1 /* 2 * Driver for BCM963xx builtin Ethernet mac 3 * 4 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/clk.h> 24 #include <linux/etherdevice.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/ethtool.h> 28 #include <linux/crc32.h> 29 #include <linux/err.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/platform_device.h> 32 #include <linux/if_vlan.h> 33 34 #include <bcm63xx_dev_enet.h> 35 #include "bcm63xx_enet.h" 36 37 static char bcm_enet_driver_name[] = "bcm63xx_enet"; 38 static char bcm_enet_driver_version[] = "1.0"; 39 40 static int copybreak __read_mostly = 128; 41 module_param(copybreak, int, 0); 42 MODULE_PARM_DESC(copybreak, "Receive copy threshold"); 43 44 /* io memory shared between all devices */ 45 static void __iomem *bcm_enet_shared_base; 46 47 /* 48 * io helpers to access mac registers 49 */ 50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off) 51 { 52 return bcm_readl(priv->base + off); 53 } 54 55 static inline void enet_writel(struct bcm_enet_priv *priv, 56 u32 val, u32 off) 57 { 58 bcm_writel(val, priv->base + off); 59 } 60 61 /* 62 * io helpers to access shared registers 63 */ 64 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off) 65 { 66 return bcm_readl(bcm_enet_shared_base + off); 67 } 68 69 static inline void enet_dma_writel(struct bcm_enet_priv *priv, 70 u32 val, u32 off) 71 { 72 bcm_writel(val, bcm_enet_shared_base + off); 73 } 74 75 /* 76 * write given data into mii register and wait for transfer to end 77 * with timeout (average measured transfer time is 25us) 78 */ 79 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data) 80 { 81 int limit; 82 83 /* make sure mii interrupt status is cleared */ 84 enet_writel(priv, ENET_IR_MII, ENET_IR_REG); 85 86 enet_writel(priv, data, ENET_MIIDATA_REG); 87 wmb(); 88 89 /* busy wait on mii interrupt bit, with timeout */ 90 limit = 1000; 91 do { 92 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII) 93 break; 94 udelay(1); 95 } while (limit-- > 0); 96 97 return (limit < 0) ? 1 : 0; 98 } 99 100 /* 101 * MII internal read callback 102 */ 103 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id, 104 int regnum) 105 { 106 u32 tmp, val; 107 108 tmp = regnum << ENET_MIIDATA_REG_SHIFT; 109 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 110 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 111 tmp |= ENET_MIIDATA_OP_READ_MASK; 112 113 if (do_mdio_op(priv, tmp)) 114 return -1; 115 116 val = enet_readl(priv, ENET_MIIDATA_REG); 117 val &= 0xffff; 118 return val; 119 } 120 121 /* 122 * MII internal write callback 123 */ 124 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id, 125 int regnum, u16 value) 126 { 127 u32 tmp; 128 129 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT; 130 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 131 tmp |= regnum << ENET_MIIDATA_REG_SHIFT; 132 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 133 tmp |= ENET_MIIDATA_OP_WRITE_MASK; 134 135 (void)do_mdio_op(priv, tmp); 136 return 0; 137 } 138 139 /* 140 * MII read callback from phylib 141 */ 142 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id, 143 int regnum) 144 { 145 return bcm_enet_mdio_read(bus->priv, mii_id, regnum); 146 } 147 148 /* 149 * MII write callback from phylib 150 */ 151 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id, 152 int regnum, u16 value) 153 { 154 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value); 155 } 156 157 /* 158 * MII read callback from mii core 159 */ 160 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id, 161 int regnum) 162 { 163 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum); 164 } 165 166 /* 167 * MII write callback from mii core 168 */ 169 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id, 170 int regnum, int value) 171 { 172 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value); 173 } 174 175 /* 176 * refill rx queue 177 */ 178 static int bcm_enet_refill_rx(struct net_device *dev) 179 { 180 struct bcm_enet_priv *priv; 181 182 priv = netdev_priv(dev); 183 184 while (priv->rx_desc_count < priv->rx_ring_size) { 185 struct bcm_enet_desc *desc; 186 struct sk_buff *skb; 187 dma_addr_t p; 188 int desc_idx; 189 u32 len_stat; 190 191 desc_idx = priv->rx_dirty_desc; 192 desc = &priv->rx_desc_cpu[desc_idx]; 193 194 if (!priv->rx_skb[desc_idx]) { 195 skb = netdev_alloc_skb(dev, priv->rx_skb_size); 196 if (!skb) 197 break; 198 priv->rx_skb[desc_idx] = skb; 199 200 p = dma_map_single(&priv->pdev->dev, skb->data, 201 priv->rx_skb_size, 202 DMA_FROM_DEVICE); 203 desc->address = p; 204 } 205 206 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT; 207 len_stat |= DMADESC_OWNER_MASK; 208 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) { 209 len_stat |= DMADESC_WRAP_MASK; 210 priv->rx_dirty_desc = 0; 211 } else { 212 priv->rx_dirty_desc++; 213 } 214 wmb(); 215 desc->len_stat = len_stat; 216 217 priv->rx_desc_count++; 218 219 /* tell dma engine we allocated one buffer */ 220 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan)); 221 } 222 223 /* If rx ring is still empty, set a timer to try allocating 224 * again at a later time. */ 225 if (priv->rx_desc_count == 0 && netif_running(dev)) { 226 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n"); 227 priv->rx_timeout.expires = jiffies + HZ; 228 add_timer(&priv->rx_timeout); 229 } 230 231 return 0; 232 } 233 234 /* 235 * timer callback to defer refill rx queue in case we're OOM 236 */ 237 static void bcm_enet_refill_rx_timer(unsigned long data) 238 { 239 struct net_device *dev; 240 struct bcm_enet_priv *priv; 241 242 dev = (struct net_device *)data; 243 priv = netdev_priv(dev); 244 245 spin_lock(&priv->rx_lock); 246 bcm_enet_refill_rx((struct net_device *)data); 247 spin_unlock(&priv->rx_lock); 248 } 249 250 /* 251 * extract packet from rx queue 252 */ 253 static int bcm_enet_receive_queue(struct net_device *dev, int budget) 254 { 255 struct bcm_enet_priv *priv; 256 struct device *kdev; 257 int processed; 258 259 priv = netdev_priv(dev); 260 kdev = &priv->pdev->dev; 261 processed = 0; 262 263 /* don't scan ring further than number of refilled 264 * descriptor */ 265 if (budget > priv->rx_desc_count) 266 budget = priv->rx_desc_count; 267 268 do { 269 struct bcm_enet_desc *desc; 270 struct sk_buff *skb; 271 int desc_idx; 272 u32 len_stat; 273 unsigned int len; 274 275 desc_idx = priv->rx_curr_desc; 276 desc = &priv->rx_desc_cpu[desc_idx]; 277 278 /* make sure we actually read the descriptor status at 279 * each loop */ 280 rmb(); 281 282 len_stat = desc->len_stat; 283 284 /* break if dma ownership belongs to hw */ 285 if (len_stat & DMADESC_OWNER_MASK) 286 break; 287 288 processed++; 289 priv->rx_curr_desc++; 290 if (priv->rx_curr_desc == priv->rx_ring_size) 291 priv->rx_curr_desc = 0; 292 