1 /* 2 * Driver for BCM963xx builtin Ethernet mac 3 * 4 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/clk.h> 24 #include <linux/etherdevice.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/ethtool.h> 28 #include <linux/crc32.h> 29 #include <linux/err.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/platform_device.h> 32 #include <linux/if_vlan.h> 33 34 #include <bcm63xx_dev_enet.h> 35 #include "bcm63xx_enet.h" 36 37 static char bcm_enet_driver_name[] = "bcm63xx_enet"; 38 static char bcm_enet_driver_version[] = "1.0"; 39 40 static int copybreak __read_mostly = 128; 41 module_param(copybreak, int, 0); 42 MODULE_PARM_DESC(copybreak, "Receive copy threshold"); 43 44 /* io registers memory shared between all devices */ 45 static void __iomem *bcm_enet_shared_base[3]; 46 47 /* 48 * io helpers to access mac registers 49 */ 50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off) 51 { 52 return bcm_readl(priv->base + off); 53 } 54 55 static inline void enet_writel(struct bcm_enet_priv *priv, 56 u32 val, u32 off) 57 { 58 bcm_writel(val, priv->base + off); 59 } 60 61 /* 62 * io helpers to access switch registers 63 */ 64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off) 65 { 66 return bcm_readl(priv->base + off); 67 } 68 69 static inline void enetsw_writel(struct bcm_enet_priv *priv, 70 u32 val, u32 off) 71 { 72 bcm_writel(val, priv->base + off); 73 } 74 75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off) 76 { 77 return bcm_readw(priv->base + off); 78 } 79 80 static inline void enetsw_writew(struct bcm_enet_priv *priv, 81 u16 val, u32 off) 82 { 83 bcm_writew(val, priv->base + off); 84 } 85 86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off) 87 { 88 return bcm_readb(priv->base + off); 89 } 90 91 static inline void enetsw_writeb(struct bcm_enet_priv *priv, 92 u8 val, u32 off) 93 { 94 bcm_writeb(val, priv->base + off); 95 } 96 97 98 /* io helpers to access shared registers */ 99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off) 100 { 101 return bcm_readl(bcm_enet_shared_base[0] + off); 102 } 103 104 static inline void enet_dma_writel(struct bcm_enet_priv *priv, 105 u32 val, u32 off) 106 { 107 bcm_writel(val, bcm_enet_shared_base[0] + off); 108 } 109 110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan) 111 { 112 return bcm_readl(bcm_enet_shared_base[1] + 113 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 114 } 115 116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv, 117 u32 val, u32 off, int chan) 118 { 119 bcm_writel(val, bcm_enet_shared_base[1] + 120 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 121 } 122 123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan) 124 { 125 return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 126 } 127 128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv, 129 u32 val, u32 off, int chan) 130 { 131 bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 132 } 133 134 /* 135 * write given data into mii register and wait for transfer to end 136 * with timeout (average measured transfer time is 25us) 137 */ 138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data) 139 { 140 int limit; 141 142 /* make sure mii interrupt status is cleared */ 143 enet_writel(priv, ENET_IR_MII, ENET_IR_REG); 144 145 enet_writel(priv, data, ENET_MIIDATA_REG); 146 wmb(); 147 148 /* busy wait on mii interrupt bit, with timeout */ 149 limit = 1000; 150 do { 151 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII) 152 break; 153 udelay(1); 154 } while (limit-- > 0); 155 156 return (limit < 0) ? 1 : 0; 157 } 158 159 /* 160 * MII internal read callback 161 */ 162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id, 163 int regnum) 164 { 165 u32 tmp, val; 166 167 tmp = regnum << ENET_MIIDATA_REG_SHIFT; 168 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 169 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 170 tmp |= ENET_MIIDATA_OP_READ_MASK; 171 172 if (do_mdio_op(priv, tmp)) 173 return -1; 174 175 val = enet_readl(priv, ENET_MIIDATA_REG); 176 val &= 0xffff; 177 return val; 178 } 179 180 /* 181 * MII internal write callback 182 */ 183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id, 184 int regnum, u16 value) 185 { 186 u32 tmp; 187 188 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT; 189 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 190 tmp |= regnum << ENET_MIIDATA_REG_SHIFT; 191 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 192 tmp |= ENET_MIIDATA_OP_WRITE_MASK; 193 194 (void)do_mdio_op(priv, tmp); 195 return 0; 196 } 197 198 /* 199 * MII read callback from phylib 200 */ 201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id, 202 int regnum) 203 { 204 return bcm_enet_mdio_read(bus->priv, mii_id, regnum); 205 } 206 207 /* 208 * MII write callback from phylib 209 */ 210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id, 211 int regnum, u16 value) 212 { 213 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value); 214 } 215 216 /* 217 * MII read callback from mii core 218 */ 219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id, 220 int regnum) 221 { 222 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum); 223 } 224 225 /* 226 * MII write callback from mii core 227 */ 228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id, 229 int regnum, int value) 230 { 231 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value); 232 } 233 234 /* 235 * refill rx queue 236 */ 237 static int bcm_enet_refill_rx(struct net_device *dev) 238 { 239 struct bcm_enet_priv *priv; 240 241 priv = netdev_priv(dev); 242 243 while (priv->rx_desc_count < priv->rx_ring_size) { 244 struct bcm_enet_desc *desc; 245 struct sk_buff *skb; 246 dma_addr_t p; 247 int desc_idx; 248 u32 len_stat; 249 250 desc_idx = priv->rx_dirty_desc; 251 desc = &priv->rx_desc_cpu[desc_idx]; 252 253 if (!priv->rx_skb[desc_idx]) { 254 skb = netdev_alloc_skb(dev, priv->rx_skb_size); 255 if (!skb) 256 break; 257 priv->rx_skb[desc_idx] = skb; 258 p = dma_map_single(&priv->pdev->dev, skb->data, 259 priv->rx_skb_size, 260 DMA_FROM_DEVICE); 261 desc->address = p; 262 } 263 264 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT; 265 len_stat |= DMADESC_OWNER_MASK; 266 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) { 267 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 268 priv->rx_dirty_desc = 0; 269 } else { 270 priv->rx_dirty_desc++; 271 } 272 wmb(); 273 desc->len_stat = len_stat; 274 275 priv->rx_desc_count++; 276 277 /* tell dma engine we allocated one buffer */ 278 if (priv->dma_has_sram) 279 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan)); 280 else 281 enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan); 282 } 283 284 /* If rx ring is still empty, set a timer to try allocating 285 * again at a later time. */ 286 if (priv->rx_desc_count == 0 && netif_running(dev)) { 287 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n"); 288 priv->rx_timeout.expires = jiffies + HZ; 289 add_timer(&priv->rx_timeout); 290 } 291 292 return 0; 293 } 294 295 /* 296 * timer callback to defer refill rx queue in case we're OOM 297 */ 298 static void bcm_enet_refill_rx_timer(unsigned long data) 299 { 300 struct net_device *dev; 301 struct bcm_enet_priv *priv; 302 303 dev = (struct net_device *)data; 304 priv = netdev_priv(dev); 305 306 spin_lock(&priv->rx_lock); 307 bcm_enet_refill_rx((struct net_device *)data); 308 spin_unlock(&priv->rx_lock); 309 } 310 311 /* 312 * extract packet from rx queue 313 */ 314 static int bcm_enet_receive_queue(struct net_device *dev, int budget) 315 { 316 struct bcm_enet_priv *priv; 317 struct device *kdev; 318 int processed; 319 320 priv = netdev_priv(dev); 321 kdev = &priv->pdev->dev; 322 processed = 0; 323 324 /* don't scan ring further than number of refilled 325 * descriptor */ 326 if (budget > priv->rx_desc_count) 327 budget = priv->rx_desc_count; 328 329 do { 330 struct bcm_enet_desc *desc; 331 struct sk_buff *skb; 332 int desc_idx; 333 u32 len_stat; 334 unsigned int len; 335 336 desc_idx = priv->rx_curr_desc; 337 desc = &priv->rx_desc_cpu[desc_idx]; 338 339 /* make sure we actually read the descriptor status at 340 * each loop */ 341 rmb(); 342 343 len_stat = desc->len_stat; 344 345 /* break if dma ownership belongs to hw */ 346 if (len_stat & DMADESC_OWNER_MASK) 347 break; 348 349 processed++; 350 priv->rx_curr_desc++; 351 if (priv->rx_curr_desc == priv->rx_ring_size) 352 priv->rx_curr_desc = 0; 353 priv->rx_desc_count--; 354 355 /* if the packet does not have start of packet _and_ 356 * end of packet flag set, then just recycle it */ 357 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) != 358 (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) { 359 dev->stats.rx_dropped++; 360 continue; 361 } 362 363 /* recycle packet if it's marked as bad */ 364 if (!priv->enet_is_sw && 365 unlikely(len_stat & DMADESC_ERR_MASK)) { 366 dev->stats.rx_errors++; 367 368 if (len_stat & DMADESC_OVSIZE_MASK) 369 dev->stats.rx_length_errors++; 370 if (len_stat & DMADESC_CRC_MASK) 371 dev->stats.rx_crc_errors++; 372 if (len_stat & DMADESC_UNDER_MASK) 373 dev->stats.rx_frame_errors++; 374 if (len_stat & DMADESC_OV_MASK) 375 dev->stats.rx_fifo_errors++; 376 continue; 377 } 378 379 /* valid packet */ 380 skb = priv->rx_skb[desc_idx]; 381 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT; 382 /* don't include FCS */ 383 len -= 4; 384 385 if (len < copybreak) { 386 struct sk_buff *nskb; 387 388 nskb = napi_alloc_skb(&priv->napi, len); 389 if (!nskb) { 390 /* forget packet, just rearm desc */ 391 dev->stats.rx_dropped++; 392 continue; 393 } 394 395 dma_sync_single_for_cpu(kdev, desc->address, 396 len, DMA_FROM_DEVICE); 397 memcpy(nskb->data, skb->data, len); 398 dma_sync_single_for_device(kdev, desc->address, 399 len, DMA_FROM_DEVICE); 400 skb = nskb; 401 } else { 402 dma_unmap_single(&priv->pdev->dev, desc->address, 403 priv->rx_skb_size, DMA_FROM_DEVICE); 404 priv->rx_skb[desc_idx] = NULL; 405 } 406 407 skb_put(skb, len); 408 skb->protocol = eth_type_trans(skb, dev); 409 dev->stats.rx_packets++; 410 dev->stats.rx_bytes += len; 411 netif_receive_skb(skb); 412 413 } while (--budget > 0); 414 415 if (processed || !priv->rx_desc_count) { 416 bcm_enet_refill_rx(dev); 417 418 /* kick rx dma */ 419 