1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for BCM963xx builtin Ethernet mac 4 * 5 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr> 6 */ 7 #include <linux/init.h> 8 #include <linux/interrupt.h> 9 #include <linux/module.h> 10 #include <linux/clk.h> 11 #include <linux/etherdevice.h> 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/ethtool.h> 15 #include <linux/crc32.h> 16 #include <linux/err.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/platform_device.h> 19 #include <linux/if_vlan.h> 20 21 #include <bcm63xx_dev_enet.h> 22 #include "bcm63xx_enet.h" 23 24 static char bcm_enet_driver_name[] = "bcm63xx_enet"; 25 26 static int copybreak __read_mostly = 128; 27 module_param(copybreak, int, 0); 28 MODULE_PARM_DESC(copybreak, "Receive copy threshold"); 29 30 /* io registers memory shared between all devices */ 31 static void __iomem *bcm_enet_shared_base[3]; 32 33 /* 34 * io helpers to access mac registers 35 */ 36 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off) 37 { 38 return bcm_readl(priv->base + off); 39 } 40 41 static inline void enet_writel(struct bcm_enet_priv *priv, 42 u32 val, u32 off) 43 { 44 bcm_writel(val, priv->base + off); 45 } 46 47 /* 48 * io helpers to access switch registers 49 */ 50 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off) 51 { 52 return bcm_readl(priv->base + off); 53 } 54 55 static inline void enetsw_writel(struct bcm_enet_priv *priv, 56 u32 val, u32 off) 57 { 58 bcm_writel(val, priv->base + off); 59 } 60 61 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off) 62 { 63 return bcm_readw(priv->base + off); 64 } 65 66 static inline void enetsw_writew(struct bcm_enet_priv *priv, 67 u16 val, u32 off) 68 { 69 bcm_writew(val, priv->base + off); 70 } 71 72 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off) 73 { 74 return bcm_readb(priv->base + off); 75 } 76 77 static inline void enetsw_writeb(struct bcm_enet_priv *priv, 78 u8 val, u32 off) 79 { 80 bcm_writeb(val, priv->base + off); 81 } 82 83 84 /* io helpers to access shared registers */ 85 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off) 86 { 87 return bcm_readl(bcm_enet_shared_base[0] + off); 88 } 89 90 static inline void enet_dma_writel(struct bcm_enet_priv *priv, 91 u32 val, u32 off) 92 { 93 bcm_writel(val, bcm_enet_shared_base[0] + off); 94 } 95 96 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan) 97 { 98 return bcm_readl(bcm_enet_shared_base[1] + 99 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 100 } 101 102 static inline void enet_dmac_writel(struct bcm_enet_priv *priv, 103 u32 val, u32 off, int chan) 104 { 105 bcm_writel(val, bcm_enet_shared_base[1] + 106 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 107 } 108 109 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan) 110 { 111 return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 112 } 113 114 static inline void enet_dmas_writel(struct bcm_enet_priv *priv, 115 u32 val, u32 off, int chan) 116 { 117 bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 118 } 119 120 /* 121 * write given data into mii register and wait for transfer to end 122 * with timeout (average measured transfer time is 25us) 123 */ 124 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data) 125 { 126 int limit; 127 128 /* make sure mii interrupt status is cleared */ 129 enet_writel(priv, ENET_IR_MII, ENET_IR_REG); 130 131 enet_writel(priv, data, ENET_MIIDATA_REG); 132 wmb(); 133 134 /* busy wait on mii interrupt bit, with timeout */ 135 limit = 1000; 136 do { 137 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII) 138 break; 139 udelay(1); 140 } while (limit-- > 0); 141 142 return (limit < 0) ? 1 : 0; 143 } 144 145 /* 146 * MII internal read callback 147 */ 148 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id, 149 int regnum) 150 { 151 u32 tmp, val; 152 153 tmp = regnum << ENET_MIIDATA_REG_SHIFT; 154 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 155 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 156 tmp |= ENET_MIIDATA_OP_READ_MASK; 157 158 if (do_mdio_op(priv, tmp)) 159 return -1; 160 161 val = enet_readl(priv, ENET_MIIDATA_REG); 162 val &= 0xffff; 163 return val; 164 } 165 166 /* 167 * MII internal write callback 168 */ 169 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id, 170 int regnum, u16 value) 171 { 172 u32 tmp; 173 174 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT; 175 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 176 tmp |= regnum << ENET_MIIDATA_REG_SHIFT; 177 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 178 tmp |= ENET_MIIDATA_OP_WRITE_MASK; 179 180 (void)do_mdio_op(priv, tmp); 181 return 0; 182 } 183 184 /* 185 * MII read callback from phylib 186 */ 187 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id, 188 int regnum) 189 { 190 return bcm_enet_mdio_read(bus->priv, mii_id, regnum); 191 } 192 193 /* 194 * MII write callback from phylib 195 */ 196 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id, 197 int regnum, u16 value) 198 { 199 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value); 200 } 201 202 /* 203 * MII read callback from mii core 204 */ 205 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id, 206 int regnum) 207 { 208 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum); 209 } 210 211 /* 212 * MII write callback from mii core 213 */ 214 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id, 215 int regnum, int value) 216 { 217 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value); 218 } 219 220 /* 221 * refill rx queue 222 */ 223 static int bcm_enet_refill_rx(struct net_device *dev, bool napi_mode) 224 { 225 struct bcm_enet_priv *priv; 226 227 priv = netdev_priv(dev); 228 229 while (priv->rx_desc_count < priv->rx_ring_size) { 230 struct bcm_enet_desc *desc; 231 int desc_idx; 232 u32 len_stat; 233 234 desc_idx = priv->rx_dirty_desc; 235 desc = &priv->rx_desc_cpu[desc_idx]; 236 237 if (!priv->rx_buf[desc_idx]) { 238 void *buf; 239 240 if (likely(napi_mode)) 241 buf = napi_alloc_frag(priv->rx_frag_size); 242 else 243 buf = netdev_alloc_frag(priv->rx_frag_size); 244 if (unlikely(!buf)) 245 break; 246 priv->rx_buf[desc_idx] = buf; 247 desc->address = dma_map_single(&priv->pdev->dev, 248 buf + priv->rx_buf_offset, 249 priv->rx_buf_size, 250 DMA_FROM_DEVICE); 251 } 252 253 len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT; 254 len_stat |= DMADESC_OWNER_MASK; 255 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) { 256 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 257 priv->rx_dirty_desc = 0; 258 } else { 259 priv->rx_dirty_desc++; 260 } 261 wmb(); 262 desc->len_stat = len_stat; 263 264 priv->rx_desc_count++; 265 266 /* tell dma engine we allocated one buffer */ 267 if (priv->dma_has_sram) 268 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan)); 269 else 270 enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan); 271 } 272 273 /* If rx ring is still empty, set a timer to try allocating 274 * again at a later time. */ 275 if (priv->rx_desc_count == 0 && netif_running(dev)) { 276 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n"); 277 priv->rx_timeout.expires = jiffies + HZ; 278 add_timer(&priv->rx_timeout); 279 } 280 281 return 0; 282 } 283 284 /* 285 * timer callback to defer refill rx queue in case we're OOM 286 */ 287 static void bcm_enet_refill_rx_timer(struct timer_list *t) 288 { 289 struct bcm_enet_priv *priv = from_timer(priv, t, rx_timeout); 290 struct net_device *dev = priv->net_dev; 291 292 spin_lock(&priv->rx_lock); 293 bcm_enet_refill_rx(dev, false); 294 spin_unlock(&priv->rx_lock); 295 } 296 297 /* 298 * extract packet from rx queue 299 */ 300 static int bcm_enet_receive_queue(struct net_device *dev, int budget) 301 { 302 struct bcm_enet_priv *priv; 303 struct list_head rx_list; 304 struct device *kdev; 305 int processed; 306 307 priv = netdev_priv(dev); 308 INIT_LIST_HEAD(&rx_list); 309 kdev = &priv->pdev->dev; 310 processed = 0; 311 312 /* don't scan ring further than number of refilled 313 * descriptor */ 314 if (budget > priv->rx_desc_count) 315 budget = priv->rx_desc_count; 316 317 do { 318 struct bcm_enet_desc *desc; 319 struct sk_buff *skb; 320 int desc_idx; 321 u32 len_stat; 322 unsigned int len; 323 void *buf; 324 325 desc_idx = priv->rx_curr_desc; 326 desc = &priv->rx_desc_cpu[desc_idx]; 327 328 /* make sure we actually read the descriptor status at 329 * each loop */ 330 rmb(); 331 332 len_stat = desc->len_stat; 333 334 /* break if dma ownership belongs to hw */ 335 if (len_stat & DMADESC_OWNER_MASK) 336 break; 337 338 processed++; 339 priv->rx_curr_desc++; 340 if (priv->rx_curr_desc == priv->rx_ring_size) 341 priv->rx_curr_desc = 0; 342 343 /* if the packet does not have start of packet _and_ 344 * end of packet flag set, then just recycle it */ 345 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) != 346 (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) { 347 dev->stats.rx_dropped++; 348 continue; 349 } 350 351 /* recycle packet if it's marked as bad */ 352 if (!priv->enet_is_sw && 353 unlikely(len_stat & DMADESC_ERR_MASK)) { 354 dev->stats.rx_errors++; 355 356 if (len_stat & DMADESC_OVSIZE_MASK) 357 dev->stats.rx_length_errors++; 358 if (len_stat & DMADESC_CRC_MASK) 359 dev->stats.rx_crc_errors++; 360 if (len_stat & DMADESC_UNDER_MASK) 361 dev->stats.rx_frame_errors++; 362 if (len_stat & DMADESC_OV_MASK) 363 dev->stats.rx_fifo_errors++; 364 continue; 365 } 366 367 /* valid packet */ 368 buf = priv->rx_buf[desc_idx]; 369 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT; 370 /* don't include FCS */ 371 len -= 4; 372 373 if (len < copybreak) { 374 skb = napi_alloc_skb(&priv->napi, len); 375 if (unlikely(!skb)) { 376 /* forget packet, just rearm desc */ 377 dev->stats.rx_dropped++; 378 continue; 379 } 380 381 dma_sync_single_for_cpu(kdev, desc->address, 382 len, DMA_FROM_DEVICE); 383 memcpy(skb->data, buf + priv->rx_buf_offset, len); 384 dma_sync_single_for_device(kdev, desc->address, 385 len, DMA_FROM_DEVICE); 386 } else { 387 dma_unmap_single(kdev, desc->address, 