1 /*
2  * Driver for BCM963xx builtin Ethernet mac
3  *
4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33 
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36 
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39 
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43 
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46 
47 /*
48  * io helpers to access mac registers
49  */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 	return bcm_readl(priv->base + off);
53 }
54 
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 			       u32 val, u32 off)
57 {
58 	bcm_writel(val, priv->base + off);
59 }
60 
61 /*
62  * io helpers to access switch registers
63  */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 	return bcm_readl(priv->base + off);
67 }
68 
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 				 u32 val, u32 off)
71 {
72 	bcm_writel(val, priv->base + off);
73 }
74 
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 	return bcm_readw(priv->base + off);
78 }
79 
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 				 u16 val, u32 off)
82 {
83 	bcm_writew(val, priv->base + off);
84 }
85 
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 	return bcm_readb(priv->base + off);
89 }
90 
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 				 u8 val, u32 off)
93 {
94 	bcm_writeb(val, priv->base + off);
95 }
96 
97 
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 	return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103 
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 				       u32 val, u32 off)
106 {
107 	bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109 
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 	return bcm_readl(bcm_enet_shared_base[1] +
113 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115 
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 				       u32 val, u32 off, int chan)
118 {
119 	bcm_writel(val, bcm_enet_shared_base[1] +
120 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122 
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127 
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 				       u32 val, u32 off, int chan)
130 {
131 	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133 
134 /*
135  * write given data into mii register and wait for transfer to end
136  * with timeout (average measured transfer time is 25us)
137  */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 	int limit;
141 
142 	/* make sure mii interrupt status is cleared */
143 	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144 
145 	enet_writel(priv, data, ENET_MIIDATA_REG);
146 	wmb();
147 
148 	/* busy wait on mii interrupt bit, with timeout */
149 	limit = 1000;
150 	do {
151 		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 			break;
153 		udelay(1);
154 	} while (limit-- > 0);
155 
156 	return (limit < 0) ? 1 : 0;
157 }
158 
159 /*
160  * MII internal read callback
161  */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 			      int regnum)
164 {
165 	u32 tmp, val;
166 
167 	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 	tmp |= ENET_MIIDATA_OP_READ_MASK;
171 
172 	if (do_mdio_op(priv, tmp))
173 		return -1;
174 
175 	val = enet_readl(priv, ENET_MIIDATA_REG);
176 	val &= 0xffff;
177 	return val;
178 }
179 
180 /*
181  * MII internal write callback
182  */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 			       int regnum, u16 value)
185 {
186 	u32 tmp;
187 
188 	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193 
194 	(void)do_mdio_op(priv, tmp);
195 	return 0;
196 }
197 
198 /*
199  * MII read callback from phylib
200  */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 				     int regnum)
203 {
204 	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206 
207 /*
208  * MII write callback from phylib
209  */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 				      int regnum, u16 value)
212 {
213 	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215 
216 /*
217  * MII read callback from mii core
218  */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 				  int regnum)
221 {
222 	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224 
225 /*
226  * MII write callback from mii core
227  */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 				    int regnum, int value)
230 {
231 	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233 
234 /*
235  * refill rx queue
236  */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 	struct bcm_enet_priv *priv;
240 
241 	priv = netdev_priv(dev);
242 
243 	while (priv->rx_desc_count < priv->rx_ring_size) {
244 		struct bcm_enet_desc *desc;
245 		struct sk_buff *skb;
246 		dma_addr_t p;
247 		int desc_idx;
248 		u32 len_stat;
249 
250 		desc_idx = priv->rx_dirty_desc;
251 		desc = &priv->rx_desc_cpu[desc_idx];
252 
253 		if (!priv->rx_skb[desc_idx]) {
254 			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 			if (!skb)
256 				break;
257 			priv->rx_skb[desc_idx] = skb;
258 			p = dma_map_single(&priv->pdev->dev, skb->data,
259 					   priv->rx_skb_size,
260 					   DMA_FROM_DEVICE);
261 			desc->address = p;
262 		}
263 
264 		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 		len_stat |= DMADESC_OWNER_MASK;
266 		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 			priv->rx_dirty_desc = 0;
269 		} else {
270 			priv->rx_dirty_desc++;
271 		}
272 		wmb();
273 		desc->len_stat = len_stat;
274 
275 		priv->rx_desc_count++;
276 
277 		/* tell dma engine we allocated one buffer */
278 		if (priv->dma_has_sram)
279 			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 		else
281 			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 	}
283 
284 	/* If rx ring is still empty, set a timer to try allocating
285 	 * again at a later time. */
286 	if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 		priv->rx_timeout.expires = jiffies + HZ;
289 		add_timer(&priv->rx_timeout);
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * timer callback to defer refill rx queue in case we're OOM
297  */
298 static void bcm_enet_refill_rx_timer(unsigned long data)
299 {
300 	struct net_device *dev;
301 	struct bcm_enet_priv *priv;
302 
303 	dev = (struct net_device *)data;
304 	priv = netdev_priv(dev);
305 
306 	spin_lock(&priv->rx_lock);
307 	bcm_enet_refill_rx((struct net_device *)data);
308 	spin_unlock(&priv->rx_lock);
309 }
310 
311 /*
312  * extract packet from rx queue
313  */
314 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
315 {
316 	struct bcm_enet_priv *priv;
317 	struct device *kdev;
318 	int processed;
319 
320 	priv = netdev_priv(dev);
321 	kdev = &priv->pdev->dev;
322 	processed = 0;
323 
324 	/* don't scan ring further than number of refilled
325 	 * descriptor */
326 	if (budget > priv->rx_desc_count)
327 		budget = priv->rx_desc_count;
328 
329 	do {
330 		struct bcm_enet_desc *desc;
331 		struct sk_buff *skb;
332 		int desc_idx;
333 		u32 len_stat;
334 		unsigned int len;
335 
336 		desc_idx = priv->rx_curr_desc;
337 		desc = &priv->rx_desc_cpu[desc_idx];
338 
339 		/* make sure we actually read the descriptor status at
340 		 * each loop */
341 		rmb();
342 
343 		len_stat = desc->len_stat;
344 
345 		/* break if dma ownership belongs to hw */
346 		if (len_stat & DMADESC_OWNER_MASK)
347 			break;
348 
349 		processed++;
350 		priv->rx_curr_desc++;
351 		if (priv->rx_curr_desc == priv->rx_ring_size)
352 			priv->rx_curr_desc = 0;
353 		priv->rx_desc_count--;
354 
355 		/* if the packet does not have start of packet _and_
356 		 * end of packet flag set, then just recycle it */
357 		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
358 			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
359 			dev->stats.rx_dropped++;
360 			continue;
361 		}
362 
363 		/* recycle packet if it's marked as bad */
364 		if (!priv->enet_is_sw &&
365 		    unlikely(len_stat & DMADESC_ERR_MASK)) {
366 			dev->stats.rx_errors++;
367 
368 			if (len_stat & DMADESC_OVSIZE_MASK)
369 				dev->stats.rx_length_errors++;
370 			if (len_stat & DMADESC_CRC_MASK)
371 				dev->stats.rx_crc_errors++;
372 			if (len_stat & DMADESC_UNDER_MASK)
373 				dev->stats.rx_frame_errors++;
374 			if (len_stat & DMADESC_OV_MASK)
375 				dev->stats.rx_fifo_errors++;
376 			continue;
377 		}
378 
379 		/* valid packet */
380 		skb = priv->rx_skb[desc_idx];
381 		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
382 		/* don't include FCS */
383 		len -= 4;
384 
385 		if (len < copybreak) {
386 			struct sk_buff *nskb;
387 
388 			nskb = netdev_alloc_skb_ip_align(dev, len);
389 			if (!nskb) {
390 				/* forget packet, just rearm desc */
391 				dev->stats.rx_dropped++;
392 				continue;
393 			}
394 
395 			dma_sync_single_for_cpu(kdev, desc->address,
396 						len, DMA_FROM_DEVICE);
397 			memcpy(nskb->data, skb->data, len);
398 			dma_sync_single_for_device(kdev, desc->address,
399 						   len, DMA_FROM_DEVICE);
400 			skb = nskb;
401 		} else {
402 			dma_unmap_single(&priv->pdev->dev, desc->address,
403 					 priv->rx_skb_size, DMA_FROM_DEVICE);
404 			priv->rx_skb[desc_idx] = NULL;
405 		}
406 
407 		skb_put(skb, len);
408 		skb->protocol = eth_type_trans(skb, dev);
409 		dev->stats.rx_packets++;
410 		dev->stats.rx_bytes += len;
411 		netif_receive_skb(skb);
412 
413 	} while (--budget > 0);
414 
415 	if (processed || !priv->rx_desc_count) {
416 		bcm_enet_refill_rx(dev);
417 
418 		/* kick rx dma */
419 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
420 					 ENETDMAC_CHANCFG, priv->rx_chan);
421 	}
422 
423 	return processed;
424 }
425 
426 
427 /*
428  * try to or force reclaim of transmitted buffers
429  */
430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
431 {
432 	struct bcm_enet_priv *priv;
433 	int released;
434 
435 	priv = netdev_priv(dev);
436 	released = 0;
437 
438 	while (priv->tx_desc_count < priv->tx_ring_size) {
439 		struct bcm_enet_desc *desc;
440 		struct sk_buff *skb;
441 
442 		/* We run in a bh and fight against start_xmit, which
443 		 * is called with bh disabled  */
444 		spin_lock(&priv->tx_lock);
445 
446 		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
447 
448 		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
449 			spin_unlock(&priv->tx_lock);
450 			break;
451 		}
452 
453 		/* ensure other field of the descriptor were not read
454 		 * before we checked ownership */
455 		rmb();