enet_dmac_writel(priv, priv->dma_chan_en_mask, 420 ENETDMAC_CHANCFG, priv->rx_chan); 421 } 422 423 return processed; 424 } 425 426 427 /* 428 * try to or force reclaim of transmitted buffers 429 */ 430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force) 431 { 432 struct bcm_enet_priv *priv; 433 int released; 434 435 priv = netdev_priv(dev); 436 released = 0; 437 438 while (priv->tx_desc_count < priv->tx_ring_size) { 439 struct bcm_enet_desc *desc; 440 struct sk_buff *skb; 441 442 /* We run in a bh and fight against start_xmit, which 443 * is called with bh disabled */ 444 spin_lock(&priv->tx_lock); 445 446 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc]; 447 448 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) { 449 spin_unlock(&priv->tx_lock); 450 break; 451 } 452 453 /* ensure other field of the descriptor were not read 454 * before we checked ownership */ 455 rmb(); 456 457 skb = priv->tx_skb[priv->tx_dirty_desc]; 458 priv->tx_skb[priv->tx_dirty_desc] = NULL; 459 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len, 460 DMA_TO_DEVICE); 461 462 priv->tx_dirty_desc++; 463 if (priv->tx_dirty_desc == priv->tx_ring_size) 464 priv->tx_dirty_desc = 0; 465 priv->tx_desc_count++; 466 467 spin_unlock(&priv->tx_lock); 468 469 if (desc->len_stat & DMADESC_UNDER_MASK) 470 dev->stats.tx_errors++; 471 472 dev_kfree_skb(skb); 473 released++; 474 } 475 476 if (netif_queue_stopped(dev) && released) 477 netif_wake_queue(dev); 478 479 return released; 480 } 481 482 /* 483 * poll func, called by network core 484 */ 485 static int bcm_enet_poll(struct napi_struct *napi, int budget) 486 { 487 struct bcm_enet_priv *priv; 488 struct net_device *dev; 489 int rx_work_done; 490 491 priv = container_of(napi, struct bcm_enet_priv, napi); 492 dev = priv->net_dev; 493 494 /* ack interrupts */ 495 enet_dmac_writel(priv, priv->dma_chan_int_mask, 496 ENETDMAC_IR, priv->rx_chan); 497 enet_dmac_writel(priv, priv->dma_chan_int_mask, 498 ENETDMAC_IR, priv->tx_chan); 499 500 /* reclaim sent skb */ 501 bcm_enet_tx_reclaim(dev, 0); 502 503 spin_lock(&priv->rx_lock); 504 rx_work_done = bcm_enet_receive_queue(dev, budget); 505 spin_unlock(&priv->rx_lock); 506 507 if (rx_work_done >= budget) { 508 /* rx queue is not yet empty/clean */ 509 return rx_work_done; 510 } 511 512 /* no more packet in rx/tx queue, remove device from poll 513 * queue */ 514 napi_complete(napi); 515 516 /* restore rx/tx interrupt */ 517 enet_dmac_writel(priv, priv->dma_chan_int_mask, 518 ENETDMAC_IRMASK, priv->rx_chan); 519 enet_dmac_writel(priv, priv->dma_chan_int_mask, 520 ENETDMAC_IRMASK, priv->tx_chan); 521 522 return rx_work_done; 523 } 524 525 /* 526 * mac interrupt handler 527 */ 528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id) 529 { 530 struct net_device *dev; 531 struct bcm_enet_priv *priv; 532 u32 stat; 533 534 dev = dev_id; 535 priv = netdev_priv(dev); 536 537 stat = enet_readl(priv, ENET_IR_REG); 538 if (!(stat & ENET_IR_MIB)) 539 return IRQ_NONE; 540 541 /* clear & mask interrupt */ 542 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 543 enet_writel(priv, 0, ENET_IRMASK_REG); 544 545 /* read mib registers in workqueue */ 546 schedule_work(&priv->mib_update_task); 547 548 return IRQ_HANDLED; 549 } 550 551 /* 552 * rx/tx dma interrupt handler 553 */ 554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id) 555 { 556 struct net_device *dev; 557 struct bcm_enet_priv *priv; 558 559 dev = dev_id; 560 priv = netdev_priv(dev); 561 562 /* mask rx/tx interrupts */ 563 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 564 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 565 566 napi_schedule(&priv->napi); 567 568 return IRQ_HANDLED; 569 } 570 571 /* 572 * tx request callback 573 */ 574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 575 { 576 struct bcm_enet_priv *priv; 577 struct bcm_enet_desc *desc; 578 u32 len_stat; 579 int ret; 580 581 priv = netdev_priv(dev); 582 583 /* lock against tx reclaim */ 584 spin_lock(&priv->tx_lock); 585 586 /* make sure the tx hw queue is not full, should not happen 587 * since we stop queue before it's the case */ 588 if (unlikely(!priv->tx_desc_count)) { 589 netif_stop_queue(dev); 590 dev_err(&priv->pdev->dev, "xmit called with no tx desc " 591 "available?\n"); 592 ret = NETDEV_TX_BUSY; 593 goto out_unlock; 594 } 595 596 /* pad small packets sent on a switch device */ 597 if (priv->enet_is_sw && skb->len < 64) { 598 int needed = 64 - skb->len; 599 char *data; 600 601 if (unlikely(skb_tailroom(skb) < needed)) { 602 struct sk_buff *nskb; 603 604 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC); 605 if (!nskb) { 606 ret = NETDEV_TX_BUSY; 607 goto out_unlock; 608 } 609 dev_kfree_skb(skb); 610 skb = nskb; 611 } 612 data = skb_put(skb, needed); 613 memset(data, 0, needed); 614 } 615 616 /* point to the next available desc */ 617 desc = &priv->tx_desc_cpu[priv->tx_curr_desc]; 618 priv->tx_skb[priv->tx_curr_desc] = skb; 619 620 /* fill descriptor */ 621 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len, 622 DMA_TO_DEVICE); 623 624 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK; 625 len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) | 626 DMADESC_APPEND_CRC | 627 DMADESC_OWNER_MASK; 628 629 priv->tx_curr_desc++; 630 if (priv->tx_curr_desc == priv->tx_ring_size) { 631 priv->tx_curr_desc = 0; 632 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 633 } 634 priv->tx_desc_count--; 635 636 /* dma might be already polling, make sure we update desc 637 * fields in correct order */ 638 wmb(); 639 desc->len_stat = len_stat; 640 wmb(); 641 642 /* kick tx dma */ 643 enet_dmac_writel(priv, priv->dma_chan_en_mask, 644 ENETDMAC_CHANCFG, priv->tx_chan); 645 646 /* stop queue if no more desc available */ 647 if (!priv->tx_desc_count) 648 netif_stop_queue(dev); 649 650 dev->stats.tx_bytes += skb->len; 651 dev->stats.tx_packets++; 652 ret = NETDEV_TX_OK; 653 654 out_unlock: 655 spin_unlock(&priv->tx_lock); 656 return ret; 657 } 658 659 /* 660 * Change the interface's mac address. 661 */ 662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p) 663 { 664 struct bcm_enet_priv *priv; 665 struct sockaddr *addr = p; 666 u32 val; 667 668 priv = netdev_priv(dev); 669 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 670 671 /* use perfect match register 0 to store my mac address */ 672 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) | 673 (dev->dev_addr[4] << 8) | dev->dev_addr[5]; 674 enet_writel(priv, val, ENET_PML_REG(0)); 675 676 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]); 677 val |= ENET_PMH_DATAVALID_MASK; 678 enet_writel(priv, val, ENET_PMH_REG(0)); 679 680 return 0; 681 } 682 683 /* 684 * Change rx mode (promiscuous/allmulti) and update multicast list 685 */ 686 static void bcm_enet_set_multicast_list(struct net_device *dev) 687 { 688 struct bcm_enet_priv *priv; 689 struct netdev_hw_addr *ha; 690 u32 val; 691 int i; 692 693 priv = netdev_priv(dev); 694 695 val = enet_readl(priv, ENET_RXCFG_REG); 696 697 if (dev->flags & IFF_PROMISC) 698 val |= ENET_RXCFG_PROMISC_MASK; 699 else 700 val &= ~ENET_RXCFG_PROMISC_MASK; 701 702 /* only 3 perfect match registers left, first one is used for 703 * own mac address */ 704 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3) 705 val |= ENET_RXCFG_ALLMCAST_MASK; 706 else 707 val &= ~ENET_RXCFG_ALLMCAST_MASK; 708 709 /* no need to set perfect match registers if we catch all 710 * multicast */ 711 if (val & ENET_RXCFG_ALLMCAST_MASK) { 712 enet_writel(priv, val, ENET_RXCFG_REG); 713 return; 714 } 715 716 i = 0; 717 netdev_for_each_mc_addr(ha, dev) { 718 u8 *dmi_addr; 719 u32 tmp; 720 721 if (i == 3) 722 break; 723 /* update perfect match registers */ 724 dmi_addr = ha->addr; 725 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) | 726 (dmi_addr[4] << 8) | dmi_addr[5]; 727 enet_writel(priv, tmp, ENET_PML_REG(i + 1)); 728 729 tmp = (dmi_addr[0] << 8 | dmi_addr[1]); 730 tmp |= ENET_PMH_DATAVALID_MASK; 731 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1)); 732 } 733 734 for (; i < 3; i++) { 735 enet_writel(priv, 0, ENET_PML_REG(i + 1)); 736 enet_writel(priv, 0, ENET_PMH_REG(i + 1)); 737 } 738 739 enet_writel(priv, val, ENET_RXCFG_REG); 740 } 741 742 /* 743 * set mac duplex parameters 744 */ 745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex) 746 { 747 u32 val; 748 749 val = enet_readl(priv, ENET_TXCTL_REG); 750 if (fullduplex) 751 val |= ENET_TXCTL_FD_MASK; 752 else 753 val &= ~ENET_TXCTL_FD_MASK; 754 enet_writel(priv, val, ENET_TXCTL_REG); 755 } 756 757 /* 758 * set mac flow control parameters 759 */ 760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en) 761 { 762 u32 val; 763 764 /* rx flow control (pause frame handling) */ 765 val = enet_readl(priv, ENET_RXCFG_REG); 766 if (rx_en) 767 val |= ENET_RXCFG_ENFLOW_MASK; 768 else 769 val &= ~ENET_RXCFG_ENFLOW_MASK; 770 enet_writel(priv, val, ENET_RXCFG_REG); 771 772 if (!priv->dma_has_sram) 773 return; 774 775 /* tx flow control (pause frame generation) */ 776 val = enet_dma_readl(priv, ENETDMA_CFG_REG); 777 if (tx_en) 778 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 779 else 780 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 781 enet_dma_writel(priv, val, ENETDMA_CFG_REG); 782 } 783 784 /* 785 * link changed callback (from phylib) 786 */ 787 static void bcm_enet_adjust_phy_link(struct net_device *dev) 788 { 789 struct bcm_enet_priv *priv; 790 struct phy_device *phydev; 791 int status_changed; 792 793 priv = netdev_priv(dev); 794 phydev = priv->phydev; 795 status_changed = 0; 796 797 if (priv->old_link != phydev->link) { 798 status_changed = 1; 799 priv->old_link = phydev->link; 800 } 801 802 /* reflect duplex change in mac configuration */ 803 if (phydev->link && phydev->duplex != priv->old_duplex) { 804 bcm_enet_set_duplex(priv, 805 (phydev->duplex == DUPLEX_FULL) ? 1 : 0); 806 status_changed = 1; 807 priv->old_duplex = phydev->duplex; 808 } 809 810 /* enable flow control if remote advertise it (trust phylib to 811 * check that duplex is full */ 812 if (phydev->link && phydev->pause != priv->old_pause) { 813 int rx_pause_en, tx_pause_en; 814 815 if (phydev->pause) { 816 /* pause was advertised by lpa and us */ 817 rx_pause_en = 1; 818 tx_pause_en = 1; 819 } else if (!priv->pause_auto) { 820 /* pause setting overrided by user */ 821 rx_pause_en = priv->pause_rx; 822 tx_pause_en = priv->pause_tx; 823 } else { 824 rx_pause_en = 0; 825 tx_pause_en = 0; 826 } 827 828 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en); 829 status_changed = 1; 830 priv->old_pause = phydev->pause; 831 } 832 833 if (status_changed) { 834 pr_info("%s: link %s", dev->name, phydev->link ? 