388 priv->rx_buf_size, DMA_FROM_DEVICE); 389 priv->rx_buf[desc_idx] = NULL; 390 391 skb = napi_build_skb(buf, priv->rx_frag_size); 392 if (unlikely(!skb)) { 393 skb_free_frag(buf); 394 dev->stats.rx_dropped++; 395 continue; 396 } 397 skb_reserve(skb, priv->rx_buf_offset); 398 } 399 400 skb_put(skb, len); 401 skb->protocol = eth_type_trans(skb, dev); 402 dev->stats.rx_packets++; 403 dev->stats.rx_bytes += len; 404 list_add_tail(&skb->list, &rx_list); 405 406 } while (processed < budget); 407 408 netif_receive_skb_list(&rx_list); 409 priv->rx_desc_count -= processed; 410 411 if (processed || !priv->rx_desc_count) { 412 bcm_enet_refill_rx(dev, true); 413 414 /* kick rx dma */ 415 enet_dmac_writel(priv, priv->dma_chan_en_mask, 416 ENETDMAC_CHANCFG, priv->rx_chan); 417 } 418 419 return processed; 420 } 421 422 423 /* 424 * try to or force reclaim of transmitted buffers 425 */ 426 static int bcm_enet_tx_reclaim(struct net_device *dev, int force, int budget) 427 { 428 struct bcm_enet_priv *priv; 429 unsigned int bytes; 430 int released; 431 432 priv = netdev_priv(dev); 433 bytes = 0; 434 released = 0; 435 436 while (priv->tx_desc_count < priv->tx_ring_size) { 437 struct bcm_enet_desc *desc; 438 struct sk_buff *skb; 439 440 /* We run in a bh and fight against start_xmit, which 441 * is called with bh disabled */ 442 spin_lock(&priv->tx_lock); 443 444 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc]; 445 446 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) { 447 spin_unlock(&priv->tx_lock); 448 break; 449 } 450 451 /* ensure other field of the descriptor were not read 452 * before we checked ownership */ 453 rmb(); 454 455 skb = priv->tx_skb[priv->tx_dirty_desc]; 456 priv->tx_skb[priv->tx_dirty_desc] = NULL; 457 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len, 458 DMA_TO_DEVICE); 459 460 priv->tx_dirty_desc++; 461 if (priv->tx_dirty_desc == priv->tx_ring_size) 462 priv->tx_dirty_desc = 0; 463 priv->tx_desc_count++; 464 465 spin_unlock(&priv->tx_lock); 466 467 if (desc->len_stat & DMADESC_UNDER_MASK) 468 dev->stats.tx_errors++; 469 470 bytes += skb->len; 471 napi_consume_skb(skb, budget); 472 released++; 473 } 474 475 netdev_completed_queue(dev, released, bytes); 476 477 if (netif_queue_stopped(dev) && released) 478 netif_wake_queue(dev); 479 480 return released; 481 } 482 483 /* 484 * poll func, called by network core 485 */ 486 static int bcm_enet_poll(struct napi_struct *napi, int budget) 487 { 488 struct bcm_enet_priv *priv; 489 struct net_device *dev; 490 int rx_work_done; 491 492 priv = container_of(napi, struct bcm_enet_priv, napi); 493 dev = priv->net_dev; 494 495 /* ack interrupts */ 496 enet_dmac_writel(priv, priv->dma_chan_int_mask, 497 ENETDMAC_IR, priv->rx_chan); 498 enet_dmac_writel(priv, priv->dma_chan_int_mask, 499 ENETDMAC_IR, priv->tx_chan); 500 501 /* reclaim sent skb */ 502 bcm_enet_tx_reclaim(dev, 0, budget); 503 504 spin_lock(&priv->rx_lock); 505 rx_work_done = bcm_enet_receive_queue(dev, budget); 506 spin_unlock(&priv->rx_lock); 507 508 if (rx_work_done >= budget) { 509 /* rx queue is not yet empty/clean */ 510 return rx_work_done; 511 } 512 513 /* no more packet in rx/tx queue, remove device from poll 514 * queue */ 515 napi_complete_done(napi, rx_work_done); 516 517 /* restore rx/tx interrupt */ 518 enet_dmac_writel(priv, priv->dma_chan_int_mask, 519 ENETDMAC_IRMASK, priv->rx_chan); 520 enet_dmac_writel(priv, priv->dma_chan_int_mask, 521 ENETDMAC_IRMASK, priv->tx_chan); 522 523 return rx_work_done; 524 } 525 526 /* 527 * mac interrupt handler 528 */ 529 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id) 530 { 531 struct net_device *dev; 532 struct bcm_enet_priv *priv; 533 u32 stat; 534 535 dev = dev_id; 536 priv = netdev_priv(dev); 537 538 stat = enet_readl(priv, ENET_IR_REG); 539 if (!(stat & ENET_IR_MIB)) 540 return IRQ_NONE; 541 542 /* clear & mask interrupt */ 543 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 544 enet_writel(priv, 0, ENET_IRMASK_REG); 545 546 /* read mib registers in workqueue */ 547 schedule_work(&priv->mib_update_task); 548 549 return IRQ_HANDLED; 550 } 551 552 /* 553 * rx/tx dma interrupt handler 554 */ 555 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id) 556 { 557 struct net_device *dev; 558 struct bcm_enet_priv *priv; 559 560 dev = dev_id; 561 priv = netdev_priv(dev); 562 563 /* mask rx/tx interrupts */ 564 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 565 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 566 567 napi_schedule(&priv->napi); 568 569 return IRQ_HANDLED; 570 } 571 572 /* 573 * tx request callback 574 */ 575 static netdev_tx_t 576 bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 577 { 578 struct bcm_enet_priv *priv; 579 struct bcm_enet_desc *desc; 580 u32 len_stat; 581 netdev_tx_t ret; 582 583 priv = netdev_priv(dev); 584 585 /* lock against tx reclaim */ 586 spin_lock(&priv->tx_lock); 587 588 /* make sure the tx hw queue is not full, should not happen 589 * since we stop queue before it's the case */ 590 if (unlikely(!priv->tx_desc_count)) { 591 netif_stop_queue(dev); 592 dev_err(&priv->pdev->dev, "xmit called with no tx desc " 593 "available?\n"); 594 ret = NETDEV_TX_BUSY; 595 goto out_unlock; 596 } 597 598 /* pad small packets sent on a switch device */ 599 if (priv->enet_is_sw && skb->len < 64) { 600 int needed = 64 - skb->len; 601 char *data; 602 603 if (unlikely(skb_tailroom(skb) < needed)) { 604 struct sk_buff *nskb; 605 606 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC); 607 if (!nskb) { 608 ret = NETDEV_TX_BUSY; 609 goto out_unlock; 610 } 611 dev_kfree_skb(skb); 612 skb = nskb; 613 } 614 data = skb_put_zero(skb, needed); 615 } 616 617 /* point to the next available desc */ 618 desc = &priv->tx_desc_cpu[priv->tx_curr_desc]; 619 priv->tx_skb[priv->tx_curr_desc] = skb; 620 621 /* fill descriptor */ 622 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len, 623 DMA_TO_DEVICE); 624 625 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK; 626 len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) | 627 DMADESC_APPEND_CRC | 628 DMADESC_OWNER_MASK; 629 630 priv->tx_curr_desc++; 631 if (priv->tx_curr_desc == priv->tx_ring_size) { 632 priv->tx_curr_desc = 0; 633 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 634 } 635 priv->tx_desc_count--; 636 637 /* dma might be already polling, make sure we update desc 638 * fields in correct order */ 639 wmb(); 640 desc->len_stat = len_stat; 641 wmb(); 642 643 netdev_sent_queue(dev, skb->len); 644 645 /* kick tx dma */ 646 if (!netdev_xmit_more() || !priv->tx_desc_count) 647 enet_dmac_writel(priv, priv->dma_chan_en_mask, 648 ENETDMAC_CHANCFG, priv->tx_chan); 649 650 /* stop queue if no more desc available */ 651 if (!priv->tx_desc_count) 652 netif_stop_queue(dev); 653 654 dev->stats.tx_bytes += skb->len; 655 dev->stats.tx_packets++; 656 ret = NETDEV_TX_OK; 657 658 out_unlock: 659 spin_unlock(&priv->tx_lock); 660 return ret; 661 } 662 663 /* 664 * Change the interface's mac address. 665 */ 666 static int bcm_enet_set_mac_address(struct net_device *dev, void *p) 667 { 668 struct bcm_enet_priv *priv; 669 struct sockaddr *addr = p; 670 u32 val; 671 672 priv = netdev_priv(dev); 673 eth_hw_addr_set(dev, addr->sa_data); 674 675 /* use perfect match register 0 to store my mac address */ 676 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) | 677 (dev->dev_addr[4] << 8) | dev->dev_addr[5]; 678 enet_writel(priv, val, ENET_PML_REG(0)); 679 680 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]); 681 val |= ENET_PMH_DATAVALID_MASK; 682 enet_writel(priv, val, ENET_PMH_REG(0)); 683 684 return 0; 685 } 686 687 /* 688 * Change rx mode (promiscuous/allmulti) and update multicast list 689 */ 690 static void bcm_enet_set_multicast_list(struct net_device *dev) 691 { 692 struct bcm_enet_priv *priv; 693 struct netdev_hw_addr *ha; 694 u32 val; 695 int i; 696 697 priv = netdev_priv(dev); 698 699 val = enet_readl(priv, ENET_RXCFG_REG); 700 701 if (dev->flags & IFF_PROMISC) 702 val |= ENET_RXCFG_PROMISC_MASK; 703 else 704 val &= ~ENET_RXCFG_PROMISC_MASK; 705 706 /* only 3 perfect match registers left, first one is used for 707 * own mac address */ 708 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3) 709 val |= ENET_RXCFG_ALLMCAST_MASK; 710 else 711 val &= ~ENET_RXCFG_ALLMCAST_MASK; 712 713 /* no need to set perfect match registers if we catch all 714 * multicast */ 715 if (val & ENET_RXCFG_ALLMCAST_MASK) { 716 enet_writel(priv, val, ENET_RXCFG_REG); 717 return; 718 } 719 720 i = 0; 721 netdev_for_each_mc_addr(ha, dev) { 722 u8 *dmi_addr; 723 u32 tmp; 724 725 if (i == 3) 726 break; 727 /* update perfect match registers */ 728 dmi_addr = ha->addr; 729 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) | 730 (dmi_addr[4] << 8) | dmi_addr[5]; 731 enet_writel(priv, tmp, ENET_PML_REG(i + 1)); 732 733 tmp = (dmi_addr[0] << 8 | dmi_addr[1]); 734 tmp |= ENET_PMH_DATAVALID_MASK; 735 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1)); 736 } 737 738 for (; i < 3; i++) { 739 enet_writel(priv, 0, ENET_PML_REG(i + 1)); 740 enet_writel(priv, 0, ENET_PMH_REG(i + 1)); 741 } 742 743 enet_writel(priv, val, ENET_RXCFG_REG); 744 } 745 746 /* 747 * set mac duplex parameters 748 */ 749 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex) 750 { 751 u32 val; 752 753 val = enet_readl(priv, ENET_TXCTL_REG); 754 if (fullduplex) 755 val |= ENET_TXCTL_FD_MASK; 756 else 757 val &= ~ENET_TXCTL_FD_MASK; 758 enet_writel(priv, val, ENET_TXCTL_REG); 759 } 760 761 /* 762 * set mac flow control parameters 763 */ 764 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en) 765 { 766 u32 val; 767 768 /* rx flow control (pause frame handling) */ 769 val = enet_readl(priv, ENET_RXCFG_REG); 770 if (rx_en) 771 val |= ENET_RXCFG_ENFLOW_MASK; 772 else 773 val &= ~ENET_RXCFG_ENFLOW_MASK; 774 enet_writel(priv, val, ENET_RXCFG_REG); 775 776 if (!priv->dma_has_sram) 777 return; 778 779 /* tx flow control (pause frame generation) */ 780 val = enet_dma_readl(priv, ENETDMA_CFG_REG); 781 if (tx_en) 782 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 783 else 784 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 785 enet_dma_writel(priv, val, ENETDMA_CFG_REG); 786 } 787 788 /* 789 * link changed callback (from phylib) 790 */ 791 static void bcm_enet_adjust_phy_link(struct net_device *dev) 792 { 793 struct bcm_enet_priv *priv; 794 struct phy_device *phydev; 795 int status_changed; 796 797 priv = netdev_priv(dev); 798 phydev = dev->phydev; 799 status_changed = 0; 800 801 if (priv->old_link != phydev->link) { 802 status_changed = 1; 803 priv->old_link = phydev->link; 804 } 805 806 /* reflect duplex change in mac configuration */ 807 if (phydev->link && phydev->duplex != priv->old_duplex) { 808 bcm_enet_set_duplex(priv, 809 (phydev->duplex == DUPLEX_FULL) ? 