xref: /openbmc/linux/drivers/net/ethernet/broadcom/asp2/bcmasp_intf.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)			"bcmasp_intf: " fmt
3 
4 #include <asm/byteorder.h>
5 #include <linux/brcmphy.h>
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/etherdevice.h>
9 #include <linux/netdevice.h>
10 #include <linux/of_net.h>
11 #include <linux/of_mdio.h>
12 #include <linux/phy.h>
13 #include <linux/phy_fixed.h>
14 #include <linux/ptp_classify.h>
15 #include <linux/platform_device.h>
16 #include <net/ip.h>
17 #include <net/ipv6.h>
18 
19 #include "bcmasp.h"
20 #include "bcmasp_intf_defs.h"
21 
22 static int incr_ring(int index, int ring_count)
23 {
24 	index++;
25 	if (index == ring_count)
26 		return 0;
27 
28 	return index;
29 }
30 
31 /* Points to last byte of descriptor */
32 static dma_addr_t incr_last_byte(dma_addr_t addr, dma_addr_t beg,
33 				 int ring_count)
34 {
35 	dma_addr_t end = beg + (ring_count * DESC_SIZE);
36 
37 	addr += DESC_SIZE;
38 	if (addr > end)
39 		return beg + DESC_SIZE - 1;
40 
41 	return addr;
42 }
43 
44 /* Points to first byte of descriptor */
45 static dma_addr_t incr_first_byte(dma_addr_t addr, dma_addr_t beg,
46 				  int ring_count)
47 {
48 	dma_addr_t end = beg + (ring_count * DESC_SIZE);
49 
50 	addr += DESC_SIZE;
51 	if (addr >= end)
52 		return beg;
53 
54 	return addr;
55 }
56 
57 static void bcmasp_enable_tx(struct bcmasp_intf *intf, int en)
58 {
59 	if (en) {
60 		tx_spb_ctrl_wl(intf, TX_SPB_CTRL_ENABLE_EN, TX_SPB_CTRL_ENABLE);
61 		tx_epkt_core_wl(intf, (TX_EPKT_C_CFG_MISC_EN |
62 				TX_EPKT_C_CFG_MISC_PT |
63 				(intf->port << TX_EPKT_C_CFG_MISC_PS_SHIFT)),
64 				TX_EPKT_C_CFG_MISC);
65 	} else {
66 		tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE);
67 		tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC);
68 	}
69 }
70 
71 static void bcmasp_enable_rx(struct bcmasp_intf *intf, int en)
72 {
73 	if (en)
74 		rx_edpkt_cfg_wl(intf, RX_EDPKT_CFG_ENABLE_EN,
75 				RX_EDPKT_CFG_ENABLE);
76 	else
77 		rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE);
78 }
79 
80 static void bcmasp_set_rx_mode(struct net_device *dev)
81 {
82 	unsigned char mask[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
83 	struct bcmasp_intf *intf = netdev_priv(dev);
84 	struct netdev_hw_addr *ha;
85 	int ret;
86 
87 	spin_lock_bh(&intf->parent->mda_lock);
88 
89 	bcmasp_disable_all_filters(intf);
90 
91 	if (dev->flags & IFF_PROMISC)
92 		goto set_promisc;
93 
94 	bcmasp_set_promisc(intf, 0);
95 
96 	bcmasp_set_broad(intf, 1);
97 
98 	bcmasp_set_oaddr(intf, dev->dev_addr, 1);
99 
100 	if (dev->flags & IFF_ALLMULTI) {
101 		bcmasp_set_allmulti(intf, 1);
102 	} else {
103 		bcmasp_set_allmulti(intf, 0);
104 
105 		netdev_for_each_mc_addr(ha, dev) {
106 			ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask);
107 			if (ret) {
108 				intf->mib.mc_filters_full_cnt++;
109 				goto set_promisc;
110 			}
111 		}
112 	}
113 
114 	netdev_for_each_uc_addr(ha, dev) {
115 		ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask);
116 		if (ret) {
117 			intf->mib.uc_filters_full_cnt++;
118 			goto set_promisc;
119 		}
120 	}
121 
122 	spin_unlock_bh(&intf->parent->mda_lock);
123 	return;
124 
125 set_promisc:
126 	bcmasp_set_promisc(intf, 1);
127 	intf->mib.promisc_filters_cnt++;
128 
129 	/* disable all filters used by this port */
130 	bcmasp_disable_all_filters(intf);
131 
132 	spin_unlock_bh(&intf->parent->mda_lock);
133 }
134 
135 static void bcmasp_clean_txcb(struct bcmasp_intf *intf, int index)
136 {
137 	struct bcmasp_tx_cb *txcb = &intf->tx_cbs[index];
138 
139 	txcb->skb = NULL;
140 	dma_unmap_addr_set(txcb, dma_addr, 0);
141 	dma_unmap_len_set(txcb, dma_len, 0);
142 	txcb->last = false;
143 }
144 
145 static int tx_spb_ring_full(struct bcmasp_intf *intf, int cnt)
146 {
147 	int next_index, i;
148 
149 	/* Check if we have enough room for cnt descriptors */
150 	for (i = 0; i < cnt; i++) {
151 		next_index = incr_ring(intf->tx_spb_index, DESC_RING_COUNT);
152 		if (next_index == intf->tx_spb_clean_index)
153 			return 1;
154 	}
155 
156 	return 0;
157 }
158 
159 static struct sk_buff *bcmasp_csum_offload(struct net_device *dev,
160 					   struct sk_buff *skb,
161 					   bool *csum_hw)
162 {
163 	struct bcmasp_intf *intf = netdev_priv(dev);
164 	u32 header = 0, header2 = 0, epkt = 0;
165 	struct bcmasp_pkt_offload *offload;
166 	unsigned int header_cnt = 0;
167 	u8 ip_proto;
168 	int ret;
169 
170 	if (skb->ip_summed != CHECKSUM_PARTIAL)
171 		return skb;
172 
173 	ret = skb_cow_head(skb, sizeof(*offload));
174 	if (ret < 0) {
175 		intf->mib.tx_realloc_offload_failed++;
176 		goto help;
177 	}
178 
179 	switch (skb->protocol) {
180 	case htons(ETH_P_IP):
181 		header |= PKT_OFFLOAD_HDR_SIZE_2((ip_hdrlen(skb) >> 8) & 0xf);
182 		header2 |= PKT_OFFLOAD_HDR2_SIZE_2(ip_hdrlen(skb) & 0xff);
183 		epkt |= PKT_OFFLOAD_EPKT_IP(0) | PKT_OFFLOAD_EPKT_CSUM_L2;
184 		ip_proto = ip_hdr(skb)->protocol;
185 		header_cnt += 2;
186 		break;
187 	case htons(ETH_P_IPV6):
188 		header |= PKT_OFFLOAD_HDR_SIZE_2((IP6_HLEN >> 8) & 0xf);
189 		header2 |= PKT_OFFLOAD_HDR2_SIZE_2(IP6_HLEN & 0xff);
