1 /* 2 * Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved. 3 * Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com> 4 * 5 * Derived from Intel e1000 driver 6 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the Free 10 * Software Foundation; either version 2 of the License, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program; if not, write to the Free Software Foundation, Inc., 59 20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 21 */ 22 23 #include <linux/atomic.h> 24 #include <linux/crc32.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/etherdevice.h> 27 #include <linux/ethtool.h> 28 #include <linux/hardirq.h> 29 #include <linux/if_vlan.h> 30 #include <linux/in.h> 31 #include <linux/interrupt.h> 32 #include <linux/ip.h> 33 #include <linux/irqflags.h> 34 #include <linux/irqreturn.h> 35 #include <linux/mii.h> 36 #include <linux/net.h> 37 #include <linux/netdevice.h> 38 #include <linux/pci.h> 39 #include <linux/pci_ids.h> 40 #include <linux/pm.h> 41 #include <linux/skbuff.h> 42 #include <linux/slab.h> 43 #include <linux/spinlock.h> 44 #include <linux/string.h> 45 #include <linux/tcp.h> 46 #include <linux/timer.h> 47 #include <linux/types.h> 48 #include <linux/workqueue.h> 49 50 #include "atl2.h" 51 52 #define ATL2_DRV_VERSION "2.2.3" 53 54 static const char atl2_driver_name[] = "atl2"; 55 static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver"; 56 static const char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation."; 57 static const char atl2_driver_version[] = ATL2_DRV_VERSION; 58 static const struct ethtool_ops atl2_ethtool_ops; 59 60 MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>"); 61 MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver"); 62 MODULE_LICENSE("GPL"); 63 MODULE_VERSION(ATL2_DRV_VERSION); 64 65 /* 66 * atl2_pci_tbl - PCI Device ID Table 67 */ 68 static const struct pci_device_id atl2_pci_tbl[] = { 69 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)}, 70 /* required last entry */ 71 {0,} 72 }; 73 MODULE_DEVICE_TABLE(pci, atl2_pci_tbl); 74 75 static void atl2_check_options(struct atl2_adapter *adapter); 76 77 /** 78 * atl2_sw_init - Initialize general software structures (struct atl2_adapter) 79 * @adapter: board private structure to initialize 80 * 81 * atl2_sw_init initializes the Adapter private data structure. 82 * Fields are initialized based on PCI device information and 83 * OS network device settings (MTU size). 84 */ 85 static int atl2_sw_init(struct atl2_adapter *adapter) 86 { 87 struct atl2_hw *hw = &adapter->hw; 88 struct pci_dev *pdev = adapter->pdev; 89 90 /* PCI config space info */ 91 hw->vendor_id = pdev->vendor; 92 hw->device_id = pdev->device; 93 hw->subsystem_vendor_id = pdev->subsystem_vendor; 94 hw->subsystem_id = pdev->subsystem_device; 95 hw->revision_id = pdev->revision; 96 97 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 98 99 adapter->wol = 0; 100 adapter->ict = 50000; /* ~100ms */ 101 adapter->link_speed = SPEED_0; /* hardware init */ 102 adapter->link_duplex = FULL_DUPLEX; 103 104 hw->phy_configured = false; 105 hw->preamble_len = 7; 106 hw->ipgt = 0x60; 107 hw->min_ifg = 0x50; 108 hw->ipgr1 = 0x40; 109 hw->ipgr2 = 0x60; 110 hw->retry_buf = 2; 111 hw->max_retry = 0xf; 112 hw->lcol = 0x37; 113 hw->jam_ipg = 7; 114 hw->fc_rxd_hi = 0; 115 hw->fc_rxd_lo = 0; 116 hw->max_frame_size = adapter->netdev->mtu; 117 118 spin_lock_init(&adapter->stats_lock); 119 120 set_bit(__ATL2_DOWN, &adapter->flags); 121 122 return 0; 123 } 124 125 /** 126 * atl2_set_multi - Multicast and Promiscuous mode set 127 * @netdev: network interface device structure 128 * 129 * The set_multi entry point is called whenever the multicast address 130 * list or the network interface flags are updated. This routine is 131 * responsible for configuring the hardware for proper multicast, 132 * promiscuous mode, and all-multi behavior. 133 */ 134 static void atl2_set_multi(struct net_device *netdev) 135 { 136 struct atl2_adapter *adapter = netdev_priv(netdev); 137 struct atl2_hw *hw = &adapter->hw; 138 struct netdev_hw_addr *ha; 139 u32 rctl; 140 u32 hash_value; 141 142 /* Check for Promiscuous and All Multicast modes */ 143 rctl = ATL2_READ_REG(hw, REG_MAC_CTRL); 144 145 if (netdev->flags & IFF_PROMISC) { 146 rctl |= MAC_CTRL_PROMIS_EN; 147 } else if (netdev->flags & IFF_ALLMULTI) { 148 rctl |= MAC_CTRL_MC_ALL_EN; 149 rctl &= ~MAC_CTRL_PROMIS_EN; 150 } else 151 rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN); 152 153 ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl); 154 155 /* clear the old settings from the multicast hash table */ 156 ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); 157 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); 158 159 /* comoute mc addresses' hash value ,and put it into hash table */ 160 netdev_for_each_mc_addr(ha, netdev) { 161 hash_value = atl2_hash_mc_addr(hw, ha->addr); 162 atl2_hash_set(hw, hash_value); 163 } 164 } 165 166 static void init_ring_ptrs(struct atl2_adapter *adapter) 167 { 168 /* Read / Write Ptr Initialize: */ 169 adapter->txd_write_ptr = 0; 170 atomic_set(&adapter->txd_read_ptr, 0); 171 172 adapter->rxd_read_ptr = 0; 173 adapter->rxd_write_ptr = 0; 174 175 atomic_set(&adapter->txs_write_ptr, 0); 176 adapter->txs_next_clear = 0; 177 } 178 179 /** 180 * atl2_configure - Configure Transmit&Receive Unit after Reset 181 * @adapter: board private structure 182 * 183 * Configure the Tx /Rx unit of the MAC after a reset. 184 */ 185 static int atl2_configure(struct atl2_adapter *adapter) 186 { 187 struct atl2_hw *hw = &adapter->hw; 188 u32 value; 189 190 /* clear interrupt status */ 191 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff); 192 193 /* set MAC Address */ 194 value = (((u32)hw->mac_addr[2]) << 24) | 195 (((u32)hw->mac_addr[3]) << 16) | 196 (((u32)hw->mac_addr[4]) << 8) | 197 (((u32)hw->mac_addr[5])); 198 ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value); 199 value = (((u32)hw->mac_addr[0]) << 8) | 200 (((u32)hw->mac_addr[1])); 201 ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value); 202 203 /* HI base address */ 204 ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI, 205 (u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32)); 206 207 /* LO base address */ 208 ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO, 209 (u32)(adapter->txd_dma & 0x00000000ffffffffULL)); 210 ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO, 211 (u32)(adapter->txs_dma & 0x00000000ffffffffULL)); 212 ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO, 213 (u32)(adapter->rxd_dma & 0x00000000ffffffffULL)); 214 215 /* element count */ 216 ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4)); 217 ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size); 218 ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM, (u16)adapter->rxd_ring_size); 219 220 /* config Internal SRAM */ 221 /* 222 ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end); 223 ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end); 224 */ 225 226 /* config IPG/IFG */ 227 value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) << 228 MAC_IPG_IFG_IPGT_SHIFT) | 229 (((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) << 230 MAC_IPG_IFG_MIFG_SHIFT) | 231 (((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) << 232 MAC_IPG_IFG_IPGR1_SHIFT)| 233 (((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) << 234 MAC_IPG_IFG_IPGR2_SHIFT); 235 ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value); 236 237 /* config Half-Duplex Control */ 238 value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) | 239 (((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) << 240 MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) | 241 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN | 242 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) | 243 (((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) << 244 MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT); 245 ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value); 246 247 /* set Interrupt Moderator Timer */ 248 ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt); 249 ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN); 250 251 /* set Interrupt Clear Timer */ 252 ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict); 253 254 /* set MTU */ 255 ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu + 256 ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); 257 258 /* 1590 */ 259 ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177); 260 261 /* flow control */ 262 ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi); 263 ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo); 264 265 /* Init mailbox */ 266 ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr); 267 ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr); 268 269 /* enable DMA read/write */ 270 ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN); 271 ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN); 272 273 value = ATL2_READ_REG(&adapter->hw, REG_ISR); 274 if ((value & ISR_PHY_LINKDOWN) != 0) 275 value = 1; /* config failed */ 276 else 277 value = 0; 278 279 /* clear all interrupt status */ 280 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff); 281 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0); 282 return value; 283 } 284 285 /** 286 * atl2_setup_ring_resources - allocate Tx / RX descriptor resources 287 * @adapter: board private structure 288 * 289 * Return 0 on success, negative on failure 290 */ 291 static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter) 292 { 293 struct pci_dev *pdev = adapter->pdev; 294 int size; 295 u8 offset = 0; 296 297 /* real ring DMA buffer */ 298 adapter->ring_size = size = 299 adapter->txd_ring_size * 1 + 7 + /* dword align */ 300 adapter->txs_ring_size * 4 + 7 + /* dword align */ 301 adapter->rxd_ring_size * 1536 + 127; /* 128bytes align */ 302 303 adapter->ring_vir_addr = pci_alloc_consistent(pdev, size, 304 &adapter->ring_dma); 305 if (!adapter->ring_vir_addr) 306 return -ENOMEM; 307 memset(adapter->ring_vir_addr, 0, adapter->ring_size); 308 309 /* Init TXD Ring */ 310 adapter->txd_dma = adapter->ring_dma ; 311 offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0; 312 adapter->txd_dma += offset; 313 adapter->txd_ring = adapter->ring_vir_addr + offset; 314 315 /* Init TXS Ring */ 316 adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size; 317 offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0; 318 adapter->txs_dma += offset; 319 adapter->txs_ring = (struct tx_pkt_status *) 320 (((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset)); 321 322 /* Init RXD Ring */ 323 adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4; 324 offset = (adapter->rxd_dma & 127) ? 