835 "UP" : "DOWN"); 836 if (phydev->link) 837 pr_cont(" - %d/%s - flow control %s", phydev->speed, 838 DUPLEX_FULL == phydev->duplex ? "full" : "half", 839 phydev->pause == 1 ? "rx&tx" : "off"); 840 841 pr_cont("\n"); 842 } 843 } 844 845 /* 846 * link changed callback (if phylib is not used) 847 */ 848 static void bcm_enet_adjust_link(struct net_device *dev) 849 { 850 struct bcm_enet_priv *priv; 851 852 priv = netdev_priv(dev); 853 bcm_enet_set_duplex(priv, priv->force_duplex_full); 854 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx); 855 netif_carrier_on(dev); 856 857 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n", 858 dev->name, 859 priv->force_speed_100 ? 100 : 10, 860 priv->force_duplex_full ? "full" : "half", 861 priv->pause_rx ? "rx" : "off", 862 priv->pause_tx ? "tx" : "off"); 863 } 864 865 /* 866 * open callback, allocate dma rings & buffers and start rx operation 867 */ 868 static int bcm_enet_open(struct net_device *dev) 869 { 870 struct bcm_enet_priv *priv; 871 struct sockaddr addr; 872 struct device *kdev; 873 struct phy_device *phydev; 874 int i, ret; 875 unsigned int size; 876 char phy_id[MII_BUS_ID_SIZE + 3]; 877 void *p; 878 u32 val; 879 880 priv = netdev_priv(dev); 881 kdev = &priv->pdev->dev; 882 883 if (priv->has_phy) { 884 /* connect to PHY */ 885 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 886 priv->mii_bus->id, priv->phy_id); 887 888 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link, 889 PHY_INTERFACE_MODE_MII); 890 891 if (IS_ERR(phydev)) { 892 dev_err(kdev, "could not attach to PHY\n"); 893 return PTR_ERR(phydev); 894 } 895 896 /* mask with MAC supported features */ 897 phydev->supported &= (SUPPORTED_10baseT_Half | 898 SUPPORTED_10baseT_Full | 899 SUPPORTED_100baseT_Half | 900 SUPPORTED_100baseT_Full | 901 SUPPORTED_Autoneg | 902 SUPPORTED_Pause | 903 SUPPORTED_MII); 904 phydev->advertising = phydev->supported; 905 906 if (priv->pause_auto && priv->pause_rx && priv->pause_tx) 907 phydev->advertising |= SUPPORTED_Pause; 908 else 909 phydev->advertising &= ~SUPPORTED_Pause; 910 911 dev_info(kdev, "attached PHY at address %d [%s]\n", 912 phydev->addr, phydev->drv->name); 913 914 priv->old_link = 0; 915 priv->old_duplex = -1; 916 priv->old_pause = -1; 917 priv->phydev = phydev; 918 } 919 920 /* mask all interrupts and request them */ 921 enet_writel(priv, 0, ENET_IRMASK_REG); 922 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 923 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 924 925 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev); 926 if (ret) 927 goto out_phy_disconnect; 928 929 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0, 930 dev->name, dev); 931 if (ret) 932 goto out_freeirq; 933 934 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 935 0, dev->name, dev); 936 if (ret) 937 goto out_freeirq_rx; 938 939 /* initialize perfect match registers */ 940 for (i = 0; i < 4; i++) { 941 enet_writel(priv, 0, ENET_PML_REG(i)); 942 enet_writel(priv, 0, ENET_PMH_REG(i)); 943 } 944 945 /* write device mac address */ 946 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN); 947 bcm_enet_set_mac_address(dev, &addr); 948 949 /* allocate rx dma ring */ 950 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 951 p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 952 if (!p) { 953 ret = -ENOMEM; 954 goto out_freeirq_tx; 955 } 956 957 priv->rx_desc_alloc_size = size; 958 priv->rx_desc_cpu = p; 959 960 /* allocate tx dma ring */ 961 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 962 p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 963 if (!p) { 964 ret = -ENOMEM; 965 goto out_free_rx_ring; 966 } 967 968 priv->tx_desc_alloc_size = size; 969 priv->tx_desc_cpu = p; 970 971 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *), 972 GFP_KERNEL); 973 if (!priv->tx_skb) { 974 ret = -ENOMEM; 975 goto out_free_tx_ring; 976 } 977 978 priv->tx_desc_count = priv->tx_ring_size; 979 priv->tx_dirty_desc = 0; 980 priv->tx_curr_desc = 0; 981 spin_lock_init(&priv->tx_lock); 982 983 /* init & fill rx ring with skbs */ 984 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *), 985 GFP_KERNEL); 986 if (!priv->rx_skb) { 987 ret = -ENOMEM; 988 goto out_free_tx_skb; 989 } 990 991 priv->rx_desc_count = 0; 992 priv->rx_dirty_desc = 0; 993 priv->rx_curr_desc = 0; 994 995 /* initialize flow control buffer allocation */ 996 if (priv->dma_has_sram) 997 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 998 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 999 else 1000 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 1001 ENETDMAC_BUFALLOC, priv->rx_chan); 1002 1003 if (bcm_enet_refill_rx(dev)) { 1004 dev_err(kdev, "cannot allocate rx skb queue\n"); 1005 ret = -ENOMEM; 1006 goto out; 1007 } 1008 1009 /* write rx & tx ring addresses */ 1010 if (priv->dma_has_sram) { 1011 enet_dmas_writel(priv, priv->rx_desc_dma, 1012 ENETDMAS_RSTART_REG, priv->rx_chan); 1013 enet_dmas_writel(priv, priv->tx_desc_dma, 1014 ENETDMAS_RSTART_REG, priv->tx_chan); 1015 } else { 1016 enet_dmac_writel(priv, priv->rx_desc_dma, 1017 ENETDMAC_RSTART, priv->rx_chan); 1018 enet_dmac_writel(priv, priv->tx_desc_dma, 1019 ENETDMAC_RSTART, priv->tx_chan); 1020 } 1021 1022 /* clear remaining state ram for rx & tx channel */ 1023 if (priv->dma_has_sram) { 1024 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 1025 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 1026 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 1027 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 1028 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 1029 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 1030 } else { 1031 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan); 1032 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan); 1033 } 1034 1035 /* set max rx/tx length */ 1036 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG); 1037 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG); 1038 1039 /* set dma maximum burst len */ 1040 enet_dmac_writel(priv, priv->dma_maxburst, 1041 ENETDMAC_MAXBURST, priv->rx_chan); 1042 enet_dmac_writel(priv, priv->dma_maxburst, 1043 ENETDMAC_MAXBURST, priv->tx_chan); 1044 1045 /* set correct transmit fifo watermark */ 1046 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG); 1047 1048 /* set flow control low/high threshold to 1/3 / 2/3 */ 1049 if (priv->dma_has_sram) { 1050 val = priv->rx_ring_size / 3; 1051 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 1052 val = (priv->rx_ring_size * 2) / 3; 1053 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 1054 } else { 1055 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan); 1056 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan); 1057 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan); 1058 } 1059 1060 /* all set, enable mac and interrupts, start dma engine and 1061 * kick rx dma channel */ 1062 wmb(); 1063 val = enet_readl(priv, ENET_CTL_REG); 1064 val |= ENET_CTL_ENABLE_MASK; 1065 enet_writel(priv, val, ENET_CTL_REG); 1066 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 1067 enet_dmac_writel(priv, priv->dma_chan_en_mask, 1068 ENETDMAC_CHANCFG, priv->rx_chan); 1069 1070 /* watch "mib counters about to overflow" interrupt */ 1071 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 1072 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1073 1074 /* watch "packet transferred" interrupt in rx and tx */ 1075 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1076 ENETDMAC_IR, priv->rx_chan); 1077 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1078 ENETDMAC_IR, priv->tx_chan); 1079 1080 /* make sure we enable napi before rx interrupt */ 1081 napi_enable(&priv->napi); 1082 1083 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1084 ENETDMAC_IRMASK, priv->rx_chan); 1085 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1086 ENETDMAC_IRMASK, priv->tx_chan); 1087 1088 if (priv->has_phy) 1089 phy_start(priv->phydev); 1090 else 1091 bcm_enet_adjust_link(dev); 1092 1093 netif_start_queue(dev); 1094 return 0; 1095 1096 out: 1097 for (i = 0; i < priv->rx_ring_size; i++) { 1098 struct bcm_enet_desc *desc; 1099 1100 if (!priv->rx_skb[i]) 1101 continue; 1102 1103 desc = &priv->rx_desc_cpu[i]; 1104 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1105 DMA_FROM_DEVICE); 1106 kfree_skb(priv->rx_skb[i]); 1107 } 1108 kfree(priv->rx_skb); 1109 1110 out_free_tx_skb: 1111 kfree(priv->tx_skb); 1112 1113 out_free_tx_ring: 1114 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1115 priv->tx_desc_cpu, priv->tx_desc_dma); 1116 1117 out_free_rx_ring: 1118 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1119 priv->rx_desc_cpu, priv->rx_desc_dma); 1120 1121 out_freeirq_tx: 1122 free_irq(priv->irq_tx, dev); 1123 1124 out_freeirq_rx: 1125 free_irq(priv->irq_rx, dev); 1126 1127 out_freeirq: 1128 free_irq(dev->irq, dev); 1129 1130 out_phy_disconnect: 1131 phy_disconnect(priv->phydev); 1132 1133 return ret; 1134 } 1135 1136 /* 1137 * disable mac 1138 */ 1139 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv) 1140 { 1141 int limit; 1142 u32 val; 1143 1144 val = enet_readl(priv, ENET_CTL_REG); 1145 val |= ENET_CTL_DISABLE_MASK; 1146 enet_writel(priv, val, ENET_CTL_REG); 1147 1148 limit = 1000; 1149 do { 1150 u32 val; 1151 1152 val = enet_readl(priv, ENET_CTL_REG); 1153 if (!(val & ENET_CTL_DISABLE_MASK)) 1154 break; 1155 udelay(1); 1156 } while (limit--); 1157 } 1158 1159 /* 1160 * disable dma in given channel 1161 */ 1162 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan) 1163 { 1164 int limit; 1165 1166 enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan); 1167 1168 limit = 1000; 1169 do { 1170 u32 val; 1171 1172 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan); 1173 if (!