xref: /openbmc/linux/drivers/net/ethernet/atheros/atlx/atl2.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
3  * Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
4  *
5  * Derived from Intel e1000 driver
6  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 59
20  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
21  */
22 
23 #include <linux/atomic.h>
24 #include <linux/crc32.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/hardirq.h>
29 #include <linux/if_vlan.h>
30 #include <linux/in.h>
31 #include <linux/interrupt.h>
32 #include <linux/ip.h>
33 #include <linux/irqflags.h>
34 #include <linux/irqreturn.h>
35 #include <linux/mii.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/pm.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/tcp.h>
46 #include <linux/timer.h>
47 #include <linux/types.h>
48 #include <linux/workqueue.h>
49 
50 #include "atl2.h"
51 
52 #define ATL2_DRV_VERSION "2.2.3"
53 
54 static const char atl2_driver_name[] = "atl2";
55 static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver";
56 static const char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation.";
57 static const char atl2_driver_version[] = ATL2_DRV_VERSION;
58 static const struct ethtool_ops atl2_ethtool_ops;
59 
60 MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
61 MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
62 MODULE_LICENSE("GPL");
63 MODULE_VERSION(ATL2_DRV_VERSION);
64 
65 /*
66  * atl2_pci_tbl - PCI Device ID Table
67  */
68 static const struct pci_device_id atl2_pci_tbl[] = {
69 	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
70 	/* required last entry */
71 	{0,}
72 };
73 MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
74 
75 static void atl2_check_options(struct atl2_adapter *adapter);
76 
77 /**
78  * atl2_sw_init - Initialize general software structures (struct atl2_adapter)
79  * @adapter: board private structure to initialize
80  *
81  * atl2_sw_init initializes the Adapter private data structure.
82  * Fields are initialized based on PCI device information and
83  * OS network device settings (MTU size).
84  */
85 static int atl2_sw_init(struct atl2_adapter *adapter)
86 {
87 	struct atl2_hw *hw = &adapter->hw;
88 	struct pci_dev *pdev = adapter->pdev;
89 
90 	/* PCI config space info */
91 	hw->vendor_id = pdev->vendor;
92 	hw->device_id = pdev->device;
93 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
94 	hw->subsystem_id = pdev->subsystem_device;
95 	hw->revision_id  = pdev->revision;
96 
97 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
98 
99 	adapter->wol = 0;
100 	adapter->ict = 50000;  /* ~100ms */
101 	adapter->link_speed = SPEED_0;   /* hardware init */
102 	adapter->link_duplex = FULL_DUPLEX;
103 
104 	hw->phy_configured = false;
105 	hw->preamble_len = 7;
106 	hw->ipgt = 0x60;
107 	hw->min_ifg = 0x50;
108 	hw->ipgr1 = 0x40;
109 	hw->ipgr2 = 0x60;
110 	hw->retry_buf = 2;
111 	hw->max_retry = 0xf;
112 	hw->lcol = 0x37;
113 	hw->jam_ipg = 7;
114 	hw->fc_rxd_hi = 0;
115 	hw->fc_rxd_lo = 0;
116 	hw->max_frame_size = adapter->netdev->mtu;
117 
118 	spin_lock_init(&adapter->stats_lock);
119 
120 	set_bit(__ATL2_DOWN, &adapter->flags);
121 
122 	return 0;
123 }
124 
125 /**
126  * atl2_set_multi - Multicast and Promiscuous mode set
127  * @netdev: network interface device structure
128  *
129  * The set_multi entry point is called whenever the multicast address
130  * list or the network interface flags are updated.  This routine is
131  * responsible for configuring the hardware for proper multicast,
132  * promiscuous mode, and all-multi behavior.
