1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for BCM963xx builtin Ethernet mac 4 * 5 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr> 6 */ 7 #include <linux/init.h> 8 #include <linux/interrupt.h> 9 #include <linux/module.h> 10 #include <linux/clk.h> 11 #include <linux/etherdevice.h> 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/ethtool.h> 15 #include <linux/crc32.h> 16 #include <linux/err.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/platform_device.h> 19 #include <linux/if_vlan.h> 20 21 #include <bcm63xx_dev_enet.h> 22 #include "bcm63xx_enet.h" 23 24 static char bcm_enet_driver_name[] = "bcm63xx_enet"; 25 static char bcm_enet_driver_version[] = "1.0"; 26 27 static int copybreak __read_mostly = 128; 28 module_param(copybreak, int, 0); 29 MODULE_PARM_DESC(copybreak, "Receive copy threshold"); 30 31 /* io registers memory shared between all devices */ 32 static void __iomem *bcm_enet_shared_base[3]; 33 34 /* 35 * io helpers to access mac registers 36 */ 37 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off) 38 { 39 return bcm_readl(priv->base + off); 40 } 41 42 static inline void enet_writel(struct bcm_enet_priv *priv, 43 u32 val, u32 off) 44 { 45 bcm_writel(val, priv->base + off); 46 } 47 48 /* 49 * io helpers to access switch registers 50 */ 51 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off) 52 { 53 return bcm_readl(priv->base + off); 54 } 55 56 static inline void enetsw_writel(struct bcm_enet_priv *priv, 57 u32 val, u32 off) 58 { 59 bcm_writel(val, priv->base + off); 60 } 61 62 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off) 63 { 64 return bcm_readw(priv->base + off); 65 } 66 67 static inline void enetsw_writew(struct bcm_enet_priv *priv, 68 u16 val, u32 off) 69 { 70 bcm_writew(val, priv->base + off); 71 } 72 73 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off) 74 { 75 return bcm_readb(priv->base + off); 76 } 77 78 static inline void enetsw_writeb(struct bcm_enet_priv *priv, 79 u8 val, u32 off) 80 { 81 bcm_writeb(val, priv->base + off); 82 } 83 84 85 /* io helpers to access shared registers */ 86 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off) 87 { 88 return bcm_readl(bcm_enet_shared_base[0] + off); 89 } 90 91 static inline void enet_dma_writel(struct bcm_enet_priv *priv, 92 u32 val, u32 off) 93 { 94 bcm_writel(val, bcm_enet_shared_base[0] + off); 95 } 96 97 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan) 98 { 99 return bcm_readl(bcm_enet_shared_base[1] + 100 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 101 } 102 103 static inline void enet_dmac_writel(struct bcm_enet_priv *priv, 104 u32 val, u32 off, int chan) 105 { 106 bcm_writel(val, bcm_enet_shared_base[1] + 107 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 108 } 109 110 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan) 111 { 112 return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 113 } 114 115 static inline void enet_dmas_writel(struct bcm_enet_priv *priv, 116 u32 val, u32 off, int chan) 117 { 118 bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 119 } 120 121 /* 122 * write given data into mii register and wait for transfer to end 123 * with timeout (average measured transfer time is 25us) 124 */ 125 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data) 126 { 127 int limit; 128 129 /* make sure mii interrupt status is cleared */ 130 enet_writel(priv, ENET_IR_MII, ENET_IR_REG); 131 132 enet_writel(priv, data, ENET_MIIDATA_REG); 133 wmb(); 134 135 /* busy wait on mii interrupt bit, with timeout */ 136 limit = 1000; 137 do { 138 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII) 139 break; 140 udelay(1); 141 } while (limit-- > 0); 142 143 return (limit < 0) ? 1 : 0; 144 } 145 146 /* 147 * MII internal read callback 148 */ 149 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id, 150 int regnum) 151 { 152 u32 tmp, val; 153 154 tmp = regnum << ENET_MIIDATA_REG_SHIFT; 155 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 156 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 157 tmp |= ENET_MIIDATA_OP_READ_MASK; 158 159 if (do_mdio_op(priv, tmp)) 160 return -1; 161 162 val = enet_readl(priv, ENET_MIIDATA_REG); 163 val &= 0xffff; 164 return val; 165 } 166 167 /* 168 * MII internal write callback 169 */ 170 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id, 171 int regnum, u16 value) 172 { 173 u32 tmp; 174 175 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT; 176 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 177 tmp |= regnum << ENET_MIIDATA_REG_SHIFT; 178 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 179 tmp |= ENET_MIIDATA_OP_WRITE_MASK; 180 181 (void)do_mdio_op(priv, tmp); 182 return 0; 183 } 184 185 /* 186 * MII read callback from phylib 187 */ 188 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id, 189 int regnum) 190 { 191 return bcm_enet_mdio_read(bus->priv, mii_id, regnum); 192 } 193 194 /* 195 * MII write callback from phylib 196 */ 197 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id, 198 int regnum, u16 value) 199 { 200 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value); 201 } 202 203 /* 204 * MII read callback from mii core 205 */ 206 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id, 207 int regnum) 208 { 209 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum); 210 } 211 212 /* 213 * MII write callback from mii core 214 */ 215 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id, 216 int regnum, int value) 217 { 218 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value); 219 } 220 221 /* 222 * refill rx queue 223 */ 224 static int bcm_enet_refill_rx(struct net_device *dev) 225 { 226 struct bcm_enet_priv *priv; 227 228 priv = netdev_priv(dev); 229 230 while (priv->rx_desc_count < priv->rx_ring_size) { 231 struct bcm_enet_desc *desc; 232 struct sk_buff *skb; 233 dma_addr_t p; 234 int desc_idx; 235 u32 len_stat; 236 237 desc_idx = priv->rx_dirty_desc; 238 desc = &priv->rx_desc_cpu[desc_idx]; 239 240 if (!priv->rx_skb[desc_idx]) { 241 skb = netdev_alloc_skb(dev, priv->rx_skb_size); 242 if (!skb) 243 break; 244 priv->rx_skb[desc_idx] = skb; 245 p = dma_map_single(&priv->pdev->dev, skb->data, 246 priv->rx_skb_size, 247 DMA_FROM_DEVICE); 248 desc->address = p; 249 } 250 251 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT; 252 len_stat |= DMADESC_OWNER_MASK; 253 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) { 254 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 255 priv->rx_dirty_desc = 0; 256 } else { 257 priv->rx_dirty_desc++; 258 } 259 wmb(); 260 desc->len_stat = len_stat; 261 262 priv->rx_desc_count++; 263 264 /* tell dma engine we allocated one buffer */ 265 if (priv->dma_has_sram) 266 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan)); 267 else 268 enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan); 269 } 270 271 /* If rx ring is still empty, set a timer to try allocating 272 * again at a later time. */ 273 if (priv->rx_desc_count == 0 && netif_running(dev)) { 274 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n"); 275 priv->rx_timeout.expires = jiffies + HZ; 276 add_timer(&priv->rx_timeout); 277 } 278 279 return 0; 280 } 281 282 /* 283 * timer callback to defer refill rx queue in case we're OOM 284 */ 285 static void bcm_enet_refill_rx_timer(struct timer_list *t) 286 { 287 struct bcm_enet_priv *priv = from_timer(priv, t, rx_timeout); 288 struct net_device *dev = priv->net_dev; 289 290 spin_lock(&priv->rx_lock); 291 bcm_enet_refill_rx(dev); 292 spin_unlock(&priv->rx_lock); 293 } 294 295 /* 296 * extract packet from rx queue 297 */ 298 static int bcm_enet_receive_queue(struct net_device *dev, int budget) 299 { 300 struct bcm_enet_priv *priv; 301 struct device *kdev; 302 int processed; 303 304 priv = netdev_priv(dev); 305 kdev = &priv->pdev->dev; 306 processed = 0; 307 308 /* don't scan ring further than number of refilled 309 * descriptor */ 310 if (budget > priv->rx_desc_count) 311 budget = priv->rx_desc_count; 312 313 do { 314 struct bcm_enet_desc *desc; 315 struct sk_buff *skb; 316 int desc_idx; 317 u32 len_stat; 318 unsigned int len; 319 320 desc_idx = priv->rx_curr_desc; 321 desc = &priv->rx_desc_cpu[desc_idx]; 322 323 /* make sure we actually read the descriptor status at 324 * each loop */ 325 rmb(); 326 327 len_stat = desc->len_stat; 328 329 /* break if dma ownership belongs to hw */ 330 if (len_stat & DMADESC_OWNER_MASK) 331 break; 332 333 processed++; 334 priv->rx_curr_desc++; 335 if (priv->rx_curr_desc == priv->rx_ring_size) 336 priv->rx_curr_desc = 0; 337 priv->rx_desc_count--; 338 339 /* if the packet does not have start of packet _and_ 340 * end of packet flag set, then just recycle it */ 341 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) != 342 (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) { 343 dev->stats.rx_dropped++; 344 continue; 345 } 346 347 /* recycle packet if it's marked as bad */ 348 if (!priv->enet_is_sw && 349 unlikely(len_stat & DMADESC_ERR_MASK)) { 350 dev->stats.rx_errors++; 351 352 if (len_stat & DMADESC_OVSIZE_MASK) 353 dev->stats.rx_length_errors++; 354 if (len_stat & DMADESC_CRC_MASK) 355 dev->stats.rx_crc_errors++; 356 if (len_stat & DMADESC_UNDER_MASK) 357 dev->stats.rx_frame_errors++; 358 if (len_stat & DMADESC_OV_MASK) 359 dev->stats.rx_fifo_errors++; 360 continue; 361 } 362 363 /* valid packet */ 364 skb = priv->rx_skb[desc_idx]; 365 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT; 366 /* don't include FCS */ 367 len -= 4; 368 369 if (len < copybreak) { 370 struct sk_buff *nskb; 371 372 nskb = napi_alloc_skb(&priv->napi, len); 373 if (!nskb) { 374 /* forget packet, just rearm desc */ 375 dev->stats.rx_dropped++; 376 continue; 377 } 378 379 dma_sync_single_for_cpu(kdev, desc->address, 380 len, DMA_FROM_DEVICE); 381 memcpy(nskb->data, skb->data, len); 382 dma_sync_single_for_device(kdev, desc->address, 383 len, DMA_FROM_DEVICE); 384 skb = nskb; 385 } else { 386 dma_unmap_single(&priv->pdev->dev, desc->address, 387 