xref: /openbmc/linux/drivers/net/ethernet/broadcom/bcm63xx_enet.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * Driver for BCM963xx builtin Ethernet mac
3  *
4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33 
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36 
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39 
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43 
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46 
47 /*
48  * io helpers to access mac registers
49  */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 	return bcm_readl(priv->base + off);
53 }
54 
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 			       u32 val, u32 off)
57 {
58 	bcm_writel(val, priv->base + off);
59 }
60 
61 /*
62  * io helpers to access switch registers
63  */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 	return bcm_readl(priv->base + off);
67 }
68 
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 				 u32 val, u32 off)
71 {
72 	bcm_writel(val, priv->base + off);
73 }
74 
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 	return bcm_readw(priv->base + off);
78 }
79 
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 				 u16 val, u32 off)
82 {
83 	bcm_writew(val, priv->base + off);
84 }
85 
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 	return bcm_readb(priv->base + off);
89 }
90 
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 				 u8 val, u32 off)
93 {
94 	bcm_writeb(val, priv->base + off);
95 }
96 
97 
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 	return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103 
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 				       u32 val, u32 off)
106 {
107 	bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109 
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 	return bcm_readl(bcm_enet_shared_base[1] +
113 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115 
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 				       u32 val, u32 off, int chan)
118 {
119 	bcm_writel(val, bcm_enet_shared_base[1] +
120 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122 
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127 
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 				       u32 val, u32 off, int chan)
130 {
131 	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133 
134 /*
135  * write given data into mii register and wait for transfer to end
136  * with timeout (average measured transfer time is 25us)
137  */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 	int limit;
141 
142 	/* make sure mii interrupt status is cleared */
143 	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144 
145 	enet_writel(priv, data, ENET_MIIDATA_REG);
146 	wmb();
147 
148 	/* busy wait on mii interrupt bit, with timeout */
149 	limit = 1000;
150 	do {
151 		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 			break;
153 		udelay(1);
154 	} while (limit-- > 0);
155 
156 	return (limit < 0) ? 1 : 0;
157 }
158 
159 /*
160  * MII internal read callback
161  */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 			      int regnum)
164 {
165 	u32 tmp, val;
166 
167 	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 	tmp |= ENET_MIIDATA_OP_READ_MASK;
171 
172 	if (do_mdio_op(priv, tmp))
173 		return -1;
174 
175 	val = enet_readl(priv, ENET_MIIDATA_REG);
176 	val &= 0xffff;
177 	return val;
178 }
179 
180 /*
181  * MII internal write callback
182  */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 			       int regnum, u16 value)
185 {
186 	u32 tmp;
187 
188 	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193 
194 	(void)do_mdio_op(priv, tmp);
195 	return 0;
196 }
197 
198 /*
199  * MII read callback from phylib
200  */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 				     int regnum)
203 {
204 	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206 
207 /*
208  * MII write callback from phylib
209  */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 				      int regnum, u16 value)
212 {
213 	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215 
216 /*
217  * MII read callback from mii core
218  */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 				  int regnum)
221 {
222 	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224 
225 /*
226  * MII write callback from mii core
227  */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 				    int regnum, int value)
230 {
231 	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233 
234 /*
235  * refill rx queue
236  */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 	struct bcm_enet_priv *priv;
240 
241 	priv = netdev_priv(dev);
242 
243 	while (priv->rx_desc_count < priv->rx_ring_size) {
244 		struct bcm_enet_desc *desc;
245 		struct sk_buff *skb;
246 		dma_addr_t p;
247 		int desc_idx;
248 		u32 len_stat;
249 
250 		desc_idx = priv->rx_dirty_desc;
251 		desc = &priv->rx_desc_cpu[desc_idx];
252 
253 		if (!priv->rx_skb[desc_idx]) {
254 			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 			if (!skb)
256 				break;
257 			priv->rx_skb[desc_idx] = skb;
258 			p = dma_map_single(&priv->pdev->dev, skb->data,
259 					   priv->rx_skb_size,
260 					   DMA_FROM_DEVICE);
261 			desc->address = p;
262 		}
263 
264 		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 		len_stat |= DMADESC_OWNER_MASK;
266 		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 			priv->rx_dirty_desc = 0;
269 		} else {
270 			priv->rx_dirty_desc++;
271 		}
272 		wmb();
273 		desc->len_stat = len_stat;
274 
275 		priv->rx_desc_count++;
276 
277 		/* tell dma engine we allocated one buffer */
278 		if (priv->dma_has_sram)
279 			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 		else
281 			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 	}
283 
284 	/* If rx ring is still empty, set a timer to try allocating
285 	 * again at a later time. */
286 	if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 		priv->rx_timeout.expires = jiffies + HZ;
289 		add_timer(&priv->rx_timeout);
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * timer callback to defer refill rx queue in case we're OOM
297  */
298 static void bcm_enet_refill_rx_timer(unsigned long data)
299 {
300 	struct net_device *dev;
301 	struct bcm_enet_priv *priv;
302 
303 	dev = (struct net_device *)data;
304 	priv = netdev_priv(dev);
305 
306 	spin_lock(&priv->rx_lock);
307 	bcm_enet_refill_rx((struct net_device *)data);
308 	spin_unlock(&priv->rx_lock);
309 }
310 
311 /*
312  * extract packet from rx queue
313  */
314 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
315 {
316 	struct bcm_enet_priv *priv;
317 	struct device *kdev;
318 	int processed;
319 
320 	priv = netdev_priv(dev);
321 	kdev = &priv->pdev->dev;
322 	processed = 0;
323 
324 	/* don't scan ring further than number of refilled
325 	 * descriptor */
326 	if (budget > priv->rx_desc_count)
327 		budget = priv->rx_desc_count;
328 
329 	do {
330 		struct bcm_enet_desc *desc;
331 		struct sk_buff *skb;
332 		int desc_idx;
333 		u32 len_stat;
334 		unsigned int len;
335 
336 		desc_idx = priv->rx_curr_desc;
337 		desc = &priv->rx_desc_cpu[desc_idx];
338 
339 		/* make sure we actually read the descriptor status at
340 		 * each loop */
341 		rmb();
342 
343 		len_stat = desc->len_stat;
344 
345 		/* break if dma ownership belongs to hw */
346 		if (len_stat & DMADESC_OWNER_MASK)
347 			break;
348 
349 		processed++;
350 		priv->rx_curr_desc++;
351 		if (priv->rx_curr_desc == priv->rx_ring_size)
352 			priv->rx_curr_desc = 0;
353 		priv->rx_desc_count--;
354 
355 		/* if the packet does not have start of packet _and_
356 		 * end of packet flag set, then just recycle it */
357 		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
358 			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
359 			dev->stats.rx_dropped++;
360 			continue;
361 		}
362 
363 		/* recycle packet if it's marked as bad */
364 		if (!priv->enet_is_sw &&
365 		    unlikely(len_stat & DMADESC_ERR_MASK)) {
366 			dev->stats.rx_errors++;
367 
368 			if (len_stat & DMADESC_OVSIZE_MASK)
369 				dev->stats.rx_length_errors++;
370 			if (len_stat & DMADESC_CRC_MASK)
371 				dev->stats.rx_crc_errors++;
372 			if (len_stat & DMADESC_UNDER_MASK)
373 				dev->stats.rx_frame_errors++;
374 			if (len_stat & DMADESC_OV_MASK)
375 				dev->stats.rx_fifo_errors++;
376 			continue;
377 		}
378 
379 		/* valid packet */
380 		skb = priv->rx_skb[desc_idx];
381 		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
382 		/* don't include FCS */
383 		len -= 4;
384 
385 		if (len < copybreak) {
386 			struct sk_buff *nskb;
387 
388 			nskb = napi_alloc_skb(&priv->napi, len);
389 			if (!nskb) {
390 				/* forget packet, just rearm desc */
391 				dev->stats.rx_dropped++;
392 				continue;
393 			}
394 
395 			dma_sync_single_for_cpu(kdev, desc->address,
396 						len, DMA_FROM_DEVICE);
397 			memcpy(nskb->data, skb->data, len);
398 			dma_sync_single_for_device(kdev, desc->address,
399 						   len, DMA_FROM_DEVICE);
400 			skb = nskb;
401 		} else {
402 			dma_unmap_single(&priv->pdev->dev, desc->address,
403 					 priv->rx_skb_size, DMA_FROM_DEVICE);
404 			priv->rx_skb[desc_idx] = NULL;
405 		}
406 
407 		skb_put(skb, len);
408 		skb->protocol = eth_type_trans(skb, dev);
409 		dev->stats.rx_packets++;
410 		dev->stats.rx_bytes += len;
411 		netif_receive_skb(skb);
412 
413 	} while (--budget > 0);
414 
415 	if (processed || !priv->rx_desc_count) {
416 		bcm_enet_refill_rx(dev);
417 
418 		/* kick rx dma */
419 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
420 					 ENETDMAC_CHANCFG, priv->rx_chan);
421 	}
422 
423 	return processed;
424 }
425 
426 
427 /*
428  * try to or force reclaim of transmitted buffers
429  */
430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
431 {
432 	struct bcm_enet_priv *priv;
433 	int released;
434 
435 	priv = netdev_priv(dev);
436 	released = 0;
437 
438 	while (priv->tx_desc_count < priv->tx_ring_size) {
439 		struct bcm_enet_desc *desc;
440 		struct sk_buff *skb;
441 
442 		/* We run in a bh and fight against start_xmit, which
443 		 * is called with bh disabled  */
444 		spin_lock(&priv->tx_lock);
445 
446 		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
447 
448 		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
449 			spin_unlock(&priv->tx_lock);
450 			break;
451 		}
452 