456 
457 		skb = priv->tx_skb[priv->tx_dirty_desc];
458 		priv->tx_skb[priv->tx_dirty_desc] = NULL;
459 		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
460 				 DMA_TO_DEVICE);
461 
462 		priv->tx_dirty_desc++;
463 		if (priv->tx_dirty_desc == priv->tx_ring_size)
464 			priv->tx_dirty_desc = 0;
465 		priv->tx_desc_count++;
466 
467 		spin_unlock(&priv->tx_lock);
468 
469 		if (desc->len_stat & DMADESC_UNDER_MASK)
470 			dev->stats.tx_errors++;
471 
472 		dev_kfree_skb(skb);
473 		released++;
474 	}
475 
476 	if (netif_queue_stopped(dev) && released)
477 		netif_wake_queue(dev);
478 
479 	return released;
480 }
481 
482 /*
483  * poll func, called by network core
484  */
485 static int bcm_enet_poll(struct napi_struct *napi, int budget)
486 {
487 	struct bcm_enet_priv *priv;
488 	struct net_device *dev;
489 	int tx_work_done, rx_work_done;
490 
491 	priv = container_of(napi, struct bcm_enet_priv, napi);
492 	dev = priv->net_dev;
493 
494 	/* ack interrupts */
495 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
496 			 ENETDMAC_IR, priv->rx_chan);
497 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
498 			 ENETDMAC_IR, priv->tx_chan);
499 
500 	/* reclaim sent skb */
501 	tx_work_done = bcm_enet_tx_reclaim(dev, 0);
502 
503 	spin_lock(&priv->rx_lock);
504 	rx_work_done = bcm_enet_receive_queue(dev, budget);
505 	spin_unlock(&priv->rx_lock);
506 
507 	if (rx_work_done >= budget || tx_work_done > 0) {
508 		/* rx/tx queue is not yet empty/clean */
509 		return rx_work_done;
510 	}
511 
512 	/* no more packet in rx/tx queue, remove device from poll
513 	 * queue */
514 	napi_complete(napi);
515 
516 	/* restore rx/tx interrupt */
517 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
518 			 ENETDMAC_IRMASK, priv->rx_chan);
519 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
520 			 ENETDMAC_IRMASK, priv->tx_chan);
521 
522 	return rx_work_done;
523 }
524 
525 /*
526  * mac interrupt handler
527  */
528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
529 {
530 	struct net_device *dev;
531 	struct bcm_enet_priv *priv;
532 	u32 stat;
533 
534 	dev = dev_id;
535 	priv = netdev_priv(dev);
536 
537 	stat = enet_readl(priv, ENET_IR_REG);
538 	if (!(stat & ENET_IR_MIB))
539 		return IRQ_NONE;
540 
541 	/* clear & mask interrupt */
542 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
543 	enet_writel(priv, 0, ENET_IRMASK_REG);
544 
545 	/* read mib registers in workqueue */
546 	schedule_work(&priv->mib_update_task);
547 
548 	return IRQ_HANDLED;
549 }
550 
551 /*
552  * rx/tx dma interrupt handler
553  */
554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
555 {
556 	struct net_device *dev;
557 	struct bcm_enet_priv *priv;
558 
559 	dev = dev_id;
560 	priv = netdev_priv(dev);
561 
562 	/* mask rx/tx interrupts */
563 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
564 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
565 
566 	napi_schedule(&priv->napi);
567 
568 	return IRQ_HANDLED;
569 }
570 
571 /*
572  * tx request callback
573  */
574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576 	struct bcm_enet_priv *priv;
577 	struct bcm_enet_desc *desc;
578 	u32 len_stat;
579 	int ret;
580 
581 	priv = netdev_priv(dev);
582 
583 	/* lock against tx reclaim */
584 	spin_lock(&priv->tx_lock);
585 
586 	/* make sure  the tx hw queue  is not full,  should not happen
587 	 * since we stop queue before it's the case */
588 	if (unlikely(!priv->tx_desc_count)) {
589 		netif_stop_queue(dev);
590 		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
591 			"available?\n");
592 		ret = NETDEV_TX_BUSY;
593 		goto out_unlock;
594 	}
595 
596 	/* pad small packets sent on a switch device */
597 	if (priv->enet_is_sw && skb->len < 64) {
598 		int needed = 64 - skb->len;
599 		char *data;
600 
601 		if (unlikely(skb_tailroom(skb) < needed)) {
602 			struct sk_buff *nskb;
603 
604 			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
605 			if (!nskb) {
606 				ret = NETDEV_TX_BUSY;
607 				goto out_unlock;
608 			}
609 			dev_kfree_skb(skb);
610 			skb = nskb;
611 		}
612 		data = skb_put(skb, needed);
613 		memset(data, 0, needed);
614 	}
615 
616 	/* point to the next available desc */
617 	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
618 	priv->tx_skb[priv->tx_curr_desc] = skb;
619 
620 	/* fill descriptor */
621 	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
622 				       DMA_TO_DEVICE);
623 
624 	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
625 	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
626 		DMADESC_APPEND_CRC |
627 		DMADESC_OWNER_MASK;
628 
629 	priv->tx_curr_desc++;
630 	if (priv->tx_curr_desc == priv->tx_ring_size) {
631 		priv->tx_curr_desc = 0;
632 		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
633 	}
634 	priv->tx_desc_count--;
635 
636 	/* dma might be already polling, make sure we update desc
637 	 * fields in correct order */
638 	wmb();
639 	desc->len_stat = len_stat;
640 	wmb();
641 
642 	/* kick tx dma */
643 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
644 				 ENETDMAC_CHANCFG, priv->tx_chan);
645 
646 	/* stop queue if no more desc available */
647 	if (!priv->tx_desc_count)
648 		netif_stop_queue(dev);
649 
650 	dev->stats.tx_bytes += skb->len;
651 	dev->stats.tx_packets++;
652 	ret = NETDEV_TX_OK;
653 
654 out_unlock:
655 	spin_unlock(&priv->tx_lock);
656 	return ret;
657 }
658 
659 /*
660  * Change the interface's mac address.
661  */
662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
663 {
664 	struct bcm_enet_priv *priv;
665 	struct sockaddr *addr = p;
666 	u32 val;
667 
668 	priv = netdev_priv(dev);
669 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
670 
671 	/* use perfect match register 0 to store my mac address */
672 	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
673 		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
674 	enet_writel(priv, val, ENET_PML_REG(0));
675 
676 	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
677 	val |= ENET_PMH_DATAVALID_MASK;
678 	enet_writel(priv, val, ENET_PMH_REG(0));
679 
680 	return 0;
681 }
682 
683 /*
684  * Change rx mode (promiscuous/allmulti) and update multicast list
685  */
686 static void bcm_enet_set_multicast_list(struct net_device *dev)
687 {
688 	struct bcm_enet_priv *priv;
689 	struct netdev_hw_addr *ha;
690 	u32 val;
691 	int i;
692 
693 	priv = netdev_priv(dev);
694 
695 	val = enet_readl(priv, ENET_RXCFG_REG);
696 
697 	if (dev->flags & IFF_PROMISC)
698 		val |= ENET_RXCFG_PROMISC_MASK;
699 	else
700 		val &= ~ENET_RXCFG_PROMISC_MASK;
701 
702 	/* only 3 perfect match registers left, first one is used for
703 	 * own mac address */
704 	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
705 		val |= ENET_RXCFG_ALLMCAST_MASK;
706 	else
707 		val &= ~ENET_RXCFG_ALLMCAST_MASK;
708 
709 	/* no need to set perfect match registers if we catch all
710 	 * multicast */
711 	if (val & ENET_RXCFG_ALLMCAST_MASK) {
712 		enet_writel(priv, val, ENET_RXCFG_REG);
713 		return;
714 	}
715 
716 	i = 0;
717 	netdev_for_each_mc_addr(ha, dev) {
718 		u8 *dmi_addr;
719 		u32 tmp;
720 
721 		if (i == 3)
722 			break;
723 		/* update perfect match registers */
724 		dmi_addr = ha->addr;
725 		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
726 			(dmi_addr[4] << 8) | dmi_addr[5];
727 		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
728 
729 		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
730 		tmp |= ENET_PMH_DATAVALID_MASK;
731 		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
732 	}
733 
734 	for (; i < 3; i++) {
735 		enet_writel(priv, 0, ENET_PML_REG(i + 1));
736 		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
737 	}
738 
739 	enet_writel(priv, val, ENET_RXCFG_REG);
740 }
741 
742 /*
743  * set mac duplex parameters
744  */
745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
746 {
747 	u32 val;
748 
749 	val = enet_readl(priv, ENET_TXCTL_REG);
750 	if (fullduplex)
751 		val |= ENET_TXCTL_FD_MASK;
752 	else
753 		val &= ~ENET_TXCTL_FD_MASK;
754 	enet_writel(priv, val, ENET_TXCTL_REG);
755 }
756 
757 /*
758  * set mac flow control parameters
759  */
760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
761 {
762 	u32 val;
763 
764 	/* rx flow control (pause frame handling) */
765 	val = enet_readl(priv, ENET_RXCFG_REG);
766 	if (rx_en)
767 		val |= ENET_RXCFG_ENFLOW_MASK;
768 	else
769 		val &= ~ENET_RXCFG_ENFLOW_MASK;
770 	enet_writel(priv, val, ENET_RXCFG_REG);
771 
772 	if (!priv->dma_has_sram)
773 		return;
774 
775 	/* tx flow control (pause frame generation) */
776 	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
777 	if (tx_en)
778 		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
779 	else
780 		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
781 	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
782 }
783 
784 /*
785  * link changed callback (from phylib)
786  */
787 static void bcm_enet_adjust_phy_link(struct net_device *dev)
788 {
789 	struct bcm_enet_priv *priv;
790 	struct phy_device *phydev;
791 	int status_changed;
792 
793 	priv = netdev_priv(dev);
794 	phydev = priv->phydev;
795 	status_changed = 0;
796 
797 	if (priv->old_link != phydev->link) {
798 		status_changed = 1;
799 		priv->old_link = phydev->link;
800 	}
801 
802 	/* reflect duplex change in mac configuration */
803 	if (phydev->link && phydev->duplex != priv->old_duplex) {
804 		bcm_enet_set_duplex(priv,
805 				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
806 		status_changed = 1;
807 		priv->old_duplex = phydev->duplex;
808 	}
809 
810 	/* enable flow control if remote advertise it (trust phylib to
811 	 * check that duplex is full */
812 	if (phydev->link && phydev->pause != priv->old_pause) {
813 		int rx_pause_en, tx_pause_en;
814 
815 		if (phydev->pause) {
816 			/* pause was advertised by lpa and us */
817 			rx_pause_en = 1;
818 			tx_pause_en = 1;
819 		} else if (!priv->pause_auto) {
820 			/* pause setting overrided by user */
821 			rx_pause_en = priv->pause_rx;
822 			tx_pause_en = priv->pause_tx;
823 		} else {
824 			rx_pause_en = 0;
825 			tx_pause_en = 0;
826 		}
827 
828 		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
829 		status_changed = 1;
830 		priv->old_pause = phydev->pause;
831 	}
832 
833 	if (status_changed) {
834 		pr_info("%s: link %s", dev->name, phydev->link ?