(val & ENETDMAC_CHANCFG_EN_MASK)) 1174 break; 1175 udelay(1); 1176 } while (limit--); 1177 } 1178 1179 /* 1180 * stop callback 1181 */ 1182 static int bcm_enet_stop(struct net_device *dev) 1183 { 1184 struct bcm_enet_priv *priv; 1185 struct device *kdev; 1186 int i; 1187 1188 priv = netdev_priv(dev); 1189 kdev = &priv->pdev->dev; 1190 1191 netif_stop_queue(dev); 1192 napi_disable(&priv->napi); 1193 if (priv->has_phy) 1194 phy_stop(priv->phydev); 1195 del_timer_sync(&priv->rx_timeout); 1196 1197 /* mask all interrupts */ 1198 enet_writel(priv, 0, ENET_IRMASK_REG); 1199 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 1200 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 1201 1202 /* make sure no mib update is scheduled */ 1203 cancel_work_sync(&priv->mib_update_task); 1204 1205 /* disable dma & mac */ 1206 bcm_enet_disable_dma(priv, priv->tx_chan); 1207 bcm_enet_disable_dma(priv, priv->rx_chan); 1208 bcm_enet_disable_mac(priv); 1209 1210 /* force reclaim of all tx buffers */ 1211 bcm_enet_tx_reclaim(dev, 1); 1212 1213 /* free the rx skb ring */ 1214 for (i = 0; i < priv->rx_ring_size; i++) { 1215 struct bcm_enet_desc *desc; 1216 1217 if (!priv->rx_skb[i]) 1218 continue; 1219 1220 desc = &priv->rx_desc_cpu[i]; 1221 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1222 DMA_FROM_DEVICE); 1223 kfree_skb(priv->rx_skb[i]); 1224 } 1225 1226 /* free remaining allocated memory */ 1227 kfree(priv->rx_skb); 1228 kfree(priv->tx_skb); 1229 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1230 priv->rx_desc_cpu, priv->rx_desc_dma); 1231 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1232 priv->tx_desc_cpu, priv->tx_desc_dma); 1233 free_irq(priv->irq_tx, dev); 1234 free_irq(priv->irq_rx, dev); 1235 free_irq(dev->irq, dev); 1236 1237 /* release phy */ 1238 if (priv->has_phy) { 1239 phy_disconnect(priv->phydev); 1240 priv->phydev = NULL; 1241 } 1242 1243 return 0; 1244 } 1245 1246 /* 1247 * ethtool callbacks 1248 */ 1249 struct bcm_enet_stats { 1250 char stat_string[ETH_GSTRING_LEN]; 1251 int sizeof_stat; 1252 int stat_offset; 1253 int mib_reg; 1254 }; 1255 1256 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \ 1257 offsetof(struct bcm_enet_priv, m) 1258 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \ 1259 offsetof(struct net_device_stats, m) 1260 1261 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = { 1262 { "rx_packets", DEV_STAT(rx_packets), -1 }, 1263 { "tx_packets", DEV_STAT(tx_packets), -1 }, 1264 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 1265 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 1266 { "rx_errors", DEV_STAT(rx_errors), -1 }, 1267 { "tx_errors", DEV_STAT(tx_errors), -1 }, 1268 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 1269 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 1270 1271 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS}, 1272 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS }, 1273 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST }, 1274 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT }, 1275 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 }, 1276 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 }, 1277 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 }, 1278 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 }, 1279 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 }, 1280 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX }, 1281 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB }, 1282 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR }, 1283 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG }, 1284 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP }, 1285 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN }, 1286 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND }, 1287 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC }, 1288 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN }, 1289 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM }, 1290 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE }, 1291 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL }, 1292 1293 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS }, 1294 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS }, 1295 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST }, 1296 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT }, 1297 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 }, 1298 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 }, 1299 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 }, 1300 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 }, 1301 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023}, 1302 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX }, 1303 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB }, 1304 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR }, 1305 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG }, 1306 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN }, 1307 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL }, 1308 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL }, 1309 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL }, 1310 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL }, 1311 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE }, 1312 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF }, 1313 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS }, 1314 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE }, 1315 1316 }; 1317 1318 #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats) 1319 1320 static const u32 unused_mib_regs[] = { 1321 ETH_MIB_TX_ALL_OCTETS, 1322 ETH_MIB_TX_ALL_PKTS, 1323 ETH_MIB_RX_ALL_OCTETS, 1324 ETH_MIB_RX_ALL_PKTS, 1325 }; 1326 1327 1328 static void bcm_enet_get_drvinfo(struct net_device *netdev, 1329 struct ethtool_drvinfo *drvinfo) 1330 { 1331 strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver)); 1332 strlcpy(drvinfo->version, bcm_enet_driver_version, 1333 sizeof(drvinfo->version)); 1334 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version)); 1335 strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info)); 1336 drvinfo->n_stats = BCM_ENET_STATS_LEN; 1337 } 1338 1339 static int bcm_enet_get_sset_count(struct net_device *netdev, 1340 int string_set) 1341 { 1342 switch (string_set) { 1343 case ETH_SS_STATS: 1344 return BCM_ENET_STATS_LEN; 1345 default: 1346 return -EINVAL; 1347 } 1348 } 1349 1350 static void bcm_enet_get_strings(struct net_device *netdev, 1351 u32 stringset, u8 *data) 1352 { 1353 int i; 1354 1355 switch (stringset) { 1356 case ETH_SS_STATS: 1357 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1358 memcpy(data + i * ETH_GSTRING_LEN, 1359 bcm_enet_gstrings_stats[i].stat_string, 1360 ETH_GSTRING_LEN); 1361 } 1362 break; 1363 } 1364 } 1365 1366 static void update_mib_counters(struct bcm_enet_priv *priv) 1367 { 1368 int i; 1369 1370 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1371 const struct bcm_enet_stats *s; 1372 u32 val; 1373 char *p; 1374 1375 s = &bcm_enet_gstrings_stats[i]; 1376 if (s->mib_reg == -1) 1377 continue; 1378 1379 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg)); 1380 p = (char *)priv + s->stat_offset; 1381 1382 if (s->sizeof_stat == sizeof(u64)) 1383 *(u64 *)p += val; 1384 else 1385 *(u32 *)p += val; 1386 } 1387 1388 /* also empty unused mib counters to make sure mib counter 1389 * overflow interrupt is cleared */ 1390 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++) 1391 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i])); 1392 } 1393 1394 static void bcm_enet_update_mib_counters_defer(struct work_struct *t) 1395 { 1396 struct bcm_enet_priv *priv; 1397 1398 priv = container_of(t, struct bcm_enet_priv, mib_update_task); 1399 mutex_lock(&priv->mib_update_lock); 1400 update_mib_counters(priv); 1401 mutex_unlock(&priv->mib_update_lock); 1402 1403 /* reenable mib interrupt */ 1404 if (netif_running(priv->net_dev)) 1405 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1406 } 1407 1408 static void bcm_enet_get_ethtool_stats(struct net_device *netdev, 1409 struct ethtool_stats *stats, 1410 u64 *data) 1411 { 1412 struct bcm_enet_priv *priv; 1413 int i; 1414 1415 priv = netdev_priv(netdev); 1416 1417 mutex_lock(&priv->mib_update_lock); 1418 update_mib_counters(priv); 1419 1420 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1421 const struct bcm_enet_stats *s; 1422 char *p; 1423 1424 s = &bcm_enet_gstrings_stats[i]; 1425 if (s->mib_reg == -1) 1426 p = (char *)&netdev->stats; 1427 else 1428 p = (char *)priv; 1429 p += s->stat_offset; 1430 data[i] = (s->sizeof_stat == sizeof(u64)) ? 1431 *(u64 *)p : *(u32 *)p; 1432 } 1433 mutex_unlock(&priv->mib_update_lock); 1434 } 1435 1436 static int bcm_enet_nway_reset(struct net_device *dev) 1437 { 1438 struct bcm_enet_priv *priv; 1439 1440 priv = netdev_priv(dev); 1441 if (priv->has_phy) { 1442 if (!priv->phydev) 1443 return -ENODEV; 1444 return genphy_restart_aneg(priv->phydev); 1445 } 1446 1447 return -EOPNOTSUPP; 1448 } 1449 1450 static int bcm_enet_get_settings(struct net_device *dev, 1451 struct ethtool_cmd *cmd) 1452 { 1453 struct bcm_enet_priv *priv; 1454 1455 priv = netdev_priv(dev); 1456 1457 cmd->maxrxpkt = 0; 1458 cmd->maxtxpkt = 0; 1459 1460 if (priv->has_phy) { 1461 if (!priv->phydev) 1462 return -ENODEV; 1463 return phy_ethtool_gset(priv->phydev, cmd); 1464 } else { 1465 cmd->autoneg = 0; 1466 ethtool_cmd_speed_set(cmd, ((priv->force_speed_100) 1467 ? SPEED_100 : SPEED_10)); 1468 cmd->duplex = (priv->force_duplex_full) ? 