453 		/* ensure other field of the descriptor were not read
454 		 * before we checked ownership */
455 		rmb();
456 
457 		skb = priv->tx_skb[priv->tx_dirty_desc];
458 		priv->tx_skb[priv->tx_dirty_desc] = NULL;
459 		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
460 				 DMA_TO_DEVICE);
461 
462 		priv->tx_dirty_desc++;
463 		if (priv->tx_dirty_desc == priv->tx_ring_size)
464 			priv->tx_dirty_desc = 0;
465 		priv->tx_desc_count++;
466 
467 		spin_unlock(&priv->tx_lock);
468 
469 		if (desc->len_stat & DMADESC_UNDER_MASK)
470 			dev->stats.tx_errors++;
471 
472 		dev_kfree_skb(skb);
473 		released++;
474 	}
475 
476 	if (netif_queue_stopped(dev) && released)
477 		netif_wake_queue(dev);
478 
479 	return released;
480 }
481 
482 /*
483  * poll func, called by network core
484  */
485 static int bcm_enet_poll(struct napi_struct *napi, int budget)
486 {
487 	struct bcm_enet_priv *priv;
488 	struct net_device *dev;
489 	int rx_work_done;
490 
491 	priv = container_of(napi, struct bcm_enet_priv, napi);
492 	dev = priv->net_dev;
493 
494 	/* ack interrupts */
495 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
496 			 ENETDMAC_IR, priv->rx_chan);
497 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
498 			 ENETDMAC_IR, priv->tx_chan);
499 
500 	/* reclaim sent skb */
501 	bcm_enet_tx_reclaim(dev, 0);
502 
503 	spin_lock(&priv->rx_lock);
504 	rx_work_done = bcm_enet_receive_queue(dev, budget);
505 	spin_unlock(&priv->rx_lock);
506 
507 	if (rx_work_done >= budget) {
508 		/* rx queue is not yet empty/clean */
509 		return rx_work_done;
510 	}
511 
512 	/* no more packet in rx/tx queue, remove device from poll
513 	 * queue */
514 	napi_complete_done(napi, rx_work_done);
515 
516 	/* restore rx/tx interrupt */
517 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
518 			 ENETDMAC_IRMASK, priv->rx_chan);
519 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
520 			 ENETDMAC_IRMASK, priv->tx_chan);
521 
522 	return rx_work_done;
523 }
524 
525 /*
526  * mac interrupt handler
527  */
528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
529 {
530 	struct net_device *dev;
531 	struct bcm_enet_priv *priv;
532 	u32 stat;
533 
534 	dev = dev_id;
535 	priv = netdev_priv(dev);
536 
537 	stat = enet_readl(priv, ENET_IR_REG);
538 	if (!(stat & ENET_IR_MIB))
539 		return IRQ_NONE;
540 
541 	/* clear & mask interrupt */
542 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
543 	enet_writel(priv, 0, ENET_IRMASK_REG);
544 
545 	/* read mib registers in workqueue */
546 	schedule_work(&priv->mib_update_task);
547 
548 	return IRQ_HANDLED;
549 }
550 
551 /*
552  * rx/tx dma interrupt handler
553  */
554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
555 {
556 	struct net_device *dev;
557 	struct bcm_enet_priv *priv;
558 
559 	dev = dev_id;
560 	priv = netdev_priv(dev);
561 
562 	/* mask rx/tx interrupts */
563 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
564 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
565 
566 	napi_schedule(&priv->napi);
567 
568 	return IRQ_HANDLED;
569 }
570 
571 /*
572  * tx request callback
573  */
574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576 	struct bcm_enet_priv *priv;
577 	struct bcm_enet_desc *desc;
578 	u32 len_stat;
579 	int ret;
580 
581 	priv = netdev_priv(dev);
582 
583 	/* lock against tx reclaim */
584 	spin_lock(&priv->tx_lock);
585 
586 	/* make sure  the tx hw queue  is not full,  should not happen
587 	 * since we stop queue before it's the case */
588 	if (unlikely(!priv->tx_desc_count)) {
589 		netif_stop_queue(dev);
590 		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
591 			"available?\n");
592 		ret = NETDEV_TX_BUSY;
593 		goto out_unlock;
594 	}
595 
596 	/* pad small packets sent on a switch device */
597 	if (priv->enet_is_sw && skb->len < 64) {
598 		int needed = 64 - skb->len;
599 		char *data;
600 
601 		if (unlikely(skb_tailroom(skb) < needed)) {
602 			struct sk_buff *nskb;
603 
604 			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
605 			if (!nskb) {
606 				ret = NETDEV_TX_BUSY;
607 				goto out_unlock;
608 			}
609 			dev_kfree_skb(skb);
610 			skb = nskb;
611 		}
612 		data = skb_put_zero(skb, needed);
613 	}
614 
615 	/* point to the next available desc */
616 	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
617 	priv->tx_skb[priv->tx_curr_desc] = skb;
618 
619 	/* fill descriptor */
620 	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
621 				       DMA_TO_DEVICE);
622 
623 	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
624 	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
625 		DMADESC_APPEND_CRC |
626 		DMADESC_OWNER_MASK;
627 
628 	priv->tx_curr_desc++;
629 	if (priv->tx_curr_desc == priv->tx_ring_size) {
630 		priv->tx_curr_desc = 0;
631 		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
632 	}
633 	priv->tx_desc_count--;
634 
635 	/* dma might be already polling, make sure we update desc
636 	 * fields in correct order */
637 	wmb();
638 	desc->len_stat = len_stat;
639 	wmb();
640 
641 	/* kick tx dma */
642 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
643 				 ENETDMAC_CHANCFG, priv->tx_chan);
644 
645 	/* stop queue if no more desc available */
646 	if (!priv->tx_desc_count)
647 		netif_stop_queue(dev);
648 
649 	dev->stats.tx_bytes += skb->len;
650 	dev->stats.tx_packets++;
651 	ret = NETDEV_TX_OK;
652 
653 out_unlock:
654 	spin_unlock(&priv->tx_lock);
655 	return ret;
656 }
657 
658 /*
659  * Change the interface's mac address.
660  */
661 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
662 {
663 	struct bcm_enet_priv *priv;
664 	struct sockaddr *addr = p;
665 	u32 val;
666 
667 	priv = netdev_priv(dev);
668 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
669 
670 	/* use perfect match register 0 to store my mac address */
671 	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
672 		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
673 	enet_writel(priv, val, ENET_PML_REG(0));
674 
675 	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
676 	val |= ENET_PMH_DATAVALID_MASK;
677 	enet_writel(priv, val, ENET_PMH_REG(0));
678 
679 	return 0;
680 }
681 
682 /*
683  * Change rx mode (promiscuous/allmulti) and update multicast list
684  */
685 static void bcm_enet_set_multicast_list(struct net_device *dev)
686 {
687 	struct bcm_enet_priv *priv;
688 	struct netdev_hw_addr *ha;
689 	u32 val;
690 	int i;
691 
692 	priv = netdev_priv(dev);
693 
694 	val = enet_readl(priv, ENET_RXCFG_REG);
695 
696 	if (dev->flags & IFF_PROMISC)
697 		val |= ENET_RXCFG_PROMISC_MASK;
698 	else
699 		val &= ~ENET_RXCFG_PROMISC_MASK;
700 
701 	/* only 3 perfect match registers left, first one is used for
702 	 * own mac address */
703 	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
704 		val |= ENET_RXCFG_ALLMCAST_MASK;
705 	else
706 		val &= ~ENET_RXCFG_ALLMCAST_MASK;
707 
708 	/* no need to set perfect match registers if we catch all
709 	 * multicast */
710 	if (val & ENET_RXCFG_ALLMCAST_MASK) {
711 		enet_writel(priv, val, ENET_RXCFG_REG);
712 		return;
713 	}
714 
715 	i = 0;
716 	netdev_for_each_mc_addr(ha, dev) {
717 		u8 *dmi_addr;
718 		u32 tmp;
719 
720 		if (i == 3)
721 			break;
722 		/* update perfect match registers */
723 		dmi_addr = ha->addr;
724 		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
725 			(dmi_addr[4] << 8) | dmi_addr[5];
726 		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
727 
728 		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
729 		tmp |= ENET_PMH_DATAVALID_MASK;
730 		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
731 	}
732 
733 	for (; i < 3; i++) {
734 		enet_writel(priv, 0, ENET_PML_REG(i + 1));
735 		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
736 	}
737 
738 	enet_writel(priv, val, ENET_RXCFG_REG);
739 }
740 
741 /*
742  * set mac duplex parameters
743  */
744 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
745 {
746 	u32 val;
747 
748 	val = enet_readl(priv, ENET_TXCTL_REG);
749 	if (fullduplex)
750 		val |= ENET_TXCTL_FD_MASK;
751 	else
752 		val &= ~ENET_TXCTL_FD_MASK;
753 	enet_writel(priv, val, ENET_TXCTL_REG);
754 }
755 
756 /*
757  * set mac flow control parameters
758  */
759 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
760 {
761 	u32 val;
762 
763 	/* rx flow control (pause frame handling) */
764 	val = enet_readl(priv, ENET_RXCFG_REG);
765 	if (rx_en)
766 		val |= ENET_RXCFG_ENFLOW_MASK;
767 	else
768 		val &= ~ENET_RXCFG_ENFLOW_MASK;
769 	enet_writel(priv, val, ENET_RXCFG_REG);
770 
771 	if (!priv->dma_has_sram)
772 		return;
773 
774 	/* tx flow control (pause frame generation) */
775 	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
776 	if (tx_en)
777 		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
778 	else
779 		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
780 	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
781 }
782 
783 /*
784  * link changed callback (from phylib)
785  */
786 static void bcm_enet_adjust_phy_link(struct net_device *dev)
787 {
788 	struct bcm_enet_priv *priv;
789 	struct phy_device *phydev;
790 	int status_changed;
791 
792 	priv = netdev_priv(dev);
793 	phydev = dev->phydev;
794 	status_changed = 0;
795 
796 	if (priv->old_link != phydev->link) {
797 		status_changed = 1;
798 		priv->old_link = phydev->link;
799 	}
800 
801 	/* reflect duplex change in mac configuration */
802 	if (phydev->link && phydev->duplex != priv->old_duplex) {
803 		bcm_enet_set_duplex(priv,
804 				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
805 		status_changed = 1;
806 		priv->old_duplex = phydev->duplex;
807 	}
808 
809 	/* enable flow control if remote advertise it (trust phylib to
810 	 * check that duplex is full */
811 	if (phydev->link && phydev->pause != priv->old_pause) {
812 		int rx_pause_en, tx_pause_en;
813 
814 		if (phydev->pause) {
815 			/* pause was advertised by lpa and us */
816 			rx_pause_en = 1;
817 			tx_pause_en = 1;
818 		} else if (!priv->pause_auto) {
819 			/* pause setting overridden by user */
820 			rx_pause_en = priv->pause_rx;
821 			tx_pause_en = priv->pause_tx;
822 		} else {
823 			rx_pause_en = 0;
824 			tx_pause_en = 0;
825 		}
826 
827 		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
828 		status_changed = 1;
829 		priv->old_pause = phydev->pause;
830 	}
831 
832 	if (status_changed) {
833 		pr_info("%s: link %s", dev->name, phydev->link ?