133  */
134 static void atl2_set_multi(struct net_device *netdev)
135 {
136 	struct atl2_adapter *adapter = netdev_priv(netdev);
137 	struct atl2_hw *hw = &adapter->hw;
138 	struct netdev_hw_addr *ha;
139 	u32 rctl;
140 	u32 hash_value;
141 
142 	/* Check for Promiscuous and All Multicast modes */
143 	rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
144 
145 	if (netdev->flags & IFF_PROMISC) {
146 		rctl |= MAC_CTRL_PROMIS_EN;
147 	} else if (netdev->flags & IFF_ALLMULTI) {
148 		rctl |= MAC_CTRL_MC_ALL_EN;
149 		rctl &= ~MAC_CTRL_PROMIS_EN;
150 	} else
151 		rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
152 
153 	ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
154 
155 	/* clear the old settings from the multicast hash table */
156 	ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
157 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
158 
159 	/* comoute mc addresses' hash value ,and put it into hash table */
160 	netdev_for_each_mc_addr(ha, netdev) {
161 		hash_value = atl2_hash_mc_addr(hw, ha->addr);
162 		atl2_hash_set(hw, hash_value);
163 	}
164 }
165 
166 static void init_ring_ptrs(struct atl2_adapter *adapter)
167 {
168 	/* Read / Write Ptr Initialize: */
169 	adapter->txd_write_ptr = 0;
170 	atomic_set(&adapter->txd_read_ptr, 0);
171 
172 	adapter->rxd_read_ptr = 0;
173 	adapter->rxd_write_ptr = 0;
174 
175 	atomic_set(&adapter->txs_write_ptr, 0);
176 	adapter->txs_next_clear = 0;
177 }
178 
179 /**
180  * atl2_configure - Configure Transmit&Receive Unit after Reset
181  * @adapter: board private structure
182  *
183  * Configure the Tx /Rx unit of the MAC after a reset.
184  */
185 static int atl2_configure(struct atl2_adapter *adapter)
186 {
187 	struct atl2_hw *hw = &adapter->hw;
188 	u32 value;
189 
190 	/* clear interrupt status */
191 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
192 
193 	/* set MAC Address */
194 	value = (((u32)hw->mac_addr[2]) << 24) |
195 		(((u32)hw->mac_addr[3]) << 16) |
196 		(((u32)hw->mac_addr[4]) << 8) |
197 		(((u32)hw->mac_addr[5]));
198 	ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
199 	value = (((u32)hw->mac_addr[0]) << 8) |
200 		(((u32)hw->mac_addr[1]));
201 	ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
202 
203 	/* HI base address */
204 	ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
205 		(u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
206 
207 	/* LO base address */
208 	ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
209 		(u32)(adapter->txd_dma & 0x00000000ffffffffULL));
210 	ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
211 		(u32)(adapter->txs_dma & 0x00000000ffffffffULL));
212 	ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
213 		(u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
214 
215 	/* element count */
216 	ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
217 	ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
218 	ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM,  (u16)adapter->rxd_ring_size);
219 
220 	/* config Internal SRAM */
221 /*
222     ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
223     ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
224 */
225 
226 	/* config IPG/IFG */
227 	value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
228 		MAC_IPG_IFG_IPGT_SHIFT) |
229 		(((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
230 		MAC_IPG_IFG_MIFG_SHIFT) |
231 		(((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
232 		MAC_IPG_IFG_IPGR1_SHIFT)|
233 		(((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
234 		MAC_IPG_IFG_IPGR2_SHIFT);
235 	ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
236 
237 	/* config  Half-Duplex Control */
238 	value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
239 		(((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
240 		MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
241 		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
242 		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
243 		(((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
244 		MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
245 	ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
246 
247 	/* set Interrupt Moderator Timer */
248 	ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
249 	ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
250 
251 	/* set Interrupt Clear Timer */
252 	ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
253 
254 	/* set MTU */
255 	ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
256 		ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
257 
258 	/* 1590 */
259 	ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
260 
261 	/* flow control */
262 	ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
263 	ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
264 
265 	/* Init mailbox */
266 	ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
267 	ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
268 
269 	/* enable DMA read/write */
270 	ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
271 	ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
272 
273 	value = ATL2_READ_REG(&adapter->hw, REG_ISR);
274 	if ((value & ISR_PHY_LINKDOWN) != 0)
275 		value = 1; /* config failed */
276 	else
277 		value = 0;
278 
279 	/* clear all interrupt status */
280 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
281 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
282 	return value;
283 }
284 
285 /**
286  * atl2_setup_ring_resources - allocate Tx / RX descriptor resources
287  * @adapter: board private structure
288  *
289  * Return 0 on success, negative on failure
290  */
291 static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
292 {
293 	struct pci_dev *pdev = adapter->pdev;
294 	int size;
295 	u8 offset = 0;
296 
297 	/* real ring DMA buffer */
298 	adapter->ring_size = size =
299 		adapter->txd_ring_size * 1 + 7 +	/* dword align */
300 		adapter->txs_ring_size * 4 + 7 +	/* dword align */
301 		adapter->rxd_ring_size * 1536 + 127;	/* 128bytes align */
302 
303 	adapter->ring_vir_addr = pci_alloc_consistent(pdev, size,
304 		&adapter->ring_dma);
305 	if (!adapter->ring_vir_addr)
306 		return -ENOMEM;
307 	memset(adapter->ring_vir_addr, 0, adapter->ring_size);
308 
309 	/* Init TXD Ring */
310 	adapter->txd_dma = adapter->ring_dma ;
311 	offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
312 	adapter->txd_dma += offset;
313 	adapter->txd_ring = adapter->ring_vir_addr + offset;
314 
315 	/* Init TXS Ring */
316 	adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
317 	offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
318 	adapter->txs_dma += offset;
319 	adapter->txs_ring = (struct tx_pkt_status *)
320 		(((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
321 
322 	/* Init RXD Ring */
323 	adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
324 	offset = (adapter->rxd_dma & 127) ?