priv->rx_desc_count--; 293 294 /* if the packet does not have start of packet _and_ 295 * end of packet flag set, then just recycle it */ 296 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) { 297 dev->stats.rx_dropped++; 298 continue; 299 } 300 301 /* recycle packet if it's marked as bad */ 302 if (unlikely(len_stat & DMADESC_ERR_MASK)) { 303 dev->stats.rx_errors++; 304 305 if (len_stat & DMADESC_OVSIZE_MASK) 306 dev->stats.rx_length_errors++; 307 if (len_stat & DMADESC_CRC_MASK) 308 dev->stats.rx_crc_errors++; 309 if (len_stat & DMADESC_UNDER_MASK) 310 dev->stats.rx_frame_errors++; 311 if (len_stat & DMADESC_OV_MASK) 312 dev->stats.rx_fifo_errors++; 313 continue; 314 } 315 316 /* valid packet */ 317 skb = priv->rx_skb[desc_idx]; 318 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT; 319 /* don't include FCS */ 320 len -= 4; 321 322 if (len < copybreak) { 323 struct sk_buff *nskb; 324 325 nskb = netdev_alloc_skb_ip_align(dev, len); 326 if (!nskb) { 327 /* forget packet, just rearm desc */ 328 dev->stats.rx_dropped++; 329 continue; 330 } 331 332 dma_sync_single_for_cpu(kdev, desc->address, 333 len, DMA_FROM_DEVICE); 334 memcpy(nskb->data, skb->data, len); 335 dma_sync_single_for_device(kdev, desc->address, 336 len, DMA_FROM_DEVICE); 337 skb = nskb; 338 } else { 339 dma_unmap_single(&priv->pdev->dev, desc->address, 340 priv->rx_skb_size, DMA_FROM_DEVICE); 341 priv->rx_skb[desc_idx] = NULL; 342 } 343 344 skb_put(skb, len); 345 skb->protocol = eth_type_trans(skb, dev); 346 dev->stats.rx_packets++; 347 dev->stats.rx_bytes += len; 348 netif_receive_skb(skb); 349 350 } while (--budget > 0); 351 352 if (processed || !priv->rx_desc_count) { 353 bcm_enet_refill_rx(dev); 354 355 /* kick rx dma */ 356 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK, 357 ENETDMA_CHANCFG_REG(priv->rx_chan)); 358 } 359 360 return processed; 361 } 362 363 364 /* 365 * try to or force reclaim of transmitted buffers 366 */ 367 static int bcm_enet_tx_reclaim(struct net_device *dev, int force) 368 { 369 struct bcm_enet_priv *priv; 370 int released; 371 372 priv = netdev_priv(dev); 373 released = 0; 374 375 while (priv->tx_desc_count < priv->tx_ring_size) { 376 struct bcm_enet_desc *desc; 377 struct sk_buff *skb; 378 379 /* We run in a bh and fight against start_xmit, which 380 * is called with bh disabled */ 381 spin_lock(&priv->tx_lock); 382 383 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc]; 384 385 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) { 386 spin_unlock(&priv->tx_lock); 387 break; 388 } 389 390 /* ensure other field of the descriptor were not read 391 * before we checked ownership */ 392 rmb(); 393 394 skb = priv->tx_skb[priv->tx_dirty_desc]; 395 priv->tx_skb[priv->tx_dirty_desc] = NULL; 396 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len, 397 DMA_TO_DEVICE); 398 399 priv->tx_dirty_desc++; 400 if (priv->tx_dirty_desc == priv->tx_ring_size) 401 priv->tx_dirty_desc = 0; 402 priv->tx_desc_count++; 403 404 spin_unlock(&priv->tx_lock); 405 406 if (desc->len_stat & DMADESC_UNDER_MASK) 407 dev->stats.tx_errors++; 408 409 dev_kfree_skb(skb); 410 released++; 411 } 412 413 if (netif_queue_stopped(dev) && released) 414 netif_wake_queue(dev); 415 416 return released; 417 } 418 419 /* 420 * poll func, called by network core 421 */ 422 static int bcm_enet_poll(struct napi_struct *napi, int budget) 423 { 424 struct bcm_enet_priv *priv; 425 struct net_device *dev; 426 int tx_work_done, rx_work_done; 427 428 priv = container_of(napi, struct bcm_enet_priv, napi); 429 dev = priv->net_dev; 430 431 /* ack interrupts */ 432 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, 433 ENETDMA_IR_REG(priv->rx_chan)); 434 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, 435 ENETDMA_IR_REG(priv->tx_chan)); 436 437 /* reclaim sent skb */ 438 tx_work_done = bcm_enet_tx_reclaim(dev, 0); 439 440 spin_lock(&priv->rx_lock); 441 rx_work_done = bcm_enet_receive_queue(dev, budget); 442 spin_unlock(&priv->rx_lock); 443 444 if (rx_work_done >= budget || tx_work_done > 0) { 445 /* rx/tx queue is not yet empty/clean */ 446 return rx_work_done; 447 } 448 449 /* no more packet in rx/tx queue, remove device from poll 450 * queue */ 451 napi_complete(napi); 452 453 /* restore rx/tx interrupt */ 454 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, 455 ENETDMA_IRMASK_REG(priv->rx_chan)); 456 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, 457 ENETDMA_IRMASK_REG(priv->tx_chan)); 458 459 return rx_work_done; 460 } 461 462 /* 463 * mac interrupt handler 464 */ 465 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id) 466 { 467 struct net_device *dev; 468 struct bcm_enet_priv *priv; 469 u32 stat; 470 471 dev = dev_id; 472 priv = netdev_priv(dev); 473 474 stat = enet_readl(priv, ENET_IR_REG); 475 if (!(stat & ENET_IR_MIB)) 476 return IRQ_NONE; 477 478 /* clear & mask interrupt */ 479 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 480 enet_writel(priv, 0, ENET_IRMASK_REG); 481 482 /* read mib registers in workqueue */ 483 schedule_work(&priv->mib_update_task); 484 485 return IRQ_HANDLED; 486 } 487 488 /* 489 * rx/tx dma interrupt handler 490 */ 491 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id) 492 { 493 struct net_device *dev; 494 struct bcm_enet_priv *priv; 495 496 dev = dev_id; 497 priv = netdev_priv(dev); 498 499 /* mask rx/tx interrupts */ 500 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan)); 501 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan)); 502 503 napi_schedule(&priv->napi); 504 505 return IRQ_HANDLED; 506 } 507 508 /* 509 * tx request callback 510 */ 511 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 512 { 513 struct bcm_enet_priv *priv; 514 struct bcm_enet_desc *desc; 515 u32 len_stat; 516 int ret; 517 518 priv = netdev_priv(dev); 519 520 /* lock against tx reclaim */ 521 spin_lock(&priv->tx_lock); 522 523 /* make sure the tx hw queue is not full, should not happen 524 * since we stop queue before it's the case */ 525 if (unlikely(!priv->tx_desc_count)) { 526 netif_stop_queue(dev); 527 dev_err(&priv->pdev->dev, "xmit called with no tx desc " 528 "available?\n"); 529 ret = NETDEV_TX_BUSY; 530 goto out_unlock; 531 } 532 533 /* point to the next available desc */ 534 desc = &priv->tx_desc_cpu[priv->tx_curr_desc]; 535 priv->tx_skb[priv->tx_curr_desc] = skb; 536 537 /* fill descriptor */ 538 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len, 539 DMA_TO_DEVICE); 540 541 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK; 542 len_stat |= DMADESC_ESOP_MASK | 543 DMADESC_APPEND_CRC | 544 DMADESC_OWNER_MASK; 545 546 priv->tx_curr_desc++; 547 if (priv->tx_curr_desc == priv->tx_ring_size) { 548 priv->tx_curr_desc = 0; 549 len_stat |= DMADESC_WRAP_MASK; 550 } 551 priv->tx_desc_count--; 552 553 /* dma might be already polling, make sure we update desc 554 * fields in correct order */ 555 wmb(); 556 desc->len_stat = len_stat; 557 wmb(); 558 559 /* kick tx dma */ 560 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK, 561 ENETDMA_CHANCFG_REG(priv->tx_chan)); 562 563 /* stop queue if no more desc available */ 564 if (!priv->tx_desc_count) 565 netif_stop_queue(dev); 566 567 dev->stats.tx_bytes += skb->len; 568 dev->stats.tx_packets++; 569 ret = NETDEV_TX_OK; 570 571 out_unlock: 572 spin_unlock(&priv->tx_lock); 573 return ret; 574 } 575 576 /* 577 * Change the interface's mac address. 