835 			"UP" : "DOWN");
836 		if (phydev->link)
837 			pr_cont(" - %d/%s - flow control %s", phydev->speed,
838 			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
839 			       phydev->pause == 1 ? "rx&tx" : "off");
840 
841 		pr_cont("\n");
842 	}
843 }
844 
845 /*
846  * link changed callback (if phylib is not used)
847  */
848 static void bcm_enet_adjust_link(struct net_device *dev)
849 {
850 	struct bcm_enet_priv *priv;
851 
852 	priv = netdev_priv(dev);
853 	bcm_enet_set_duplex(priv, priv->force_duplex_full);
854 	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
855 	netif_carrier_on(dev);
856 
857 	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
858 		dev->name,
859 		priv->force_speed_100 ? 100 : 10,
860 		priv->force_duplex_full ? "full" : "half",
861 		priv->pause_rx ? "rx" : "off",
862 		priv->pause_tx ? "tx" : "off");
863 }
864 
865 /*
866  * open callback, allocate dma rings & buffers and start rx operation
867  */
868 static int bcm_enet_open(struct net_device *dev)
869 {
870 	struct bcm_enet_priv *priv;
871 	struct sockaddr addr;
872 	struct device *kdev;
873 	struct phy_device *phydev;
874 	int i, ret;
875 	unsigned int size;
876 	char phy_id[MII_BUS_ID_SIZE + 3];
877 	void *p;
878 	u32 val;
879 
880 	priv = netdev_priv(dev);
881 	kdev = &priv->pdev->dev;
882 
883 	if (priv->has_phy) {
884 		/* connect to PHY */
885 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
886 			 priv->mii_bus->id, priv->phy_id);
887 
888 		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
889 				     PHY_INTERFACE_MODE_MII);
890 
891 		if (IS_ERR(phydev)) {
892 			dev_err(kdev, "could not attach to PHY\n");
893 			return PTR_ERR(phydev);
894 		}
895 
896 		/* mask with MAC supported features */
897 		phydev->supported &= (SUPPORTED_10baseT_Half |
898 				      SUPPORTED_10baseT_Full |
899 				      SUPPORTED_100baseT_Half |
900 				      SUPPORTED_100baseT_Full |
901 				      SUPPORTED_Autoneg |
902 				      SUPPORTED_Pause |
903 				      SUPPORTED_MII);
904 		phydev->advertising = phydev->supported;
905 
906 		if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
907 			phydev->advertising |= SUPPORTED_Pause;
908 		else
909 			phydev->advertising &= ~SUPPORTED_Pause;
910 
911 		dev_info(kdev, "attached PHY at address %d [%s]\n",
912 			 phydev->addr, phydev->drv->name);
913 
914 		priv->old_link = 0;
915 		priv->old_duplex = -1;
916 		priv->old_pause = -1;
917 		priv->phydev = phydev;
918 	}
919 
920 	/* mask all interrupts and request them */
921 	enet_writel(priv, 0, ENET_IRMASK_REG);
922 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
923 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
924 
925 	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
926 	if (ret)
927 		goto out_phy_disconnect;
928 
929 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, IRQF_DISABLED,
930 			  dev->name, dev);
931 	if (ret)
932 		goto out_freeirq;
933 
934 	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
935 			  IRQF_DISABLED, dev->name, dev);
936 	if (ret)
937 		goto out_freeirq_rx;
938 
939 	/* initialize perfect match registers */
940 	for (i = 0; i < 4; i++) {
941 		enet_writel(priv, 0, ENET_PML_REG(i));
942 		enet_writel(priv, 0, ENET_PMH_REG(i));
943 	}
944 
945 	/* write device mac address */
946 	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
947 	bcm_enet_set_mac_address(dev, &addr);
948 
949 	/* allocate rx dma ring */
950 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
951 	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma,
952 			       GFP_KERNEL | __GFP_ZERO);
953 	if (!p) {
954 		ret = -ENOMEM;
955 		goto out_freeirq_tx;
956 	}
957 
958 	priv->rx_desc_alloc_size = size;
959 	priv->rx_desc_cpu = p;
960 
961 	/* allocate tx dma ring */
962 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
963 	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma,
964 			       GFP_KERNEL | __GFP_ZERO);
965 	if (!p) {
966 		ret = -ENOMEM;
967 		goto out_free_rx_ring;
968 	}
969 
970 	priv->tx_desc_alloc_size = size;
971 	priv->tx_desc_cpu = p;
972 
973 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
974 			       GFP_KERNEL);
975 	if (!priv->tx_skb) {
976 		ret = -ENOMEM;
977 		goto out_free_tx_ring;
978 	}
979 
980 	priv->tx_desc_count = priv->tx_ring_size;
981 	priv->tx_dirty_desc = 0;
982 	priv->tx_curr_desc = 0;
983 	spin_lock_init(&priv->tx_lock);
984 
985 	/* init & fill rx ring with skbs */
986 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
987 			       GFP_KERNEL);
988 	if (!priv->rx_skb) {
989 		ret = -ENOMEM;
990 		goto out_free_tx_skb;
991 	}
992 
993 	priv->rx_desc_count = 0;
994 	priv->rx_dirty_desc = 0;
995 	priv->rx_curr_desc = 0;
996 
997 	/* initialize flow control buffer allocation */
998 	if (priv->dma_has_sram)
999 		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1000 				ENETDMA_BUFALLOC_REG(priv->rx_chan));
1001 	else
1002 		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1003 				ENETDMAC_BUFALLOC, priv->rx_chan);
1004 
1005 	if (bcm_enet_refill_rx(dev)) {
1006 		dev_err(kdev, "cannot allocate rx skb queue\n");
1007 		ret = -ENOMEM;
1008 		goto out;
1009 	}
1010 
1011 	/* write rx & tx ring addresses */
1012 	if (priv->dma_has_sram) {
1013 		enet_dmas_writel(priv, priv->rx_desc_dma,
1014 				 ENETDMAS_RSTART_REG, priv->rx_chan);
1015 		enet_dmas_writel(priv, priv->tx_desc_dma,
1016 			 ENETDMAS_RSTART_REG, priv->tx_chan);
1017 	} else {
1018 		enet_dmac_writel(priv, priv->rx_desc_dma,
1019 				ENETDMAC_RSTART, priv->rx_chan);
1020 		enet_dmac_writel(priv, priv->tx_desc_dma,
1021 				ENETDMAC_RSTART, priv->tx_chan);
1022 	}
1023 
1024 	/* clear remaining state ram for rx & tx channel */
1025 	if (priv->dma_has_sram) {
1026 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1027 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1028 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1029 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1030 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1031 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1032 	} else {
1033 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1034 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1035 	}
1036 
1037 	/* set max rx/tx length */
1038 	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1039 	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1040 
1041 	/* set dma maximum burst len */
1042 	enet_dmac_writel(priv, priv->dma_maxburst,
1043 			 ENETDMAC_MAXBURST, priv->rx_chan);
1044 	enet_dmac_writel(priv, priv->dma_maxburst,
1045 			 ENETDMAC_MAXBURST, priv->tx_chan);
1046 
1047 	/* set correct transmit fifo watermark */
1048 	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1049 
1050 	/* set flow control low/high threshold to 1/3 / 2/3 */
1051 	if (priv->dma_has_sram) {
1052 		val = priv->rx_ring_size / 3;
1053 		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1054 		val = (priv->rx_ring_size * 2) / 3;
1055 		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1056 	} else {
1057 		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1058 		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1059 		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1060 	}
1061 
1062 	/* all set, enable mac and interrupts, start dma engine and
1063 	 * kick rx dma channel */
1064 	wmb();
1065 	val = enet_readl(priv, ENET_CTL_REG);
1066 	val |= ENET_CTL_ENABLE_MASK;
1067 	enet_writel(priv, val, ENET_CTL_REG);
1068 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1069 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1070 			 ENETDMAC_CHANCFG, priv->rx_chan);
1071 
1072 	/* watch "mib counters about to overflow" interrupt */
1073 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1074 	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1075 
1076 	/* watch "packet transferred" interrupt in rx and tx */
1077 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1078 			 ENETDMAC_IR, priv->rx_chan);
1079 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1080 			 ENETDMAC_IR, priv->tx_chan);
1081 
1082 	/* make sure we enable napi before rx interrupt  */
1083 	napi_enable(&priv->napi);
1084 
1085 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1086 			 ENETDMAC_IRMASK, priv->rx_chan);
1087 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1088 			 ENETDMAC_IRMASK, priv->tx_chan);
1089 
1090 	if (priv->has_phy)
1091 		phy_start(priv->phydev);
1092 	else
1093 		bcm_enet_adjust_link(dev);
1094 
1095 	netif_start_queue(dev);
1096 	return 0;
1097 
1098 out:
1099 	for (i = 0; i < priv->rx_ring_size; i++) {
1100 		struct bcm_enet_desc *desc;
1101 
1102 		if (!priv->rx_skb[i])
1103 			continue;
1104 
1105 		desc = &priv->rx_desc_cpu[i];
1106 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1107 				 DMA_FROM_DEVICE);
1108 		kfree_skb(priv->rx_skb[i]);
1109 	}
1110 	kfree(priv->rx_skb);
1111 
1112 out_free_tx_skb:
1113 	kfree(priv->tx_skb);
1114 
1115 out_free_tx_ring:
1116 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1117 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1118 
1119 out_free_rx_ring:
1120 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1121 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1122 
1123 out_freeirq_tx:
1124 	free_irq(priv->irq_tx, dev);
1125 
1126 out_freeirq_rx:
1127 	free_irq(priv->irq_rx, dev);
1128 
1129 out_freeirq:
1130 	free_irq(dev->irq, dev);
1131 
1132 out_phy_disconnect:
1133 	phy_disconnect(priv->phydev);
1134 
1135 	return ret;
1136 }
1137 
1138 /*
1139  * disable mac
1140  */
1141 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1142 {
1143 	int limit;
1144 	u32 val;
1145 
1146 	val = enet_readl(priv, ENET_CTL_REG);
1147 	val |= ENET_CTL_DISABLE_MASK;
1148 	enet_writel(priv, val, ENET_CTL_REG);
1149 
1150 	limit = 1000;
1151 	do {
1152 		u32 val;
1153 
1154 		val = enet_readl(priv, ENET_CTL_REG);
1155 		if (!(val & ENET_CTL_DISABLE_MASK))
1156 			break;
1157 		udelay(1);
1158 	} while (limit--);
1159 }
1160 
1161 /*
1162  * disable dma in given channel
1163  */
1164 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1165 {