834 			"UP" : "DOWN");
835 		if (phydev->link)
836 			pr_cont(" - %d/%s - flow control %s", phydev->speed,
837 			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
838 			       phydev->pause == 1 ? "rx&tx" : "off");
839 
840 		pr_cont("\n");
841 	}
842 }
843 
844 /*
845  * link changed callback (if phylib is not used)
846  */
847 static void bcm_enet_adjust_link(struct net_device *dev)
848 {
849 	struct bcm_enet_priv *priv;
850 
851 	priv = netdev_priv(dev);
852 	bcm_enet_set_duplex(priv, priv->force_duplex_full);
853 	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
854 	netif_carrier_on(dev);
855 
856 	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
857 		dev->name,
858 		priv->force_speed_100 ? 100 : 10,
859 		priv->force_duplex_full ? "full" : "half",
860 		priv->pause_rx ? "rx" : "off",
861 		priv->pause_tx ? "tx" : "off");
862 }
863 
864 /*
865  * open callback, allocate dma rings & buffers and start rx operation
866  */
867 static int bcm_enet_open(struct net_device *dev)
868 {
869 	struct bcm_enet_priv *priv;
870 	struct sockaddr addr;
871 	struct device *kdev;
872 	struct phy_device *phydev;
873 	int i, ret;
874 	unsigned int size;
875 	char phy_id[MII_BUS_ID_SIZE + 3];
876 	void *p;
877 	u32 val;
878 
879 	priv = netdev_priv(dev);
880 	kdev = &priv->pdev->dev;
881 
882 	if (priv->has_phy) {
883 		/* connect to PHY */
884 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
885 			 priv->mii_bus->id, priv->phy_id);
886 
887 		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
888 				     PHY_INTERFACE_MODE_MII);
889 
890 		if (IS_ERR(phydev)) {
891 			dev_err(kdev, "could not attach to PHY\n");
892 			return PTR_ERR(phydev);
893 		}
894 
895 		/* mask with MAC supported features */
896 		phydev->supported &= (SUPPORTED_10baseT_Half |
897 				      SUPPORTED_10baseT_Full |
898 				      SUPPORTED_100baseT_Half |
899 				      SUPPORTED_100baseT_Full |
900 				      SUPPORTED_Autoneg |
901 				      SUPPORTED_Pause |
902 				      SUPPORTED_MII);
903 		phydev->advertising = phydev->supported;
904 
905 		if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
906 			phydev->advertising |= SUPPORTED_Pause;
907 		else
908 			phydev->advertising &= ~SUPPORTED_Pause;
909 
910 		phy_attached_info(phydev);
911 
912 		priv->old_link = 0;
913 		priv->old_duplex = -1;
914 		priv->old_pause = -1;
915 	} else {
916 		phydev = NULL;
917 	}
918 
919 	/* mask all interrupts and request them */
920 	enet_writel(priv, 0, ENET_IRMASK_REG);
921 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
922 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
923 
924 	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
925 	if (ret)
926 		goto out_phy_disconnect;
927 
928 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
929 			  dev->name, dev);
930 	if (ret)
931 		goto out_freeirq;
932 
933 	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
934 			  0, dev->name, dev);
935 	if (ret)
936 		goto out_freeirq_rx;
937 
938 	/* initialize perfect match registers */
939 	for (i = 0; i < 4; i++) {
940 		enet_writel(priv, 0, ENET_PML_REG(i));
941 		enet_writel(priv, 0, ENET_PMH_REG(i));
942 	}
943 
944 	/* write device mac address */
945 	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
946 	bcm_enet_set_mac_address(dev, &addr);
947 
948 	/* allocate rx dma ring */
949 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
950 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
951 	if (!p) {
952 		ret = -ENOMEM;
953 		goto out_freeirq_tx;
954 	}
955 
956 	priv->rx_desc_alloc_size = size;
957 	priv->rx_desc_cpu = p;
958 
959 	/* allocate tx dma ring */
960 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
961 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
962 	if (!p) {
963 		ret = -ENOMEM;
964 		goto out_free_rx_ring;
965 	}
966 
967 	priv->tx_desc_alloc_size = size;
968 	priv->tx_desc_cpu = p;
969 
970 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
971 			       GFP_KERNEL);
972 	if (!priv->tx_skb) {
973 		ret = -ENOMEM;
974 		goto out_free_tx_ring;
975 	}
976 
977 	priv->tx_desc_count = priv->tx_ring_size;
978 	priv->tx_dirty_desc = 0;
979 	priv->tx_curr_desc = 0;
980 	spin_lock_init(&priv->tx_lock);
981 
982 	/* init & fill rx ring with skbs */
983 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
984 			       GFP_KERNEL);
985 	if (!priv->rx_skb) {
986 		ret = -ENOMEM;
987 		goto out_free_tx_skb;
988 	}
989 
990 	priv->rx_desc_count = 0;
991 	priv->rx_dirty_desc = 0;
992 	priv->rx_curr_desc = 0;
993 
994 	/* initialize flow control buffer allocation */
995 	if (priv->dma_has_sram)
996 		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
997 				ENETDMA_BUFALLOC_REG(priv->rx_chan));
998 	else
999 		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1000 				ENETDMAC_BUFALLOC, priv->rx_chan);
1001 
1002 	if (bcm_enet_refill_rx(dev)) {
1003 		dev_err(kdev, "cannot allocate rx skb queue\n");
1004 		ret = -ENOMEM;
1005 		goto out;
1006 	}
1007 
1008 	/* write rx & tx ring addresses */
1009 	if (priv->dma_has_sram) {
1010 		enet_dmas_writel(priv, priv->rx_desc_dma,
1011 				 ENETDMAS_RSTART_REG, priv->rx_chan);
1012 		enet_dmas_writel(priv, priv->tx_desc_dma,
1013 			 ENETDMAS_RSTART_REG, priv->tx_chan);
1014 	} else {
1015 		enet_dmac_writel(priv, priv->rx_desc_dma,
1016 				ENETDMAC_RSTART, priv->rx_chan);
1017 		enet_dmac_writel(priv, priv->tx_desc_dma,
1018 				ENETDMAC_RSTART, priv->tx_chan);
1019 	}
1020 
1021 	/* clear remaining state ram for rx & tx channel */
1022 	if (priv->dma_has_sram) {
1023 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1024 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1025 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1026 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1027 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1028 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1029 	} else {
1030 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1031 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1032 	}
1033 
1034 	/* set max rx/tx length */
1035 	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1036 	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1037 
1038 	/* set dma maximum burst len */
1039 	enet_dmac_writel(priv, priv->dma_maxburst,
1040 			 ENETDMAC_MAXBURST, priv->rx_chan);
1041 	enet_dmac_writel(priv, priv->dma_maxburst,
1042 			 ENETDMAC_MAXBURST, priv->tx_chan);
1043 
1044 	/* set correct transmit fifo watermark */
1045 	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1046 
1047 	/* set flow control low/high threshold to 1/3 / 2/3 */
1048 	if (priv->dma_has_sram) {
1049 		val = priv->rx_ring_size / 3;
1050 		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1051 		val = (priv->rx_ring_size * 2) / 3;
1052 		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1053 	} else {
1054 		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1055 		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1056 		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1057 	}
1058 
1059 	/* all set, enable mac and interrupts, start dma engine and
1060 	 * kick rx dma channel */
1061 	wmb();
1062 	val = enet_readl(priv, ENET_CTL_REG);
1063 	val |= ENET_CTL_ENABLE_MASK;
1064 	enet_writel(priv, val, ENET_CTL_REG);
1065 	if (priv->dma_has_sram)
1066 		enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1067 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1068 			 ENETDMAC_CHANCFG, priv->rx_chan);
1069 
1070 	/* watch "mib counters about to overflow" interrupt */
1071 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1072 	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1073 
1074 	/* watch "packet transferred" interrupt in rx and tx */
1075 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1076 			 ENETDMAC_IR, priv->rx_chan);
1077 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1078 			 ENETDMAC_IR, priv->tx_chan);
1079 
1080 	/* make sure we enable napi before rx interrupt  */
1081 	napi_enable(&priv->napi);
1082 
1083 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1084 			 ENETDMAC_IRMASK, priv->rx_chan);
1085 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1086 			 ENETDMAC_IRMASK, priv->tx_chan);
1087 
1088 	if (phydev)
1089 		phy_start(phydev);
1090 	else
1091 		bcm_enet_adjust_link(dev);
1092 
1093 	netif_start_queue(dev);
1094 	return 0;
1095 
1096 out:
1097 	for (i = 0; i < priv->rx_ring_size; i++) {
1098 		struct bcm_enet_desc *desc;
1099 
1100 		if (!priv->rx_skb[i])
1101 			continue;
1102 
1103 		desc = &priv->rx_desc_cpu[i];
1104 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1105 				 DMA_FROM_DEVICE);
1106 		kfree_skb(priv->rx_skb[i]);
1107 	}
1108 	kfree(priv->rx_skb);
1109 
1110 out_free_tx_skb:
1111 	kfree(priv->tx_skb);
1112 
1113 out_free_tx_ring:
1114 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1115 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1116 
1117 out_free_rx_ring:
1118 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1119 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1120 
1121 out_freeirq_tx:
1122 	free_irq(priv->irq_tx, dev);
1123 
1124 out_freeirq_rx:
1125 	free_irq(priv->irq_rx, dev);
1126 
1127 out_freeirq:
1128 	free_irq(dev->irq, dev);
1129 
1130 out_phy_disconnect:
1131 	if (phydev)
1132 		phy_disconnect(phydev);
1133 
1134 	return ret;
1135 }
1136 
1137 /*
1138  * disable mac
1139  */
1140 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1141 {
1142 	int limit;
1143 	u32 val;
1144 
1145 	val = enet_readl(priv, ENET_CTL_REG);
1146 	val |= ENET_CTL_DISABLE_MASK;
1147 	enet_writel(priv, val, ENET_CTL_REG);
1148 
1149 	limit = 1000;
1150 	do {
1151 		u32 val;
1152 
1153 		val = enet_readl(priv, ENET_CTL_REG);
1154 		if (!(val & ENET_CTL_DISABLE_MASK))
1155 			break;
1156 		udelay(1);
1157 	} while (limit--);
1158 }
1159 
1160 /*
1161  * disable dma in given channel
1162  */
1163 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1164 {
