, stops hardware and unregisters netdevice */ 2796 static int bcm_enetsw_remove(struct platform_device *pdev) 2797 { 2798 struct bcm_enet_priv *priv; 2799 struct net_device *dev; 2800 struct resource *res; 2801 2802 /* stop netdevice */ 2803 dev = platform_get_drvdata(pdev); 2804 priv = netdev_priv(dev); 2805 unregister_netdev(dev); 2806 2807 /* release device resources */ 2808 iounmap(priv->base); 2809 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2810 release_mem_region(res->start, resource_size(res)); 2811 2812 free_netdev(dev); 2813 return 0; 2814 } 2815 2816 struct platform_driver bcm63xx_enetsw_driver = { 2817 .probe = bcm_enetsw_probe, 2818 .remove = bcm_enetsw_remove, 2819 .driver = { 2820 .name = "bcm63xx_enetsw", 2821 .owner = THIS_MODULE, 2822 }, 2823 }; 2824 2825 /* reserve & remap memory space shared between all macs */ 2826 static int bcm_enet_shared_probe(struct platform_device *pdev) 2827 { 2828 struct resource *res; 2829 void __iomem *p[3]; 2830 unsigned int i; 2831 2832 memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base)); 2833 2834 for (i = 0; i < 3; i++) { 2835 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 2836 p[i] = devm_ioremap_resource(&pdev->dev, res); 2837 if (IS_ERR(p[i])) 2838 return PTR_ERR(p[i]); 2839 } 2840 2841 memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base)); 2842 2843 return 0; 2844 } 2845 2846 static int bcm_enet_shared_remove(struct platform_device *pdev) 2847 { 2848 return 0; 2849 } 2850 2851 /* this "shared" driver is needed because both macs share a single 2852 * address space 2853 */ 2854 struct platform_driver bcm63xx_enet_shared_driver = { 2855 .probe = bcm_enet_shared_probe, 2856 .remove = bcm_enet_shared_remove, 2857 .driver = { 2858 .name = "bcm63xx_enet_shared", 2859 .owner = THIS_MODULE, 2860 }, 2861 }; 2862 2863 static struct platform_driver * const drivers[] = { 2864 &bcm63xx_enet_shared_driver, 2865 &bcm63xx_enet_driver, 2866 &bcm63xx_enetsw_driver, 2867 }; 2868 2869 /* entry point */ 2870 static int __init bcm_enet_init(void) 2871 { 2872 return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); 2873 } 2874 2875 static void __exit bcm_enet_exit(void) 2876 { 2877 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); 2878 } 2879 2880 2881 module_init(bcm_enet_init); 2882 module_exit(bcm_enet_exit); 2883 2884 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver"); 2885 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>"); 2886 MODULE_LICENSE("GPL"); 2887