priv->rx_skb_size, DMA_FROM_DEVICE); 388 priv->rx_skb[desc_idx] = NULL; 389 } 390 391 skb_put(skb, len); 392 skb->protocol = eth_type_trans(skb, dev); 393 dev->stats.rx_packets++; 394 dev->stats.rx_bytes += len; 395 netif_receive_skb(skb); 396 397 } while (--budget > 0); 398 399 if (processed || !priv->rx_desc_count) { 400 bcm_enet_refill_rx(dev); 401 402 /* kick rx dma */ 403 enet_dmac_writel(priv, priv->dma_chan_en_mask, 404 ENETDMAC_CHANCFG, priv->rx_chan); 405 } 406 407 return processed; 408 } 409 410 411 /* 412 * try to or force reclaim of transmitted buffers 413 */ 414 static int bcm_enet_tx_reclaim(struct net_device *dev, int force) 415 { 416 struct bcm_enet_priv *priv; 417 int released; 418 419 priv = netdev_priv(dev); 420 released = 0; 421 422 while (priv->tx_desc_count < priv->tx_ring_size) { 423 struct bcm_enet_desc *desc; 424 struct sk_buff *skb; 425 426 /* We run in a bh and fight against start_xmit, which 427 * is called with bh disabled */ 428 spin_lock(&priv->tx_lock); 429 430 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc]; 431 432 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) { 433 spin_unlock(&priv->tx_lock); 434 break; 435 } 436 437 /* ensure other field of the descriptor were not read 438 * before we checked ownership */ 439 rmb(); 440 441 skb = priv->tx_skb[priv->tx_dirty_desc]; 442 priv->tx_skb[priv->tx_dirty_desc] = NULL; 443 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len, 444 DMA_TO_DEVICE); 445 446 priv->tx_dirty_desc++; 447 if (priv->tx_dirty_desc == priv->tx_ring_size) 448 priv->tx_dirty_desc = 0; 449 priv->tx_desc_count++; 450 451 spin_unlock(&priv->tx_lock); 452 453 if (desc->len_stat & DMADESC_UNDER_MASK) 454 dev->stats.tx_errors++; 455 456 dev_kfree_skb(skb); 457 released++; 458 } 459 460 if (netif_queue_stopped(dev) && released) 461 netif_wake_queue(dev); 462 463 return released; 464 } 465 466 /* 467 * poll func, called by network core 468 */ 469 static int bcm_enet_poll(struct napi_struct *napi, int budget) 470 { 471 struct bcm_enet_priv *priv; 472 struct net_device *dev; 473 int rx_work_done; 474 475 priv = container_of(napi, struct bcm_enet_priv, napi); 476 dev = priv->net_dev; 477 478 /* ack interrupts */ 479 enet_dmac_writel(priv, priv->dma_chan_int_mask, 480 ENETDMAC_IR, priv->rx_chan); 481 enet_dmac_writel(priv, priv->dma_chan_int_mask, 482 ENETDMAC_IR, priv->tx_chan); 483 484 /* reclaim sent skb */ 485 bcm_enet_tx_reclaim(dev, 0); 486 487 spin_lock(&priv->rx_lock); 488 rx_work_done = bcm_enet_receive_queue(dev, budget); 489 spin_unlock(&priv->rx_lock); 490 491 if (rx_work_done >= budget) { 492 /* rx queue is not yet empty/clean */ 493 return rx_work_done; 494 } 495 496 /* no more packet in rx/tx queue, remove device from poll 497 * queue */ 498 napi_complete_done(napi, rx_work_done); 499 500 /* restore rx/tx interrupt */ 501 enet_dmac_writel(priv, priv->dma_chan_int_mask, 502 ENETDMAC_IRMASK, priv->rx_chan); 503 enet_dmac_writel(priv, priv->dma_chan_int_mask, 504 ENETDMAC_IRMASK, priv->tx_chan); 505 506 return rx_work_done; 507 } 508 509 /* 510 * mac interrupt handler 511 */ 512 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id) 513 { 514 struct net_device *dev; 515 struct bcm_enet_priv *priv; 516 u32 stat; 517 518 dev = dev_id; 519 priv = netdev_priv(dev); 520 521 stat = enet_readl(priv, ENET_IR_REG); 522 if (!(stat & ENET_IR_MIB)) 523 return IRQ_NONE; 524 525 /* clear & mask interrupt */ 526 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 527 enet_writel(priv, 0, ENET_IRMASK_REG); 528 529 /* read mib registers in workqueue */ 530 schedule_work(&priv->mib_update_task); 531 532 return IRQ_HANDLED; 533 } 534 535 /* 536 * rx/tx dma interrupt handler 537 */ 538 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id) 539 { 540 struct net_device *dev; 541 struct bcm_enet_priv *priv; 542 543 dev = dev_id; 544 priv = netdev_priv(dev); 545 546 /* mask rx/tx interrupts */ 547 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 548 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 549 550 napi_schedule(&priv->napi); 551 552 return IRQ_HANDLED; 553 } 554 555 /* 556 * tx request callback 557 */ 558 static netdev_tx_t 559 bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 560 { 561 struct bcm_enet_priv *priv; 562 struct bcm_enet_desc *desc; 563 u32 len_stat; 564 netdev_tx_t ret; 565 566 priv = netdev_priv(dev); 567 568 /* lock against tx reclaim */ 569 spin_lock(&priv->tx_lock); 570 571 /* make sure the tx hw queue is not full, should not happen 572 * since we stop queue before it's the case */ 573 if (unlikely(!priv->tx_desc_count)) { 574 netif_stop_queue(dev); 575 dev_err(&priv->pdev->dev, "xmit called with no tx desc " 576 "available?\n"); 577 ret = NETDEV_TX_BUSY; 578 goto out_unlock; 579 } 580 581 /* pad small packets sent on a switch device */ 582 if (priv->enet_is_sw && skb->len < 64) { 583 int needed = 64 - skb->len; 584 char *data; 585 586 if (unlikely(skb_tailroom(skb) < needed)) { 587 struct sk_buff *nskb; 588 589 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC); 590 if (!nskb) { 591 ret = NETDEV_TX_BUSY; 592 goto out_unlock; 593 } 594 dev_kfree_skb(skb); 595 skb = nskb; 596 } 597 data = skb_put_zero(skb, needed); 598 } 599 600 /* point to the next available desc */ 601 desc = &priv->tx_desc_cpu[priv->tx_curr_desc]; 602 priv->tx_skb[priv->tx_curr_desc] = skb; 603 604 /* fill descriptor */ 605 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len, 606 DMA_TO_DEVICE); 607 608 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK; 609 len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) | 610 DMADESC_APPEND_CRC | 611 DMADESC_OWNER_MASK; 612 613 priv->tx_curr_desc++; 614 if (priv->tx_curr_desc == priv->tx_ring_size) { 615 priv->tx_curr_desc = 0; 616 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 617 } 618 priv->tx_desc_count--; 619 620 /* dma might be already polling, make sure we update desc 621 * fields in correct order */ 622 wmb(); 623 desc->len_stat = len_stat; 624 wmb(); 625 626 /* kick tx dma */ 627 enet_dmac_writel(priv, priv->dma_chan_en_mask, 628 ENETDMAC_CHANCFG, priv->tx_chan); 629 630 /* stop queue if no more desc available */ 631 if (!priv->tx_desc_count) 632 netif_stop_queue(dev); 633 634 dev->stats.tx_bytes += skb->len; 635 dev->stats.tx_packets++; 636 ret = NETDEV_TX_OK; 637 638 out_unlock: 639 spin_unlock(&priv->tx_lock); 640 return ret; 641 } 642 643 /* 644 * Change the interface's mac address. 645 */ 646 static int bcm_enet_set_mac_address(struct net_device *dev, void *p) 647 { 648 struct bcm_enet_priv *priv; 649 struct sockaddr *addr = p; 650 u32 val; 651 652 priv = netdev_priv(dev); 653 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 654 655 /* use perfect match register 0 to store my mac address */ 656 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) | 657 (dev->dev_addr[4] << 8) | dev->dev_addr[5]; 658 enet_writel(priv, val, ENET_PML_REG(0)); 659 660 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]); 661 val |= ENET_PMH_DATAVALID_MASK; 662 enet_writel(priv, val, ENET_PMH_REG(0)); 663 664 return 0; 665 } 666 667 /* 668 * Change rx mode (promiscuous/allmulti) and update multicast list 669 */ 670 static void bcm_enet_set_multicast_list(struct net_device *dev) 671 { 672 struct bcm_enet_priv *priv; 673 struct netdev_hw_addr *ha; 674 u32 val; 675 int i; 676 677 priv = netdev_priv(dev); 678 679 val = enet_readl(priv, ENET_RXCFG_REG); 680 681 if (dev->flags & IFF_PROMISC) 682 val |= ENET_RXCFG_PROMISC_MASK; 683 else 684 val &= ~ENET_RXCFG_PROMISC_MASK; 685 686 /* only 3 perfect match registers left, first one is used for 687 * own mac address */ 688 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3) 689 val |= ENET_RXCFG_ALLMCAST_MASK; 690 else 691 val &= ~ENET_RXCFG_ALLMCAST_MASK; 692 693 /* no need to set perfect match registers if we catch all 694 * multicast */ 695 if (val & ENET_RXCFG_ALLMCAST_MASK) { 696 enet_writel(priv, val, ENET_RXCFG_REG); 697 return; 698 } 699 700 i = 0; 701 netdev_for_each_mc_addr(ha, dev) { 702 u8 *dmi_addr; 703 u32 tmp; 704 705 if (i == 3) 706 break; 707 /* update perfect match registers */ 708 dmi_addr = ha->addr; 709 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) | 710 (dmi_addr[4] << 8) | dmi_addr[5]; 711 enet_writel(priv, tmp, ENET_PML_REG(i + 1)); 712 713 tmp = (dmi_addr[0] << 8 | dmi_addr[1]); 714 tmp |= ENET_PMH_DATAVALID_MASK; 715 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1)); 716 } 717 718 for (; i < 3; i++) { 719 enet_writel(priv, 0, ENET_PML_REG(i + 1)); 720 enet_writel(priv, 0, ENET_PMH_REG(i + 1)); 721 } 722 723 enet_writel(priv, val, ENET_RXCFG_REG); 724 } 725 726 /* 727 * set mac duplex parameters 728 */ 729 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex) 730 { 731 u32 val; 732 733 val = enet_readl(priv, ENET_TXCTL_REG); 734 if (fullduplex) 735 val |= ENET_TXCTL_FD_MASK; 736 else 737 val &= ~ENET_TXCTL_FD_MASK; 738 enet_writel(priv, val, ENET_TXCTL_REG); 739 } 740 741 /* 742 * set mac flow control parameters 743 */ 744 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en) 745 { 746 u32 val; 747 748 /* rx flow control (pause frame handling) */ 749 val = enet_readl(priv, ENET_RXCFG_REG); 750 if (rx_en) 751 val |= ENET_RXCFG_ENFLOW_MASK; 752 else 753 val &= ~ENET_RXCFG_ENFLOW_MASK; 754 enet_writel(priv, val, ENET_RXCFG_REG); 755 756 if (!priv->dma_has_sram) 757 return; 758 759 /* tx flow control (pause frame generation) */ 760 val = enet_dma_readl(priv, ENETDMA_CFG_REG); 761 if (tx_en) 762 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 763 else 764 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 765 enet_dma_writel(priv, val, ENETDMA_CFG_REG); 766 } 767 768 /* 769 * link changed callback (from phylib) 770 */ 771 static void bcm_enet_adjust_phy_link(struct net_device *dev) 772 { 773 struct bcm_enet_priv *priv; 774 struct phy_device *phydev; 775 int status_changed; 776 777 priv = netdev_priv(dev); 778 phydev = dev->phydev; 779 status_changed = 0; 780 781 if (priv->old_link != phydev->link) { 782 status_changed = 1; 783 priv->old_link = phydev->link; 784 } 785 786 /* reflect duplex change in mac configuration */ 787 if (phydev->link && phydev->duplex != priv->old_duplex) { 788 bcm_enet_set_duplex(priv, 789 (phydev->duplex == DUPLEX_FULL) ? 