578 */ 579 static int bcm_enet_set_mac_address(struct net_device *dev, void *p) 580 { 581 struct bcm_enet_priv *priv; 582 struct sockaddr *addr = p; 583 u32 val; 584 585 priv = netdev_priv(dev); 586 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 587 588 /* use perfect match register 0 to store my mac address */ 589 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) | 590 (dev->dev_addr[4] << 8) | dev->dev_addr[5]; 591 enet_writel(priv, val, ENET_PML_REG(0)); 592 593 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]); 594 val |= ENET_PMH_DATAVALID_MASK; 595 enet_writel(priv, val, ENET_PMH_REG(0)); 596 597 return 0; 598 } 599 600 /* 601 * Change rx mode (promiscuous/allmulti) and update multicast list 602 */ 603 static void bcm_enet_set_multicast_list(struct net_device *dev) 604 { 605 struct bcm_enet_priv *priv; 606 struct netdev_hw_addr *ha; 607 u32 val; 608 int i; 609 610 priv = netdev_priv(dev); 611 612 val = enet_readl(priv, ENET_RXCFG_REG); 613 614 if (dev->flags & IFF_PROMISC) 615 val |= ENET_RXCFG_PROMISC_MASK; 616 else 617 val &= ~ENET_RXCFG_PROMISC_MASK; 618 619 /* only 3 perfect match registers left, first one is used for 620 * own mac address */ 621 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3) 622 val |= ENET_RXCFG_ALLMCAST_MASK; 623 else 624 val &= ~ENET_RXCFG_ALLMCAST_MASK; 625 626 /* no need to set perfect match registers if we catch all 627 * multicast */ 628 if (val & ENET_RXCFG_ALLMCAST_MASK) { 629 enet_writel(priv, val, ENET_RXCFG_REG); 630 return; 631 } 632 633 i = 0; 634 netdev_for_each_mc_addr(ha, dev) { 635 u8 *dmi_addr; 636 u32 tmp; 637 638 if (i == 3) 639 break; 640 /* update perfect match registers */ 641 dmi_addr = ha->addr; 642 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) | 643 (dmi_addr[4] << 8) | dmi_addr[5]; 644 enet_writel(priv, tmp, ENET_PML_REG(i + 1)); 645 646 tmp = (dmi_addr[0] << 8 | dmi_addr[1]); 647 tmp |= ENET_PMH_DATAVALID_MASK; 648 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1)); 649 } 650 651 for (; i < 3; i++) { 652 enet_writel(priv, 0, ENET_PML_REG(i + 1)); 653 enet_writel(priv, 0, ENET_PMH_REG(i + 1)); 654 } 655 656 enet_writel(priv, val, ENET_RXCFG_REG); 657 } 658 659 /* 660 * set mac duplex parameters 661 */ 662 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex) 663 { 664 u32 val; 665 666 val = enet_readl(priv, ENET_TXCTL_REG); 667 if (fullduplex) 668 val |= ENET_TXCTL_FD_MASK; 669 else 670 val &= ~ENET_TXCTL_FD_MASK; 671 enet_writel(priv, val, ENET_TXCTL_REG); 672 } 673 674 /* 675 * set mac flow control parameters 676 */ 677 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en) 678 { 679 u32 val; 680 681 /* rx flow control (pause frame handling) */ 682 val = enet_readl(priv, ENET_RXCFG_REG); 683 if (rx_en) 684 val |= ENET_RXCFG_ENFLOW_MASK; 685 else 686 val &= ~ENET_RXCFG_ENFLOW_MASK; 687 enet_writel(priv, val, ENET_RXCFG_REG); 688 689 /* tx flow control (pause frame generation) */ 690 val = enet_dma_readl(priv, ENETDMA_CFG_REG); 691 if (tx_en) 692 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 693 else 694 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 695 enet_dma_writel(priv, val, ENETDMA_CFG_REG); 696 } 697 698 /* 699 * link changed callback (from phylib) 700 */ 701 static void bcm_enet_adjust_phy_link(struct net_device *dev) 702 { 703 struct bcm_enet_priv *priv; 704 struct phy_device *phydev; 705 int status_changed; 706 707 priv = netdev_priv(dev); 708 phydev = priv->phydev; 709 status_changed = 0; 710 711 if (priv->old_link != phydev->link) { 712 status_changed = 1; 713 priv->old_link = phydev->link; 714 } 715 716 /* reflect duplex change in mac configuration */ 717 if (phydev->link && phydev->duplex != priv->old_duplex) { 718 bcm_enet_set_duplex(priv, 719 (phydev->duplex == DUPLEX_FULL) ? 1 : 0); 720 status_changed = 1; 721 priv->old_duplex = phydev->duplex; 722 } 723 724 /* enable flow control if remote advertise it (trust phylib to 725 * check that duplex is full */ 726 if (phydev->link && phydev->pause != priv->old_pause) { 727 int rx_pause_en, tx_pause_en; 728 729 if (phydev->pause) { 730 /* pause was advertised by lpa and us */ 731 rx_pause_en = 1; 732 tx_pause_en = 1; 733 } else if (!priv->pause_auto) { 734 /* pause setting overrided by user */ 735 rx_pause_en = priv->pause_rx; 736 tx_pause_en = priv->pause_tx; 737 } else { 738 rx_pause_en = 0; 739 tx_pause_en = 0; 740 } 741 742 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en); 743 status_changed = 1; 744 priv->old_pause = phydev->pause; 745 } 746 747 if (status_changed) { 748 pr_info("%s: link %s", dev->name, phydev->link ? 749 "UP" : "DOWN"); 750 if (phydev->link) 751 pr_cont(" - %d/%s - flow control %s", phydev->speed, 752 DUPLEX_FULL == phydev->duplex ? "full" : "half", 753 phydev->pause == 1 ? "rx&tx" : "off"); 754 755 pr_cont("\n"); 756 } 757 } 758 759 /* 760 * link changed callback (if phylib is not used) 761 */ 762 static void bcm_enet_adjust_link(struct net_device *dev) 763 { 764 struct bcm_enet_priv *priv; 765 766 priv = netdev_priv(dev); 767 bcm_enet_set_duplex(priv, priv->force_duplex_full); 768 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx); 769 netif_carrier_on(dev); 770 771 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n", 772 dev->name, 773 priv->force_speed_100 ? 