1 : 0); 810 status_changed = 1; 811 priv->old_duplex = phydev->duplex; 812 } 813 814 /* enable flow control if remote advertise it (trust phylib to 815 * check that duplex is full */ 816 if (phydev->link && phydev->pause != priv->old_pause) { 817 int rx_pause_en, tx_pause_en; 818 819 if (phydev->pause) { 820 /* pause was advertised by lpa and us */ 821 rx_pause_en = 1; 822 tx_pause_en = 1; 823 } else if (!priv->pause_auto) { 824 /* pause setting overridden by user */ 825 rx_pause_en = priv->pause_rx; 826 tx_pause_en = priv->pause_tx; 827 } else { 828 rx_pause_en = 0; 829 tx_pause_en = 0; 830 } 831 832 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en); 833 status_changed = 1; 834 priv->old_pause = phydev->pause; 835 } 836 837 if (status_changed) { 838 pr_info("%s: link %s", dev->name, phydev->link ? 839 "UP" : "DOWN"); 840 if (phydev->link) 841 pr_cont(" - %d/%s - flow control %s", phydev->speed, 842 DUPLEX_FULL == phydev->duplex ? "full" : "half", 843 phydev->pause == 1 ? "rx&tx" : "off"); 844 845 pr_cont("\n"); 846 } 847 } 848 849 /* 850 * link changed callback (if phylib is not used) 851 */ 852 static void bcm_enet_adjust_link(struct net_device *dev) 853 { 854 struct bcm_enet_priv *priv; 855 856 priv = netdev_priv(dev); 857 bcm_enet_set_duplex(priv, priv->force_duplex_full); 858 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx); 859 netif_carrier_on(dev); 860 861 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n", 862 dev->name, 863 priv->force_speed_100 ? 100 : 10, 864 priv->force_duplex_full ? "full" : "half", 865 priv->pause_rx ? "rx" : "off", 866 priv->pause_tx ? "tx" : "off"); 867 } 868 869 static void bcm_enet_free_rx_buf_ring(struct device *kdev, struct bcm_enet_priv *priv) 870 { 871 int i; 872 873 for (i = 0; i < priv->rx_ring_size; i++) { 874 struct bcm_enet_desc *desc; 875 876 if (!priv->rx_buf[i]) 877 continue; 878 879 desc = &priv->rx_desc_cpu[i]; 880 dma_unmap_single(kdev, desc->address, priv->rx_buf_size, 881 DMA_FROM_DEVICE); 882 skb_free_frag(priv->rx_buf[i]); 883 } 884 kfree(priv->rx_buf); 885 } 886 887 /* 888 * open callback, allocate dma rings & buffers and start rx operation 889 */ 890 static int bcm_enet_open(struct net_device *dev) 891 { 892 struct bcm_enet_priv *priv; 893 struct sockaddr addr; 894 struct device *kdev; 895 struct phy_device *phydev; 896 int i, ret; 897 unsigned int size; 898 char phy_id[MII_BUS_ID_SIZE + 3]; 899 void *p; 900 u32 val; 901 902 priv = netdev_priv(dev); 903 kdev = &priv->pdev->dev; 904 905 if (priv->has_phy) { 906 /* connect to PHY */ 907 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 908 priv->mii_bus->id, priv->phy_id); 909 910 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link, 911 PHY_INTERFACE_MODE_MII); 912 913 if (IS_ERR(phydev)) { 914 dev_err(kdev, "could not attach to PHY\n"); 915 return PTR_ERR(phydev); 916 } 917 918 /* mask with MAC supported features */ 919 phy_support_sym_pause(phydev); 920 phy_set_max_speed(phydev, SPEED_100); 921 phy_set_sym_pause(phydev, priv->pause_rx, priv->pause_rx, 922 priv->pause_auto); 923 924 phy_attached_info(phydev); 925 926 priv->old_link = 0; 927 priv->old_duplex = -1; 928 priv->old_pause = -1; 929 } else { 930 phydev = NULL; 931 } 932 933 /* mask all interrupts and request them */ 934 enet_writel(priv, 0, ENET_IRMASK_REG); 935 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 936 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 937 938 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev); 939 if (ret) 940 goto out_phy_disconnect; 941 942 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0, 943 dev->name, dev); 944 if (ret) 945 goto out_freeirq; 946 947 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 948 0, dev->name, dev); 949 if (ret) 950 goto out_freeirq_rx; 951 952 /* initialize perfect match registers */ 953 for (i = 0; i < 4; i++) { 954 enet_writel(priv, 0, ENET_PML_REG(i)); 955 enet_writel(priv, 0, ENET_PMH_REG(i)); 956 } 957 958 /* write device mac address */ 959 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN); 960 bcm_enet_set_mac_address(dev, &addr); 961 962 /* allocate rx dma ring */ 963 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 964 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 965 if (!p) { 966 ret = -ENOMEM; 967 goto out_freeirq_tx; 968 } 969 970 priv->rx_desc_alloc_size = size; 971 priv->rx_desc_cpu = p; 972 973 /* allocate tx dma ring */ 974 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 975 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 976 if (!p) { 977 ret = -ENOMEM; 978 goto out_free_rx_ring; 979 } 980 981 priv->tx_desc_alloc_size = size; 982 priv->tx_desc_cpu = p; 983 984 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *), 985 GFP_KERNEL); 986 if (!priv->tx_skb) { 987 ret = -ENOMEM; 988 goto out_free_tx_ring; 989 } 990 991 priv->tx_desc_count = priv->tx_ring_size; 992 priv->tx_dirty_desc = 0; 993 priv->tx_curr_desc = 0; 994 spin_lock_init(&priv->tx_lock); 995 996 /* init & fill rx ring with buffers */ 997 priv->rx_buf = kcalloc(priv->rx_ring_size, sizeof(void *), 998 GFP_KERNEL); 999 if (!priv->rx_buf) { 1000 ret = -ENOMEM; 1001 goto out_free_tx_skb; 1002 } 1003 1004 priv->rx_desc_count = 0; 1005 priv->rx_dirty_desc = 0; 1006 priv->rx_curr_desc = 0; 1007 1008 /* initialize flow control buffer allocation */ 1009 if (priv->dma_has_sram) 1010 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 1011 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 1012 else 1013 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 1014 ENETDMAC_BUFALLOC, priv->rx_chan); 1015 1016 if (bcm_enet_refill_rx(dev, false)) { 1017 dev_err(kdev, "cannot allocate rx buffer queue\n"); 1018 ret = -ENOMEM; 1019 goto out; 1020 } 1021 1022 /* write rx & tx ring addresses */ 1023 if (priv->dma_has_sram) { 1024 enet_dmas_writel(priv, priv->rx_desc_dma, 1025 ENETDMAS_RSTART_REG, priv->rx_chan); 1026 enet_dmas_writel(priv, priv->tx_desc_dma, 1027 ENETDMAS_RSTART_REG, priv->tx_chan); 1028 } else { 1029 enet_dmac_writel(priv, priv->rx_desc_dma, 1030 ENETDMAC_RSTART, priv->rx_chan); 1031 enet_dmac_writel(priv, priv->tx_desc_dma, 1032 ENETDMAC_RSTART, priv->tx_chan); 1033 } 1034 1035 /* clear remaining state ram for rx & tx channel */ 1036 if (priv->dma_has_sram) { 1037 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 1038 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 1039 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 1040 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 1041 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 1042 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 1043 } else { 1044 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan); 1045 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan); 1046 } 1047 1048 /* set max rx/tx length */ 1049 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG); 1050 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG); 1051 1052 /* set dma maximum burst len */ 1053 enet_dmac_writel(priv, priv->dma_maxburst, 1054 ENETDMAC_MAXBURST, priv->rx_chan); 1055 enet_dmac_writel(priv, priv->dma_maxburst, 1056 ENETDMAC_MAXBURST, priv->tx_chan); 1057 1058 /* set correct transmit fifo watermark */ 1059 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG); 1060 1061 /* set flow control low/high threshold to 1/3 / 2/3 */ 1062 if (priv->dma_has_sram) { 1063 val = priv->rx_ring_size / 3; 1064 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 1065 val = (priv->rx_ring_size * 2) / 3; 1066 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 1067 } else { 1068 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan); 1069 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan); 1070 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan); 1071 } 1072 1073 /* all set, enable mac and interrupts, start dma engine and 1074 * kick rx dma channel */ 1075 wmb(); 1076 val = enet_readl(priv, ENET_CTL_REG); 1077 val |= ENET_CTL_ENABLE_MASK; 1078 enet_writel(priv, val, ENET_CTL_REG); 1079 if (priv->dma_has_sram) 1080 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 1081 enet_dmac_writel(priv, priv->dma_chan_en_mask, 1082 ENETDMAC_CHANCFG, priv->rx_chan); 1083 1084 /* watch "mib counters about to overflow" interrupt */ 1085 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 1086 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1087 1088 /* watch "packet transferred" interrupt in rx and tx */ 1089 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1090 ENETDMAC_IR, priv->rx_chan); 1091 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1092 ENETDMAC_IR, priv->tx_chan); 1093 1094 /* make sure we enable napi before rx interrupt */ 1095 napi_enable(&priv->napi); 1096 1097 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1098 ENETDMAC_IRMASK, priv->rx_chan); 1099 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1100 ENETDMAC_IRMASK, priv->tx_chan); 1101 1102 if (phydev) 1103 phy_start(phydev); 1104 else 1105 bcm_enet_adjust_link(dev); 1106 1107 netif_start_queue(dev); 1108 return 0; 1109 1110 out: 1111 bcm_enet_free_rx_buf_ring(kdev, priv); 1112 1113 out_free_tx_skb: 1114 kfree(priv->tx_skb); 1115 1116 out_free_tx_ring: 1117 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1118 priv->tx_desc_cpu, priv->tx_desc_dma); 1119 1120 out_free_rx_ring: 1121 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1122 priv->rx_desc_cpu, priv->rx_desc_dma); 1123 1124 out_freeirq_tx: 1125 free_irq(priv->irq_tx, dev); 1126 1127 out_freeirq_rx: 1128 free_irq(priv->irq_rx, dev); 1129 1130 out_freeirq: 1131 free_irq(dev->irq, dev); 1132 1133 out_phy_disconnect: 1134 if (phydev) 1135 phy_disconnect(phydev); 1136 1137 return ret; 1138 } 1139 1140 /* 1141 * disable mac 1142 */ 1143 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv) 1144 { 1145 int limit; 1146 u32 val; 1147 1148 val = enet_readl(priv, ENET_CTL_REG); 1149 val |= ENET_CTL_DISABLE_MASK; 1150 enet_writel(priv, val, ENET_CTL_REG); 1151 1152 limit = 1000; 1153 do { 1154 u32 val; 1155 1156 val = enet_readl(priv, ENET_CTL_REG); 1157 if (!