1 : 0); 790 status_changed = 1; 791 priv->old_duplex = phydev->duplex; 792 } 793 794 /* enable flow control if remote advertise it (trust phylib to 795 * check that duplex is full */ 796 if (phydev->link && phydev->pause != priv->old_pause) { 797 int rx_pause_en, tx_pause_en; 798 799 if (phydev->pause) { 800 /* pause was advertised by lpa and us */ 801 rx_pause_en = 1; 802 tx_pause_en = 1; 803 } else if (!priv->pause_auto) { 804 /* pause setting overridden by user */ 805 rx_pause_en = priv->pause_rx; 806 tx_pause_en = priv->pause_tx; 807 } else { 808 rx_pause_en = 0; 809 tx_pause_en = 0; 810 } 811 812 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en); 813 status_changed = 1; 814 priv->old_pause = phydev->pause; 815 } 816 817 if (status_changed) { 818 pr_info("%s: link %s", dev->name, phydev->link ? 819 "UP" : "DOWN"); 820 if (phydev->link) 821 pr_cont(" - %d/%s - flow control %s", phydev->speed, 822 DUPLEX_FULL == phydev->duplex ? "full" : "half", 823 phydev->pause == 1 ? "rx&tx" : "off"); 824 825 pr_cont("\n"); 826 } 827 } 828 829 /* 830 * link changed callback (if phylib is not used) 831 */ 832 static void bcm_enet_adjust_link(struct net_device *dev) 833 { 834 struct bcm_enet_priv *priv; 835 836 priv = netdev_priv(dev); 837 bcm_enet_set_duplex(priv, priv->force_duplex_full); 838 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx); 839 netif_carrier_on(dev); 840 841 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n", 842 dev->name, 843 priv->force_speed_100 ? 100 : 10, 844 priv->force_duplex_full ? "full" : "half", 845 priv->pause_rx ? "rx" : "off", 846 priv->pause_tx ? "tx" : "off"); 847 } 848 849 /* 850 * open callback, allocate dma rings & buffers and start rx operation 851 */ 852 static int bcm_enet_open(struct net_device *dev) 853 { 854 struct bcm_enet_priv *priv; 855 struct sockaddr addr; 856 struct device *kdev; 857 struct phy_device *phydev; 858 int i, ret; 859 unsigned int size; 860 char phy_id[MII_BUS_ID_SIZE + 3]; 861 void *p; 862 u32 val; 863 864 priv = netdev_priv(dev); 865 kdev = &priv->pdev->dev; 866 867 if (priv->has_phy) { 868 /* connect to PHY */ 869 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 870 priv->mii_bus->id, priv->phy_id); 871 872 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link, 873 PHY_INTERFACE_MODE_MII); 874 875 if (IS_ERR(phydev)) { 876 dev_err(kdev, "could not attach to PHY\n"); 877 return PTR_ERR(phydev); 878 } 879 880 /* mask with MAC supported features */ 881 phy_support_sym_pause(phydev); 882 phy_set_max_speed(phydev, SPEED_100); 883 phy_set_sym_pause(phydev, priv->pause_rx, priv->pause_rx, 884 priv->pause_auto); 885 886 phy_attached_info(phydev); 887 888 priv->old_link = 0; 889 priv->old_duplex = -1; 890 priv->old_pause = -1; 891 } else { 892 phydev = NULL; 893 } 894 895 /* mask all interrupts and request them */ 896 enet_writel(priv, 0, ENET_IRMASK_REG); 897 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 898 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 899 900 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev); 901 if (ret) 902 goto out_phy_disconnect; 903 904 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0, 905 dev->name, dev); 906 if (ret) 907 goto out_freeirq; 908 909 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 910 0, dev->name, dev); 911 if (ret) 912 goto out_freeirq_rx; 913 914 /* initialize perfect match registers */ 915 for (i = 0; i < 4; i++) { 916 enet_writel(priv, 0, ENET_PML_REG(i)); 917 enet_writel(priv, 0, ENET_PMH_REG(i)); 918 } 919 920 /* write device mac address */ 921 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN); 922 bcm_enet_set_mac_address(dev, &addr); 923 924 /* allocate rx dma ring */ 925 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 926 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 927 if (!p) { 928 ret = -ENOMEM; 929 goto out_freeirq_tx; 930 } 931 932 priv->rx_desc_alloc_size = size; 933 priv->rx_desc_cpu = p; 934 935 /* allocate tx dma ring */ 936 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 937 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 938 if (!p) { 939 ret = -ENOMEM; 940 goto out_free_rx_ring; 941 } 942 943 priv->tx_desc_alloc_size = size; 944 priv->tx_desc_cpu = p; 945 946 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *), 947 GFP_KERNEL); 948 if (!priv->tx_skb) { 949 ret = -ENOMEM; 950 goto out_free_tx_ring; 951 } 952 953 priv->tx_desc_count = priv->tx_ring_size; 954 priv->tx_dirty_desc = 0; 955 priv->tx_curr_desc = 0; 956 spin_lock_init(&priv->tx_lock); 957 958 /* init & fill rx ring with skbs */ 959 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *), 960 GFP_KERNEL); 961 if (!priv->rx_skb) { 962 ret = -ENOMEM; 963 goto out_free_tx_skb; 964 } 965 966 priv->rx_desc_count = 0; 967 priv->rx_dirty_desc = 0; 968 priv->rx_curr_desc = 0; 969 970 /* initialize flow control buffer allocation */ 971 if (priv->dma_has_sram) 972 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 973 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 974 else 975 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 976 ENETDMAC_BUFALLOC, priv->rx_chan); 977 978 if (bcm_enet_refill_rx(dev)) { 979 dev_err(kdev, "cannot allocate rx skb queue\n"); 980 ret = -ENOMEM; 981 goto out; 982 } 983 984 /* write rx & tx ring addresses */ 985 if (priv->dma_has_sram) { 986 enet_dmas_writel(priv, priv->rx_desc_dma, 987 ENETDMAS_RSTART_REG, priv->rx_chan); 988 enet_dmas_writel(priv, priv->tx_desc_dma, 989 ENETDMAS_RSTART_REG, priv->tx_chan); 990 } else { 991 enet_dmac_writel(priv, priv->rx_desc_dma, 992 ENETDMAC_RSTART, priv->rx_chan); 993 enet_dmac_writel(priv, priv->tx_desc_dma, 994 ENETDMAC_RSTART, priv->tx_chan); 995 } 996 997 /* clear remaining state ram for rx & tx channel */ 998 if (priv->dma_has_sram) { 999 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 1000 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 1001 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 1002 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 1003 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 1004 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 1005 } else { 1006 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan); 1007 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan); 1008 } 1009 1010 /* set max rx/tx length */ 1011 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG); 1012 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG); 1013 1014 /* set dma maximum burst len */ 1015 enet_dmac_writel(priv, priv->dma_maxburst, 1016 ENETDMAC_MAXBURST, priv->rx_chan); 1017 enet_dmac_writel(priv, priv->dma_maxburst, 1018 ENETDMAC_MAXBURST, priv->tx_chan); 1019 1020 /* set correct transmit fifo watermark */ 1021 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG); 1022 1023 /* set flow control low/high threshold to 1/3 / 2/3 */ 1024 if (priv->dma_has_sram) { 1025 val = priv->rx_ring_size / 3; 1026 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 1027 val = (priv->rx_ring_size * 2) / 3; 1028 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 1029 } else { 1030 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan); 1031 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan); 1032 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan); 1033 } 1034 1035 /* all set, enable mac and interrupts, start dma engine and 1036 * kick rx dma channel */ 1037 wmb(); 1038 val = enet_readl(priv, ENET_CTL_REG); 1039 val |= ENET_CTL_ENABLE_MASK; 1040 enet_writel(priv, val, ENET_CTL_REG); 1041 if (priv->dma_has_sram) 1042 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 1043 enet_dmac_writel(priv, priv->dma_chan_en_mask, 1044 ENETDMAC_CHANCFG, priv->rx_chan); 1045 1046 /* watch "mib counters about to overflow" interrupt */ 1047 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 1048 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1049 1050 /* watch "packet transferred" interrupt in rx and tx */ 1051 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1052 ENETDMAC_IR, priv->rx_chan); 1053 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1054 ENETDMAC_IR, priv->tx_chan); 1055 1056 /* make sure we enable napi before rx interrupt */ 1057 napi_enable(&priv->napi); 1058 1059 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1060 ENETDMAC_IRMASK, priv->rx_chan); 1061 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1062 ENETDMAC_IRMASK, priv->tx_chan); 1063 1064 if (phydev) 1065 phy_start(phydev); 1066 else 1067 bcm_enet_adjust_link(dev); 1068 1069 netif_start_queue(dev); 1070 return 0; 1071 1072 out: 1073 for (i = 0; i < priv->rx_ring_size; i++) { 1074 struct bcm_enet_desc *desc; 1075 1076 if (!priv->rx_skb[i]) 1077 continue; 1078 1079 desc = &priv->rx_desc_cpu[i]; 1080 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1081 DMA_FROM_DEVICE); 1082 kfree_skb(priv->rx_skb[i]); 1083 } 1084 kfree(priv->rx_skb); 1085 1086 out_free_tx_skb: 1087 kfree(priv->tx_skb); 1088 1089 out_free_tx_ring: 1090 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1091 priv->tx_desc_cpu, priv->tx_desc_dma); 1092 1093 out_free_rx_ring: 1094 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1095 priv->rx_desc_cpu, priv->rx_desc_dma); 1096 1097 out_freeirq_tx: 1098 free_irq(priv->irq_tx, dev); 1099 1100 out_freeirq_rx: 1101 free_irq(priv->irq_rx, dev); 1102 1103 out_freeirq: 1104 free_irq(dev->irq, dev); 1105 1106 out_phy_disconnect: 1107 if (phydev) 1108 phy_disconnect(phydev); 1109 1110 return ret; 1111 } 1112 1113 /* 1114 * disable mac 1115 */ 1116 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv) 1117 { 1118 int limit; 1119 u32 val; 1120 1121 val = enet_readl(priv, ENET_CTL_REG); 1122 val |= ENET_CTL_DISABLE_MASK; 1123 enet_writel(priv, val, ENET_CTL_REG); 1124 1125 limit = 1000; 1126 do { 1127 u32 val; 1128 1129 val = enet_readl(priv, ENET_CTL_REG); 1130 if (!