1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for BCM963xx builtin Ethernet mac 4 * 5 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr> 6 */ 7 #include <linux/init.h> 8 #include <linux/interrupt.h> 9 #include <linux/module.h> 10 #include <linux/clk.h> 11 #include <linux/etherdevice.h> 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/ethtool.h> 15 #include <linux/crc32.h> 16 #include <linux/err.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/platform_device.h> 19 #include <linux/if_vlan.h> 20 21 #include <bcm63xx_dev_enet.h> 22 #include "bcm63xx_enet.h" 23 24 static char bcm_enet_driver_name[] = "bcm63xx_enet"; 25 26 static int copybreak __read_mostly = 128; 27 module_param(copybreak, int, 0); 28 MODULE_PARM_DESC(copybreak, "Receive copy threshold"); 29 30 /* io registers memory shared between all devices */ 31 static void __iomem *bcm_enet_shared_base[3]; 32 33 /* 34 * io helpers to access mac registers 35 */ 36 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off) 37 { 38 return bcm_readl(priv->base + off); 39 } 40 41 static inline void enet_writel(struct bcm_enet_priv *priv, 42 u32 val, u32 off) 43 { 44 bcm_writel(val, priv->base + off); 45 } 46 47 /* 48 * io helpers to access switch registers 49 */ 50 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off) 51 { 52 return bcm_readl(priv->base + off); 53 } 54 55 static inline void enetsw_writel(struct bcm_enet_priv *priv, 56 u32 val, u32 off) 57 { 58 bcm_writel(val, priv->base + off); 59 } 60 61 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off) 62 { 63 return bcm_readw(priv->base + off); 64 } 65 66 static inline void enetsw_writew(struct bcm_enet_priv *priv, 67 u16 val, u32 off) 68 { 69 bcm_writew(val, priv->base + off); 70 } 71 72 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off) 73 { 74 return bcm_readb(priv->base + off); 75 } 76 77 static inline void enetsw_writeb(struct bcm_enet_priv *priv, 78 u8 val, u32 off) 79 { 80 bcm_writeb(val, priv->base + off); 81 } 82 83 84 /* io helpers to access shared registers */ 85 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off) 86 { 87 return bcm_readl(bcm_enet_shared_base[0] + off); 88 } 89 90 static inline void enet_dma_writel(struct bcm_enet_priv *priv, 91 u32 val, u32 off) 92 { 93 bcm_writel(val, bcm_enet_shared_base[0] + off); 94 } 95 96 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan) 97 { 98 return bcm_readl(bcm_enet_shared_base[1] + 99 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 100 } 101 102 static inline void enet_dmac_writel(struct bcm_enet_priv *priv, 103 u32 val, u32 off, int chan) 104 { 105 bcm_writel(val, bcm_enet_shared_base[1] + 106 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 107 } 108 109 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan) 110 { 111 return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 112 } 113 114 static inline void enet_dmas_writel(struct bcm_enet_priv *priv, 115 u32 val, u32 off, int chan) 116 { 117 bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 118 } 119 120 /* 121 * write given data into mii register and wait for transfer to end 122 * with timeout (average measured transfer time is 25us) 123 */ 124 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data) 125 { 126 int limit; 127 128 /* make sure mii interrupt status is cleared */ 129 enet_writel(priv, ENET_IR_MII, ENET_IR_REG); 130 131 enet_writel(priv, data, ENET_MIIDATA_REG); 132 wmb(); 133 134 /* busy wait on mii interrupt bit, with timeout */ 135 limit = 1000; 136 do { 137 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII) 138 break; 139 udelay(1); 140 } while (limit-- > 0); 141 142 return (limit < 0) ? 1 : 0; 143 } 144 145 /* 146 * MII internal read callback 147 */ 148 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id, 149 int regnum) 150 { 151 u32 tmp, val; 152 153 tmp = regnum << ENET_MIIDATA_REG_SHIFT; 154 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 155 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 156 tmp |= ENET_MIIDATA_OP_READ_MASK; 157 158 if (do_mdio_op(priv, tmp)) 159 return -1; 160 161 val = enet_readl(priv, ENET_MIIDATA_REG); 162 val &= 0xffff; 163 return val; 164 } 165 166 /* 167 * MII internal write callback 168 */ 169 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id, 170 int regnum, u16 value) 171 { 172 u32 tmp; 173 174 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT; 175 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 176 tmp |= regnum << ENET_MIIDATA_REG_SHIFT; 177 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 178 tmp |= ENET_MIIDATA_OP_WRITE_MASK; 179 180 (void)do_mdio_op(priv, tmp); 181 return 0; 182 } 183 184 /* 185 * MII read callback from phylib 186 */ 187 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id, 188 int regnum) 189 { 190 return bcm_enet_mdio_read(bus->priv, mii_id, regnum); 191 } 192 193 /* 194 * MII write callback from phylib 195 */ 196 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id, 197 int regnum, u16 value) 198 { 199 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value); 200 } 201 202 /* 203 * MII read callback from mii core 204 */ 205 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id, 206 int regnum) 207 { 208 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum); 209 } 210 211 /* 212 * MII write callback from mii core 213 */ 214 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id, 215 int regnum, int value) 216 { 217 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value); 218 } 219 220 /* 221 * refill rx queue 222 */ 223 static int bcm_enet_refill_rx(struct net_device *dev) 224 { 225 struct bcm_enet_priv *priv; 226 227 priv = netdev_priv(dev); 228 229 while (priv->rx_desc_count < priv->rx_ring_size) { 230 struct bcm_enet_desc *desc; 231 struct sk_buff *skb; 232 dma_addr_t p; 233 int desc_idx; 234 u32 len_stat; 235 236 desc_idx = priv->rx_dirty_desc; 237 desc = &priv->rx_desc_cpu[desc_idx]; 238 239 if (!priv->rx_skb[desc_idx]) { 240 skb = netdev_alloc_skb(dev, priv->rx_skb_size); 241 if (!skb) 242 break; 243 priv->rx_skb[desc_idx] = skb; 244 p = dma_map_single(&priv->pdev->dev, skb->data, 245 priv->rx_skb_size, 246 DMA_FROM_DEVICE); 247 desc->address = p; 248 } 249 250 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT; 251 len_stat |= DMADESC_OWNER_MASK; 252 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) { 253 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 254 priv->rx_dirty_desc = 0; 255 } else { 256 priv->rx_dirty_desc++; 257 } 258 wmb(); 259 desc->len_stat = len_stat; 260 261 priv->rx_desc_count++; 262 263 /* tell dma engine we allocated one buffer */ 264 if (priv->dma_has_sram) 265 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan)); 266 else 267 enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan); 268 } 269 270 /* If rx ring is still empty, set a timer to try allocating 271 * again at a later time. */ 272 if (priv->rx_desc_count == 0 && netif_running(dev)) { 273 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n"); 274 priv->rx_timeout.expires = jiffies + HZ; 275 add_timer(&priv->rx_timeout); 276 } 277 278 return 0; 279 } 280 281 /* 282 * timer callback to defer refill rx queue in case we're OOM 283 */ 284 static void bcm_enet_refill_rx_timer(struct timer_list *t) 285 { 286 struct bcm_enet_priv *priv = from_timer(priv, t, rx_timeout); 287 struct net_device *dev = priv->net_dev; 288 289 spin_lock(&priv->rx_lock); 290 bcm_enet_refill_rx(dev); 291 spin_unlock(&priv->rx_lock); 292 } 293 294 /* 295 * extract packet from rx queue 296 */ 297 static int bcm_enet_receive_queue(struct net_device *dev, int budget) 298 { 299 struct bcm_enet_priv *priv; 300 struct device *kdev; 301 int processed; 302 303 priv = netdev_priv(dev); 304 kdev = &priv->pdev->dev; 305 processed = 0; 306 307 /* don't scan ring further than number of refilled 308 * descriptor */ 309 if (budget > priv->rx_desc_count) 310 budget = priv->rx_desc_count; 311 312 do { 313 struct bcm_enet_desc *desc; 314 struct sk_buff *skb; 315 int desc_idx; 316 u32 len_stat; 317 unsigned int len; 318 319 desc_idx = priv->rx_curr_desc; 320 desc = &priv->rx_desc_cpu[desc_idx]; 321 322 /* make sure we actually read the descriptor status at 323 * each loop */ 324 rmb(); 325 326 len_stat = desc->len_stat; 327 328 /* break if dma ownership belongs to hw */ 329 if (len_stat & DMADESC_OWNER_MASK) 330 break; 331 332 processed++; 333 priv->rx_curr_desc++; 334 if (priv->rx_curr_desc == priv->rx_ring_size) 335 priv->rx_curr_desc = 0; 336 priv->rx_desc_count--; 337 338 /* if the packet does not have start of packet _and_ 339 * end of packet flag set, then just recycle it */ 340 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) != 341 (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) { 342 dev->stats.rx_dropped++; 343 continue; 344 } 345 346 /* recycle packet if it's marked as bad */ 347 if (!priv->enet_is_sw && 348 unlikely(len_stat & DMADESC_ERR_MASK)) { 349 dev->stats.rx_errors++; 350 351 if (len_stat & DMADESC_OVSIZE_MASK) 352 dev->stats.rx_length_errors++; 353 if (len_stat & DMADESC_CRC_MASK) 354 dev->stats.rx_crc_errors++; 355 if (len_stat & DMADESC_UNDER_MASK) 356 dev->stats.rx_frame_errors++; 357 if (len_stat & DMADESC_OV_MASK) 358 dev->stats.rx_fifo_errors++; 359 continue; 360 } 361 362 /* valid packet */ 363 skb = priv->rx_skb[desc_idx]; 364 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT; 365 /* don't include FCS */ 366 len -= 4; 367 368 if (len < copybreak) { 369 struct sk_buff *nskb; 370 371 nskb = napi_alloc_skb(&priv->napi, len); 372 if (!nskb) { 373 /* forget packet, just rearm desc */ 374 dev->stats.rx_dropped++; 375 continue; 376 } 377 378 dma_sync_single_for_cpu(kdev, desc->address, 379 len, DMA_FROM_DEVICE); 380 memcpy(nskb->data, skb->data, len); 381 dma_sync_single_for_device(kdev, desc->address, 382 len, DMA_FROM_DEVICE); 383 skb = nskb; 384 } else { 385 dma_unmap_single(&priv->pdev->dev, desc->address, 386 priv->rx_skb_size, DMA_FROM_DEVICE); 