1165 	int limit;
1166 
1167 	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1168 
1169 	limit = 1000;
1170 	do {
1171 		u32 val;
1172 
1173 		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1174 		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1175 			break;
1176 		udelay(1);
1177 	} while (limit--);
1178 }
1179 
1180 /*
1181  * stop callback
1182  */
1183 static int bcm_enet_stop(struct net_device *dev)
1184 {
1185 	struct bcm_enet_priv *priv;
1186 	struct device *kdev;
1187 	int i;
1188 
1189 	priv = netdev_priv(dev);
1190 	kdev = &priv->pdev->dev;
1191 
1192 	netif_stop_queue(dev);
1193 	napi_disable(&priv->napi);
1194 	if (priv->has_phy)
1195 		phy_stop(dev->phydev);
1196 	del_timer_sync(&priv->rx_timeout);
1197 
1198 	/* mask all interrupts */
1199 	enet_writel(priv, 0, ENET_IRMASK_REG);
1200 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1201 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1202 
1203 	/* make sure no mib update is scheduled */
1204 	cancel_work_sync(&priv->mib_update_task);
1205 
1206 	/* disable dma & mac */
1207 	bcm_enet_disable_dma(priv, priv->tx_chan);
1208 	bcm_enet_disable_dma(priv, priv->rx_chan);
1209 	bcm_enet_disable_mac(priv);
1210 
1211 	/* force reclaim of all tx buffers */
1212 	bcm_enet_tx_reclaim(dev, 1);
1213 
1214 	/* free the rx skb ring */
1215 	for (i = 0; i < priv->rx_ring_size; i++) {
1216 		struct bcm_enet_desc *desc;
1217 
1218 		if (!priv->rx_skb[i])
1219 			continue;
1220 
1221 		desc = &priv->rx_desc_cpu[i];
1222 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1223 				 DMA_FROM_DEVICE);
1224 		kfree_skb(priv->rx_skb[i]);
1225 	}
1226 
1227 	/* free remaining allocated memory */
1228 	kfree(priv->rx_skb);
1229 	kfree(priv->tx_skb);
1230 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1231 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1232 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1233 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1234 	free_irq(priv->irq_tx, dev);
1235 	free_irq(priv->irq_rx, dev);
1236 	free_irq(dev->irq, dev);
1237 
1238 	/* release phy */
1239 	if (priv->has_phy)
1240 		phy_disconnect(dev->phydev);
1241 
1242 	return 0;
1243 }
1244 
1245 /*
1246  * ethtool callbacks
1247  */
1248 struct bcm_enet_stats {
1249 	char stat_string[ETH_GSTRING_LEN];
1250 	int sizeof_stat;
1251 	int stat_offset;
1252 	int mib_reg;
1253 };
1254 
1255 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1256 		     offsetof(struct bcm_enet_priv, m)
1257 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1258 		     offsetof(struct net_device_stats, m)
1259 
1260 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1261 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1262 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1263 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1264 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1265 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1266 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1267 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1268 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1269 
1270 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1271 	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1272 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1273 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1274 	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1275 	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1276 	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1277 	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1278 	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1279 	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1280 	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1281 	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1282 	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1283 	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1284 	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1285 	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1286 	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1287 	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1288 	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1289 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1290 	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1291 
1292 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1293 	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1294 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1295 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1296 	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1297 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1298 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1299 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1300 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1301 	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1302 	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1303 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1304 	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1305 	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1306 	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1307 	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1308 	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1309 	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1310 	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1311 	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1312 	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1313 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1314 
1315 };
1316 
1317 #define BCM_ENET_STATS_LEN	ARRAY_SIZE(bcm_enet_gstrings_stats)
1318 
1319 static const u32 unused_mib_regs[] = {
1320 	ETH_MIB_TX_ALL_OCTETS,
1321 	ETH_MIB_TX_ALL_PKTS,
1322 	ETH_MIB_RX_ALL_OCTETS,
1323 	ETH_MIB_RX_ALL_PKTS,
1324 };
1325 
1326 
1327 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1328 				 struct ethtool_drvinfo *drvinfo)
1329 {
1330 	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1331 	strlcpy(drvinfo->version, bcm_enet_driver_version,
1332 		sizeof(drvinfo->version));
1333 	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1334 	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1335 }
1336 
1337 static int bcm_enet_get_sset_count(struct net_device *netdev,
1338 					int string_set)
1339 {
1340 	switch (string_set) {
1341 	case ETH_SS_STATS:
1342 		return BCM_ENET_STATS_LEN;
1343 	default:
1344 		return -EINVAL;
1345 	}
1346 }
1347 
1348 static void bcm_enet_get_strings(struct net_device *netdev,
1349 				 u32 stringset, u8 *data)
1350 {
1351 	int i;
1352 
1353 	switch (stringset) {
1354 	case ETH_SS_STATS:
1355 		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1356 			memcpy(data + i * ETH_GSTRING_LEN,
1357 			       bcm_enet_gstrings_stats[i].stat_string,
1358 			       ETH_GSTRING_LEN);
1359 		}
1360 		break;
1361 	}
1362 }
1363 
1364 static void update_mib_counters(struct bcm_enet_priv *priv)
1365 {
1366 	int i;
1367 
1368 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1369 		const struct bcm_enet_stats *s;
1370 		u32 val;
1371 		char *p;
1372 
1373 		s = &bcm_enet_gstrings_stats[i];
1374 		if (s->mib_reg == -1)
1375 			continue;
1376 
1377 		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1378 		p = (char *)priv + s->stat_offset;
1379 
1380 		if (s->sizeof_stat == sizeof(u64))
1381 			*(u64 *)p += val;
1382 		else
1383 			*(u32 *)p += val;
1384 	}
1385 
1386 	/* also empty unused mib counters to make sure mib counter
1387 	 * overflow interrupt is cleared */
1388 	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1389 		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1390 }
1391 
1392 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1393 {
1394 	struct bcm_enet_priv *priv;
1395 
1396 	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1397 	mutex_lock(&priv->mib_update_lock);
1398 	update_mib_counters(priv);
1399 	mutex_unlock(&priv->mib_update_lock);
1400 
1401 	/* reenable mib interrupt */
1402 	if (netif_running(priv->net_dev))
1403 		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1404 }
1405 
1406 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1407 				       struct ethtool_stats *stats,
1408 				       u64 *data)
1409 {
1410 	struct bcm_enet_priv *priv;
1411 	int i;
1412 
1413 	priv = netdev_priv(netdev);
1414 
1415 	mutex_lock(&priv->mib_update_lock);
1416 	update_mib_counters(priv);
1417 
1418 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1419 		const struct bcm_enet_stats *s;
1420 		char *p;
1421 
1422 		s = &bcm_enet_gstrings_stats[i];
1423 		if (s->mib_reg == -1)
1424 			p = (char *)&netdev->stats;
1425 		else
1426 			p = (char *)priv;
1427 		p += s->stat_offset;
1428 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1429 			*(u64 *)p : *(u32 *)p;
1430 	}
1431 	mutex_unlock(&priv->mib_update_lock);
1432 }
1433 
1434 static int bcm_enet_nway_reset(struct net_device *dev)
1435 {
1436 	struct bcm_enet_priv *priv;
1437 
1438 	priv = netdev_priv(dev);
1439 	if (priv->has_phy)
1440 		return phy_ethtool_nway_reset(dev);
1441 
1442 	return -EOPNOTSUPP;
1443 }
1444 
1445 static int bcm_enet_get_link_ksettings(struct net_device *dev,
1446 				       struct ethtool_link_ksettings *cmd)
1447 {
1448 	struct bcm_enet_priv *priv;
1449 	u32 supported, advertising;
1450 
1451 	priv = netdev_priv(dev);
1452 
1453 	if (priv->has_phy) {
1454 		if (!dev->phydev)
1455 			return -ENODEV;
1456 
1457 		phy_ethtool_ksettings_get(dev->phydev, cmd);
1458 
1459 		return 0;
1460 	} else {
1461 		cmd->base.autoneg = 0;
1462 		cmd->base.speed = (priv->force_speed_100) ?
1463 			SPEED_100 : SPEED_10;
1464 		cmd->base.duplex = (priv->force_duplex_full) ?
1465 			DUPLEX_FULL : DUPLEX_HALF;
1466 		supported = ADVERTISED_10baseT_Half |
1467 			ADVERTISED_10baseT_Full |
1468 			ADVERTISED_100baseT_Half |