190 		epkt |= PKT_OFFLOAD_EPKT_IP(1) | PKT_OFFLOAD_EPKT_CSUM_L2;
191 		ip_proto = ipv6_hdr(skb)->nexthdr;
192 		header_cnt += 2;
193 		break;
194 	default:
195 		goto help;
196 	}
197 
198 	switch (ip_proto) {
199 	case IPPROTO_TCP:
200 		header2 |= PKT_OFFLOAD_HDR2_SIZE_3(tcp_hdrlen(skb));
201 		epkt |= PKT_OFFLOAD_EPKT_TP(0) | PKT_OFFLOAD_EPKT_CSUM_L3;
202 		header_cnt++;
203 		break;
204 	case IPPROTO_UDP:
205 		header2 |= PKT_OFFLOAD_HDR2_SIZE_3(UDP_HLEN);
206 		epkt |= PKT_OFFLOAD_EPKT_TP(1) | PKT_OFFLOAD_EPKT_CSUM_L3;
207 		header_cnt++;
208 		break;
209 	default:
210 		goto help;
211 	}
212 
213 	offload = (struct bcmasp_pkt_offload *)skb_push(skb, sizeof(*offload));
214 
215 	header |= PKT_OFFLOAD_HDR_OP | PKT_OFFLOAD_HDR_COUNT(header_cnt) |
216 		  PKT_OFFLOAD_HDR_SIZE_1(ETH_HLEN);
217 	epkt |= PKT_OFFLOAD_EPKT_OP;
218 
219 	offload->nop = htonl(PKT_OFFLOAD_NOP);
220 	offload->header = htonl(header);
221 	offload->header2 = htonl(header2);
222 	offload->epkt = htonl(epkt);
223 	offload->end = htonl(PKT_OFFLOAD_END_OP);
224 	*csum_hw = true;
225 
226 	return skb;
227 
228 help:
229 	skb_checksum_help(skb);
230 
231 	return skb;
232 }
233 
234 static unsigned long bcmasp_rx_edpkt_dma_rq(struct bcmasp_intf *intf)
235 {
236 	return rx_edpkt_dma_rq(intf, RX_EDPKT_DMA_VALID);
237 }
238 
239 static void bcmasp_rx_edpkt_cfg_wq(struct bcmasp_intf *intf, dma_addr_t addr)
240 {
241 	rx_edpkt_cfg_wq(intf, addr, RX_EDPKT_RING_BUFFER_READ);
242 }
243 
244 static void bcmasp_rx_edpkt_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr)
245 {
246 	rx_edpkt_dma_wq(intf, addr, RX_EDPKT_DMA_READ);
247 }
248 
249 static unsigned long bcmasp_tx_spb_dma_rq(struct bcmasp_intf *intf)
250 {
251 	return tx_spb_dma_rq(intf, TX_SPB_DMA_READ);
252 }
253 
254 static void bcmasp_tx_spb_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr)
255 {
256 	tx_spb_dma_wq(intf, addr, TX_SPB_DMA_VALID);
257 }
258 
259 static const struct bcmasp_intf_ops bcmasp_intf_ops = {
260 	.rx_desc_read = bcmasp_rx_edpkt_dma_rq,
261 	.rx_buffer_write = bcmasp_rx_edpkt_cfg_wq,
262 	.rx_desc_write = bcmasp_rx_edpkt_dma_wq,
263 	.tx_read = bcmasp_tx_spb_dma_rq,
264 	.tx_write = bcmasp_tx_spb_dma_wq,
265 };
266 
267 static netdev_tx_t bcmasp_xmit(struct sk_buff *skb, struct net_device *dev)
268 {
269 	struct bcmasp_intf *intf = netdev_priv(dev);
270 	unsigned int total_bytes, size;
271 	int spb_index, nr_frags, i, j;
272 	struct bcmasp_tx_cb *txcb;
273 	dma_addr_t mapping, valid;
274 	struct bcmasp_desc *desc;
275 	bool csum_hw = false;
276 	struct device *kdev;
277 	skb_frag_t *frag;
278 
279 	kdev = &intf->parent->pdev->dev;
280 
281 	nr_frags = skb_shinfo(skb)->nr_frags;
282 
283 	if (tx_spb_ring_full(intf, nr_frags + 1)) {
284 		netif_stop_queue(dev);
285 		if (net_ratelimit())
286 			netdev_err(dev, "Tx Ring Full!\n");
287 		return NETDEV_TX_BUSY;
288 	}
289 
290 	/* Save skb len before adding csum offload header */
291 	total_bytes = skb->len;
292 	skb = bcmasp_csum_offload(dev, skb, &csum_hw);
293 	if (!skb)
294 		return NETDEV_TX_OK;
295 
296 	spb_index = intf->tx_spb_index;
297 	valid = intf->tx_spb_dma_valid;
298 	for (i = 0; i <= nr_frags; i++) {
299 		if (!i) {
300 			size = skb_headlen(skb);
301 			if (!nr_frags && size < (ETH_ZLEN + ETH_FCS_LEN)) {
302 				if (skb_put_padto(skb, ETH_ZLEN + ETH_FCS_LEN))
303 					return NETDEV_TX_OK;
304 				size = skb->len;
305 			}
306 			mapping = dma_map_single(kdev, skb->data, size,
307 						 DMA_TO_DEVICE);
308 		} else {
309 			frag = &skb_shinfo(skb)->frags[i - 1];
310 			size = skb_frag_size(frag);
311 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
312 						   DMA_TO_DEVICE);
313 		}
314 
315 		if (dma_mapping_error(kdev, mapping)) {
316 			intf->mib.tx_dma_failed++;
317 			spb_index = intf->tx_spb_index;
318 			for (j = 0; j < i; j++) {
319 				bcmasp_clean_txcb(intf, spb_index);
320 				spb_index = incr_ring(spb_index,
321 						      DESC_RING_COUNT);
322 			}
323 			/* Rewind so we do not have a hole */
324 			spb_index = intf->tx_spb_index;
325 			return NETDEV_TX_OK;
326 		}
327 
328 		txcb = &intf->tx_cbs[spb_index];
329 		desc = &intf->tx_spb_cpu[spb_index];
330 		memset(desc, 0, sizeof(*desc));
331 		txcb->skb = skb;
332 		txcb->bytes_sent = total_bytes;
333 		dma_unmap_addr_set(txcb, dma_addr, mapping);
334 		dma_unmap_len_set(txcb, dma_len, size);
335 		if (!i) {
336 			desc->flags |= DESC_SOF;
337 			if (csum_hw)
338 				desc->flags |= DESC_EPKT_CMD;
339 		}
340 
341 		if (i == nr_frags) {
342 			desc->flags |= DESC_EOF;
343 			txcb->last = true;
344 		}
345 
346 		desc->buf = mapping;
347 		desc->size = size;
348 		desc->flags |= DESC_INT_EN;
349 
350 		netif_dbg(intf, tx_queued, dev,
351 			  "%s dma_buf=%pad dma_len=0x%x flags=0x%x index=0x%x\n",
352 			  __func__, &mapping, desc->size, desc->flags,
353 			  spb_index);
354 
355 		spb_index = incr_ring(spb_index, DESC_RING_COUNT);
356 		valid = incr_last_byte(valid, intf->tx_spb_dma_addr,
357 				       DESC_RING_COUNT);
358 	}
359 
360 	/* Ensure all descriptors have been written to DRAM for the
361 	 * hardware to see up-to-date contents.