(val & ENET_CTL_DISABLE_MASK)) 1131 break; 1132 udelay(1); 1133 } while (limit--); 1134 } 1135 1136 /* 1137 * disable dma in given channel 1138 */ 1139 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan) 1140 { 1141 int limit; 1142 1143 enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan); 1144 1145 limit = 1000; 1146 do { 1147 u32 val; 1148 1149 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan); 1150 if (!(val & ENETDMAC_CHANCFG_EN_MASK)) 1151 break; 1152 udelay(1); 1153 } while (limit--); 1154 } 1155 1156 /* 1157 * stop callback 1158 */ 1159 static int bcm_enet_stop(struct net_device *dev) 1160 { 1161 struct bcm_enet_priv *priv; 1162 struct device *kdev; 1163 int i; 1164 1165 priv = netdev_priv(dev); 1166 kdev = &priv->pdev->dev; 1167 1168 netif_stop_queue(dev); 1169 napi_disable(&priv->napi); 1170 if (priv->has_phy) 1171 phy_stop(dev->phydev); 1172 del_timer_sync(&priv->rx_timeout); 1173 1174 /* mask all interrupts */ 1175 enet_writel(priv, 0, ENET_IRMASK_REG); 1176 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 1177 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 1178 1179 /* make sure no mib update is scheduled */ 1180 cancel_work_sync(&priv->mib_update_task); 1181 1182 /* disable dma & mac */ 1183 bcm_enet_disable_dma(priv, priv->tx_chan); 1184 bcm_enet_disable_dma(priv, priv->rx_chan); 1185 bcm_enet_disable_mac(priv); 1186 1187 /* force reclaim of all tx buffers */ 1188 bcm_enet_tx_reclaim(dev, 1); 1189 1190 /* free the rx skb ring */ 1191 for (i = 0; i < priv->rx_ring_size; i++) { 1192 struct bcm_enet_desc *desc; 1193 1194 if (!priv->rx_skb[i]) 1195 continue; 1196 1197 desc = &priv->rx_desc_cpu[i]; 1198 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1199 DMA_FROM_DEVICE); 1200 kfree_skb(priv->rx_skb[i]); 1201 } 1202 1203 /* free remaining allocated memory */ 1204 kfree(priv->rx_skb); 1205 kfree(priv->tx_skb); 1206 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1207 priv->rx_desc_cpu, priv->rx_desc_dma); 1208 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1209 priv->tx_desc_cpu, priv->tx_desc_dma); 1210 free_irq(priv->irq_tx, dev); 1211 free_irq(priv->irq_rx, dev); 1212 free_irq(dev->irq, dev); 1213 1214 /* release phy */ 1215 if (priv->has_phy) 1216 phy_disconnect(dev->phydev); 1217 1218 return 0; 1219 } 1220 1221 /* 1222 * ethtool callbacks 1223 */ 1224 struct bcm_enet_stats { 1225 char stat_string[ETH_GSTRING_LEN]; 1226 int sizeof_stat; 1227 int stat_offset; 1228 int mib_reg; 1229 }; 1230 1231 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \ 1232 offsetof(struct bcm_enet_priv, m) 1233 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \ 1234 offsetof(struct net_device_stats, m) 1235 1236 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = { 1237 { "rx_packets", DEV_STAT(rx_packets), -1 }, 1238 { "tx_packets", DEV_STAT(tx_packets), -1 }, 1239 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 1240 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 1241 { "rx_errors", DEV_STAT(rx_errors), -1 }, 1242 { "tx_errors", DEV_STAT(tx_errors), -1 }, 1243 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 1244 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 1245 1246 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS}, 1247 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS }, 1248 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST }, 1249 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT }, 1250 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 }, 1251 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 }, 1252 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 }, 1253 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 }, 1254 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 }, 1255 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX }, 1256 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB }, 1257 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR }, 1258 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG }, 1259 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP }, 1260 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN }, 1261 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND }, 1262 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC }, 1263 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN }, 1264 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM }, 1265 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE }, 1266 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL }, 1267 1268 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS }, 1269 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS }, 1270 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST }, 1271 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT }, 1272 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 }, 1273 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 }, 1274 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 }, 1275 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 }, 1276 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023}, 1277 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX }, 1278 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB }, 1279 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR }, 1280 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG }, 1281 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN }, 1282 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL }, 1283 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL }, 1284 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL }, 1285 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL }, 1286 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE }, 1287 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF }, 1288 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS }, 1289 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE }, 1290 1291 }; 1292 1293 #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats) 1294 1295 static const u32 unused_mib_regs[] = { 1296 ETH_MIB_TX_ALL_OCTETS, 1297 ETH_MIB_TX_ALL_PKTS, 1298 ETH_MIB_RX_ALL_OCTETS, 1299 ETH_MIB_RX_ALL_PKTS, 1300 }; 1301 1302 1303 static void bcm_enet_get_drvinfo(struct net_device *netdev, 1304 struct ethtool_drvinfo *drvinfo) 1305 { 1306 strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver)); 1307 strlcpy(drvinfo->version, bcm_enet_driver_version, 1308 sizeof(drvinfo->version)); 1309 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version)); 1310 strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info)); 1311 } 1312 1313 static int bcm_enet_get_sset_count(struct net_device *netdev, 1314 int string_set) 1315 { 1316 switch (string_set) { 1317 case ETH_SS_STATS: 1318 return BCM_ENET_STATS_LEN; 1319 default: 1320 return -EINVAL; 1321 } 1322 } 1323 1324 static void bcm_enet_get_strings(struct net_device *netdev, 1325 u32 stringset, u8 *data) 1326 { 1327 int i; 1328 1329 switch (stringset) { 1330 case ETH_SS_STATS: 1331 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1332 memcpy(data + i * ETH_GSTRING_LEN, 1333 bcm_enet_gstrings_stats[i].stat_string, 1334 ETH_GSTRING_LEN); 1335 } 1336 break; 1337 } 1338 } 1339 1340 static void update_mib_counters(struct bcm_enet_priv *priv) 1341 { 1342 int i; 1343 1344 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1345 const struct bcm_enet_stats *s; 1346 u32 val; 1347 char *p; 1348 1349 s = &bcm_enet_gstrings_stats[i]; 1350 if (s->mib_reg == -1) 1351 continue; 1352 1353 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg)); 1354 p = (char *)priv + s->stat_offset; 1355 1356 if (s->sizeof_stat == sizeof(u64)) 1357 *(u64 *)p += val; 1358 else 1359 *(u32 *)p += val; 1360 } 1361 1362 /* also empty unused mib counters to make sure mib counter 1363 * overflow interrupt is cleared */ 1364 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++) 1365 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i])); 1366 } 1367 1368 static void bcm_enet_update_mib_counters_defer(struct work_struct *t) 1369 { 1370 struct bcm_enet_priv *priv; 1371 1372 priv = container_of(t, struct bcm_enet_priv, mib_update_task); 1373 mutex_lock(&priv->mib_update_lock); 1374 update_mib_counters(priv); 1375 mutex_unlock(&priv->mib_update_lock); 1376 1377 /* reenable mib interrupt */ 1378 if (netif_running(priv->net_dev)) 1379 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1380 } 1381 1382 static void bcm_enet_get_ethtool_stats(struct net_device *netdev, 1383 struct ethtool_stats *stats, 1384 u64 *data) 1385 { 1386 struct bcm_enet_priv *priv; 1387 int i; 1388 1389 priv = netdev_priv(netdev); 1390 1391 mutex_lock(&priv->mib_update_lock); 1392 update_mib_counters(priv); 1393 1394 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1395 const struct bcm_enet_stats *s; 1396 char *p; 1397 1398 s = &bcm_enet_gstrings_stats[i]; 1399 if (s->mib_reg == -1) 1400 p = (char *)&netdev->stats; 1401 else 1402 p = (char *)priv; 1403 p += s->stat_offset; 1404 data[i] = (s->sizeof_stat == sizeof(u64)) ? 1405 *(u64 *)p : *(u32 *)p; 1406 } 1407 mutex_unlock(&priv->mib_update_lock); 1408 } 1409 1410 static int bcm_enet_nway_reset(struct net_device *dev) 1411 { 1412 struct bcm_enet_priv *priv; 1413 1414 priv = netdev_priv(dev); 1415 if (priv->has_phy) 1416 return phy_ethtool_nway_reset(dev); 1417 1418 return -EOPNOTSUPP; 1419 } 1420 1421 static int bcm_enet_get_link_ksettings(struct net_device *dev, 1422 struct ethtool_link_ksettings *cmd) 1423 { 1424 struct bcm_enet_priv *priv; 1425 u32 supported, advertising; 1426 1427 priv = netdev_priv(dev); 1428 1429 if (priv->has_phy) { 1430 if (!dev->phydev) 1431 return -ENODEV; 1432 1433 phy_ethtool_ksettings_get(dev->phydev, cmd); 1434 1435 return 0; 1436 } else { 1437 cmd->base.autoneg = 0; 1438 cmd->base.speed = (priv->force_speed_100) ? 1439 SPEED_100 : SPEED_10; 1440 cmd->base.duplex = (priv->force_duplex_full) ? 