(val & ENET_CTL_DISABLE_MASK)) 1158 break; 1159 udelay(1); 1160 } while (limit--); 1161 } 1162 1163 /* 1164 * disable dma in given channel 1165 */ 1166 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan) 1167 { 1168 int limit; 1169 1170 enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan); 1171 1172 limit = 1000; 1173 do { 1174 u32 val; 1175 1176 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan); 1177 if (!(val & ENETDMAC_CHANCFG_EN_MASK)) 1178 break; 1179 udelay(1); 1180 } while (limit--); 1181 } 1182 1183 /* 1184 * stop callback 1185 */ 1186 static int bcm_enet_stop(struct net_device *dev) 1187 { 1188 struct bcm_enet_priv *priv; 1189 struct device *kdev; 1190 1191 priv = netdev_priv(dev); 1192 kdev = &priv->pdev->dev; 1193 1194 netif_stop_queue(dev); 1195 napi_disable(&priv->napi); 1196 if (priv->has_phy) 1197 phy_stop(dev->phydev); 1198 del_timer_sync(&priv->rx_timeout); 1199 1200 /* mask all interrupts */ 1201 enet_writel(priv, 0, ENET_IRMASK_REG); 1202 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 1203 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 1204 1205 /* make sure no mib update is scheduled */ 1206 cancel_work_sync(&priv->mib_update_task); 1207 1208 /* disable dma & mac */ 1209 bcm_enet_disable_dma(priv, priv->tx_chan); 1210 bcm_enet_disable_dma(priv, priv->rx_chan); 1211 bcm_enet_disable_mac(priv); 1212 1213 /* force reclaim of all tx buffers */ 1214 bcm_enet_tx_reclaim(dev, 1, 0); 1215 1216 /* free the rx buffer ring */ 1217 bcm_enet_free_rx_buf_ring(kdev, priv); 1218 1219 /* free remaining allocated memory */ 1220 kfree(priv->tx_skb); 1221 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1222 priv->rx_desc_cpu, priv->rx_desc_dma); 1223 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1224 priv->tx_desc_cpu, priv->tx_desc_dma); 1225 free_irq(priv->irq_tx, dev); 1226 free_irq(priv->irq_rx, dev); 1227 free_irq(dev->irq, dev); 1228 1229 /* release phy */ 1230 if (priv->has_phy) 1231 phy_disconnect(dev->phydev); 1232 1233 /* reset BQL after forced tx reclaim to prevent kernel panic */ 1234 netdev_reset_queue(dev); 1235 1236 return 0; 1237 } 1238 1239 /* 1240 * ethtool callbacks 1241 */ 1242 struct bcm_enet_stats { 1243 char stat_string[ETH_GSTRING_LEN]; 1244 int sizeof_stat; 1245 int stat_offset; 1246 int mib_reg; 1247 }; 1248 1249 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \ 1250 offsetof(struct bcm_enet_priv, m) 1251 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \ 1252 offsetof(struct net_device_stats, m) 1253 1254 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = { 1255 { "rx_packets", DEV_STAT(rx_packets), -1 }, 1256 { "tx_packets", DEV_STAT(tx_packets), -1 }, 1257 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 1258 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 1259 { "rx_errors", DEV_STAT(rx_errors), -1 }, 1260 { "tx_errors", DEV_STAT(tx_errors), -1 }, 1261 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 1262 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 1263 1264 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS}, 1265 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS }, 1266 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST }, 1267 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT }, 1268 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 }, 1269 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 }, 1270 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 }, 1271 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 }, 1272 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 }, 1273 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX }, 1274 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB }, 1275 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR }, 1276 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG }, 1277 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP }, 1278 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN }, 1279 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND }, 1280 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC }, 1281 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN }, 1282 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM }, 1283 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE }, 1284 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL }, 1285 1286 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS }, 1287 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS }, 1288 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST }, 1289 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT }, 1290 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 }, 1291 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 }, 1292 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 }, 1293 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 }, 1294 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023}, 1295 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX }, 1296 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB }, 1297 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR }, 1298 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG }, 1299 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN }, 1300 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL }, 1301 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL }, 1302 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL }, 1303 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL }, 1304 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE }, 1305 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF }, 1306 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS }, 1307 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE }, 1308 1309 }; 1310 1311 #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats) 1312 1313 static const u32 unused_mib_regs[] = { 1314 ETH_MIB_TX_ALL_OCTETS, 1315 ETH_MIB_TX_ALL_PKTS, 1316 ETH_MIB_RX_ALL_OCTETS, 1317 ETH_MIB_RX_ALL_PKTS, 1318 }; 1319 1320 1321 static void bcm_enet_get_drvinfo(struct net_device *netdev, 1322 struct ethtool_drvinfo *drvinfo) 1323 { 1324 strscpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver)); 1325 strscpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info)); 1326 } 1327 1328 static int bcm_enet_get_sset_count(struct net_device *netdev, 1329 int string_set) 1330 { 1331 switch (string_set) { 1332 case ETH_SS_STATS: 1333 return BCM_ENET_STATS_LEN; 1334 default: 1335 return -EINVAL; 1336 } 1337 } 1338 1339 static void bcm_enet_get_strings(struct net_device *netdev, 1340 u32 stringset, u8 *data) 1341 { 1342 int i; 1343 1344 switch (stringset) { 1345 case ETH_SS_STATS: 1346 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1347 memcpy(data + i * ETH_GSTRING_LEN, 1348 bcm_enet_gstrings_stats[i].stat_string, 1349 ETH_GSTRING_LEN); 1350 } 1351 break; 1352 } 1353 } 1354 1355 static void update_mib_counters(struct bcm_enet_priv *priv) 1356 { 1357 int i; 1358 1359 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1360 const struct bcm_enet_stats *s; 1361 u32 val; 1362 char *p; 1363 1364 s = &bcm_enet_gstrings_stats[i]; 1365 if (s->mib_reg == -1) 1366 continue; 1367 1368 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg)); 1369 p = (char *)priv + s->stat_offset; 1370 1371 if (s->sizeof_stat == sizeof(u64)) 1372 *(u64 *)p += val; 1373 else 1374 *(u32 *)p += val; 1375 } 1376 1377 /* also empty unused mib counters to make sure mib counter 1378 * overflow interrupt is cleared */ 1379 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++) 1380 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i])); 1381 } 1382 1383 static void bcm_enet_update_mib_counters_defer(struct work_struct *t) 1384 { 1385 struct bcm_enet_priv *priv; 1386 1387 priv = container_of(t, struct bcm_enet_priv, mib_update_task); 1388 mutex_lock(&priv->mib_update_lock); 1389 update_mib_counters(priv); 1390 mutex_unlock(&priv->mib_update_lock); 1391 1392 /* reenable mib interrupt */ 1393 if (netif_running(priv->net_dev)) 1394 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1395 } 1396 1397 static void bcm_enet_get_ethtool_stats(struct net_device *netdev, 1398 struct ethtool_stats *stats, 1399 u64 *data) 1400 { 1401 struct bcm_enet_priv *priv; 1402 int i; 1403 1404 priv = netdev_priv(netdev); 1405 1406 mutex_lock(&priv->mib_update_lock); 1407 update_mib_counters(priv); 1408 1409 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1410 const struct bcm_enet_stats *s; 1411 char *p; 1412 1413 s = &bcm_enet_gstrings_stats[i]; 1414 if (s->mib_reg == -1) 1415 p = (char *)&netdev->stats; 1416 else 1417 p = (char *)priv; 1418 p += s->stat_offset; 1419 data[i] = (s->sizeof_stat == sizeof(u64)) ? 1420 *(u64 *)p : *(u32 *)p; 1421 } 1422 mutex_unlock(&priv->mib_update_lock); 1423 } 1424 1425 static int bcm_enet_nway_reset(struct net_device *dev) 1426 { 1427 struct bcm_enet_priv *priv; 1428 1429 priv = netdev_priv(dev); 1430 if (priv->has_phy) 1431 return phy_ethtool_nway_reset(dev); 1432 1433 return -EOPNOTSUPP; 1434 } 1435 1436 static int bcm_enet_get_link_ksettings(struct net_device *dev, 1437 struct ethtool_link_ksettings *cmd) 1438 { 1439 struct bcm_enet_priv *priv; 1440 u32 supported, advertising; 1441 1442 priv = netdev_priv(dev); 1443 1444 if (priv->has_phy) { 1445 if (!dev->phydev) 1446 return -ENODEV; 1447 1448 phy_ethtool_ksettings_get(dev->phydev, cmd); 1449 1450 return 0; 1451 } else { 1452 cmd->base.autoneg = 0; 1453 cmd->base.speed = (priv->force_speed_100) ? 