1166 	int limit;
1167 
1168 	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1169 
1170 	limit = 1000;
1171 	do {
1172 		u32 val;
1173 
1174 		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1175 		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1176 			break;
1177 		udelay(1);
1178 	} while (limit--);
1179 }
1180 
1181 /*
1182  * stop callback
1183  */
1184 static int bcm_enet_stop(struct net_device *dev)
1185 {
1186 	struct bcm_enet_priv *priv;
1187 	struct device *kdev;
1188 	int i;
1189 
1190 	priv = netdev_priv(dev);
1191 	kdev = &priv->pdev->dev;
1192 
1193 	netif_stop_queue(dev);
1194 	napi_disable(&priv->napi);
1195 	if (priv->has_phy)
1196 		phy_stop(priv->phydev);
1197 	del_timer_sync(&priv->rx_timeout);
1198 
1199 	/* mask all interrupts */
1200 	enet_writel(priv, 0, ENET_IRMASK_REG);
1201 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1202 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1203 
1204 	/* make sure no mib update is scheduled */
1205 	cancel_work_sync(&priv->mib_update_task);
1206 
1207 	/* disable dma & mac */
1208 	bcm_enet_disable_dma(priv, priv->tx_chan);
1209 	bcm_enet_disable_dma(priv, priv->rx_chan);
1210 	bcm_enet_disable_mac(priv);
1211 
1212 	/* force reclaim of all tx buffers */
1213 	bcm_enet_tx_reclaim(dev, 1);
1214 
1215 	/* free the rx skb ring */
1216 	for (i = 0; i < priv->rx_ring_size; i++) {
1217 		struct bcm_enet_desc *desc;
1218 
1219 		if (!priv->rx_skb[i])
1220 			continue;
1221 
1222 		desc = &priv->rx_desc_cpu[i];
1223 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1224 				 DMA_FROM_DEVICE);
1225 		kfree_skb(priv->rx_skb[i]);
1226 	}
1227 
1228 	/* free remaining allocated memory */
1229 	kfree(priv->rx_skb);
1230 	kfree(priv->tx_skb);
1231 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1232 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1233 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1234 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1235 	free_irq(priv->irq_tx, dev);
1236 	free_irq(priv->irq_rx, dev);
1237 	free_irq(dev->irq, dev);
1238 
1239 	/* release phy */
1240 	if (priv->has_phy) {
1241 		phy_disconnect(priv->phydev);
1242 		priv->phydev = NULL;
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 /*
1249  * ethtool callbacks
1250  */
1251 struct bcm_enet_stats {
1252 	char stat_string[ETH_GSTRING_LEN];
1253 	int sizeof_stat;
1254 	int stat_offset;
1255 	int mib_reg;
1256 };
1257 
1258 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1259 		     offsetof(struct bcm_enet_priv, m)
1260 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1261 		     offsetof(struct net_device_stats, m)
1262 
1263 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1264 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1265 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1266 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1267 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1268 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1269 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1270 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1271 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1272 
1273 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1274 	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1275 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1276 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1277 	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1278 	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1279 	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1280 	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1281 	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1282 	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1283 	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1284 	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1285 	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1286 	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1287 	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1288 	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1289 	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1290 	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1291 	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1292 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1293 	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1294 
1295 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1296 	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1297 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1298 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1299 	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1300 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1301 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1302 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1303 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1304 	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1305 	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1306 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1307 	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1308 	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1309 	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1310 	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1311 	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1312 	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1313 	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1314 	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1315 	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1316 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1317 
1318 };
1319 
1320 #define BCM_ENET_STATS_LEN	\
1321 	(sizeof(bcm_enet_gstrings_stats) / sizeof(struct bcm_enet_stats))
1322 
1323 static const u32 unused_mib_regs[] = {
1324 	ETH_MIB_TX_ALL_OCTETS,
1325 	ETH_MIB_TX_ALL_PKTS,
1326 	ETH_MIB_RX_ALL_OCTETS,
1327 	ETH_MIB_RX_ALL_PKTS,
1328 };
1329 
1330 
1331 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1332 				 struct ethtool_drvinfo *drvinfo)
1333 {
1334 	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1335 	strlcpy(drvinfo->version, bcm_enet_driver_version,
1336 		sizeof(drvinfo->version));
1337 	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1338 	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1339 	drvinfo->n_stats = BCM_ENET_STATS_LEN;
1340 }
1341 
1342 static int bcm_enet_get_sset_count(struct net_device *netdev,
1343 					int string_set)
1344 {
1345 	switch (string_set) {
1346 	case ETH_SS_STATS:
1347 		return BCM_ENET_STATS_LEN;
1348 	default:
1349 		return -EINVAL;
1350 	}
1351 }
1352 
1353 static void bcm_enet_get_strings(struct net_device *netdev,
1354 				 u32 stringset, u8 *data)
1355 {
1356 	int i;
1357 
1358 	switch (stringset) {
1359 	case ETH_SS_STATS:
1360 		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1361 			memcpy(data + i * ETH_GSTRING_LEN,
1362 			       bcm_enet_gstrings_stats[i].stat_string,
1363 			       ETH_GSTRING_LEN);
1364 		}
1365 		break;
1366 	}
1367 }
1368 
1369 static void update_mib_counters(struct bcm_enet_priv *priv)
1370 {
1371 	int i;
1372 
1373 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1374 		const struct bcm_enet_stats *s;
1375 		u32 val;
1376 		char *p;
1377 
1378 		s = &bcm_enet_gstrings_stats[i];
1379 		if (s->mib_reg == -1)
1380 			continue;
1381 
1382 		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1383 		p = (char *)priv + s->stat_offset;
1384 
1385 		if (s->sizeof_stat == sizeof(u64))
1386 			*(u64 *)p += val;
1387 		else
1388 			*(u32 *)p += val;
1389 	}
1390 
1391 	/* also empty unused mib counters to make sure mib counter
1392 	 * overflow interrupt is cleared */
1393 	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1394 		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1395 }
1396 
1397 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1398 {
1399 	struct bcm_enet_priv *priv;
1400 
1401 	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1402 	mutex_lock(&priv->mib_update_lock);
1403 	update_mib_counters(priv);
1404 	mutex_unlock(&priv->mib_update_lock);
1405 
1406 	/* reenable mib interrupt */
1407 	if (netif_running(priv->net_dev))
1408 		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1409 }
1410 
1411 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1412 				       struct ethtool_stats *stats,
1413 				       u64 *data)
1414 {
1415 	struct bcm_enet_priv *priv;
1416 	int i;
1417 
1418 	priv = netdev_priv(netdev);
1419 
1420 	mutex_lock(&priv->mib_update_lock);
1421 	update_mib_counters(priv);
1422 
1423 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1424 		const struct bcm_enet_stats *s;
1425 		char *p;
1426 
1427 		s = &bcm_enet_gstrings_stats[i];
1428 		if (s->mib_reg == -1)
1429 			p = (char *)&netdev->stats;
1430 		else
1431 			p = (char *)priv;
1432 		p += s->stat_offset;
1433 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1434 			*(u64 *)p : *(u32 *)p;
1435 	}
1436 	mutex_unlock(&priv->mib_update_lock);
1437 }
1438 
1439 static int bcm_enet_nway_reset(struct net_device *dev)
1440 {
1441 	struct bcm_enet_priv *priv;
1442 
1443 	priv = netdev_priv(dev);
1444 	if (priv->has_phy) {
1445 		if (!priv->phydev)
1446 			return -ENODEV;
1447 		return genphy_restart_aneg(priv->phydev);
1448 	}
1449 
1450 	return -EOPNOTSUPP;
1451 }
1452 
1453 static int bcm_enet_get_settings(struct net_device *dev,
1454 				 struct ethtool_cmd *cmd)
1455 {
1456 	struct bcm_enet_priv *priv;
1457 
1458 	priv = netdev_priv(dev);
1459 
1460 	cmd->maxrxpkt = 0;
1461 	cmd->maxtxpkt = 0;
1462 
1463 	if (priv->has_phy) {
1464 		if (!priv->phydev)
1465 			return -ENODEV;
1466 		return phy_ethtool_gset(priv->phydev, cmd);
1467 	} else {
1468 		cmd->autoneg = 0;
1469 		ethtool_cmd_speed_set(cmd, ((priv->force_speed_100)
1470 					    ? SPEED_100 : SPEED_10));
1471 		cmd->duplex = (priv->force_duplex_full) ?
1472 			DUPLEX_FULL : DUPLEX_HALF;
1473 		cmd->supported = ADVERTISED_10baseT_Half  |
1474 			ADVERTISED_10baseT_Full |