1469 DUPLEX_FULL : DUPLEX_HALF; 1470 cmd->supported = ADVERTISED_10baseT_Half | 1471 ADVERTISED_10baseT_Full | 1472 ADVERTISED_100baseT_Half | 1473 ADVERTISED_100baseT_Full; 1474 cmd->advertising = 0; 1475 cmd->port = PORT_MII; 1476 cmd->transceiver = XCVR_EXTERNAL; 1477 } 1478 return 0; 1479 } 1480 1481 static int bcm_enet_set_settings(struct net_device *dev, 1482 struct ethtool_cmd *cmd) 1483 { 1484 struct bcm_enet_priv *priv; 1485 1486 priv = netdev_priv(dev); 1487 if (priv->has_phy) { 1488 if (!priv->phydev) 1489 return -ENODEV; 1490 return phy_ethtool_sset(priv->phydev, cmd); 1491 } else { 1492 1493 if (cmd->autoneg || 1494 (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) || 1495 cmd->port != PORT_MII) 1496 return -EINVAL; 1497 1498 priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0; 1499 priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0; 1500 1501 if (netif_running(dev)) 1502 bcm_enet_adjust_link(dev); 1503 return 0; 1504 } 1505 } 1506 1507 static void bcm_enet_get_ringparam(struct net_device *dev, 1508 struct ethtool_ringparam *ering) 1509 { 1510 struct bcm_enet_priv *priv; 1511 1512 priv = netdev_priv(dev); 1513 1514 /* rx/tx ring is actually only limited by memory */ 1515 ering->rx_max_pending = 8192; 1516 ering->tx_max_pending = 8192; 1517 ering->rx_pending = priv->rx_ring_size; 1518 ering->tx_pending = priv->tx_ring_size; 1519 } 1520 1521 static int bcm_enet_set_ringparam(struct net_device *dev, 1522 struct ethtool_ringparam *ering) 1523 { 1524 struct bcm_enet_priv *priv; 1525 int was_running; 1526 1527 priv = netdev_priv(dev); 1528 1529 was_running = 0; 1530 if (netif_running(dev)) { 1531 bcm_enet_stop(dev); 1532 was_running = 1; 1533 } 1534 1535 priv->rx_ring_size = ering->rx_pending; 1536 priv->tx_ring_size = ering->tx_pending; 1537 1538 if (was_running) { 1539 int err; 1540 1541 err = bcm_enet_open(dev); 1542 if (err) 1543 dev_close(dev); 1544 else 1545 bcm_enet_set_multicast_list(dev); 1546 } 1547 return 0; 1548 } 1549 1550 static void bcm_enet_get_pauseparam(struct net_device *dev, 1551 struct ethtool_pauseparam *ecmd) 1552 { 1553 struct bcm_enet_priv *priv; 1554 1555 priv = netdev_priv(dev); 1556 ecmd->autoneg = priv->pause_auto; 1557 ecmd->rx_pause = priv->pause_rx; 1558 ecmd->tx_pause = priv->pause_tx; 1559 } 1560 1561 static int bcm_enet_set_pauseparam(struct net_device *dev, 1562 struct ethtool_pauseparam *ecmd) 1563 { 1564 struct bcm_enet_priv *priv; 1565 1566 priv = netdev_priv(dev); 1567 1568 if (priv->has_phy) { 1569 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) { 1570 /* asymetric pause mode not supported, 1571 * actually possible but integrated PHY has RO 1572 * asym_pause bit */ 1573 return -EINVAL; 1574 } 1575 } else { 1576 /* no pause autoneg on direct mii connection */ 1577 if (ecmd->autoneg) 1578 return -EINVAL; 1579 } 1580 1581 priv->pause_auto = ecmd->autoneg; 1582 priv->pause_rx = ecmd->rx_pause; 1583 priv->pause_tx = ecmd->tx_pause; 1584 1585 return 0; 1586 } 1587 1588 static const struct ethtool_ops bcm_enet_ethtool_ops = { 1589 .get_strings = bcm_enet_get_strings, 1590 .get_sset_count = bcm_enet_get_sset_count, 1591 .get_ethtool_stats = bcm_enet_get_ethtool_stats, 1592 .nway_reset = bcm_enet_nway_reset, 1593 .get_settings = bcm_enet_get_settings, 1594 .set_settings = bcm_enet_set_settings, 1595 .get_drvinfo = bcm_enet_get_drvinfo, 1596 .get_link = ethtool_op_get_link, 1597 .get_ringparam = bcm_enet_get_ringparam, 1598 .set_ringparam = bcm_enet_set_ringparam, 1599 .get_pauseparam = bcm_enet_get_pauseparam, 1600 .set_pauseparam = bcm_enet_set_pauseparam, 1601 }; 1602 1603 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1604 { 1605 struct bcm_enet_priv *priv; 1606 1607 priv = netdev_priv(dev); 1608 if (priv->has_phy) { 1609 if (!priv->phydev) 1610 return -ENODEV; 1611 return phy_mii_ioctl(priv->phydev, rq, cmd); 1612 } else { 1613 struct mii_if_info mii; 1614 1615 mii.dev = dev; 1616 mii.mdio_read = bcm_enet_mdio_read_mii; 1617 mii.mdio_write = bcm_enet_mdio_write_mii; 1618 mii.phy_id = 0; 1619 mii.phy_id_mask = 0x3f; 1620 mii.reg_num_mask = 0x1f; 1621 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 1622 } 1623 } 1624 1625 /* 1626 * calculate actual hardware mtu 1627 */ 1628 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu) 1629 { 1630 int actual_mtu; 1631 1632 actual_mtu = mtu; 1633 1634 /* add ethernet header + vlan tag size */ 1635 actual_mtu += VLAN_ETH_HLEN; 1636 1637 if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU) 1638 return -EINVAL; 1639 1640 /* 1641 * setup maximum size before we get overflow mark in 1642 * descriptor, note that this will not prevent reception of 1643 * big frames, they will be split into multiple buffers 1644 * anyway 1645 */ 1646 priv->hw_mtu = actual_mtu; 1647 1648 /* 1649 * align rx buffer size to dma burst len, account FCS since 1650 * it's appended 1651 */ 1652 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN, 1653 priv->dma_maxburst * 4); 1654 return 0; 1655 } 1656 1657 /* 1658 * adjust mtu, can't be called while device is running 1659 */ 1660 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu) 1661 { 1662 int ret; 1663 1664 if (netif_running(dev)) 1665 return -EBUSY; 1666 1667 ret = compute_hw_mtu(netdev_priv(dev), new_mtu); 1668 if (ret) 1669 return ret; 1670 dev->mtu = new_mtu; 1671 return 0; 1672 } 1673 1674 /* 1675 * preinit hardware to allow mii operation while device is down 1676 */ 1677 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv) 1678 { 1679 u32 val; 1680 int limit; 1681 1682 /* make sure mac is disabled */ 1683 bcm_enet_disable_mac(priv); 1684 1685 /* soft reset mac */ 1686 val = ENET_CTL_SRESET_MASK; 1687 enet_writel(priv, val, ENET_CTL_REG); 1688 wmb(); 1689 1690 limit = 1000; 1691 do { 1692 val = enet_readl(priv, ENET_CTL_REG); 1693 if (!(val & ENET_CTL_SRESET_MASK)) 1694 break; 1695 udelay(1); 1696 } while (limit--); 1697 1698 /* select correct mii interface */ 1699 val = enet_readl(priv, ENET_CTL_REG); 1700 if (priv->use_external_mii) 1701 val |= ENET_CTL_EPHYSEL_MASK; 1702 else 1703 val &= ~ENET_CTL_EPHYSEL_MASK; 1704 enet_writel(priv, val, ENET_CTL_REG); 1705 1706 /* turn on mdc clock */ 1707 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) | 1708 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG); 1709 1710 /* set mib counters to self-clear when read */ 1711 val = enet_readl(priv, ENET_MIBCTL_REG); 1712 val |= ENET_MIBCTL_RDCLEAR_MASK; 1713 enet_writel(priv, val, ENET_MIBCTL_REG); 1714 } 1715 1716 static const struct net_device_ops bcm_enet_ops = { 1717 .ndo_open = bcm_enet_open, 1718 .ndo_stop = bcm_enet_stop, 1719 .ndo_start_xmit = bcm_enet_start_xmit, 1720 .ndo_set_mac_address = bcm_enet_set_mac_address, 1721 .ndo_set_rx_mode = bcm_enet_set_multicast_list, 1722 .ndo_do_ioctl = bcm_enet_ioctl, 1723 .ndo_change_mtu = bcm_enet_change_mtu, 1724 }; 1725 1726 /* 1727 * allocate netdevice, request register memory and register device. 1728 */ 1729 static int bcm_enet_probe(struct platform_device *pdev) 1730 { 1731 struct bcm_enet_priv *priv; 1732 struct net_device *dev; 1733 struct bcm63xx_enet_platform_data *pd; 1734 struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx; 1735 struct mii_bus *bus; 1736 const char *clk_name; 1737 int i, ret; 1738 1739 /* stop if shared driver failed, assume driver->probe will be 1740 * called in the same order we register devices (correct ?) */ 1741 if (!bcm_enet_shared_base[0]) 1742 return -ENODEV; 1743 1744 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1745 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1); 1746 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2); 1747 if (!res_irq || !res_irq_rx || !res_irq_tx) 1748 return -ENODEV; 1749 1750 ret = 0; 1751 dev = alloc_etherdev(sizeof(*priv)); 1752 if (!dev) 1753 return -ENOMEM; 1754 priv = netdev_priv(dev); 1755 1756 priv->enet_is_sw = false; 1757 priv->dma_maxburst = BCMENET_DMA_MAXBURST; 1758 1759 ret = compute_hw_mtu(priv, dev->mtu); 1760 if (ret) 1761 goto out; 1762 1763 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1764 priv->base = devm_ioremap_resource(&pdev->dev, res_mem); 1765 if (IS_ERR(priv->base)) { 1766 ret = PTR_ERR(priv->base); 1767 goto out; 1768 } 1769 1770 dev->irq = priv->irq = res_irq->start; 1771 priv->irq_rx = res_irq_rx->start; 1772 priv->irq_tx = res_irq_tx->start; 1773 priv->mac_id = pdev->id; 1774 1775 /* get rx & tx dma channel id for this mac */ 1776 if (priv->mac_id == 0) { 1777 priv->rx_chan = 0; 1778 priv->tx_chan = 1; 1779 clk_name = "enet0"; 1780 } else { 1781 priv->rx_chan = 2; 1782 priv->tx_chan = 3; 1783 clk_name = "enet1"; 1784 } 1785 1786 priv->mac_clk = clk_get(&pdev->dev, clk_name); 1787 if (IS_ERR(priv->mac_clk)) { 1788 ret = PTR_ERR(priv->mac_clk); 1789 goto out; 1790 } 1791 clk_prepare_enable(priv->mac_clk); 1792 1793 /* initialize default and fetch platform data */ 1794 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 1795 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 1796 1797 pd = dev_get_platdata(&pdev->dev); 1798 if (pd) { 1799 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 1800 priv->has_phy = pd->has_phy; 1801 priv->phy_id = pd->phy_id; 1802 priv->has_phy_interrupt = pd->has_phy_interrupt; 1803 priv->phy_interrupt = pd->phy_interrupt; 1804 priv->use_external_mii = !pd->use_internal_phy; 1805 priv->pause_auto = pd->pause_auto; 1806 priv->pause_rx = pd->pause_rx; 1807 priv->pause_tx = pd->pause_tx; 1808 priv->force_duplex_full = pd->force_duplex_full; 1809 priv->force_speed_100 = pd->force_speed_100; 1810 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 1811 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 1812 priv->dma_chan_width = pd->dma_chan_width; 1813 priv->dma_has_sram = pd->dma_has_sram; 1814 priv->dma_desc_shift = pd->dma_desc_shift; 1815 } 1816 1817 if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) { 1818 /* using internal PHY, enable clock */ 1819 priv->phy_clk = clk_get(&pdev->dev, "ephy"); 1820 if (IS_ERR(priv->phy_clk)) { 1821 ret = PTR_ERR(priv->phy_clk); 1822 priv->phy_clk = NULL; 1823 goto out_put_clk_mac; 1824 } 1825 clk_prepare_enable(priv->phy_clk); 1826 } 1827 1828 /* do minimal hardware init to be able to probe mii bus */ 1829 bcm_enet_hw_preinit(priv); 1830 1831 /* MII bus registration */ 1832 if (priv->has_phy) { 1833 1834 priv->mii_bus = mdiobus_alloc(); 1835 if (!priv->mii_bus) { 1836 ret = -ENOMEM; 1837 goto out_uninit_hw; 1838 } 1839 1840 bus = priv->mii_bus; 1841 bus->name = "bcm63xx_enet MII bus"; 1842 bus->parent = &pdev->dev; 1843 bus->priv = priv; 1844 bus->read = bcm_enet_mdio_read_phylib; 1845 bus->write = bcm_enet_mdio_write_phylib; 1846 sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id); 1847 1848 /* only probe bus where we think the PHY is, because 1849 * the mdio read operation return 0 instead of 0xffff 1850 * if a slave is not present on hw */ 1851 bus->phy_mask = ~(1 << priv->phy_id); 1852 1853 bus->irq = devm_kzalloc(&pdev->dev, sizeof(int) * PHY_MAX_ADDR, 1854 GFP_KERNEL); 1855 if (!bus->irq) { 1856 ret = -ENOMEM; 