362 	 */
363 	wmb();
364 
365 	intf->tx_spb_index = spb_index;
366 	intf->tx_spb_dma_valid = valid;
367 	bcmasp_intf_tx_write(intf, intf->tx_spb_dma_valid);
368 
369 	if (tx_spb_ring_full(intf, MAX_SKB_FRAGS + 1))
370 		netif_stop_queue(dev);
371 
372 	return NETDEV_TX_OK;
373 }
374 
375 static void bcmasp_netif_start(struct net_device *dev)
376 {
377 	struct bcmasp_intf *intf = netdev_priv(dev);
378 
379 	bcmasp_set_rx_mode(dev);
380 	napi_enable(&intf->tx_napi);
381 	napi_enable(&intf->rx_napi);
382 
383 	bcmasp_enable_rx_irq(intf, 1);
384 	bcmasp_enable_tx_irq(intf, 1);
385 
386 	phy_start(dev->phydev);
387 }
388 
389 static void umac_reset(struct bcmasp_intf *intf)
390 {
391 	umac_wl(intf, 0x0, UMC_CMD);
392 	umac_wl(intf, UMC_CMD_SW_RESET, UMC_CMD);
393 	usleep_range(10, 100);
394 	umac_wl(intf, 0x0, UMC_CMD);
395 }
396 
397 static void umac_set_hw_addr(struct bcmasp_intf *intf,
398 			     const unsigned char *addr)
399 {
400 	u32 mac0 = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) |
401 		    addr[3];
402 	u32 mac1 = (addr[4] << 8) | addr[5];
403 
404 	umac_wl(intf, mac0, UMC_MAC0);
405 	umac_wl(intf, mac1, UMC_MAC1);
406 }
407 
408 static void umac_enable_set(struct bcmasp_intf *intf, u32 mask,
409 			    unsigned int enable)
410 {
411 	u32 reg;
412 
413 	reg = umac_rl(intf, UMC_CMD);
414 	if (enable)
415 		reg |= mask;
416 	else
417 		reg &= ~mask;
418 	umac_wl(intf, reg, UMC_CMD);
419 
420 	/* UniMAC stops on a packet boundary, wait for a full-sized packet
421 	 * to be processed (1 msec).
422 	 */
423 	if (enable == 0)
424 		usleep_range(1000, 2000);
425 }
426 
427 static void umac_init(struct bcmasp_intf *intf)
428 {
429 	umac_wl(intf, 0x800, UMC_FRM_LEN);
430 	umac_wl(intf, 0xffff, UMC_PAUSE_CNTRL);
431 	umac_wl(intf, 0x800, UMC_RX_MAX_PKT_SZ);
432 	umac_enable_set(intf, UMC_CMD_PROMISC, 1);
433 }
434 
435 static int bcmasp_tx_poll(struct napi_struct *napi, int budget)
436 {
437 	struct bcmasp_intf *intf =
438 		container_of(napi, struct bcmasp_intf, tx_napi);
439 	struct bcmasp_intf_stats64 *stats = &intf->stats64;
440 	struct device *kdev = &intf->parent->pdev->dev;
441 	unsigned long read, released = 0;
442 	struct bcmasp_tx_cb *txcb;
443 	struct bcmasp_desc *desc;
444 	dma_addr_t mapping;
445 
446 	read = bcmasp_intf_tx_read(intf);
447 	while (intf->tx_spb_dma_read != read) {
448 		txcb = &intf->tx_cbs[intf->tx_spb_clean_index];
449 		mapping = dma_unmap_addr(txcb, dma_addr);
450 
451 		dma_unmap_single(kdev, mapping,
452 				 dma_unmap_len(txcb, dma_len),
453 				 DMA_TO_DEVICE);
454 
455 		if (txcb->last) {
456 			dev_consume_skb_any(txcb->skb);
457 
458 			u64_stats_update_begin(&stats->syncp);
459 			u64_stats_inc(&stats->tx_packets);
460 			u64_stats_add(&stats->tx_bytes, txcb->bytes_sent);
461 			u64_stats_update_end(&stats->syncp);
462 		}
463 
464 		desc = &intf->tx_spb_cpu[intf->tx_spb_clean_index];
465 
466 		netif_dbg(intf, tx_done, intf->ndev,
467 			  "%s dma_buf=%pad dma_len=0x%x flags=0x%x c_index=0x%x\n",
468 			  __func__, &mapping, desc->size, desc->flags,
469 			  intf->tx_spb_clean_index);
470 
471 		bcmasp_clean_txcb(intf, intf->tx_spb_clean_index);
472 		released++;
473 
474 		intf->tx_spb_clean_index = incr_ring(intf->tx_spb_clean_index,
475 						     DESC_RING_COUNT);
476 		intf->tx_spb_dma_read = incr_first_byte(intf->tx_spb_dma_read,
477 							intf->tx_spb_dma_addr,
478 							DESC_RING_COUNT);
479 	}
480 
481 	/* Ensure all descriptors have been written to DRAM for the hardware
482 	 * to see updated contents.
483 	 */
484 	wmb();
485 
486 	napi_complete(&intf->tx_napi);
487 
488 	bcmasp_enable_tx_irq(intf, 1);
489 
490 	if (released)
491 		netif_wake_queue(intf->ndev);
492 
493 	return 0;
494 }
495 
496 static int bcmasp_rx_poll(struct napi_struct *napi, int budget)
497 {
498 	struct bcmasp_intf *intf =
499 		container_of(napi, struct bcmasp_intf, rx_napi);
500 	struct bcmasp_intf_stats64 *stats = &intf->stats64;
501 	struct device *kdev = &intf->parent->pdev->dev;
502 	unsigned long processed = 0;
503 	struct bcmasp_desc *desc;
504 	struct sk_buff *skb;
505 	dma_addr_t valid;
506 	void *data;
507 	u64 flags;
508 	u32 len;
509 
510 	valid = bcmasp_intf_rx_desc_read(intf) + 1;
511 	if (valid == intf->rx_edpkt_dma_addr + DESC_RING_SIZE)
512 		valid = intf->rx_edpkt_dma_addr;
513 
514 	while ((processed < budget) && (valid != intf->rx_edpkt_dma_read)) {
515 		desc = &intf->rx_edpkt_cpu[intf->rx_edpkt_index];
516 
517 		/* Ensure that descriptor has been fully written to DRAM by
518 		 * hardware before reading by the CPU
519 		 */
520 		rmb();
521 
522 		/* Calculate virt addr by offsetting from physical addr */
523 		data = intf->rx_ring_cpu +
524 			(DESC_ADDR(desc->buf) - intf->rx_ring_dma);
525 
526 		flags = DESC_FLAGS(desc->buf);
527 		if (unlikely(flags & (DESC_CRC_ERR | DESC_RX_SYM_ERR))) {
528 			if (net_ratelimit()) {
529 				netif_err(intf, rx_status, intf->ndev,