100 : 10, 774 priv->force_duplex_full ? "full" : "half", 775 priv->pause_rx ? "rx" : "off", 776 priv->pause_tx ? "tx" : "off"); 777 } 778 779 /* 780 * open callback, allocate dma rings & buffers and start rx operation 781 */ 782 static int bcm_enet_open(struct net_device *dev) 783 { 784 struct bcm_enet_priv *priv; 785 struct sockaddr addr; 786 struct device *kdev; 787 struct phy_device *phydev; 788 int i, ret; 789 unsigned int size; 790 char phy_id[MII_BUS_ID_SIZE + 3]; 791 void *p; 792 u32 val; 793 794 priv = netdev_priv(dev); 795 kdev = &priv->pdev->dev; 796 797 if (priv->has_phy) { 798 /* connect to PHY */ 799 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 800 priv->mac_id ? "1" : "0", priv->phy_id); 801 802 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link, 0, 803 PHY_INTERFACE_MODE_MII); 804 805 if (IS_ERR(phydev)) { 806 dev_err(kdev, "could not attach to PHY\n"); 807 return PTR_ERR(phydev); 808 } 809 810 /* mask with MAC supported features */ 811 phydev->supported &= (SUPPORTED_10baseT_Half | 812 SUPPORTED_10baseT_Full | 813 SUPPORTED_100baseT_Half | 814 SUPPORTED_100baseT_Full | 815 SUPPORTED_Autoneg | 816 SUPPORTED_Pause | 817 SUPPORTED_MII); 818 phydev->advertising = phydev->supported; 819 820 if (priv->pause_auto && priv->pause_rx && priv->pause_tx) 821 phydev->advertising |= SUPPORTED_Pause; 822 else 823 phydev->advertising &= ~SUPPORTED_Pause; 824 825 dev_info(kdev, "attached PHY at address %d [%s]\n", 826 phydev->addr, phydev->drv->name); 827 828 priv->old_link = 0; 829 priv->old_duplex = -1; 830 priv->old_pause = -1; 831 priv->phydev = phydev; 832 } 833 834 /* mask all interrupts and request them */ 835 enet_writel(priv, 0, ENET_IRMASK_REG); 836 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan)); 837 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan)); 838 839 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev); 840 if (ret) 841 goto out_phy_disconnect; 842 843 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, IRQF_DISABLED, 844 dev->name, dev); 845 if (ret) 846 goto out_freeirq; 847 848 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 849 IRQF_DISABLED, dev->name, dev); 850 if (ret) 851 goto out_freeirq_rx; 852 853 /* initialize perfect match registers */ 854 for (i = 0; i < 4; i++) { 855 enet_writel(priv, 0, ENET_PML_REG(i)); 856 enet_writel(priv, 0, ENET_PMH_REG(i)); 857 } 858 859 /* write device mac address */ 860 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN); 861 bcm_enet_set_mac_address(dev, &addr); 862 863 /* allocate rx dma ring */ 864 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 865 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 866 if (!p) { 867 dev_err(kdev, "cannot allocate rx ring %u\n", size); 868 ret = -ENOMEM; 869 goto out_freeirq_tx; 870 } 871 872 memset(p, 0, size); 873 priv->rx_desc_alloc_size = size; 874 priv->rx_desc_cpu = p; 875 876 /* allocate tx dma ring */ 877 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 878 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 879 if (!p) { 880 dev_err(kdev, "cannot allocate tx ring\n"); 881 ret = -ENOMEM; 882 goto out_free_rx_ring; 883 } 884 885 memset(p, 0, size); 886 priv->tx_desc_alloc_size = size; 887 priv->tx_desc_cpu = p; 888 889 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size, 890 GFP_KERNEL); 891 if (!priv->tx_skb) { 892 dev_err(kdev, "cannot allocate rx skb queue\n"); 893 ret = -ENOMEM; 894 goto out_free_tx_ring; 895 } 896 897 priv->tx_desc_count = priv->tx_ring_size; 898 priv->tx_dirty_desc = 0; 899 priv->tx_curr_desc = 0; 900 spin_lock_init(&priv->tx_lock); 901 902 /* init & fill rx ring with skbs */ 903 priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size, 904 GFP_KERNEL); 905 if (!priv->rx_skb) { 906 dev_err(kdev, "cannot allocate rx skb queue\n"); 907 ret = -ENOMEM; 908 goto out_free_tx_skb; 909 } 910 911 priv->rx_desc_count = 0; 912 priv->rx_dirty_desc = 0; 913 priv->rx_curr_desc = 0; 914 915 /* initialize flow control buffer allocation */ 916 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 917 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 918 919 if (bcm_enet_refill_rx(dev)) { 920 dev_err(kdev, "cannot allocate rx skb queue\n"); 921 ret = -ENOMEM; 922 goto out; 923 } 924 925 /* write rx & tx ring addresses */ 926 enet_dma_writel(priv, priv->rx_desc_dma, 927 ENETDMA_RSTART_REG(priv->rx_chan)); 928 enet_dma_writel(priv, priv->tx_desc_dma, 929 ENETDMA_RSTART_REG(priv->tx_chan)); 930 931 /* clear remaining state ram for rx & tx channel */ 932 enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->rx_chan)); 933 enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->tx_chan)); 934 enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->rx_chan)); 935 enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->tx_chan)); 936 enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->rx_chan)); 937 enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->tx_chan)); 938 939 /* set max rx/tx length */ 940 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG); 941 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG); 942 943 /* set dma maximum burst len */ 944 enet_dma_writel(priv, BCMENET_DMA_MAXBURST, 945 ENETDMA_MAXBURST_REG(priv->rx_chan)); 946 enet_dma_writel(priv, BCMENET_DMA_MAXBURST, 947 ENETDMA_MAXBURST_REG(priv->tx_chan)); 948 949 /* set correct transmit fifo watermark */ 950 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG); 951 952 /* set flow control low/high threshold to 1/3 / 2/3 */ 953 val = priv->rx_ring_size / 3; 954 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 955 val = (priv->rx_ring_size * 2) / 3; 956 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 957 958 /* all set, enable mac and interrupts, start dma engine and 959 * kick rx dma channel */ 960 wmb(); 961 val = enet_readl(priv, ENET_CTL_REG); 962 val |= ENET_CTL_ENABLE_MASK; 963 enet_writel(priv, val, ENET_CTL_REG); 964 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 965 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK, 966 ENETDMA_CHANCFG_REG(priv->rx_chan)); 967 968 /* watch "mib counters about to overflow" interrupt */ 969 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 970 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 971 972 /* watch "packet transferred" interrupt in rx and tx */ 973 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, 974 ENETDMA_IR_REG(priv->rx_chan)); 975 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, 976 ENETDMA_IR_REG(priv->tx_chan)); 977 978 /* make sure we enable napi before rx interrupt */ 979 napi_enable(&priv->napi); 980 981 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, 982 ENETDMA_IRMASK_REG(priv->rx_chan)); 983 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, 984 ENETDMA_IRMASK_REG(priv->tx_chan)); 985 986 if (priv->has_phy) 987 phy_start(priv->phydev); 988 else 989 bcm_enet_adjust_link(dev); 990 991 netif_start_queue(dev); 992 return 0; 993 994 out: 995 for (i = 0; i < priv->rx_ring_size; i++) { 996 struct bcm_enet_desc *desc; 997 998 if (!priv->rx_skb[i]) 999 continue; 1000 1001 desc = &priv->rx_desc_cpu[i]; 1002 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1003 DMA_FROM_DEVICE); 1004 kfree_skb(priv->rx_skb[i]); 1005 } 1006 kfree(priv->rx_skb); 1007 1008 out_free_tx_skb: 1009 kfree(priv->tx_skb); 1010 1011 out_free_tx_ring: 1012 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1013 priv->tx_desc_cpu, priv->tx_desc_dma); 1014 1015 out_free_rx_ring: 1016 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1017 priv->rx_desc_cpu, priv->rx_desc_dma); 1018 1019 out_freeirq_tx: 1020 free_irq(priv->irq_tx, dev); 1021 1022 out_freeirq_rx: 1023 free_irq(priv->irq_rx, dev); 1024 1025 out_freeirq: 1026 free_irq(dev->irq, dev); 1027 1028 out_phy_disconnect: 1029 phy_disconnect(priv->phydev); 1030 1031 return ret; 1032 } 1033 1034 /* 1035 * disable mac 1036 */ 1037 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv) 1038 { 1039 int limit; 1040 u32 val; 1041 1042 val = enet_readl(priv, ENET_CTL_REG); 1043 val |= ENET_CTL_DISABLE_MASK; 1044 enet_writel(priv, val, ENET_CTL_REG); 1045 1046 limit = 1000; 1047 do { 1048 u32 val; 1049 1050 val = enet_readl(priv, ENET_CTL_REG); 1051 if (!