387 priv->rx_skb[desc_idx] = NULL; 388 } 389 390 skb_put(skb, len); 391 skb->protocol = eth_type_trans(skb, dev); 392 dev->stats.rx_packets++; 393 dev->stats.rx_bytes += len; 394 netif_receive_skb(skb); 395 396 } while (--budget > 0); 397 398 if (processed || !priv->rx_desc_count) { 399 bcm_enet_refill_rx(dev); 400 401 /* kick rx dma */ 402 enet_dmac_writel(priv, priv->dma_chan_en_mask, 403 ENETDMAC_CHANCFG, priv->rx_chan); 404 } 405 406 return processed; 407 } 408 409 410 /* 411 * try to or force reclaim of transmitted buffers 412 */ 413 static int bcm_enet_tx_reclaim(struct net_device *dev, int force) 414 { 415 struct bcm_enet_priv *priv; 416 int released; 417 418 priv = netdev_priv(dev); 419 released = 0; 420 421 while (priv->tx_desc_count < priv->tx_ring_size) { 422 struct bcm_enet_desc *desc; 423 struct sk_buff *skb; 424 425 /* We run in a bh and fight against start_xmit, which 426 * is called with bh disabled */ 427 spin_lock(&priv->tx_lock); 428 429 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc]; 430 431 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) { 432 spin_unlock(&priv->tx_lock); 433 break; 434 } 435 436 /* ensure other field of the descriptor were not read 437 * before we checked ownership */ 438 rmb(); 439 440 skb = priv->tx_skb[priv->tx_dirty_desc]; 441 priv->tx_skb[priv->tx_dirty_desc] = NULL; 442 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len, 443 DMA_TO_DEVICE); 444 445 priv->tx_dirty_desc++; 446 if (priv->tx_dirty_desc == priv->tx_ring_size) 447 priv->tx_dirty_desc = 0; 448 priv->tx_desc_count++; 449 450 spin_unlock(&priv->tx_lock); 451 452 if (desc->len_stat & DMADESC_UNDER_MASK) 453 dev->stats.tx_errors++; 454 455 dev_kfree_skb(skb); 456 released++; 457 } 458 459 if (netif_queue_stopped(dev) && released) 460 netif_wake_queue(dev); 461 462 return released; 463 } 464 465 /* 466 * poll func, called by network core 467 */ 468 static int bcm_enet_poll(struct napi_struct *napi, int budget) 469 { 470 struct bcm_enet_priv *priv; 471 struct net_device *dev; 472 int rx_work_done; 473 474 priv = container_of(napi, struct bcm_enet_priv, napi); 475 dev = priv->net_dev; 476 477 /* ack interrupts */ 478 enet_dmac_writel(priv, priv->dma_chan_int_mask, 479 ENETDMAC_IR, priv->rx_chan); 480 enet_dmac_writel(priv, priv->dma_chan_int_mask, 481 ENETDMAC_IR, priv->tx_chan); 482 483 /* reclaim sent skb */ 484 bcm_enet_tx_reclaim(dev, 0); 485 486 spin_lock(&priv->rx_lock); 487 rx_work_done = bcm_enet_receive_queue(dev, budget); 488 spin_unlock(&priv->rx_lock); 489 490 if (rx_work_done >= budget) { 491 /* rx queue is not yet empty/clean */ 492 return rx_work_done; 493 } 494 495 /* no more packet in rx/tx queue, remove device from poll 496 * queue */ 497 napi_complete_done(napi, rx_work_done); 498 499 /* restore rx/tx interrupt */ 500 enet_dmac_writel(priv, priv->dma_chan_int_mask, 501 ENETDMAC_IRMASK, priv->rx_chan); 502 enet_dmac_writel(priv, priv->dma_chan_int_mask, 503 ENETDMAC_IRMASK, priv->tx_chan); 504 505 return rx_work_done; 506 } 507 508 /* 509 * mac interrupt handler 510 */ 511 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id) 512 { 513 struct net_device *dev; 514 struct bcm_enet_priv *priv; 515 u32 stat; 516 517 dev = dev_id; 518 priv = netdev_priv(dev); 519 520 stat = enet_readl(priv, ENET_IR_REG); 521 if (!(stat & ENET_IR_MIB)) 522 return IRQ_NONE; 523 524 /* clear & mask interrupt */ 525 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 526 enet_writel(priv, 0, ENET_IRMASK_REG); 527 528 /* read mib registers in workqueue */ 529 schedule_work(&priv->mib_update_task); 530 531 return IRQ_HANDLED; 532 } 533 534 /* 535 * rx/tx dma interrupt handler 536 */ 537 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id) 538 { 539 struct net_device *dev; 540 struct bcm_enet_priv *priv; 541 542 dev = dev_id; 543 priv = netdev_priv(dev); 544 545 /* mask rx/tx interrupts */ 546 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 547 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 548 549 napi_schedule(&priv->napi); 550 551 return IRQ_HANDLED; 552 } 553 554 /* 555 * tx request callback 556 */ 557 static netdev_tx_t 558 bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 559 { 560 struct bcm_enet_priv *priv; 561 struct bcm_enet_desc *desc; 562 u32 len_stat; 563 netdev_tx_t ret; 564 565 priv = netdev_priv(dev); 566 567 /* lock against tx reclaim */ 568 spin_lock(&priv->tx_lock); 569 570 /* make sure the tx hw queue is not full, should not happen 571 * since we stop queue before it's the case */ 572 if (unlikely(!priv->tx_desc_count)) { 573 netif_stop_queue(dev); 574 dev_err(&priv->pdev->dev, "xmit called with no tx desc " 575 "available?\n"); 576 ret = NETDEV_TX_BUSY; 577 goto out_unlock; 578 } 579 580 /* pad small packets sent on a switch device */ 581 if (priv->enet_is_sw && skb->len < 64) { 582 int needed = 64 - skb->len; 583 char *data; 584 585 if (unlikely(skb_tailroom(skb) < needed)) { 586 struct sk_buff *nskb; 587 588 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC); 589 if (!nskb) { 590 ret = NETDEV_TX_BUSY; 591 goto out_unlock; 592 } 593 dev_kfree_skb(skb); 594 skb = nskb; 595 } 596 data = skb_put_zero(skb, needed); 597 } 598 599 /* point to the next available desc */ 600 desc = &priv->tx_desc_cpu[priv->tx_curr_desc]; 601 priv->tx_skb[priv->tx_curr_desc] = skb; 602 603 /* fill descriptor */ 604 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len, 605 DMA_TO_DEVICE); 606 607 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK; 608 len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) | 609 DMADESC_APPEND_CRC | 610 DMADESC_OWNER_MASK; 611 612 priv->tx_curr_desc++; 613 if (priv->tx_curr_desc == priv->tx_ring_size) { 614 priv->tx_curr_desc = 0; 615 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 616 } 617 priv->tx_desc_count--; 618 619 /* dma might be already polling, make sure we update desc 620 * fields in correct order */ 621 wmb(); 622 desc->len_stat = len_stat; 623 wmb(); 624 625 /* kick tx dma */ 626 enet_dmac_writel(priv, priv->dma_chan_en_mask, 627 ENETDMAC_CHANCFG, priv->tx_chan); 628 629 /* stop queue if no more desc available */ 630 if (!priv->tx_desc_count) 631 netif_stop_queue(dev); 632 633 dev->stats.tx_bytes += skb->len; 634 dev->stats.tx_packets++; 635 ret = NETDEV_TX_OK; 636 637 out_unlock: 638 spin_unlock(&priv->tx_lock); 639 return ret; 640 } 641 642 /* 643 * Change the interface's mac address. 644 */ 645 static int bcm_enet_set_mac_address(struct net_device *dev, void *p) 646 { 647 struct bcm_enet_priv *priv; 648 struct sockaddr *addr = p; 649 u32 val; 650 651 priv = netdev_priv(dev); 652 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 653 654 /* use perfect match register 0 to store my mac address */ 655 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) | 656 (dev->dev_addr[4] << 8) | dev->dev_addr[5]; 657 enet_writel(priv, val, ENET_PML_REG(0)); 658 659 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]); 660 val |= ENET_PMH_DATAVALID_MASK; 661 enet_writel(priv, val, ENET_PMH_REG(0)); 662 663 return 0; 664 } 665 666 /* 667 * Change rx mode (promiscuous/allmulti) and update multicast list 668 */ 669 static void bcm_enet_set_multicast_list(struct net_device *dev) 670 { 671 struct bcm_enet_priv *priv; 672 struct netdev_hw_addr *ha; 673 u32 val; 674 int i; 675 676 priv = netdev_priv(dev); 677 678 val = enet_readl(priv, ENET_RXCFG_REG); 679 680 if (dev->flags & IFF_PROMISC) 681 val |= ENET_RXCFG_PROMISC_MASK; 682 else 683 val &= ~ENET_RXCFG_PROMISC_MASK; 684 685 /* only 3 perfect match registers left, first one is used for 686 * own mac address */ 687 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3) 688 val |= ENET_RXCFG_ALLMCAST_MASK; 689 else 690 val &= ~ENET_RXCFG_ALLMCAST_MASK; 691 692 /* no need to set perfect match registers if we catch all 693 * multicast */ 694 if (val & ENET_RXCFG_ALLMCAST_MASK) { 695 enet_writel(priv, val, ENET_RXCFG_REG); 696 return; 697 } 698 699 i = 0; 700 netdev_for_each_mc_addr(ha, dev) { 701 u8 *dmi_addr; 702 u32 tmp; 703 704 if (i == 3) 705 break; 706 /* update perfect match registers */ 707 dmi_addr = ha->addr; 708 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) | 709 (dmi_addr[4] << 8) | dmi_addr[5]; 710 enet_writel(priv, tmp, ENET_PML_REG(i + 1)); 711 712 tmp = (dmi_addr[0] << 8 | dmi_addr[1]); 713 tmp |= ENET_PMH_DATAVALID_MASK; 714 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1)); 715 } 716 717 for (; i < 3; i++) { 718 enet_writel(priv, 0, ENET_PML_REG(i + 1)); 719 enet_writel(priv, 0, ENET_PMH_REG(i + 1)); 720 } 721 722 enet_writel(priv, val, ENET_RXCFG_REG); 723 } 724 725 /* 726 * set mac duplex parameters 727 */ 728 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex) 729 { 730 u32 val; 731 732 val = enet_readl(priv, ENET_TXCTL_REG); 733 if (fullduplex) 734 val |= ENET_TXCTL_FD_MASK; 735 else 736 val &= ~ENET_TXCTL_FD_MASK; 737 enet_writel(priv, val, ENET_TXCTL_REG); 738 } 739 740 /* 741 * set mac flow control parameters 742 */ 743 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en) 744 { 745 u32 val; 746 747 /* rx flow control (pause frame handling) */ 748 val = enet_readl(priv, ENET_RXCFG_REG); 749 if (rx_en) 750 val |= ENET_RXCFG_ENFLOW_MASK; 751 else 752 val &= ~ENET_RXCFG_ENFLOW_MASK; 753 enet_writel(priv, val, ENET_RXCFG_REG); 754 755 if (!priv->dma_has_sram) 756 return; 757 758 /* tx flow control (pause frame generation) */ 759 val = enet_dma_readl(priv, ENETDMA_CFG_REG); 760 if (tx_en) 761 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 762 else 763 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 764 enet_dma_writel(priv, val, ENETDMA_CFG_REG); 765 } 766 767 /* 768 * link changed callback (from phylib) 769 */ 770 static void bcm_enet_adjust_phy_link(struct net_device *dev) 771 { 772 struct bcm_enet_priv *priv; 773 struct phy_device *phydev; 774 int status_changed; 775 776 priv = netdev_priv(dev); 777 phydev = dev->phydev; 778 status_changed = 0; 779 780 if (priv->old_link != phydev->link) { 781 status_changed = 1; 782 priv->old_link = phydev->link; 783 } 784 785 /* reflect duplex change in mac configuration */ 786 if (phydev->link && phydev->duplex != priv->old_duplex) { 787 bcm_enet_set_duplex(priv, 788 (phydev->duplex == DUPLEX_FULL) ? 