530 					  "flags=0x%llx\n", flags);
531 			}
532 
533 			u64_stats_update_begin(&stats->syncp);
534 			if (flags & DESC_CRC_ERR)
535 				u64_stats_inc(&stats->rx_crc_errs);
536 			if (flags & DESC_RX_SYM_ERR)
537 				u64_stats_inc(&stats->rx_sym_errs);
538 			u64_stats_update_end(&stats->syncp);
539 
540 			goto next;
541 		}
542 
543 		dma_sync_single_for_cpu(kdev, DESC_ADDR(desc->buf), desc->size,
544 					DMA_FROM_DEVICE);
545 
546 		len = desc->size;
547 
548 		skb = napi_alloc_skb(napi, len);
549 		if (!skb) {
550 			u64_stats_update_begin(&stats->syncp);
551 			u64_stats_inc(&stats->rx_dropped);
552 			u64_stats_update_end(&stats->syncp);
553 			intf->mib.alloc_rx_skb_failed++;
554 
555 			goto next;
556 		}
557 
558 		skb_put(skb, len);
559 		memcpy(skb->data, data, len);
560 
561 		skb_pull(skb, 2);
562 		len -= 2;
563 		if (likely(intf->crc_fwd)) {
564 			skb_trim(skb, len - ETH_FCS_LEN);
565 			len -= ETH_FCS_LEN;
566 		}
567 
568 		if ((intf->ndev->features & NETIF_F_RXCSUM) &&
569 		    (desc->buf & DESC_CHKSUM))
570 			skb->ip_summed = CHECKSUM_UNNECESSARY;
571 
572 		skb->protocol = eth_type_trans(skb, intf->ndev);
573 
574 		napi_gro_receive(napi, skb);
575 
576 		u64_stats_update_begin(&stats->syncp);
577 		u64_stats_inc(&stats->rx_packets);
578 		u64_stats_add(&stats->rx_bytes, len);
579 		u64_stats_update_end(&stats->syncp);
580 
581 next:
582 		bcmasp_intf_rx_buffer_write(intf, (DESC_ADDR(desc->buf) +
583 					    desc->size));
584 
585 		processed++;
586 		intf->rx_edpkt_dma_read =
587 			incr_first_byte(intf->rx_edpkt_dma_read,
588 					intf->rx_edpkt_dma_addr,
589 					DESC_RING_COUNT);
590 		intf->rx_edpkt_index = incr_ring(intf->rx_edpkt_index,
591 						 DESC_RING_COUNT);
592 	}
593 
594 	bcmasp_intf_rx_desc_write(intf, intf->rx_edpkt_dma_read);
595 
596 	if (processed < budget) {
597 		napi_complete_done(&intf->rx_napi, processed);
598 		bcmasp_enable_rx_irq(intf, 1);
599 	}
600 
601 	return processed;
602 }
603 
604 static void bcmasp_adj_link(struct net_device *dev)
605 {
606 	struct bcmasp_intf *intf = netdev_priv(dev);
607 	struct phy_device *phydev = dev->phydev;
608 	u32 cmd_bits = 0, reg;
609 	int changed = 0;
610 
611 	if (intf->old_link != phydev->link) {
612 		changed = 1;
613 		intf->old_link = phydev->link;
614 	}
615 
616 	if (intf->old_duplex != phydev->duplex) {
617 		changed = 1;
618 		intf->old_duplex = phydev->duplex;
619 	}
620 
621 	switch (phydev->speed) {
622 	case SPEED_2500:
623 		cmd_bits = UMC_CMD_SPEED_2500;
624 		break;
625 	case SPEED_1000:
626 		cmd_bits = UMC_CMD_SPEED_1000;
627 		break;
628 	case SPEED_100:
629 		cmd_bits = UMC_CMD_SPEED_100;
630 		break;
631 	case SPEED_10:
632 		cmd_bits = UMC_CMD_SPEED_10;
633 		break;
634 	default:
635 		break;
636 	}
637 	cmd_bits <<= UMC_CMD_SPEED_SHIFT;
638 
639 	if (phydev->duplex == DUPLEX_HALF)
640 		cmd_bits |= UMC_CMD_HD_EN;
641 
642 	if (intf->old_pause != phydev->pause) {
643 		changed = 1;
644 		intf->old_pause = phydev->pause;
645 	}
646 
647 	if (!phydev->pause)
648 		cmd_bits |= UMC_CMD_RX_PAUSE_IGNORE | UMC_CMD_TX_PAUSE_IGNORE;
649 
650 	if (!changed)
651 		return;
652 
653 	if (phydev->link) {
654 		reg = umac_rl(intf, UMC_CMD);
655 		reg &= ~((UMC_CMD_SPEED_MASK << UMC_CMD_SPEED_SHIFT) |
656 			UMC_CMD_HD_EN | UMC_CMD_RX_PAUSE_IGNORE |
657 			UMC_CMD_TX_PAUSE_IGNORE);
658 		reg |= cmd_bits;
659 		umac_wl(intf, reg, UMC_CMD);
660 
661 		intf->eee.eee_active = phy_init_eee(phydev, 0) >= 0;
662 		bcmasp_eee_enable_set(intf, intf->eee.eee_active);
663 	}
664 
665 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
666 	if (phydev->link)
667 		reg |= RGMII_LINK;
668 	else
669 		reg &= ~RGMII_LINK;
670 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
671 
672 	if (changed)
673 		phy_print_status(phydev);
674 }
675 
676 static int bcmasp_init_rx(struct bcmasp_intf *intf)
677 {
678 	struct device *kdev = &intf->parent->pdev->dev;
679 	struct page *buffer_pg;
680 	dma_addr_t dma;
681 	void *p;
682 	u32 reg;
683 	int ret;
684 
685 	intf->rx_buf_order = get_order(RING_BUFFER_SIZE);
686 	buffer_pg = alloc_pages(GFP_KERNEL, intf->rx_buf_order);
687 
688 	dma = dma_map_page(kdev, buffer_pg, 0, RING_BUFFER_SIZE,
689 			   DMA_FROM_DEVICE);
690 	if (dma_mapping_error(kdev, dma)) {
691 		__free_pages(buffer_pg, intf->rx_buf_order);
692 		return -ENOMEM;
693 	}
694 	intf->rx_ring_cpu = page_to_virt(buffer_pg);
695 	intf->rx_ring_dma = dma;
696 	intf->rx_ring_dma_valid = intf->rx_ring_dma + RING_BUFFER_SIZE - 1;
697 
698 	p = dma_alloc_coherent(kdev, DESC_RING_SIZE, &intf->rx_edpkt_dma_addr,
699 			       GFP_KERNEL);
700 	if (!p) {
701 		ret = -ENOMEM;
702 		goto free_rx_ring;
703 	}
704 	intf->rx_edpkt_cpu = p;
705 
706 	netif_napi_add(intf->ndev, &intf->rx_napi, bcmasp_rx_poll);
707 
708 	intf->rx_edpkt_dma_read = intf->rx_edpkt_dma_addr;
709 	intf->rx_edpkt_index = 0;
710 
711 	/* Make sure channels are disabled */
712 	rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE);