1441 DUPLEX_FULL : DUPLEX_HALF; 1442 supported = ADVERTISED_10baseT_Half | 1443 ADVERTISED_10baseT_Full | 1444 ADVERTISED_100baseT_Half | 1445 ADVERTISED_100baseT_Full; 1446 advertising = 0; 1447 ethtool_convert_legacy_u32_to_link_mode( 1448 cmd->link_modes.supported, supported); 1449 ethtool_convert_legacy_u32_to_link_mode( 1450 cmd->link_modes.advertising, advertising); 1451 cmd->base.port = PORT_MII; 1452 } 1453 return 0; 1454 } 1455 1456 static int bcm_enet_set_link_ksettings(struct net_device *dev, 1457 const struct ethtool_link_ksettings *cmd) 1458 { 1459 struct bcm_enet_priv *priv; 1460 1461 priv = netdev_priv(dev); 1462 if (priv->has_phy) { 1463 if (!dev->phydev) 1464 return -ENODEV; 1465 return phy_ethtool_ksettings_set(dev->phydev, cmd); 1466 } else { 1467 1468 if (cmd->base.autoneg || 1469 (cmd->base.speed != SPEED_100 && 1470 cmd->base.speed != SPEED_10) || 1471 cmd->base.port != PORT_MII) 1472 return -EINVAL; 1473 1474 priv->force_speed_100 = 1475 (cmd->base.speed == SPEED_100) ? 1 : 0; 1476 priv->force_duplex_full = 1477 (cmd->base.duplex == DUPLEX_FULL) ? 1 : 0; 1478 1479 if (netif_running(dev)) 1480 bcm_enet_adjust_link(dev); 1481 return 0; 1482 } 1483 } 1484 1485 static void bcm_enet_get_ringparam(struct net_device *dev, 1486 struct ethtool_ringparam *ering) 1487 { 1488 struct bcm_enet_priv *priv; 1489 1490 priv = netdev_priv(dev); 1491 1492 /* rx/tx ring is actually only limited by memory */ 1493 ering->rx_max_pending = 8192; 1494 ering->tx_max_pending = 8192; 1495 ering->rx_pending = priv->rx_ring_size; 1496 ering->tx_pending = priv->tx_ring_size; 1497 } 1498 1499 static int bcm_enet_set_ringparam(struct net_device *dev, 1500 struct ethtool_ringparam *ering) 1501 { 1502 struct bcm_enet_priv *priv; 1503 int was_running; 1504 1505 priv = netdev_priv(dev); 1506 1507 was_running = 0; 1508 if (netif_running(dev)) { 1509 bcm_enet_stop(dev); 1510 was_running = 1; 1511 } 1512 1513 priv->rx_ring_size = ering->rx_pending; 1514 priv->tx_ring_size = ering->tx_pending; 1515 1516 if (was_running) { 1517 int err; 1518 1519 err = bcm_enet_open(dev); 1520 if (err) 1521 dev_close(dev); 1522 else 1523 bcm_enet_set_multicast_list(dev); 1524 } 1525 return 0; 1526 } 1527 1528 static void bcm_enet_get_pauseparam(struct net_device *dev, 1529 struct ethtool_pauseparam *ecmd) 1530 { 1531 struct bcm_enet_priv *priv; 1532 1533 priv = netdev_priv(dev); 1534 ecmd->autoneg = priv->pause_auto; 1535 ecmd->rx_pause = priv->pause_rx; 1536 ecmd->tx_pause = priv->pause_tx; 1537 } 1538 1539 static int bcm_enet_set_pauseparam(struct net_device *dev, 1540 struct ethtool_pauseparam *ecmd) 1541 { 1542 struct bcm_enet_priv *priv; 1543 1544 priv = netdev_priv(dev); 1545 1546 if (priv->has_phy) { 1547 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) { 1548 /* asymetric pause mode not supported, 1549 * actually possible but integrated PHY has RO 1550 * asym_pause bit */ 1551 return -EINVAL; 1552 } 1553 } else { 1554 /* no pause autoneg on direct mii connection */ 1555 if (ecmd->autoneg) 1556 return -EINVAL; 1557 } 1558 1559 priv->pause_auto = ecmd->autoneg; 1560 priv->pause_rx = ecmd->rx_pause; 1561 priv->pause_tx = ecmd->tx_pause; 1562 1563 return 0; 1564 } 1565 1566 static const struct ethtool_ops bcm_enet_ethtool_ops = { 1567 .get_strings = bcm_enet_get_strings, 1568 .get_sset_count = bcm_enet_get_sset_count, 1569 .get_ethtool_stats = bcm_enet_get_ethtool_stats, 1570 .nway_reset = bcm_enet_nway_reset, 1571 .get_drvinfo = bcm_enet_get_drvinfo, 1572 .get_link = ethtool_op_get_link, 1573 .get_ringparam = bcm_enet_get_ringparam, 1574 .set_ringparam = bcm_enet_set_ringparam, 1575 .get_pauseparam = bcm_enet_get_pauseparam, 1576 .set_pauseparam = bcm_enet_set_pauseparam, 1577 .get_link_ksettings = bcm_enet_get_link_ksettings, 1578 .set_link_ksettings = bcm_enet_set_link_ksettings, 1579 }; 1580 1581 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1582 { 1583 struct bcm_enet_priv *priv; 1584 1585 priv = netdev_priv(dev); 1586 if (priv->has_phy) { 1587 if (!dev->phydev) 1588 return -ENODEV; 1589 return phy_mii_ioctl(dev->phydev, rq, cmd); 1590 } else { 1591 struct mii_if_info mii; 1592 1593 mii.dev = dev; 1594 mii.mdio_read = bcm_enet_mdio_read_mii; 1595 mii.mdio_write = bcm_enet_mdio_write_mii; 1596 mii.phy_id = 0; 1597 mii.phy_id_mask = 0x3f; 1598 mii.reg_num_mask = 0x1f; 1599 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 1600 } 1601 } 1602 1603 /* 1604 * adjust mtu, can't be called while device is running 1605 */ 1606 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu) 1607 { 1608 struct bcm_enet_priv *priv = netdev_priv(dev); 1609 int actual_mtu = new_mtu; 1610 1611 if (netif_running(dev)) 1612 return -EBUSY; 1613 1614 /* add ethernet header + vlan tag size */ 1615 actual_mtu += VLAN_ETH_HLEN; 1616 1617 /* 1618 * setup maximum size before we get overflow mark in 1619 * descriptor, note that this will not prevent reception of 1620 * big frames, they will be split into multiple buffers 1621 * anyway 1622 */ 1623 priv->hw_mtu = actual_mtu; 1624 1625 /* 1626 * align rx buffer size to dma burst len, account FCS since 1627 * it's appended 1628 */ 1629 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN, 1630 priv->dma_maxburst * 4); 1631 1632 dev->mtu = new_mtu; 1633 return 0; 1634 } 1635 1636 /* 1637 * preinit hardware to allow mii operation while device is down 1638 */ 1639 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv) 1640 { 1641 u32 val; 1642 int limit; 1643 1644 /* make sure mac is disabled */ 1645 bcm_enet_disable_mac(priv); 1646 1647 /* soft reset mac */ 1648 val = ENET_CTL_SRESET_MASK; 1649 enet_writel(priv, val, ENET_CTL_REG); 1650 wmb(); 1651 1652 limit = 1000; 1653 do { 1654 val = enet_readl(priv, ENET_CTL_REG); 1655 if (!(val & ENET_CTL_SRESET_MASK)) 1656 break; 1657 udelay(1); 1658 } while (limit--); 1659 1660 /* select correct mii interface */ 1661 val = enet_readl(priv, ENET_CTL_REG); 1662 if (priv->use_external_mii) 1663 val |= ENET_CTL_EPHYSEL_MASK; 1664 else 1665 val &= ~ENET_CTL_EPHYSEL_MASK; 1666 enet_writel(priv, val, ENET_CTL_REG); 1667 1668 /* turn on mdc clock */ 1669 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) | 1670 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG); 1671 1672 /* set mib counters to self-clear when read */ 1673 val = enet_readl(priv, ENET_MIBCTL_REG); 1674 val |= ENET_MIBCTL_RDCLEAR_MASK; 1675 enet_writel(priv, val, ENET_MIBCTL_REG); 1676 } 1677 1678 static const struct net_device_ops bcm_enet_ops = { 1679 .ndo_open = bcm_enet_open, 1680 .ndo_stop = bcm_enet_stop, 1681 .ndo_start_xmit = bcm_enet_start_xmit, 1682 .ndo_set_mac_address = bcm_enet_set_mac_address, 1683 .ndo_set_rx_mode = bcm_enet_set_multicast_list, 1684 .ndo_do_ioctl = bcm_enet_ioctl, 1685 .ndo_change_mtu = bcm_enet_change_mtu, 1686 }; 1687 1688 /* 1689 * allocate netdevice, request register memory and register device. 1690 */ 1691 static int bcm_enet_probe(struct platform_device *pdev) 1692 { 1693 struct bcm_enet_priv *priv; 1694 struct net_device *dev; 1695 struct bcm63xx_enet_platform_data *pd; 1696 struct resource *res_irq, *res_irq_rx, *res_irq_tx; 1697 struct mii_bus *bus; 1698 int i, ret; 1699 1700 if (!bcm_enet_shared_base[0]) 1701 return -EPROBE_DEFER; 1702 1703 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1704 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1); 1705 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2); 1706 if (!res_irq || !res_irq_rx || !res_irq_tx) 1707 return -ENODEV; 1708 1709 ret = 0; 1710 dev = alloc_etherdev(sizeof(*priv)); 1711 if (!dev) 1712 return -ENOMEM; 1713 priv = netdev_priv(dev); 1714 1715 priv->enet_is_sw = false; 1716 priv->dma_maxburst = BCMENET_DMA_MAXBURST; 1717 1718 ret = bcm_enet_change_mtu(dev, dev->mtu); 1719 if (ret) 1720 goto out; 1721 1722 priv->base = devm_platform_ioremap_resource(pdev, 0); 1723 if (IS_ERR(priv->base)) { 1724 ret = PTR_ERR(priv->base); 1725 goto out; 1726 } 1727 1728 dev->irq = priv->irq = res_irq->start; 1729 priv->irq_rx = res_irq_rx->start; 1730 priv->irq_tx = res_irq_tx->start; 1731 1732 priv->mac_clk = devm_clk_get(&pdev->dev, "enet"); 1733 if (IS_ERR(priv->mac_clk)) { 1734 ret = PTR_ERR(priv->mac_clk); 1735 goto out; 1736 } 1737 ret = clk_prepare_enable(priv->mac_clk); 1738 if (ret) 1739 goto out; 1740 1741 /* initialize default and fetch platform data */ 1742 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 1743 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 1744 1745 pd = dev_get_platdata(&pdev->dev); 1746 if (pd) { 1747 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 1748 priv->has_phy = pd->has_phy; 1749 priv->phy_id = pd->phy_id; 1750 priv->has_phy_interrupt = pd->has_phy_interrupt; 1751 priv->phy_interrupt = pd->phy_interrupt; 1752 priv->use_external_mii = !pd->use_internal_phy; 1753 priv->pause_auto = pd->pause_auto; 1754 priv->pause_rx = pd->pause_rx; 1755 priv->pause_tx = pd->pause_tx; 1756 priv->force_duplex_full = pd->force_duplex_full; 1757 priv->force_speed_100 = pd->force_speed_100; 1758 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 1759 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 1760 priv->dma_chan_width = pd->dma_chan_width; 1761 priv->dma_has_sram = pd->dma_has_sram; 1762 priv->dma_desc_shift = pd->dma_desc_shift; 1763 priv->rx_chan = pd->rx_chan; 1764 priv->tx_chan = pd->tx_chan; 1765 } 1766 1767 if (priv->has_phy && !priv->use_external_mii) { 1768 /* using internal PHY, enable clock */ 1769 priv->phy_clk = devm_clk_get(&pdev->dev, "ephy"); 1770 if (IS_ERR(priv->phy_clk)) { 1771 ret = PTR_ERR(priv->phy_clk); 1772 priv->phy_clk = NULL; 1773 goto out_disable_clk_mac; 1774 } 1775 ret = clk_prepare_enable(priv->phy_clk); 1776 if (ret) 1777 goto out_disable_clk_mac; 1778 } 1779 1780 /* do minimal hardware init to be able to probe mii bus */ 1781 bcm_enet_hw_preinit(priv); 1782 1783 /* MII bus registration */ 1784 if (priv->has_phy) { 1785 1786 priv->mii_bus = mdiobus_alloc(); 1787 if (!priv->mii_bus) { 1788 