1 : 0); 789 status_changed = 1; 790 priv->old_duplex = phydev->duplex; 791 } 792 793 /* enable flow control if remote advertise it (trust phylib to 794 * check that duplex is full */ 795 if (phydev->link && phydev->pause != priv->old_pause) { 796 int rx_pause_en, tx_pause_en; 797 798 if (phydev->pause) { 799 /* pause was advertised by lpa and us */ 800 rx_pause_en = 1; 801 tx_pause_en = 1; 802 } else if (!priv->pause_auto) { 803 /* pause setting overridden by user */ 804 rx_pause_en = priv->pause_rx; 805 tx_pause_en = priv->pause_tx; 806 } else { 807 rx_pause_en = 0; 808 tx_pause_en = 0; 809 } 810 811 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en); 812 status_changed = 1; 813 priv->old_pause = phydev->pause; 814 } 815 816 if (status_changed) { 817 pr_info("%s: link %s", dev->name, phydev->link ? 818 "UP" : "DOWN"); 819 if (phydev->link) 820 pr_cont(" - %d/%s - flow control %s", phydev->speed, 821 DUPLEX_FULL == phydev->duplex ? "full" : "half", 822 phydev->pause == 1 ? "rx&tx" : "off"); 823 824 pr_cont("\n"); 825 } 826 } 827 828 /* 829 * link changed callback (if phylib is not used) 830 */ 831 static void bcm_enet_adjust_link(struct net_device *dev) 832 { 833 struct bcm_enet_priv *priv; 834 835 priv = netdev_priv(dev); 836 bcm_enet_set_duplex(priv, priv->force_duplex_full); 837 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx); 838 netif_carrier_on(dev); 839 840 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n", 841 dev->name, 842 priv->force_speed_100 ? 100 : 10, 843 priv->force_duplex_full ? "full" : "half", 844 priv->pause_rx ? "rx" : "off", 845 priv->pause_tx ? "tx" : "off"); 846 } 847 848 /* 849 * open callback, allocate dma rings & buffers and start rx operation 850 */ 851 static int bcm_enet_open(struct net_device *dev) 852 { 853 struct bcm_enet_priv *priv; 854 struct sockaddr addr; 855 struct device *kdev; 856 struct phy_device *phydev; 857 int i, ret; 858 unsigned int size; 859 char phy_id[MII_BUS_ID_SIZE + 3]; 860 void *p; 861 u32 val; 862 863 priv = netdev_priv(dev); 864 kdev = &priv->pdev->dev; 865 866 if (priv->has_phy) { 867 /* connect to PHY */ 868 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 869 priv->mii_bus->id, priv->phy_id); 870 871 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link, 872 PHY_INTERFACE_MODE_MII); 873 874 if (IS_ERR(phydev)) { 875 dev_err(kdev, "could not attach to PHY\n"); 876 return PTR_ERR(phydev); 877 } 878 879 /* mask with MAC supported features */ 880 phy_support_sym_pause(phydev); 881 phy_set_max_speed(phydev, SPEED_100); 882 phy_set_sym_pause(phydev, priv->pause_rx, priv->pause_rx, 883 priv->pause_auto); 884 885 phy_attached_info(phydev); 886 887 priv->old_link = 0; 888 priv->old_duplex = -1; 889 priv->old_pause = -1; 890 } else { 891 phydev = NULL; 892 } 893 894 /* mask all interrupts and request them */ 895 enet_writel(priv, 0, ENET_IRMASK_REG); 896 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 897 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 898 899 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev); 900 if (ret) 901 goto out_phy_disconnect; 902 903 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0, 904 dev->name, dev); 905 if (ret) 906 goto out_freeirq; 907 908 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 909 0, dev->name, dev); 910 if (ret) 911 goto out_freeirq_rx; 912 913 /* initialize perfect match registers */ 914 for (i = 0; i < 4; i++) { 915 enet_writel(priv, 0, ENET_PML_REG(i)); 916 enet_writel(priv, 0, ENET_PMH_REG(i)); 917 } 918 919 /* write device mac address */ 920 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN); 921 bcm_enet_set_mac_address(dev, &addr); 922 923 /* allocate rx dma ring */ 924 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 925 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 926 if (!p) { 927 ret = -ENOMEM; 928 goto out_freeirq_tx; 929 } 930 931 priv->rx_desc_alloc_size = size; 932 priv->rx_desc_cpu = p; 933 934 /* allocate tx dma ring */ 935 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 936 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 937 if (!p) { 938 ret = -ENOMEM; 939 goto out_free_rx_ring; 940 } 941 942 priv->tx_desc_alloc_size = size; 943 priv->tx_desc_cpu = p; 944 945 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *), 946 GFP_KERNEL); 947 if (!priv->tx_skb) { 948 ret = -ENOMEM; 949 goto out_free_tx_ring; 950 } 951 952 priv->tx_desc_count = priv->tx_ring_size; 953 priv->tx_dirty_desc = 0; 954 priv->tx_curr_desc = 0; 955 spin_lock_init(&priv->tx_lock); 956 957 /* init & fill rx ring with skbs */ 958 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *), 959 GFP_KERNEL); 960 if (!priv->rx_skb) { 961 ret = -ENOMEM; 962 goto out_free_tx_skb; 963 } 964 965 priv->rx_desc_count = 0; 966 priv->rx_dirty_desc = 0; 967 priv->rx_curr_desc = 0; 968 969 /* initialize flow control buffer allocation */ 970 if (priv->dma_has_sram) 971 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 972 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 973 else 974 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 975 ENETDMAC_BUFALLOC, priv->rx_chan); 976 977 if (bcm_enet_refill_rx(dev)) { 978 dev_err(kdev, "cannot allocate rx skb queue\n"); 979 ret = -ENOMEM; 980 goto out; 981 } 982 983 /* write rx & tx ring addresses */ 984 if (priv->dma_has_sram) { 985 enet_dmas_writel(priv, priv->rx_desc_dma, 986 ENETDMAS_RSTART_REG, priv->rx_chan); 987 enet_dmas_writel(priv, priv->tx_desc_dma, 988 ENETDMAS_RSTART_REG, priv->tx_chan); 989 } else { 990 enet_dmac_writel(priv, priv->rx_desc_dma, 991 ENETDMAC_RSTART, priv->rx_chan); 992 enet_dmac_writel(priv, priv->tx_desc_dma, 993 ENETDMAC_RSTART, priv->tx_chan); 994 } 995 996 /* clear remaining state ram for rx & tx channel */ 997 if (priv->dma_has_sram) { 998 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 999 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 1000 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 1001 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 1002 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 1003 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 1004 } else { 1005 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan); 1006 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan); 1007 } 1008 1009 /* set max rx/tx length */ 1010 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG); 1011 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG); 1012 1013 /* set dma maximum burst len */ 1014 enet_dmac_writel(priv, priv->dma_maxburst, 1015 ENETDMAC_MAXBURST, priv->rx_chan); 1016 enet_dmac_writel(priv, priv->dma_maxburst, 1017 ENETDMAC_MAXBURST, priv->tx_chan); 1018 1019 /* set correct transmit fifo watermark */ 1020 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG); 1021 1022 /* set flow control low/high threshold to 1/3 / 2/3 */ 1023 if (priv->dma_has_sram) { 1024 val = priv->rx_ring_size / 3; 1025 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 1026 val = (priv->rx_ring_size * 2) / 3; 1027 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 1028 } else { 1029 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan); 1030 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan); 1031 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan); 1032 } 1033 1034 /* all set, enable mac and interrupts, start dma engine and 1035 * kick rx dma channel */ 1036 wmb(); 1037 val = enet_readl(priv, ENET_CTL_REG); 1038 val |= ENET_CTL_ENABLE_MASK; 1039 enet_writel(priv, val, ENET_CTL_REG); 1040 if (priv->dma_has_sram) 1041 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 1042 enet_dmac_writel(priv, priv->dma_chan_en_mask, 1043 ENETDMAC_CHANCFG, priv->rx_chan); 1044 1045 /* watch "mib counters about to overflow" interrupt */ 1046 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 1047 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1048 1049 /* watch "packet transferred" interrupt in rx and tx */ 1050 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1051 ENETDMAC_IR, priv->rx_chan); 1052 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1053 ENETDMAC_IR, priv->tx_chan); 1054 1055 /* make sure we enable napi before rx interrupt */ 1056 napi_enable(&priv->napi); 1057 1058 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1059 ENETDMAC_IRMASK, priv->rx_chan); 1060 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1061 ENETDMAC_IRMASK, priv->tx_chan); 1062 1063 if (phydev) 1064 phy_start(phydev); 1065 else 1066 bcm_enet_adjust_link(dev); 1067 1068 netif_start_queue(dev); 1069 return 0; 1070 1071 out: 1072 for (i = 0; i < priv->rx_ring_size; i++) { 1073 struct bcm_enet_desc *desc; 1074 1075 if (!priv->rx_skb[i]) 1076 continue; 1077 1078 desc = &priv->rx_desc_cpu[i]; 1079 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1080 DMA_FROM_DEVICE); 1081 kfree_skb(priv->rx_skb[i]); 1082 } 1083 kfree(priv->rx_skb); 1084 1085 out_free_tx_skb: 1086 kfree(priv->tx_skb); 1087 1088 out_free_tx_ring: 1089 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1090 priv->tx_desc_cpu, priv->tx_desc_dma); 1091 1092 out_free_rx_ring: 1093 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1094 priv->rx_desc_cpu, priv->rx_desc_dma); 1095 1096 out_freeirq_tx: 1097 free_irq(priv->irq_tx, dev); 1098 1099 out_freeirq_rx: 1100 free_irq(priv->irq_rx, dev); 1101 1102 out_freeirq: 1103 free_irq(dev->irq, dev); 1104 1105 out_phy_disconnect: 1106 if (phydev) 1107 phy_disconnect(phydev); 1108 1109 return ret; 1110 } 1111 1112 /* 1113 * disable mac 1114 */ 1115 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv) 1116 { 1117 int limit; 1118 u32 val; 1119 1120 val = enet_readl(priv, ENET_CTL_REG); 1121 val |= ENET_CTL_DISABLE_MASK; 1122 enet_writel(priv, val, ENET_CTL_REG); 1123 1124 limit = 1000; 1125 do { 1126 u32 val; 1127 1128 val = enet_readl(priv, ENET_CTL_REG); 1129 if (!