325 (128 - (adapter->rxd_dma & 127)) : 0; 326 if (offset > 7) 327 offset -= 8; 328 else 329 offset += (128 - 8); 330 331 adapter->rxd_dma += offset; 332 adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) + 333 (adapter->txs_ring_size * 4 + offset)); 334 335 /* 336 * Read / Write Ptr Initialize: 337 * init_ring_ptrs(adapter); 338 */ 339 return 0; 340 } 341 342 /** 343 * atl2_irq_enable - Enable default interrupt generation settings 344 * @adapter: board private structure 345 */ 346 static inline void atl2_irq_enable(struct atl2_adapter *adapter) 347 { 348 ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK); 349 ATL2_WRITE_FLUSH(&adapter->hw); 350 } 351 352 /** 353 * atl2_irq_disable - Mask off interrupt generation on the NIC 354 * @adapter: board private structure 355 */ 356 static inline void atl2_irq_disable(struct atl2_adapter *adapter) 357 { 358 ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0); 359 ATL2_WRITE_FLUSH(&adapter->hw); 360 synchronize_irq(adapter->pdev->irq); 361 } 362 363 static void __atl2_vlan_mode(netdev_features_t features, u32 *ctrl) 364 { 365 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 366 /* enable VLAN tag insert/strip */ 367 *ctrl |= MAC_CTRL_RMV_VLAN; 368 } else { 369 /* disable VLAN tag insert/strip */ 370 *ctrl &= ~MAC_CTRL_RMV_VLAN; 371 } 372 } 373 374 static void atl2_vlan_mode(struct net_device *netdev, 375 netdev_features_t features) 376 { 377 struct atl2_adapter *adapter = netdev_priv(netdev); 378 u32 ctrl; 379 380 atl2_irq_disable(adapter); 381 382 ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL); 383 __atl2_vlan_mode(features, &ctrl); 384 ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl); 385 386 atl2_irq_enable(adapter); 387 } 388 389 static void atl2_restore_vlan(struct atl2_adapter *adapter) 390 { 391 atl2_vlan_mode(adapter->netdev, adapter->netdev->features); 392 } 393 394 static netdev_features_t atl2_fix_features(struct net_device *netdev, 395 netdev_features_t features) 396 { 397 /* 398 * Since there is no support for separate rx/tx vlan accel 399 * enable/disable make sure tx flag is always in same state as rx. 400 */ 401 if (features & NETIF_F_HW_VLAN_CTAG_RX) 402 features |= NETIF_F_HW_VLAN_CTAG_TX; 403 else 404 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 405 406 return features; 407 } 408 409 static int atl2_set_features(struct net_device *netdev, 410 netdev_features_t features) 411 { 412 netdev_features_t changed = netdev->features ^ features; 413 414 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 415 atl2_vlan_mode(netdev, features); 416 417 return 0; 418 } 419 420 static void atl2_intr_rx(struct atl2_adapter *adapter) 421 { 422 struct net_device *netdev = adapter->netdev; 423 struct rx_desc *rxd; 424 struct sk_buff *skb; 425 426 do { 427 rxd = adapter->rxd_ring+adapter->rxd_write_ptr; 428 if (!rxd->status.update) 429 break; /* end of tx */ 430 431 /* clear this flag at once */ 432 rxd->status.update = 0; 433 434 if (rxd->status.ok && rxd->status.pkt_size >= 60) { 435 int rx_size = (int)(rxd->status.pkt_size - 4); 436 /* alloc new buffer */ 437 skb = netdev_alloc_skb_ip_align(netdev, rx_size); 438 if (NULL == skb) { 439 /* 440 * Check that some rx space is free. If not, 441 * free one and mark stats->rx_dropped++. 442 */ 443 netdev->stats.rx_dropped++; 444 break; 445 } 446 memcpy(skb->data, rxd->packet, rx_size); 447 skb_put(skb, rx_size); 448 skb->protocol = eth_type_trans(skb, netdev); 449 if (rxd->status.vlan) { 450 u16 vlan_tag = (rxd->status.vtag>>4) | 451 ((rxd->status.vtag&7) << 13) | 452 ((rxd->status.vtag&8) << 9); 453 454 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 455 } 456 netif_rx(skb); 457 netdev->stats.rx_bytes += rx_size; 458 netdev->stats.rx_packets++; 459 } else { 460 netdev->stats.rx_errors++; 461 462 if (rxd->status.ok && rxd->status.pkt_size <= 60) 463 netdev->stats.rx_length_errors++; 464 if (rxd->status.mcast) 465 netdev->stats.multicast++; 466 if (rxd->status.crc) 467 netdev->stats.rx_crc_errors++; 468 if (rxd->status.align) 469 netdev->stats.rx_frame_errors++; 470 } 471 472 /* advance write ptr */ 473 if (++adapter->rxd_write_ptr == adapter->rxd_ring_size) 474 adapter->rxd_write_ptr = 0; 475 } while (1); 476 477 /* update mailbox? */ 478 adapter->rxd_read_ptr = adapter->rxd_write_ptr; 479 ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr); 480 } 481 482 static void atl2_intr_tx(struct atl2_adapter *adapter) 483 { 484 struct net_device *netdev = adapter->netdev; 485 u32 txd_read_ptr; 486 u32 txs_write_ptr; 487 struct tx_pkt_status *txs; 488 struct tx_pkt_header *txph; 489 int free_hole = 0; 490 491 do { 492 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr); 493 txs = adapter->txs_ring + txs_write_ptr; 494 if (!txs->update) 495 break; /* tx stop here */ 496 497 free_hole = 1; 498 txs->update = 0; 499 500 if (++txs_write_ptr == adapter->txs_ring_size) 501 txs_write_ptr = 0; 502 atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr); 503 504 txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr); 505 txph = (struct tx_pkt_header *) 506 (((u8 *)adapter->txd_ring) + txd_read_ptr); 507 508 if (txph->pkt_size != txs->pkt_size) { 509 struct tx_pkt_status *old_txs = txs; 510 printk(KERN_WARNING 511 "%s: txs packet size not consistent with txd" 512 " txd_:0x%08x, txs_:0x%08x!\n", 513 adapter->netdev->name, 514 *(u32 *)txph, *(u32 *)txs); 515 printk(KERN_WARNING 516 "txd read ptr: 0x%x\n", 517 txd_read_ptr); 518 txs = adapter->txs_ring + txs_write_ptr; 519 printk(KERN_WARNING 520 "txs-behind:0x%08x\n", 521 *(u32 *)txs); 522 if (txs_write_ptr < 2) { 523 txs = adapter->txs_ring + 524 (adapter->txs_ring_size + 525 txs_write_ptr - 2); 526 } else { 527 txs = adapter->txs_ring + (txs_write_ptr - 2); 528 } 529 printk(KERN_WARNING 530 "txs-before:0x%08x\n", 531 *(u32 *)txs); 532 txs = old_txs; 533 } 534 535 /* 4for TPH */ 536 txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3); 537 if (txd_read_ptr >= adapter->txd_ring_size) 538 txd_read_ptr -= adapter->txd_ring_size; 539 540 atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr); 541 542 /* tx statistics: */ 543 if (txs->ok) { 544 netdev->stats.tx_bytes += txs->pkt_size; 545 netdev->stats.tx_packets++; 546 } 547 else 548 netdev->stats.tx_errors++; 549 550 if (txs->defer) 551 netdev->stats.collisions++; 552 if (txs->abort_col) 553 netdev->stats.tx_aborted_errors++; 554 if (txs->late_col) 555 netdev->stats.tx_window_errors++; 556 if (txs->underrun) 557 netdev->stats.tx_fifo_errors++; 558 } while (1); 559 560 if (free_hole) { 561 if (netif_queue_stopped(adapter->netdev) && 562 netif_carrier_ok(adapter->netdev)) 563 netif_wake_queue(adapter->netdev); 564 } 565 } 566 567 static void atl2_check_for_link(struct atl2_adapter *adapter) 568 { 569 struct net_device *netdev = adapter->netdev; 570 u16 phy_data = 0; 571 572 spin_lock(&adapter->stats_lock); 573 atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); 574 atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); 575 spin_unlock(&adapter->stats_lock); 576 577 /* notify upper layer link down ASAP */ 578 if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */ 579 if (netif_carrier_ok(netdev)) { /* old link state: Up */ 580 printk(KERN_INFO "%s: %s NIC Link is Down\n", 581 atl2_driver_name, netdev->name); 582 adapter->link_speed = SPEED_0; 583 netif_carrier_off(netdev); 584 netif_stop_queue(netdev); 585 } 586 } 587 schedule_work(&adapter->link_chg_task); 588 } 589 590 static inline void atl2_clear_phy_int(struct atl2_adapter *adapter) 591 { 592 u16 phy_data; 593 spin_lock(&adapter->stats_lock); 594 atl2_read_phy_reg(&adapter->hw, 19, &phy_data); 595 spin_unlock(&adapter->stats_lock); 596 } 597 598 /** 599 * atl2_intr - Interrupt Handler 600 * @irq: interrupt number 601 * @data: pointer to a network interface device structure 602 */ 603 static irqreturn_t atl2_intr(int irq, void *data) 604 { 605 struct atl2_adapter *adapter = netdev_priv(data); 606 struct atl2_hw *hw = &adapter->hw; 607 u32 status; 608 609 status = ATL2_READ_REG(hw, REG_ISR); 610 if (0 == status) 611 return IRQ_NONE; 612 613 /* link event */ 614 if (status & ISR_PHY) 615 atl2_clear_phy_int(adapter); 616 617 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */ 618 ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT); 619 620 /* check if PCIE PHY Link down */ 621 if (status & ISR_PHY_LINKDOWN) { 622 if (netif_running(adapter->netdev)) { /* reset MAC */ 623 ATL2_WRITE_REG(hw, REG_ISR, 0); 624 ATL2_WRITE_REG(hw, REG_IMR, 0); 625 ATL2_WRITE_FLUSH(hw); 626 schedule_work(&adapter->reset_task); 627 return IRQ_HANDLED; 628 } 629 } 630 631 /* check if DMA read/write error? */ 632 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) { 633 ATL2_WRITE_REG(hw, REG_ISR, 0); 634 ATL2_WRITE_REG(hw, REG_IMR, 0); 635 ATL2_WRITE_FLUSH(hw); 636 schedule_work(&adapter->reset_task); 637 return IRQ_HANDLED; 638 } 639 640 /* link event */ 641 if (status & (ISR_PHY | ISR_MANUAL)) { 642 adapter->netdev->stats.tx_carrier_errors++; 643 atl2_check_for_link(adapter); 644 } 645 646 /* transmit event */ 647 if (status & ISR_TX_EVENT) 648 atl2_intr_tx(adapter); 649 650 /* rx exception */ 651 if (status & ISR_RX_EVENT) 652 atl2_intr_rx(adapter); 653 654 /* re-enable Interrupt */ 655 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0); 656 return IRQ_HANDLED; 657 } 658 659 static int atl2_request_irq(struct atl2_adapter *adapter) 660 { 661 struct net_device *netdev = adapter->netdev; 662 int flags, err = 0; 663 664 flags = IRQF_SHARED; 665 adapter->have_msi = true; 666 err = pci_enable_msi(adapter->pdev); 667 if (err) 668 adapter->have_msi = false; 669 670 if (adapter->have_msi) 671 flags &= ~IRQF_SHARED; 672 673 return request_irq(adapter->pdev->irq, atl2_intr, flags, netdev->name, 674 netdev); 675 } 676 677 /** 678 * atl2_free_ring_resources - Free Tx / RX descriptor Resources 679 * @adapter: board private structure 680 * 681 * Free all transmit software resources 682 */ 683 static void atl2_free_ring_resources(struct atl2_adapter *adapter) 684 { 685 struct pci_dev *pdev = adapter->pdev; 686 pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr, 687 adapter->ring_dma); 688 } 689 690 /** 691 * atl2_open - Called when a network interface is made active 692 * @netdev: network interface device structure 693 * 694 * Returns 0 on success, negative value on failure 695 * 696 * The open entry point is called when a network interface is made 697 * active by the system (IFF_UP). At this point all resources needed 698 * for transmit and receive operations are allocated, the interrupt 699 * handler is registered with the OS, the watchdog timer is started, 700 * and the stack is notified that the interface is ready. 701 */ 702 static int atl2_open(struct net_device *netdev) 703 { 704 struct atl2_adapter *adapter = netdev_priv(netdev); 705 int err; 706 u32 val; 707 708 /* disallow open during test */ 709 if (test_bit(__ATL2_TESTING, &adapter->flags)) 710 return -EBUSY; 711 712 /* allocate transmit descriptors */ 713 err = atl2_setup_ring_resources(adapter); 714 if (err) 715 return err; 716 717 err = atl2_init_hw(&adapter->hw); 718 if (err) { 719 err = -EIO; 720 goto err_init_hw; 721 } 722 723 /* hardware has been reset, we need to reload some things */ 724 atl2_set_multi(netdev); 725 init_ring_ptrs(adapter); 726 727 atl2_restore_vlan(adapter); 728 729 if (atl2_configure(adapter)) { 730 err = -EIO; 731 goto err_config; 732 } 733 734 err = atl2_request_irq(adapter); 735 if (err) 736 goto err_req_irq; 737 738 clear_bit(__ATL2_DOWN, &adapter->flags); 739 740 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ)); 741 742 val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL); 743 ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, 744 val | MASTER_CTRL_MANUAL_INT); 745 746 atl2_irq_enable(adapter); 747 748 return 0; 749 750 err_init_hw: 751 err_req_irq: 752 err_config: 753 atl2_free_ring_resources(adapter); 754 atl2_reset_hw(&adapter->hw); 755 756 return err; 757 } 758 759 static void atl2_down(struct atl2_adapter *adapter) 760 { 761 struct net_device *netdev = adapter->netdev; 762 763 /* signal that we're down so the interrupt handler does not 764 * reschedule our watchdog timer */ 765 set_bit(__ATL2_DOWN, &adapter->flags); 766 767 netif_tx_disable(netdev); 768 769 /* reset MAC to disable all RX/TX */ 770 atl2_reset_hw(&adapter->hw); 771 msleep(1); 772 773 atl2_irq_disable(adapter); 774 775 del_timer_sync(&adapter->watchdog_timer); 776 del_timer_sync(&adapter->phy_config_timer); 777 clear_bit(0, &adapter->cfg_phy); 778 779 netif_carrier_off(netdev); 780 adapter->link_speed = SPEED_0; 781 adapter->link_duplex = -1; 782 } 783 784 static void atl2_free_irq(struct atl2_adapter *adapter) 785 { 786 struct net_device *netdev = adapter->netdev; 787 788 free_irq(adapter->pdev->irq, netdev); 789 790 #ifdef CONFIG_PCI_MSI 791 if (adapter->have_msi) 792 pci_disable_msi(adapter->pdev); 793 #endif 794 } 795 796 /** 797 * atl2_close - Disables a network interface 798 * @netdev: network interface device structure 799 * 800 * Returns 0, this is not allowed to fail 801 * 802 * The close entry point is called when an interface is de-activated 803 * by the OS. The hardware is still under the drivers control, but 804 * needs to be disabled. A global MAC reset is issued to stop the 805 * hardware, and all transmit and receive resources are freed. 