1857 goto out_free_mdio; 1858 } 1859 1860 if (priv->has_phy_interrupt) 1861 bus->irq[priv->phy_id] = priv->phy_interrupt; 1862 else 1863 bus->irq[priv->phy_id] = PHY_POLL; 1864 1865 ret = mdiobus_register(bus); 1866 if (ret) { 1867 dev_err(&pdev->dev, "unable to register mdio bus\n"); 1868 goto out_free_mdio; 1869 } 1870 } else { 1871 1872 /* run platform code to initialize PHY device */ 1873 if (pd->mii_config && 1874 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii, 1875 bcm_enet_mdio_write_mii)) { 1876 dev_err(&pdev->dev, "unable to configure mdio bus\n"); 1877 goto out_uninit_hw; 1878 } 1879 } 1880 1881 spin_lock_init(&priv->rx_lock); 1882 1883 /* init rx timeout (used for oom) */ 1884 init_timer(&priv->rx_timeout); 1885 priv->rx_timeout.function = bcm_enet_refill_rx_timer; 1886 priv->rx_timeout.data = (unsigned long)dev; 1887 1888 /* init the mib update lock&work */ 1889 mutex_init(&priv->mib_update_lock); 1890 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer); 1891 1892 /* zero mib counters */ 1893 for (i = 0; i < ENET_MIB_REG_COUNT; i++) 1894 enet_writel(priv, 0, ENET_MIB_REG(i)); 1895 1896 /* register netdevice */ 1897 dev->netdev_ops = &bcm_enet_ops; 1898 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 1899 1900 dev->ethtool_ops = &bcm_enet_ethtool_ops; 1901 SET_NETDEV_DEV(dev, &pdev->dev); 1902 1903 ret = register_netdev(dev); 1904 if (ret) 1905 goto out_unregister_mdio; 1906 1907 netif_carrier_off(dev); 1908 platform_set_drvdata(pdev, dev); 1909 priv->pdev = pdev; 1910 priv->net_dev = dev; 1911 1912 return 0; 1913 1914 out_unregister_mdio: 1915 if (priv->mii_bus) 1916 mdiobus_unregister(priv->mii_bus); 1917 1918 out_free_mdio: 1919 if (priv->mii_bus) 1920 mdiobus_free(priv->mii_bus); 1921 1922 out_uninit_hw: 1923 /* turn off mdc clock */ 1924 enet_writel(priv, 0, ENET_MIISC_REG); 1925 if (priv->phy_clk) { 1926 clk_disable_unprepare(priv->phy_clk); 1927 clk_put(priv->phy_clk); 1928 } 1929 1930 out_put_clk_mac: 1931 clk_disable_unprepare(priv->mac_clk); 1932 clk_put(priv->mac_clk); 1933 out: 1934 free_netdev(dev); 1935 return ret; 1936 } 1937 1938 1939 /* 1940 * exit func, stops hardware and unregisters netdevice 1941 */ 1942 static int bcm_enet_remove(struct platform_device *pdev) 1943 { 1944 struct bcm_enet_priv *priv; 1945 struct net_device *dev; 1946 1947 /* stop netdevice */ 1948 dev = platform_get_drvdata(pdev); 1949 priv = netdev_priv(dev); 1950 unregister_netdev(dev); 1951 1952 /* turn off mdc clock */ 1953 enet_writel(priv, 0, ENET_MIISC_REG); 1954 1955 if (priv->has_phy) { 1956 mdiobus_unregister(priv->mii_bus); 1957 mdiobus_free(priv->mii_bus); 1958 } else { 1959 struct bcm63xx_enet_platform_data *pd; 1960 1961 pd = dev_get_platdata(&pdev->dev); 1962 if (pd && pd->mii_config) 1963 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii, 1964 bcm_enet_mdio_write_mii); 1965 } 1966 1967 /* disable hw block clocks */ 1968 if (priv->phy_clk) { 1969 clk_disable_unprepare(priv->phy_clk); 1970 clk_put(priv->phy_clk); 1971 } 1972 clk_disable_unprepare(priv->mac_clk); 1973 clk_put(priv->mac_clk); 1974 1975 free_netdev(dev); 1976 return 0; 1977 } 1978 1979 struct platform_driver bcm63xx_enet_driver = { 1980 .probe = bcm_enet_probe, 1981 .remove = bcm_enet_remove, 1982 .driver = { 1983 .name = "bcm63xx_enet", 1984 .owner = THIS_MODULE, 1985 }, 1986 }; 1987 1988 /* 1989 * switch mii access callbacks 1990 */ 1991 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv, 1992 int ext, int phy_id, int location) 1993 { 1994 u32 reg; 1995 int ret; 1996 1997 spin_lock_bh(&priv->enetsw_mdio_lock); 1998 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 1999 2000 reg = ENETSW_MDIOC_RD_MASK | 2001 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 2002 (location << ENETSW_MDIOC_REG_SHIFT); 2003 2004 if (ext) 2005 reg |= ENETSW_MDIOC_EXT_MASK; 2006 2007 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 2008 udelay(50); 2009 ret = enetsw_readw(priv, ENETSW_MDIOD_REG); 2010 spin_unlock_bh(&priv->enetsw_mdio_lock); 2011 return ret; 2012 } 2013 2014 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv, 2015 int ext, int phy_id, int location, 2016 uint16_t data) 2017 { 2018 u32 reg; 2019 2020 spin_lock_bh(&priv->enetsw_mdio_lock); 2021 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 2022 2023 reg = ENETSW_MDIOC_WR_MASK | 2024 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 2025 (location << ENETSW_MDIOC_REG_SHIFT); 2026 2027 if (ext) 2028 reg |= ENETSW_MDIOC_EXT_MASK; 2029 2030 reg |= data; 2031 2032 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 2033 udelay(50); 2034 spin_unlock_bh(&priv->enetsw_mdio_lock); 2035 } 2036 2037 static inline int bcm_enet_port_is_rgmii(int portid) 2038 { 2039 return portid >= ENETSW_RGMII_PORT0; 2040 } 2041 2042 /* 2043 * enet sw PHY polling 2044 */ 2045 static void swphy_poll_timer(unsigned long data) 2046 { 2047 struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data; 2048 unsigned int i; 2049 2050 for (i = 0; i < priv->num_ports; i++) { 2051 struct bcm63xx_enetsw_port *port; 2052 int val, j, up, advertise, lpa, lpa2, speed, duplex, media; 2053 int external_phy = bcm_enet_port_is_rgmii(i); 2054 u8 override; 2055 2056 port = &priv->used_ports[i]; 2057 if (!port->used) 2058 continue; 2059 2060 if (port->bypass_link) 2061 continue; 2062 2063 /* dummy read to clear */ 2064 for (j = 0; j < 2; j++) 2065 val = bcmenet_sw_mdio_read(priv, external_phy, 2066 port->phy_id, MII_BMSR); 2067 2068 if (val == 0xffff) 2069 continue; 2070 2071 up = (val & BMSR_LSTATUS) ? 1 : 0; 2072 if (!(up ^ priv->sw_port_link[i])) 2073 continue; 2074 2075 priv->sw_port_link[i] = up; 2076 2077 /* link changed */ 2078 if (!up) { 2079 dev_info(&priv->pdev->dev, "link DOWN on %s\n", 2080 port->name); 2081 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2082 ENETSW_PORTOV_REG(i)); 2083 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2084 ENETSW_PTCTRL_TXDIS_MASK, 2085 ENETSW_PTCTRL_REG(i)); 2086 continue; 2087 } 2088 2089 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2090 port->phy_id, MII_ADVERTISE); 2091 2092 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id, 2093 MII_LPA); 2094 2095 lpa2 = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id, 2096 MII_STAT1000); 2097 2098 /* figure out media and duplex from advertise and LPA values */ 2099 media = mii_nway_result(lpa & advertise); 2100 duplex = (media & ADVERTISE_FULL) ? 1 : 0; 2101 if (lpa2 & LPA_1000FULL) 2102 duplex = 1; 2103 2104 if (lpa2 & (LPA_1000FULL | LPA_1000HALF)) 2105 speed = 1000; 2106 else { 2107 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF)) 2108 speed = 100; 2109 else 2110 speed = 10; 2111 } 2112 2113 dev_info(&priv->pdev->dev, 2114 "link UP on %s, %dMbps, %s-duplex\n", 2115 port->name, speed, duplex ? "full" : "half"); 2116 2117 override = ENETSW_PORTOV_ENABLE_MASK | 2118 ENETSW_PORTOV_LINKUP_MASK; 2119 2120 if (speed == 1000) 2121 override |= ENETSW_IMPOV_1000_MASK; 2122 else if (speed == 100) 2123 override |= ENETSW_IMPOV_100_MASK; 2124 if (duplex) 2125 override |= ENETSW_IMPOV_FDX_MASK; 2126 2127 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2128 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2129 } 2130 2131 priv->swphy_poll.expires = jiffies + HZ; 2132 add_timer(&priv->swphy_poll); 2133 } 2134 2135 /* 2136 * open callback, allocate dma rings & buffers and start rx operation 2137 */ 2138 static int bcm_enetsw_open(struct net_device *dev) 2139 { 2140 struct bcm_enet_priv *priv; 2141 struct device *kdev; 2142 int i, ret; 2143 unsigned int size; 2144 void *p; 2145 u32 val; 2146 2147 priv = netdev_priv(dev); 2148 kdev = &priv->pdev->dev; 2149 2150 /* mask all interrupts and request them */ 2151 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2152 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2153 2154 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 2155 0, dev->name, dev); 2156 if (ret) 2157 goto out_freeirq; 2158 2159 if (priv->irq_tx != -1) { 2160 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 2161 0, dev->name, dev); 2162 if (ret) 2163 goto out_freeirq_rx; 2164 } 2165 2166 /* allocate rx dma ring */ 2167 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 2168 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 2169 if (!p) { 2170 dev_err(kdev, "cannot allocate rx ring %u\n", size); 2171 ret = -ENOMEM; 2172 goto out_freeirq_tx; 2173 } 2174 2175 memset(p, 0, size); 2176 priv->rx_desc_alloc_size = size; 2177 priv->rx_desc_cpu = p; 2178 2179 /* allocate tx dma ring */ 2180 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 2181 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 2182 if (!p) { 2183 dev_err(kdev, "cannot allocate tx ring\n"); 2184 ret = -ENOMEM; 2185 goto out_free_rx_ring; 2186 } 2187 2188 memset(p, 0, size); 2189 priv->tx_desc_alloc_size = size; 2190 priv->tx_desc_cpu = p; 2191 2192 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size, 2193 GFP_KERNEL); 2194 if (!priv->tx_skb) { 2195 dev_err(kdev, "cannot allocate rx skb queue\n"); 2196 ret = -ENOMEM; 2197 goto out_free_tx_ring; 2198 } 2199 2200 priv->tx_desc_count = priv->tx_ring_size; 2201 priv->tx_dirty_desc = 0; 2202 priv->tx_curr_desc = 0; 2203 spin_lock_init(&priv->tx_lock); 2204 2205 /* init & fill rx ring with skbs */ 2206 priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size, 2207 GFP_KERNEL); 2208 if (!priv->rx_skb) { 2209 dev_err(kdev, "cannot allocate rx skb queue\n"); 2210 ret = -ENOMEM; 2211 goto out_free_tx_skb; 2212 } 2213 2214 priv->rx_desc_count = 0; 2215 priv->rx_dirty_desc = 0; 2216 priv->rx_curr_desc = 0; 2217 2218 /* disable all ports */ 2219 for (i = 0; i < priv->num_ports; i++) { 2220 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2221 ENETSW_PORTOV_REG(i)); 2222 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2223 ENETSW_PTCTRL_TXDIS_MASK, 2224 ENETSW_PTCTRL_REG(i)); 2225 2226 priv->sw_port_link[i] = 0; 2227 } 2228 2229 /* reset mib */ 2230 val = enetsw_readb(priv, ENETSW_GMCR_REG); 2231 val |= ENETSW_GMCR_RST_MIB_MASK; 2232 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2233 mdelay(1); 2234 val &= ~ENETSW_GMCR_RST_MIB_MASK; 2235 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2236 mdelay(1); 2237 2238 /* force CPU port state */ 