(val & ENET_CTL_DISABLE_MASK)) 1052 break; 1053 udelay(1); 1054 } while (limit--); 1055 } 1056 1057 /* 1058 * disable dma in given channel 1059 */ 1060 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan) 1061 { 1062 int limit; 1063 1064 enet_dma_writel(priv, 0, ENETDMA_CHANCFG_REG(chan)); 1065 1066 limit = 1000; 1067 do { 1068 u32 val; 1069 1070 val = enet_dma_readl(priv, ENETDMA_CHANCFG_REG(chan)); 1071 if (!(val & ENETDMA_CHANCFG_EN_MASK)) 1072 break; 1073 udelay(1); 1074 } while (limit--); 1075 } 1076 1077 /* 1078 * stop callback 1079 */ 1080 static int bcm_enet_stop(struct net_device *dev) 1081 { 1082 struct bcm_enet_priv *priv; 1083 struct device *kdev; 1084 int i; 1085 1086 priv = netdev_priv(dev); 1087 kdev = &priv->pdev->dev; 1088 1089 netif_stop_queue(dev); 1090 napi_disable(&priv->napi); 1091 if (priv->has_phy) 1092 phy_stop(priv->phydev); 1093 del_timer_sync(&priv->rx_timeout); 1094 1095 /* mask all interrupts */ 1096 enet_writel(priv, 0, ENET_IRMASK_REG); 1097 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan)); 1098 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan)); 1099 1100 /* make sure no mib update is scheduled */ 1101 cancel_work_sync(&priv->mib_update_task); 1102 1103 /* disable dma & mac */ 1104 bcm_enet_disable_dma(priv, priv->tx_chan); 1105 bcm_enet_disable_dma(priv, priv->rx_chan); 1106 bcm_enet_disable_mac(priv); 1107 1108 /* force reclaim of all tx buffers */ 1109 bcm_enet_tx_reclaim(dev, 1); 1110 1111 /* free the rx skb ring */ 1112 for (i = 0; i < priv->rx_ring_size; i++) { 1113 struct bcm_enet_desc *desc; 1114 1115 if (!priv->rx_skb[i]) 1116 continue; 1117 1118 desc = &priv->rx_desc_cpu[i]; 1119 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1120 DMA_FROM_DEVICE); 1121 kfree_skb(priv->rx_skb[i]); 1122 } 1123 1124 /* free remaining allocated memory */ 1125 kfree(priv->rx_skb); 1126 kfree(priv->tx_skb); 1127 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1128 priv->rx_desc_cpu, priv->rx_desc_dma); 1129 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1130 priv->tx_desc_cpu, priv->tx_desc_dma); 1131 free_irq(priv->irq_tx, dev); 1132 free_irq(priv->irq_rx, dev); 1133 free_irq(dev->irq, dev); 1134 1135 /* release phy */ 1136 if (priv->has_phy) { 1137 phy_disconnect(priv->phydev); 1138 priv->phydev = NULL; 1139 } 1140 1141 return 0; 1142 } 1143 1144 /* 1145 * ethtool callbacks 1146 */ 1147 struct bcm_enet_stats { 1148 char stat_string[ETH_GSTRING_LEN]; 1149 int sizeof_stat; 1150 int stat_offset; 1151 int mib_reg; 1152 }; 1153 1154 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \ 1155 offsetof(struct bcm_enet_priv, m) 1156 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \ 1157 offsetof(struct net_device_stats, m) 1158 1159 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = { 1160 { "rx_packets", DEV_STAT(rx_packets), -1 }, 1161 { "tx_packets", DEV_STAT(tx_packets), -1 }, 1162 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 1163 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 1164 { "rx_errors", DEV_STAT(rx_errors), -1 }, 1165 { "tx_errors", DEV_STAT(tx_errors), -1 }, 1166 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 1167 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 1168 1169 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS}, 1170 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS }, 1171 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST }, 1172 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT }, 1173 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 }, 1174 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 }, 1175 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 }, 1176 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 }, 1177 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 }, 1178 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX }, 1179 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB }, 1180 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR }, 1181 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG }, 1182 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP }, 1183 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN }, 1184 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND }, 1185 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC }, 1186 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN }, 1187 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM }, 1188 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE }, 1189 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL }, 1190 1191 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS }, 1192 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS }, 1193 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST }, 1194 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT }, 1195 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 }, 1196 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 }, 1197 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 }, 1198 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 }, 1199 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023}, 1200 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX }, 1201 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB }, 1202 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR }, 1203 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG }, 1204 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN }, 1205 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL }, 1206 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL }, 1207 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL }, 1208 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL }, 1209 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE }, 1210 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF }, 1211 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS }, 1212 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE }, 1213 1214 }; 1215 1216 #define BCM_ENET_STATS_LEN \ 1217 (sizeof(bcm_enet_gstrings_stats) / sizeof(struct bcm_enet_stats)) 1218 1219 static const u32 unused_mib_regs[] = { 1220 ETH_MIB_TX_ALL_OCTETS, 1221 ETH_MIB_TX_ALL_PKTS, 