806 */ 807 static int atl2_close(struct net_device *netdev) 808 { 809 struct atl2_adapter *adapter = netdev_priv(netdev); 810 811 WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags)); 812 813 atl2_down(adapter); 814 atl2_free_irq(adapter); 815 atl2_free_ring_resources(adapter); 816 817 return 0; 818 } 819 820 static inline int TxsFreeUnit(struct atl2_adapter *adapter) 821 { 822 u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr); 823 824 return (adapter->txs_next_clear >= txs_write_ptr) ? 825 (int) (adapter->txs_ring_size - adapter->txs_next_clear + 826 txs_write_ptr - 1) : 827 (int) (txs_write_ptr - adapter->txs_next_clear - 1); 828 } 829 830 static inline int TxdFreeBytes(struct atl2_adapter *adapter) 831 { 832 u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr); 833 834 return (adapter->txd_write_ptr >= txd_read_ptr) ? 835 (int) (adapter->txd_ring_size - adapter->txd_write_ptr + 836 txd_read_ptr - 1) : 837 (int) (txd_read_ptr - adapter->txd_write_ptr - 1); 838 } 839 840 static netdev_tx_t atl2_xmit_frame(struct sk_buff *skb, 841 struct net_device *netdev) 842 { 843 struct atl2_adapter *adapter = netdev_priv(netdev); 844 struct tx_pkt_header *txph; 845 u32 offset, copy_len; 846 int txs_unused; 847 int txbuf_unused; 848 849 if (test_bit(__ATL2_DOWN, &adapter->flags)) { 850 dev_kfree_skb_any(skb); 851 return NETDEV_TX_OK; 852 } 853 854 if (unlikely(skb->len <= 0)) { 855 dev_kfree_skb_any(skb); 856 return NETDEV_TX_OK; 857 } 858 859 txs_unused = TxsFreeUnit(adapter); 860 txbuf_unused = TxdFreeBytes(adapter); 861 862 if (skb->len + sizeof(struct tx_pkt_header) + 4 > txbuf_unused || 863 txs_unused < 1) { 864 /* not enough resources */ 865 netif_stop_queue(netdev); 866 return NETDEV_TX_BUSY; 867 } 868 869 offset = adapter->txd_write_ptr; 870 871 txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset); 872 873 *(u32 *)txph = 0; 874 txph->pkt_size = skb->len; 875 876 offset += 4; 877 if (offset >= adapter->txd_ring_size) 878 offset -= adapter->txd_ring_size; 879 copy_len = adapter->txd_ring_size - offset; 880 if (copy_len >= skb->len) { 881 memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len); 882 offset += ((u32)(skb->len + 3) & ~3); 883 } else { 884 memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len); 885 memcpy((u8 *)adapter->txd_ring, skb->data+copy_len, 886 skb->len-copy_len); 887 offset = ((u32)(skb->len-copy_len + 3) & ~3); 888 } 889 #ifdef NETIF_F_HW_VLAN_CTAG_TX 890 if (skb_vlan_tag_present(skb)) { 891 u16 vlan_tag = skb_vlan_tag_get(skb); 892 vlan_tag = (vlan_tag << 4) | 893 (vlan_tag >> 13) | 894 ((vlan_tag >> 9) & 0x8); 895 txph->ins_vlan = 1; 896 txph->vlan = vlan_tag; 897 } 898 #endif 899 if (offset >= adapter->txd_ring_size) 900 offset -= adapter->txd_ring_size; 901 adapter->txd_write_ptr = offset; 902 903 /* clear txs before send */ 904 adapter->txs_ring[adapter->txs_next_clear].update = 0; 905 if (++adapter->txs_next_clear == adapter->txs_ring_size) 906 adapter->txs_next_clear = 0; 907 908 ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX, 909 (adapter->txd_write_ptr >> 2)); 910 911 mmiowb(); 912 dev_consume_skb_any(skb); 913 return NETDEV_TX_OK; 914 } 915 916 /** 917 * atl2_change_mtu - Change the Maximum Transfer Unit 918 * @netdev: network interface device structure 919 * @new_mtu: new value for maximum frame size 920 * 921 * Returns 0 on success, negative on failure 922 */ 923 static int atl2_change_mtu(struct net_device *netdev, int new_mtu) 924 { 925 struct atl2_adapter *adapter = netdev_priv(netdev); 926 struct atl2_hw *hw = &adapter->hw; 927 928 /* set MTU */ 929 netdev->mtu = new_mtu; 930 hw->max_frame_size = new_mtu; 931 ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ETH_HLEN + 932 VLAN_HLEN + ETH_FCS_LEN); 933 934 return 0; 935 } 936 937 /** 938 * atl2_set_mac - Change the Ethernet Address of the NIC 939 * @netdev: network interface device structure 940 * @p: pointer to an address structure 941 * 942 * Returns 0 on success, negative on failure 943 */ 944 static int atl2_set_mac(struct net_device *netdev, void *p) 945 { 946 struct atl2_adapter *adapter = netdev_priv(netdev); 947 struct sockaddr *addr = p; 948 949 if (!is_valid_ether_addr(addr->sa_data)) 950 return -EADDRNOTAVAIL; 951 952 if (netif_running(netdev)) 953 return -EBUSY; 954 955 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 956 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); 957 958 atl2_set_mac_addr(&adapter->hw); 959 960 return 0; 961 } 962 963 static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 964 { 965 struct atl2_adapter *adapter = netdev_priv(netdev); 966 struct mii_ioctl_data *data = if_mii(ifr); 967 unsigned long flags; 968 969 switch (cmd) { 970 case SIOCGMIIPHY: 971 data->phy_id = 0; 972 break; 973 case SIOCGMIIREG: 974 spin_lock_irqsave(&adapter->stats_lock, flags); 975 if (atl2_read_phy_reg(&adapter->hw, 976 data->reg_num & 0x1F, &data->val_out)) { 977 spin_unlock_irqrestore(&adapter->stats_lock, flags); 978 return -EIO; 979 } 980 spin_unlock_irqrestore(&adapter->stats_lock, flags); 981 break; 982 case SIOCSMIIREG: 983 if (data->reg_num & ~(0x1F)) 984 return -EFAULT; 985 spin_lock_irqsave(&adapter->stats_lock, flags); 986 if (atl2_write_phy_reg(&adapter->hw, data->reg_num, 987 data->val_in)) { 988 spin_unlock_irqrestore(&adapter->stats_lock, flags); 989 return -EIO; 990 } 991 spin_unlock_irqrestore(&adapter->stats_lock, flags); 992 break; 993 default: 994 return -EOPNOTSUPP; 995 } 996 return 0; 997 } 998 999 static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1000 { 1001 switch (cmd) { 1002 case SIOCGMIIPHY: 1003 case SIOCGMIIREG: 1004 case SIOCSMIIREG: 1005 return atl2_mii_ioctl(netdev, ifr, cmd); 1006 #ifdef ETHTOOL_OPS_COMPAT 1007 case SIOCETHTOOL: 1008 return ethtool_ioctl(ifr); 1009 #endif 1010 default: 1011 return -EOPNOTSUPP; 1012 } 1013 } 1014 1015 /** 1016 * atl2_tx_timeout - Respond to a Tx Hang 1017 * @netdev: network interface device structure 1018 */ 1019 static void atl2_tx_timeout(struct net_device *netdev) 1020 { 1021 struct atl2_adapter *adapter = netdev_priv(netdev); 1022 1023 /* Do the reset outside of interrupt context */ 1024 schedule_work(&adapter->reset_task); 1025 } 1026 1027 /** 1028 * atl2_watchdog - Timer Call-back 1029 * @data: pointer to netdev cast into an unsigned long 1030 */ 1031 static void atl2_watchdog(struct timer_list *t) 1032 { 1033 struct atl2_adapter *adapter = from_timer(adapter, t, watchdog_timer); 1034 1035 if (!test_bit(__ATL2_DOWN, &adapter->flags)) { 1036 u32 drop_rxd, drop_rxs; 1037 unsigned long flags; 1038 1039 spin_lock_irqsave(&adapter->stats_lock, flags); 1040 drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV); 1041 drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV); 1042 spin_unlock_irqrestore(&adapter->stats_lock, flags); 1043 1044 adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs; 1045 1046 /* Reset the timer */ 1047 mod_timer(&adapter->watchdog_timer, 1048 round_jiffies(jiffies + 4 * HZ)); 1049 } 1050 } 1051 1052 /** 1053 * atl2_phy_config - Timer Call-back 1054 * @data: pointer to netdev cast into an unsigned long 1055 */ 1056 static void atl2_phy_config(struct timer_list *t) 1057 { 1058 struct atl2_adapter *adapter = from_timer(adapter, t, 1059 phy_config_timer); 1060 struct atl2_hw *hw = &adapter->hw; 1061 unsigned long flags; 1062 1063 spin_lock_irqsave(&adapter->stats_lock, flags); 1064 atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); 1065 atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN | 1066 MII_CR_RESTART_AUTO_NEG); 1067 spin_unlock_irqrestore(&adapter->stats_lock, flags); 1068 clear_bit(0, &adapter->cfg_phy); 1069 } 1070 1071 static int atl2_up(struct atl2_adapter *adapter) 1072 { 1073 struct net_device *netdev = adapter->netdev; 1074 int err = 0; 1075 u32 val; 1076 1077 /* hardware has been reset, we need to reload some things */ 1078 1079 err = atl2_init_hw(&adapter->hw); 1080 if (err) { 1081 err = -EIO; 1082 return err; 1083 } 1084 1085 atl2_set_multi(netdev); 1086 init_ring_ptrs(adapter); 1087 1088 atl2_restore_vlan(adapter); 1089 1090 if (atl2_configure(adapter)) { 1091 err = -EIO; 1092 goto err_up; 1093 } 1094 1095 clear_bit(__ATL2_DOWN, &adapter->flags); 1096 1097 val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL); 1098 ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val | 1099 MASTER_CTRL_MANUAL_INT); 1100 1101 atl2_irq_enable(adapter); 1102 1103 err_up: 1104 return err; 1105 } 1106 1107 static void atl2_reinit_locked(struct atl2_adapter *adapter) 1108 { 1109 WARN_ON(in_interrupt()); 1110 while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags)) 1111 msleep(1); 1112 atl2_down(adapter); 1113 atl2_up(adapter); 1114 clear_bit(__ATL2_RESETTING, &adapter->flags); 1115 } 1116 1117 static void atl2_reset_task(struct work_struct *work) 1118 { 1119 struct atl2_adapter *adapter; 1120 adapter = container_of(work, struct atl2_adapter, reset_task); 1121 1122 atl2_reinit_locked(adapter); 1123 } 1124 1125 static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter) 1126 { 1127 u32 value; 1128 struct atl2_hw *hw = &adapter->hw; 1129 struct net_device *netdev = adapter->netdev; 1130 1131 /* Config MAC CTRL Register */ 1132 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY; 1133 1134 /* duplex */ 1135 if (FULL_DUPLEX == adapter->link_duplex) 1136 value |= MAC_CTRL_DUPLX; 1137 1138 /* flow control */ 1139 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW); 1140 1141 /* PAD & CRC */ 1142 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); 1143 1144 /* preamble length */ 1145 value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) << 1146 MAC_CTRL_PRMLEN_SHIFT); 1147 1148 /* vlan */ 1149 __atl2_vlan_mode(netdev->features, &value); 1150 1151 /* filter mode */ 1152 value |= MAC_CTRL_BC_EN; 1153 if (netdev->flags & IFF_PROMISC) 1154 value |= MAC_CTRL_PROMIS_EN; 1155 else if (netdev->flags & IFF_ALLMULTI) 1156 value |= MAC_CTRL_MC_ALL_EN; 1157 1158 /* half retry buffer */ 1159 value |= (((u32)(adapter->hw.retry_buf & 1160 MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT); 1161 1162 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value); 1163 } 1164 1165 static int atl2_check_link(struct atl2_adapter *adapter) 1166 { 1167 struct atl2_hw *hw = &adapter->hw; 1168 struct net_device *netdev = adapter->netdev; 1169 int ret_val; 1170 u16 speed, duplex, phy_data; 1171 int reconfig = 0; 1172 1173 /* MII_BMSR must read twise */ 1174 atl2_read_phy_reg(hw, MII_BMSR, &phy_data); 1175 atl2_read_phy_reg(hw, MII_BMSR, &phy_data); 1176 if (!