713 
714 	/* Rx SPB */
715 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_READ);
716 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_WRITE);
717 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_BASE);
718 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid,
719 			RX_EDPKT_RING_BUFFER_END);
720 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid,
721 			RX_EDPKT_RING_BUFFER_VALID);
722 
723 	/* EDPKT */
724 	rx_edpkt_cfg_wl(intf, (RX_EDPKT_CFG_CFG0_RBUF_4K <<
725 			RX_EDPKT_CFG_CFG0_DBUF_SHIFT) |
726 		       (RX_EDPKT_CFG_CFG0_64_ALN <<
727 			RX_EDPKT_CFG_CFG0_BALN_SHIFT) |
728 		       (RX_EDPKT_CFG_CFG0_EFRM_STUF),
729 			RX_EDPKT_CFG_CFG0);
730 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_WRITE);
731 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_READ);
732 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_BASE);
733 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr + (DESC_RING_SIZE - 1),
734 			RX_EDPKT_DMA_END);
735 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr + (DESC_RING_SIZE - 1),
736 			RX_EDPKT_DMA_VALID);
737 
738 	reg = UMAC2FB_CFG_DEFAULT_EN |
739 	      ((intf->channel + 11) << UMAC2FB_CFG_CHID_SHIFT);
740 	reg |= (0xd << UMAC2FB_CFG_OK_SEND_SHIFT);
741 	umac2fb_wl(intf, reg, UMAC2FB_CFG);
742 
743 	return 0;
744 
745 free_rx_ring:
746 	dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE,
747 		       DMA_FROM_DEVICE);
748 	__free_pages(virt_to_page(intf->rx_ring_cpu), intf->rx_buf_order);
749 
750 	return ret;
751 }
752 
753 static void bcmasp_reclaim_free_all_rx(struct bcmasp_intf *intf)
754 {
755 	struct device *kdev = &intf->parent->pdev->dev;
756 
757 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu,
758 			  intf->rx_edpkt_dma_addr);
759 	dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE,
760 		       DMA_FROM_DEVICE);
761 	__free_pages(virt_to_page(intf->rx_ring_cpu), intf->rx_buf_order);
762 }
763 
764 static int bcmasp_init_tx(struct bcmasp_intf *intf)
765 {
766 	struct device *kdev = &intf->parent->pdev->dev;
767 	void *p;
768 	int ret;
769 
770 	p = dma_alloc_coherent(kdev, DESC_RING_SIZE, &intf->tx_spb_dma_addr,
771 			       GFP_KERNEL);
772 	if (!p)
773 		return -ENOMEM;
774 
775 	intf->tx_spb_cpu = p;
776 	intf->tx_spb_dma_valid = intf->tx_spb_dma_addr + DESC_RING_SIZE - 1;
777 	intf->tx_spb_dma_read = intf->tx_spb_dma_addr;
778 
779 	intf->tx_cbs = kcalloc(DESC_RING_COUNT, sizeof(struct bcmasp_tx_cb),
780 			       GFP_KERNEL);
781 	if (!intf->tx_cbs) {
782 		ret = -ENOMEM;
783 		goto free_tx_spb;
784 	}
785 
786 	intf->tx_spb_index = 0;
787 	intf->tx_spb_clean_index = 0;
788 
789 	netif_napi_add_tx(intf->ndev, &intf->tx_napi, bcmasp_tx_poll);
790 
791 	/* Make sure channels are disabled */
792 	tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE);
793 	tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC);
794 
795 	/* Tx SPB */
796 	tx_spb_ctrl_wl(intf, ((intf->channel + 8) << TX_SPB_CTRL_XF_BID_SHIFT),
797 		       TX_SPB_CTRL_XF_CTRL2);
798 	tx_pause_ctrl_wl(intf, (1 << (intf->channel + 8)), TX_PAUSE_MAP_VECTOR);
799 	tx_spb_top_wl(intf, 0x1e, TX_SPB_TOP_BLKOUT);
800 	tx_spb_top_wl(intf, 0x0, TX_SPB_TOP_SPRE_BW_CTRL);
801 
802 	tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_READ);
803 	tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_BASE);
804 	tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_END);
805 	tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_VALID);
806 
807 	return 0;
808 
809 free_tx_spb:
810 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu,
811 			  intf->tx_spb_dma_addr);
812 
813 	return ret;
814 }
815 
816 static void bcmasp_reclaim_free_all_tx(struct bcmasp_intf *intf)
817 {
818 	struct device *kdev = &intf->parent->pdev->dev;
819 
820 	/* Free descriptors */
821 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu,
822 			  intf->tx_spb_dma_addr);
823 
824 	/* Free cbs */
825 	kfree(intf->tx_cbs);
826 }
827 
828 static void bcmasp_ephy_enable_set(struct bcmasp_intf *intf, bool enable)
829 {
830 	u32 mask = RGMII_EPHY_CFG_IDDQ_BIAS | RGMII_EPHY_CFG_EXT_PWRDOWN |
831 		   RGMII_EPHY_CFG_IDDQ_GLOBAL;
832 	u32 reg;
833 
834 	reg = rgmii_rl(intf, RGMII_EPHY_CNTRL);
835 	if (enable) {
836 		reg &= ~RGMII_EPHY_CK25_DIS;
837 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
838 		mdelay(1);
839 
840 		reg &= ~mask;
841 		reg |= RGMII_EPHY_RESET;
842 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
843 		mdelay(1);
844 
845 		reg &= ~RGMII_EPHY_RESET;
846 	} else {
847 		reg |= mask | RGMII_EPHY_RESET;
848 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
849 		mdelay(1);
850 		reg |= RGMII_EPHY_CK25_DIS;
851 	}
852 	rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
853 	mdelay(1);
854 
855 	/* Set or clear the LED control override to avoid lighting up LEDs
856 	 * while the EPHY is powered off and drawing unnecessary current.