1454 SPEED_100 : SPEED_10; 1455 cmd->base.duplex = (priv->force_duplex_full) ? 1456 DUPLEX_FULL : DUPLEX_HALF; 1457 supported = ADVERTISED_10baseT_Half | 1458 ADVERTISED_10baseT_Full | 1459 ADVERTISED_100baseT_Half | 1460 ADVERTISED_100baseT_Full; 1461 advertising = 0; 1462 ethtool_convert_legacy_u32_to_link_mode( 1463 cmd->link_modes.supported, supported); 1464 ethtool_convert_legacy_u32_to_link_mode( 1465 cmd->link_modes.advertising, advertising); 1466 cmd->base.port = PORT_MII; 1467 } 1468 return 0; 1469 } 1470 1471 static int bcm_enet_set_link_ksettings(struct net_device *dev, 1472 const struct ethtool_link_ksettings *cmd) 1473 { 1474 struct bcm_enet_priv *priv; 1475 1476 priv = netdev_priv(dev); 1477 if (priv->has_phy) { 1478 if (!dev->phydev) 1479 return -ENODEV; 1480 return phy_ethtool_ksettings_set(dev->phydev, cmd); 1481 } else { 1482 1483 if (cmd->base.autoneg || 1484 (cmd->base.speed != SPEED_100 && 1485 cmd->base.speed != SPEED_10) || 1486 cmd->base.port != PORT_MII) 1487 return -EINVAL; 1488 1489 priv->force_speed_100 = 1490 (cmd->base.speed == SPEED_100) ? 1 : 0; 1491 priv->force_duplex_full = 1492 (cmd->base.duplex == DUPLEX_FULL) ? 1 : 0; 1493 1494 if (netif_running(dev)) 1495 bcm_enet_adjust_link(dev); 1496 return 0; 1497 } 1498 } 1499 1500 static void 1501 bcm_enet_get_ringparam(struct net_device *dev, 1502 struct ethtool_ringparam *ering, 1503 struct kernel_ethtool_ringparam *kernel_ering, 1504 struct netlink_ext_ack *extack) 1505 { 1506 struct bcm_enet_priv *priv; 1507 1508 priv = netdev_priv(dev); 1509 1510 /* rx/tx ring is actually only limited by memory */ 1511 ering->rx_max_pending = 8192; 1512 ering->tx_max_pending = 8192; 1513 ering->rx_pending = priv->rx_ring_size; 1514 ering->tx_pending = priv->tx_ring_size; 1515 } 1516 1517 static int bcm_enet_set_ringparam(struct net_device *dev, 1518 struct ethtool_ringparam *ering, 1519 struct kernel_ethtool_ringparam *kernel_ering, 1520 struct netlink_ext_ack *extack) 1521 { 1522 struct bcm_enet_priv *priv; 1523 int was_running; 1524 1525 priv = netdev_priv(dev); 1526 1527 was_running = 0; 1528 if (netif_running(dev)) { 1529 bcm_enet_stop(dev); 1530 was_running = 1; 1531 } 1532 1533 priv->rx_ring_size = ering->rx_pending; 1534 priv->tx_ring_size = ering->tx_pending; 1535 1536 if (was_running) { 1537 int err; 1538 1539 err = bcm_enet_open(dev); 1540 if (err) 1541 dev_close(dev); 1542 else 1543 bcm_enet_set_multicast_list(dev); 1544 } 1545 return 0; 1546 } 1547 1548 static void bcm_enet_get_pauseparam(struct net_device *dev, 1549 struct ethtool_pauseparam *ecmd) 1550 { 1551 struct bcm_enet_priv *priv; 1552 1553 priv = netdev_priv(dev); 1554 ecmd->autoneg = priv->pause_auto; 1555 ecmd->rx_pause = priv->pause_rx; 1556 ecmd->tx_pause = priv->pause_tx; 1557 } 1558 1559 static int bcm_enet_set_pauseparam(struct net_device *dev, 1560 struct ethtool_pauseparam *ecmd) 1561 { 1562 struct bcm_enet_priv *priv; 1563 1564 priv = netdev_priv(dev); 1565 1566 if (priv->has_phy) { 1567 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) { 1568 /* asymetric pause mode not supported, 1569 * actually possible but integrated PHY has RO 1570 * asym_pause bit */ 1571 return -EINVAL; 1572 } 1573 } else { 1574 /* no pause autoneg on direct mii connection */ 1575 if (ecmd->autoneg) 1576 return -EINVAL; 1577 } 1578 1579 priv->pause_auto = ecmd->autoneg; 1580 priv->pause_rx = ecmd->rx_pause; 1581 priv->pause_tx = ecmd->tx_pause; 1582 1583 return 0; 1584 } 1585 1586 static const struct ethtool_ops bcm_enet_ethtool_ops = { 1587 .get_strings = bcm_enet_get_strings, 1588 .get_sset_count = bcm_enet_get_sset_count, 1589 .get_ethtool_stats = bcm_enet_get_ethtool_stats, 1590 .nway_reset = bcm_enet_nway_reset, 1591 .get_drvinfo = bcm_enet_get_drvinfo, 1592 .get_link = ethtool_op_get_link, 1593 .get_ringparam = bcm_enet_get_ringparam, 1594 .set_ringparam = bcm_enet_set_ringparam, 1595 .get_pauseparam = bcm_enet_get_pauseparam, 1596 .set_pauseparam = bcm_enet_set_pauseparam, 1597 .get_link_ksettings = bcm_enet_get_link_ksettings, 1598 .set_link_ksettings = bcm_enet_set_link_ksettings, 1599 }; 1600 1601 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1602 { 1603 struct bcm_enet_priv *priv; 1604 1605 priv = netdev_priv(dev); 1606 if (priv->has_phy) { 1607 if (!dev->phydev) 1608 return -ENODEV; 1609 return phy_mii_ioctl(dev->phydev, rq, cmd); 1610 } else { 1611 struct mii_if_info mii; 1612 1613 mii.dev = dev; 1614 mii.mdio_read = bcm_enet_mdio_read_mii; 1615 mii.mdio_write = bcm_enet_mdio_write_mii; 1616 mii.phy_id = 0; 1617 mii.phy_id_mask = 0x3f; 1618 mii.reg_num_mask = 0x1f; 1619 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 1620 } 1621 } 1622 1623 /* 1624 * adjust mtu, can't be called while device is running 1625 */ 1626 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu) 1627 { 1628 struct bcm_enet_priv *priv = netdev_priv(dev); 1629 int actual_mtu = new_mtu; 1630 1631 if (netif_running(dev)) 1632 return -EBUSY; 1633 1634 /* add ethernet header + vlan tag size */ 1635 actual_mtu += VLAN_ETH_HLEN; 1636 1637 /* 1638 * setup maximum size before we get overflow mark in 1639 * descriptor, note that this will not prevent reception of 1640 * big frames, they will be split into multiple buffers 1641 * anyway 1642 */ 1643 priv->hw_mtu = actual_mtu; 1644 1645 /* 1646 * align rx buffer size to dma burst len, account FCS since 1647 * it's appended 1648 */ 1649 priv->rx_buf_size = ALIGN(actual_mtu + ETH_FCS_LEN, 1650 priv->dma_maxburst * 4); 1651 1652 priv->rx_frag_size = SKB_DATA_ALIGN(priv->rx_buf_offset + priv->rx_buf_size) + 1653 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1654 1655 dev->mtu = new_mtu; 1656 return 0; 1657 } 1658 1659 /* 1660 * preinit hardware to allow mii operation while device is down 1661 */ 1662 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv) 1663 { 1664 u32 val; 1665 int limit; 1666 1667 /* make sure mac is disabled */ 1668 bcm_enet_disable_mac(priv); 1669 1670 /* soft reset mac */ 1671 val = ENET_CTL_SRESET_MASK; 1672 enet_writel(priv, val, ENET_CTL_REG); 1673 wmb(); 1674 1675 limit = 1000; 1676 do { 1677 val = enet_readl(priv, ENET_CTL_REG); 1678 if (!(val & ENET_CTL_SRESET_MASK)) 1679 break; 1680 udelay(1); 1681 } while (limit--); 1682 1683 /* select correct mii interface */ 1684 val = enet_readl(priv, ENET_CTL_REG); 1685 if (priv->use_external_mii) 1686 val |= ENET_CTL_EPHYSEL_MASK; 1687 else 1688 val &= ~ENET_CTL_EPHYSEL_MASK; 1689 enet_writel(priv, val, ENET_CTL_REG); 1690 1691 /* turn on mdc clock */ 1692 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) | 1693 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG); 1694 1695 /* set mib counters to self-clear when read */ 1696 val = enet_readl(priv, ENET_MIBCTL_REG); 1697 val |= ENET_MIBCTL_RDCLEAR_MASK; 1698 enet_writel(priv, val, ENET_MIBCTL_REG); 1699 } 1700 1701 static const struct net_device_ops bcm_enet_ops = { 1702 .ndo_open = bcm_enet_open, 1703 .ndo_stop = bcm_enet_stop, 1704 .ndo_start_xmit = bcm_enet_start_xmit, 1705 .ndo_set_mac_address = bcm_enet_set_mac_address, 1706 .ndo_set_rx_mode = bcm_enet_set_multicast_list, 1707 .ndo_eth_ioctl = bcm_enet_ioctl, 1708 .ndo_change_mtu = bcm_enet_change_mtu, 1709 }; 1710 1711 /* 1712 * allocate netdevice, request register memory and register device. 1713 */ 1714 static int bcm_enet_probe(struct platform_device *pdev) 1715 { 1716 struct bcm_enet_priv *priv; 1717 struct net_device *dev; 1718 struct bcm63xx_enet_platform_data *pd; 1719 int irq, irq_rx, irq_tx; 1720 struct mii_bus *bus; 1721 int i, ret; 1722 1723 if (!bcm_enet_shared_base[0]) 1724 return -EPROBE_DEFER; 1725 1726 irq = platform_get_irq(pdev, 0); 1727 irq_rx = platform_get_irq(pdev, 1); 1728 irq_tx = platform_get_irq(pdev, 2); 1729 if (irq < 0 || irq_rx < 0 || irq_tx < 0) 1730 return -ENODEV; 1731 1732 dev = alloc_etherdev(sizeof(*priv)); 1733 if (!dev) 1734 return -ENOMEM; 1735 priv = netdev_priv(dev); 1736 1737 priv->enet_is_sw = false; 1738 priv->dma_maxburst = BCMENET_DMA_MAXBURST; 1739 priv->rx_buf_offset = NET_SKB_PAD; 1740 1741 ret = bcm_enet_change_mtu(dev, dev->mtu); 1742 if (ret) 1743 goto out; 1744 1745 priv->base = devm_platform_ioremap_resource(pdev, 0); 1746 if (IS_ERR(priv->base)) { 1747 ret = PTR_ERR(priv->base); 1748 goto out; 1749 } 1750 1751 dev->irq = priv->irq = irq; 1752 priv->irq_rx = irq_rx; 1753 priv->irq_tx = irq_tx; 1754 1755 priv->mac_clk = devm_clk_get(&pdev->dev, "enet"); 1756 if (IS_ERR(priv->mac_clk)) { 1757 ret = PTR_ERR(priv->mac_clk); 1758 goto out; 1759 } 1760 ret = clk_prepare_enable(priv->mac_clk); 1761 if (ret) 1762 goto out; 1763 1764 /* initialize default and fetch platform data */ 1765 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 1766 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 1767 1768 pd = dev_get_platdata(&pdev->dev); 1769 if (pd) { 1770 eth_hw_addr_set(dev, pd->mac_addr); 1771 priv->has_phy = pd->has_phy; 1772 priv->phy_id = pd->phy_id; 1773 priv->has_phy_interrupt = pd->has_phy_interrupt; 1774 priv->phy_interrupt = pd->phy_interrupt; 1775 priv->use_external_mii = !pd->use_internal_phy; 1776 priv->pause_auto = pd->pause_auto; 1777 priv->pause_rx = pd->pause_rx; 1778 priv->pause_tx = pd->pause_tx; 1779 priv->force_duplex_full = pd->force_duplex_full; 1780 priv->force_speed_100 = pd->force_speed_100; 1781 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 1782 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 1783 priv->dma_chan_width = pd->dma_chan_width; 1784 priv->dma_has_sram = pd->dma_has_sram; 1785 priv->dma_desc_shift = pd->dma_desc_shift; 1786 priv->rx_chan = pd->rx_chan; 1787 priv->tx_chan = pd->tx_chan; 1788 } 1789 1790 if (priv->has_phy && !priv->use_external_mii) { 1791 /* using internal PHY, enable clock */ 1792 priv->phy_clk = devm_clk_get(&pdev->dev, "ephy"); 1793 if (IS_ERR(priv->phy_clk)) { 1794 ret = PTR_ERR(priv->phy_clk); 1795 priv->phy_clk = NULL; 1796 goto out_disable_clk_mac; 1797 } 1798 ret = clk_prepare_enable(priv->phy_clk); 1799 if (ret) 1800 goto out_disable_clk_mac; 1801 } 1802 1803 /* do minimal hardware init to be able to probe mii bus */ 1804 bcm_enet_hw_preinit(priv); 1805 1806 /* MII bus registration */ 1807 if (priv->has_phy) { 1808 1809 priv->mii_bus = mdiobus_alloc(); 1810 if (!priv->mii_bus) { 1811 ret = -ENOMEM; 1812 goto out_uninit_hw; 1813 } 1814 1815 bus = priv->mii_bus; 1816 bus->name = "bcm63xx_enet MII bus"; 1817 bus->parent = &pdev->dev; 1818 bus->priv = priv; 1819 bus->read = bcm_enet_mdio_read_phylib; 1820 bus->write = bcm_enet_mdio_write_phylib; 1821 sprintf(bus->id, "%s-%d", pdev->name, pdev->id); 1822 1823 /* only probe bus where we think the PHY is, because 1824 * the mdio read operation return 0 instead of 0xffff 1825 * if a slave is not present on hw */ 1826 bus->phy_mask = ~(1 << priv->phy_id); 1827 1828 if (priv->has_phy_interrupt) 1829 bus->irq[priv->phy_id] = priv->phy_interrupt; 1830 1831 ret = mdiobus_register(bus); 1832 if (ret) { 1833 dev_err(&pdev->dev, "unable to register mdio bus\n"); 1834 goto out_free_mdio; 1835 } 1836 } else { 1837 1838 /* run platform code to initialize PHY device */ 1839 if (pd && pd->mii_config && 1840 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii, 1841 bcm_enet_mdio_write_mii)) { 1842 dev_err(&pdev->dev, "unable to configure mdio bus\n"); 1843 goto out_uninit_hw; 1844 } 1845 } 1846 1847 spin_lock_init(&priv->rx_lock); 1848 1849 /* init rx timeout (used for oom) */ 1850 timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0); 1851 1852 /* init the mib update lock&work */ 1853 mutex_init(&priv->mib_update_lock); 1854 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer); 1855 1856 /* zero mib counters */ 1857 for (i = 0; i < ENET_MIB_REG_COUNT; i++) 1858 enet_writel(priv, 0, ENET_MIB_REG(i)); 1859 1860 /* register netdevice */ 1861 dev->netdev_ops = &bcm_enet_ops; 1862 netif_napi_add_weight(dev, &priv->napi, bcm_enet_poll, 16); 1863 1864 dev->ethtool_ops = &bcm_enet_ethtool_ops; 1865 /* MTU range: 46 - 2028 */ 1866 dev->min_mtu = ETH_ZLEN - ETH_HLEN; 1867 dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN; 1868 SET_NETDEV_DEV(dev, &pdev->dev); 1869 1870 ret = register_netdev(dev); 1871 if (ret) 1872 goto out_unregister_mdio; 1873 1874 netif_carrier_off(dev); 1875 platform_set_drvdata(pdev, dev); 1876 priv->pdev = pdev; 1877 priv->net_dev = dev; 1878 1879 return 0; 1880 1881 out_unregister_mdio: 1882 if (priv->mii_bus) 1883 mdiobus_unregister(priv->mii_bus); 1884 1885 out_free_mdio: 1886 if (priv->mii_bus) 1887 mdiobus_free(priv->mii_bus); 1888 1889 out_uninit_hw: 1890 /* turn off mdc clock */ 1891 enet_writel(priv, 0, ENET_MIISC_REG); 1892 clk_disable_unprepare(priv->phy_clk); 1893 1894 out_disable_clk_mac: 1895 clk_disable_unprepare(priv->mac_clk); 1896 out: 1897 free_netdev(dev); 1898 return ret; 1899 } 1900 1901 1902 /* 1903 * exit func, stops hardware and unregisters netdevice 1904 */ 1905 static int bcm_enet_remove(struct platform_device *pdev) 1906 { 1907 struct bcm_enet_priv *priv; 1908 struct net_device *dev; 1909 1910 /* stop netdevice */ 1911 dev = platform_get_drvdata(pdev); 1912 priv = netdev_priv(dev); 1913 unregister_netdev(dev); 1914 1915 /* turn off mdc clock */ 1916 enet_writel(priv, 0, ENET_MIISC_REG); 1917 1918 if (priv->has_phy) { 1919 mdiobus_unregister(priv->mii_bus); 1920 mdiobus_free(priv->mii_bus); 1921 } else { 1922 struct bcm63xx_enet_platform_data *pd; 1923 1924 pd = dev_get_platdata(&pdev->dev); 1925 if (pd && pd->mii_config) 1926 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii, 1927 bcm_enet_mdio_write_mii); 1928 } 1929 1930 /* disable hw block clocks */ 1931 clk_disable_unprepare(priv->phy_clk); 1932 clk_disable_unprepare(priv->mac_clk); 1933 1934 free_netdev(dev); 1935 return 0; 1936 } 1937 1938 static struct platform_driver bcm63xx_enet_driver = { 1939 .probe = bcm_enet_probe, 1940 .remove = bcm_enet_remove, 1941 .driver = { 1942 .name = "bcm63xx_enet", 1943 .owner = THIS_MODULE, 1944 }, 1945 }; 1946 1947 /* 1948 * switch mii access callbacks 1949 */ 1950 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv, 1951 int ext, int phy_id, int location) 1952 { 1953 u32 reg; 1954 int ret; 1955 1956 spin_lock_bh(&priv->enetsw_mdio_lock); 1957 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 1958 1959 reg = ENETSW_MDIOC_RD_MASK | 1960 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 1961 (location << ENETSW_MDIOC_REG_SHIFT); 1962 1963 if (ext) 1964 reg |= ENETSW_MDIOC_EXT_MASK; 1965 1966 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 1967 udelay(50); 1968 ret = enetsw_readw(priv, ENETSW_MDIOD_REG); 1969 spin_unlock_bh(&priv->enetsw_mdio_lock); 1970 return ret; 1971 } 1972 1973 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv, 1974 int ext, int phy_id, int location, 1975 uint16_t data) 1976 { 1977 u32 reg; 1978 1979 spin_lock_bh(&priv->enetsw_mdio_lock); 1980 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 1981 1982 reg = ENETSW_MDIOC_WR_MASK | 1983 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 1984 (location << ENETSW_MDIOC_REG_SHIFT); 1985 1986 if (ext) 1987 reg |= ENETSW_MDIOC_EXT_MASK; 1988 1989 reg |= data; 1990 1991 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 1992 udelay(50); 1993 spin_unlock_bh(&priv->enetsw_mdio_lock); 1994 } 1995 1996 static inline int bcm_enet_port_is_rgmii(int portid) 1997 { 1998 return portid >= ENETSW_RGMII_PORT0; 1999 } 2000 2001 /* 2002 * enet sw PHY polling 2003 */ 2004 static void swphy_poll_timer(struct timer_list *t) 2005 { 2006 struct bcm_enet_priv *priv = from_timer(priv, t, swphy_poll); 2007 unsigned int i; 2008 2009 for (i = 0; i < priv->num_ports; i++) { 2010 struct bcm63xx_enetsw_port *port; 2011 int val, j, up, advertise, lpa, speed, duplex, media; 2012 int external_phy = bcm_enet_port_is_rgmii(i); 2013 u8 override; 2014 2015 port = &priv->used_ports[i]; 2016 if (!port->used) 2017 continue; 2018 2019 if (port->bypass_link) 2020 continue; 2021 2022 /* dummy read to clear */ 2023 for (j = 0; j < 2; j++) 2024 val = bcmenet_sw_mdio_read(priv, external_phy, 2025 port->phy_id, MII_BMSR); 2026 2027 if (val == 0xffff) 2028 continue; 2029 2030 up = (val & BMSR_LSTATUS) ? 1 : 0; 2031 if (!(up ^ priv->sw_port_link[i])) 2032 continue; 2033 2034 priv->sw_port_link[i] = up; 2035 2036 /* link changed */ 2037 if (!up) { 2038 dev_info(&priv->pdev->dev, "link DOWN on %s\n", 2039 port->name); 2040 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2041 ENETSW_PORTOV_REG(i)); 2042 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2043 ENETSW_PTCTRL_TXDIS_MASK, 2044 ENETSW_PTCTRL_REG(i)); 2045 continue; 2046 } 2047 2048 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2049 port->phy_id, MII_ADVERTISE); 2050 2051 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id, 2052 MII_LPA); 2053 2054 /* figure out media and duplex from advertise and LPA values */ 2055 media = mii_nway_result(lpa & advertise); 2056 duplex = (media & ADVERTISE_FULL) ? 1 : 0; 2057 2058 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF)) 2059 speed = 100; 2060 else 2061 speed = 10; 2062 2063 if (val & BMSR_ESTATEN) { 2064 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2065 port->phy_id, MII_CTRL1000); 2066 2067 lpa = bcmenet_sw_mdio_read(priv, external_phy, 2068 port->phy_id, MII_STAT1000); 2069 2070 if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF) 2071 && lpa & (LPA_1000FULL | LPA_1000HALF)) { 2072 speed = 1000; 2073 duplex = (lpa & LPA_1000FULL); 2074 } 2075 } 2076 2077 dev_info(&priv->pdev->dev, 2078 "link UP on %s, %dMbps, %s-duplex\n", 2079 port->name, speed, duplex ? "full" : "half"); 2080 2081 override = ENETSW_PORTOV_ENABLE_MASK | 2082 ENETSW_PORTOV_LINKUP_MASK; 2083 2084 if (speed == 1000) 2085 override |= ENETSW_IMPOV_1000_MASK; 2086 else if (speed == 100) 2087 override |= ENETSW_IMPOV_100_MASK; 2088 if (duplex) 2089 override |= ENETSW_IMPOV_FDX_MASK; 2090 2091 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2092 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2093 } 2094 2095 priv->swphy_poll.expires = jiffies + HZ; 2096 add_timer(&priv->swphy_poll); 2097 } 2098 2099 /* 2100 * open callback, allocate dma rings & buffers and start rx operation 2101 */ 2102 static int bcm_enetsw_open(struct net_device *dev) 2103 { 2104 struct bcm_enet_priv *priv; 2105 struct device *kdev; 2106 int i, ret; 2107 unsigned int size; 2108 void *p; 2109 u32 val; 2110 2111 priv = netdev_priv(dev); 2112 kdev = &priv->pdev->dev; 2113 2114 /* mask all interrupts and request them */ 2115 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2116 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2117 2118 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 2119 0, dev->name, dev); 2120 if (ret) 2121 goto out_freeirq; 2122 2123 if (priv->irq_tx != -1) { 2124 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 2125 0, dev->name, dev); 2126 if (ret) 2127 goto out_freeirq_rx; 2128 } 2129 2130 /* allocate rx dma ring */ 2131 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 2132 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 2133 if (!p) { 2134 dev_err(kdev, "cannot allocate rx ring %u\n", size); 2135 ret = -ENOMEM; 2136 goto out_freeirq_tx; 2137 } 2138 2139 priv->rx_desc_alloc_size = size; 2140 priv->rx_desc_cpu = p; 2141 2142 /* allocate tx dma ring */ 2143 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 2144 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 2145 if (!p) { 2146 dev_err(kdev, "cannot allocate tx ring\n"); 2147 ret = -ENOMEM; 2148 goto out_free_rx_ring; 2149 } 2150 2151 priv->tx_desc_alloc_size = size; 2152 priv->tx_desc_cpu = p; 2153 2154 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *), 2155 GFP_KERNEL); 2156 if (!priv->tx_skb) { 2157 dev_err(kdev, "cannot allocate tx skb queue\n"); 2158 ret = -ENOMEM; 2159 goto out_free_tx_ring; 2160 } 2161 2162 priv->tx_desc_count = priv->tx_ring_size; 2163 priv->tx_dirty_desc = 