(phy_data&BMSR_LSTATUS)) { /* link down */ 1177 if (netif_carrier_ok(netdev)) { /* old link state: Up */ 1178 u32 value; 1179 /* disable rx */ 1180 value = ATL2_READ_REG(hw, REG_MAC_CTRL); 1181 value &= ~MAC_CTRL_RX_EN; 1182 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value); 1183 adapter->link_speed = SPEED_0; 1184 netif_carrier_off(netdev); 1185 netif_stop_queue(netdev); 1186 } 1187 return 0; 1188 } 1189 1190 /* Link Up */ 1191 ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex); 1192 if (ret_val) 1193 return ret_val; 1194 switch (hw->MediaType) { 1195 case MEDIA_TYPE_100M_FULL: 1196 if (speed != SPEED_100 || duplex != FULL_DUPLEX) 1197 reconfig = 1; 1198 break; 1199 case MEDIA_TYPE_100M_HALF: 1200 if (speed != SPEED_100 || duplex != HALF_DUPLEX) 1201 reconfig = 1; 1202 break; 1203 case MEDIA_TYPE_10M_FULL: 1204 if (speed != SPEED_10 || duplex != FULL_DUPLEX) 1205 reconfig = 1; 1206 break; 1207 case MEDIA_TYPE_10M_HALF: 1208 if (speed != SPEED_10 || duplex != HALF_DUPLEX) 1209 reconfig = 1; 1210 break; 1211 } 1212 /* link result is our setting */ 1213 if (reconfig == 0) { 1214 if (adapter->link_speed != speed || 1215 adapter->link_duplex != duplex) { 1216 adapter->link_speed = speed; 1217 adapter->link_duplex = duplex; 1218 atl2_setup_mac_ctrl(adapter); 1219 printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n", 1220 atl2_driver_name, netdev->name, 1221 adapter->link_speed, 1222 adapter->link_duplex == FULL_DUPLEX ? 1223 "Full Duplex" : "Half Duplex"); 1224 } 1225 1226 if (!netif_carrier_ok(netdev)) { /* Link down -> Up */ 1227 netif_carrier_on(netdev); 1228 netif_wake_queue(netdev); 1229 } 1230 return 0; 1231 } 1232 1233 /* change original link status */ 1234 if (netif_carrier_ok(netdev)) { 1235 u32 value; 1236 /* disable rx */ 1237 value = ATL2_READ_REG(hw, REG_MAC_CTRL); 1238 value &= ~MAC_CTRL_RX_EN; 1239 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value); 1240 1241 adapter->link_speed = SPEED_0; 1242 netif_carrier_off(netdev); 1243 netif_stop_queue(netdev); 1244 } 1245 1246 /* auto-neg, insert timer to re-config phy 1247 * (if interval smaller than 5 seconds, something strange) */ 1248 if (!test_bit(__ATL2_DOWN, &adapter->flags)) { 1249 if (!test_and_set_bit(0, &adapter->cfg_phy)) 1250 mod_timer(&adapter->phy_config_timer, 1251 round_jiffies(jiffies + 5 * HZ)); 1252 } 1253 1254 return 0; 1255 } 1256 1257 /** 1258 * atl2_link_chg_task - deal with link change event Out of interrupt context 1259 */ 1260 static void atl2_link_chg_task(struct work_struct *work) 1261 { 1262 struct atl2_adapter *adapter; 1263 unsigned long flags; 1264 1265 adapter = container_of(work, struct atl2_adapter, link_chg_task); 1266 1267 spin_lock_irqsave(&adapter->stats_lock, flags); 1268 atl2_check_link(adapter); 1269 spin_unlock_irqrestore(&adapter->stats_lock, flags); 1270 } 1271 1272 static void atl2_setup_pcicmd(struct pci_dev *pdev) 1273 { 1274 u16 cmd; 1275 1276 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 1277 1278 if (cmd & PCI_COMMAND_INTX_DISABLE) 1279 cmd &= ~PCI_COMMAND_INTX_DISABLE; 1280 if (cmd & PCI_COMMAND_IO) 1281 cmd &= ~PCI_COMMAND_IO; 1282 if (0 == (cmd & PCI_COMMAND_MEMORY)) 1283 cmd |= PCI_COMMAND_MEMORY; 1284 if (0 == (cmd & PCI_COMMAND_MASTER)) 1285 cmd |= PCI_COMMAND_MASTER; 1286 pci_write_config_word(pdev, PCI_COMMAND, cmd); 1287 1288 /* 1289 * some motherboards BIOS(PXE/EFI) driver may set PME 1290 * while they transfer control to OS (Windows/Linux) 1291 * so we should clear this bit before NIC work normally 1292 */ 1293 pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0); 1294 } 1295 1296 #ifdef CONFIG_NET_POLL_CONTROLLER 1297 static void atl2_poll_controller(struct net_device *netdev) 1298 { 1299 disable_irq(netdev->irq); 1300 atl2_intr(netdev->irq, netdev); 1301 enable_irq(netdev->irq); 1302 } 1303 #endif 1304 1305 1306 static const struct net_device_ops atl2_netdev_ops = { 1307 .ndo_open = atl2_open, 1308 .ndo_stop = atl2_close, 1309 .ndo_start_xmit = atl2_xmit_frame, 1310 .ndo_set_rx_mode = atl2_set_multi, 1311 .ndo_validate_addr = eth_validate_addr, 1312 .ndo_set_mac_address = atl2_set_mac, 1313 .ndo_change_mtu = atl2_change_mtu, 1314 .ndo_fix_features = atl2_fix_features, 1315 .ndo_set_features = atl2_set_features, 1316 .ndo_do_ioctl = atl2_ioctl, 1317 .ndo_tx_timeout = atl2_tx_timeout, 1318 #ifdef CONFIG_NET_POLL_CONTROLLER 1319 .ndo_poll_controller = atl2_poll_controller, 1320 #endif 1321 }; 1322 1323 /** 1324 * atl2_probe - Device Initialization Routine 1325 * @pdev: PCI device information struct 1326 * @ent: entry in atl2_pci_tbl 1327 * 1328 * Returns 0 on success, negative on failure 1329 * 1330 * atl2_probe initializes an adapter identified by a pci_dev structure. 1331 * The OS initialization, configuring of the adapter private structure, 1332 * and a hardware reset occur. 1333 */ 1334 static int atl2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1335 { 1336 struct net_device *netdev; 1337 struct atl2_adapter *adapter; 1338 static int cards_found = 0; 1339 unsigned long mmio_start; 1340 int mmio_len; 1341 int err; 1342 1343 err = pci_enable_device(pdev); 1344 if (err) 1345 return err; 1346 1347 /* 1348 * atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA 1349 * until the kernel has the proper infrastructure to support 64-bit DMA 1350 * on these devices. 1351 */ 1352 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) && 1353 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) { 1354 printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n"); 1355 err = -EIO; 1356 goto err_dma; 1357 } 1358 1359 /* Mark all PCI regions associated with PCI device 1360 * pdev as being reserved by owner atl2_driver_name */ 1361 err = pci_request_regions(pdev, atl2_driver_name); 1362 if (err) 1363 goto err_pci_reg; 1364 1365 /* Enables bus-mastering on the device and calls 1366 * pcibios_set_master to do the needed arch specific settings */ 1367 pci_set_master(pdev); 1368 1369 netdev = alloc_etherdev(sizeof(struct atl2_adapter)); 1370 if (!netdev) { 1371 err = -ENOMEM; 1372 goto err_alloc_etherdev; 1373 } 1374 1375 SET_NETDEV_DEV(netdev, &pdev->dev); 1376 1377 pci_set_drvdata(pdev, netdev); 1378 adapter = netdev_priv(netdev); 1379 adapter->netdev = netdev; 1380 adapter->pdev = pdev; 1381 adapter->hw.back = adapter; 1382 1383 mmio_start = pci_resource_start(pdev, 0x0); 1384 mmio_len = pci_resource_len(pdev, 0x0); 1385 1386 adapter->hw.mem_rang = (u32)mmio_len; 1387 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 1388 if (!adapter->hw.hw_addr) { 1389 err = -EIO; 1390 goto err_ioremap; 1391 } 1392 1393 atl2_setup_pcicmd(pdev); 1394 1395 netdev->netdev_ops = &atl2_netdev_ops; 1396 netdev->ethtool_ops = &atl2_ethtool_ops; 1397 netdev->watchdog_timeo = 5 * HZ; 1398 netdev->min_mtu = 40; 1399 netdev->max_mtu = ETH_DATA_LEN + VLAN_HLEN; 1400 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1401 1402 netdev->mem_start = mmio_start; 1403 netdev->mem_end = mmio_start + mmio_len; 1404 adapter->bd_number = cards_found; 1405 adapter->pci_using_64 = false; 1406 1407 /* setup the private structure */ 1408 err = atl2_sw_init(adapter); 1409 if (err) 1410 goto err_sw_init; 1411 1412 netdev->hw_features = NETIF_F_HW_VLAN_CTAG_RX; 1413 netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX); 1414 1415 /* Init PHY as early as possible due to power saving issue */ 1416 atl2_phy_init(&adapter->hw); 1417 1418 /* reset the controller to 1419 * put the device in a known good starting state */ 1420 1421 if (atl2_reset_hw(&adapter->hw)) { 1422 err = -EIO; 1423 goto err_reset; 1424 } 1425 1426 /* copy the MAC address out of the EEPROM */ 1427 atl2_read_mac_addr(&adapter->hw); 1428 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); 1429 if (!is_valid_ether_addr(netdev->dev_addr)) { 1430 err = -EIO; 1431 goto err_eeprom; 1432 } 1433 1434 atl2_check_options(adapter); 1435 1436 timer_setup(&adapter->watchdog_timer, atl2_watchdog, 0); 1437 1438 timer_setup(&adapter->phy_config_timer, atl2_phy_config, 0); 1439 1440 INIT_WORK(&adapter->reset_task, atl2_reset_task); 1441 INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task); 1442 1443 strcpy(netdev->name, "eth%d"); /* ?? */ 1444 err = register_netdev(netdev); 1445 if (err) 1446 goto err_register; 1447 1448 /* assume we have no link for now */ 1449 netif_carrier_off(netdev); 1450 netif_stop_queue(netdev); 1451 1452 cards_found++; 1453 1454 return 0; 1455 1456 err_reset: 1457 err_register: 1458 err_sw_init: 1459 err_eeprom: 1460 iounmap(adapter->hw.hw_addr); 1461 err_ioremap: 1462 free_netdev(netdev); 1463 err_alloc_etherdev: 1464 pci_release_regions(pdev); 1465 err_pci_reg: 1466 err_dma: 1467 pci_disable_device(pdev); 1468 return err; 1469 } 1470 1471 /** 1472 * atl2_remove - Device Removal Routine 1473 * @pdev: PCI device information struct 1474 * 1475 * atl2_remove is called by the PCI subsystem to alert the driver 1476 * that it should release a PCI device. The could be caused by a 1477 * Hot-Plug event, or because the driver is going to be removed from 1478 * memory. 1479 */ 1480 /* FIXME: write the original MAC address back in case it was changed from a 1481 * BIOS-set value, as in atl1 -- CHS */ 1482 static void atl2_remove(struct pci_dev *pdev) 1483 { 1484 struct net_device *netdev = pci_get_drvdata(pdev); 1485 struct atl2_adapter *adapter = netdev_priv(netdev); 1486 1487 /* flush_scheduled work may reschedule our watchdog task, so 1488 * explicitly disable watchdog tasks from being rescheduled */ 1489 set_bit(__ATL2_DOWN, &adapter->flags); 1490 1491 del_timer_sync(&adapter->watchdog_timer); 1492 del_timer_sync(&adapter->phy_config_timer); 1493 cancel_work_sync(&adapter->reset_task); 1494 cancel_work_sync(&adapter->link_chg_task); 1495 1496 unregister_netdev(netdev); 1497 1498 atl2_force_ps(&adapter->hw); 1499 1500 iounmap(adapter->hw.hw_addr); 1501 pci_release_regions(pdev); 1502 1503 free_netdev(netdev); 1504 1505 pci_disable_device(pdev); 1506 } 1507 1508 static int atl2_suspend(struct pci_dev *pdev, pm_message_t state) 1509 { 1510 struct net_device *netdev = pci_get_drvdata(pdev); 1511 struct atl2_adapter *adapter = netdev_priv(netdev); 1512 struct atl2_hw *hw = &adapter->hw; 1513 u16 speed, duplex; 1514 u32 ctrl = 0; 1515 u32 wufc = adapter->wol; 1516 1517 #ifdef CONFIG_PM 1518 int retval = 0; 1519 #endif 1520 1521 netif_device_detach(netdev); 1522 1523 if (netif_running(netdev)) { 1524 WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags)); 1525 atl2_down(adapter); 1526 } 1527 1528 #ifdef CONFIG_PM 1529 retval = pci_save_state(pdev); 1530 if (retval) 1531 return retval; 1532 #endif 1533 1534 atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl); 1535 atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl); 1536 if (ctrl & BMSR_LSTATUS) 1537 wufc &= ~ATLX_WUFC_LNKC; 1538 1539 if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) { 1540 u32 ret_val; 1541 /* get current link speed & duplex */ 1542 ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex); 1543 if (ret_val) { 1544 printk(KERN_DEBUG 1545 "%s: get speed&duplex error while suspend\n", 1546 atl2_driver_name); 1547 goto wol_dis; 1548 } 1549 1550 ctrl = 0; 1551 1552 /* turn on magic packet wol */ 1553 if (wufc & ATLX_WUFC_MAG) 1554 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN); 1555 1556 /* ignore Link Chg event when Link is up */ 1557 ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl); 1558 1559 /* Config MAC CTRL Register */ 1560 ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY; 1561 if (FULL_DUPLEX == adapter->link_duplex) 1562 ctrl |= MAC_CTRL_DUPLX; 1563 ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); 1564 ctrl |= (((u32)adapter->hw.preamble_len & 1565 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); 1566 ctrl |= (((u32)(adapter->hw.retry_buf & 1567 MAC_CTRL_HALF_LEFT_BUF_MASK)) << 1568 MAC_CTRL_HALF_LEFT_BUF_SHIFT); 1569 if (wufc & ATLX_WUFC_MAG) { 1570 /* magic packet maybe Broadcast&multicast&Unicast */ 1571 