857 	 */
858 	reg = rgmii_rl(intf, RGMII_SYS_LED_CNTRL);
859 	if (enable)
860 		reg &= ~RGMII_SYS_LED_CNTRL_LINK_OVRD;
861 	else
862 		reg |= RGMII_SYS_LED_CNTRL_LINK_OVRD;
863 	rgmii_wl(intf, reg, RGMII_SYS_LED_CNTRL);
864 }
865 
866 static void bcmasp_rgmii_mode_en_set(struct bcmasp_intf *intf, bool enable)
867 {
868 	u32 reg;
869 
870 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
871 	reg &= ~RGMII_OOB_DIS;
872 	if (enable)
873 		reg |= RGMII_MODE_EN;
874 	else
875 		reg &= ~RGMII_MODE_EN;
876 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
877 }
878 
879 static void bcmasp_netif_deinit(struct net_device *dev)
880 {
881 	struct bcmasp_intf *intf = netdev_priv(dev);
882 	u32 reg, timeout = 1000;
883 
884 	napi_disable(&intf->tx_napi);
885 
886 	bcmasp_enable_tx(intf, 0);
887 
888 	/* Flush any TX packets in the pipe */
889 	tx_spb_dma_wl(intf, TX_SPB_DMA_FIFO_FLUSH, TX_SPB_DMA_FIFO_CTRL);
890 	do {
891 		reg = tx_spb_dma_rl(intf, TX_SPB_DMA_FIFO_STATUS);
892 		if (!(reg & TX_SPB_DMA_FIFO_FLUSH))
893 			break;
894 		usleep_range(1000, 2000);
895 	} while (timeout-- > 0);
896 	tx_spb_dma_wl(intf, 0x0, TX_SPB_DMA_FIFO_CTRL);
897 
898 	umac_enable_set(intf, UMC_CMD_TX_EN, 0);
899 
900 	phy_stop(dev->phydev);
901 
902 	umac_enable_set(intf, UMC_CMD_RX_EN, 0);
903 
904 	bcmasp_flush_rx_port(intf);
905 	usleep_range(1000, 2000);
906 	bcmasp_enable_rx(intf, 0);
907 
908 	napi_disable(&intf->rx_napi);
909 
910 	/* Disable interrupts */
911 	bcmasp_enable_tx_irq(intf, 0);
912 	bcmasp_enable_rx_irq(intf, 0);
913 
914 	netif_napi_del(&intf->tx_napi);
915 	bcmasp_reclaim_free_all_tx(intf);
916 
917 	netif_napi_del(&intf->rx_napi);
918 	bcmasp_reclaim_free_all_rx(intf);
919 }
920 
921 static int bcmasp_stop(struct net_device *dev)
922 {
923 	struct bcmasp_intf *intf = netdev_priv(dev);
924 
925 	netif_dbg(intf, ifdown, dev, "bcmasp stop\n");
926 
927 	/* Stop tx from updating HW */
928 	netif_tx_disable(dev);
929 
930 	bcmasp_netif_deinit(dev);
931 
932 	phy_disconnect(dev->phydev);
933 
934 	/* Disable internal EPHY or external PHY */
935 	if (intf->internal_phy)
936 		bcmasp_ephy_enable_set(intf, false);
937 	else
938 		bcmasp_rgmii_mode_en_set(intf, false);
939 
940 	/* Disable the interface clocks */
941 	bcmasp_core_clock_set_intf(intf, false);
942 
943 	clk_disable_unprepare(intf->parent->clk);
944 
945 	return 0;
946 }
947 
948 static void bcmasp_configure_port(struct bcmasp_intf *intf)
949 {
950 	u32 reg, id_mode_dis = 0;
951 
952 	reg = rgmii_rl(intf, RGMII_PORT_CNTRL);
953 	reg &= ~RGMII_PORT_MODE_MASK;
954 
955 	switch (intf->phy_interface) {
956 	case PHY_INTERFACE_MODE_RGMII:
957 		/* RGMII_NO_ID: TXC transitions at the same time as TXD
958 		 *		(requires PCB or receiver-side delay)
959 		 * RGMII:	Add 2ns delay on TXC (90 degree shift)
960 		 *
961 		 * ID is implicitly disabled for 100Mbps (RG)MII operation.
962 		 */
963 		id_mode_dis = RGMII_ID_MODE_DIS;
964 		fallthrough;
965 	case PHY_INTERFACE_MODE_RGMII_TXID:
966 		reg |= RGMII_PORT_MODE_EXT_GPHY;
967 		break;
968 	case PHY_INTERFACE_MODE_MII:
969 		reg |= RGMII_PORT_MODE_EXT_EPHY;
970 		break;
971 	default:
972 		break;
973 	}
974 
975 	if (intf->internal_phy)
976 		reg |= RGMII_PORT_MODE_EPHY;
977 
978 	rgmii_wl(intf, reg, RGMII_PORT_CNTRL);
979 
980 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
981 	reg &= ~RGMII_ID_MODE_DIS;
982 	reg |= id_mode_dis;
983 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
984 }
985 
986 static int bcmasp_netif_init(struct net_device *dev, bool phy_connect)
987 {
988 	struct bcmasp_intf *intf = netdev_priv(dev);
989 	phy_interface_t phy_iface = intf->phy_interface;
990 	u32 phy_flags = PHY_BRCM_AUTO_PWRDWN_ENABLE |
991 			PHY_BRCM_DIS_TXCRXC_NOENRGY |
992 			PHY_BRCM_IDDQ_SUSPEND;
993 	struct phy_device *phydev = NULL;
994 	int ret;
995 
996 	/* Always enable interface clocks */
997 	bcmasp_core_clock_set_intf(intf, true);
998 
999 	/* Enable internal PHY or external PHY before any MAC activity */
1000 	if (intf->internal_phy)
1001 		bcmasp_ephy_enable_set(intf, true);
1002 	else
1003 		bcmasp_rgmii_mode_en_set(intf, true);
1004 	bcmasp_configure_port(intf);
1005 
1006 	/* This is an ugly quirk but we have not been correctly
1007 	 * interpreting the phy_interface values and we have done that
1008 	 * across different drivers, so at least we are consistent in
1009 	 * our mistakes.
1010 	 *
1011 	 * When the Generic PHY driver is in use either the PHY has
1012 	 * been strapped or programmed correctly by the boot loader so
1013 	 * we should stick to our incorrect interpretation since we
1014 	 * have validated it.
1015 	 *
1016 	 * Now when a dedicated PHY driver is in use, we need to
1017 	 * reverse the meaning of the phy_interface_mode values to
1018 	 * something that the PHY driver will interpret and act on such
1019 	 * that we have two mistakes canceling themselves so to speak.
1020 	 * We only do this for the two modes that GENET driver
1021 	 * officially supports on Broadcom STB chips:
1022 	 * PHY_INTERFACE_MODE_RGMII and PHY_INTERFACE_MODE_RGMII_TXID.
1023 	 * Other modes are not *officially* supported with the boot
1024 	 * loader and the scripted environment generating Device Tree
1025 	 * blobs for those platforms.
1026 	 *
1027 	 * Note that internal PHY and fixed-link configurations are not
1028 	 * affected because they use different phy_interface_t values
1029 	 * or the Generic PHY driver.