(val & ENET_CTL_DISABLE_MASK)) 1130 break; 1131 udelay(1); 1132 } while (limit--); 1133 } 1134 1135 /* 1136 * disable dma in given channel 1137 */ 1138 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan) 1139 { 1140 int limit; 1141 1142 enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan); 1143 1144 limit = 1000; 1145 do { 1146 u32 val; 1147 1148 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan); 1149 if (!(val & ENETDMAC_CHANCFG_EN_MASK)) 1150 break; 1151 udelay(1); 1152 } while (limit--); 1153 } 1154 1155 /* 1156 * stop callback 1157 */ 1158 static int bcm_enet_stop(struct net_device *dev) 1159 { 1160 struct bcm_enet_priv *priv; 1161 struct device *kdev; 1162 int i; 1163 1164 priv = netdev_priv(dev); 1165 kdev = &priv->pdev->dev; 1166 1167 netif_stop_queue(dev); 1168 napi_disable(&priv->napi); 1169 if (priv->has_phy) 1170 phy_stop(dev->phydev); 1171 del_timer_sync(&priv->rx_timeout); 1172 1173 /* mask all interrupts */ 1174 enet_writel(priv, 0, ENET_IRMASK_REG); 1175 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 1176 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 1177 1178 /* make sure no mib update is scheduled */ 1179 cancel_work_sync(&priv->mib_update_task); 1180 1181 /* disable dma & mac */ 1182 bcm_enet_disable_dma(priv, priv->tx_chan); 1183 bcm_enet_disable_dma(priv, priv->rx_chan); 1184 bcm_enet_disable_mac(priv); 1185 1186 /* force reclaim of all tx buffers */ 1187 bcm_enet_tx_reclaim(dev, 1); 1188 1189 /* free the rx skb ring */ 1190 for (i = 0; i < priv->rx_ring_size; i++) { 1191 struct bcm_enet_desc *desc; 1192 1193 if (!priv->rx_skb[i]) 1194 continue; 1195 1196 desc = &priv->rx_desc_cpu[i]; 1197 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1198 DMA_FROM_DEVICE); 1199 kfree_skb(priv->rx_skb[i]); 1200 } 1201 1202 /* free remaining allocated memory */ 1203 kfree(priv->rx_skb); 1204 kfree(priv->tx_skb); 1205 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1206 priv->rx_desc_cpu, priv->rx_desc_dma); 1207 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1208 priv->tx_desc_cpu, priv->tx_desc_dma); 1209 free_irq(priv->irq_tx, dev); 1210 free_irq(priv->irq_rx, dev); 1211 free_irq(dev->irq, dev); 1212 1213 /* release phy */ 1214 if (priv->has_phy) 1215 phy_disconnect(dev->phydev); 1216 1217 return 0; 1218 } 1219 1220 /* 1221 * ethtool callbacks 1222 */ 1223 struct bcm_enet_stats { 1224 char stat_string[ETH_GSTRING_LEN]; 1225 int sizeof_stat; 1226 int stat_offset; 1227 int mib_reg; 1228 }; 1229 1230 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \ 1231 offsetof(struct bcm_enet_priv, m) 1232 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \ 1233 offsetof(struct net_device_stats, m) 1234 1235 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = { 1236 { "rx_packets", DEV_STAT(rx_packets), -1 }, 1237 { "tx_packets", DEV_STAT(tx_packets), -1 }, 1238 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 1239 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 1240 { "rx_errors", DEV_STAT(rx_errors), -1 }, 1241 { "tx_errors", DEV_STAT(tx_errors), -1 }, 1242 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 1243 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 1244 1245 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS}, 1246 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS }, 1247 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST }, 1248 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT }, 1249 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 }, 1250 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 }, 1251 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 }, 1252 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 }, 1253 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 }, 1254 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX }, 1255 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB }, 1256 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR }, 1257 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG }, 1258 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP }, 1259 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN }, 1260 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND }, 1261 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC }, 1262 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN }, 1263 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM }, 1264 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE }, 1265 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL }, 1266 1267 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS }, 1268 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS }, 1269 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST }, 1270 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT }, 1271 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 }, 1272 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 }, 1273 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 }, 1274 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 }, 1275 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023}, 1276 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX }, 1277 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB }, 1278 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR }, 1279 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG }, 1280 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN }, 1281 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL }, 1282 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL }, 1283 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL }, 1284 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL }, 1285 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE }, 1286 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF }, 1287 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS }, 1288 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE }, 1289 1290 }; 1291 1292 #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats) 1293 1294 static const u32 unused_mib_regs[] = { 1295 ETH_MIB_TX_ALL_OCTETS, 1296 ETH_MIB_TX_ALL_PKTS, 1297 ETH_MIB_RX_ALL_OCTETS, 1298 ETH_MIB_RX_ALL_PKTS, 1299 }; 1300 1301 1302 static void bcm_enet_get_drvinfo(struct net_device *netdev, 1303 struct ethtool_drvinfo *drvinfo) 1304 { 1305 strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver)); 1306 strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info)); 1307 } 1308 1309 static int bcm_enet_get_sset_count(struct net_device *netdev, 1310 int string_set) 1311 { 1312 switch (string_set) { 1313 case ETH_SS_STATS: 1314 return BCM_ENET_STATS_LEN; 1315 default: 1316 return -EINVAL; 1317 } 1318 } 1319 1320 static void bcm_enet_get_strings(struct net_device *netdev, 1321 u32 stringset, u8 *data) 1322 { 1323 int i; 1324 1325 switch (stringset) { 1326 case ETH_SS_STATS: 1327 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1328 memcpy(data + i * ETH_GSTRING_LEN, 1329 bcm_enet_gstrings_stats[i].stat_string, 1330 ETH_GSTRING_LEN); 1331 } 1332 break; 1333 } 1334 } 1335 1336 static void update_mib_counters(struct bcm_enet_priv *priv) 1337 { 1338 int i; 1339 1340 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1341 const struct bcm_enet_stats *s; 1342 u32 val; 1343 char *p; 1344 1345 s = &bcm_enet_gstrings_stats[i]; 1346 if (s->mib_reg == -1) 1347 continue; 1348 1349 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg)); 1350 p = (char *)priv + s->stat_offset; 1351 1352 if (s->sizeof_stat == sizeof(u64)) 1353 *(u64 *)p += val; 1354 else 1355 *(u32 *)p += val; 1356 } 1357 1358 /* also empty unused mib counters to make sure mib counter 1359 * overflow interrupt is cleared */ 1360 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++) 1361 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i])); 1362 } 1363 1364 static void bcm_enet_update_mib_counters_defer(struct work_struct *t) 1365 { 1366 struct bcm_enet_priv *priv; 1367 1368 priv = container_of(t, struct bcm_enet_priv, mib_update_task); 1369 mutex_lock(&priv->mib_update_lock); 1370 update_mib_counters(priv); 1371 mutex_unlock(&priv->mib_update_lock); 1372 1373 /* reenable mib interrupt */ 1374 if (netif_running(priv->net_dev)) 1375 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1376 } 1377 1378 static void bcm_enet_get_ethtool_stats(struct net_device *netdev, 1379 struct ethtool_stats *stats, 1380 u64 *data) 1381 { 1382 struct bcm_enet_priv *priv; 1383 int i; 1384 1385 priv = netdev_priv(netdev); 1386 1387 mutex_lock(&priv->mib_update_lock); 1388 update_mib_counters(priv); 1389 1390 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1391 const struct bcm_enet_stats *s; 1392 char *p; 1393 1394 s = &bcm_enet_gstrings_stats[i]; 1395 if (s->mib_reg == -1) 1396 p = (char *)&netdev->stats; 1397 else 1398 p = (char *)priv; 1399 p += s->stat_offset; 1400 data[i] = (s->sizeof_stat == sizeof(u64)) ? 1401 *(u64 *)p : *(u32 *)p; 1402 } 1403 mutex_unlock(&priv->mib_update_lock); 1404 } 1405 1406 static int bcm_enet_nway_reset(struct net_device *dev) 1407 { 1408 struct bcm_enet_priv *priv; 1409 1410 priv = netdev_priv(dev); 1411 if (priv->has_phy) 1412 return phy_ethtool_nway_reset(dev); 1413 1414 return -EOPNOTSUPP; 1415 } 1416 1417 static int bcm_enet_get_link_ksettings(struct net_device *dev, 1418 struct ethtool_link_ksettings *cmd) 1419 { 1420 struct bcm_enet_priv *priv; 1421 u32 supported, advertising; 1422 1423 priv = netdev_priv(dev); 1424 1425 if (priv->has_phy) { 1426 if (!dev->phydev) 1427 return -ENODEV; 1428 1429 phy_ethtool_ksettings_get(dev->phydev, cmd); 1430 1431 return 0; 1432 } else { 1433 cmd->base.autoneg = 0; 1434 cmd->base.speed = (priv->force_speed_100) ? 1435 SPEED_100 : SPEED_10; 1436 cmd->base.duplex = (priv->force_duplex_full) ? 