1222 ETH_MIB_RX_ALL_OCTETS, 1223 ETH_MIB_RX_ALL_PKTS, 1224 }; 1225 1226 1227 static void bcm_enet_get_drvinfo(struct net_device *netdev, 1228 struct ethtool_drvinfo *drvinfo) 1229 { 1230 strncpy(drvinfo->driver, bcm_enet_driver_name, 32); 1231 strncpy(drvinfo->version, bcm_enet_driver_version, 32); 1232 strncpy(drvinfo->fw_version, "N/A", 32); 1233 strncpy(drvinfo->bus_info, "bcm63xx", 32); 1234 drvinfo->n_stats = BCM_ENET_STATS_LEN; 1235 } 1236 1237 static int bcm_enet_get_sset_count(struct net_device *netdev, 1238 int string_set) 1239 { 1240 switch (string_set) { 1241 case ETH_SS_STATS: 1242 return BCM_ENET_STATS_LEN; 1243 default: 1244 return -EINVAL; 1245 } 1246 } 1247 1248 static void bcm_enet_get_strings(struct net_device *netdev, 1249 u32 stringset, u8 *data) 1250 { 1251 int i; 1252 1253 switch (stringset) { 1254 case ETH_SS_STATS: 1255 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1256 memcpy(data + i * ETH_GSTRING_LEN, 1257 bcm_enet_gstrings_stats[i].stat_string, 1258 ETH_GSTRING_LEN); 1259 } 1260 break; 1261 } 1262 } 1263 1264 static void update_mib_counters(struct bcm_enet_priv *priv) 1265 { 1266 int i; 1267 1268 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1269 const struct bcm_enet_stats *s; 1270 u32 val; 1271 char *p; 1272 1273 s = &bcm_enet_gstrings_stats[i]; 1274 if (s->mib_reg == -1) 1275 continue; 1276 1277 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg)); 1278 p = (char *)priv + s->stat_offset; 1279 1280 if (s->sizeof_stat == sizeof(u64)) 1281 *(u64 *)p += val; 1282 else 1283 *(u32 *)p += val; 1284 } 1285 1286 /* also empty unused mib counters to make sure mib counter 1287 * overflow interrupt is cleared */ 1288 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++) 1289 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i])); 1290 } 1291 1292 static void bcm_enet_update_mib_counters_defer(struct work_struct *t) 1293 { 1294 struct bcm_enet_priv *priv; 1295 1296 priv = container_of(t, struct bcm_enet_priv, mib_update_task); 1297 mutex_lock(&priv->mib_update_lock); 1298 update_mib_counters(priv); 1299 mutex_unlock(&priv->mib_update_lock); 1300 1301 /* reenable mib interrupt */ 1302 if (netif_running(priv->net_dev)) 1303 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1304 } 1305 1306 static void bcm_enet_get_ethtool_stats(struct net_device *netdev, 1307 struct ethtool_stats *stats, 1308 u64 *data) 1309 { 1310 struct bcm_enet_priv *priv; 1311 int i; 1312 1313 priv = netdev_priv(netdev); 1314 1315 mutex_lock(&priv->mib_update_lock); 1316 update_mib_counters(priv); 1317 1318 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1319 const struct bcm_enet_stats *s; 1320 char *p; 1321 1322 s = &bcm_enet_gstrings_stats[i]; 1323 if (s->mib_reg == -1) 1324 p = (char *)&netdev->stats; 1325 else 1326 p = (char *)priv; 1327 p += s->stat_offset; 1328 data[i] = (s->sizeof_stat == sizeof(u64)) ? 1329 *(u64 *)p : *(u32 *)p; 1330 } 1331 mutex_unlock(&priv->mib_update_lock); 1332 } 1333 1334 static int bcm_enet_get_settings(struct net_device *dev, 1335 struct ethtool_cmd *cmd) 1336 { 1337 struct bcm_enet_priv *priv; 1338 1339 priv = netdev_priv(dev); 1340 1341 cmd->maxrxpkt = 0; 1342 cmd->maxtxpkt = 0; 1343 1344 if (priv->has_phy) { 1345 if (!priv->phydev) 1346 return -ENODEV; 1347 return phy_ethtool_gset(priv->phydev, cmd); 1348 } else { 1349 cmd->autoneg = 0; 1350 ethtool_cmd_speed_set(cmd, ((priv->force_speed_100) 1351 ? SPEED_100 : SPEED_10)); 1352 cmd->duplex = (priv->force_duplex_full) ? 1353 DUPLEX_FULL : DUPLEX_HALF; 1354 cmd->supported = ADVERTISED_10baseT_Half | 1355 ADVERTISED_10baseT_Full | 1356 ADVERTISED_100baseT_Half | 1357 ADVERTISED_100baseT_Full; 1358 cmd->advertising = 0; 1359 cmd->port = PORT_MII; 1360 cmd->transceiver = XCVR_EXTERNAL; 1361 } 1362 return 0; 1363 } 1364 1365 static int bcm_enet_set_settings(struct net_device *dev, 1366 struct ethtool_cmd *cmd) 1367 { 1368 struct bcm_enet_priv *priv; 1369 1370 priv = netdev_priv(dev); 1371 if (priv->has_phy) { 1372 if (!priv->phydev) 1373 return -ENODEV; 1374 return phy_ethtool_sset(priv->phydev, cmd); 1375 } else { 1376 1377 if (cmd->autoneg || 1378 (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) || 1379 cmd->port != PORT_MII) 1380 return -EINVAL; 1381 1382 priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0; 1383 priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0; 1384 1385 if (netif_running(dev)) 1386 bcm_enet_adjust_link(dev); 1387 return 0; 1388 } 1389 } 1390 1391 static void bcm_enet_get_ringparam(struct net_device *dev, 1392 struct ethtool_ringparam *ering) 1393 { 1394 struct bcm_enet_priv *priv; 1395 1396 priv = netdev_priv(dev); 1397 1398 /* rx/tx ring is actually only limited by memory */ 1399 ering->rx_max_pending = 8192; 1400 ering->tx_max_pending = 8192; 1401 ering->rx_pending = priv->rx_ring_size; 1402 ering->tx_pending = priv->tx_ring_size; 1403 } 1404 1405 static int bcm_enet_set_ringparam(struct net_device *dev, 1406 struct ethtool_ringparam *ering) 1407 { 1408 struct bcm_enet_priv *priv; 1409 int was_running; 1410 1411 priv = netdev_priv(dev); 1412 1413 was_running = 0; 1414 if (netif_running(dev)) { 1415 bcm_enet_stop(dev); 1416 was_running = 1; 1417 } 1418 1419 priv->rx_ring_size = ering->rx_pending; 1420 priv->tx_ring_size = ering->tx_pending; 1421 1422 if (was_running) { 1423 int err; 1424 1425 err = bcm_enet_open(dev); 1426 if (err) 1427 dev_close(dev); 1428 else 1429 bcm_enet_set_multicast_list(dev); 1430 } 1431 return 0; 1432 } 1433 1434 static void bcm_enet_get_pauseparam(struct net_device *dev, 1435 struct ethtool_pauseparam *ecmd) 1436 { 1437 struct bcm_enet_priv *priv; 1438 1439 priv = netdev_priv(dev); 1440 ecmd->autoneg = priv->pause_auto; 1441 ecmd->rx_pause = priv->pause_rx; 1442 ecmd->tx_pause = priv->pause_tx; 1443 } 1444 1445 static int bcm_enet_set_pauseparam(struct net_device *dev, 1446 struct ethtool_pauseparam *ecmd) 1447 { 1448 struct bcm_enet_priv *priv; 1449 1450 priv = netdev_priv(dev); 1451 1452 if (priv->has_phy) { 1453 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) { 1454 /* asymetric pause mode not supported, 1455 * actually possible but integrated PHY has RO 1456 * asym_pause bit */ 1457 return -EINVAL; 1458 } 1459 } else { 1460 /* no pause autoneg on direct mii connection */ 1461 if (ecmd->autoneg) 1462 return -EINVAL; 1463 } 1464 1465 priv->pause_auto = ecmd->autoneg; 1466 priv->pause_rx = ecmd->rx_pause; 1467 priv->pause_tx = ecmd->tx_pause; 1468 1469 return 0; 1470 } 1471 1472 static struct ethtool_ops bcm_enet_ethtool_ops = { 1473 .get_strings = bcm_enet_get_strings, 1474 .get_sset_count = bcm_enet_get_sset_count, 1475 .get_ethtool_stats = bcm_enet_get_ethtool_stats, 1476 .get_settings = bcm_enet_get_settings, 1477 .set_settings = bcm_enet_set_settings, 