1030 	 */
1031 	switch (phy_iface) {
1032 	case PHY_INTERFACE_MODE_RGMII:
1033 		phy_iface = PHY_INTERFACE_MODE_RGMII_ID;
1034 		break;
1035 	case PHY_INTERFACE_MODE_RGMII_TXID:
1036 		phy_iface = PHY_INTERFACE_MODE_RGMII_RXID;
1037 		break;
1038 	default:
1039 		break;
1040 	}
1041 
1042 	if (phy_connect) {
1043 		phydev = of_phy_connect(dev, intf->phy_dn,
1044 					bcmasp_adj_link, phy_flags,
1045 					phy_iface);
1046 		if (!phydev) {
1047 			ret = -ENODEV;
1048 			netdev_err(dev, "could not attach to PHY\n");
1049 			goto err_phy_disable;
1050 		}
1051 	} else if (!intf->wolopts) {
1052 		ret = phy_resume(dev->phydev);
1053 		if (ret)
1054 			goto err_phy_disable;
1055 	}
1056 
1057 	umac_reset(intf);
1058 
1059 	umac_init(intf);
1060 
1061 	/* Disable the UniMAC RX/TX */
1062 	umac_enable_set(intf, (UMC_CMD_RX_EN | UMC_CMD_TX_EN), 0);
1063 
1064 	umac_set_hw_addr(intf, dev->dev_addr);
1065 
1066 	intf->old_duplex = -1;
1067 	intf->old_link = -1;
1068 	intf->old_pause = -1;
1069 
1070 	ret = bcmasp_init_tx(intf);
1071 	if (ret)
1072 		goto err_phy_disconnect;
1073 
1074 	/* Turn on asp */
1075 	bcmasp_enable_tx(intf, 1);
1076 
1077 	ret = bcmasp_init_rx(intf);
1078 	if (ret)
1079 		goto err_reclaim_tx;
1080 
1081 	bcmasp_enable_rx(intf, 1);
1082 
1083 	/* Turn on UniMAC TX/RX */
1084 	umac_enable_set(intf, (UMC_CMD_RX_EN | UMC_CMD_TX_EN), 1);
1085 
1086 	intf->crc_fwd = !!(umac_rl(intf, UMC_CMD) & UMC_CMD_CRC_FWD);
1087 
1088 	bcmasp_netif_start(dev);
1089 
1090 	netif_start_queue(dev);
1091 
1092 	return 0;
1093 
1094 err_reclaim_tx:
1095 	bcmasp_reclaim_free_all_tx(intf);
1096 err_phy_disconnect:
1097 	if (phydev)
1098 		phy_disconnect(phydev);
1099 err_phy_disable:
1100 	if (intf->internal_phy)
1101 		bcmasp_ephy_enable_set(intf, false);
1102 	else
1103 		bcmasp_rgmii_mode_en_set(intf, false);
1104 	return ret;
1105 }
1106 
1107 static int bcmasp_open(struct net_device *dev)
1108 {
1109 	struct bcmasp_intf *intf = netdev_priv(dev);
1110 	int ret;
1111 
1112 	netif_dbg(intf, ifup, dev, "bcmasp open\n");
1113 
1114 	ret = clk_prepare_enable(intf->parent->clk);
1115 	if (ret)
1116 		return ret;
1117 
1118 	ret = bcmasp_netif_init(dev, true);
1119 	if (ret)
1120 		clk_disable_unprepare(intf->parent->clk);
1121 
1122 	return ret;
1123 }
1124 
1125 static void bcmasp_tx_timeout(struct net_device *dev, unsigned int txqueue)
1126 {
1127 	struct bcmasp_intf *intf = netdev_priv(dev);
1128 
1129 	netif_dbg(intf, tx_err, dev, "transmit timeout!\n");
1130 	intf->mib.tx_timeout_cnt++;
1131 }
1132 
1133 static int bcmasp_get_phys_port_name(struct net_device *dev,
1134 				     char *name, size_t len)
1135 {
1136 	struct bcmasp_intf *intf = netdev_priv(dev);
1137 
1138 	if (snprintf(name, len, "p%d", intf->port) >= len)
1139 		return -EINVAL;
1140 
1141 	return 0;
1142 }
1143 
1144 static void bcmasp_get_stats64(struct net_device *dev,
1145 			       struct rtnl_link_stats64 *stats)
1146 {
1147 	struct bcmasp_intf *intf = netdev_priv(dev);
1148 	struct bcmasp_intf_stats64 *lstats;
1149 	unsigned int start;
1150 
1151 	lstats = &intf->stats64;
1152 
1153 	do {
1154 		start = u64_stats_fetch_begin(&lstats->syncp);
1155 		stats->rx_packets = u64_stats_read(&lstats->rx_packets);
1156 		stats->rx_bytes = u64_stats_read(&lstats->rx_bytes);
1157 		stats->rx_dropped = u64_stats_read(&lstats->rx_dropped);
1158 		stats->rx_crc_errors = u64_stats_read(&lstats->rx_crc_errs);
1159 		stats->rx_frame_errors = u64_stats_read(&lstats->rx_sym_errs);
1160 		stats->rx_errors = stats->rx_crc_errors + stats->rx_frame_errors;
1161 
1162 		stats->tx_packets = u64_stats_read(&lstats->tx_packets);
1163 		stats->tx_bytes = u64_stats_read(&lstats->tx_bytes);
1164 	} while (u64_stats_fetch_retry(&lstats->syncp, start));
1165 }
1166 
1167 static const struct net_device_ops bcmasp_netdev_ops = {
1168 	.ndo_open		= bcmasp_open,
1169 	.ndo_stop		= bcmasp_stop,
1170 	.ndo_start_xmit		= bcmasp_xmit,
1171 	.ndo_tx_timeout		= bcmasp_tx_timeout,
1172 	.ndo_set_rx_mode	= bcmasp_set_rx_mode,
1173 	.ndo_get_phys_port_name	= bcmasp_get_phys_port_name,
1174 	.ndo_eth_ioctl		= phy_do_ioctl_running,
1175 	.ndo_set_mac_address	= eth_mac_addr,
1176 	.ndo_get_stats64	= bcmasp_get_stats64,
1177 };
1178 
1179 static void bcmasp_map_res(struct bcmasp_priv *priv, struct bcmasp_intf *intf)
1180 {
1181 	/* Per port */
1182 	intf->res.umac = priv->base + UMC_OFFSET(intf);
1183 	intf->res.umac2fb = priv->base + (priv->hw_info->umac2fb +
1184 					  (intf->port * 0x4));
1185 	intf->res.rgmii = priv->base + RGMII_OFFSET(intf);
1186 
1187 	/* Per ch */
1188 	intf->tx_spb_dma = priv->base + TX_SPB_DMA_OFFSET(intf);
1189 	intf->res.tx_spb_ctrl = priv->base + TX_SPB_CTRL_OFFSET(intf);
1190 	intf->res.tx_spb_top = priv->base + TX_SPB_TOP_OFFSET(intf);
1191 	intf->res.tx_epkt_core = priv->base + TX_EPKT_C_OFFSET(intf);
1192 	intf->res.tx_pause_ctrl = priv->base + TX_PAUSE_CTRL_OFFSET(intf);
1193 
1194 	intf->rx_edpkt_dma = priv->base + RX_EDPKT_DMA_OFFSET(intf);
1195 	intf->rx_edpkt_cfg = priv->base + RX_EDPKT_CFG_OFFSET(intf);
1196 }
1197 
1198 #define MAX_IRQ_STR_LEN		64
1199 struct bcmasp_intf *bcmasp_interface_create(struct bcmasp_priv *priv,
1200 					    struct device_node *ndev_dn, int i)
1201 {
1202 	struct device *dev = &priv->pdev->dev;
1203 	struct bcmasp_intf *intf;
1204 	struct net_device *ndev;
1205 	int ch, port, ret;
1206 
1207 	if (of_property_read_u32(ndev_dn, "reg", &port)) {
1208 		dev_warn(dev, "%s: invalid port number\n", ndev_dn->name);
1209 		goto err;
1210 	}
1211 
1212 	if (of_property_read_u32(ndev_dn, "brcm,channel", &ch)) {
1213 		dev_warn(dev, "%s: invalid ch number\n", ndev_dn->name);