ctrl |= MAC_CTRL_BC_EN; 1572 } 1573 1574 ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl); 1575 1576 /* pcie patch */ 1577 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC); 1578 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 1579 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); 1580 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1); 1581 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK; 1582 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl); 1583 1584 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1); 1585 goto suspend_exit; 1586 } 1587 1588 if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) { 1589 /* link is down, so only LINK CHG WOL event enable */ 1590 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN); 1591 ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl); 1592 ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0); 1593 1594 /* pcie patch */ 1595 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC); 1596 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 1597 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); 1598 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1); 1599 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK; 1600 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl); 1601 1602 hw->phy_configured = false; /* re-init PHY when resume */ 1603 1604 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1); 1605 1606 goto suspend_exit; 1607 } 1608 1609 wol_dis: 1610 /* WOL disabled */ 1611 ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0); 1612 1613 /* pcie patch */ 1614 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC); 1615 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 1616 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); 1617 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1); 1618 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK; 1619 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl); 1620 1621 atl2_force_ps(hw); 1622 hw->phy_configured = false; /* re-init PHY when resume */ 1623 1624 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0); 1625 1626 suspend_exit: 1627 if (netif_running(netdev)) 1628 atl2_free_irq(adapter); 1629 1630 pci_disable_device(pdev); 1631 1632 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 1633 1634 return 0; 1635 } 1636 1637 #ifdef CONFIG_PM 1638 static int atl2_resume(struct pci_dev *pdev) 1639 { 1640 struct net_device *netdev = pci_get_drvdata(pdev); 1641 struct atl2_adapter *adapter = netdev_priv(netdev); 1642 u32 err; 1643 1644 pci_set_power_state(pdev, PCI_D0); 1645 pci_restore_state(pdev); 1646 1647 err = pci_enable_device(pdev); 1648 if (err) { 1649 printk(KERN_ERR 1650 "atl2: Cannot enable PCI device from suspend\n"); 1651 return err; 1652 } 1653 1654 pci_set_master(pdev); 1655 1656 ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */ 1657 1658 pci_enable_wake(pdev, PCI_D3hot, 0); 1659 pci_enable_wake(pdev, PCI_D3cold, 0); 1660 1661 ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0); 1662 1663 if (netif_running(netdev)) { 1664 err = atl2_request_irq(adapter); 1665 if (err) 1666 return err; 1667 } 1668 1669 atl2_reset_hw(&adapter->hw); 1670 1671 if (netif_running(netdev)) 1672 atl2_up(adapter); 1673 1674 netif_device_attach(netdev); 1675 1676 return 0; 1677 } 1678 #endif 1679 1680 static void atl2_shutdown(struct pci_dev *pdev) 1681 { 1682 atl2_suspend(pdev, PMSG_SUSPEND); 1683 } 1684 1685 static struct pci_driver atl2_driver = { 1686 .name = atl2_driver_name, 1687 .id_table = atl2_pci_tbl, 1688 .probe = atl2_probe, 1689 .remove = atl2_remove, 1690 /* Power Management Hooks */ 1691 .suspend = atl2_suspend, 1692 #ifdef CONFIG_PM 1693 .resume = atl2_resume, 1694 #endif 1695 .shutdown = atl2_shutdown, 1696 }; 1697 1698 /** 1699 * atl2_init_module - Driver Registration Routine 1700 * 1701 * atl2_init_module is the first routine called when the driver is 1702 * loaded. All it does is register with the PCI subsystem. 1703 */ 1704 static int __init atl2_init_module(void) 1705 { 1706 printk(KERN_INFO "%s - version %s\n", atl2_driver_string, 1707 atl2_driver_version); 1708 printk(KERN_INFO "%s\n", atl2_copyright); 1709 return pci_register_driver(&atl2_driver); 1710 } 1711 module_init(atl2_init_module); 1712 1713 /** 1714 * atl2_exit_module - Driver Exit Cleanup Routine 1715 * 1716 * atl2_exit_module is called just before the driver is removed 1717 * from memory. 1718 */ 1719 static void __exit atl2_exit_module(void) 1720 { 1721 pci_unregister_driver(&atl2_driver); 1722 } 1723 module_exit(atl2_exit_module); 1724 1725 static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value) 1726 { 1727 struct atl2_adapter *adapter = hw->back; 1728 pci_read_config_word(adapter->pdev, reg, value); 1729 } 1730 1731 static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value) 1732 { 1733 struct atl2_adapter *adapter = hw->back; 1734 pci_write_config_word(adapter->pdev, reg, *value); 1735 } 1736 1737 static int atl2_get_link_ksettings(struct net_device *netdev, 1738 struct ethtool_link_ksettings *cmd) 1739 { 1740 struct atl2_adapter *adapter = netdev_priv(netdev); 1741 struct atl2_hw *hw = &adapter->hw; 1742 u32 supported, advertising; 1743 1744 supported = (SUPPORTED_10baseT_Half | 1745 SUPPORTED_10baseT_Full | 1746 SUPPORTED_100baseT_Half | 1747 SUPPORTED_100baseT_Full | 1748 SUPPORTED_Autoneg | 1749 SUPPORTED_TP); 1750 advertising = ADVERTISED_TP; 1751 1752 advertising |= ADVERTISED_Autoneg; 1753 advertising |= hw->autoneg_advertised; 1754 1755 cmd->base.port = PORT_TP; 1756 cmd->base.phy_address = 0; 1757 1758 if (adapter->link_speed != SPEED_0) { 1759 cmd->base.speed = adapter->link_speed; 1760 if (adapter->link_duplex == FULL_DUPLEX) 1761 cmd->base.duplex = DUPLEX_FULL; 1762 else 1763 cmd->base.duplex = DUPLEX_HALF; 1764 } else { 1765 cmd->base.speed = SPEED_UNKNOWN; 1766 cmd->base.duplex = DUPLEX_UNKNOWN; 1767 } 1768 1769 cmd->base.autoneg = AUTONEG_ENABLE; 1770 1771 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 1772 supported); 1773 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 1774 advertising); 1775 1776 return 0; 1777 } 1778 1779 static int atl2_set_link_ksettings(struct net_device *netdev, 1780 const struct ethtool_link_ksettings *cmd) 1781 { 1782 struct atl2_adapter *adapter = netdev_priv(netdev); 1783 struct atl2_hw *hw = &adapter->hw; 1784 u32 advertising; 1785 1786 ethtool_convert_link_mode_to_legacy_u32(&advertising, 1787 cmd->link_modes.advertising); 1788 1789 while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags)) 1790 msleep(1); 1791 1792 if (cmd->base.autoneg == AUTONEG_ENABLE) { 1793 #define MY_ADV_MASK (ADVERTISE_10_HALF | \ 1794 ADVERTISE_10_FULL | \ 1795 ADVERTISE_100_HALF| \ 1796 ADVERTISE_100_FULL) 1797 1798 if ((advertising & MY_ADV_MASK) == MY_ADV_MASK) { 1799 hw->MediaType = MEDIA_TYPE_AUTO_SENSOR; 1800 hw->autoneg_advertised = MY_ADV_MASK; 1801 } else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_FULL) { 1802 hw->MediaType = MEDIA_TYPE_100M_FULL; 1803 hw->autoneg_advertised = ADVERTISE_100_FULL; 1804 } else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_HALF) { 1805 hw->MediaType = MEDIA_TYPE_100M_HALF; 1806 hw->autoneg_advertised = ADVERTISE_100_HALF; 1807 } else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_FULL) { 1808 hw->MediaType = MEDIA_TYPE_10M_FULL; 1809 hw->autoneg_advertised = ADVERTISE_10_FULL; 1810 } else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_HALF) { 1811 hw->MediaType = MEDIA_TYPE_10M_HALF; 1812 hw->autoneg_advertised = ADVERTISE_10_HALF; 1813 } else { 1814 clear_bit(__ATL2_RESETTING, &adapter->flags); 1815 return -EINVAL; 1816 } 1817 advertising = hw->autoneg_advertised | 1818 ADVERTISED_TP | ADVERTISED_Autoneg; 1819 } else { 1820 clear_bit(__ATL2_RESETTING, &adapter->flags); 1821 return -EINVAL; 1822 } 1823 1824 /* reset the link */ 1825 if (netif_running(adapter->netdev)) { 1826 atl2_down(adapter); 1827 atl2_up(adapter); 1828 } else 1829 atl2_reset_hw(&adapter->hw); 1830 1831 clear_bit(__ATL2_RESETTING, &adapter->flags); 1832 return 0; 1833 } 1834 1835 static u32 atl2_get_msglevel(struct net_device *netdev) 1836 { 1837 return 0; 1838 } 1839 1840 /* 1841 * It's sane for this to be empty, but we might want to take advantage of this. 1842 */ 1843 static void atl2_set_msglevel(struct net_device *netdev, u32 data) 1844 { 1845 } 1846 1847 static int atl2_get_regs_len(struct net_device *netdev) 1848 { 1849 #define ATL2_REGS_LEN 42 1850 return sizeof(u32) * ATL2_REGS_LEN; 1851 } 1852 1853 static void atl2_get_regs(struct net_device *netdev, 1854 struct ethtool_regs *regs, void *p) 1855 { 1856 struct atl2_adapter *adapter = netdev_priv(netdev); 1857 struct atl2_hw *hw = &adapter->hw; 1858 u32 *regs_buff = p; 1859 u16 phy_data; 1860 1861 memset(p, 0, sizeof(u32) * ATL2_REGS_LEN); 1862 1863 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 1864 1865 regs_buff[0] = ATL2_READ_REG(hw, REG_VPD_CAP); 1866 regs_buff[1] = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL); 1867 regs_buff[2] = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG); 1868 regs_buff[3] = ATL2_READ_REG(hw, REG_TWSI_CTRL); 1869 regs_buff[4] = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL); 1870 regs_buff[5] = ATL2_READ_REG(hw, REG_MASTER_CTRL); 1871 regs_buff[6] = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT); 1872 regs_buff[7] = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT); 1873 regs_buff[8] = ATL2_READ_REG(hw, REG_PHY_ENABLE); 1874 regs_buff[9] = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER); 1875 regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS); 1876 regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL); 1877 regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK); 1878 regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL); 1879 regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG); 1880 regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR); 1881 regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4); 1882 regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE); 1883 regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4); 1884 regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL); 1885 regs_buff[20] = ATL2_READ_REG(hw, REG_MTU); 1886 regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL); 1887 regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END); 1888 regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI); 1889 regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO); 1890 regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE); 1891 regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO); 1892 regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE); 1893 regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO); 1894 regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM); 1895 regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR); 1896 regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH); 1897 regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW); 1898 regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH); 1899 regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH); 1900 regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX); 1901 regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX); 1902 regs_buff[38] = ATL2_READ_REG(hw, REG_ISR); 1903 regs_buff[39] = ATL2_READ_REG(hw, REG_IMR); 1904 1905 atl2_read_phy_reg(hw, MII_BMCR, &phy_data); 1906 regs_buff[40] = (u32)phy_data; 1907 atl2_read_phy_reg(hw, MII_BMSR, &phy_data); 1908 regs_buff[41] = (u32)phy_data; 1909 } 1910 1911 static int atl2_get_eeprom_len(struct net_device *netdev) 1912 { 