1469 			ADVERTISED_100baseT_Full;
1470 		advertising = 0;
1471 		ethtool_convert_legacy_u32_to_link_mode(
1472 			cmd->link_modes.supported, supported);
1473 		ethtool_convert_legacy_u32_to_link_mode(
1474 			cmd->link_modes.advertising, advertising);
1475 		cmd->base.port = PORT_MII;
1476 	}
1477 	return 0;
1478 }
1479 
1480 static int bcm_enet_set_link_ksettings(struct net_device *dev,
1481 				       const struct ethtool_link_ksettings *cmd)
1482 {
1483 	struct bcm_enet_priv *priv;
1484 
1485 	priv = netdev_priv(dev);
1486 	if (priv->has_phy) {
1487 		if (!dev->phydev)
1488 			return -ENODEV;
1489 		return phy_ethtool_ksettings_set(dev->phydev, cmd);
1490 	} else {
1491 
1492 		if (cmd->base.autoneg ||
1493 		    (cmd->base.speed != SPEED_100 &&
1494 		     cmd->base.speed != SPEED_10) ||
1495 		    cmd->base.port != PORT_MII)
1496 			return -EINVAL;
1497 
1498 		priv->force_speed_100 =
1499 			(cmd->base.speed == SPEED_100) ? 1 : 0;
1500 		priv->force_duplex_full =
1501 			(cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1502 
1503 		if (netif_running(dev))
1504 			bcm_enet_adjust_link(dev);
1505 		return 0;
1506 	}
1507 }
1508 
1509 static void bcm_enet_get_ringparam(struct net_device *dev,
1510 				   struct ethtool_ringparam *ering)
1511 {
1512 	struct bcm_enet_priv *priv;
1513 
1514 	priv = netdev_priv(dev);
1515 
1516 	/* rx/tx ring is actually only limited by memory */
1517 	ering->rx_max_pending = 8192;
1518 	ering->tx_max_pending = 8192;
1519 	ering->rx_pending = priv->rx_ring_size;
1520 	ering->tx_pending = priv->tx_ring_size;
1521 }
1522 
1523 static int bcm_enet_set_ringparam(struct net_device *dev,
1524 				  struct ethtool_ringparam *ering)
1525 {
1526 	struct bcm_enet_priv *priv;
1527 	int was_running;
1528 
1529 	priv = netdev_priv(dev);
1530 
1531 	was_running = 0;
1532 	if (netif_running(dev)) {
1533 		bcm_enet_stop(dev);
1534 		was_running = 1;
1535 	}
1536 
1537 	priv->rx_ring_size = ering->rx_pending;
1538 	priv->tx_ring_size = ering->tx_pending;
1539 
1540 	if (was_running) {
1541 		int err;
1542 
1543 		err = bcm_enet_open(dev);
1544 		if (err)
1545 			dev_close(dev);
1546 		else
1547 			bcm_enet_set_multicast_list(dev);
1548 	}
1549 	return 0;
1550 }
1551 
1552 static void bcm_enet_get_pauseparam(struct net_device *dev,
1553 				    struct ethtool_pauseparam *ecmd)
1554 {
1555 	struct bcm_enet_priv *priv;
1556 
1557 	priv = netdev_priv(dev);
1558 	ecmd->autoneg = priv->pause_auto;
1559 	ecmd->rx_pause = priv->pause_rx;
1560 	ecmd->tx_pause = priv->pause_tx;
1561 }
1562 
1563 static int bcm_enet_set_pauseparam(struct net_device *dev,
1564 				   struct ethtool_pauseparam *ecmd)
1565 {
1566 	struct bcm_enet_priv *priv;
1567 
1568 	priv = netdev_priv(dev);
1569 
1570 	if (priv->has_phy) {
1571 		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1572 			/* asymetric pause mode not supported,
1573 			 * actually possible but integrated PHY has RO
1574 			 * asym_pause bit */
1575 			return -EINVAL;
1576 		}
1577 	} else {
1578 		/* no pause autoneg on direct mii connection */
1579 		if (ecmd->autoneg)
1580 			return -EINVAL;
1581 	}
1582 
1583 	priv->pause_auto = ecmd->autoneg;
1584 	priv->pause_rx = ecmd->rx_pause;
1585 	priv->pause_tx = ecmd->tx_pause;
1586 
1587 	return 0;
1588 }
1589 
1590 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1591 	.get_strings		= bcm_enet_get_strings,
1592 	.get_sset_count		= bcm_enet_get_sset_count,
1593 	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1594 	.nway_reset		= bcm_enet_nway_reset,
1595 	.get_drvinfo		= bcm_enet_get_drvinfo,
1596 	.get_link		= ethtool_op_get_link,
1597 	.get_ringparam		= bcm_enet_get_ringparam,
1598 	.set_ringparam		= bcm_enet_set_ringparam,
1599 	.get_pauseparam		= bcm_enet_get_pauseparam,
1600 	.set_pauseparam		= bcm_enet_set_pauseparam,
1601 	.get_link_ksettings	= bcm_enet_get_link_ksettings,
1602 	.set_link_ksettings	= bcm_enet_set_link_ksettings,
1603 };
1604 
1605 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1606 {
1607 	struct bcm_enet_priv *priv;
1608 
1609 	priv = netdev_priv(dev);
1610 	if (priv->has_phy) {
1611 		if (!dev->phydev)
1612 			return -ENODEV;
1613 		return phy_mii_ioctl(dev->phydev, rq, cmd);
1614 	} else {
1615 		struct mii_if_info mii;
1616 
1617 		mii.dev = dev;
1618 		mii.mdio_read = bcm_enet_mdio_read_mii;
1619 		mii.mdio_write = bcm_enet_mdio_write_mii;
1620 		mii.phy_id = 0;
1621 		mii.phy_id_mask = 0x3f;
1622 		mii.reg_num_mask = 0x1f;
1623 		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1624 	}
1625 }
1626 
1627 /*
1628  * adjust mtu, can't be called while device is running
1629  */
1630 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1631 {
1632 	struct bcm_enet_priv *priv = netdev_priv(dev);
1633 	int actual_mtu = new_mtu;
1634 
1635 	if (netif_running(dev))
1636 		return -EBUSY;
1637 
1638 	/* add ethernet header + vlan tag size */
1639 	actual_mtu += VLAN_ETH_HLEN;
1640 
1641 	/*
1642 	 * setup maximum size before we get overflow mark in
1643 	 * descriptor, note that this will not prevent reception of
1644 	 * big frames, they will be split into multiple buffers
1645 	 * anyway
1646 	 */
1647 	priv->hw_mtu = actual_mtu;
1648 
1649 	/*
1650 	 * align rx buffer size to dma burst len, account FCS since
1651 	 * it's appended
1652 	 */
1653 	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1654 				  priv->dma_maxburst * 4);
1655 
1656 	dev->mtu = new_mtu;
1657 	return 0;
1658 }
1659 
1660 /*
1661  * preinit hardware to allow mii operation while device is down
1662  */
1663 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1664 {
1665 	u32 val;
1666 	int limit;
1667 
1668 	/* make sure mac is disabled */
1669 	bcm_enet_disable_mac(priv);
1670 
1671 	/* soft reset mac */
1672 	val = ENET_CTL_SRESET_MASK;
1673 	enet_writel(priv, val, ENET_CTL_REG);
1674 	wmb();
1675 
1676 	limit = 1000;
1677 	do {
1678 		val = enet_readl(priv, ENET_CTL_REG);
1679 		if (!(val & ENET_CTL_SRESET_MASK))
1680 			break;
1681 		udelay(1);
1682 	} while (limit--);
1683 
1684 	/* select correct mii interface */
1685 	val = enet_readl(priv, ENET_CTL_REG);
1686 	if (priv->use_external_mii)
1687 		val |= ENET_CTL_EPHYSEL_MASK;
1688 	else
1689 		val &= ~ENET_CTL_EPHYSEL_MASK;
1690 	enet_writel(priv, val, ENET_CTL_REG);
1691 
1692 	/* turn on mdc clock */
1693 	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1694 		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1695 
1696 	/* set mib counters to self-clear when read */
1697 	val = enet_readl(priv, ENET_MIBCTL_REG);
1698 	val |= ENET_MIBCTL_RDCLEAR_MASK;
1699 	enet_writel(priv, val, ENET_MIBCTL_REG);
1700 }
1701 
1702 static const struct net_device_ops bcm_enet_ops = {
1703 	.ndo_open		= bcm_enet_open,
1704 	.ndo_stop		= bcm_enet_stop,
1705 	.ndo_start_xmit		= bcm_enet_start_xmit,
1706 	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1707 	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1708 	.ndo_do_ioctl		= bcm_enet_ioctl,
1709 	.ndo_change_mtu		= bcm_enet_change_mtu,
1710 };
1711 
1712 /*
1713  * allocate netdevice, request register memory and register device.
1714  */
1715 static int bcm_enet_probe(struct platform_device *pdev)
1716 {
1717 	struct bcm_enet_priv *priv;
1718 	struct net_device *dev;
1719 	struct bcm63xx_enet_platform_data *pd;
1720 	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1721 	struct mii_bus *bus;
1722 	const char *clk_name;
1723 	int i, ret;
1724 
1725 	if (!bcm_enet_shared_base[0])
1726 		return -EPROBE_DEFER;
1727 
1728 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1729 	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1730 	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1731 	if (!res_irq || !res_irq_rx || !res_irq_tx)
1732 		return -ENODEV;
1733 
1734 	ret = 0;
1735 	dev = alloc_etherdev(sizeof(*priv));
1736 	if (!dev)
1737 		return -ENOMEM;
1738 	priv = netdev_priv(dev);
1739 
1740 	priv->enet_is_sw = false;
1741 	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1742 
1743 	ret = bcm_enet_change_mtu(dev, dev->mtu);
1744 	if (ret)
1745 		goto out;
1746 
1747 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1748 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1749 	if (IS_ERR(priv->base)) {
1750 		ret = PTR_ERR(priv->base);
1751 		goto out;
1752 	}
1753 
1754 	dev->irq = priv->irq = res_irq->start;
1755 	priv->irq_rx = res_irq_rx->start;
1756 	priv->irq_tx = res_irq_tx->start;
1757 	priv->mac_id = pdev->id;
1758 
1759 	/* get rx & tx dma channel id for this mac */
1760 	if (priv->mac_id == 0) {
1761 		priv->rx_chan = 0;
1762 		priv->tx_chan = 1;
1763 		clk_name = "enet0";
1764 	} else {
1765 		priv->rx_chan = 2;
1766 		priv->tx_chan = 3;
1767 		clk_name = "enet1";
1768 	}
1769 
1770 	priv->mac_clk = devm_clk_get(&pdev->dev, clk_name);
1771 	if (IS_ERR(priv->mac_clk)) {
1772 		ret = PTR_ERR(priv->mac_clk);
1773 		goto out;
1774 	}
1775 	ret = clk_prepare_enable(priv->mac_clk);
1776 	if (ret)
1777 		goto out;
1778 
1779 	/* initialize default and fetch platform data */
1780 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1781 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1782 
1783 	pd = dev_get_platdata(&pdev->dev);
1784 	if (pd) {
1785 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1786 		priv->has_phy = pd->has_phy;
1787 		priv->phy_id = pd->phy_id;
1788 		priv->has_phy_interrupt = pd->has_phy_interrupt;
1789 		priv->phy_interrupt = pd->phy_interrupt;
1790 		priv->use_external_mii = !pd->use_internal_phy;
1791 		priv->pause_auto = pd->pause_auto;
1792 		priv->pause_rx = pd->pause_rx;
1793 		priv->pause_tx = pd->pause_tx;
1794 		priv->force_duplex_full = pd->force_duplex_full;
1795 		priv->force_speed_100 = pd->force_speed_100;
1796 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1797 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1798 		priv->dma_chan_width = pd->dma_chan_width;
1799 		priv->dma_has_sram = pd->dma_has_sram;
1800 		priv->dma_desc_shift = pd->dma_desc_shift;