1214 		goto err;
1215 	}
1216 
1217 	ndev = alloc_etherdev(sizeof(struct bcmasp_intf));
1218 	if (!ndev) {
1219 		dev_warn(dev, "%s: unable to alloc ndev\n", ndev_dn->name);
1220 		goto err;
1221 	}
1222 	intf = netdev_priv(ndev);
1223 
1224 	intf->parent = priv;
1225 	intf->ndev = ndev;
1226 	intf->channel = ch;
1227 	intf->port = port;
1228 	intf->ndev_dn = ndev_dn;
1229 	intf->index = i;
1230 
1231 	ret = of_get_phy_mode(ndev_dn, &intf->phy_interface);
1232 	if (ret < 0) {
1233 		dev_err(dev, "invalid PHY mode property\n");
1234 		goto err_free_netdev;
1235 	}
1236 
1237 	if (intf->phy_interface == PHY_INTERFACE_MODE_INTERNAL)
1238 		intf->internal_phy = true;
1239 
1240 	intf->phy_dn = of_parse_phandle(ndev_dn, "phy-handle", 0);
1241 	if (!intf->phy_dn && of_phy_is_fixed_link(ndev_dn)) {
1242 		ret = of_phy_register_fixed_link(ndev_dn);
1243 		if (ret) {
1244 			dev_warn(dev, "%s: failed to register fixed PHY\n",
1245 				 ndev_dn->name);
1246 			goto err_free_netdev;
1247 		}
1248 		intf->phy_dn = ndev_dn;
1249 	}
1250 
1251 	/* Map resource */
1252 	bcmasp_map_res(priv, intf);
1253 
1254 	if ((!phy_interface_mode_is_rgmii(intf->phy_interface) &&
1255 	     intf->phy_interface != PHY_INTERFACE_MODE_MII &&
1256 	     intf->phy_interface != PHY_INTERFACE_MODE_INTERNAL) ||
1257 	    (intf->port != 1 && intf->internal_phy)) {
1258 		netdev_err(intf->ndev, "invalid PHY mode: %s for port %d\n",
1259 			   phy_modes(intf->phy_interface), intf->port);
1260 		ret = -EINVAL;
1261 		goto err_free_netdev;
1262 	}
1263 
1264 	ret = of_get_ethdev_address(ndev_dn, ndev);
1265 	if (ret) {
1266 		netdev_warn(ndev, "using random Ethernet MAC\n");
1267 		eth_hw_addr_random(ndev);
1268 	}
1269 
1270 	SET_NETDEV_DEV(ndev, dev);
1271 	intf->ops = &bcmasp_intf_ops;
1272 	ndev->netdev_ops = &bcmasp_netdev_ops;
1273 	ndev->ethtool_ops = &bcmasp_ethtool_ops;
1274 	intf->msg_enable = netif_msg_init(-1, NETIF_MSG_DRV |
1275 					  NETIF_MSG_PROBE |
1276 					  NETIF_MSG_LINK);
1277 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
1278 			  NETIF_F_RXCSUM;
1279 	ndev->hw_features |= ndev->features;
1280 	ndev->needed_headroom += sizeof(struct bcmasp_pkt_offload);
1281 
1282 	return intf;
1283 
1284 err_free_netdev:
1285 	free_netdev(ndev);
1286 err:
1287 	return NULL;
1288 }
1289 
1290 void bcmasp_interface_destroy(struct bcmasp_intf *intf)
1291 {
1292 	if (intf->ndev->reg_state == NETREG_REGISTERED)
1293 		unregister_netdev(intf->ndev);
1294 	if (of_phy_is_fixed_link(intf->ndev_dn))
1295 		of_phy_deregister_fixed_link(intf->ndev_dn);
1296 	free_netdev(intf->ndev);
1297 }
1298 
1299 static void bcmasp_suspend_to_wol(struct bcmasp_intf *intf)
1300 {
1301 	struct net_device *ndev = intf->ndev;
1302 	u32 reg;
1303 
1304 	reg = umac_rl(intf, UMC_MPD_CTRL);
1305 	if (intf->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE))
1306 		reg |= UMC_MPD_CTRL_MPD_EN;
1307 	reg &= ~UMC_MPD_CTRL_PSW_EN;
1308 	if (intf->wolopts & WAKE_MAGICSECURE) {
1309 		/* Program the SecureOn password */
1310 		umac_wl(intf, get_unaligned_be16(&intf->sopass[0]),
1311 			UMC_PSW_MS);
1312 		umac_wl(intf, get_unaligned_be32(&intf->sopass[2]),
1313 			UMC_PSW_LS);
1314 		reg |= UMC_MPD_CTRL_PSW_EN;
1315 	}
1316 	umac_wl(intf, reg, UMC_MPD_CTRL);
1317 
1318 	if (intf->wolopts & WAKE_FILTER)
1319 		bcmasp_netfilt_suspend(intf);
1320 
1321 	/* UniMAC receive needs to be turned on */
1322 	umac_enable_set(intf, UMC_CMD_RX_EN, 1);
1323 
1324 	if (intf->parent->wol_irq > 0) {
1325 		wakeup_intr2_core_wl(intf->parent, 0xffffffff,
1326 				     ASP_WAKEUP_INTR2_MASK_CLEAR);
1327 	}
1328 
1329 	netif_dbg(intf, wol, ndev, "entered WOL mode\n");
1330 }
1331 
1332 int bcmasp_interface_suspend(struct bcmasp_intf *intf)
1333 {
1334 	struct device *kdev = &intf->parent->pdev->dev;
1335 	struct net_device *dev = intf->ndev;
1336 	int ret = 0;
1337 
1338 	if (!netif_running(dev))
1339 		return 0;
1340 
1341 	netif_device_detach(dev);
1342 
1343 	bcmasp_netif_deinit(dev);
1344 
1345 	if (!intf->wolopts) {
1346 		ret = phy_suspend(dev->phydev);
1347 		if (ret)
1348 			goto out;
1349 
1350 		if (intf->internal_phy)
1351 			bcmasp_ephy_enable_set(intf, false);
1352 		else
1353 			bcmasp_rgmii_mode_en_set(intf, false);
1354 
1355 		/* If Wake-on-LAN is disabled, we can safely
1356 		 * disable the network interface clocks.
1357 		 */
1358 		bcmasp_core_clock_set_intf(intf, false);
1359 	}
1360 
1361 	if (device_may_wakeup(kdev) && intf->wolopts)
1362 		bcmasp_suspend_to_wol(intf);
1363 
1364 	clk_disable_unprepare(intf->parent->clk);
1365 
1366 	return ret;
1367 
1368 out:
1369 	bcmasp_netif_init(dev, false);
1370 	return ret;
1371 }
1372 
1373 static void bcmasp_resume_from_wol(struct bcmasp_intf *intf)
1374 {
1375 	u32 reg;
1376 
1377 	reg = umac_rl(intf, UMC_MPD_CTRL);
1378 	reg &= ~UMC_MPD_CTRL_MPD_EN;
1379 	umac_wl(intf, reg, UMC_MPD_CTRL);
1380 
1381 	if (intf->parent->wol_irq > 0) {
1382 		wakeup_intr2_core_wl(intf->parent, 0xffffffff,
1383 				     ASP_WAKEUP_INTR2_MASK_SET);
1384 	}
1385 }
1386 
1387 int bcmasp_interface_resume(struct bcmasp_intf *intf)
1388 {
1389 	struct net_device *dev = intf->ndev;
1390 	int ret;
1391 
1392 	if (!netif_running(dev))
1393 		return 0;
1394 
1395 	ret = clk_prepare_enable(intf->parent->clk);
1396 	if (ret)
1397 		return ret;
1398 
1399 	ret = bcmasp_netif_init(dev, false);
1400 	if (ret)
1401 		goto out;
1402 
1403 	bcmasp_resume_from_wol(intf);
1404 
1405 	if (intf->eee.eee_enabled)
1406 		bcmasp_eee_enable_set(intf, true);
1407 
1408 	netif_device_attach(dev);
1409 
1410 	return 0;
1411 
1412 out:
1413 	clk_disable_unprepare(intf->parent->clk);
1414 	return ret;
1415 }
1416