1913 struct atl2_adapter *adapter = netdev_priv(netdev); 1914 1915 if (!atl2_check_eeprom_exist(&adapter->hw)) 1916 return 512; 1917 else 1918 return 0; 1919 } 1920 1921 static int atl2_get_eeprom(struct net_device *netdev, 1922 struct ethtool_eeprom *eeprom, u8 *bytes) 1923 { 1924 struct atl2_adapter *adapter = netdev_priv(netdev); 1925 struct atl2_hw *hw = &adapter->hw; 1926 u32 *eeprom_buff; 1927 int first_dword, last_dword; 1928 int ret_val = 0; 1929 int i; 1930 1931 if (eeprom->len == 0) 1932 return -EINVAL; 1933 1934 if (atl2_check_eeprom_exist(hw)) 1935 return -EINVAL; 1936 1937 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 1938 1939 first_dword = eeprom->offset >> 2; 1940 last_dword = (eeprom->offset + eeprom->len - 1) >> 2; 1941 1942 eeprom_buff = kmalloc_array(last_dword - first_dword + 1, sizeof(u32), 1943 GFP_KERNEL); 1944 if (!eeprom_buff) 1945 return -ENOMEM; 1946 1947 for (i = first_dword; i < last_dword; i++) { 1948 if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword]))) { 1949 ret_val = -EIO; 1950 goto free; 1951 } 1952 } 1953 1954 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3), 1955 eeprom->len); 1956 free: 1957 kfree(eeprom_buff); 1958 1959 return ret_val; 1960 } 1961 1962 static int atl2_set_eeprom(struct net_device *netdev, 1963 struct ethtool_eeprom *eeprom, u8 *bytes) 1964 { 1965 struct atl2_adapter *adapter = netdev_priv(netdev); 1966 struct atl2_hw *hw = &adapter->hw; 1967 u32 *eeprom_buff; 1968 u32 *ptr; 1969 int max_len, first_dword, last_dword, ret_val = 0; 1970 int i; 1971 1972 if (eeprom->len == 0) 1973 return -EOPNOTSUPP; 1974 1975 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 1976 return -EFAULT; 1977 1978 max_len = 512; 1979 1980 first_dword = eeprom->offset >> 2; 1981 last_dword = (eeprom->offset + eeprom->len - 1) >> 2; 1982 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 1983 if (!eeprom_buff) 1984 return -ENOMEM; 1985 1986 ptr = eeprom_buff; 1987 1988 if (eeprom->offset & 3) { 1989 /* need read/modify/write of first changed EEPROM word */ 1990 /* only the second byte of the word is being modified */ 1991 if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0]))) { 1992 ret_val = -EIO; 1993 goto out; 1994 } 1995 ptr++; 1996 } 1997 if (((eeprom->offset + eeprom->len) & 3)) { 1998 /* 1999 * need read/modify/write of last changed EEPROM word 2000 * only the first byte of the word is being modified 2001 */ 2002 if (!atl2_read_eeprom(hw, last_dword * 4, 2003 &(eeprom_buff[last_dword - first_dword]))) { 2004 ret_val = -EIO; 2005 goto out; 2006 } 2007 } 2008 2009 /* Device's eeprom is always little-endian, word addressable */ 2010 memcpy(ptr, bytes, eeprom->len); 2011 2012 for (i = 0; i < last_dword - first_dword + 1; i++) { 2013 if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i])) { 2014 ret_val = -EIO; 2015 goto out; 2016 } 2017 } 2018 out: 2019 kfree(eeprom_buff); 2020 return ret_val; 2021 } 2022 2023 static void atl2_get_drvinfo(struct net_device *netdev, 2024 struct ethtool_drvinfo *drvinfo) 2025 { 2026 struct atl2_adapter *adapter = netdev_priv(netdev); 2027 2028 strlcpy(drvinfo->driver, atl2_driver_name, sizeof(drvinfo->driver)); 2029 strlcpy(drvinfo->version, atl2_driver_version, 2030 sizeof(drvinfo->version)); 2031 strlcpy(drvinfo->fw_version, "L2", sizeof(drvinfo->fw_version)); 2032 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 2033 sizeof(drvinfo->bus_info)); 2034 } 2035 2036 static void atl2_get_wol(struct net_device *netdev, 2037 struct ethtool_wolinfo *wol) 2038 { 2039 struct atl2_adapter *adapter = netdev_priv(netdev); 2040 2041 wol->supported = WAKE_MAGIC; 2042 wol->wolopts = 0; 2043 2044 if (adapter->wol & ATLX_WUFC_EX) 2045 wol->wolopts |= WAKE_UCAST; 2046 if (adapter->wol & ATLX_WUFC_MC) 2047 wol->wolopts |= WAKE_MCAST; 2048 if (adapter->wol & ATLX_WUFC_BC) 2049 wol->wolopts |= WAKE_BCAST; 2050 if (adapter->wol & ATLX_WUFC_MAG) 2051 wol->wolopts |= WAKE_MAGIC; 2052 if (adapter->wol & ATLX_WUFC_LNKC) 2053 wol->wolopts |= WAKE_PHY; 2054 } 2055 2056 static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2057 { 2058 struct atl2_adapter *adapter = netdev_priv(netdev); 2059 2060 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) 2061 return -EOPNOTSUPP; 2062 2063 if (wol->wolopts & (WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)) 2064 return -EOPNOTSUPP; 2065 2066 /* these settings will always override what we currently have */ 2067 adapter->wol = 0; 2068 2069 if (wol->wolopts & WAKE_MAGIC) 2070 adapter->wol |= ATLX_WUFC_MAG; 2071 if (wol->wolopts & WAKE_PHY) 2072 adapter->wol |= ATLX_WUFC_LNKC; 2073 2074 return 0; 2075 } 2076 2077 static int atl2_nway_reset(struct net_device *netdev) 2078 { 2079 struct atl2_adapter *adapter = netdev_priv(netdev); 2080 if (netif_running(netdev)) 2081 atl2_reinit_locked(adapter); 2082 return 0; 2083 } 2084 2085 static const struct ethtool_ops atl2_ethtool_ops = { 2086 .get_drvinfo = atl2_get_drvinfo, 2087 .get_regs_len = atl2_get_regs_len, 2088 .get_regs = atl2_get_regs, 2089 .get_wol = atl2_get_wol, 2090 .set_wol = atl2_set_wol, 2091 .get_msglevel = atl2_get_msglevel, 2092 .set_msglevel = atl2_set_msglevel, 2093 .nway_reset = atl2_nway_reset, 2094 .get_link = ethtool_op_get_link, 2095 .get_eeprom_len = atl2_get_eeprom_len, 2096 .get_eeprom = atl2_get_eeprom, 2097 .set_eeprom = atl2_set_eeprom, 2098 .get_link_ksettings = atl2_get_link_ksettings, 2099 .set_link_ksettings = atl2_set_link_ksettings, 2100 }; 2101 2102 #define LBYTESWAP(a) ((((a) & 0x00ff00ff) << 8) | \ 2103 (((a) & 0xff00ff00) >> 8)) 2104 #define LONGSWAP(a) ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16)) 2105 #define SHORTSWAP(a) (((a) << 8) | ((a) >> 8)) 2106 2107 /* 2108 * Reset the transmit and receive units; mask and clear all interrupts. 2109 * 2110 * hw - Struct containing variables accessed by shared code 2111 * return : 0 or idle status (if error) 2112 */ 2113 static s32 atl2_reset_hw(struct atl2_hw *hw) 2114 { 2115 u32 icr; 2116 u16 pci_cfg_cmd_word; 2117 int i; 2118 2119 /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */ 2120 atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word); 2121 if ((pci_cfg_cmd_word & 2122 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) != 2123 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) { 2124 pci_cfg_cmd_word |= 2125 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER); 2126 atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word); 2127 } 2128 2129 /* Clear Interrupt mask to stop board from generating 2130 * interrupts & Clear any pending interrupt events 2131 */ 2132 /* FIXME */ 2133 /* ATL2_WRITE_REG(hw, REG_IMR, 0); */ 2134 /* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */ 2135 2136 /* Issue Soft Reset to the MAC. This will reset the chip's 2137 * transmit, receive, DMA. It will not effect 2138 * the current PCI configuration. The global reset bit is self- 2139 * clearing, and should clear within a microsecond. 2140 */ 2141 ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST); 2142 wmb(); 2143 msleep(1); /* delay about 1ms */ 2144 2145 /* Wait at least 10ms for All module to be Idle */ 2146 for (i = 0; i < 10; i++) { 2147 icr = ATL2_READ_REG(hw, REG_IDLE_STATUS); 2148 if (!icr) 2149 break; 2150 msleep(1); /* delay 1 ms */ 2151 cpu_relax(); 2152 } 2153 2154 if (icr) 2155 return icr; 2156 2157 return 0; 2158 } 2159 2160 #define CUSTOM_SPI_CS_SETUP 2 2161 #define CUSTOM_SPI_CLK_HI 2 2162 #define CUSTOM_SPI_CLK_LO 2 2163 #define CUSTOM_SPI_CS_HOLD 2 2164 #define CUSTOM_SPI_CS_HI 3 2165 2166 static struct atl2_spi_flash_dev flash_table[] = 2167 { 2168 /* MFR WRSR READ PROGRAM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */ 2169 {"Atmel", 0x0, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 }, 2170 {"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 }, 2171 {"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7 }, 2172 }; 2173 2174 static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf) 2175 { 2176 int i; 2177 u32 value; 2178 2179 ATL2_WRITE_REG(hw, REG_SPI_DATA, 0); 2180 ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr); 2181 2182 value = SPI_FLASH_CTRL_WAIT_READY | 2183 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) << 2184 SPI_FLASH_CTRL_CS_SETUP_SHIFT | 2185 (CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) << 2186 SPI_FLASH_CTRL_CLK_HI_SHIFT | 2187 (CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) << 2188 SPI_FLASH_CTRL_CLK_LO_SHIFT | 2189 (CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) << 2190 SPI_FLASH_CTRL_CS_HOLD_SHIFT | 2191 (CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) << 2192 SPI_FLASH_CTRL_CS_HI_SHIFT | 2193 (0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT; 2194 2195 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); 2196 2197 value |= SPI_FLASH_CTRL_START; 2198 2199 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); 2200 2201 for (i = 0; i < 10; i++) { 2202 msleep(1); 2203 value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL); 2204 if (!(value & SPI_FLASH_CTRL_START)) 2205 break; 2206 } 2207 2208 if (value & SPI_FLASH_CTRL_START) 2209 return false; 2210 2211 *buf = ATL2_READ_REG(hw, REG_SPI_DATA); 2212 2213 return true; 2214 } 2215 2216 /* 2217 * get_permanent_address 2218 * return 0 if get valid mac address, 2219 */ 2220 static int get_permanent_address(struct atl2_hw *hw) 2221 { 2222 u32 Addr[2]; 2223 u32 i, Control; 2224 u16 Register; 2225 u8 EthAddr[ETH_ALEN]; 2226 bool KeyValid; 2227 2228 if (is_valid_ether_addr(hw->perm_mac_addr)) 2229 return 0; 2230 2231 Addr[0] = 0; 2232 Addr[1] = 0; 2233 2234 if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */ 2235 Register = 0; 2236 KeyValid = false; 2237 2238 /* Read out all EEPROM content */ 2239 i = 0; 2240 while (1) { 2241 if (atl2_read_eeprom(hw, i + 0x100, &Control)) { 2242 if (KeyValid) { 2243 if (Register == REG_MAC_STA_ADDR) 2244 Addr[0] = Control; 2245 else if (Register == 2246 (REG_MAC_STA_ADDR + 4)) 2247 Addr[1] = Control; 2248 KeyValid = false; 2249 } else if ((Control & 0xff) == 0x5A) { 2250 KeyValid = true; 2251 Register = (u16) (Control >> 16); 2252 } else { 2253 /* assume data end while encount an invalid KEYWORD */ 2254 break; 2255 } 2256 } else { 2257 break; /* read error */ 2258 } 2259 i += 4; 2260 } 2261 2262 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]); 2263 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]); 2264 2265 if (is_valid_ether_addr(EthAddr)) { 2266 memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN); 2267 return 0; 2268 } 2269 return 1; 2270 } 2271 2272 /* see if SPI flash exists? */ 2273 Addr[0] = 0; 2274 Addr[1] = 0; 2275 Register = 0; 2276 KeyValid = false; 2277 i = 0; 2278 while (1) { 2279 if (atl2_spi_read(hw, i + 0x1f000, &Control)) { 2280 if (KeyValid) { 2281 if (Register == REG_MAC_STA_ADDR) 2282 Addr[0] = Control; 2283 else if (Register == (REG_MAC_STA_ADDR + 4)) 2284 Addr[1] = Control; 2285 KeyValid = false; 2286 } else if ((Control & 0xff) == 0x5A) { 2287 KeyValid = true; 2288 Register = (u16) (Control >> 16); 2289 } else { 2290 break; /* data end */ 2291 } 2292 } else { 2293 break; /* read error */ 2294 } 2295 i += 4; 2296 } 2297 2298 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]); 2299 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]); 2300 if (is_valid_ether_addr(EthAddr)) { 2301 memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN); 2302 return 0; 2303 } 2304 /* maybe MAC-address is from BIOS */ 2305 Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR); 2306 Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4); 2307 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]); 2308 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]); 2309 2310 if (is_valid_ether_addr(EthAddr)) { 2311 memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN); 2312 return 0; 2313 } 2314 2315 return 1; 2316 } 2317 2318 /* 2319 * Reads the adapter's MAC address from the EEPROM 2320 * 2321 * hw - Struct containing variables accessed by shared code 2322 */ 2323 static s32 atl2_read_mac_addr(struct atl2_hw *hw) 2324 { 2325 if (get_permanent_address(hw)) { 2326 /* for test */ 2327 /* FIXME: shouldn't we use eth_random_addr() here? */ 2328 hw->perm_mac_addr[0] = 0x00; 2329 hw->perm_mac_addr[1] = 0x13; 2330 hw->perm_mac_addr[2] = 0x74; 2331 hw->perm_mac_addr[3] = 0x00; 2332 hw->perm_mac_addr[4] = 0x5c; 2333 hw->perm_mac_addr[5] = 0x38; 2334 } 2335 2336 memcpy(hw->mac_addr, hw->perm_mac_addr, ETH_ALEN); 2337 2338 return 0; 2339 } 2340 2341 /* 2342 * Hashes an address to determine its location in the multicast table 2343 * 2344 * hw - Struct containing variables accessed by shared code 2345 * mc_addr - the multicast address to hash 2346 * 2347 * atl2_hash_mc_addr 2348 * purpose 2349 * set hash value for a multicast address 2350 * hash calcu processing : 2351 * 1. calcu 32bit CRC for multicast address 2352 * 2. reverse crc with MSB to LSB 2353 */ 2354 static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr) 2355 { 2356 u32 crc32, value; 2357 int i; 2358 2359 value = 0; 2360 crc32 = ether_crc_le(6, mc_addr); 2361 2362 for (i = 0; i < 32; i++) 2363 value |= (((crc32 >> i) & 1) << (31 - i)); 2364 2365 return value; 2366 } 2367 2368 /* 2369 * Sets the bit in the multicast table corresponding to the hash value. 