1475 			ADVERTISED_100baseT_Half |
1476 			ADVERTISED_100baseT_Full;
1477 		cmd->advertising = 0;
1478 		cmd->port = PORT_MII;
1479 		cmd->transceiver = XCVR_EXTERNAL;
1480 	}
1481 	return 0;
1482 }
1483 
1484 static int bcm_enet_set_settings(struct net_device *dev,
1485 				 struct ethtool_cmd *cmd)
1486 {
1487 	struct bcm_enet_priv *priv;
1488 
1489 	priv = netdev_priv(dev);
1490 	if (priv->has_phy) {
1491 		if (!priv->phydev)
1492 			return -ENODEV;
1493 		return phy_ethtool_sset(priv->phydev, cmd);
1494 	} else {
1495 
1496 		if (cmd->autoneg ||
1497 		    (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
1498 		    cmd->port != PORT_MII)
1499 			return -EINVAL;
1500 
1501 		priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
1502 		priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
1503 
1504 		if (netif_running(dev))
1505 			bcm_enet_adjust_link(dev);
1506 		return 0;
1507 	}
1508 }
1509 
1510 static void bcm_enet_get_ringparam(struct net_device *dev,
1511 				   struct ethtool_ringparam *ering)
1512 {
1513 	struct bcm_enet_priv *priv;
1514 
1515 	priv = netdev_priv(dev);
1516 
1517 	/* rx/tx ring is actually only limited by memory */
1518 	ering->rx_max_pending = 8192;
1519 	ering->tx_max_pending = 8192;
1520 	ering->rx_pending = priv->rx_ring_size;
1521 	ering->tx_pending = priv->tx_ring_size;
1522 }
1523 
1524 static int bcm_enet_set_ringparam(struct net_device *dev,
1525 				  struct ethtool_ringparam *ering)
1526 {
1527 	struct bcm_enet_priv *priv;
1528 	int was_running;
1529 
1530 	priv = netdev_priv(dev);
1531 
1532 	was_running = 0;
1533 	if (netif_running(dev)) {
1534 		bcm_enet_stop(dev);
1535 		was_running = 1;
1536 	}
1537 
1538 	priv->rx_ring_size = ering->rx_pending;
1539 	priv->tx_ring_size = ering->tx_pending;
1540 
1541 	if (was_running) {
1542 		int err;
1543 
1544 		err = bcm_enet_open(dev);
1545 		if (err)
1546 			dev_close(dev);
1547 		else
1548 			bcm_enet_set_multicast_list(dev);
1549 	}
1550 	return 0;
1551 }
1552 
1553 static void bcm_enet_get_pauseparam(struct net_device *dev,
1554 				    struct ethtool_pauseparam *ecmd)
1555 {
1556 	struct bcm_enet_priv *priv;
1557 
1558 	priv = netdev_priv(dev);
1559 	ecmd->autoneg = priv->pause_auto;
1560 	ecmd->rx_pause = priv->pause_rx;
1561 	ecmd->tx_pause = priv->pause_tx;
1562 }
1563 
1564 static int bcm_enet_set_pauseparam(struct net_device *dev,
1565 				   struct ethtool_pauseparam *ecmd)
1566 {
1567 	struct bcm_enet_priv *priv;
1568 
1569 	priv = netdev_priv(dev);
1570 
1571 	if (priv->has_phy) {
1572 		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1573 			/* asymetric pause mode not supported,
1574 			 * actually possible but integrated PHY has RO
1575 			 * asym_pause bit */
1576 			return -EINVAL;
1577 		}
1578 	} else {
1579 		/* no pause autoneg on direct mii connection */
1580 		if (ecmd->autoneg)
1581 			return -EINVAL;
1582 	}
1583 
1584 	priv->pause_auto = ecmd->autoneg;
1585 	priv->pause_rx = ecmd->rx_pause;
1586 	priv->pause_tx = ecmd->tx_pause;
1587 
1588 	return 0;
1589 }
1590 
1591 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1592 	.get_strings		= bcm_enet_get_strings,
1593 	.get_sset_count		= bcm_enet_get_sset_count,
1594 	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1595 	.nway_reset		= bcm_enet_nway_reset,
1596 	.get_settings		= bcm_enet_get_settings,
1597 	.set_settings		= bcm_enet_set_settings,
1598 	.get_drvinfo		= bcm_enet_get_drvinfo,
1599 	.get_link		= ethtool_op_get_link,
1600 	.get_ringparam		= bcm_enet_get_ringparam,
1601 	.set_ringparam		= bcm_enet_set_ringparam,
1602 	.get_pauseparam		= bcm_enet_get_pauseparam,
1603 	.set_pauseparam		= bcm_enet_set_pauseparam,
1604 };
1605 
1606 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1607 {
1608 	struct bcm_enet_priv *priv;
1609 
1610 	priv = netdev_priv(dev);
1611 	if (priv->has_phy) {
1612 		if (!priv->phydev)
1613 			return -ENODEV;
1614 		return phy_mii_ioctl(priv->phydev, rq, cmd);
1615 	} else {
1616 		struct mii_if_info mii;
1617 
1618 		mii.dev = dev;
1619 		mii.mdio_read = bcm_enet_mdio_read_mii;
1620 		mii.mdio_write = bcm_enet_mdio_write_mii;
1621 		mii.phy_id = 0;
1622 		mii.phy_id_mask = 0x3f;
1623 		mii.reg_num_mask = 0x1f;
1624 		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1625 	}
1626 }
1627 
1628 /*
1629  * calculate actual hardware mtu
1630  */
1631 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
1632 {
1633 	int actual_mtu;
1634 
1635 	actual_mtu = mtu;
1636 
1637 	/* add ethernet header + vlan tag size */
1638 	actual_mtu += VLAN_ETH_HLEN;
1639 
1640 	if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
1641 		return -EINVAL;
1642 
1643 	/*
1644 	 * setup maximum size before we get overflow mark in
1645 	 * descriptor, note that this will not prevent reception of
1646 	 * big frames, they will be split into multiple buffers
1647 	 * anyway
1648 	 */
1649 	priv->hw_mtu = actual_mtu;
1650 
1651 	/*
1652 	 * align rx buffer size to dma burst len, account FCS since
1653 	 * it's appended
1654 	 */
1655 	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1656 				  priv->dma_maxburst * 4);
1657 	return 0;
1658 }
1659 
1660 /*
1661  * adjust mtu, can't be called while device is running
1662  */
1663 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1664 {
1665 	int ret;
1666 
1667 	if (netif_running(dev))
1668 		return -EBUSY;
1669 
1670 	ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
1671 	if (ret)
1672 		return ret;
1673 	dev->mtu = new_mtu;
1674 	return 0;
1675 }
1676 
1677 /*
1678  * preinit hardware to allow mii operation while device is down
1679  */
1680 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1681 {
1682 	u32 val;
1683 	int limit;
1684 
1685 	/* make sure mac is disabled */
1686 	bcm_enet_disable_mac(priv);
1687 
1688 	/* soft reset mac */
1689 	val = ENET_CTL_SRESET_MASK;
1690 	enet_writel(priv, val, ENET_CTL_REG);
1691 	wmb();
1692 
1693 	limit = 1000;
1694 	do {
1695 		val = enet_readl(priv, ENET_CTL_REG);
1696 		if (!(val & ENET_CTL_SRESET_MASK))
1697 			break;
1698 		udelay(1);
1699 	} while (limit--);
1700 
1701 	/* select correct mii interface */
1702 	val = enet_readl(priv, ENET_CTL_REG);
1703 	if (priv->use_external_mii)
1704 		val |= ENET_CTL_EPHYSEL_MASK;
1705 	else
1706 		val &= ~ENET_CTL_EPHYSEL_MASK;
1707 	enet_writel(priv, val, ENET_CTL_REG);
1708 
1709 	/* turn on mdc clock */
1710 	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1711 		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1712 
1713 	/* set mib counters to self-clear when read */
1714 	val = enet_readl(priv, ENET_MIBCTL_REG);
1715 	val |= ENET_MIBCTL_RDCLEAR_MASK;
1716 	enet_writel(priv, val, ENET_MIBCTL_REG);
1717 }
1718 
1719 static const struct net_device_ops bcm_enet_ops = {
1720 	.ndo_open		= bcm_enet_open,
1721 	.ndo_stop		= bcm_enet_stop,
1722 	.ndo_start_xmit		= bcm_enet_start_xmit,
1723 	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1724 	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1725 	.ndo_do_ioctl		= bcm_enet_ioctl,
1726 	.ndo_change_mtu		= bcm_enet_change_mtu,
1727 #ifdef CONFIG_NET_POLL_CONTROLLER
1728 	.ndo_poll_controller = bcm_enet_netpoll,
1729 #endif
1730 };
1731 
1732 /*
1733  * allocate netdevice, request register memory and register device.
1734  */
1735 static int bcm_enet_probe(struct platform_device *pdev)
1736 {
1737 	struct bcm_enet_priv *priv;
1738 	struct net_device *dev;
1739 	struct bcm63xx_enet_platform_data *pd;
1740 	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1741 	struct mii_bus *bus;
1742 	const char *clk_name;
1743 	int i, ret;
1744 
1745 	/* stop if shared driver failed, assume driver->probe will be
1746 	 * called in the same order we register devices (correct ?) */
1747 	if (!bcm_enet_shared_base[0])
1748 		return -ENODEV;
1749 
1750 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1751 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1752 	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1753 	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1754 	if (!res_mem || !res_irq || !res_irq_rx || !res_irq_tx)
1755 		return -ENODEV;
1756 
1757 	ret = 0;
1758 	dev = alloc_etherdev(sizeof(*priv));
1759 	if (!dev)
1760 		return -ENOMEM;
1761 	priv = netdev_priv(dev);
1762 
1763 	priv->enet_is_sw = false;
1764 	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1765 
1766 	ret = compute_hw_mtu(priv, dev->mtu);
1767 	if (ret)
1768 		goto out;
1769 
1770 	priv->base = devm_request_and_ioremap(&pdev->dev, res_mem);
1771 	if (priv->base == NULL) {
1772 		ret = -ENOMEM;
1773 		goto out;
1774 	}
1775 
1776 	dev->irq = priv->irq = res_irq->start;
1777 	priv->irq_rx = res_irq_rx->start;
1778 	priv->irq_tx = res_irq_tx->start;
1779 	priv->mac_id = pdev->id;
1780 
1781 	/* get rx & tx dma channel id for this mac */
1782 	if (priv->mac_id == 0) {
1783 		priv->rx_chan = 0;
1784 		priv->tx_chan = 1;
1785 		clk_name = "enet0";
1786 	} else {
1787 		priv->rx_chan = 2;
1788 		priv->tx_chan = 3;
1789 		clk_name = "enet1";
1790 	}
1791 
1792 	priv->mac_clk = clk_get(&pdev->dev, clk_name);
1793 	if (IS_ERR(priv->mac_clk)) {
1794 		ret = PTR_ERR(priv->mac_clk);
1795 		goto out;
1796 	}
1797 	clk_prepare_enable(priv->mac_clk);
1798 
1799 	/* initialize default and fetch platform data */
1800 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1801 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1802 
1803 	pd = pdev->dev.platform_data;
1804 	if (pd) {
1805 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1806 		priv->has_phy = pd->has_phy;
1807 		priv->phy_id = pd->phy_id;
1808 		priv->has_phy_interrupt = pd->has_phy_interrupt;
1809 		priv->phy_interrupt = pd->phy_interrupt;
1810 		priv->use_external_mii = !pd->use_internal_phy;
1811 		priv->pause_auto = pd->pause_auto;
1812 		priv->pause_rx = pd->pause_rx;
1813 		priv->pause_tx = pd->pause_tx;
1814 		priv->force_duplex_full = pd->force_duplex_full;
1815 		priv->force_speed_100 = pd->force_speed_100;
1816 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1817 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1818 		priv->dma_chan_width = pd->dma_chan_width;