1801 	}
1802 
1803 	if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1804 		/* using internal PHY, enable clock */
1805 		priv->phy_clk = devm_clk_get(&pdev->dev, "ephy");
1806 		if (IS_ERR(priv->phy_clk)) {
1807 			ret = PTR_ERR(priv->phy_clk);
1808 			priv->phy_clk = NULL;
1809 			goto out_disable_clk_mac;
1810 		}
1811 		ret = clk_prepare_enable(priv->phy_clk);
1812 		if (ret)
1813 			goto out_disable_clk_mac;
1814 	}
1815 
1816 	/* do minimal hardware init to be able to probe mii bus */
1817 	bcm_enet_hw_preinit(priv);
1818 
1819 	/* MII bus registration */
1820 	if (priv->has_phy) {
1821 
1822 		priv->mii_bus = mdiobus_alloc();
1823 		if (!priv->mii_bus) {
1824 			ret = -ENOMEM;
1825 			goto out_uninit_hw;
1826 		}
1827 
1828 		bus = priv->mii_bus;
1829 		bus->name = "bcm63xx_enet MII bus";
1830 		bus->parent = &pdev->dev;
1831 		bus->priv = priv;
1832 		bus->read = bcm_enet_mdio_read_phylib;
1833 		bus->write = bcm_enet_mdio_write_phylib;
1834 		sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
1835 
1836 		/* only probe bus where we think the PHY is, because
1837 		 * the mdio read operation return 0 instead of 0xffff
1838 		 * if a slave is not present on hw */
1839 		bus->phy_mask = ~(1 << priv->phy_id);
1840 
1841 		if (priv->has_phy_interrupt)
1842 			bus->irq[priv->phy_id] = priv->phy_interrupt;
1843 
1844 		ret = mdiobus_register(bus);
1845 		if (ret) {
1846 			dev_err(&pdev->dev, "unable to register mdio bus\n");
1847 			goto out_free_mdio;
1848 		}
1849 	} else {
1850 
1851 		/* run platform code to initialize PHY device */
1852 		if (pd && pd->mii_config &&
1853 		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1854 				   bcm_enet_mdio_write_mii)) {
1855 			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1856 			goto out_uninit_hw;
1857 		}
1858 	}
1859 
1860 	spin_lock_init(&priv->rx_lock);
1861 
1862 	/* init rx timeout (used for oom) */
1863 	setup_timer(&priv->rx_timeout, bcm_enet_refill_rx_timer,
1864 		    (unsigned long)dev);
1865 
1866 	/* init the mib update lock&work */
1867 	mutex_init(&priv->mib_update_lock);
1868 	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1869 
1870 	/* zero mib counters */
1871 	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1872 		enet_writel(priv, 0, ENET_MIB_REG(i));
1873 
1874 	/* register netdevice */
1875 	dev->netdev_ops = &bcm_enet_ops;
1876 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1877 
1878 	dev->ethtool_ops = &bcm_enet_ethtool_ops;
1879 	/* MTU range: 46 - 2028 */
1880 	dev->min_mtu = ETH_ZLEN - ETH_HLEN;
1881 	dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN;
1882 	SET_NETDEV_DEV(dev, &pdev->dev);
1883 
1884 	ret = register_netdev(dev);
1885 	if (ret)
1886 		goto out_unregister_mdio;
1887 
1888 	netif_carrier_off(dev);
1889 	platform_set_drvdata(pdev, dev);
1890 	priv->pdev = pdev;
1891 	priv->net_dev = dev;
1892 
1893 	return 0;
1894 
1895 out_unregister_mdio:
1896 	if (priv->mii_bus)
1897 		mdiobus_unregister(priv->mii_bus);
1898 
1899 out_free_mdio:
1900 	if (priv->mii_bus)
1901 		mdiobus_free(priv->mii_bus);
1902 
1903 out_uninit_hw:
1904 	/* turn off mdc clock */
1905 	enet_writel(priv, 0, ENET_MIISC_REG);
1906 	clk_disable_unprepare(priv->phy_clk);
1907 
1908 out_disable_clk_mac:
1909 	clk_disable_unprepare(priv->mac_clk);
1910 out:
1911 	free_netdev(dev);
1912 	return ret;
1913 }
1914 
1915 
1916 /*
1917  * exit func, stops hardware and unregisters netdevice
1918  */
1919 static int bcm_enet_remove(struct platform_device *pdev)
1920 {
1921 	struct bcm_enet_priv *priv;
1922 	struct net_device *dev;
1923 
1924 	/* stop netdevice */
1925 	dev = platform_get_drvdata(pdev);
1926 	priv = netdev_priv(dev);
1927 	unregister_netdev(dev);
1928 
1929 	/* turn off mdc clock */
1930 	enet_writel(priv, 0, ENET_MIISC_REG);
1931 
1932 	if (priv->has_phy) {
1933 		mdiobus_unregister(priv->mii_bus);
1934 		mdiobus_free(priv->mii_bus);
1935 	} else {
1936 		struct bcm63xx_enet_platform_data *pd;
1937 
1938 		pd = dev_get_platdata(&pdev->dev);
1939 		if (pd && pd->mii_config)
1940 			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1941 				       bcm_enet_mdio_write_mii);
1942 	}
1943 
1944 	/* disable hw block clocks */
1945 	clk_disable_unprepare(priv->phy_clk);
1946 	clk_disable_unprepare(priv->mac_clk);
1947 
1948 	free_netdev(dev);
1949 	return 0;
1950 }
1951 
1952 struct platform_driver bcm63xx_enet_driver = {
1953 	.probe	= bcm_enet_probe,
1954 	.remove	= bcm_enet_remove,
1955 	.driver	= {
1956 		.name	= "bcm63xx_enet",
1957 		.owner  = THIS_MODULE,
1958 	},
1959 };
1960 
1961 /*
1962  * switch mii access callbacks
1963  */
1964 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1965 				int ext, int phy_id, int location)
1966 {
1967 	u32 reg;
1968 	int ret;
1969 
1970 	spin_lock_bh(&priv->enetsw_mdio_lock);
1971 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1972 
1973 	reg = ENETSW_MDIOC_RD_MASK |
1974 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1975 		(location << ENETSW_MDIOC_REG_SHIFT);
1976 
1977 	if (ext)
1978 		reg |= ENETSW_MDIOC_EXT_MASK;
1979 
1980 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1981 	udelay(50);
1982 	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
1983 	spin_unlock_bh(&priv->enetsw_mdio_lock);
1984 	return ret;
1985 }
1986 
1987 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
1988 				 int ext, int phy_id, int location,
1989 				 uint16_t data)
1990 {
1991 	u32 reg;
1992 
1993 	spin_lock_bh(&priv->enetsw_mdio_lock);
1994 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1995 
1996 	reg = ENETSW_MDIOC_WR_MASK |
1997 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1998 		(location << ENETSW_MDIOC_REG_SHIFT);
1999 
2000 	if (ext)
2001 		reg |= ENETSW_MDIOC_EXT_MASK;
2002 
2003 	reg |= data;
2004 
2005 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2006 	udelay(50);
2007 	spin_unlock_bh(&priv->enetsw_mdio_lock);
2008 }
2009 
2010 static inline int bcm_enet_port_is_rgmii(int portid)
2011 {
2012 	return portid >= ENETSW_RGMII_PORT0;
2013 }
2014 
2015 /*
2016  * enet sw PHY polling
2017  */
2018 static void swphy_poll_timer(unsigned long data)
2019 {
2020 	struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
2021 	unsigned int i;
2022 
2023 	for (i = 0; i < priv->num_ports; i++) {
2024 		struct bcm63xx_enetsw_port *port;
2025 		int val, j, up, advertise, lpa, speed, duplex, media;
2026 		int external_phy = bcm_enet_port_is_rgmii(i);
2027 		u8 override;
2028 
2029 		port = &priv->used_ports[i];
2030 		if (!port->used)
2031 			continue;
2032 
2033 		if (port->bypass_link)
2034 			continue;
2035 
2036 		/* dummy read to clear */
2037 		for (j = 0; j < 2; j++)
2038 			val = bcmenet_sw_mdio_read(priv, external_phy,
2039 						   port->phy_id, MII_BMSR);
2040 
2041 		if (val == 0xffff)
2042 			continue;
2043 
2044 		up = (val & BMSR_LSTATUS) ? 1 : 0;
2045 		if (!(up ^ priv->sw_port_link[i]))
2046 			continue;
2047 
2048 		priv->sw_port_link[i] = up;
2049 
2050 		/* link changed */
2051 		if (!up) {
2052 			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2053 				 port->name);
2054 			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2055 				      ENETSW_PORTOV_REG(i));
2056 			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2057 				      ENETSW_PTCTRL_TXDIS_MASK,
2058 				      ENETSW_PTCTRL_REG(i));
2059 			continue;
2060 		}
2061 
2062 		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2063 						 port->phy_id, MII_ADVERTISE);
2064 
2065 		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2066 					   MII_LPA);
2067 
2068 		/* figure out media and duplex from advertise and LPA values */
2069 		media = mii_nway_result(lpa & advertise);
2070 		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2071 
2072 		if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2073 			speed = 100;
2074 		else
2075 			speed = 10;
2076 
2077 		if (val & BMSR_ESTATEN) {
2078 			advertise = bcmenet_sw_mdio_read(priv, external_phy,
2079 						port->phy_id, MII_CTRL1000);
2080 
2081 			lpa = bcmenet_sw_mdio_read(priv, external_phy,
2082 						port->phy_id, MII_STAT1000);
2083 
2084 			if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2085 					&& lpa & (LPA_1000FULL | LPA_1000HALF)) {
2086 				speed = 1000;
2087 				duplex = (lpa & LPA_1000FULL);
2088 			}
2089 		}
2090 
2091 		dev_info(&priv->pdev->dev,
2092 			 "link UP on %s, %dMbps, %s-duplex\n",
2093 			 port->name, speed, duplex ? "full" : "half");
2094 
2095 		override = ENETSW_PORTOV_ENABLE_MASK |
2096 			ENETSW_PORTOV_LINKUP_MASK;
2097 
2098 		if (speed == 1000)
2099 			override |= ENETSW_IMPOV_1000_MASK;
2100 		else if (speed == 100)
2101 			override |= ENETSW_IMPOV_100_MASK;
2102 		if (duplex)
2103 			override |= ENETSW_IMPOV_FDX_MASK;
2104 
2105 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2106 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2107 	}
2108 
2109 	priv->swphy_poll.expires = jiffies + HZ;
2110 	add_timer(&priv->swphy_poll);
2111 }
2112 
2113 /*
2114  * open callback, allocate dma rings & buffers and start rx operation
2115  */
2116 static int bcm_enetsw_open(struct net_device *dev)
2117 {
2118 	struct bcm_enet_priv *priv;
2119 	struct device *kdev;
2120 	int i, ret;
2121 	unsigned int size;
2122 	void *p;
2123 	u32 val;
2124 
2125 	priv = netdev_priv(dev);
2126 	kdev = &priv->pdev->dev;
2127 
2128 	/* mask all interrupts and request them */
2129 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2130 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2131 
2132 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2133 			  0, dev->name, dev);
2134 	if (ret)
2135 		goto out_freeirq;
2136 
2137 	if (priv->irq_tx != -1) {
2138 		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2139 				  0, dev->name, dev);
2140 		if (ret)
2141 			goto out_freeirq_rx;
2142 	}
2143 
2144 	/* allocate rx dma ring */