1437 DUPLEX_FULL : DUPLEX_HALF; 1438 supported = ADVERTISED_10baseT_Half | 1439 ADVERTISED_10baseT_Full | 1440 ADVERTISED_100baseT_Half | 1441 ADVERTISED_100baseT_Full; 1442 advertising = 0; 1443 ethtool_convert_legacy_u32_to_link_mode( 1444 cmd->link_modes.supported, supported); 1445 ethtool_convert_legacy_u32_to_link_mode( 1446 cmd->link_modes.advertising, advertising); 1447 cmd->base.port = PORT_MII; 1448 } 1449 return 0; 1450 } 1451 1452 static int bcm_enet_set_link_ksettings(struct net_device *dev, 1453 const struct ethtool_link_ksettings *cmd) 1454 { 1455 struct bcm_enet_priv *priv; 1456 1457 priv = netdev_priv(dev); 1458 if (priv->has_phy) { 1459 if (!dev->phydev) 1460 return -ENODEV; 1461 return phy_ethtool_ksettings_set(dev->phydev, cmd); 1462 } else { 1463 1464 if (cmd->base.autoneg || 1465 (cmd->base.speed != SPEED_100 && 1466 cmd->base.speed != SPEED_10) || 1467 cmd->base.port != PORT_MII) 1468 return -EINVAL; 1469 1470 priv->force_speed_100 = 1471 (cmd->base.speed == SPEED_100) ? 1 : 0; 1472 priv->force_duplex_full = 1473 (cmd->base.duplex == DUPLEX_FULL) ? 1 : 0; 1474 1475 if (netif_running(dev)) 1476 bcm_enet_adjust_link(dev); 1477 return 0; 1478 } 1479 } 1480 1481 static void bcm_enet_get_ringparam(struct net_device *dev, 1482 struct ethtool_ringparam *ering) 1483 { 1484 struct bcm_enet_priv *priv; 1485 1486 priv = netdev_priv(dev); 1487 1488 /* rx/tx ring is actually only limited by memory */ 1489 ering->rx_max_pending = 8192; 1490 ering->tx_max_pending = 8192; 1491 ering->rx_pending = priv->rx_ring_size; 1492 ering->tx_pending = priv->tx_ring_size; 1493 } 1494 1495 static int bcm_enet_set_ringparam(struct net_device *dev, 1496 struct ethtool_ringparam *ering) 1497 { 1498 struct bcm_enet_priv *priv; 1499 int was_running; 1500 1501 priv = netdev_priv(dev); 1502 1503 was_running = 0; 1504 if (netif_running(dev)) { 1505 bcm_enet_stop(dev); 1506 was_running = 1; 1507 } 1508 1509 priv->rx_ring_size = ering->rx_pending; 1510 priv->tx_ring_size = ering->tx_pending; 1511 1512 if (was_running) { 1513 int err; 1514 1515 err = bcm_enet_open(dev); 1516 if (err) 1517 dev_close(dev); 1518 else 1519 bcm_enet_set_multicast_list(dev); 1520 } 1521 return 0; 1522 } 1523 1524 static void bcm_enet_get_pauseparam(struct net_device *dev, 1525 struct ethtool_pauseparam *ecmd) 1526 { 1527 struct bcm_enet_priv *priv; 1528 1529 priv = netdev_priv(dev); 1530 ecmd->autoneg = priv->pause_auto; 1531 ecmd->rx_pause = priv->pause_rx; 1532 ecmd->tx_pause = priv->pause_tx; 1533 } 1534 1535 static int bcm_enet_set_pauseparam(struct net_device *dev, 1536 struct ethtool_pauseparam *ecmd) 1537 { 1538 struct bcm_enet_priv *priv; 1539 1540 priv = netdev_priv(dev); 1541 1542 if (priv->has_phy) { 1543 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) { 1544 /* asymetric pause mode not supported, 1545 * actually possible but integrated PHY has RO 1546 * asym_pause bit */ 1547 return -EINVAL; 1548 } 1549 } else { 1550 /* no pause autoneg on direct mii connection */ 1551 if (ecmd->autoneg) 1552 return -EINVAL; 1553 } 1554 1555 priv->pause_auto = ecmd->autoneg; 1556 priv->pause_rx = ecmd->rx_pause; 1557 priv->pause_tx = ecmd->tx_pause; 1558 1559 return 0; 1560 } 1561 1562 static const struct ethtool_ops bcm_enet_ethtool_ops = { 1563 .get_strings = bcm_enet_get_strings, 1564 .get_sset_count = bcm_enet_get_sset_count, 1565 .get_ethtool_stats = bcm_enet_get_ethtool_stats, 1566 .nway_reset = bcm_enet_nway_reset, 1567 .get_drvinfo = bcm_enet_get_drvinfo, 1568 .get_link = ethtool_op_get_link, 1569 .get_ringparam = bcm_enet_get_ringparam, 1570 .set_ringparam = bcm_enet_set_ringparam, 1571 .get_pauseparam = bcm_enet_get_pauseparam, 1572 .set_pauseparam = bcm_enet_set_pauseparam, 1573 .get_link_ksettings = bcm_enet_get_link_ksettings, 1574 .set_link_ksettings = bcm_enet_set_link_ksettings, 1575 }; 1576 1577 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1578 { 1579 struct bcm_enet_priv *priv; 1580 1581 priv = netdev_priv(dev); 1582 if (priv->has_phy) { 1583 if (!dev->phydev) 1584 return -ENODEV; 1585 return phy_mii_ioctl(dev->phydev, rq, cmd); 1586 } else { 1587 struct mii_if_info mii; 1588 1589 mii.dev = dev; 1590 mii.mdio_read = bcm_enet_mdio_read_mii; 1591 mii.mdio_write = bcm_enet_mdio_write_mii; 1592 mii.phy_id = 0; 1593 mii.phy_id_mask = 0x3f; 1594 mii.reg_num_mask = 0x1f; 1595 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 1596 } 1597 } 1598 1599 /* 1600 * adjust mtu, can't be called while device is running 1601 */ 1602 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu) 1603 { 1604 struct bcm_enet_priv *priv = netdev_priv(dev); 1605 int actual_mtu = new_mtu; 1606 1607 if (netif_running(dev)) 1608 return -EBUSY; 1609 1610 /* add ethernet header + vlan tag size */ 1611 actual_mtu += VLAN_ETH_HLEN; 1612 1613 /* 1614 * setup maximum size before we get overflow mark in 1615 * descriptor, note that this will not prevent reception of 1616 * big frames, they will be split into multiple buffers 1617 * anyway 1618 */ 1619 priv->hw_mtu = actual_mtu; 1620 1621 /* 1622 * align rx buffer size to dma burst len, account FCS since 1623 * it's appended 1624 */ 1625 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN, 1626 priv->dma_maxburst * 4); 1627 1628 dev->mtu = new_mtu; 1629 return 0; 1630 } 1631 1632 /* 1633 * preinit hardware to allow mii operation while device is down 1634 */ 1635 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv) 1636 { 1637 u32 val; 1638 int limit; 1639 1640 /* make sure mac is disabled */ 1641 bcm_enet_disable_mac(priv); 1642 1643 /* soft reset mac */ 1644 val = ENET_CTL_SRESET_MASK; 1645 enet_writel(priv, val, ENET_CTL_REG); 1646 wmb(); 1647 1648 limit = 1000; 1649 do { 1650 val = enet_readl(priv, ENET_CTL_REG); 1651 if (!(val & ENET_CTL_SRESET_MASK)) 1652 break; 1653 udelay(1); 1654 } while (limit--); 1655 1656 /* select correct mii interface */ 1657 val = enet_readl(priv, ENET_CTL_REG); 1658 if (priv->use_external_mii) 1659 val |= ENET_CTL_EPHYSEL_MASK; 1660 else 1661 val &= ~ENET_CTL_EPHYSEL_MASK; 1662 enet_writel(priv, val, ENET_CTL_REG); 1663 1664 /* turn on mdc clock */ 1665 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) | 1666 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG); 1667 1668 /* set mib counters to self-clear when read */ 1669 val = enet_readl(priv, ENET_MIBCTL_REG); 1670 val |= ENET_MIBCTL_RDCLEAR_MASK; 1671 enet_writel(priv, val, ENET_MIBCTL_REG); 1672 } 1673 1674 static const struct net_device_ops bcm_enet_ops = { 1675 .ndo_open = bcm_enet_open, 1676 .ndo_stop = bcm_enet_stop, 1677 .ndo_start_xmit = bcm_enet_start_xmit, 1678 .ndo_set_mac_address = bcm_enet_set_mac_address, 1679 .ndo_set_rx_mode = bcm_enet_set_multicast_list, 1680 .ndo_do_ioctl = bcm_enet_ioctl, 1681 .ndo_change_mtu = bcm_enet_change_mtu, 1682 }; 1683 1684 /* 1685 * allocate netdevice, request register memory and register device. 1686 */ 1687 static int bcm_enet_probe(struct platform_device *pdev) 1688 { 1689 struct bcm_enet_priv *priv; 1690 struct net_device *dev; 1691 struct bcm63xx_enet_platform_data *pd; 1692 struct resource *res_irq, *res_irq_rx, *res_irq_tx; 1693 struct mii_bus *bus; 1694 int i, ret; 1695 1696 if (!bcm_enet_shared_base[0]) 1697 return -EPROBE_DEFER; 1698 1699 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1700 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1); 1701 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2); 1702 if (!res_irq || !res_irq_rx || !res_irq_tx) 1703 return -ENODEV; 1704 1705 dev = alloc_etherdev(sizeof(*priv)); 1706 if (!dev) 1707 return -ENOMEM; 1708 priv = netdev_priv(dev); 1709 1710 priv->enet_is_sw = false; 1711 priv->dma_maxburst = BCMENET_DMA_MAXBURST; 1712 1713 ret = bcm_enet_change_mtu(dev, dev->mtu); 1714 if (ret) 1715 goto out; 1716 1717 priv->base = devm_platform_ioremap_resource(pdev, 0); 1718 if (IS_ERR(priv->base)) { 1719 ret = PTR_ERR(priv->base); 1720 goto out; 1721 } 1722 1723 dev->irq = priv->irq = res_irq->start; 1724 priv->irq_rx = res_irq_rx->start; 1725 priv->irq_tx = res_irq_tx->start; 1726 1727 priv->mac_clk = devm_clk_get(&pdev->dev, "enet"); 1728 if (IS_ERR(priv->mac_clk)) { 1729 ret = PTR_ERR(priv->mac_clk); 1730 goto out; 1731 } 1732 ret = clk_prepare_enable(priv->mac_clk); 1733 if (ret) 1734 goto out; 1735 1736 /* initialize default and fetch platform data */ 1737 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 1738 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 1739 1740 pd = dev_get_platdata(&pdev->dev); 1741 if (pd) { 1742 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 1743 priv->has_phy = pd->has_phy; 1744 priv->phy_id = pd->phy_id; 1745 priv->has_phy_interrupt = pd->has_phy_interrupt; 1746 priv->phy_interrupt = pd->phy_interrupt; 1747 priv->use_external_mii = !pd->use_internal_phy; 1748 priv->pause_auto = pd->pause_auto; 1749 priv->pause_rx = pd->pause_rx; 1750 priv->pause_tx = pd->pause_tx; 1751 priv->force_duplex_full = pd->force_duplex_full; 1752 priv->force_speed_100 = pd->force_speed_100; 1753 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 1754 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 1755 priv->dma_chan_width = pd->dma_chan_width; 1756 priv->dma_has_sram = pd->dma_has_sram; 1757 priv->dma_desc_shift = pd->dma_desc_shift; 1758 priv->rx_chan = pd->rx_chan; 1759 priv->tx_chan = pd->tx_chan; 1760 } 1761 1762 if (priv->has_phy && !priv->use_external_mii) { 1763 /* using internal PHY, enable clock */ 1764 priv->phy_clk = devm_clk_get(&pdev->dev, "ephy"); 1765 if (IS_ERR(priv->phy_clk)) { 1766 ret = PTR_ERR(priv->phy_clk); 1767 priv->phy_clk = NULL; 1768 goto out_disable_clk_mac; 1769 } 1770 ret = clk_prepare_enable(priv->phy_clk); 1771 if (ret) 1772 goto out_disable_clk_mac; 1773 } 1774 1775 /* do minimal hardware init to be able to probe mii bus */ 1776 bcm_enet_hw_preinit(priv); 1777 1778 /* MII bus registration */ 1779 if (priv->has_phy) { 1780 1781 priv->mii_bus = mdiobus_alloc(); 1782 if (!priv->mii_bus) { 1783 ret = -ENOMEM; 1784 goto out_uninit_hw; 