ret = -ENOMEM; 1789 goto out_uninit_hw; 1790 } 1791 1792 bus = priv->mii_bus; 1793 bus->name = "bcm63xx_enet MII bus"; 1794 bus->parent = &pdev->dev; 1795 bus->priv = priv; 1796 bus->read = bcm_enet_mdio_read_phylib; 1797 bus->write = bcm_enet_mdio_write_phylib; 1798 sprintf(bus->id, "%s-%d", pdev->name, pdev->id); 1799 1800 /* only probe bus where we think the PHY is, because 1801 * the mdio read operation return 0 instead of 0xffff 1802 * if a slave is not present on hw */ 1803 bus->phy_mask = ~(1 << priv->phy_id); 1804 1805 if (priv->has_phy_interrupt) 1806 bus->irq[priv->phy_id] = priv->phy_interrupt; 1807 1808 ret = mdiobus_register(bus); 1809 if (ret) { 1810 dev_err(&pdev->dev, "unable to register mdio bus\n"); 1811 goto out_free_mdio; 1812 } 1813 } else { 1814 1815 /* run platform code to initialize PHY device */ 1816 if (pd && pd->mii_config && 1817 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii, 1818 bcm_enet_mdio_write_mii)) { 1819 dev_err(&pdev->dev, "unable to configure mdio bus\n"); 1820 goto out_uninit_hw; 1821 } 1822 } 1823 1824 spin_lock_init(&priv->rx_lock); 1825 1826 /* init rx timeout (used for oom) */ 1827 timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0); 1828 1829 /* init the mib update lock&work */ 1830 mutex_init(&priv->mib_update_lock); 1831 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer); 1832 1833 /* zero mib counters */ 1834 for (i = 0; i < ENET_MIB_REG_COUNT; i++) 1835 enet_writel(priv, 0, ENET_MIB_REG(i)); 1836 1837 /* register netdevice */ 1838 dev->netdev_ops = &bcm_enet_ops; 1839 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 1840 1841 dev->ethtool_ops = &bcm_enet_ethtool_ops; 1842 /* MTU range: 46 - 2028 */ 1843 dev->min_mtu = ETH_ZLEN - ETH_HLEN; 1844 dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN; 1845 SET_NETDEV_DEV(dev, &pdev->dev); 1846 1847 ret = register_netdev(dev); 1848 if (ret) 1849 goto out_unregister_mdio; 1850 1851 netif_carrier_off(dev); 1852 platform_set_drvdata(pdev, dev); 1853 priv->pdev = pdev; 1854 priv->net_dev = dev; 1855 1856 return 0; 1857 1858 out_unregister_mdio: 1859 if (priv->mii_bus) 1860 mdiobus_unregister(priv->mii_bus); 1861 1862 out_free_mdio: 1863 if (priv->mii_bus) 1864 mdiobus_free(priv->mii_bus); 1865 1866 out_uninit_hw: 1867 /* turn off mdc clock */ 1868 enet_writel(priv, 0, ENET_MIISC_REG); 1869 clk_disable_unprepare(priv->phy_clk); 1870 1871 out_disable_clk_mac: 1872 clk_disable_unprepare(priv->mac_clk); 1873 out: 1874 free_netdev(dev); 1875 return ret; 1876 } 1877 1878 1879 /* 1880 * exit func, stops hardware and unregisters netdevice 1881 */ 1882 static int bcm_enet_remove(struct platform_device *pdev) 1883 { 1884 struct bcm_enet_priv *priv; 1885 struct net_device *dev; 1886 1887 /* stop netdevice */ 1888 dev = platform_get_drvdata(pdev); 1889 priv = netdev_priv(dev); 1890 unregister_netdev(dev); 1891 1892 /* turn off mdc clock */ 1893 enet_writel(priv, 0, ENET_MIISC_REG); 1894 1895 if (priv->has_phy) { 1896 mdiobus_unregister(priv->mii_bus); 1897 mdiobus_free(priv->mii_bus); 1898 } else { 1899 struct bcm63xx_enet_platform_data *pd; 1900 1901 pd = dev_get_platdata(&pdev->dev); 1902 if (pd && pd->mii_config) 1903 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii, 1904 bcm_enet_mdio_write_mii); 1905 } 1906 1907 /* disable hw block clocks */ 1908 clk_disable_unprepare(priv->phy_clk); 1909 clk_disable_unprepare(priv->mac_clk); 1910 1911 free_netdev(dev); 1912 return 0; 1913 } 1914 1915 struct platform_driver bcm63xx_enet_driver = { 1916 .probe = bcm_enet_probe, 1917 .remove = bcm_enet_remove, 1918 .driver = { 1919 .name = "bcm63xx_enet", 1920 .owner = THIS_MODULE, 1921 }, 1922 }; 1923 1924 /* 1925 * switch mii access callbacks 1926 */ 1927 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv, 1928 int ext, int phy_id, int location) 1929 { 1930 u32 reg; 1931 int ret; 1932 1933 spin_lock_bh(&priv->enetsw_mdio_lock); 1934 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 1935 1936 reg = ENETSW_MDIOC_RD_MASK | 1937 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 1938 (location << ENETSW_MDIOC_REG_SHIFT); 1939 1940 if (ext) 1941 reg |= ENETSW_MDIOC_EXT_MASK; 1942 1943 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 1944 udelay(50); 1945 ret = enetsw_readw(priv, ENETSW_MDIOD_REG); 1946 spin_unlock_bh(&priv->enetsw_mdio_lock); 1947 return ret; 1948 } 1949 1950 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv, 1951 int ext, int phy_id, int location, 1952 uint16_t data) 1953 { 1954 u32 reg; 1955 1956 spin_lock_bh(&priv->enetsw_mdio_lock); 1957 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 1958 1959 reg = ENETSW_MDIOC_WR_MASK | 1960 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 1961 (location << ENETSW_MDIOC_REG_SHIFT); 1962 1963 if (ext) 1964 reg |= ENETSW_MDIOC_EXT_MASK; 1965 1966 reg |= data; 1967 1968 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 1969 udelay(50); 1970 spin_unlock_bh(&priv->enetsw_mdio_lock); 1971 } 1972 1973 static inline int bcm_enet_port_is_rgmii(int portid) 1974 { 1975 return portid >= ENETSW_RGMII_PORT0; 1976 } 1977 1978 /* 1979 * enet sw PHY polling 1980 */ 1981 static void swphy_poll_timer(struct timer_list *t) 1982 { 1983 struct bcm_enet_priv *priv = from_timer(priv, t, swphy_poll); 1984 unsigned int i; 1985 1986 for (i = 0; i < priv->num_ports; i++) { 1987 struct bcm63xx_enetsw_port *port; 1988 int val, j, up, advertise, lpa, speed, duplex, media; 1989 int external_phy = bcm_enet_port_is_rgmii(i); 1990 u8 override; 1991 1992 port = &priv->used_ports[i]; 1993 if (!port->used) 1994 continue; 1995 1996 if (port->bypass_link) 1997 continue; 1998 1999 /* dummy read to clear */ 2000 for (j = 0; j < 2; j++) 2001 val = bcmenet_sw_mdio_read(priv, external_phy, 2002 port->phy_id, MII_BMSR); 2003 2004 if (val == 0xffff) 2005 continue; 2006 2007 up = (val & BMSR_LSTATUS) ? 1 : 0; 2008 if (!(up ^ priv->sw_port_link[i])) 2009 continue; 2010 2011 priv->sw_port_link[i] = up; 2012 2013 /* link changed */ 2014 if (!up) { 2015 dev_info(&priv->pdev->dev, "link DOWN on %s\n", 2016 port->name); 2017 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2018 ENETSW_PORTOV_REG(i)); 2019 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2020 ENETSW_PTCTRL_TXDIS_MASK, 2021 ENETSW_PTCTRL_REG(i)); 2022 continue; 2023 } 2024 2025 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2026 port->phy_id, MII_ADVERTISE); 2027 2028 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id, 2029 MII_LPA); 2030 2031 /* figure out media and duplex from advertise and LPA values */ 2032 media = mii_nway_result(lpa & advertise); 2033 duplex = (media & ADVERTISE_FULL) ? 1 : 0; 2034 2035 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF)) 2036 speed = 100; 2037 else 2038 speed = 10; 2039 2040 if (val & BMSR_ESTATEN) { 2041 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2042 port->phy_id, MII_CTRL1000); 2043 2044 lpa = bcmenet_sw_mdio_read(priv, external_phy, 2045 port->phy_id, MII_STAT1000); 2046 2047 if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF) 2048 && lpa & (LPA_1000FULL | LPA_1000HALF)) { 2049 speed = 1000; 2050 duplex = (lpa & LPA_1000FULL); 2051 } 2052 } 2053 2054 dev_info(&priv->pdev->dev, 2055 "link UP on %s, %dMbps, %s-duplex\n", 2056 port->name, speed, duplex ? "full" : "half"); 2057 2058 override = ENETSW_PORTOV_ENABLE_MASK | 2059 ENETSW_PORTOV_LINKUP_MASK; 2060 2061 if (speed == 1000) 2062 override |= ENETSW_IMPOV_1000_MASK; 2063 else if (speed == 100) 2064 override |= ENETSW_IMPOV_100_MASK; 2065 if (duplex) 2066 override |= ENETSW_IMPOV_FDX_MASK; 2067 2068 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2069 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2070 } 2071 2072 priv->swphy_poll.expires = jiffies + HZ; 2073 add_timer(&priv->swphy_poll); 2074 } 2075 2076 /* 2077 * open callback, allocate dma rings & buffers and start rx operation 2078 */ 2079 static int bcm_enetsw_open(struct net_device *dev) 2080 { 2081 struct bcm_enet_priv *priv; 2082 struct device *kdev; 2083 int i, ret; 2084 unsigned int size; 2085 void *p; 2086 u32 val; 2087 2088 priv = netdev_priv(dev); 2089 kdev = &priv->pdev->dev; 2090 2091 /* mask all interrupts and request them */ 2092 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2093 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2094 2095 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 2096 0, dev->name, dev); 2097 if (ret) 2098 goto out_freeirq; 2099 2100 if (priv->irq_tx != -1) { 2101 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 2102 0, dev->name, dev); 2103 if (ret) 2104 goto out_freeirq_rx; 2105 } 2106 2107 /* allocate rx dma ring */ 2108 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 2109 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 2110 if (!p) { 2111 dev_err(kdev, "cannot allocate rx ring %u\n", size); 2112 ret = -ENOMEM; 2113 goto out_freeirq_tx; 2114 } 2115 2116 priv->rx_desc_alloc_size = size; 2117 priv->rx_desc_cpu = p; 2118 2119 /* allocate tx dma ring */ 2120 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 2121 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 2122 if (!p) { 2123 dev_err(kdev, "cannot allocate tx ring\n"); 2124 ret = -ENOMEM; 2125 goto out_free_rx_ring; 2126 } 2127 2128 priv->tx_desc_alloc_size = size; 2129 priv->tx_desc_cpu = p; 2130 2131 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *), 2132 GFP_KERNEL); 2133 if (!priv->tx_skb) { 2134 dev_err(kdev, "cannot allocate rx skb queue\n"); 2135 ret = -ENOMEM; 2136 goto out_free_tx_ring; 2137 } 2138 2139 priv->tx_desc_count = priv->tx_ring_size; 2140 priv->tx_dirty_desc = 0; 2141 priv->tx_curr_desc = 0; 2142 spin_lock_init(&priv->tx_lock); 2143 2144 /* init & fill rx ring with skbs */ 2145 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *), 2146 GFP_KERNEL); 2147 if (!priv->rx_skb) { 2148 dev_err(kdev, "cannot allocate rx skb queue\n"); 2149 ret = -ENOMEM; 2150 goto out_free_tx_skb; 2151 } 2152 2153 priv->rx_desc_count = 0; 2154 priv->rx_dirty_desc = 0; 2155 priv->rx_curr_desc = 0; 2156 2157 /* disable all ports */ 2158 for (i = 0; i < priv->num_ports; i++) { 2159 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2160 ENETSW_PORTOV_REG(i)); 2161 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2162 ENETSW_PTCTRL_TXDIS_MASK, 2163 ENETSW_PTCTRL_REG(i)); 2164 2165 priv->sw_port_link[i] = 0; 2166 } 2167 2168 /* reset mib */ 2169 val = enetsw_readb(priv, ENETSW_GMCR_REG); 2170 val |= ENETSW_GMCR_RST_MIB_MASK; 2171 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2172 mdelay(1); 2173 val &= ~ENETSW_GMCR_RST_MIB_MASK; 2174 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2175 mdelay(1); 2176 2177 /* force CPU port state */ 2178 val = enetsw_readb(priv, ENETSW_IMPOV_REG); 2179 val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK; 2180 enetsw_writeb(priv, val, ENETSW_IMPOV_REG); 2181 2182 /* enable switch forward engine */ 2183 val = enetsw_readb(priv, ENETSW_SWMODE_REG); 2184 val |= ENETSW_SWMODE_FWD_EN_MASK; 2185 enetsw_writeb(priv, val, ENETSW_SWMODE_REG); 2186 2187 /* enable jumbo on all ports */ 2188 enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG); 2189 enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG); 2190 2191 /* initialize flow control buffer allocation */ 2192 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 2193 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 2194 2195 if (bcm_enet_refill_rx(dev)) { 2196 dev_err(kdev, "cannot allocate rx skb queue\n"); 2197 ret = -ENOMEM; 2198 goto out; 2199 } 2200 2201 /* write rx & tx ring addresses */ 2202 enet_dmas_writel(priv, priv->rx_desc_dma, 2203 ENETDMAS_RSTART_REG, priv->rx_chan); 2204 enet_dmas_writel(priv, priv->tx_desc_dma, 2205 ENETDMAS_RSTART_REG, priv->tx_chan); 2206 2207 /* clear remaining state ram for rx & tx channel */ 2208 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 2209 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 2210 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 2211 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 2212 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 2213 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 2214 2215 /* set dma maximum burst len */ 2216 enet_dmac_writel(priv, priv->dma_maxburst, 2217 ENETDMAC_MAXBURST, priv->rx_chan); 2218 enet_dmac_writel(priv, priv->dma_maxburst, 2219 ENETDMAC_MAXBURST, priv->tx_chan); 2220 2221 /* set flow control low/high threshold to 1/3 / 2/3 */ 2222 val = priv->rx_ring_size / 3; 2223 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 2224 val = (priv->rx_ring_size * 2) / 3; 2225 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 2226 2227 /* all set, enable mac and interrupts, start dma engine and 2228 * kick rx dma channel 2229 */ 2230 wmb(); 2231 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 2232 enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK, 2233 ENETDMAC_CHANCFG, priv->rx_chan); 2234 2235 /* watch "packet transferred" interrupt in rx and tx */ 2236 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2237 ENETDMAC_IR, priv->rx_chan); 2238 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2239 ENETDMAC_IR, priv->tx_chan); 2240 2241 /* make sure we enable napi before rx interrupt */ 2242 napi_enable(&priv->napi); 2243 2244 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2245 ENETDMAC_IRMASK, priv->rx_chan); 2246 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2247 ENETDMAC_IRMASK, priv->tx_chan); 2248 2249 netif_carrier_on(dev); 2250 netif_start_queue(dev); 2251 2252 /* apply override config for bypass_link ports here. */ 2253 for (i = 0; i < priv->num_ports; i++) { 2254 struct bcm63xx_enetsw_port *port; 2255 u8 override; 2256 port = &priv->used_ports[i]; 2257 if (!port->used) 2258 continue; 2259 2260 if (!port->bypass_link) 2261 continue; 2262 2263 override = ENETSW_PORTOV_ENABLE_MASK | 2264 ENETSW_PORTOV_LINKUP_MASK; 2265 2266 switch (port->force_speed) { 2267 case 1000: 2268 override |= ENETSW_IMPOV_1000_MASK; 2269 break; 2270 case 100: 2271 override |= ENETSW_IMPOV_100_MASK; 2272 break; 2273 case 10: 2274 break; 2275 default: 2276 pr_warn("invalid forced speed on port %s: assume 10\n", 2277 port->name); 2278 break; 2279 } 2280 2281 if (port->force_duplex_full) 2282 override |= ENETSW_IMPOV_FDX_MASK; 2283 2284 2285 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2286 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2287 } 2288 2289 /* start phy polling timer */ 2290 timer_setup(&priv->swphy_poll, swphy_poll_timer, 0); 2291 mod_timer(&priv->swphy_poll, jiffies); 2292 return 0; 2293 2294 out: 2295 for (i = 0; i < priv->rx_ring_size; i++) { 2296 struct bcm_enet_desc *desc; 2297 2298 if (!priv->rx_skb[i]) 2299 continue; 2300 2301 desc = &priv->rx_desc_cpu[i]; 2302 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 2303 DMA_FROM_DEVICE); 2304 kfree_skb(priv->rx_skb[i]); 2305 } 2306 kfree(priv->rx_skb); 2307 2308 out_free_tx_skb: 2309 kfree(priv->tx_skb); 2310 2311 out_free_tx_ring: 2312 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2313 priv->tx_desc_cpu, priv->tx_desc_dma); 2314 2315 out_free_rx_ring: 2316 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2317 priv->rx_desc_cpu, priv->rx_desc_dma); 2318 2319 out_freeirq_tx: 2320 if (priv->irq_tx != -1) 2321 free_irq(priv->irq_tx, dev); 2322 2323 out_freeirq_rx: 2324 free_irq(priv->irq_rx, dev); 2325 2326 out_freeirq: 2327 return ret; 2328 } 2329 2330 /* stop callback */ 2331 static int bcm_enetsw_stop(struct net_device *dev) 2332 { 2333 struct bcm_enet_priv *priv; 2334 struct device *kdev; 2335 int i; 2336 2337 priv = netdev_priv(dev); 2338 kdev = &priv->pdev->dev; 2339 2340 del_timer_sync(&priv->swphy_poll); 2341 netif_stop_queue(dev); 2342 napi_disable(&priv->napi); 2343 del_timer_sync(&priv->rx_timeout); 2344 2345 /* mask all interrupts */ 2346 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2347 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2348 2349 /* disable dma & mac */ 2350 bcm_enet_disable_dma(priv, priv->tx_chan); 2351 bcm_enet_disable_dma(priv, priv->rx_chan); 2352 2353 /* force reclaim of all tx buffers */ 2354 bcm_enet_tx_reclaim(dev, 1); 2355 2356 /* free the rx skb ring */ 2357 for (i = 0; i < priv->rx_ring_size; i++) { 2358 struct bcm_enet_desc *desc; 2359 2360 if (!priv->rx_skb[i]) 2361 continue; 2362 2363 desc = &priv->rx_desc_cpu[i]; 2364 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 2365 DMA_FROM_DEVICE); 2366 kfree_skb(priv->rx_skb[i]); 2367 } 2368 2369 /* free remaining allocated memory */ 2370 kfree(priv->rx_skb); 2371 kfree(priv->tx_skb); 2372 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2373 priv->rx_desc_cpu, priv->rx_desc_dma); 2374 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2375 priv->tx_desc_cpu, priv->tx_desc_dma); 2376 if (priv->irq_tx != -1) 2377 free_irq(priv->irq_tx, dev); 2378 free_irq(priv->irq_rx, dev); 2379 2380 return 0; 2381 } 2382 2383 /* try to sort out phy external status by walking the used_port field 2384 * in the bcm_enet_priv structure. in case the phy address is not 2385 * assigned to any physical port on the switch, assume it is external 2386 * (and yell at the user). 2387 */ 2388 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id) 2389 { 2390 int i; 2391 2392 for (i = 0; i < priv->num_ports; ++i) { 2393 if (!priv->used_ports[i].used) 2394 continue; 2395 if (priv->used_ports[i].phy_id == phy_id) 2396 return bcm_enet_port_is_rgmii(i); 2397 } 2398 2399 printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n", 2400 phy_id); 2401 return 1; 2402 } 2403 2404 /* can't use bcmenet_sw_mdio_read directly as we need to sort out 2405 * external/internal status of the given phy_id first. 2406 */ 2407 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id, 2408 int location) 2409 { 2410 struct bcm_enet_priv *priv; 2411 2412 priv = netdev_priv(dev); 2413 return bcmenet_sw_mdio_read(priv, 2414 bcm_enetsw_phy_is_external(priv, phy_id), 2415 phy_id, location); 2416 } 2417 2418 /* can't use bcmenet_sw_mdio_write directly as we need to sort out 2419 * external/internal status of the given phy_id first. 2420 */ 2421 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id, 2422 int location, 2423 int val) 2424 { 2425 struct bcm_enet_priv *priv; 2426 2427 priv = netdev_priv(dev); 2428 bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id), 2429 phy_id, location, val); 2430 } 2431 2432 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2433 { 2434 struct mii_if_info mii; 2435 2436 mii.dev = dev; 2437 mii.mdio_read = bcm_enetsw_mii_mdio_read; 2438 mii.mdio_write = bcm_enetsw_mii_mdio_write; 2439 mii.phy_id = 0; 2440 mii.phy_id_mask = 0x3f; 2441 mii.reg_num_mask = 0x1f; 2442 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 2443 2444 } 2445 2446 static const struct net_device_ops bcm_enetsw_ops = { 2447 .ndo_open = bcm_enetsw_open, 2448 .ndo_stop = bcm_enetsw_stop, 2449 .ndo_start_xmit = bcm_enet_start_xmit, 2450 .ndo_change_mtu = bcm_enet_change_mtu, 2451 .ndo_do_ioctl = bcm_enetsw_ioctl, 2452 }; 2453 2454 2455 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = { 2456 { "rx_packets", DEV_STAT(rx_packets), -1 }, 2457 { "tx_packets", DEV_STAT(tx_packets), -1 }, 2458 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 2459 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 2460 { "rx_errors", DEV_STAT(rx_errors), -1 }, 2461 { "tx_errors", DEV_STAT(tx_errors), -1 }, 2462 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 2463 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 2464 2465 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT }, 2466 { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST }, 2467 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST }, 2468 { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT }, 2469 { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 }, 2470 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 }, 2471 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 }, 2472 