1478 .get_drvinfo = bcm_enet_get_drvinfo, 1479 .get_link = ethtool_op_get_link, 1480 .get_ringparam = bcm_enet_get_ringparam, 1481 .set_ringparam = bcm_enet_set_ringparam, 1482 .get_pauseparam = bcm_enet_get_pauseparam, 1483 .set_pauseparam = bcm_enet_set_pauseparam, 1484 }; 1485 1486 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1487 { 1488 struct bcm_enet_priv *priv; 1489 1490 priv = netdev_priv(dev); 1491 if (priv->has_phy) { 1492 if (!priv->phydev) 1493 return -ENODEV; 1494 return phy_mii_ioctl(priv->phydev, rq, cmd); 1495 } else { 1496 struct mii_if_info mii; 1497 1498 mii.dev = dev; 1499 mii.mdio_read = bcm_enet_mdio_read_mii; 1500 mii.mdio_write = bcm_enet_mdio_write_mii; 1501 mii.phy_id = 0; 1502 mii.phy_id_mask = 0x3f; 1503 mii.reg_num_mask = 0x1f; 1504 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 1505 } 1506 } 1507 1508 /* 1509 * calculate actual hardware mtu 1510 */ 1511 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu) 1512 { 1513 int actual_mtu; 1514 1515 actual_mtu = mtu; 1516 1517 /* add ethernet header + vlan tag size */ 1518 actual_mtu += VLAN_ETH_HLEN; 1519 1520 if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU) 1521 return -EINVAL; 1522 1523 /* 1524 * setup maximum size before we get overflow mark in 1525 * descriptor, note that this will not prevent reception of 1526 * big frames, they will be split into multiple buffers 1527 * anyway 1528 */ 1529 priv->hw_mtu = actual_mtu; 1530 1531 /* 1532 * align rx buffer size to dma burst len, account FCS since 1533 * it's appended 1534 */ 1535 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN, 1536 BCMENET_DMA_MAXBURST * 4); 1537 return 0; 1538 } 1539 1540 /* 1541 * adjust mtu, can't be called while device is running 1542 */ 1543 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu) 1544 { 1545 int ret; 1546 1547 if (netif_running(dev)) 1548 return -EBUSY; 1549 1550 ret = compute_hw_mtu(netdev_priv(dev), new_mtu); 1551 if (ret) 1552 return ret; 1553 dev->mtu = new_mtu; 1554 return 0; 1555 } 1556 1557 /* 1558 * preinit hardware to allow mii operation while device is down 1559 */ 1560 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv) 1561 { 1562 u32 val; 1563 int limit; 1564 1565 /* make sure mac is disabled */ 1566 bcm_enet_disable_mac(priv); 1567 1568 /* soft reset mac */ 1569 val = ENET_CTL_SRESET_MASK; 1570 enet_writel(priv, val, ENET_CTL_REG); 1571 wmb(); 1572 1573 limit = 1000; 1574 do { 1575 val = enet_readl(priv, ENET_CTL_REG); 1576 if (!(val & ENET_CTL_SRESET_MASK)) 1577 break; 1578 udelay(1); 1579 } while (limit--); 1580 1581 /* select correct mii interface */ 1582 val = enet_readl(priv, ENET_CTL_REG); 1583 if (priv->use_external_mii) 1584 val |= ENET_CTL_EPHYSEL_MASK; 1585 else 1586 val &= ~ENET_CTL_EPHYSEL_MASK; 1587 enet_writel(priv, val, ENET_CTL_REG); 1588 1589 /* turn on mdc clock */ 1590 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) | 1591 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG); 1592 1593 /* set mib counters to self-clear when read */ 1594 val = enet_readl(priv, ENET_MIBCTL_REG); 1595 val |= ENET_MIBCTL_RDCLEAR_MASK; 1596 enet_writel(priv, val, ENET_MIBCTL_REG); 1597 } 1598 1599 static const struct net_device_ops bcm_enet_ops = { 1600 .ndo_open = bcm_enet_open, 1601 .ndo_stop = bcm_enet_stop, 1602 .ndo_start_xmit = bcm_enet_start_xmit, 1603 .ndo_set_mac_address = bcm_enet_set_mac_address, 1604 .ndo_set_rx_mode = bcm_enet_set_multicast_list, 1605 .ndo_do_ioctl = bcm_enet_ioctl, 1606 .ndo_change_mtu = bcm_enet_change_mtu, 1607 #ifdef CONFIG_NET_POLL_CONTROLLER 1608 .ndo_poll_controller = bcm_enet_netpoll, 1609 #endif 1610 }; 1611 1612 /* 1613 * allocate netdevice, request register memory and register device. 1614 */ 1615 static int __devinit bcm_enet_probe(struct platform_device *pdev) 1616 { 1617 struct bcm_enet_priv *priv; 1618 struct net_device *dev; 1619 struct bcm63xx_enet_platform_data *pd; 1620 struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx; 1621 struct mii_bus *bus; 1622 const char *clk_name; 1623 unsigned int iomem_size; 1624 int i, ret; 1625 1626 /* stop if shared driver failed, assume driver->probe will be 1627 * called in the same order we register devices (correct ?) */ 1628 if (!bcm_enet_shared_base) 1629 return -ENODEV; 1630 1631 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1632 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1633 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1); 1634 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2); 1635 if (!res_mem || !res_irq || !res_irq_rx || !res_irq_tx) 1636 return -ENODEV; 1637 1638 ret = 0; 1639 dev = alloc_etherdev(sizeof(*priv)); 1640 if (!dev) 1641 return -ENOMEM; 1642 priv = netdev_priv(dev); 1643 1644 ret = compute_hw_mtu(priv, dev->mtu); 1645 if (ret) 1646 goto out; 1647 1648 iomem_size = resource_size(res_mem); 1649 if (!request_mem_region(res_mem->start, iomem_size, "bcm63xx_enet")) { 1650 ret = -EBUSY; 1651 goto out; 1652 } 1653 1654 priv->base = ioremap(res_mem->start, iomem_size); 1655 if (priv->base == NULL) { 1656 ret = -ENOMEM; 1657 goto out_release_mem; 1658 } 1659 dev->irq = priv->irq = res_irq->start; 1660 priv->irq_rx = res_irq_rx->start; 1661 priv->irq_tx = res_irq_tx->start; 1662 priv->mac_id = pdev->id; 1663 1664 /* get rx & tx dma channel id for this mac */ 1665 if (priv->mac_id == 0) { 1666 priv->rx_chan = 0; 1667 priv->tx_chan = 1; 1668 clk_name = "enet0"; 1669 } else { 1670 priv->rx_chan = 2; 1671 priv->tx_chan = 3; 1672 clk_name = "enet1"; 1673 } 1674 1675 priv->mac_clk = clk_get(&pdev->dev, clk_name); 1676 if (IS_ERR(priv->mac_clk)) { 1677 ret = PTR_ERR(priv->mac_clk); 1678 goto out_unmap; 1679 } 1680 clk_enable(priv->mac_clk); 1681 1682 /* initialize default and fetch platform data */ 1683 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 1684 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 1685 1686 pd = pdev->dev.platform_data; 1687 if (pd) { 1688 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 1689 priv->has_phy = pd->has_phy; 1690 priv->phy_id = pd->phy_id; 1691 priv->has_phy_interrupt = pd->has_phy_interrupt; 1692 priv->phy_interrupt = pd->phy_interrupt; 1693 priv->use_external_mii = !pd->use_internal_phy; 1694 priv->pause_auto = pd->pause_auto; 1695 priv->pause_rx = pd->pause_rx; 1696 priv->pause_tx = pd->pause_tx; 1697 priv->force_duplex_full = pd->force_duplex_full; 1698 priv->force_speed_100 = pd->force_speed_100; 1699 } 1700 1701 if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) { 1702 /* using internal PHY, enable clock */ 1703 priv->phy_clk = clk_get(&pdev->dev, "ephy"); 1704 if (IS_ERR(priv->phy_clk)) { 1705 ret = PTR_ERR(priv->phy_clk); 1706 priv->phy_clk = NULL; 1707 goto out_put_clk_mac; 1708 } 1709 clk_enable(priv->phy_clk); 