1785 } 1786 1787 bus = priv->mii_bus; 1788 bus->name = "bcm63xx_enet MII bus"; 1789 bus->parent = &pdev->dev; 1790 bus->priv = priv; 1791 bus->read = bcm_enet_mdio_read_phylib; 1792 bus->write = bcm_enet_mdio_write_phylib; 1793 sprintf(bus->id, "%s-%d", pdev->name, pdev->id); 1794 1795 /* only probe bus where we think the PHY is, because 1796 * the mdio read operation return 0 instead of 0xffff 1797 * if a slave is not present on hw */ 1798 bus->phy_mask = ~(1 << priv->phy_id); 1799 1800 if (priv->has_phy_interrupt) 1801 bus->irq[priv->phy_id] = priv->phy_interrupt; 1802 1803 ret = mdiobus_register(bus); 1804 if (ret) { 1805 dev_err(&pdev->dev, "unable to register mdio bus\n"); 1806 goto out_free_mdio; 1807 } 1808 } else { 1809 1810 /* run platform code to initialize PHY device */ 1811 if (pd && pd->mii_config && 1812 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii, 1813 bcm_enet_mdio_write_mii)) { 1814 dev_err(&pdev->dev, "unable to configure mdio bus\n"); 1815 goto out_uninit_hw; 1816 } 1817 } 1818 1819 spin_lock_init(&priv->rx_lock); 1820 1821 /* init rx timeout (used for oom) */ 1822 timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0); 1823 1824 /* init the mib update lock&work */ 1825 mutex_init(&priv->mib_update_lock); 1826 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer); 1827 1828 /* zero mib counters */ 1829 for (i = 0; i < ENET_MIB_REG_COUNT; i++) 1830 enet_writel(priv, 0, ENET_MIB_REG(i)); 1831 1832 /* register netdevice */ 1833 dev->netdev_ops = &bcm_enet_ops; 1834 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 1835 1836 dev->ethtool_ops = &bcm_enet_ethtool_ops; 1837 /* MTU range: 46 - 2028 */ 1838 dev->min_mtu = ETH_ZLEN - ETH_HLEN; 1839 dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN; 1840 SET_NETDEV_DEV(dev, &pdev->dev); 1841 1842 ret = register_netdev(dev); 1843 if (ret) 1844 goto out_unregister_mdio; 1845 1846 netif_carrier_off(dev); 1847 platform_set_drvdata(pdev, dev); 1848 priv->pdev = pdev; 1849 priv->net_dev = dev; 1850 1851 return 0; 1852 1853 out_unregister_mdio: 1854 if (priv->mii_bus) 1855 mdiobus_unregister(priv->mii_bus); 1856 1857 out_free_mdio: 1858 if (priv->mii_bus) 1859 mdiobus_free(priv->mii_bus); 1860 1861 out_uninit_hw: 1862 /* turn off mdc clock */ 1863 enet_writel(priv, 0, ENET_MIISC_REG); 1864 clk_disable_unprepare(priv->phy_clk); 1865 1866 out_disable_clk_mac: 1867 clk_disable_unprepare(priv->mac_clk); 1868 out: 1869 free_netdev(dev); 1870 return ret; 1871 } 1872 1873 1874 /* 1875 * exit func, stops hardware and unregisters netdevice 1876 */ 1877 static int bcm_enet_remove(struct platform_device *pdev) 1878 { 1879 struct bcm_enet_priv *priv; 1880 struct net_device *dev; 1881 1882 /* stop netdevice */ 1883 dev = platform_get_drvdata(pdev); 1884 priv = netdev_priv(dev); 1885 unregister_netdev(dev); 1886 1887 /* turn off mdc clock */ 1888 enet_writel(priv, 0, ENET_MIISC_REG); 1889 1890 if (priv->has_phy) { 1891 mdiobus_unregister(priv->mii_bus); 1892 mdiobus_free(priv->mii_bus); 1893 } else { 1894 struct bcm63xx_enet_platform_data *pd; 1895 1896 pd = dev_get_platdata(&pdev->dev); 1897 if (pd && pd->mii_config) 1898 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii, 1899 bcm_enet_mdio_write_mii); 1900 } 1901 1902 /* disable hw block clocks */ 1903 clk_disable_unprepare(priv->phy_clk); 1904 clk_disable_unprepare(priv->mac_clk); 1905 1906 free_netdev(dev); 1907 return 0; 1908 } 1909 1910 struct platform_driver bcm63xx_enet_driver = { 1911 .probe = bcm_enet_probe, 1912 .remove = bcm_enet_remove, 1913 .driver = { 1914 .name = "bcm63xx_enet", 1915 .owner = THIS_MODULE, 1916 }, 1917 }; 1918 1919 /* 1920 * switch mii access callbacks 1921 */ 1922 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv, 1923 int ext, int phy_id, int location) 1924 { 1925 u32 reg; 1926 int ret; 1927 1928 spin_lock_bh(&priv->enetsw_mdio_lock); 1929 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 1930 1931 reg = ENETSW_MDIOC_RD_MASK | 1932 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 1933 (location << ENETSW_MDIOC_REG_SHIFT); 1934 1935 if (ext) 1936 reg |= ENETSW_MDIOC_EXT_MASK; 1937 1938 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 1939 udelay(50); 1940 ret = enetsw_readw(priv, ENETSW_MDIOD_REG); 1941 spin_unlock_bh(&priv->enetsw_mdio_lock); 1942 return ret; 1943 } 1944 1945 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv, 1946 int ext, int phy_id, int location, 1947 uint16_t data) 1948 { 1949 u32 reg; 1950 1951 spin_lock_bh(&priv->enetsw_mdio_lock); 1952 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 1953 1954 reg = ENETSW_MDIOC_WR_MASK | 1955 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 1956 (location << ENETSW_MDIOC_REG_SHIFT); 1957 1958 if (ext) 1959 reg |= ENETSW_MDIOC_EXT_MASK; 1960 1961 reg |= data; 1962 1963 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 1964 udelay(50); 1965 spin_unlock_bh(&priv->enetsw_mdio_lock); 1966 } 1967 1968 static inline int bcm_enet_port_is_rgmii(int portid) 1969 { 1970 return portid >= ENETSW_RGMII_PORT0; 1971 } 1972 1973 /* 1974 * enet sw PHY polling 1975 */ 1976 static void swphy_poll_timer(struct timer_list *t) 1977 { 1978 struct bcm_enet_priv *priv = from_timer(priv, t, swphy_poll); 1979 unsigned int i; 1980 1981 for (i = 0; i < priv->num_ports; i++) { 1982 struct bcm63xx_enetsw_port *port; 1983 int val, j, up, advertise, lpa, speed, duplex, media; 1984 int external_phy = bcm_enet_port_is_rgmii(i); 1985 u8 override; 1986 1987 port = &priv->used_ports[i]; 1988 if (!port->used) 1989 continue; 1990 1991 if (port->bypass_link) 1992 continue; 1993 1994 /* dummy read to clear */ 1995 for (j = 0; j < 2; j++) 1996 val = bcmenet_sw_mdio_read(priv, external_phy, 1997 port->phy_id, MII_BMSR); 1998 1999 if (val == 0xffff) 2000 continue; 2001 2002 up = (val & BMSR_LSTATUS) ? 1 : 0; 2003 if (!(up ^ priv->sw_port_link[i])) 2004 continue; 2005 2006 priv->sw_port_link[i] = up; 2007 2008 /* link changed */ 2009 if (!up) { 2010 dev_info(&priv->pdev->dev, "link DOWN on %s\n", 2011 port->name); 2012 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2013 ENETSW_PORTOV_REG(i)); 2014 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2015 ENETSW_PTCTRL_TXDIS_MASK, 2016 ENETSW_PTCTRL_REG(i)); 2017 continue; 2018 } 2019 2020 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2021 port->phy_id, MII_ADVERTISE); 2022 2023 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id, 2024 MII_LPA); 2025 2026 /* figure out media and duplex from advertise and LPA values */ 2027 media = mii_nway_result(lpa & advertise); 2028 duplex = (media & ADVERTISE_FULL) ? 1 : 0; 2029 2030 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF)) 2031 speed = 100; 2032 else 2033 speed = 10; 2034 2035 if (val & BMSR_ESTATEN) { 2036 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2037 port->phy_id, MII_CTRL1000); 2038 2039 lpa = bcmenet_sw_mdio_read(priv, external_phy, 2040 port->phy_id, MII_STAT1000); 2041 2042 if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF) 2043 && lpa & (LPA_1000FULL | LPA_1000HALF)) { 2044 speed = 1000; 2045 duplex = (lpa & LPA_1000FULL); 2046 } 2047 } 2048 2049 dev_info(&priv->pdev->dev, 2050 "link UP on %s, %dMbps, %s-duplex\n", 2051 port->name, speed, duplex ? "full" : "half"); 2052 2053 override = ENETSW_PORTOV_ENABLE_MASK | 2054 ENETSW_PORTOV_LINKUP_MASK; 2055 2056 if (speed == 1000) 2057 override |= ENETSW_IMPOV_1000_MASK; 2058 else if (speed == 100) 2059 override |= ENETSW_IMPOV_100_MASK; 2060 if (duplex) 2061 override |= ENETSW_IMPOV_FDX_MASK; 2062 2063 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2064 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2065 } 2066 2067 priv->swphy_poll.expires = jiffies + HZ; 2068 add_timer(&priv->swphy_poll); 2069 } 2070 2071 /* 2072 * open callback, allocate dma rings & buffers and start rx operation 2073 */ 2074 static int bcm_enetsw_open(struct net_device *dev) 2075 { 2076 struct bcm_enet_priv *priv; 2077 struct device *kdev; 2078 int i, ret; 2079 unsigned int size; 2080 void *p; 2081 u32 val; 2082 2083 priv = netdev_priv(dev); 2084 kdev = &priv->pdev->dev; 2085 2086 /* mask all interrupts and request them */ 2087 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2088 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2089 2090 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 2091 0, dev->name, dev); 2092 if (ret) 2093 goto out_freeirq; 2094 2095 if (priv->irq_tx != -1) { 2096 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 2097 0, dev->name, dev); 2098 if (ret) 2099 goto out_freeirq_rx; 2100 } 2101 2102 /* allocate rx dma ring */ 2103 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 2104 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 2105 if (!p) { 2106 dev_err(kdev, "cannot allocate rx ring %u\n", size); 2107 ret = -ENOMEM; 2108 goto out_freeirq_tx; 2109 } 2110 2111 priv->rx_desc_alloc_size = size; 2112 priv->rx_desc_cpu = p; 2113 2114 /* allocate tx dma ring */ 2115 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 2116 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 2117 if (!p) { 2118 dev_err(kdev, "cannot allocate tx ring\n"); 2119 ret = -ENOMEM; 2120 goto out_free_rx_ring; 2121 } 2122 2123 priv->tx_desc_alloc_size = size; 2124 priv->tx_desc_cpu = p; 2125 2126 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *), 2127 GFP_KERNEL); 2128 if (!priv->tx_skb) { 2129 dev_err(kdev, "cannot allocate rx skb queue\n"); 2130 ret = -ENOMEM; 2131 goto out_free_tx_ring; 2132 } 2133 2134 priv->tx_desc_count = priv->tx_ring_size; 2135 priv->tx_dirty_desc = 0; 2136 priv->tx_curr_desc = 0; 2137 spin_lock_init(&priv->tx_lock); 2138 2139 /* init & fill rx ring with skbs */ 2140 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *), 2141 GFP_KERNEL); 2142 if (!priv->rx_skb) { 2143 dev_err(kdev, "cannot allocate rx skb queue\n"); 2144 ret = -ENOMEM; 2145 goto out_free_tx_skb; 2146 } 2147 2148 priv->rx_desc_count = 0; 2149 priv->rx_dirty_desc = 0; 2150 priv->rx_curr_desc = 0; 2151 2152 /* disable all ports */ 2153 for (i = 0; i < priv->num_ports; i++) { 2154 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2155 ENETSW_PORTOV_REG(i)); 2156 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2157 ENETSW_PTCTRL_TXDIS_MASK, 2158 ENETSW_PTCTRL_REG(i)); 2159 2160 priv->sw_port_link[i] = 0; 2161 } 2162 2163 /* reset mib */ 2164 val = enetsw_readb(priv, ENETSW_GMCR_REG); 2165 val |= ENETSW_GMCR_RST_MIB_MASK; 2166 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2167 mdelay(1); 2168 val &= ~ENETSW_GMCR_RST_MIB_MASK; 2169 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2170 mdelay(1); 2171 2172 /* force CPU port state */ 2173 val = enetsw_readb(priv, ENETSW_IMPOV_REG); 2174 val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK; 2175 enetsw_writeb(priv, val, ENETSW_IMPOV_REG); 2176 2177 /* enable switch forward engine */ 2178 val = enetsw_readb(priv, ENETSW_SWMODE_REG); 2179 val |= ENETSW_SWMODE_FWD_EN_MASK; 2180 enetsw_writeb(priv, val, ENETSW_SWMODE_REG); 2181 2182 /* enable jumbo on all ports */ 2183 enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG); 2184 enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG); 2185 2186 /* initialize flow control buffer allocation */ 2187 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 2188 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 2189 2190 if (bcm_enet_refill_rx(dev)) { 2191 dev_err(kdev, "cannot allocate rx skb queue\n"); 2192 ret = -ENOMEM; 2193 goto out; 2194 } 2195 2196 /* write rx & tx ring addresses */ 2197 enet_dmas_writel(priv, priv->rx_desc_dma, 2198 ENETDMAS_RSTART_REG, priv->rx_chan); 2199 enet_dmas_writel(priv, priv->tx_desc_dma, 2200 ENETDMAS_RSTART_REG, priv->tx_chan); 2201 2202 /* clear remaining state ram for rx & tx channel */ 2203 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 2204 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 2205 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 2206 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 2207 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 2208 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 2209 2210 /* set dma maximum burst len */ 2211 enet_dmac_writel(priv, priv->dma_maxburst, 2212 ENETDMAC_MAXBURST, priv->rx_chan); 2213 enet_dmac_writel(priv, priv->dma_maxburst, 2214 ENETDMAC_MAXBURST, priv->tx_chan); 2215 2216 /* set flow control low/high threshold to 1/3 / 2/3 */ 2217 val = priv->rx_ring_size / 3; 2218 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 2219 val = (priv->rx_ring_size * 2) / 3; 2220 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 2221 2222 /* all set, enable mac and interrupts, start dma engine and 2223 * kick rx dma channel 2224 */ 2225 wmb(); 2226 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 2227 enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK, 2228 ENETDMAC_CHANCFG, priv->rx_chan); 2229 2230 /* watch "packet transferred" interrupt in rx and tx */ 2231 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2232 ENETDMAC_IR, priv->rx_chan); 2233 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2234 ENETDMAC_IR, priv->tx_chan); 2235 2236 /* make sure we enable napi before rx interrupt */ 2237 napi_enable(&priv->napi); 2238 2239 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2240 ENETDMAC_IRMASK, priv->rx_chan); 2241 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2242 ENETDMAC_IRMASK, priv->tx_chan); 2243 2244 netif_carrier_on(dev); 2245 netif_start_queue(dev); 2246 2247 /* apply override config for bypass_link ports here. */ 2248 for (i = 0; i < priv->num_ports; i++) { 2249 struct bcm63xx_enetsw_port *port; 2250 u8 override; 2251 port = &priv->used_ports[i]; 2252 if (!port->used) 2253 continue; 2254 2255 if (!port->bypass_link) 2256 continue; 2257 2258 override = ENETSW_PORTOV_ENABLE_MASK | 2259 ENETSW_PORTOV_LINKUP_MASK; 2260 2261 switch (port->force_speed) { 2262 case 1000: 2263 override |= ENETSW_IMPOV_1000_MASK; 2264 break; 2265 case 100: 2266 override |= ENETSW_IMPOV_100_MASK; 2267 break; 2268 case 10: 2269 break; 2270 default: 2271 pr_warn("invalid forced speed on port %s: assume 10\n", 2272 port->name); 2273 break; 2274 } 2275 2276 if (port->force_duplex_full) 2277 override |= ENETSW_IMPOV_FDX_MASK; 2278 2279 2280 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2281 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2282 } 2283 2284 /* start phy polling timer */ 2285 timer_setup(&priv->swphy_poll, swphy_poll_timer, 0); 2286 mod_timer(&priv->swphy_poll, jiffies); 2287 return 0; 2288 2289 out: 2290 for (i = 0; i < priv->rx_ring_size; i++) { 2291 struct bcm_enet_desc *desc; 2292 2293 if (!priv->rx_skb[i]) 2294 continue; 2295 2296 desc = &priv->rx_desc_cpu[i]; 2297 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 2298 DMA_FROM_DEVICE); 2299 kfree_skb(priv->rx_skb[i]); 2300 } 2301 kfree(priv->rx_skb); 2302 2303 out_free_tx_skb: 2304 kfree(priv->tx_skb); 2305 2306 out_free_tx_ring: 2307 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2308 priv->tx_desc_cpu, priv->tx_desc_dma); 2309 2310 out_free_rx_ring: 2311 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2312 priv->rx_desc_cpu, priv->rx_desc_dma); 2313 2314 out_freeirq_tx: 2315 if (priv->irq_tx != -1) 2316 free_irq(priv->irq_tx, dev); 2317 2318 out_freeirq_rx: 2319 free_irq(priv->irq_rx, dev); 2320 2321 out_freeirq: 2322 return ret; 2323 } 2324 2325 /* stop callback */ 2326 static int bcm_enetsw_stop(struct net_device *dev) 2327 { 2328 struct bcm_enet_priv *priv; 2329 struct device *kdev; 2330 int i; 2331 2332 priv = netdev_priv(dev); 2333 kdev = &priv->pdev->dev; 2334 2335 del_timer_sync(&priv->swphy_poll); 2336 netif_stop_queue(dev); 2337 napi_disable(&priv->napi); 2338 del_timer_sync(&priv->rx_timeout); 2339 2340 /* mask all interrupts */ 2341 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2342 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2343 2344 /* disable dma & mac */ 2345 bcm_enet_disable_dma(priv, priv->tx_chan); 2346 bcm_enet_disable_dma(priv, priv->rx_chan); 2347 2348 /* force reclaim of all tx buffers */ 2349 bcm_enet_tx_reclaim(dev, 1); 2350 2351 /* free the rx skb ring */ 2352 for (i = 0; i < priv->rx_ring_size; i++) { 2353 struct bcm_enet_desc *desc; 2354 2355 if (!priv->rx_skb[i]) 2356 continue; 2357 2358 desc = &priv->rx_desc_cpu[i]; 2359 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 2360 DMA_FROM_DEVICE); 2361 kfree_skb(priv->rx_skb[i]); 2362 } 2363 2364 /* free remaining allocated memory */ 2365 kfree(priv->rx_skb); 2366 kfree(priv->tx_skb); 2367 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2368 priv->rx_desc_cpu, priv->rx_desc_dma); 2369 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2370 priv->tx_desc_cpu, priv->tx_desc_dma); 2371 if (priv->irq_tx != -1) 2372 free_irq(priv->irq_tx, dev); 2373 free_irq(priv->irq_rx, dev); 2374 2375 return 0; 2376 } 2377 2378 /* try to sort out phy external status by walking the used_port field 2379 * in the bcm_enet_priv structure. in case the phy address is not 2380 * assigned to any physical port on the switch, assume it is external 2381 * (and yell at the user). 2382 */ 2383 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id) 2384 { 2385 int i; 2386 2387 for (i = 0; i < priv->num_ports; ++i) { 2388 if (!priv->used_ports[i].used) 2389 continue; 2390 if (priv->used_ports[i].phy_id == phy_id) 2391 return bcm_enet_port_is_rgmii(i); 2392 } 2393 2394 printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n", 2395 phy_id); 2396 return 1; 2397 } 2398 2399 /* can't use bcmenet_sw_mdio_read directly as we need to sort out 2400 * external/internal status of the given phy_id first. 2401 */ 2402 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id, 2403 int location) 2404 { 2405 struct bcm_enet_priv *priv; 2406 2407 priv = netdev_priv(dev); 2408 return bcmenet_sw_mdio_read(priv, 2409 bcm_enetsw_phy_is_external(priv, phy_id), 2410 phy_id, location); 2411 } 2412 2413 /* can't use bcmenet_sw_mdio_write directly as we need to sort out 2414 * external/internal status of the given phy_id first. 2415 */ 2416 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id, 2417 int location, 2418 int val) 2419 { 2420 struct bcm_enet_priv *priv; 2421 2422 priv = netdev_priv(dev); 2423 bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id), 2424 phy_id, location, val); 2425 } 2426 2427 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2428 { 2429 struct mii_if_info mii; 2430 2431 mii.dev = dev; 2432 mii.mdio_read = bcm_enetsw_mii_mdio_read; 2433 mii.mdio_write = bcm_enetsw_mii_mdio_write; 2434 mii.phy_id = 0; 2435 mii.phy_id_mask = 0x3f; 2436 mii.reg_num_mask = 0x1f; 2437 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 2438 2439 } 2440 2441 static const struct net_device_ops bcm_enetsw_ops = { 2442 .ndo_open = bcm_enetsw_open, 2443 .ndo_stop = bcm_enetsw_stop, 2444 .ndo_start_xmit = bcm_enet_start_xmit, 2445 .ndo_change_mtu = bcm_enet_change_mtu, 2446 .ndo_do_ioctl = bcm_enetsw_ioctl, 2447 }; 2448 2449 2450 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = { 2451 { "rx_packets", DEV_STAT(rx_packets), -1 }, 2452 { "tx_packets", DEV_STAT(tx_packets), -1 }, 2453 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 2454 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 2455 { "rx_errors", DEV_STAT(rx_errors), -1 }, 2456 { "tx_errors", DEV_STAT(tx_errors), -1 }, 2457 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 2458 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 2459 2460 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT }, 2461 { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST }, 2462 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST }, 2463 { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT }, 2464 { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 }, 2465 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 }, 2466 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 }, 2467 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 }, 2468 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023}, 2469 { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max), 2470 ETHSW_MIB_RX_1024_1522 }, 2471 { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047), 2472 ETHSW_MIB_RX_1523_2047 }, 2473 { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095), 2474 ETHSW_MIB_RX_2048_4095 }, 2475 { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191), 2476 ETHSW_MIB_RX_4096_8191 }, 2477 { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728), 2478 ETHSW_MIB_RX_8192_9728 }, 2479 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR }, 2480 { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC }, 2481 { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP }, 2482 { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND }, 2483 { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE }, 2484 2485 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT }, 2486 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST }, 2487 { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT }, 2488 { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT }, 2489 { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE }, 2490 { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS }, 2491 2492 }; 2493 2494 #define BCM_ENETSW_STATS_LEN \ 2495 (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats)) 2496 2497 static void bcm_enetsw_get_strings(struct net_device *netdev, 2498 u32 stringset, u8 *data) 2499 { 2500 int i; 2501 2502 switch (stringset) { 2503 case ETH_SS_STATS: 2504 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2505 memcpy(data + i * ETH_GSTRING_LEN, 2506 bcm_enetsw_gstrings_stats[i].stat_string, 2507 ETH_GSTRING_LEN); 2508 } 2509 break; 2510 } 2511 } 2512 2513 static int bcm_enetsw_get_sset_count(struct net_device *netdev, 2514 int string_set) 2515 { 2516 switch (string_set) { 2517 case ETH_SS_STATS: 2518 return BCM_ENETSW_STATS_LEN; 2519 default: 2520 return -EINVAL; 2521 } 2522 } 2523 2524 static void bcm_enetsw_get_drvinfo(struct net_device *netdev, 2525 struct ethtool_drvinfo *drvinfo) 2526 { 2527 strncpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver)); 2528 strncpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info)); 2529 } 2530 2531 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev, 2532 struct ethtool_stats *stats, 2533 u64 *data) 2534 { 2535 struct bcm_enet_priv *priv; 2536 int i; 2537 2538 priv = netdev_priv(netdev); 2539 2540 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2541 const struct bcm_enet_stats *s; 2542 u32 lo, hi; 2543 char *p; 2544 int reg; 2545 2546 s = &bcm_enetsw_gstrings_stats[i]; 2547 2548 reg = s->mib_reg; 2549 if (reg == -1) 2550 continue; 2551 2552 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg)); 2553 p = (char *)priv + s->stat_offset; 2554 2555 if (s->sizeof_stat == sizeof(u64)) { 2556 hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1)); 2557 *(u64 *)p = ((u64)hi << 32 | lo); 2558 } else { 2559 *(u32 *)p = lo; 2560 } 2561 } 2562 2563 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2564 const struct bcm_enet_stats *s; 2565 char *p; 2566 2567 s = &bcm_enetsw_gstrings_stats[i]; 2568 2569 if (s->mib_reg == -1) 2570 p = (char *)&netdev->stats + s->stat_offset; 2571 else 2572 p = (char *)priv + s->stat_offset; 2573 2574 data[i] = (s->sizeof_stat == sizeof(u64)) ? 2575 *(u64 *)p : *(u32 *)p; 2576 } 2577 } 2578 2579 static void bcm_enetsw_get_ringparam(struct net_device *dev, 2580 struct ethtool_ringparam *ering) 2581 { 2582 struct bcm_enet_priv *priv; 2583 2584 priv = netdev_priv(dev); 2585 2586 /* rx/tx ring is actually only limited by memory */ 2587 ering->rx_max_pending = 8192; 2588 ering->tx_max_pending = 8192; 2589 ering->rx_mini_max_pending = 0; 2590 ering->rx_jumbo_max_pending = 0; 2591 ering->rx_pending = priv->rx_ring_size; 2592 ering->tx_pending = priv->tx_ring_size; 2593 } 2594 2595 static int bcm_enetsw_set_ringparam(struct net_device *dev, 2596 struct ethtool_ringparam *ering) 2597 { 2598 struct bcm_enet_priv *priv; 2599 int was_running; 2600 2601 priv = netdev_priv(dev); 2602 2603 was_running = 0; 2604 if (netif_running(dev)) { 2605 bcm_enetsw_stop(dev); 2606 was_running = 1; 2607 } 2608 2609 priv->rx_ring_size = ering->rx_pending; 2610 priv->tx_ring_size = ering->tx_pending; 2611 2612 if (was_running) { 2613 int err; 2614 2615 err = bcm_enetsw_open(dev); 2616 if (err) 2617 dev_close(dev); 2618 } 2619 return 0; 2620 } 2621 2622 static const struct ethtool_ops bcm_enetsw_ethtool_ops = { 2623 .get_strings = bcm_enetsw_get_strings, 2624 .get_sset_count = bcm_enetsw_get_sset_count, 2625 .get_ethtool_stats = bcm_enetsw_get_ethtool_stats, 2626 .get_drvinfo = bcm_enetsw_get_drvinfo, 2627 .get_ringparam = bcm_enetsw_get_ringparam, 2628 .set_ringparam = bcm_enetsw_set_ringparam, 2629 }; 2630 2631 /* allocate netdevice, request register memory and register device. */ 2632 static int bcm_enetsw_probe(struct platform_device *pdev) 2633 { 2634 struct bcm_enet_priv *priv; 2635 struct net_device *dev; 2636 struct bcm63xx_enetsw_platform_data *pd; 2637 struct resource *res_mem; 2638 int ret, irq_rx, irq_tx; 2639 2640 if (!bcm_enet_shared_base[0]) 2641 return -EPROBE_DEFER; 2642 2643 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2644 irq_rx = platform_get_irq(pdev, 0); 2645 irq_tx = platform_get_irq(pdev, 1); 2646 if (!res_mem || irq_rx < 0) 2647 return -ENODEV; 2648 2649 ret = 0; 2650 dev = alloc_etherdev(sizeof(*priv)); 2651 if (!dev) 2652 return -ENOMEM; 2653 priv = netdev_priv(dev); 2654 2655 /* initialize default and fetch platform data */ 2656 priv->enet_is_sw = true; 2657 priv->irq_rx = irq_rx; 2658 priv->irq_tx = irq_tx; 2659 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 2660 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 2661 priv->dma_maxburst = BCMENETSW_DMA_MAXBURST; 2662 2663 pd = dev_get_platdata(&pdev->dev); 2664 if (pd) { 2665 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 2666 memcpy(priv->used_ports, pd->used_ports, 2667 sizeof(pd->used_ports)); 2668 priv->num_ports = pd->num_ports; 2669 priv->dma_has_sram = pd->dma_has_sram; 2670 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 2671 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 2672 priv->dma_chan_width = pd->dma_chan_width; 2673 } 2674 2675 ret = bcm_enet_change_mtu(dev, dev->mtu); 2676 if (ret) 2677 goto out; 2678 2679 priv->base = devm_ioremap_resource(&pdev->dev, res_mem); 2680 if (IS_ERR(priv->base)) { 2681 ret = PTR_ERR(priv->base); 2682 goto out; 2683 } 2684 2685 priv->mac_clk = devm_clk_get(&pdev->dev, "enetsw"); 2686 if (IS_ERR(priv->mac_clk)) { 2687 ret = PTR_ERR(priv->mac_clk); 2688 goto out; 2689 } 2690 ret = clk_prepare_enable(priv->mac_clk); 2691 if (ret) 2692 goto out; 2693 2694 priv->rx_chan = 0; 2695 priv->tx_chan = 1; 2696 spin_lock_init(&priv->rx_lock); 2697 2698 /* init rx timeout (used for oom) */ 2699 timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0); 2700 2701 /* register netdevice */ 2702 dev->netdev_ops = &bcm_enetsw_ops; 2703 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 2704 dev->ethtool_ops = &bcm_enetsw_ethtool_ops; 2705 SET_NETDEV_DEV(dev, &pdev->dev); 2706 2707 spin_lock_init(&priv->enetsw_mdio_lock); 2708 2709 ret = register_netdev(dev); 2710 if (ret) 2711 goto out_disable_clk; 2712 2713 netif_carrier_off(dev); 2714 platform_set_drvdata(pdev, dev); 2715 priv->pdev = pdev; 2716 priv->net_dev = dev; 2717 2718 return 0; 2719 2720 out_disable_clk: 2721 clk_disable_unprepare(priv->mac_clk); 2722 out: 2723 free_netdev(dev); 2724 return ret; 2725 } 2726 2727 2728 /* exit func, stops hardware and unregisters netdevice */ 2729 static int bcm_enetsw_remove(struct platform_device *pdev) 2730 { 2731 struct bcm_enet_priv *priv; 2732 struct net_device *dev; 2733 2734 /* stop netdevice */ 2735 dev = platform_get_drvdata(pdev); 2736 priv = netdev_priv(dev); 2737 unregister_netdev(dev); 2738 2739 clk_disable_unprepare(priv->mac_clk); 2740 2741 free_netdev(dev); 2742 return 0; 2743 } 2744 2745 struct platform_driver bcm63xx_enetsw_driver = { 2746 .probe = bcm_enetsw_probe, 2747 .remove = bcm_enetsw_remove, 2748 .driver = { 2749 .name = "bcm63xx_enetsw", 2750 .owner = THIS_MODULE, 2751 }, 2752 }; 2753 2754 /* reserve & remap memory space shared between all macs */ 2755 static int bcm_enet_shared_probe(struct platform_device *pdev) 2756 { 2757 void __iomem *p[3]; 2758 unsigned int i; 2759 2760 memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base)); 2761 2762 for (i = 0; i < 3; i++) { 2763 p[i] = devm_platform_ioremap_resource(pdev, i); 2764 if (IS_ERR(p[i])) 2765 return PTR_ERR(p[i]); 2766 } 2767 2768 memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base)); 2769 2770 return 0; 2771 } 2772 2773 static int bcm_enet_shared_remove(struct platform_device *pdev) 2774 { 2775 return 0; 2776 } 2777 2778 /* this "shared" driver is needed because both macs share a single 2779 * address space 2780 */ 2781 struct platform_driver bcm63xx_enet_shared_driver = { 2782 .probe = bcm_enet_shared_probe, 2783 .remove = bcm_enet_shared_remove, 2784 .driver = { 2785 .name = "bcm63xx_enet_shared", 2786 .owner = THIS_MODULE, 2787 }, 2788 }; 2789 2790 static struct platform_driver * const drivers[] = { 2791 &bcm63xx_enet_shared_driver, 2792 &bcm63xx_enet_driver, 2793 &bcm63xx_enetsw_driver, 2794 }; 2795 2796 /* entry point */ 2797 static int __init bcm_enet_init(void) 2798 { 2799 return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); 2800 } 2801 2802 static void __exit bcm_enet_exit(void) 2803 { 2804 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); 2805 } 2806 2807 2808 module_init(bcm_enet_init); 2809 module_exit(bcm_enet_exit); 2810 2811 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver"); 2812 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>"); 2813 MODULE_LICENSE("GPL"); 2814