0; 2164 priv->tx_curr_desc = 0; 2165 spin_lock_init(&priv->tx_lock); 2166 2167 /* init & fill rx ring with buffers */ 2168 priv->rx_buf = kcalloc(priv->rx_ring_size, sizeof(void *), 2169 GFP_KERNEL); 2170 if (!priv->rx_buf) { 2171 dev_err(kdev, "cannot allocate rx buffer queue\n"); 2172 ret = -ENOMEM; 2173 goto out_free_tx_skb; 2174 } 2175 2176 priv->rx_desc_count = 0; 2177 priv->rx_dirty_desc = 0; 2178 priv->rx_curr_desc = 0; 2179 2180 /* disable all ports */ 2181 for (i = 0; i < priv->num_ports; i++) { 2182 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2183 ENETSW_PORTOV_REG(i)); 2184 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2185 ENETSW_PTCTRL_TXDIS_MASK, 2186 ENETSW_PTCTRL_REG(i)); 2187 2188 priv->sw_port_link[i] = 0; 2189 } 2190 2191 /* reset mib */ 2192 val = enetsw_readb(priv, ENETSW_GMCR_REG); 2193 val |= ENETSW_GMCR_RST_MIB_MASK; 2194 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2195 mdelay(1); 2196 val &= ~ENETSW_GMCR_RST_MIB_MASK; 2197 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2198 mdelay(1); 2199 2200 /* force CPU port state */ 2201 val = enetsw_readb(priv, ENETSW_IMPOV_REG); 2202 val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK; 2203 enetsw_writeb(priv, val, ENETSW_IMPOV_REG); 2204 2205 /* enable switch forward engine */ 2206 val = enetsw_readb(priv, ENETSW_SWMODE_REG); 2207 val |= ENETSW_SWMODE_FWD_EN_MASK; 2208 enetsw_writeb(priv, val, ENETSW_SWMODE_REG); 2209 2210 /* enable jumbo on all ports */ 2211 enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG); 2212 enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG); 2213 2214 /* initialize flow control buffer allocation */ 2215 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 2216 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 2217 2218 if (bcm_enet_refill_rx(dev, false)) { 2219 dev_err(kdev, "cannot allocate rx buffer queue\n"); 2220 ret = -ENOMEM; 2221 goto out; 2222 } 2223 2224 /* write rx & tx ring addresses */ 2225 enet_dmas_writel(priv, priv->rx_desc_dma, 2226 ENETDMAS_RSTART_REG, priv->rx_chan); 2227 enet_dmas_writel(priv, priv->tx_desc_dma, 2228 ENETDMAS_RSTART_REG, priv->tx_chan); 2229 2230 /* clear remaining state ram for rx & tx channel */ 2231 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 2232 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 2233 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 2234 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 2235 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 2236 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 2237 2238 /* set dma maximum burst len */ 2239 enet_dmac_writel(priv, priv->dma_maxburst, 2240 ENETDMAC_MAXBURST, priv->rx_chan); 2241 enet_dmac_writel(priv, priv->dma_maxburst, 2242 ENETDMAC_MAXBURST, priv->tx_chan); 2243 2244 /* set flow control low/high threshold to 1/3 / 2/3 */ 2245 val = priv->rx_ring_size / 3; 2246 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 2247 val = (priv->rx_ring_size * 2) / 3; 2248 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 2249 2250 /* all set, enable mac and interrupts, start dma engine and 2251 * kick rx dma channel 2252 */ 2253 wmb(); 2254 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 2255 enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK, 2256 ENETDMAC_CHANCFG, priv->rx_chan); 2257 2258 /* watch "packet transferred" interrupt in rx and tx */ 2259 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2260 ENETDMAC_IR, priv->rx_chan); 2261 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2262 ENETDMAC_IR, priv->tx_chan); 2263 2264 /* make sure we enable napi before rx interrupt */ 2265 napi_enable(&priv->napi); 2266 2267 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2268 ENETDMAC_IRMASK, priv->rx_chan); 2269 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2270 ENETDMAC_IRMASK, priv->tx_chan); 2271 2272 netif_carrier_on(dev); 2273 netif_start_queue(dev); 2274 2275 /* apply override config for bypass_link ports here. */ 2276 for (i = 0; i < priv->num_ports; i++) { 2277 struct bcm63xx_enetsw_port *port; 2278 u8 override; 2279 port = &priv->used_ports[i]; 2280 if (!port->used) 2281 continue; 2282 2283 if (!port->bypass_link) 2284 continue; 2285 2286 override = ENETSW_PORTOV_ENABLE_MASK | 2287 ENETSW_PORTOV_LINKUP_MASK; 2288 2289 switch (port->force_speed) { 2290 case 1000: 2291 override |= ENETSW_IMPOV_1000_MASK; 2292 break; 2293 case 100: 2294 override |= ENETSW_IMPOV_100_MASK; 2295 break; 2296 case 10: 2297 break; 2298 default: 2299 pr_warn("invalid forced speed on port %s: assume 10\n", 2300 port->name); 2301 break; 2302 } 2303 2304 if (port->force_duplex_full) 2305 override |= ENETSW_IMPOV_FDX_MASK; 2306 2307 2308 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2309 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2310 } 2311 2312 /* start phy polling timer */ 2313 timer_setup(&priv->swphy_poll, swphy_poll_timer, 0); 2314 mod_timer(&priv->swphy_poll, jiffies); 2315 return 0; 2316 2317 out: 2318 bcm_enet_free_rx_buf_ring(kdev, priv); 2319 2320 out_free_tx_skb: 2321 kfree(priv->tx_skb); 2322 2323 out_free_tx_ring: 2324 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2325 priv->tx_desc_cpu, priv->tx_desc_dma); 2326 2327 out_free_rx_ring: 2328 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2329 priv->rx_desc_cpu, priv->rx_desc_dma); 2330 2331 out_freeirq_tx: 2332 if (priv->irq_tx != -1) 2333 free_irq(priv->irq_tx, dev); 2334 2335 out_freeirq_rx: 2336 free_irq(priv->irq_rx, dev); 2337 2338 out_freeirq: 2339 return ret; 2340 } 2341 2342 /* stop callback */ 2343 static int bcm_enetsw_stop(struct net_device *dev) 2344 { 2345 struct bcm_enet_priv *priv; 2346 struct device *kdev; 2347 2348 priv = netdev_priv(dev); 2349 kdev = &priv->pdev->dev; 2350 2351 del_timer_sync(&priv->swphy_poll); 2352 netif_stop_queue(dev); 2353 napi_disable(&priv->napi); 2354 del_timer_sync(&priv->rx_timeout); 2355 2356 /* mask all interrupts */ 2357 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2358 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2359 2360 /* disable dma & mac */ 2361 bcm_enet_disable_dma(priv, priv->tx_chan); 2362 bcm_enet_disable_dma(priv, priv->rx_chan); 2363 2364 /* force reclaim of all tx buffers */ 2365 bcm_enet_tx_reclaim(dev, 1, 0); 2366 2367 /* free the rx buffer ring */ 2368 bcm_enet_free_rx_buf_ring(kdev, priv); 2369 2370 /* free remaining allocated memory */ 2371 kfree(priv->tx_skb); 2372 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2373 priv->rx_desc_cpu, priv->rx_desc_dma); 2374 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2375 priv->tx_desc_cpu, priv->tx_desc_dma); 2376 if (priv->irq_tx != -1) 2377 free_irq(priv->irq_tx, dev); 2378 free_irq(priv->irq_rx, dev); 2379 2380 /* reset BQL after forced tx reclaim to prevent kernel panic */ 2381 netdev_reset_queue(dev); 2382 2383 return 0; 2384 } 2385 2386 /* try to sort out phy external status by walking the used_port field 2387 * in the bcm_enet_priv structure. in case the phy address is not 2388 * assigned to any physical port on the switch, assume it is external 2389 * (and yell at the user). 2390 */ 2391 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id) 2392 { 2393 int i; 2394 2395 for (i = 0; i < priv->num_ports; ++i) { 2396 if (!priv->used_ports[i].used) 2397 continue; 2398 if (priv->used_ports[i].phy_id == phy_id) 2399 return bcm_enet_port_is_rgmii(i); 2400 } 2401 2402 printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n", 2403 phy_id); 2404 return 1; 2405 } 2406 2407 /* can't use bcmenet_sw_mdio_read directly as we need to sort out 2408 * external/internal status of the given phy_id first. 2409 */ 2410 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id, 2411 int location) 2412 { 2413 struct bcm_enet_priv *priv; 2414 2415 priv = netdev_priv(dev); 2416 return bcmenet_sw_mdio_read(priv, 2417 bcm_enetsw_phy_is_external(priv, phy_id), 2418 phy_id, location); 2419 } 2420 2421 /* can't use bcmenet_sw_mdio_write directly as we need to sort out 2422 * external/internal status of the given phy_id first. 2423 */ 2424 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id, 2425 int location, 2426 int val) 2427 { 2428 struct bcm_enet_priv *priv; 2429 2430 priv = netdev_priv(dev); 2431 bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id), 2432 phy_id, location, val); 2433 } 2434 2435 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2436 { 2437 struct mii_if_info mii; 2438 2439 mii.dev = dev; 2440 mii.mdio_read = bcm_enetsw_mii_mdio_read; 2441 mii.mdio_write = bcm_enetsw_mii_mdio_write; 2442 mii.phy_id = 0; 2443 mii.phy_id_mask = 0x3f; 2444 mii.reg_num_mask = 0x1f; 2445 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 2446 2447 } 2448 2449 static const struct net_device_ops bcm_enetsw_ops = { 2450 .ndo_open = bcm_enetsw_open, 2451 .ndo_stop = bcm_enetsw_stop, 2452 .ndo_start_xmit = bcm_enet_start_xmit, 2453 .ndo_change_mtu = bcm_enet_change_mtu, 2454 .ndo_eth_ioctl = bcm_enetsw_ioctl, 2455 }; 2456 2457 2458 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = { 2459 { "rx_packets", DEV_STAT(rx_packets), -1 }, 2460 { "tx_packets", DEV_STAT(tx_packets), -1 }, 2461 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 2462 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 2463 { "rx_errors", DEV_STAT(rx_errors), -1 }, 2464 { "tx_errors", DEV_STAT(tx_errors), -1 }, 2465 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 2466 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 2467 2468 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT }, 2469 { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST }, 2470 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST }, 2471 { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT }, 2472 { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 }, 2473 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 }, 2474 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 }, 2475 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 }, 2476 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023}, 