2370 * 2371 * hw - Struct containing variables accessed by shared code 2372 * hash_value - Multicast address hash value 2373 */ 2374 static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value) 2375 { 2376 u32 hash_bit, hash_reg; 2377 u32 mta; 2378 2379 /* The HASH Table is a register array of 2 32-bit registers. 2380 * It is treated like an array of 64 bits. We want to set 2381 * bit BitArray[hash_value]. So we figure out what register 2382 * the bit is in, read it, OR in the new bit, then write 2383 * back the new value. The register is determined by the 2384 * upper 7 bits of the hash value and the bit within that 2385 * register are determined by the lower 5 bits of the value. 2386 */ 2387 hash_reg = (hash_value >> 31) & 0x1; 2388 hash_bit = (hash_value >> 26) & 0x1F; 2389 2390 mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg); 2391 2392 mta |= (1 << hash_bit); 2393 2394 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta); 2395 } 2396 2397 /* 2398 * atl2_init_pcie - init PCIE module 2399 */ 2400 static void atl2_init_pcie(struct atl2_hw *hw) 2401 { 2402 u32 value; 2403 value = LTSSM_TEST_MODE_DEF; 2404 ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value); 2405 2406 value = PCIE_DLL_TX_CTRL1_DEF; 2407 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value); 2408 } 2409 2410 static void atl2_init_flash_opcode(struct atl2_hw *hw) 2411 { 2412 if (hw->flash_vendor >= ARRAY_SIZE(flash_table)) 2413 hw->flash_vendor = 0; /* ATMEL */ 2414 2415 /* Init OP table */ 2416 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM, 2417 flash_table[hw->flash_vendor].cmdPROGRAM); 2418 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE, 2419 flash_table[hw->flash_vendor].cmdSECTOR_ERASE); 2420 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE, 2421 flash_table[hw->flash_vendor].cmdCHIP_ERASE); 2422 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID, 2423 flash_table[hw->flash_vendor].cmdRDID); 2424 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN, 2425 flash_table[hw->flash_vendor].cmdWREN); 2426 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR, 2427 flash_table[hw->flash_vendor].cmdRDSR); 2428 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR, 2429 flash_table[hw->flash_vendor].cmdWRSR); 2430 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ, 2431 flash_table[hw->flash_vendor].cmdREAD); 2432 } 2433 2434 /******************************************************************** 2435 * Performs basic configuration of the adapter. 2436 * 2437 * hw - Struct containing variables accessed by shared code 2438 * Assumes that the controller has previously been reset and is in a 2439 * post-reset uninitialized state. Initializes multicast table, 2440 * and Calls routines to setup link 2441 * Leaves the transmit and receive units disabled and uninitialized. 2442 ********************************************************************/ 2443 static s32 atl2_init_hw(struct atl2_hw *hw) 2444 { 2445 u32 ret_val = 0; 2446 2447 atl2_init_pcie(hw); 2448 2449 /* Zero out the Multicast HASH table */ 2450 /* clear the old settings from the multicast hash table */ 2451 ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); 2452 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); 2453 2454 atl2_init_flash_opcode(hw); 2455 2456 ret_val = atl2_phy_init(hw); 2457 2458 return ret_val; 2459 } 2460 2461 /* 2462 * Detects the current speed and duplex settings of the hardware. 2463 * 2464 * hw - Struct containing variables accessed by shared code 2465 * speed - Speed of the connection 2466 * duplex - Duplex setting of the connection 2467 */ 2468 static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed, 2469 u16 *duplex) 2470 { 2471 s32 ret_val; 2472 u16 phy_data; 2473 2474 /* Read PHY Specific Status Register (17) */ 2475 ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data); 2476 if (ret_val) 2477 return ret_val; 2478 2479 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED)) 2480 return ATLX_ERR_PHY_RES; 2481 2482 switch (phy_data & MII_ATLX_PSSR_SPEED) { 2483 case MII_ATLX_PSSR_100MBS: 2484 *speed = SPEED_100; 2485 break; 2486 case MII_ATLX_PSSR_10MBS: 2487 *speed = SPEED_10; 2488 break; 2489 default: 2490 return ATLX_ERR_PHY_SPEED; 2491 } 2492 2493 if (phy_data & MII_ATLX_PSSR_DPLX) 2494 *duplex = FULL_DUPLEX; 2495 else 2496 *duplex = HALF_DUPLEX; 2497 2498 return 0; 2499 } 2500 2501 /* 2502 * Reads the value from a PHY register 2503 * hw - Struct containing variables accessed by shared code 2504 * reg_addr - address of the PHY register to read 2505 */ 2506 static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data) 2507 { 2508 u32 val; 2509 int i; 2510 2511 val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | 2512 MDIO_START | 2513 MDIO_SUP_PREAMBLE | 2514 MDIO_RW | 2515 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; 2516 ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val); 2517 2518 wmb(); 2519 2520 for (i = 0; i < MDIO_WAIT_TIMES; i++) { 2521 udelay(2); 2522 val = ATL2_READ_REG(hw, REG_MDIO_CTRL); 2523 if (!(val & (MDIO_START | MDIO_BUSY))) 2524 break; 2525 wmb(); 2526 } 2527 if (!(val & (MDIO_START | MDIO_BUSY))) { 2528 *phy_data = (u16)val; 2529 return 0; 2530 } 2531 2532 return ATLX_ERR_PHY; 2533 } 2534 2535 /* 2536 * Writes a value to a PHY register 2537 * hw - Struct containing variables accessed by shared code 2538 * reg_addr - address of the PHY register to write 2539 * data - data to write to the PHY 2540 */ 2541 static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data) 2542 { 2543 int i; 2544 u32 val; 2545 2546 val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | 2547 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | 2548 MDIO_SUP_PREAMBLE | 2549 MDIO_START | 2550 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; 2551 ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val); 2552 2553 wmb(); 2554 2555 for (i = 0; i < MDIO_WAIT_TIMES; i++) { 2556 udelay(2); 2557 val = ATL2_READ_REG(hw, REG_MDIO_CTRL); 2558 if (!(val & (MDIO_START | MDIO_BUSY))) 2559 break; 2560 2561 wmb(); 2562 } 2563 2564 if (!(val & (MDIO_START | MDIO_BUSY))) 2565 return 0; 2566 2567 return ATLX_ERR_PHY; 2568 } 2569 2570 /* 2571 * Configures PHY autoneg and flow control advertisement settings 2572 * 2573 * hw - Struct containing variables accessed by shared code 2574 */ 2575 static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw) 2576 { 2577 s32 ret_val; 2578 s16 mii_autoneg_adv_reg; 2579 2580 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 2581 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK; 2582 2583 /* Need to parse autoneg_advertised and set up 2584 * the appropriate PHY registers. First we will parse for 2585 * autoneg_advertised software override. Since we can advertise 2586 * a plethora of combinations, we need to check each bit 2587 * individually. 2588 */ 2589 2590 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 2591 * Advertisement Register (Address 4) and the 1000 mb speed bits in 2592 * the 1000Base-T Control Register (Address 9). */ 2593 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK; 2594 2595 /* Need to parse MediaType and setup the 2596 * appropriate PHY registers. */ 2597 switch (hw->MediaType) { 2598 case MEDIA_TYPE_AUTO_SENSOR: 2599 mii_autoneg_adv_reg |= 2600 (MII_AR_10T_HD_CAPS | 2601 MII_AR_10T_FD_CAPS | 2602 MII_AR_100TX_HD_CAPS| 2603 MII_AR_100TX_FD_CAPS); 2604 hw->autoneg_advertised = 2605 ADVERTISE_10_HALF | 2606 ADVERTISE_10_FULL | 2607 ADVERTISE_100_HALF| 2608 ADVERTISE_100_FULL; 2609 break; 2610 case MEDIA_TYPE_100M_FULL: 2611 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS; 2612 hw->autoneg_advertised = ADVERTISE_100_FULL; 2613 break; 2614 case MEDIA_TYPE_100M_HALF: 2615 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS; 2616 hw->autoneg_advertised = ADVERTISE_100_HALF; 2617 break; 2618 case MEDIA_TYPE_10M_FULL: 2619 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS; 2620 hw->autoneg_advertised = ADVERTISE_10_FULL; 2621 break; 2622 default: 2623 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS; 2624 hw->autoneg_advertised = ADVERTISE_10_HALF; 2625 break; 2626 } 2627 2628 /* flow control fixed to enable all */ 2629 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE); 2630 2631 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg; 2632 2633 ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg); 2634 2635 if (ret_val) 2636 return ret_val; 2637 2638 return 0; 2639 } 2640 2641 /* 2642 * Resets the PHY and make all config validate 2643 * 2644 * hw - Struct containing variables accessed by shared code 2645 * 2646 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug) 2647 */ 2648 static s32 atl2_phy_commit(struct atl2_hw *hw) 2649 { 2650 s32 ret_val; 2651 u16 phy_data; 2652 2653 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG; 2654 ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data); 2655 if (ret_val) { 2656 u32 val; 2657 int i; 2658 /* pcie serdes link may be down ! */ 2659 for (i = 0; i < 25; i++) { 2660 msleep(1); 2661 val = ATL2_READ_REG(hw, REG_MDIO_CTRL); 2662 if (!