1819 		priv->dma_has_sram = pd->dma_has_sram;
1820 		priv->dma_desc_shift = pd->dma_desc_shift;
1821 	}
1822 
1823 	if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1824 		/* using internal PHY, enable clock */
1825 		priv->phy_clk = clk_get(&pdev->dev, "ephy");
1826 		if (IS_ERR(priv->phy_clk)) {
1827 			ret = PTR_ERR(priv->phy_clk);
1828 			priv->phy_clk = NULL;
1829 			goto out_put_clk_mac;
1830 		}
1831 		clk_prepare_enable(priv->phy_clk);
1832 	}
1833 
1834 	/* do minimal hardware init to be able to probe mii bus */
1835 	bcm_enet_hw_preinit(priv);
1836 
1837 	/* MII bus registration */
1838 	if (priv->has_phy) {
1839 
1840 		priv->mii_bus = mdiobus_alloc();
1841 		if (!priv->mii_bus) {
1842 			ret = -ENOMEM;
1843 			goto out_uninit_hw;
1844 		}
1845 
1846 		bus = priv->mii_bus;
1847 		bus->name = "bcm63xx_enet MII bus";
1848 		bus->parent = &pdev->dev;
1849 		bus->priv = priv;
1850 		bus->read = bcm_enet_mdio_read_phylib;
1851 		bus->write = bcm_enet_mdio_write_phylib;
1852 		sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
1853 
1854 		/* only probe bus where we think the PHY is, because
1855 		 * the mdio read operation return 0 instead of 0xffff
1856 		 * if a slave is not present on hw */
1857 		bus->phy_mask = ~(1 << priv->phy_id);
1858 
1859 		bus->irq = devm_kzalloc(&pdev->dev, sizeof(int) * PHY_MAX_ADDR,
1860 					GFP_KERNEL);
1861 		if (!bus->irq) {
1862 			ret = -ENOMEM;
1863 			goto out_free_mdio;
1864 		}
1865 
1866 		if (priv->has_phy_interrupt)
1867 			bus->irq[priv->phy_id] = priv->phy_interrupt;
1868 		else
1869 			bus->irq[priv->phy_id] = PHY_POLL;
1870 
1871 		ret = mdiobus_register(bus);
1872 		if (ret) {
1873 			dev_err(&pdev->dev, "unable to register mdio bus\n");
1874 			goto out_free_mdio;
1875 		}
1876 	} else {
1877 
1878 		/* run platform code to initialize PHY device */
1879 		if (pd->mii_config &&
1880 		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1881 				   bcm_enet_mdio_write_mii)) {
1882 			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1883 			goto out_uninit_hw;
1884 		}
1885 	}
1886 
1887 	spin_lock_init(&priv->rx_lock);
1888 
1889 	/* init rx timeout (used for oom) */
1890 	init_timer(&priv->rx_timeout);
1891 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1892 	priv->rx_timeout.data = (unsigned long)dev;
1893 
1894 	/* init the mib update lock&work */
1895 	mutex_init(&priv->mib_update_lock);
1896 	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1897 
1898 	/* zero mib counters */
1899 	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1900 		enet_writel(priv, 0, ENET_MIB_REG(i));
1901 
1902 	/* register netdevice */
1903 	dev->netdev_ops = &bcm_enet_ops;
1904 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1905 
1906 	SET_ETHTOOL_OPS(dev, &bcm_enet_ethtool_ops);
1907 	SET_NETDEV_DEV(dev, &pdev->dev);
1908 
1909 	ret = register_netdev(dev);
1910 	if (ret)
1911 		goto out_unregister_mdio;
1912 
1913 	netif_carrier_off(dev);
1914 	platform_set_drvdata(pdev, dev);
1915 	priv->pdev = pdev;
1916 	priv->net_dev = dev;
1917 
1918 	return 0;
1919 
1920 out_unregister_mdio:
1921 	if (priv->mii_bus)
1922 		mdiobus_unregister(priv->mii_bus);
1923 
1924 out_free_mdio:
1925 	if (priv->mii_bus)
1926 		mdiobus_free(priv->mii_bus);
1927 
1928 out_uninit_hw:
1929 	/* turn off mdc clock */
1930 	enet_writel(priv, 0, ENET_MIISC_REG);
1931 	if (priv->phy_clk) {
1932 		clk_disable_unprepare(priv->phy_clk);
1933 		clk_put(priv->phy_clk);
1934 	}
1935 
1936 out_put_clk_mac:
1937 	clk_disable_unprepare(priv->mac_clk);
1938 	clk_put(priv->mac_clk);
1939 out:
1940 	free_netdev(dev);
1941 	return ret;
1942 }
1943 
1944 
1945 /*
1946  * exit func, stops hardware and unregisters netdevice
1947  */
1948 static int bcm_enet_remove(struct platform_device *pdev)
1949 {
1950 	struct bcm_enet_priv *priv;
1951 	struct net_device *dev;
1952 
1953 	/* stop netdevice */
1954 	dev = platform_get_drvdata(pdev);
1955 	priv = netdev_priv(dev);
1956 	unregister_netdev(dev);
1957 
1958 	/* turn off mdc clock */
1959 	enet_writel(priv, 0, ENET_MIISC_REG);
1960 
1961 	if (priv->has_phy) {
1962 		mdiobus_unregister(priv->mii_bus);
1963 		mdiobus_free(priv->mii_bus);
1964 	} else {
1965 		struct bcm63xx_enet_platform_data *pd;
1966 
1967 		pd = pdev->dev.platform_data;
1968 		if (pd && pd->mii_config)
1969 			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1970 				       bcm_enet_mdio_write_mii);
1971 	}
1972 
1973 	/* disable hw block clocks */
1974 	if (priv->phy_clk) {
1975 		clk_disable_unprepare(priv->phy_clk);
1976 		clk_put(priv->phy_clk);
1977 	}
1978 	clk_disable_unprepare(priv->mac_clk);
1979 	clk_put(priv->mac_clk);
1980 
1981 	free_netdev(dev);
1982 	return 0;
1983 }
1984 
1985 struct platform_driver bcm63xx_enet_driver = {
1986 	.probe	= bcm_enet_probe,
1987 	.remove	= bcm_enet_remove,
1988 	.driver	= {
1989 		.name	= "bcm63xx_enet",
1990 		.owner  = THIS_MODULE,
1991 	},
1992 };
1993 
1994 /*
1995  * switch mii access callbacks
1996  */
1997 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1998 				int ext, int phy_id, int location)
1999 {
2000 	u32 reg;
2001 	int ret;
2002 
2003 	spin_lock_bh(&priv->enetsw_mdio_lock);
2004 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
2005 
2006 	reg = ENETSW_MDIOC_RD_MASK |
2007 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2008 		(location << ENETSW_MDIOC_REG_SHIFT);
2009 
2010 	if (ext)
2011 		reg |= ENETSW_MDIOC_EXT_MASK;
2012 
2013 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2014 	udelay(50);
2015 	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
2016 	spin_unlock_bh(&priv->enetsw_mdio_lock);
2017 	return ret;
2018 }
2019 
2020 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
2021 				 int ext, int phy_id, int location,
2022 				 uint16_t data)
2023 {
2024 	u32 reg;
2025 
2026 	spin_lock_bh(&priv->enetsw_mdio_lock);
2027 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
2028 
2029 	reg = ENETSW_MDIOC_WR_MASK |
2030 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2031 		(location << ENETSW_MDIOC_REG_SHIFT);
2032 
2033 	if (ext)
2034 		reg |= ENETSW_MDIOC_EXT_MASK;
2035 
2036 	reg |= data;
2037 
2038 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2039 	udelay(50);
2040 	spin_unlock_bh(&priv->enetsw_mdio_lock);
2041 }
2042 
2043 static inline int bcm_enet_port_is_rgmii(int portid)
2044 {
2045 	return portid >= ENETSW_RGMII_PORT0;
2046 }
2047 
2048 /*
2049  * enet sw PHY polling
2050  */
2051 static void swphy_poll_timer(unsigned long data)
2052 {
2053 	struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
2054 	unsigned int i;
2055 
2056 	for (i = 0; i < priv->num_ports; i++) {
2057 		struct bcm63xx_enetsw_port *port;
2058 		int val, j, up, advertise, lpa, lpa2, speed, duplex, media;
2059 		int external_phy = bcm_enet_port_is_rgmii(i);
2060 		u8 override;
2061 
2062 		port = &priv->used_ports[i];
2063 		if (!port->used)
2064 			continue;
2065 
2066 		if (port->bypass_link)
2067 			continue;
2068 
2069 		/* dummy read to clear */
2070 		for (j = 0; j < 2; j++)
2071 			val = bcmenet_sw_mdio_read(priv, external_phy,
2072 						   port->phy_id, MII_BMSR);
2073 
2074 		if (val == 0xffff)
2075 			continue;
2076 
2077 		up = (val & BMSR_LSTATUS) ? 1 : 0;
2078 		if (!(up ^ priv->sw_port_link[i]))
2079 			continue;
2080 
2081 		priv->sw_port_link[i] = up;
2082 
2083 		/* link changed */
2084 		if (!up) {
2085 			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2086 				 port->name);
2087 			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2088 				      ENETSW_PORTOV_REG(i));
2089 			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2090 				      ENETSW_PTCTRL_TXDIS_MASK,
2091 				      ENETSW_PTCTRL_REG(i));
2092 			continue;
2093 		}
2094 
2095 		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2096 						 port->phy_id, MII_ADVERTISE);
2097 
2098 		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2099 					   MII_LPA);
2100 
2101 		lpa2 = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2102 					    MII_STAT1000);
2103 
2104 		/* figure out media and duplex from advertise and LPA values */
2105 		media = mii_nway_result(lpa & advertise);
2106 		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2107 		if (lpa2 & LPA_1000FULL)
2108 			duplex = 1;
2109 
2110 		if (lpa2 & (LPA_1000FULL | LPA_1000HALF))
2111 			speed = 1000;
2112 		else {
2113 			if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2114 				speed = 100;
2115 			else
2116 				speed = 10;
2117 		}
2118 
2119 		dev_info(&priv->pdev->dev,
2120 			 "link UP on %s, %dMbps, %s-duplex\n",
2121 			 port->name, speed, duplex ? "full" : "half");
2122 
2123 		override = ENETSW_PORTOV_ENABLE_MASK |
2124 			ENETSW_PORTOV_LINKUP_MASK;
2125 
2126 		if (speed == 1000)
2127 			override |= ENETSW_IMPOV_1000_MASK;
2128 		else if (speed == 100)
2129 			override |= ENETSW_IMPOV_100_MASK;
2130 		if (duplex)
2131 			override |= ENETSW_IMPOV_FDX_MASK;
2132 
2133 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2134 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2135 	}
2136 
2137 	priv->swphy_poll.expires = jiffies + HZ;
2138 	add_timer(&priv->swphy_poll);
2139 }
2140 
2141 /*
2142  * open callback, allocate dma rings & buffers and start rx operation
2143  */
2144 static int bcm_enetsw_open(struct net_device *dev)
2145 {
2146 	struct bcm_enet_priv *priv;
2147 	struct device *kdev;
2148 	int i, ret;
2149 	unsigned int size;
2150 	void *p;
2151 	u32 val;
2152 
2153 	priv = netdev_priv(dev);
2154 	kdev = &priv->pdev->dev;
2155 
2156 	/* mask all interrupts and request them */
2157 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2158 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2159 
2160 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2161 			  IRQF_DISABLED, dev->name, dev);
2162 	if (ret)
2163 		goto out_freeirq;
2164 
2165 	if (priv->irq_tx != -1) {
2166 		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2167 				  IRQF_DISABLED, dev->name, dev);
2168 		if (ret)
2169 			goto out_freeirq_rx;
2170 	}
2171 
2172 	/* allocate rx dma ring */