2239 val = enetsw_readb(priv, ENETSW_IMPOV_REG); 2240 val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK; 2241 enetsw_writeb(priv, val, ENETSW_IMPOV_REG); 2242 2243 /* enable switch forward engine */ 2244 val = enetsw_readb(priv, ENETSW_SWMODE_REG); 2245 val |= ENETSW_SWMODE_FWD_EN_MASK; 2246 enetsw_writeb(priv, val, ENETSW_SWMODE_REG); 2247 2248 /* enable jumbo on all ports */ 2249 enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG); 2250 enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG); 2251 2252 /* initialize flow control buffer allocation */ 2253 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 2254 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 2255 2256 if (bcm_enet_refill_rx(dev)) { 2257 dev_err(kdev, "cannot allocate rx skb queue\n"); 2258 ret = -ENOMEM; 2259 goto out; 2260 } 2261 2262 /* write rx & tx ring addresses */ 2263 enet_dmas_writel(priv, priv->rx_desc_dma, 2264 ENETDMAS_RSTART_REG, priv->rx_chan); 2265 enet_dmas_writel(priv, priv->tx_desc_dma, 2266 ENETDMAS_RSTART_REG, priv->tx_chan); 2267 2268 /* clear remaining state ram for rx & tx channel */ 2269 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 2270 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 2271 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 2272 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 2273 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 2274 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 2275 2276 /* set dma maximum burst len */ 2277 enet_dmac_writel(priv, priv->dma_maxburst, 2278 ENETDMAC_MAXBURST, priv->rx_chan); 2279 enet_dmac_writel(priv, priv->dma_maxburst, 2280 ENETDMAC_MAXBURST, priv->tx_chan); 2281 2282 /* set flow control low/high threshold to 1/3 / 2/3 */ 2283 val = priv->rx_ring_size / 3; 2284 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 2285 val = (priv->rx_ring_size * 2) / 3; 2286 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 2287 2288 /* all set, enable mac and interrupts, start dma engine and 2289 * kick rx dma channel 2290 */ 2291 wmb(); 2292 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 2293 enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK, 2294 ENETDMAC_CHANCFG, priv->rx_chan); 2295 2296 /* watch "packet transferred" interrupt in rx and tx */ 2297 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2298 ENETDMAC_IR, priv->rx_chan); 2299 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2300 ENETDMAC_IR, priv->tx_chan); 2301 2302 /* make sure we enable napi before rx interrupt */ 2303 napi_enable(&priv->napi); 2304 2305 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2306 ENETDMAC_IRMASK, priv->rx_chan); 2307 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2308 ENETDMAC_IRMASK, priv->tx_chan); 2309 2310 netif_carrier_on(dev); 2311 netif_start_queue(dev); 2312 2313 /* apply override config for bypass_link ports here. */ 2314 for (i = 0; i < priv->num_ports; i++) { 2315 struct bcm63xx_enetsw_port *port; 2316 u8 override; 2317 port = &priv->used_ports[i]; 2318 if (!port->used) 2319 continue; 2320 2321 if (!port->bypass_link) 2322 continue; 2323 2324 override = ENETSW_PORTOV_ENABLE_MASK | 2325 ENETSW_PORTOV_LINKUP_MASK; 2326 2327 switch (port->force_speed) { 2328 case 1000: 2329 override |= ENETSW_IMPOV_1000_MASK; 2330 break; 2331 case 100: 2332 override |= ENETSW_IMPOV_100_MASK; 2333 break; 2334 case 10: 2335 break; 2336 default: 2337 pr_warn("invalid forced speed on port %s: assume 10\n", 2338 port->name); 2339 break; 2340 } 2341 2342 if (port->force_duplex_full) 2343 override |= ENETSW_IMPOV_FDX_MASK; 2344 2345 2346 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2347 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2348 } 2349 2350 /* start phy polling timer */ 2351 init_timer(&priv->swphy_poll); 2352 priv->swphy_poll.function = swphy_poll_timer; 2353 priv->swphy_poll.data = (unsigned long)priv; 2354 priv->swphy_poll.expires = jiffies; 2355 add_timer(&priv->swphy_poll); 2356 return 0; 2357 2358 out: 2359 for (i = 0; i < priv->rx_ring_size; i++) { 2360 struct bcm_enet_desc *desc; 2361 2362 if (!priv->rx_skb[i]) 2363 continue; 2364 2365 desc = &priv->rx_desc_cpu[i]; 2366 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 2367 DMA_FROM_DEVICE); 2368 kfree_skb(priv->rx_skb[i]); 2369 } 2370 kfree(priv->rx_skb); 2371 2372 out_free_tx_skb: 2373 kfree(priv->tx_skb); 2374 2375 out_free_tx_ring: 2376 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2377 priv->tx_desc_cpu, priv->tx_desc_dma); 2378 2379 out_free_rx_ring: 2380 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2381 priv->rx_desc_cpu, priv->rx_desc_dma); 2382 2383 out_freeirq_tx: 2384 if (priv->irq_tx != -1) 2385 free_irq(priv->irq_tx, dev); 2386 2387 out_freeirq_rx: 2388 free_irq(priv->irq_rx, dev); 2389 2390 out_freeirq: 2391 return ret; 2392 } 2393 2394 /* stop callback */ 2395 static int bcm_enetsw_stop(struct net_device *dev) 2396 { 2397 struct bcm_enet_priv *priv; 2398 struct device *kdev; 2399 int i; 2400 2401 priv = netdev_priv(dev); 2402 kdev = &priv->pdev->dev; 2403 2404 del_timer_sync(&priv->swphy_poll); 2405 netif_stop_queue(dev); 2406 napi_disable(&priv->napi); 2407 del_timer_sync(&priv->rx_timeout); 2408 2409 /* mask all interrupts */ 2410 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2411 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2412 2413 /* disable dma & mac */ 2414 bcm_enet_disable_dma(priv, priv->tx_chan); 2415 bcm_enet_disable_dma(priv, priv->rx_chan); 2416 2417 /* force reclaim of all tx buffers */ 2418 bcm_enet_tx_reclaim(dev, 1); 2419 2420 /* free the rx skb ring */ 2421 for (i = 0; i < priv->rx_ring_size; i++) { 2422 struct bcm_enet_desc *desc; 2423 2424 if (!priv->rx_skb[i]) 2425 continue; 2426 2427 desc = &priv->rx_desc_cpu[i]; 2428 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 2429 DMA_FROM_DEVICE); 2430 kfree_skb(priv->rx_skb[i]); 2431 } 2432 2433 /* free remaining allocated memory */ 2434 kfree(priv->rx_skb); 2435 kfree(priv->tx_skb); 2436 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2437 priv->rx_desc_cpu, priv->rx_desc_dma); 2438 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2439 priv->tx_desc_cpu, priv->tx_desc_dma); 2440 if (priv->irq_tx != -1) 2441 free_irq(priv->irq_tx, dev); 2442 free_irq(priv->irq_rx, dev); 2443 2444 return 0; 2445 } 2446 2447 /* try to sort out phy external status by walking the used_port field 2448 * in the bcm_enet_priv structure. in case the phy address is not 2449 * assigned to any physical port on the switch, assume it is external 2450 * (and yell at the user). 2451 */ 2452 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id) 2453 { 2454 int i; 2455 2456 for (i = 0; i < priv->num_ports; ++i) { 2457 if (!priv->used_ports[i].used) 2458 continue; 2459 if (priv->used_ports[i].phy_id == phy_id) 2460 return bcm_enet_port_is_rgmii(i); 2461 } 2462 2463 printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n", 2464 phy_id); 2465 return 1; 2466 } 2467 2468 /* can't use bcmenet_sw_mdio_read directly as we need to sort out 2469 * external/internal status of the given phy_id first. 2470 */ 2471 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id, 2472 int location) 2473 { 2474 struct bcm_enet_priv *priv; 2475 2476 priv = netdev_priv(dev); 2477 return bcmenet_sw_mdio_read(priv, 2478 bcm_enetsw_phy_is_external(priv, phy_id), 2479 phy_id, location); 2480 } 2481 2482 /* can't use bcmenet_sw_mdio_write directly as we need to sort out 2483 * external/internal status of the given phy_id first. 2484 */ 2485 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id, 2486 int location, 2487 int val) 2488 { 2489 struct bcm_enet_priv *priv; 2490 2491 priv = netdev_priv(dev); 2492 bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id), 2493 phy_id, location, val); 2494 } 2495 2496 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2497 { 2498 struct mii_if_info mii; 2499 2500 mii.dev = dev; 2501 mii.mdio_read = bcm_enetsw_mii_mdio_read; 2502 mii.mdio_write = bcm_enetsw_mii_mdio_write; 2503 mii.phy_id = 0; 2504 mii.phy_id_mask = 0x3f; 2505 mii.reg_num_mask = 0x1f; 2506 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 2507 2508 } 2509 2510 static const struct net_device_ops bcm_enetsw_ops = { 2511 .ndo_open = bcm_enetsw_open, 2512 .ndo_stop = bcm_enetsw_stop, 2513 .ndo_start_xmit = bcm_enet_start_xmit, 2514 .ndo_change_mtu = bcm_enet_change_mtu, 2515 .ndo_do_ioctl = bcm_enetsw_ioctl, 2516 }; 2517 2518 2519 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = { 2520 { "rx_packets", DEV_STAT(rx_packets), -1 }, 2521 { "tx_packets", DEV_STAT(tx_packets), -1 }, 2522 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 2523 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 2524 { "rx_errors", DEV_STAT(rx_errors), -1 }, 2525 { "tx_errors", DEV_STAT(tx_errors), -1 }, 2526 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 2527 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 2528 2529 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT }, 2530 { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST }, 2531 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST }, 2532 { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT }, 2533 { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 }, 2534 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 }, 2535 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 }, 2536 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 }, 2537 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023}, 2538 { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max), 2539 ETHSW_MIB_RX_1024_1522 }, 2540 { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047), 2541 ETHSW_MIB_RX_1523_2047 }, 2542 { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095), 2543 ETHSW_MIB_RX_2048_4095 }, 2544 { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191), 2545 ETHSW_MIB_RX_4096_8191 }, 2546 { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728), 2547 ETHSW_MIB_RX_8192_9728 }, 2548 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR }, 2549 { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC }, 2550 { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP }, 2551 { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND }, 