1710 } 1711 1712 /* do minimal hardware init to be able to probe mii bus */ 1713 bcm_enet_hw_preinit(priv); 1714 1715 /* MII bus registration */ 1716 if (priv->has_phy) { 1717 1718 priv->mii_bus = mdiobus_alloc(); 1719 if (!priv->mii_bus) { 1720 ret = -ENOMEM; 1721 goto out_uninit_hw; 1722 } 1723 1724 bus = priv->mii_bus; 1725 bus->name = "bcm63xx_enet MII bus"; 1726 bus->parent = &pdev->dev; 1727 bus->priv = priv; 1728 bus->read = bcm_enet_mdio_read_phylib; 1729 bus->write = bcm_enet_mdio_write_phylib; 1730 sprintf(bus->id, "%d", priv->mac_id); 1731 1732 /* only probe bus where we think the PHY is, because 1733 * the mdio read operation return 0 instead of 0xffff 1734 * if a slave is not present on hw */ 1735 bus->phy_mask = ~(1 << priv->phy_id); 1736 1737 bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); 1738 if (!bus->irq) { 1739 ret = -ENOMEM; 1740 goto out_free_mdio; 1741 } 1742 1743 if (priv->has_phy_interrupt) 1744 bus->irq[priv->phy_id] = priv->phy_interrupt; 1745 else 1746 bus->irq[priv->phy_id] = PHY_POLL; 1747 1748 ret = mdiobus_register(bus); 1749 if (ret) { 1750 dev_err(&pdev->dev, "unable to register mdio bus\n"); 1751 goto out_free_mdio; 1752 } 1753 } else { 1754 1755 /* run platform code to initialize PHY device */ 1756 if (pd->mii_config && 1757 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii, 1758 bcm_enet_mdio_write_mii)) { 1759 dev_err(&pdev->dev, "unable to configure mdio bus\n"); 1760 goto out_uninit_hw; 1761 } 1762 } 1763 1764 spin_lock_init(&priv->rx_lock); 1765 1766 /* init rx timeout (used for oom) */ 1767 init_timer(&priv->rx_timeout); 1768 priv->rx_timeout.function = bcm_enet_refill_rx_timer; 1769 priv->rx_timeout.data = (unsigned long)dev; 1770 1771 /* init the mib update lock&work */ 1772 mutex_init(&priv->mib_update_lock); 1773 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer); 1774 1775 /* zero mib counters */ 1776 for (i = 0; i < ENET_MIB_REG_COUNT; i++) 1777 enet_writel(priv, 0, ENET_MIB_REG(i)); 1778 1779 /* register netdevice */ 1780 dev->netdev_ops = &bcm_enet_ops; 1781 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 1782 1783 SET_ETHTOOL_OPS(dev, &bcm_enet_ethtool_ops); 1784 SET_NETDEV_DEV(dev, &pdev->dev); 1785 1786 ret = register_netdev(dev); 1787 if (ret) 1788 goto out_unregister_mdio; 1789 1790 netif_carrier_off(dev); 1791 platform_set_drvdata(pdev, dev); 1792 priv->pdev = pdev; 1793 priv->net_dev = dev; 1794 1795 return 0; 1796 1797 out_unregister_mdio: 1798 if (priv->mii_bus) { 1799 mdiobus_unregister(priv->mii_bus); 1800 kfree(priv->mii_bus->irq); 1801 } 1802 1803 out_free_mdio: 1804 if (priv->mii_bus) 1805 mdiobus_free(priv->mii_bus); 1806 1807 out_uninit_hw: 1808 /* turn off mdc clock */ 1809 enet_writel(priv, 0, ENET_MIISC_REG); 1810 if (priv->phy_clk) { 1811 clk_disable(priv->phy_clk); 1812 clk_put(priv->phy_clk); 1813 } 1814 1815 out_put_clk_mac: 1816 clk_disable(priv->mac_clk); 1817 clk_put(priv->mac_clk); 1818 1819 out_unmap: 1820 iounmap(priv->base); 1821 1822 out_release_mem: 1823 release_mem_region(res_mem->start, iomem_size); 1824 out: 1825 free_netdev(dev); 1826 return ret; 1827 } 1828 1829 1830 /* 1831 * exit func, stops hardware and unregisters netdevice 1832 */ 1833 static int __devexit bcm_enet_remove(struct platform_device *pdev) 1834 { 1835 struct bcm_enet_priv *priv; 1836 struct net_device *dev; 1837 struct resource *res; 1838 1839 /* stop netdevice */ 1840 dev = platform_get_drvdata(pdev); 1841 priv = netdev_priv(dev); 1842 unregister_netdev(dev); 1843 1844 /* turn off mdc clock */ 1845 enet_writel(priv, 0, ENET_MIISC_REG); 1846 1847 if (priv->has_phy) { 1848 mdiobus_unregister(priv->mii_bus); 1849 kfree(priv->mii_bus->irq); 1850 mdiobus_free(priv->mii_bus); 1851 } else { 1852 struct bcm63xx_enet_platform_data *pd; 1853 1854 pd = pdev->dev.platform_data; 1855 if (pd && pd->mii_config) 1856 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii, 1857 bcm_enet_mdio_write_mii); 1858 } 1859 1860 /* release device resources */ 1861 iounmap(priv->base); 1862 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1863 release_mem_region(res->start, resource_size(res)); 1864 1865 /* disable hw block clocks */ 1866 if (priv->phy_clk) { 1867 clk_disable(priv->phy_clk); 1868 clk_put(priv->phy_clk); 1869 } 1870 clk_disable(priv->mac_clk); 1871 clk_put(priv->mac_clk); 1872 1873 platform_set_drvdata(pdev, NULL); 1874 free_netdev(dev); 1875 return 0; 1876 } 1877 1878 struct platform_driver bcm63xx_enet_driver = { 1879 .probe = bcm_enet_probe, 1880 .remove = __devexit_p(bcm_enet_remove), 1881 .driver = { 1882 .name = "bcm63xx_enet", 1883 .owner = THIS_MODULE, 1884 }, 1885 }; 1886 1887 /* 1888 * reserve & remap memory space shared between all macs 1889 */ 1890 static int __devinit bcm_enet_shared_probe(struct platform_device *pdev) 1891 { 1892 struct resource *res; 1893 unsigned int iomem_size; 1894 1895 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1896 if (!res) 1897 return -ENODEV; 1898 1899 iomem_size = resource_size(res); 1900 if (!request_mem_region(res->start, iomem_size, "bcm63xx_enet_dma")) 1901 return -EBUSY; 1902 1903 bcm_enet_shared_base = ioremap(res->start, iomem_size); 1904 if (!bcm_enet_shared_base) { 1905 release_mem_region(res->start, iomem_size); 1906 return -ENOMEM; 1907 } 1908 return 0; 1909 } 1910 1911 static int __devexit bcm_enet_shared_remove(struct platform_device *pdev) 1912 { 1913 struct resource *res; 1914 1915 iounmap(bcm_enet_shared_base); 1916 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1917 release_mem_region(res->start, resource_size(res)); 1918 return 0; 1919 } 1920 1921 /* 1922 * this "shared" driver is needed because both macs share a single 1923 * address space 1924 */ 1925 struct platform_driver bcm63xx_enet_shared_driver = { 1926 .probe = bcm_enet_shared_probe, 1927 .remove = __devexit_p(bcm_enet_shared_remove), 1928 .driver = { 1929 .name = "bcm63xx_enet_shared", 1930 .owner = THIS_MODULE, 1931 }, 1932 }; 1933 1934 /* 1935 * entry point 1936 */ 1937 static int __init bcm_enet_init(void) 1938 { 1939 int ret; 1940 1941 ret = platform_driver_register(&bcm63xx_enet_shared_driver); 1942 if (ret) 1943 return ret; 1944 1945 ret = platform_driver_register(&bcm63xx_enet_driver); 1946 if (ret) 1947 platform_driver_unregister(&bcm63xx_enet_shared_driver); 1948 1949 return ret; 1950 } 1951 1952 static void __exit bcm_enet_exit(void) 1953 { 1954 platform_driver_unregister(&bcm63xx_enet_driver); 1955 platform_driver_unregister(&bcm63xx_enet_shared_driver); 1956 } 1957 1958 1959 module_init(bcm_enet_init); 1960 module_exit(bcm_enet_exit); 1961 1962 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver"); 1963 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>"); 1964 MODULE_LICENSE("GPL"); 1965