(val & (MDIO_START | MDIO_BUSY))) 2663 break; 2664 } 2665 2666 if (0 != (val & (MDIO_START | MDIO_BUSY))) { 2667 printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n"); 2668 return ret_val; 2669 } 2670 } 2671 return 0; 2672 } 2673 2674 static s32 atl2_phy_init(struct atl2_hw *hw) 2675 { 2676 s32 ret_val; 2677 u16 phy_val; 2678 2679 if (hw->phy_configured) 2680 return 0; 2681 2682 /* Enable PHY */ 2683 ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1); 2684 ATL2_WRITE_FLUSH(hw); 2685 msleep(1); 2686 2687 /* check if the PHY is in powersaving mode */ 2688 atl2_write_phy_reg(hw, MII_DBG_ADDR, 0); 2689 atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val); 2690 2691 /* 024E / 124E 0r 0274 / 1274 ? */ 2692 if (phy_val & 0x1000) { 2693 phy_val &= ~0x1000; 2694 atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val); 2695 } 2696 2697 msleep(1); 2698 2699 /*Enable PHY LinkChange Interrupt */ 2700 ret_val = atl2_write_phy_reg(hw, 18, 0xC00); 2701 if (ret_val) 2702 return ret_val; 2703 2704 /* setup AutoNeg parameters */ 2705 ret_val = atl2_phy_setup_autoneg_adv(hw); 2706 if (ret_val) 2707 return ret_val; 2708 2709 /* SW.Reset & En-Auto-Neg to restart Auto-Neg */ 2710 ret_val = atl2_phy_commit(hw); 2711 if (ret_val) 2712 return ret_val; 2713 2714 hw->phy_configured = true; 2715 2716 return ret_val; 2717 } 2718 2719 static void atl2_set_mac_addr(struct atl2_hw *hw) 2720 { 2721 u32 value; 2722 /* 00-0B-6A-F6-00-DC 2723 * 0: 6AF600DC 1: 000B 2724 * low dword */ 2725 value = (((u32)hw->mac_addr[2]) << 24) | 2726 (((u32)hw->mac_addr[3]) << 16) | 2727 (((u32)hw->mac_addr[4]) << 8) | 2728 (((u32)hw->mac_addr[5])); 2729 ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); 2730 /* hight dword */ 2731 value = (((u32)hw->mac_addr[0]) << 8) | 2732 (((u32)hw->mac_addr[1])); 2733 ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); 2734 } 2735 2736 /* 2737 * check_eeprom_exist 2738 * return 0 if eeprom exist 2739 */ 2740 static int atl2_check_eeprom_exist(struct atl2_hw *hw) 2741 { 2742 u32 value; 2743 2744 value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL); 2745 if (value & SPI_FLASH_CTRL_EN_VPD) { 2746 value &= ~SPI_FLASH_CTRL_EN_VPD; 2747 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); 2748 } 2749 value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST); 2750 return ((value & 0xFF00) == 0x6C00) ? 0 : 1; 2751 } 2752 2753 /* FIXME: This doesn't look right. -- CHS */ 2754 static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value) 2755 { 2756 return true; 2757 } 2758 2759 static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue) 2760 { 2761 int i; 2762 u32 Control; 2763 2764 if (Offset & 0x3) 2765 return false; /* address do not align */ 2766 2767 ATL2_WRITE_REG(hw, REG_VPD_DATA, 0); 2768 Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT; 2769 ATL2_WRITE_REG(hw, REG_VPD_CAP, Control); 2770 2771 for (i = 0; i < 10; i++) { 2772 msleep(2); 2773 Control = ATL2_READ_REG(hw, REG_VPD_CAP); 2774 if (Control & VPD_CAP_VPD_FLAG) 2775 break; 2776 } 2777 2778 if (Control & VPD_CAP_VPD_FLAG) { 2779 *pValue = ATL2_READ_REG(hw, REG_VPD_DATA); 2780 return true; 2781 } 2782 return false; /* timeout */ 2783 } 2784 2785 static void atl2_force_ps(struct atl2_hw *hw) 2786 { 2787 u16 phy_val; 2788 2789 atl2_write_phy_reg(hw, MII_DBG_ADDR, 0); 2790 atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val); 2791 atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000); 2792 2793 atl2_write_phy_reg(hw, MII_DBG_ADDR, 2); 2794 atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000); 2795 atl2_write_phy_reg(hw, MII_DBG_ADDR, 3); 2796 atl2_write_phy_reg(hw, MII_DBG_DATA, 0); 2797 } 2798 2799 /* This is the only thing that needs to be changed to adjust the 2800 * maximum number of ports that the driver can manage. 2801 */ 2802 #define ATL2_MAX_NIC 4 2803 2804 #define OPTION_UNSET -1 2805 #define OPTION_DISABLED 0 2806 #define OPTION_ENABLED 1 2807 2808 /* All parameters are treated the same, as an integer array of values. 2809 * This macro just reduces the need to repeat the same declaration code 2810 * over and over (plus this helps to avoid typo bugs). 2811 */ 2812 #define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET} 2813 #ifndef module_param_array 2814 /* Module Parameters are always initialized to -1, so that the driver 2815 * can tell the difference between no user specified value or the 2816 * user asking for the default value. 2817 * The true default values are loaded in when atl2_check_options is called. 2818 * 2819 * This is a GCC extension to ANSI C. 2820 * See the item "Labeled Elements in Initializers" in the section 2821 * "Extensions to the C Language Family" of the GCC documentation. 2822 */ 2823 2824 #define ATL2_PARAM(X, desc) \ 2825 static const int X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \ 2826 MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \ 2827 MODULE_PARM_DESC(X, desc); 2828 #else 2829 #define ATL2_PARAM(X, desc) \ 2830 static int X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \ 2831 static unsigned int num_##X; \ 2832 module_param_array_named(X, X, int, &num_##X, 0); \ 2833 MODULE_PARM_DESC(X, desc); 2834 #endif 2835 2836 /* 2837 * Transmit Memory Size 2838 * Valid Range: 64-2048 2839 * Default Value: 128 2840 */ 2841 #define ATL2_MIN_TX_MEMSIZE 4 /* 4KB */ 2842 #define ATL2_MAX_TX_MEMSIZE 64 /* 64KB */ 2843 #define ATL2_DEFAULT_TX_MEMSIZE 8 /* 8KB */ 2844 ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory"); 2845 2846 /* 2847 * Receive Memory Block Count 2848 * Valid Range: 16-512 2849 * Default Value: 128 2850 */ 2851 #define ATL2_MIN_RXD_COUNT 16 2852 #define ATL2_MAX_RXD_COUNT 512 2853 #define ATL2_DEFAULT_RXD_COUNT 64 2854 ATL2_PARAM(RxMemBlock, "Number of receive memory block"); 2855 2856 /* 2857 * User Specified MediaType Override 2858 * 2859 * Valid Range: 0-5 2860 * - 0 - auto-negotiate at all supported speeds 2861 * - 1 - only link at 1000Mbps Full Duplex 2862 * - 2 - only link at 100Mbps Full Duplex 2863 * - 3 - only link at 100Mbps Half Duplex 2864 * - 4 - only link at 10Mbps Full Duplex 2865 * - 5 - only link at 10Mbps Half Duplex 2866 * Default Value: 0 2867 */ 2868 ATL2_PARAM(MediaType, "MediaType Select"); 2869 2870 /* 2871 * Interrupt Moderate Timer in units of 2048 ns (~2 us) 2872 * Valid Range: 10-65535 2873 * Default Value: 45000(90ms) 2874 */ 2875 #define INT_MOD_DEFAULT_CNT 100 /* 200us */ 2876 #define INT_MOD_MAX_CNT 65000 2877 #define INT_MOD_MIN_CNT 50 2878 ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer"); 2879 2880 /* 2881 * FlashVendor 2882 * Valid Range: 0-2 2883 * 0 - Atmel 2884 * 1 - SST 2885 * 2 - ST 2886 */ 2887 ATL2_PARAM(FlashVendor, "SPI Flash Vendor"); 2888 2889 #define AUTONEG_ADV_DEFAULT 0x2F 2890 #define AUTONEG_ADV_MASK 0x2F 2891 #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL 2892 2893 #define FLASH_VENDOR_DEFAULT 0 2894 #define FLASH_VENDOR_MIN 0 2895 #define FLASH_VENDOR_MAX 2 2896 2897 struct atl2_option { 2898 enum { enable_option, range_option, list_option } type; 2899 char *name; 2900 char *err; 2901 int def; 2902 union { 2903 struct { /* range_option info */ 2904 int min; 2905 int max; 2906 } r; 2907 struct { /* list_option info */ 2908 int nr; 2909 struct atl2_opt_list { int i; char *str; } *p; 2910 } l; 2911 } arg; 2912 }; 2913 2914 static int atl2_validate_option(int *value, struct atl2_option *opt) 2915 { 2916 int i; 2917 struct atl2_opt_list *ent; 2918 2919 if (*value == OPTION_UNSET) { 2920 *value = opt->def; 2921 return 0; 2922 } 2923 2924 switch (opt->type) { 2925 case enable_option: 2926 switch (*value) { 2927 case OPTION_ENABLED: 2928 printk(KERN_INFO "%s Enabled\n", opt->name); 2929 return 0; 2930 case OPTION_DISABLED: 2931 printk(KERN_INFO "%s Disabled\n", opt->name); 2932 return 0; 2933 } 2934 break; 2935 case range_option: 2936 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) { 2937 printk(KERN_INFO "%s set to %i\n", opt->name, *value); 2938 return 0; 2939 } 2940 break; 2941 case list_option: 2942 for (i = 0; i < opt->arg.l.nr; i++) { 2943 ent = &opt->arg.l.p[i]; 2944 if (*value == ent->i) { 2945 if (ent->str[0] != '\0') 2946 printk(KERN_INFO "%s\n", ent->str); 2947 return 0; 2948 } 2949 } 2950 break; 2951 default: 2952 BUG(); 2953 } 2954 2955 printk(KERN_INFO "Invalid %s specified (%i) %s\n", 2956 opt->name, *value, opt->err); 2957 *value = opt->def; 2958 return -1; 2959 } 2960 2961 /** 2962 * atl2_check_options - Range Checking for Command Line Parameters 2963 * @adapter: board private structure 2964 * 2965 * This routine checks all command line parameters for valid user 2966 * input. If an invalid value is given, or if no user specified 2967 * value exists, a default value is used. The final value is stored 2968 * in a variable in the adapter structure. 2969 */ 2970 static void atl2_check_options(struct atl2_adapter *adapter) 2971 { 2972 int val; 2973 struct atl2_option opt; 2974 int bd = adapter->bd_number; 2975 if (bd >= ATL2_MAX_NIC) { 2976 printk(KERN_NOTICE "Warning: no configuration for board #%i\n", 2977 bd); 2978 printk(KERN_NOTICE "Using defaults for all values\n"); 2979 #ifndef module_param_array 2980 bd = ATL2_MAX_NIC; 2981 #endif 2982 } 2983 2984 /* Bytes of Transmit Memory */ 2985 opt.type = range_option; 2986 opt.name = "Bytes of Transmit Memory"; 2987 opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE); 2988 opt.def = ATL2_DEFAULT_TX_MEMSIZE; 2989 opt.arg.r.min = ATL2_MIN_TX_MEMSIZE; 2990 opt.arg.r.max = ATL2_MAX_TX_MEMSIZE; 2991 #ifdef module_param_array 2992 if (num_TxMemSize > bd) { 2993 #endif 2994 val = TxMemSize[bd]; 2995 atl2_validate_option(&val, &opt); 2996 adapter->txd_ring_size = ((u32) val) * 1024; 2997 #ifdef module_param_array 2998 } else 2999 adapter->txd_ring_size = ((u32)opt.def) * 1024; 3000 #endif 3001 /* txs ring size: */ 3002 adapter->txs_ring_size = adapter->txd_ring_size / 128; 3003 if (adapter->txs_ring_size > 160) 3004 adapter->txs_ring_size = 160; 3005 3006 /* Receive Memory Block Count */ 3007 opt.type = range_option; 3008 opt.name = "Number of receive memory block"; 3009 opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT); 3010 opt.def = ATL2_DEFAULT_RXD_COUNT; 3011 opt.arg.r.min = ATL2_MIN_RXD_COUNT; 3012 opt.arg.r.max = ATL2_MAX_RXD_COUNT; 3013 #ifdef module_param_array 3014 if (num_RxMemBlock > bd) { 3015 #endif 3016 val = RxMemBlock[bd]; 3017 atl2_validate_option(&val, &opt); 3018 adapter->rxd_ring_size = (u32)val; 3019 /* FIXME */ 3020 /* ((u16)val)&~1; */ /* even number */ 3021 #ifdef module_param_array 3022 } else 3023 adapter->rxd_ring_size = (u32)opt.def; 3024 #endif 3025 /* init RXD Flow control value */ 3026 adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7; 3027 adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) > 3028 (adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) : 3029 (adapter->rxd_ring_size / 12); 3030 3031 /* Interrupt Moderate Timer */ 3032 opt.type = range_option; 3033 opt.name = "Interrupt Moderate Timer"; 3034 opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT); 3035 opt.def = INT_MOD_DEFAULT_CNT; 3036 opt.arg.r.min = INT_MOD_MIN_CNT; 3037 opt.arg.r.max = INT_MOD_MAX_CNT; 3038 #ifdef module_param_array 3039 if (num_IntModTimer > bd) { 3040 #endif 3041 val = IntModTimer[bd]; 3042 atl2_validate_option(&val, &opt); 3043 adapter->imt = (u16) val; 3044 #ifdef module_param_array 3045 } else 3046 adapter->imt = (u16)(opt.def); 3047 #endif 3048 /* Flash Vendor */ 3049 opt.type = range_option; 3050 opt.name = "SPI Flash Vendor"; 3051 opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT); 3052 opt.def = FLASH_VENDOR_DEFAULT; 3053 opt.arg.r.min = FLASH_VENDOR_MIN; 3054 opt.arg.r.max = FLASH_VENDOR_MAX; 3055 #ifdef module_param_array 3056 if (num_FlashVendor > bd) { 3057 #endif 3058 val = FlashVendor[bd]; 3059 atl2_validate_option(&val, &opt); 3060 adapter->hw.flash_vendor = (u8) val; 3061 #ifdef module_param_array 3062 } else 3063 adapter->hw.flash_vendor = (u8)(opt.def); 3064 #endif 3065 /* MediaType */ 3066 opt.type = range_option; 3067 opt.name = "Speed/Duplex Selection"; 3068 opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR); 3069 opt.def = MEDIA_TYPE_AUTO_SENSOR; 3070 opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR; 3071 opt.arg.r.max = MEDIA_TYPE_10M_HALF; 3072 #ifdef module_param_array 3073 if (num_MediaType > bd) { 3074 #endif 3075 val = MediaType[bd]; 3076 atl2_validate_option(&val, &opt); 3077 adapter->hw.MediaType = (u16) val; 3078 #ifdef module_param_array 3079 } else 3080 adapter->hw.MediaType = (u16)(opt.def); 3081 #endif 3082 } 3083