2552 { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE }, 2553 2554 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT }, 2555 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST }, 2556 { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT }, 2557 { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT }, 2558 { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE }, 2559 { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS }, 2560 2561 }; 2562 2563 #define BCM_ENETSW_STATS_LEN \ 2564 (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats)) 2565 2566 static void bcm_enetsw_get_strings(struct net_device *netdev, 2567 u32 stringset, u8 *data) 2568 { 2569 int i; 2570 2571 switch (stringset) { 2572 case ETH_SS_STATS: 2573 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2574 memcpy(data + i * ETH_GSTRING_LEN, 2575 bcm_enetsw_gstrings_stats[i].stat_string, 2576 ETH_GSTRING_LEN); 2577 } 2578 break; 2579 } 2580 } 2581 2582 static int bcm_enetsw_get_sset_count(struct net_device *netdev, 2583 int string_set) 2584 { 2585 switch (string_set) { 2586 case ETH_SS_STATS: 2587 return BCM_ENETSW_STATS_LEN; 2588 default: 2589 return -EINVAL; 2590 } 2591 } 2592 2593 static void bcm_enetsw_get_drvinfo(struct net_device *netdev, 2594 struct ethtool_drvinfo *drvinfo) 2595 { 2596 strncpy(drvinfo->driver, bcm_enet_driver_name, 32); 2597 strncpy(drvinfo->version, bcm_enet_driver_version, 32); 2598 strncpy(drvinfo->fw_version, "N/A", 32); 2599 strncpy(drvinfo->bus_info, "bcm63xx", 32); 2600 drvinfo->n_stats = BCM_ENETSW_STATS_LEN; 2601 } 2602 2603 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev, 2604 struct ethtool_stats *stats, 2605 u64 *data) 2606 { 2607 struct bcm_enet_priv *priv; 2608 int i; 2609 2610 priv = netdev_priv(netdev); 2611 2612 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2613 const struct bcm_enet_stats *s; 2614 u32 lo, hi; 2615 char *p; 2616 int reg; 2617 2618 s = &bcm_enetsw_gstrings_stats[i]; 2619 2620 reg = s->mib_reg; 2621 if (reg == -1) 2622 continue; 2623 2624 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg)); 2625 p = (char *)priv + s->stat_offset; 2626 2627 if (s->sizeof_stat == sizeof(u64)) { 2628 hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1)); 2629 *(u64 *)p = ((u64)hi << 32 | lo); 2630 } else { 2631 *(u32 *)p = lo; 2632 } 2633 } 2634 2635 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2636 const struct bcm_enet_stats *s; 2637 char *p; 2638 2639 s = &bcm_enetsw_gstrings_stats[i]; 2640 2641 if (s->mib_reg == -1) 2642 p = (char *)&netdev->stats + s->stat_offset; 2643 else 2644 p = (char *)priv + s->stat_offset; 2645 2646 data[i] = (s->sizeof_stat == sizeof(u64)) ? 2647 *(u64 *)p : *(u32 *)p; 2648 } 2649 } 2650 2651 static void bcm_enetsw_get_ringparam(struct net_device *dev, 2652 struct ethtool_ringparam *ering) 2653 { 2654 struct bcm_enet_priv *priv; 2655 2656 priv = netdev_priv(dev); 2657 2658 /* rx/tx ring is actually only limited by memory */ 2659 ering->rx_max_pending = 8192; 2660 ering->tx_max_pending = 8192; 2661 ering->rx_mini_max_pending = 0; 2662 ering->rx_jumbo_max_pending = 0; 2663 ering->rx_pending = priv->rx_ring_size; 2664 ering->tx_pending = priv->tx_ring_size; 2665 } 2666 2667 static int bcm_enetsw_set_ringparam(struct net_device *dev, 2668 struct ethtool_ringparam *ering) 2669 { 2670 struct bcm_enet_priv *priv; 2671 int was_running; 2672 2673 priv = netdev_priv(dev); 2674 2675 was_running = 0; 2676 if (netif_running(dev)) { 2677 bcm_enetsw_stop(dev); 2678 was_running = 1; 2679 } 2680 2681 priv->rx_ring_size = ering->rx_pending; 2682 priv->tx_ring_size = ering->tx_pending; 2683 2684 if (was_running) { 2685 int err; 2686 2687 err = bcm_enetsw_open(dev); 2688 if (err) 2689 dev_close(dev); 2690 } 2691 return 0; 2692 } 2693 2694 static struct ethtool_ops bcm_enetsw_ethtool_ops = { 2695 .get_strings = bcm_enetsw_get_strings, 2696 .get_sset_count = bcm_enetsw_get_sset_count, 2697 .get_ethtool_stats = bcm_enetsw_get_ethtool_stats, 2698 .get_drvinfo = bcm_enetsw_get_drvinfo, 2699 .get_ringparam = bcm_enetsw_get_ringparam, 2700 .set_ringparam = bcm_enetsw_set_ringparam, 2701 }; 2702 2703 /* allocate netdevice, request register memory and register device. */ 2704 static int bcm_enetsw_probe(struct platform_device *pdev) 2705 { 2706 struct bcm_enet_priv *priv; 2707 struct net_device *dev; 2708 struct bcm63xx_enetsw_platform_data *pd; 2709 struct resource *res_mem; 2710 int ret, irq_rx, irq_tx; 2711 2712 /* stop if shared driver failed, assume driver->probe will be 2713 * called in the same order we register devices (correct ?) 2714 */ 2715 if (!bcm_enet_shared_base[0]) 2716 return -ENODEV; 2717 2718 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2719 irq_rx = platform_get_irq(pdev, 0); 2720 irq_tx = platform_get_irq(pdev, 1); 2721 if (!res_mem || irq_rx < 0) 2722 return -ENODEV; 2723 2724 ret = 0; 2725 dev = alloc_etherdev(sizeof(*priv)); 2726 if (!dev) 2727 return -ENOMEM; 2728 priv = netdev_priv(dev); 2729 memset(priv, 0, sizeof(*priv)); 2730 2731 /* initialize default and fetch platform data */ 2732 priv->enet_is_sw = true; 2733 priv->irq_rx = irq_rx; 2734 priv->irq_tx = irq_tx; 2735 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 2736 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 2737 priv->dma_maxburst = BCMENETSW_DMA_MAXBURST; 2738 2739 pd = dev_get_platdata(&pdev->dev); 2740 if (pd) { 2741 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 2742 memcpy(priv->used_ports, pd->used_ports, 2743 sizeof(pd->used_ports)); 2744 priv->num_ports = pd->num_ports; 2745 priv->dma_has_sram = pd->dma_has_sram; 2746 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 2747 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 2748 priv->dma_chan_width = pd->dma_chan_width; 2749 } 2750 2751 ret = compute_hw_mtu(priv, dev->mtu); 2752 if (ret) 2753 goto out; 2754 2755 if (!request_mem_region(res_mem->start, resource_size(res_mem), 2756 "bcm63xx_enetsw")) { 2757 ret = -EBUSY; 2758 goto out; 2759 } 2760 2761 priv->base = ioremap(res_mem->start, resource_size(res_mem)); 2762 if (priv->base == NULL) { 2763 ret = -ENOMEM; 2764 goto out_release_mem; 2765 } 2766 2767 priv->mac_clk = clk_get(&pdev->dev, "enetsw"); 2768 if (IS_ERR(priv->mac_clk)) { 2769 ret = PTR_ERR(priv->mac_clk); 2770 goto out_unmap; 2771 } 2772 clk_enable(priv->mac_clk); 2773 2774 priv->rx_chan = 0; 2775 priv->tx_chan = 1; 2776 spin_lock_init(&priv->rx_lock); 2777 2778 /* init rx timeout (used for oom) */ 2779 init_timer(&priv->rx_timeout); 2780 priv->rx_timeout.function = bcm_enet_refill_rx_timer; 2781 priv->rx_timeout.data = (unsigned long)dev; 2782 2783 /* register netdevice */ 2784 dev->netdev_ops = &bcm_enetsw_ops; 2785 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 2786 dev->ethtool_ops = &bcm_enetsw_ethtool_ops; 2787 SET_NETDEV_DEV(dev, &pdev->dev); 2788 2789 spin_lock_init(&priv->enetsw_mdio_lock); 2790 2791 ret = register_netdev(dev); 2792 if (ret) 2793 goto out_put_clk; 2794 2795 netif_carrier_off(dev); 2796 platform_set_drvdata(pdev, dev); 2797 priv->pdev = pdev; 2798 priv->net_dev = dev; 2799 2800 return 0; 2801 2802 out_put_clk: 2803 clk_put(priv->mac_clk); 2804 2805 out_unmap: 2806 iounmap(priv->base); 2807 2808 out_release_mem: 2809 release_mem_region(res_mem->start, resource_size(res_mem)); 2810 out: 2811 free_netdev(dev); 2812 return ret; 2813 } 2814 2815 2816 /* exit func, stops hardware and unregisters netdevice */ 2817 static int bcm_enetsw_remove(struct platform_device *pdev) 2818 { 2819 struct bcm_enet_priv *priv; 2820 struct net_device *dev; 2821 struct resource *res; 2822 2823 /* stop netdevice */ 2824 dev = platform_get_drvdata(pdev); 2825 priv = netdev_priv(dev); 2826 unregister_netdev(dev); 2827 2828 /* release device resources */ 2829 iounmap(priv->base); 2830 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2831 release_mem_region(res->start, resource_size(res)); 2832 2833 free_netdev(dev); 2834 return 0; 2835 } 2836 2837 struct platform_driver bcm63xx_enetsw_driver = { 2838 .probe = bcm_enetsw_probe, 2839 .remove = bcm_enetsw_remove, 2840 .driver = { 2841 .name = "bcm63xx_enetsw", 2842 .owner = THIS_MODULE, 2843 }, 2844 }; 2845 2846 /* reserve & remap memory space shared between all macs */ 2847 static int bcm_enet_shared_probe(struct platform_device *pdev) 2848 { 2849 struct resource *res; 2850 void __iomem *p[3]; 2851 unsigned int i; 2852 2853 memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base)); 2854 2855 for (i = 0; i < 3; i++) { 2856 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 2857 p[i] = devm_ioremap_resource(&pdev->dev, res); 2858 if (IS_ERR(p[i])) 2859 return PTR_ERR(p[i]); 2860 } 2861 2862 memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base)); 2863 2864 return 0; 2865 } 2866 2867 static int bcm_enet_shared_remove(struct platform_device *pdev) 2868 { 2869 return 0; 2870 } 2871 2872 /* this "shared" driver is needed because both macs share a single 2873 * address space 2874 */ 2875 struct platform_driver bcm63xx_enet_shared_driver = { 2876 .probe = bcm_enet_shared_probe, 2877 .remove = bcm_enet_shared_remove, 2878 .driver = { 2879 .name = "bcm63xx_enet_shared", 2880 .owner = THIS_MODULE, 2881 }, 2882 }; 2883 2884 /* entry point */ 2885 static int __init bcm_enet_init(void) 2886 { 2887 int ret; 2888 2889 ret = platform_driver_register(&bcm63xx_enet_shared_driver); 2890 if (ret) 2891 return ret; 2892 2893 ret = platform_driver_register(&bcm63xx_enet_driver); 2894 if (ret) 2895 platform_driver_unregister(&bcm63xx_enet_shared_driver); 2896 2897 ret = platform_driver_register(&bcm63xx_enetsw_driver); 2898 if (ret) { 2899 platform_driver_unregister(&bcm63xx_enet_driver); 2900 platform_driver_unregister(&bcm63xx_enet_shared_driver); 2901 } 2902 2903 return ret; 2904 } 2905 2906 static void __exit bcm_enet_exit(void) 2907 { 2908 platform_driver_unregister(&bcm63xx_enet_driver); 2909 platform_driver_unregister(&bcm63xx_enetsw_driver); 2910 platform_driver_unregister(&bcm63xx_enet_shared_driver); 2911 } 2912 2913 2914 module_init(bcm_enet_init); 2915 module_exit(bcm_enet_exit); 2916 2917 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver"); 2918 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>"); 2919 MODULE_LICENSE("GPL"); 2920