2477 { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max), 2478 ETHSW_MIB_RX_1024_1522 }, 2479 { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047), 2480 ETHSW_MIB_RX_1523_2047 }, 2481 { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095), 2482 ETHSW_MIB_RX_2048_4095 }, 2483 { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191), 2484 ETHSW_MIB_RX_4096_8191 }, 2485 { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728), 2486 ETHSW_MIB_RX_8192_9728 }, 2487 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR }, 2488 { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC }, 2489 { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP }, 2490 { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND }, 2491 { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE }, 2492 2493 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT }, 2494 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST }, 2495 { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT }, 2496 { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT }, 2497 { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE }, 2498 { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS }, 2499 2500 }; 2501 2502 #define BCM_ENETSW_STATS_LEN \ 2503 (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats)) 2504 2505 static void bcm_enetsw_get_strings(struct net_device *netdev, 2506 u32 stringset, u8 *data) 2507 { 2508 int i; 2509 2510 switch (stringset) { 2511 case ETH_SS_STATS: 2512 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2513 memcpy(data + i * ETH_GSTRING_LEN, 2514 bcm_enetsw_gstrings_stats[i].stat_string, 2515 ETH_GSTRING_LEN); 2516 } 2517 break; 2518 } 2519 } 2520 2521 static int bcm_enetsw_get_sset_count(struct net_device *netdev, 2522 int string_set) 2523 { 2524 switch (string_set) { 2525 case ETH_SS_STATS: 2526 return BCM_ENETSW_STATS_LEN; 2527 default: 2528 return -EINVAL; 2529 } 2530 } 2531 2532 static void bcm_enetsw_get_drvinfo(struct net_device *netdev, 2533 struct ethtool_drvinfo *drvinfo) 2534 { 2535 strncpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver)); 2536 strncpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info)); 2537 } 2538 2539 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev, 2540 struct ethtool_stats *stats, 2541 u64 *data) 2542 { 2543 struct bcm_enet_priv *priv; 2544 int i; 2545 2546 priv = netdev_priv(netdev); 2547 2548 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2549 const struct bcm_enet_stats *s; 2550 u32 lo, hi; 2551 char *p; 2552 int reg; 2553 2554 s = &bcm_enetsw_gstrings_stats[i]; 2555 2556 reg = s->mib_reg; 2557 if (reg == -1) 2558 continue; 2559 2560 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg)); 2561 p = (char *)priv + s->stat_offset; 2562 2563 if (s->sizeof_stat == sizeof(u64)) { 2564 hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1)); 2565 *(u64 *)p = ((u64)hi << 32 | lo); 2566 } else { 2567 *(u32 *)p = lo; 2568 } 2569 } 2570 2571 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2572 const struct bcm_enet_stats *s; 2573 char *p; 2574 2575 s = &bcm_enetsw_gstrings_stats[i]; 2576 2577 if (s->mib_reg == -1) 2578 p = (char *)&netdev->stats + s->stat_offset; 2579 else 2580 p = (char *)priv + s->stat_offset; 2581 2582 data[i] = (s->sizeof_stat == sizeof(u64)) ? 2583 *(u64 *)p : *(u32 *)p; 2584 } 2585 } 2586 2587 static void 2588 bcm_enetsw_get_ringparam(struct net_device *dev, 2589 struct ethtool_ringparam *ering, 2590 struct kernel_ethtool_ringparam *kernel_ering, 2591 struct netlink_ext_ack *extack) 2592 { 2593 struct bcm_enet_priv *priv; 2594 2595 priv = netdev_priv(dev); 2596 2597 /* rx/tx ring is actually only limited by memory */ 2598 ering->rx_max_pending = 8192; 2599 ering->tx_max_pending = 8192; 2600 ering->rx_mini_max_pending = 0; 2601 ering->rx_jumbo_max_pending = 0; 2602 ering->rx_pending = priv->rx_ring_size; 2603 ering->tx_pending = priv->tx_ring_size; 2604 } 2605 2606 static int 2607 bcm_enetsw_set_ringparam(struct net_device *dev, 2608 struct ethtool_ringparam *ering, 2609 struct kernel_ethtool_ringparam *kernel_ering, 2610 struct netlink_ext_ack *extack) 2611 { 2612 struct bcm_enet_priv *priv; 2613 int was_running; 2614 2615 priv = netdev_priv(dev); 2616 2617 was_running = 0; 2618 if (netif_running(dev)) { 2619 bcm_enetsw_stop(dev); 2620 was_running = 1; 2621 } 2622 2623 priv->rx_ring_size = ering->rx_pending; 2624 priv->tx_ring_size = ering->tx_pending; 2625 2626 if (was_running) { 2627 int err; 2628 2629 err = bcm_enetsw_open(dev); 2630 if (err) 2631 dev_close(dev); 2632 } 2633 return 0; 2634 } 2635 2636 static const struct ethtool_ops bcm_enetsw_ethtool_ops = { 2637 .get_strings = bcm_enetsw_get_strings, 2638 .get_sset_count = bcm_enetsw_get_sset_count, 2639 .get_ethtool_stats = bcm_enetsw_get_ethtool_stats, 2640 .get_drvinfo = bcm_enetsw_get_drvinfo, 2641 .get_ringparam = bcm_enetsw_get_ringparam, 2642 .set_ringparam = bcm_enetsw_set_ringparam, 2643 }; 2644 2645 /* allocate netdevice, request register memory and register device. */ 2646 static int bcm_enetsw_probe(struct platform_device *pdev) 2647 { 2648 struct bcm_enet_priv *priv; 2649 struct net_device *dev; 2650 struct bcm63xx_enetsw_platform_data *pd; 2651 struct resource *res_mem; 2652 int ret, irq_rx, irq_tx; 2653 2654 if (!bcm_enet_shared_base[0]) 2655 return -EPROBE_DEFER; 2656 2657 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2658 irq_rx = platform_get_irq(pdev, 0); 2659 irq_tx = platform_get_irq(pdev, 1); 2660 if (!res_mem || irq_rx < 0) 2661 return -ENODEV; 2662 2663 dev = alloc_etherdev(sizeof(*priv)); 2664 if (!dev) 2665 return -ENOMEM; 2666 priv = netdev_priv(dev); 2667 2668 /* initialize default and fetch platform data */ 2669 priv->enet_is_sw = true; 2670 priv->irq_rx = irq_rx; 2671 priv->irq_tx = irq_tx; 2672 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 2673 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 2674 priv->dma_maxburst = BCMENETSW_DMA_MAXBURST; 2675 priv->rx_buf_offset = NET_SKB_PAD + NET_IP_ALIGN; 2676 2677 pd = dev_get_platdata(&pdev->dev); 2678 if (pd) { 2679 eth_hw_addr_set(dev, pd->mac_addr); 2680 memcpy(priv->used_ports, pd->used_ports, 2681 sizeof(pd->used_ports)); 2682 priv->num_ports = pd->num_ports; 2683 priv->dma_has_sram = pd->dma_has_sram; 2684 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 2685 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 2686 priv->dma_chan_width = pd->dma_chan_width; 2687 } 2688 2689 ret = bcm_enet_change_mtu(dev, dev->mtu); 2690 if (ret) 2691 goto out; 2692 2693 priv->base = devm_ioremap_resource(&pdev->dev, res_mem); 2694 if (IS_ERR(priv->base)) { 2695 ret = PTR_ERR(priv->base); 2696 goto out; 2697 } 2698 2699 priv->mac_clk = devm_clk_get(&pdev->dev, "enetsw"); 2700 if (IS_ERR(priv->mac_clk)) { 2701 ret = PTR_ERR(priv->mac_clk); 2702 goto out; 2703 } 2704 ret = clk_prepare_enable(priv->mac_clk); 2705 if (ret) 2706 goto out; 2707 2708 priv->rx_chan = 0; 2709 priv->tx_chan = 1; 2710 spin_lock_init(&priv->rx_lock); 2711 2712 /* init rx timeout (used for oom) */ 2713 timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0); 2714 2715 /* register netdevice */ 2716 dev->netdev_ops = &bcm_enetsw_ops; 2717 netif_napi_add_weight(dev, &priv->napi, bcm_enet_poll, 16); 2718 dev->ethtool_ops = &bcm_enetsw_ethtool_ops; 2719 SET_NETDEV_DEV(dev, &pdev->dev); 2720 2721 spin_lock_init(&priv->enetsw_mdio_lock); 2722 2723 ret = register_netdev(dev); 2724 if (ret) 2725 goto out_disable_clk; 2726 2727 netif_carrier_off(dev); 2728 platform_set_drvdata(pdev, dev); 2729 priv->pdev = pdev; 2730 priv->net_dev = dev; 2731 2732 return 0; 2733 2734 out_disable_clk: 2735 clk_disable_unprepare(priv->mac_clk); 2736 out: 2737 free_netdev(dev); 2738 return ret; 2739 } 2740 2741 2742 /* exit func, stops hardware and unregisters netdevice */ 2743 static int bcm_enetsw_remove(struct platform_device *pdev) 2744 { 2745 struct bcm_enet_priv *priv; 2746 struct net_device *dev; 2747 2748 /* stop netdevice */ 2749 dev = platform_get_drvdata(pdev); 2750 priv = netdev_priv(dev); 2751 unregister_netdev(dev); 2752 2753 clk_disable_unprepare(priv->mac_clk); 2754 2755 free_netdev(dev); 2756 return 0; 2757 } 2758 2759 static struct platform_driver bcm63xx_enetsw_driver = { 2760 .probe = bcm_enetsw_probe, 2761 .remove = bcm_enetsw_remove, 2762 .driver = { 2763 .name = "bcm63xx_enetsw", 2764 .owner = THIS_MODULE, 2765 }, 2766 }; 2767 2768 /* reserve & remap memory space shared between all macs */ 2769 static int bcm_enet_shared_probe(struct platform_device *pdev) 2770 { 2771 void __iomem *p[3]; 2772 unsigned int i; 2773 2774 memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base)); 2775 2776 for (i = 0; i < 3; i++) { 2777 p[i] = devm_platform_ioremap_resource(pdev, i); 2778 if (IS_ERR(p[i])) 2779 return PTR_ERR(p[i]); 2780 } 2781 2782 memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base)); 2783 2784 return 0; 2785 } 2786 2787 static int bcm_enet_shared_remove(struct platform_device *pdev) 2788 { 2789 return 0; 2790 } 2791 2792 /* this "shared" driver is needed because both macs share a single 2793 * address space 2794 */ 2795 struct platform_driver bcm63xx_enet_shared_driver = { 2796 .probe = bcm_enet_shared_probe, 2797 .remove = bcm_enet_shared_remove, 2798 .driver = { 2799 .name = "bcm63xx_enet_shared", 2800 .owner = THIS_MODULE, 2801 }, 2802 }; 2803 2804 static struct platform_driver * const drivers[] = { 2805 &bcm63xx_enet_shared_driver, 2806 &bcm63xx_enet_driver, 2807 &bcm63xx_enetsw_driver, 2808 }; 2809 2810 /* entry point */ 2811 static int __init bcm_enet_init(void) 2812 { 2813 return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); 2814 } 2815 2816 static void __exit bcm_enet_exit(void) 2817 { 2818 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); 2819 } 2820 2821 2822 module_init(bcm_enet_init); 2823 module_exit(bcm_enet_exit); 2824 2825 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver"); 2826 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>"); 2827 MODULE_LICENSE("GPL"); 2828