2145 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2146 	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2147 	if (!p) {
2148 		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2149 		ret = -ENOMEM;
2150 		goto out_freeirq_tx;
2151 	}
2152 
2153 	memset(p, 0, size);
2154 	priv->rx_desc_alloc_size = size;
2155 	priv->rx_desc_cpu = p;
2156 
2157 	/* allocate tx dma ring */
2158 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2159 	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2160 	if (!p) {
2161 		dev_err(kdev, "cannot allocate tx ring\n");
2162 		ret = -ENOMEM;
2163 		goto out_free_rx_ring;
2164 	}
2165 
2166 	memset(p, 0, size);
2167 	priv->tx_desc_alloc_size = size;
2168 	priv->tx_desc_cpu = p;
2169 
2170 	priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2171 			       GFP_KERNEL);
2172 	if (!priv->tx_skb) {
2173 		dev_err(kdev, "cannot allocate rx skb queue\n");
2174 		ret = -ENOMEM;
2175 		goto out_free_tx_ring;
2176 	}
2177 
2178 	priv->tx_desc_count = priv->tx_ring_size;
2179 	priv->tx_dirty_desc = 0;
2180 	priv->tx_curr_desc = 0;
2181 	spin_lock_init(&priv->tx_lock);
2182 
2183 	/* init & fill rx ring with skbs */
2184 	priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2185 			       GFP_KERNEL);
2186 	if (!priv->rx_skb) {
2187 		dev_err(kdev, "cannot allocate rx skb queue\n");
2188 		ret = -ENOMEM;
2189 		goto out_free_tx_skb;
2190 	}
2191 
2192 	priv->rx_desc_count = 0;
2193 	priv->rx_dirty_desc = 0;
2194 	priv->rx_curr_desc = 0;
2195 
2196 	/* disable all ports */
2197 	for (i = 0; i < priv->num_ports; i++) {
2198 		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2199 			      ENETSW_PORTOV_REG(i));
2200 		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2201 			      ENETSW_PTCTRL_TXDIS_MASK,
2202 			      ENETSW_PTCTRL_REG(i));
2203 
2204 		priv->sw_port_link[i] = 0;
2205 	}
2206 
2207 	/* reset mib */
2208 	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2209 	val |= ENETSW_GMCR_RST_MIB_MASK;
2210 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2211 	mdelay(1);
2212 	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2213 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2214 	mdelay(1);
2215 
2216 	/* force CPU port state */
2217 	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2218 	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2219 	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2220 
2221 	/* enable switch forward engine */
2222 	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2223 	val |= ENETSW_SWMODE_FWD_EN_MASK;
2224 	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2225 
2226 	/* enable jumbo on all ports */
2227 	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2228 	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2229 
2230 	/* initialize flow control buffer allocation */
2231 	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2232 			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2233 
2234 	if (bcm_enet_refill_rx(dev)) {
2235 		dev_err(kdev, "cannot allocate rx skb queue\n");
2236 		ret = -ENOMEM;
2237 		goto out;
2238 	}
2239 
2240 	/* write rx & tx ring addresses */
2241 	enet_dmas_writel(priv, priv->rx_desc_dma,
2242 			 ENETDMAS_RSTART_REG, priv->rx_chan);
2243 	enet_dmas_writel(priv, priv->tx_desc_dma,
2244 			 ENETDMAS_RSTART_REG, priv->tx_chan);
2245 
2246 	/* clear remaining state ram for rx & tx channel */
2247 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2248 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2249 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2250 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2251 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2252 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2253 
2254 	/* set dma maximum burst len */
2255 	enet_dmac_writel(priv, priv->dma_maxburst,
2256 			 ENETDMAC_MAXBURST, priv->rx_chan);
2257 	enet_dmac_writel(priv, priv->dma_maxburst,
2258 			 ENETDMAC_MAXBURST, priv->tx_chan);
2259 
2260 	/* set flow control low/high threshold to 1/3 / 2/3 */
2261 	val = priv->rx_ring_size / 3;
2262 	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2263 	val = (priv->rx_ring_size * 2) / 3;
2264 	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2265 
2266 	/* all set, enable mac and interrupts, start dma engine and
2267 	 * kick rx dma channel
2268 	 */
2269 	wmb();
2270 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2271 	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2272 			 ENETDMAC_CHANCFG, priv->rx_chan);
2273 
2274 	/* watch "packet transferred" interrupt in rx and tx */
2275 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2276 			 ENETDMAC_IR, priv->rx_chan);
2277 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2278 			 ENETDMAC_IR, priv->tx_chan);
2279 
2280 	/* make sure we enable napi before rx interrupt  */
2281 	napi_enable(&priv->napi);
2282 
2283 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2284 			 ENETDMAC_IRMASK, priv->rx_chan);
2285 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2286 			 ENETDMAC_IRMASK, priv->tx_chan);
2287 
2288 	netif_carrier_on(dev);
2289 	netif_start_queue(dev);
2290 
2291 	/* apply override config for bypass_link ports here. */
2292 	for (i = 0; i < priv->num_ports; i++) {
2293 		struct bcm63xx_enetsw_port *port;
2294 		u8 override;
2295 		port = &priv->used_ports[i];
2296 		if (!port->used)
2297 			continue;
2298 
2299 		if (!port->bypass_link)
2300 			continue;
2301 
2302 		override = ENETSW_PORTOV_ENABLE_MASK |
2303 			ENETSW_PORTOV_LINKUP_MASK;
2304 
2305 		switch (port->force_speed) {
2306 		case 1000:
2307 			override |= ENETSW_IMPOV_1000_MASK;
2308 			break;
2309 		case 100:
2310 			override |= ENETSW_IMPOV_100_MASK;
2311 			break;
2312 		case 10:
2313 			break;
2314 		default:
2315 			pr_warn("invalid forced speed on port %s: assume 10\n",
2316 			       port->name);
2317 			break;
2318 		}
2319 
2320 		if (port->force_duplex_full)
2321 			override |= ENETSW_IMPOV_FDX_MASK;
2322 
2323 
2324 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2325 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2326 	}
2327 
2328 	/* start phy polling timer */
2329 	setup_timer(&priv->swphy_poll, swphy_poll_timer, (unsigned long)priv);
2330 	mod_timer(&priv->swphy_poll, jiffies);
2331 	return 0;
2332 
2333 out:
2334 	for (i = 0; i < priv->rx_ring_size; i++) {
2335 		struct bcm_enet_desc *desc;
2336 
2337 		if (!priv->rx_skb[i])
2338 			continue;
2339 
2340 		desc = &priv->rx_desc_cpu[i];
2341 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2342 				 DMA_FROM_DEVICE);
2343 		kfree_skb(priv->rx_skb[i]);
2344 	}
2345 	kfree(priv->rx_skb);
2346 
2347 out_free_tx_skb:
2348 	kfree(priv->tx_skb);
2349 
2350 out_free_tx_ring:
2351 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2352 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2353 
2354 out_free_rx_ring:
2355 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2356 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2357 
2358 out_freeirq_tx:
2359 	if (priv->irq_tx != -1)
2360 		free_irq(priv->irq_tx, dev);
2361 
2362 out_freeirq_rx:
2363 	free_irq(priv->irq_rx, dev);
2364 
2365 out_freeirq:
2366 	return ret;
2367 }
2368 
2369 /* stop callback */
2370 static int bcm_enetsw_stop(struct net_device *dev)
2371 {
2372 	struct bcm_enet_priv *priv;
2373 	struct device *kdev;
2374 	int i;
2375 
2376 	priv = netdev_priv(dev);
2377 	kdev = &priv->pdev->dev;
2378 
2379 	del_timer_sync(&priv->swphy_poll);
2380 	netif_stop_queue(dev);
2381 	napi_disable(&priv->napi);
2382 	del_timer_sync(&priv->rx_timeout);
2383 
2384 	/* mask all interrupts */
2385 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2386 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2387 
2388 	/* disable dma & mac */
2389 	bcm_enet_disable_dma(priv, priv->tx_chan);
2390 	bcm_enet_disable_dma(priv, priv->rx_chan);
2391 
2392 	/* force reclaim of all tx buffers */
2393 	bcm_enet_tx_reclaim(dev, 1);
2394 
2395 	/* free the rx skb ring */
2396 	for (i = 0; i < priv->rx_ring_size; i++) {
2397 		struct bcm_enet_desc *desc;
2398 
2399 		if (!priv->rx_skb[i])
2400 			continue;
2401 
2402 		desc = &priv->rx_desc_cpu[i];
2403 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2404 				 DMA_FROM_DEVICE);
2405 		kfree_skb(priv->rx_skb[i]);
2406 	}
2407 
2408 	/* free remaining allocated memory */
2409 	kfree(priv->rx_skb);
2410 	kfree(priv->tx_skb);
2411 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2412 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2413 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2414 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2415 	if (priv->irq_tx != -1)
2416 		free_irq(priv->irq_tx, dev);
2417 	free_irq(priv->irq_rx, dev);
2418 
2419 	return 0;
2420 }
2421 
2422 /* try to sort out phy external status by walking the used_port field
2423  * in the bcm_enet_priv structure. in case the phy address is not
2424  * assigned to any physical port on the switch, assume it is external
2425  * (and yell at the user).
2426  */
2427 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2428 {
2429 	int i;
2430 
2431 	for (i = 0; i < priv->num_ports; ++i) {
2432 		if (!priv->used_ports[i].used)
2433 			continue;
2434 		if (priv->used_ports[i].phy_id == phy_id)
2435 			return bcm_enet_port_is_rgmii(i);
2436 	}
2437 
2438 	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2439 		    phy_id);
2440 	return 1;
2441 }
2442 
2443 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2444  * external/internal status of the given phy_id first.
2445  */
2446 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2447 				    int location)
2448 {
2449 	struct bcm_enet_priv *priv;
2450 
2451 	priv = netdev_priv(dev);
2452 	return bcmenet_sw_mdio_read(priv,
2453 				    bcm_enetsw_phy_is_external(priv, phy_id),
2454 				    phy_id, location);
2455 }
2456 
2457 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2458  * external/internal status of the given phy_id first.