2173 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2174 	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2175 	if (!p) {
2176 		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2177 		ret = -ENOMEM;
2178 		goto out_freeirq_tx;
2179 	}
2180 
2181 	memset(p, 0, size);
2182 	priv->rx_desc_alloc_size = size;
2183 	priv->rx_desc_cpu = p;
2184 
2185 	/* allocate tx dma ring */
2186 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2187 	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2188 	if (!p) {
2189 		dev_err(kdev, "cannot allocate tx ring\n");
2190 		ret = -ENOMEM;
2191 		goto out_free_rx_ring;
2192 	}
2193 
2194 	memset(p, 0, size);
2195 	priv->tx_desc_alloc_size = size;
2196 	priv->tx_desc_cpu = p;
2197 
2198 	priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2199 			       GFP_KERNEL);
2200 	if (!priv->tx_skb) {
2201 		dev_err(kdev, "cannot allocate rx skb queue\n");
2202 		ret = -ENOMEM;
2203 		goto out_free_tx_ring;
2204 	}
2205 
2206 	priv->tx_desc_count = priv->tx_ring_size;
2207 	priv->tx_dirty_desc = 0;
2208 	priv->tx_curr_desc = 0;
2209 	spin_lock_init(&priv->tx_lock);
2210 
2211 	/* init & fill rx ring with skbs */
2212 	priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2213 			       GFP_KERNEL);
2214 	if (!priv->rx_skb) {
2215 		dev_err(kdev, "cannot allocate rx skb queue\n");
2216 		ret = -ENOMEM;
2217 		goto out_free_tx_skb;
2218 	}
2219 
2220 	priv->rx_desc_count = 0;
2221 	priv->rx_dirty_desc = 0;
2222 	priv->rx_curr_desc = 0;
2223 
2224 	/* disable all ports */
2225 	for (i = 0; i < priv->num_ports; i++) {
2226 		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2227 			      ENETSW_PORTOV_REG(i));
2228 		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2229 			      ENETSW_PTCTRL_TXDIS_MASK,
2230 			      ENETSW_PTCTRL_REG(i));
2231 
2232 		priv->sw_port_link[i] = 0;
2233 	}
2234 
2235 	/* reset mib */
2236 	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2237 	val |= ENETSW_GMCR_RST_MIB_MASK;
2238 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2239 	mdelay(1);
2240 	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2241 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2242 	mdelay(1);
2243 
2244 	/* force CPU port state */
2245 	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2246 	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2247 	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2248 
2249 	/* enable switch forward engine */
2250 	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2251 	val |= ENETSW_SWMODE_FWD_EN_MASK;
2252 	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2253 
2254 	/* enable jumbo on all ports */
2255 	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2256 	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2257 
2258 	/* initialize flow control buffer allocation */
2259 	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2260 			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2261 
2262 	if (bcm_enet_refill_rx(dev)) {
2263 		dev_err(kdev, "cannot allocate rx skb queue\n");
2264 		ret = -ENOMEM;
2265 		goto out;
2266 	}
2267 
2268 	/* write rx & tx ring addresses */
2269 	enet_dmas_writel(priv, priv->rx_desc_dma,
2270 			 ENETDMAS_RSTART_REG, priv->rx_chan);
2271 	enet_dmas_writel(priv, priv->tx_desc_dma,
2272 			 ENETDMAS_RSTART_REG, priv->tx_chan);
2273 
2274 	/* clear remaining state ram for rx & tx channel */
2275 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2276 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2277 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2278 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2279 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2280 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2281 
2282 	/* set dma maximum burst len */
2283 	enet_dmac_writel(priv, priv->dma_maxburst,
2284 			 ENETDMAC_MAXBURST, priv->rx_chan);
2285 	enet_dmac_writel(priv, priv->dma_maxburst,
2286 			 ENETDMAC_MAXBURST, priv->tx_chan);
2287 
2288 	/* set flow control low/high threshold to 1/3 / 2/3 */
2289 	val = priv->rx_ring_size / 3;
2290 	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2291 	val = (priv->rx_ring_size * 2) / 3;
2292 	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2293 
2294 	/* all set, enable mac and interrupts, start dma engine and
2295 	 * kick rx dma channel
2296 	 */
2297 	wmb();
2298 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2299 	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2300 			 ENETDMAC_CHANCFG, priv->rx_chan);
2301 
2302 	/* watch "packet transferred" interrupt in rx and tx */
2303 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2304 			 ENETDMAC_IR, priv->rx_chan);
2305 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2306 			 ENETDMAC_IR, priv->tx_chan);
2307 
2308 	/* make sure we enable napi before rx interrupt  */
2309 	napi_enable(&priv->napi);
2310 
2311 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2312 			 ENETDMAC_IRMASK, priv->rx_chan);
2313 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2314 			 ENETDMAC_IRMASK, priv->tx_chan);
2315 
2316 	netif_carrier_on(dev);
2317 	netif_start_queue(dev);
2318 
2319 	/* apply override config for bypass_link ports here. */
2320 	for (i = 0; i < priv->num_ports; i++) {
2321 		struct bcm63xx_enetsw_port *port;
2322 		u8 override;
2323 		port = &priv->used_ports[i];
2324 		if (!port->used)
2325 			continue;
2326 
2327 		if (!port->bypass_link)
2328 			continue;
2329 
2330 		override = ENETSW_PORTOV_ENABLE_MASK |
2331 			ENETSW_PORTOV_LINKUP_MASK;
2332 
2333 		switch (port->force_speed) {
2334 		case 1000:
2335 			override |= ENETSW_IMPOV_1000_MASK;
2336 			break;
2337 		case 100:
2338 			override |= ENETSW_IMPOV_100_MASK;
2339 			break;
2340 		case 10:
2341 			break;
2342 		default:
2343 			pr_warn("invalid forced speed on port %s: assume 10\n",
2344 			       port->name);
2345 			break;
2346 		}
2347 
2348 		if (port->force_duplex_full)
2349 			override |= ENETSW_IMPOV_FDX_MASK;
2350 
2351 
2352 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2353 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2354 	}
2355 
2356 	/* start phy polling timer */
2357 	init_timer(&priv->swphy_poll);
2358 	priv->swphy_poll.function = swphy_poll_timer;
2359 	priv->swphy_poll.data = (unsigned long)priv;
2360 	priv->swphy_poll.expires = jiffies;
2361 	add_timer(&priv->swphy_poll);
2362 	return 0;
2363 
2364 out:
2365 	for (i = 0; i < priv->rx_ring_size; i++) {
2366 		struct bcm_enet_desc *desc;
2367 
2368 		if (!priv->rx_skb[i])
2369 			continue;
2370 
2371 		desc = &priv->rx_desc_cpu[i];
2372 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2373 				 DMA_FROM_DEVICE);
2374 		kfree_skb(priv->rx_skb[i]);
2375 	}
2376 	kfree(priv->rx_skb);
2377 
2378 out_free_tx_skb:
2379 	kfree(priv->tx_skb);
2380 
2381 out_free_tx_ring:
2382 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2383 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2384 
2385 out_free_rx_ring:
2386 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2387 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2388 
2389 out_freeirq_tx:
2390 	if (priv->irq_tx != -1)
2391 		free_irq(priv->irq_tx, dev);
2392 
2393 out_freeirq_rx:
2394 	free_irq(priv->irq_rx, dev);
2395 
2396 out_freeirq:
2397 	return ret;
2398 }
2399 
2400 /* stop callback */
2401 static int bcm_enetsw_stop(struct net_device *dev)
2402 {
2403 	struct bcm_enet_priv *priv;
2404 	struct device *kdev;
2405 	int i;
2406 
2407 	priv = netdev_priv(dev);
2408 	kdev = &priv->pdev->dev;
2409 
2410 	del_timer_sync(&priv->swphy_poll);
2411 	netif_stop_queue(dev);
2412 	napi_disable(&priv->napi);
2413 	del_timer_sync(&priv->rx_timeout);
2414 
2415 	/* mask all interrupts */
2416 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2417 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2418 
2419 	/* disable dma & mac */
2420 	bcm_enet_disable_dma(priv, priv->tx_chan);
2421 	bcm_enet_disable_dma(priv, priv->rx_chan);
2422 
2423 	/* force reclaim of all tx buffers */
2424 	bcm_enet_tx_reclaim(dev, 1);
2425 
2426 	/* free the rx skb ring */
2427 	for (i = 0; i < priv->rx_ring_size; i++) {
2428 		struct bcm_enet_desc *desc;
2429 
2430 		if (!priv->rx_skb[i])
2431 			continue;
2432 
2433 		desc = &priv->rx_desc_cpu[i];
2434 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2435 				 DMA_FROM_DEVICE);
2436 		kfree_skb(priv->rx_skb[i]);
2437 	}
2438 
2439 	/* free remaining allocated memory */
2440 	kfree(priv->rx_skb);
2441 	kfree(priv->tx_skb);
2442 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2443 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2444 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2445 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2446 	if (priv->irq_tx != -1)
2447 		free_irq(priv->irq_tx, dev);
2448 	free_irq(priv->irq_rx, dev);
2449 
2450 	return 0;
2451 }
2452 
2453 /* try to sort out phy external status by walking the used_port field
2454  * in the bcm_enet_priv structure. in case the phy address is not
2455  * assigned to any physical port on the switch, assume it is external
2456  * (and yell at the user).
2457  */
2458 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2459 {
2460 	int i;
2461 
2462 	for (i = 0; i < priv->num_ports; ++i) {
2463 		if (!priv->used_ports[i].used)
2464 			continue;
2465 		if (priv->used_ports[i].phy_id == phy_id)
2466 			return bcm_enet_port_is_rgmii(i);
2467 	}
2468 
2469 	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2470 		    phy_id);
2471 	return 1;
2472 }
2473 
2474 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2475  * external/internal status of the given phy_id first.
2476  */
2477 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2478 				    int location)
2479 {
2480 	struct bcm_enet_priv *priv;
2481 
2482 	priv = netdev_priv(dev);
2483 	return bcmenet_sw_mdio_read(priv,
2484 				    bcm_enetsw_phy_is_external(priv, phy_id),
2485 				    phy_id, location);
2486 }
2487 
2488 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2489  * external/internal status of the given phy_id first.