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 }, 2473 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023}, 2474 { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max), 2475 ETHSW_MIB_RX_1024_1522 }, 2476 { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047), 2477 ETHSW_MIB_RX_1523_2047 }, 2478 { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095), 2479 ETHSW_MIB_RX_2048_4095 }, 2480 { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191), 2481 ETHSW_MIB_RX_4096_8191 }, 2482 { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728), 2483 ETHSW_MIB_RX_8192_9728 }, 2484 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR }, 2485 { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC }, 2486 { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP }, 2487 { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND }, 2488 { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE }, 2489 2490 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT }, 2491 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST }, 2492 { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT }, 2493 { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT }, 2494 { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE }, 2495 { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS }, 2496 2497 }; 2498 2499 #define BCM_ENETSW_STATS_LEN \ 2500 (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats)) 2501 2502 static void bcm_enetsw_get_strings(struct net_device *netdev, 2503 u32 stringset, u8 *data) 2504 { 2505 int i; 2506 2507 switch (stringset) { 2508 case ETH_SS_STATS: 2509 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2510 memcpy(data + i * ETH_GSTRING_LEN, 2511 bcm_enetsw_gstrings_stats[i].stat_string, 2512 ETH_GSTRING_LEN); 2513 } 2514 break; 2515 } 2516 } 2517 2518 static int bcm_enetsw_get_sset_count(struct net_device *netdev, 2519 int string_set) 2520 { 2521 switch (string_set) { 2522 case ETH_SS_STATS: 2523 return BCM_ENETSW_STATS_LEN; 2524 default: 2525 return -EINVAL; 2526 } 2527 } 2528 2529 static void bcm_enetsw_get_drvinfo(struct net_device *netdev, 2530 struct ethtool_drvinfo *drvinfo) 2531 { 2532 strncpy(drvinfo->driver, bcm_enet_driver_name, 32); 2533 strncpy(drvinfo->version, bcm_enet_driver_version, 32); 2534 strncpy(drvinfo->fw_version, "N/A", 32); 2535 strncpy(drvinfo->bus_info, "bcm63xx", 32); 2536 } 2537 2538 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev, 2539 struct ethtool_stats *stats, 2540 u64 *data) 2541 { 2542 struct bcm_enet_priv *priv; 2543 int i; 2544 2545 priv = netdev_priv(netdev); 2546 2547 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2548 const struct bcm_enet_stats *s; 2549 u32 lo, hi; 2550 char *p; 2551 int reg; 2552 2553 s = &bcm_enetsw_gstrings_stats[i]; 2554 2555 reg = s->mib_reg; 2556 if (reg == -1) 2557 continue; 2558 2559 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg)); 2560 p = (char *)priv + s->stat_offset; 2561 2562 if (s->sizeof_stat == sizeof(u64)) { 2563 hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1)); 2564 *(u64 *)p = ((u64)hi << 32 | lo); 2565 } else { 2566 *(u32 *)p = lo; 2567 } 2568 } 2569 2570 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2571 const struct bcm_enet_stats *s; 2572 char *p; 2573 2574 s = &bcm_enetsw_gstrings_stats[i]; 2575 2576 if (s->mib_reg == -1) 2577 p = (char *)&netdev->stats + s->stat_offset; 2578 else 2579 p = (char *)priv + s->stat_offset; 2580 2581 data[i] = (s->sizeof_stat == sizeof(u64)) ? 2582 *(u64 *)p : *(u32 *)p; 2583 } 2584 } 2585 2586 static void bcm_enetsw_get_ringparam(struct net_device *dev, 2587 struct ethtool_ringparam *ering) 2588 { 2589 struct bcm_enet_priv *priv; 2590 2591 priv = netdev_priv(dev); 2592 2593 /* rx/tx ring is actually only limited by memory */ 2594 ering->rx_max_pending = 8192; 2595 ering->tx_max_pending = 8192; 2596 ering->rx_mini_max_pending = 0; 2597 ering->rx_jumbo_max_pending = 0; 2598 ering->rx_pending = priv->rx_ring_size; 2599 ering->tx_pending = priv->tx_ring_size; 2600 } 2601 2602 static int bcm_enetsw_set_ringparam(struct net_device *dev, 2603 struct ethtool_ringparam *ering) 2604 { 2605 struct bcm_enet_priv *priv; 2606 int was_running; 2607 2608 priv = netdev_priv(dev); 2609 2610 was_running = 0; 2611 if (netif_running(dev)) { 2612 bcm_enetsw_stop(dev); 2613 was_running = 1; 2614 } 2615 2616 priv->rx_ring_size = ering->rx_pending; 2617 priv->tx_ring_size = ering->tx_pending; 2618 2619 if (was_running) { 2620 int err; 2621 2622 err = bcm_enetsw_open(dev); 2623 if (err) 2624 dev_close(dev); 2625 } 2626 return 0; 2627 } 2628 2629 static const struct ethtool_ops bcm_enetsw_ethtool_ops = { 2630 .get_strings = bcm_enetsw_get_strings, 2631 .get_sset_count = bcm_enetsw_get_sset_count, 2632 .get_ethtool_stats = bcm_enetsw_get_ethtool_stats, 2633 .get_drvinfo = bcm_enetsw_get_drvinfo, 2634 .get_ringparam = bcm_enetsw_get_ringparam, 2635 .set_ringparam = bcm_enetsw_set_ringparam, 2636 }; 2637 2638 /* allocate netdevice, request register memory and register device. */ 2639 static int bcm_enetsw_probe(struct platform_device *pdev) 2640 { 2641 struct bcm_enet_priv *priv; 2642 struct net_device *dev; 2643 struct bcm63xx_enetsw_platform_data *pd; 2644 struct resource *res_mem; 2645 int ret, irq_rx, irq_tx; 2646 2647 if (!bcm_enet_shared_base[0]) 2648 return -EPROBE_DEFER; 2649 2650 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2651 irq_rx = platform_get_irq(pdev, 0); 2652 irq_tx = platform_get_irq(pdev, 1); 2653 if (!res_mem || irq_rx < 0) 2654 return -ENODEV; 2655 2656 ret = 0; 2657 dev = alloc_etherdev(sizeof(*priv)); 2658 if (!dev) 2659 return -ENOMEM; 2660 priv = netdev_priv(dev); 2661 2662 /* initialize default and fetch platform data */ 2663 priv->enet_is_sw = true; 2664 priv->irq_rx = irq_rx; 2665 priv->irq_tx = irq_tx; 2666 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 2667 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 2668 priv->dma_maxburst = BCMENETSW_DMA_MAXBURST; 2669 2670 pd = dev_get_platdata(&pdev->dev); 2671 if (pd) { 2672 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 2673 memcpy(priv->used_ports, pd->used_ports, 2674 sizeof(pd->used_ports)); 2675 priv->num_ports = pd->num_ports; 2676 priv->dma_has_sram = pd->dma_has_sram; 2677 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 2678 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 2679 priv->dma_chan_width = pd->dma_chan_width; 2680 } 2681 2682 ret = bcm_enet_change_mtu(dev, dev->mtu); 2683 if (ret) 2684 goto out; 2685 2686 priv->base = devm_ioremap_resource(&pdev->dev, res_mem); 2687 if (IS_ERR(priv->base)) { 2688 ret = PTR_ERR(priv->base); 2689 goto out; 2690 } 2691 2692 priv->mac_clk = devm_clk_get(&pdev->dev, "enetsw"); 2693 if (IS_ERR(priv->mac_clk)) { 2694 ret = PTR_ERR(priv->mac_clk); 2695 goto out; 2696 } 2697 ret = clk_prepare_enable(priv->mac_clk); 2698 if (ret) 2699 goto out; 2700 2701 priv->rx_chan = 0; 2702 priv->tx_chan = 1; 2703 spin_lock_init(&priv->rx_lock); 2704 2705 /* init rx timeout (used for oom) */ 2706 timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0); 2707 2708 /* register netdevice */ 2709 dev->netdev_ops = &bcm_enetsw_ops; 2710 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 2711 dev->ethtool_ops = &bcm_enetsw_ethtool_ops; 2712 SET_NETDEV_DEV(dev, &pdev->dev); 2713 2714 spin_lock_init(&priv->enetsw_mdio_lock); 2715 2716 ret = register_netdev(dev); 2717 if (ret) 2718 goto out_disable_clk; 2719 2720 netif_carrier_off(dev); 2721 platform_set_drvdata(pdev, dev); 2722 priv->pdev = pdev; 2723 priv->net_dev = dev; 2724 2725 return 0; 2726 2727 out_disable_clk: 2728 clk_disable_unprepare(priv->mac_clk); 2729 out: 2730 free_netdev(dev); 2731 return ret; 2732 } 2733 2734 2735 /* exit func, stops hardware and unregisters netdevice */ 2736 static int bcm_enetsw_remove(struct platform_device *pdev) 2737 { 2738 struct bcm_enet_priv *priv; 2739 struct net_device *dev; 2740 2741 /* stop netdevice */ 2742 dev = platform_get_drvdata(pdev); 2743 priv = netdev_priv(dev); 2744 unregister_netdev(dev); 2745 2746 clk_disable_unprepare(priv->mac_clk); 2747 2748 free_netdev(dev); 2749 return 0; 2750 } 2751 2752 struct platform_driver bcm63xx_enetsw_driver = { 2753 .probe = bcm_enetsw_probe, 2754 .remove = bcm_enetsw_remove, 2755 .driver = { 2756 .name = "bcm63xx_enetsw", 2757 .owner = THIS_MODULE, 2758 }, 2759 }; 2760 2761 /* reserve & remap memory space shared between all macs */ 2762 static int bcm_enet_shared_probe(struct platform_device *pdev) 2763 { 2764 void __iomem *p[3]; 2765 unsigned int i; 2766 2767 memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base)); 2768 2769 for (i = 0; i < 3; i++) { 2770 p[i] = devm_platform_ioremap_resource(pdev, i); 2771 if (IS_ERR(p[i])) 2772 return PTR_ERR(p[i]); 2773 } 2774 2775 memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base)); 2776 2777 return 0; 2778 } 2779 2780 static int bcm_enet_shared_remove(struct platform_device *pdev) 2781 { 2782 return 0; 2783 } 2784 2785 /* this "shared" driver is needed because both macs share a single 2786 * address space 2787 */ 2788 struct platform_driver bcm63xx_enet_shared_driver = { 2789 .probe = bcm_enet_shared_probe, 2790 .remove = bcm_enet_shared_remove, 2791 .driver = { 2792 .name = "bcm63xx_enet_shared", 2793 .owner = THIS_MODULE, 2794 }, 2795 }; 2796 2797 static struct platform_driver * const drivers[] = { 2798 &bcm63xx_enet_shared_driver, 2799 &bcm63xx_enet_driver, 2800 &bcm63xx_enetsw_driver, 2801 }; 2802 2803 /* entry point */ 2804 static int __init bcm_enet_init(void) 2805 { 2806 return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); 2807 } 2808 2809 static void __exit bcm_enet_exit(void) 2810 { 2811 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); 2812 } 2813 2814 2815 module_init(bcm_enet_init); 2816 module_exit(bcm_enet_exit); 2817 2818 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver"); 2819 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>"); 2820 MODULE_LICENSE("GPL"); 2821