2459  */
2460 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2461 				      int location,
2462 				      int val)
2463 {
2464 	struct bcm_enet_priv *priv;
2465 
2466 	priv = netdev_priv(dev);
2467 	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2468 			      phy_id, location, val);
2469 }
2470 
2471 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2472 {
2473 	struct mii_if_info mii;
2474 
2475 	mii.dev = dev;
2476 	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2477 	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2478 	mii.phy_id = 0;
2479 	mii.phy_id_mask = 0x3f;
2480 	mii.reg_num_mask = 0x1f;
2481 	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2482 
2483 }
2484 
2485 static const struct net_device_ops bcm_enetsw_ops = {
2486 	.ndo_open		= bcm_enetsw_open,
2487 	.ndo_stop		= bcm_enetsw_stop,
2488 	.ndo_start_xmit		= bcm_enet_start_xmit,
2489 	.ndo_change_mtu		= bcm_enet_change_mtu,
2490 	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2491 };
2492 
2493 
2494 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2495 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2496 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2497 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2498 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2499 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2500 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2501 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2502 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2503 
2504 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2505 	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2506 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2507 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2508 	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2509 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2510 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2511 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2512 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2513 	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2514 	  ETHSW_MIB_RX_1024_1522 },
2515 	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2516 	  ETHSW_MIB_RX_1523_2047 },
2517 	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2518 	  ETHSW_MIB_RX_2048_4095 },
2519 	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2520 	  ETHSW_MIB_RX_4096_8191 },
2521 	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2522 	  ETHSW_MIB_RX_8192_9728 },
2523 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2524 	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2525 	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2526 	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2527 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2528 
2529 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2530 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2531 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2532 	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2533 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2534 	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2535 
2536 };
2537 
2538 #define BCM_ENETSW_STATS_LEN	\
2539 	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2540 
2541 static void bcm_enetsw_get_strings(struct net_device *netdev,
2542 				   u32 stringset, u8 *data)
2543 {
2544 	int i;
2545 
2546 	switch (stringset) {
2547 	case ETH_SS_STATS:
2548 		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2549 			memcpy(data + i * ETH_GSTRING_LEN,
2550 			       bcm_enetsw_gstrings_stats[i].stat_string,
2551 			       ETH_GSTRING_LEN);
2552 		}
2553 		break;
2554 	}
2555 }
2556 
2557 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2558 				     int string_set)
2559 {
2560 	switch (string_set) {
2561 	case ETH_SS_STATS:
2562 		return BCM_ENETSW_STATS_LEN;
2563 	default:
2564 		return -EINVAL;
2565 	}
2566 }
2567 
2568 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2569 				   struct ethtool_drvinfo *drvinfo)
2570 {
2571 	strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2572 	strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2573 	strncpy(drvinfo->fw_version, "N/A", 32);
2574 	strncpy(drvinfo->bus_info, "bcm63xx", 32);
2575 }
2576 
2577 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2578 					 struct ethtool_stats *stats,
2579 					 u64 *data)
2580 {
2581 	struct bcm_enet_priv *priv;
2582 	int i;
2583 
2584 	priv = netdev_priv(netdev);
2585 
2586 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2587 		const struct bcm_enet_stats *s;
2588 		u32 lo, hi;
2589 		char *p;
2590 		int reg;
2591 
2592 		s = &bcm_enetsw_gstrings_stats[i];
2593 
2594 		reg = s->mib_reg;
2595 		if (reg == -1)
2596 			continue;
2597 
2598 		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2599 		p = (char *)priv + s->stat_offset;
2600 
2601 		if (s->sizeof_stat == sizeof(u64)) {
2602 			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2603 			*(u64 *)p = ((u64)hi << 32 | lo);
2604 		} else {
2605 			*(u32 *)p = lo;
2606 		}
2607 	}
2608 
2609 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2610 		const struct bcm_enet_stats *s;
2611 		char *p;
2612 
2613 		s = &bcm_enetsw_gstrings_stats[i];
2614 
2615 		if (s->mib_reg == -1)
2616 			p = (char *)&netdev->stats + s->stat_offset;
2617 		else
2618 			p = (char *)priv + s->stat_offset;
2619 
2620 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2621 			*(u64 *)p : *(u32 *)p;
2622 	}
2623 }
2624 
2625 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2626 				     struct ethtool_ringparam *ering)
2627 {
2628 	struct bcm_enet_priv *priv;
2629 
2630 	priv = netdev_priv(dev);
2631 
2632 	/* rx/tx ring is actually only limited by memory */
2633 	ering->rx_max_pending = 8192;
2634 	ering->tx_max_pending = 8192;
2635 	ering->rx_mini_max_pending = 0;
2636 	ering->rx_jumbo_max_pending = 0;
2637 	ering->rx_pending = priv->rx_ring_size;
2638 	ering->tx_pending = priv->tx_ring_size;
2639 }
2640 
2641 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2642 				    struct ethtool_ringparam *ering)
2643 {
2644 	struct bcm_enet_priv *priv;
2645 	int was_running;
2646 
2647 	priv = netdev_priv(dev);
2648 
2649 	was_running = 0;
2650 	if (netif_running(dev)) {
2651 		bcm_enetsw_stop(dev);
2652 		was_running = 1;
2653 	}
2654 
2655 	priv->rx_ring_size = ering->rx_pending;
2656 	priv->tx_ring_size = ering->tx_pending;
2657 
2658 	if (was_running) {
2659 		int err;
2660 
2661 		err = bcm_enetsw_open(dev);
2662 		if (err)
2663 			dev_close(dev);
2664 	}
2665 	return 0;
2666 }
2667 
2668 static const struct ethtool_ops bcm_enetsw_ethtool_ops = {
2669 	.get_strings		= bcm_enetsw_get_strings,
2670 	.get_sset_count		= bcm_enetsw_get_sset_count,
2671 	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2672 	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2673 	.get_ringparam		= bcm_enetsw_get_ringparam,
2674 	.set_ringparam		= bcm_enetsw_set_ringparam,
2675 };
2676 
2677 /* allocate netdevice, request register memory and register device. */
2678 static int bcm_enetsw_probe(struct platform_device *pdev)
2679 {
2680 	struct bcm_enet_priv *priv;
2681 	struct net_device *dev;
2682 	struct bcm63xx_enetsw_platform_data *pd;
2683 	struct resource *res_mem;
2684 	int ret, irq_rx, irq_tx;
2685 
2686 	if (!bcm_enet_shared_base[0])
2687 		return -EPROBE_DEFER;
2688 
2689 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2690 	irq_rx = platform_get_irq(pdev, 0);
2691 	irq_tx = platform_get_irq(pdev, 1);
2692 	if (!res_mem || irq_rx < 0)
2693 		return -ENODEV;
2694 
2695 	ret = 0;
2696 	dev = alloc_etherdev(sizeof(*priv));
2697 	if (!dev)
2698 		return -ENOMEM;
2699 	priv = netdev_priv(dev);
2700 	memset(priv, 0, sizeof(*priv));
2701 
2702 	/* initialize default and fetch platform data */
2703 	priv->enet_is_sw = true;
2704 	priv->irq_rx = irq_rx;
2705 	priv->irq_tx = irq_tx;
2706 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2707 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2708 	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2709 
2710 	pd = dev_get_platdata(&pdev->dev);
2711 	if (pd) {
2712 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2713 		memcpy(priv->used_ports, pd->used_ports,
2714 		       sizeof(pd->used_ports));
2715 		priv->num_ports = pd->num_ports;
2716 		priv->dma_has_sram = pd->dma_has_sram;
2717 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2718 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2719 		priv->dma_chan_width = pd->dma_chan_width;
2720 	}
2721 
2722 	ret = bcm_enet_change_mtu(dev, dev->mtu);
2723 	if (ret)
2724 		goto out;
2725 
2726 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
2727 	if (IS_ERR(priv->base)) {
2728 		ret = PTR_ERR(priv->base);
2729 		goto out;
2730 	}
2731 
2732 	priv->mac_clk = devm_clk_get(&pdev->dev, "enetsw");
2733 	if (IS_ERR(priv->mac_clk)) {
2734 		ret = PTR_ERR(priv->mac_clk);
2735 		goto out;
2736 	}
2737 	ret = clk_prepare_enable(priv->mac_clk);
2738 	if (ret)
2739 		goto out;
2740 
2741 	priv->rx_chan = 0;
2742 	priv->tx_chan = 1;
2743 	spin_lock_init(&priv->rx_lock);
2744 
2745 	/* init rx timeout (used for oom) */
2746 	init_timer(&priv->rx_timeout);
2747 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
2748 	priv->rx_timeout.data = (unsigned long)dev;
2749 
2750 	/* register netdevice */
2751 	dev->netdev_ops = &bcm_enetsw_ops;
2752 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2753 	dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2754 	SET_NETDEV_DEV(dev, &pdev->dev);
2755 
2756 	spin_lock_init(&priv->enetsw_mdio_lock);
2757 
2758 	ret = register_netdev(dev);
2759 	if (ret)
2760 		goto out_disable_clk;
2761 
2762 	netif_carrier_off(dev);
2763 	platform_set_drvdata(pdev, dev);
2764 	priv->pdev = pdev;
2765 	priv->net_dev = dev;
2766 
2767 	return 0;
2768 
2769 out_disable_clk:
2770 	clk_disable_unprepare(priv->mac_clk);
2771 out:
2772 	free_netdev(dev);
2773 	return ret;
2774 }
2775 
2776 
2777 /* exit func, stops hardware and unregisters netdevice */
2778 static int bcm_enetsw_remove(struct platform_device *pdev)
2779 {
2780 	struct bcm_enet_priv *priv;
2781 	struct net_device *dev;
2782 
2783 	/* stop netdevice */
2784 	dev = platform_get_drvdata(pdev);
2785 	priv = netdev_priv(dev);
2786 	unregister_netdev(dev);
2787 
2788 	clk_disable_unprepare(priv->mac_clk);
2789 
2790 	free_netdev(dev);
2791 	return 0;
2792 }
2793 
2794 struct platform_driver bcm63xx_enetsw_driver = {
2795 	.probe	= bcm_enetsw_probe,
2796 	.remove	= bcm_enetsw_remove,
2797 	.driver	= {
2798 		.name	= "bcm63xx_enetsw",
2799 		.owner  = THIS_MODULE,
2800 	},
2801 };
2802 
2803 /* reserve & remap memory space shared between all macs */
2804 static int bcm_enet_shared_probe(struct platform_device *pdev)
2805 {
2806 	struct resource *res;
2807 	void __iomem *p[3];
2808 	unsigned int i;
2809 
2810 	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2811 
2812 	for (i = 0; i < 3; i++) {
2813 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2814 		p[i] = devm_ioremap_resource(&pdev->dev, res);
2815 		if (IS_ERR(p[i]))
2816 			return PTR_ERR(p[i]);
2817 	}
2818 
2819 	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2820 
2821 	return 0;
2822 }
2823 
2824 static int bcm_enet_shared_remove(struct platform_device *pdev)
2825 {
2826 	return 0;
2827 }
2828 
2829 /* this "shared" driver is needed because both macs share a single
2830  * address space
2831  */
2832 struct platform_driver bcm63xx_enet_shared_driver = {
2833 	.probe	= bcm_enet_shared_probe,
2834 	.remove	= bcm_enet_shared_remove,
2835 	.driver	= {
2836 		.name	= "bcm63xx_enet_shared",
2837 		.owner  = THIS_MODULE,
2838 	},
2839 };
2840 
2841 static struct platform_driver * const drivers[] = {
2842 	&bcm63xx_enet_shared_driver,
2843 	&bcm63xx_enet_driver,
2844 	&bcm63xx_enetsw_driver,
2845 };
2846 
2847 /* entry point */
2848 static int __init bcm_enet_init(void)
2849 {
2850 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2851 }
2852 
2853 static void __exit bcm_enet_exit(void)
2854 {
2855 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2856 }
2857 
2858 
2859 module_init(bcm_enet_init);
2860 module_exit(bcm_enet_exit);
2861 
2862 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2863 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2864 MODULE_LICENSE("GPL");
2865