2490  */
2491 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2492 				      int location,
2493 				      int val)
2494 {
2495 	struct bcm_enet_priv *priv;
2496 
2497 	priv = netdev_priv(dev);
2498 	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2499 			      phy_id, location, val);
2500 }
2501 
2502 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2503 {
2504 	struct mii_if_info mii;
2505 
2506 	mii.dev = dev;
2507 	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2508 	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2509 	mii.phy_id = 0;
2510 	mii.phy_id_mask = 0x3f;
2511 	mii.reg_num_mask = 0x1f;
2512 	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2513 
2514 }
2515 
2516 static const struct net_device_ops bcm_enetsw_ops = {
2517 	.ndo_open		= bcm_enetsw_open,
2518 	.ndo_stop		= bcm_enetsw_stop,
2519 	.ndo_start_xmit		= bcm_enet_start_xmit,
2520 	.ndo_change_mtu		= bcm_enet_change_mtu,
2521 	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2522 };
2523 
2524 
2525 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2526 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2527 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2528 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2529 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2530 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2531 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2532 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2533 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2534 
2535 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2536 	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2537 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2538 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2539 	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2540 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2541 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2542 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2543 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2544 	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2545 	  ETHSW_MIB_RX_1024_1522 },
2546 	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2547 	  ETHSW_MIB_RX_1523_2047 },
2548 	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2549 	  ETHSW_MIB_RX_2048_4095 },
2550 	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2551 	  ETHSW_MIB_RX_4096_8191 },
2552 	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2553 	  ETHSW_MIB_RX_8192_9728 },
2554 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2555 	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2556 	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2557 	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2558 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2559 
2560 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2561 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2562 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2563 	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2564 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2565 	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2566 
2567 };
2568 
2569 #define BCM_ENETSW_STATS_LEN	\
2570 	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2571 
2572 static void bcm_enetsw_get_strings(struct net_device *netdev,
2573 				   u32 stringset, u8 *data)
2574 {
2575 	int i;
2576 
2577 	switch (stringset) {
2578 	case ETH_SS_STATS:
2579 		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2580 			memcpy(data + i * ETH_GSTRING_LEN,
2581 			       bcm_enetsw_gstrings_stats[i].stat_string,
2582 			       ETH_GSTRING_LEN);
2583 		}
2584 		break;
2585 	}
2586 }
2587 
2588 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2589 				     int string_set)
2590 {
2591 	switch (string_set) {
2592 	case ETH_SS_STATS:
2593 		return BCM_ENETSW_STATS_LEN;
2594 	default:
2595 		return -EINVAL;
2596 	}
2597 }
2598 
2599 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2600 				   struct ethtool_drvinfo *drvinfo)
2601 {
2602 	strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2603 	strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2604 	strncpy(drvinfo->fw_version, "N/A", 32);
2605 	strncpy(drvinfo->bus_info, "bcm63xx", 32);
2606 	drvinfo->n_stats = BCM_ENETSW_STATS_LEN;
2607 }
2608 
2609 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2610 					 struct ethtool_stats *stats,
2611 					 u64 *data)
2612 {
2613 	struct bcm_enet_priv *priv;
2614 	int i;
2615 
2616 	priv = netdev_priv(netdev);
2617 
2618 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2619 		const struct bcm_enet_stats *s;
2620 		u32 lo, hi;
2621 		char *p;
2622 		int reg;
2623 
2624 		s = &bcm_enetsw_gstrings_stats[i];
2625 
2626 		reg = s->mib_reg;
2627 		if (reg == -1)
2628 			continue;
2629 
2630 		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2631 		p = (char *)priv + s->stat_offset;
2632 
2633 		if (s->sizeof_stat == sizeof(u64)) {
2634 			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2635 			*(u64 *)p = ((u64)hi << 32 | lo);
2636 		} else {
2637 			*(u32 *)p = lo;
2638 		}
2639 	}
2640 
2641 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2642 		const struct bcm_enet_stats *s;
2643 		char *p;
2644 
2645 		s = &bcm_enetsw_gstrings_stats[i];
2646 
2647 		if (s->mib_reg == -1)
2648 			p = (char *)&netdev->stats + s->stat_offset;
2649 		else
2650 			p = (char *)priv + s->stat_offset;
2651 
2652 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2653 			*(u64 *)p : *(u32 *)p;
2654 	}
2655 }
2656 
2657 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2658 				     struct ethtool_ringparam *ering)
2659 {
2660 	struct bcm_enet_priv *priv;
2661 
2662 	priv = netdev_priv(dev);
2663 
2664 	/* rx/tx ring is actually only limited by memory */
2665 	ering->rx_max_pending = 8192;
2666 	ering->tx_max_pending = 8192;
2667 	ering->rx_mini_max_pending = 0;
2668 	ering->rx_jumbo_max_pending = 0;
2669 	ering->rx_pending = priv->rx_ring_size;
2670 	ering->tx_pending = priv->tx_ring_size;
2671 }
2672 
2673 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2674 				    struct ethtool_ringparam *ering)
2675 {
2676 	struct bcm_enet_priv *priv;
2677 	int was_running;
2678 
2679 	priv = netdev_priv(dev);
2680 
2681 	was_running = 0;
2682 	if (netif_running(dev)) {
2683 		bcm_enetsw_stop(dev);
2684 		was_running = 1;
2685 	}
2686 
2687 	priv->rx_ring_size = ering->rx_pending;
2688 	priv->tx_ring_size = ering->tx_pending;
2689 
2690 	if (was_running) {
2691 		int err;
2692 
2693 		err = bcm_enetsw_open(dev);
2694 		if (err)
2695 			dev_close(dev);
2696 	}
2697 	return 0;
2698 }
2699 
2700 static struct ethtool_ops bcm_enetsw_ethtool_ops = {
2701 	.get_strings		= bcm_enetsw_get_strings,
2702 	.get_sset_count		= bcm_enetsw_get_sset_count,
2703 	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2704 	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2705 	.get_ringparam		= bcm_enetsw_get_ringparam,
2706 	.set_ringparam		= bcm_enetsw_set_ringparam,
2707 };
2708 
2709 /* allocate netdevice, request register memory and register device. */
2710 static int bcm_enetsw_probe(struct platform_device *pdev)
2711 {
2712 	struct bcm_enet_priv *priv;
2713 	struct net_device *dev;
2714 	struct bcm63xx_enetsw_platform_data *pd;
2715 	struct resource *res_mem;
2716 	int ret, irq_rx, irq_tx;
2717 
2718 	/* stop if shared driver failed, assume driver->probe will be
2719 	 * called in the same order we register devices (correct ?)
2720 	 */
2721 	if (!bcm_enet_shared_base[0])
2722 		return -ENODEV;
2723 
2724 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2725 	irq_rx = platform_get_irq(pdev, 0);
2726 	irq_tx = platform_get_irq(pdev, 1);
2727 	if (!res_mem || irq_rx < 0)
2728 		return -ENODEV;
2729 
2730 	ret = 0;
2731 	dev = alloc_etherdev(sizeof(*priv));
2732 	if (!dev)
2733 		return -ENOMEM;
2734 	priv = netdev_priv(dev);
2735 	memset(priv, 0, sizeof(*priv));
2736 
2737 	/* initialize default and fetch platform data */
2738 	priv->enet_is_sw = true;
2739 	priv->irq_rx = irq_rx;
2740 	priv->irq_tx = irq_tx;
2741 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2742 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2743 	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2744 
2745 	pd = pdev->dev.platform_data;
2746 	if (pd) {
2747 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2748 		memcpy(priv->used_ports, pd->used_ports,
2749 		       sizeof(pd->used_ports));
2750 		priv->num_ports = pd->num_ports;
2751 		priv->dma_has_sram = pd->dma_has_sram;
2752 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2753 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2754 		priv->dma_chan_width = pd->dma_chan_width;
2755 	}
2756 
2757 	ret = compute_hw_mtu(priv, dev->mtu);
2758 	if (ret)
2759 		goto out;
2760 
2761 	if (!request_mem_region(res_mem->start, resource_size(res_mem),
2762 				"bcm63xx_enetsw")) {
2763 		ret = -EBUSY;
2764 		goto out;
2765 	}
2766 
2767 	priv->base = ioremap(res_mem->start, resource_size(res_mem));
2768 	if (priv->base == NULL) {
2769 		ret = -ENOMEM;
2770 		goto out_release_mem;
2771 	}
2772 
2773 	priv->mac_clk = clk_get(&pdev->dev, "enetsw");
2774 	if (IS_ERR(priv->mac_clk)) {
2775 		ret = PTR_ERR(priv->mac_clk);
2776 		goto out_unmap;
2777 	}
2778 	clk_enable(priv->mac_clk);
2779 
2780 	priv->rx_chan = 0;
2781 	priv->tx_chan = 1;
2782 	spin_lock_init(&priv->rx_lock);
2783 
2784 	/* init rx timeout (used for oom) */
2785 	init_timer(&priv->rx_timeout);
2786 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
2787 	priv->rx_timeout.data = (unsigned long)dev;
2788 
2789 	/* register netdevice */
2790 	dev->netdev_ops = &bcm_enetsw_ops;
2791 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2792 	SET_ETHTOOL_OPS(dev, &bcm_enetsw_ethtool_ops);
2793 	SET_NETDEV_DEV(dev, &pdev->dev);
2794 
2795 	spin_lock_init(&priv->enetsw_mdio_lock);
2796 
2797 	ret = register_netdev(dev);
2798 	if (ret)
2799 		goto out_put_clk;
2800 
2801 	netif_carrier_off(dev);
2802 	platform_set_drvdata(pdev, dev);
2803 	priv->pdev = pdev;
2804 	priv->net_dev = dev;
2805 
2806 	return 0;
2807 
2808 out_put_clk:
2809 	clk_put(priv->mac_clk);
2810 
2811 out_unmap:
2812 	iounmap(priv->base);
2813 
2814 out_release_mem:
2815 	release_mem_region(res_mem->start, resource_size(res_mem));
2816 out:
2817 	free_netdev(dev);
2818 	return ret;
2819 }
2820 
2821 
2822 /* exit func, stops hardware and unregisters netdevice */
2823 static int bcm_enetsw_remove(struct platform_device *pdev)
2824 {
2825 	struct bcm_enet_priv *priv;
2826 	struct net_device *dev;
2827 	struct resource *res;
2828 
2829 	/* stop netdevice */
2830 	dev = platform_get_drvdata(pdev);
2831 	priv = netdev_priv(dev);
2832 	unregister_netdev(dev);
2833 
2834 	/* release device resources */
2835 	iounmap(priv->base);
2836 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2837 	release_mem_region(res->start, resource_size(res));
2838 
2839 	platform_set_drvdata(pdev, NULL);
2840 	free_netdev(dev);
2841 	return 0;
2842 }
2843 
2844 struct platform_driver bcm63xx_enetsw_driver = {
2845 	.probe	= bcm_enetsw_probe,
2846 	.remove	= bcm_enetsw_remove,
2847 	.driver	= {
2848 		.name	= "bcm63xx_enetsw",
2849 		.owner  = THIS_MODULE,
2850 	},
2851 };
2852 
2853 /* reserve & remap memory space shared between all macs */
2854 static int bcm_enet_shared_probe(struct platform_device *pdev)
2855 {
2856 	struct resource *res;
2857 	void __iomem *p[3];
2858 	unsigned int i;
2859 
2860 	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2861 
2862 	for (i = 0; i < 3; i++) {
2863 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2864 		p[i] = devm_ioremap_resource(&pdev->dev, res);
2865 		if (IS_ERR(p[i]))
2866 			return PTR_ERR(p[i]);
2867 	}
2868 
2869 	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2870 
2871 	return 0;
2872 }
2873 
2874 static int bcm_enet_shared_remove(struct platform_device *pdev)
2875 {
2876 	return 0;
2877 }
2878 
2879 /* this "shared" driver is needed because both macs share a single
2880  * address space
2881  */
2882 struct platform_driver bcm63xx_enet_shared_driver = {
2883 	.probe	= bcm_enet_shared_probe,
2884 	.remove	= bcm_enet_shared_remove,
2885 	.driver	= {
2886 		.name	= "bcm63xx_enet_shared",
2887 		.owner  = THIS_MODULE,
2888 	},
2889 };
2890 
2891 /* entry point */
2892 static int __init bcm_enet_init(void)
2893 {
2894 	int ret;
2895 
2896 	ret = platform_driver_register(&bcm63xx_enet_shared_driver);
2897 	if (ret)
2898 		return ret;
2899 
2900 	ret = platform_driver_register(&bcm63xx_enet_driver);
2901 	if (ret)
2902 		platform_driver_unregister(&bcm63xx_enet_shared_driver);
2903 
2904 	ret = platform_driver_register(&bcm63xx_enetsw_driver);
2905 	if (ret) {
2906 		platform_driver_unregister(&bcm63xx_enet_driver);
2907 		platform_driver_unregister(&bcm63xx_enet_shared_driver);
2908 	}
2909 
2910 	return ret;
2911 }
2912 
2913 static void __exit bcm_enet_exit(void)
2914 {
2915 	platform_driver_unregister(&bcm63xx_enet_driver);
2916 	platform_driver_unregister(&bcm63xx_enetsw_driver);
2917 	platform_driver_unregister(&bcm63xx_enet_shared_driver);
2918 }
2919 
2920 
2921 module_init(bcm_enet_init);
2922 module_exit(bcm_enet_exit);
2923 
2924 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2925 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2926 MODULE_LICENSE("GPL");
2927