325 		(128 - (adapter->rxd_dma & 127)) : 0;
326 	if (offset > 7)
327 		offset -= 8;
328 	else
329 		offset += (128 - 8);
330 
331 	adapter->rxd_dma += offset;
332 	adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
333 		(adapter->txs_ring_size * 4 + offset));
334 
335 /*
336  * Read / Write Ptr Initialize:
337  *      init_ring_ptrs(adapter);
338  */
339 	return 0;
340 }
341 
342 /**
343  * atl2_irq_enable - Enable default interrupt generation settings
344  * @adapter: board private structure
345  */
346 static inline void atl2_irq_enable(struct atl2_adapter *adapter)
347 {
348 	ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
349 	ATL2_WRITE_FLUSH(&adapter->hw);
350 }
351 
352 /**
353  * atl2_irq_disable - Mask off interrupt generation on the NIC
354  * @adapter: board private structure
355  */
356 static inline void atl2_irq_disable(struct atl2_adapter *adapter)
357 {
358     ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
359     ATL2_WRITE_FLUSH(&adapter->hw);
360     synchronize_irq(adapter->pdev->irq);
361 }
362 
363 static void __atl2_vlan_mode(netdev_features_t features, u32 *ctrl)
364 {
365 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
366 		/* enable VLAN tag insert/strip */
367 		*ctrl |= MAC_CTRL_RMV_VLAN;
368 	} else {
369 		/* disable VLAN tag insert/strip */
370 		*ctrl &= ~MAC_CTRL_RMV_VLAN;
371 	}
372 }
373 
374 static void atl2_vlan_mode(struct net_device *netdev,
375 	netdev_features_t features)
376 {
377 	struct atl2_adapter *adapter = netdev_priv(netdev);
378 	u32 ctrl;
379 
380 	atl2_irq_disable(adapter);
381 
382 	ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
383 	__atl2_vlan_mode(features, &ctrl);
384 	ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
385 
386 	atl2_irq_enable(adapter);
387 }
388 
389 static void atl2_restore_vlan(struct atl2_adapter *adapter)
390 {
391 	atl2_vlan_mode(adapter->netdev, adapter->netdev->features);
392 }
393 
394 static netdev_features_t atl2_fix_features(struct net_device *netdev,
395 	netdev_features_t features)
396 {
397 	/*
398 	 * Since there is no support for separate rx/tx vlan accel
399 	 * enable/disable make sure tx flag is always in same state as rx.
400 	 */
401 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
402 		features |= NETIF_F_HW_VLAN_CTAG_TX;
403 	else
404 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
405 
406 	return features;
407 }
408 
409 static int atl2_set_features(struct net_device *netdev,
410 	netdev_features_t features)
411 {
412 	netdev_features_t changed = netdev->features ^ features;
413 
414 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
415 		atl2_vlan_mode(netdev, features);
416 
417 	return 0;
418 }
419 
420 static void atl2_intr_rx(struct atl2_adapter *adapter)
421 {
422 	struct net_device *netdev = adapter->netdev;
423 	struct rx_desc *rxd;
424 	struct sk_buff *skb;
425 
426 	do {
427 		rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
428 		if (!rxd->status.update)
429 			break; /* end of tx */
430 
431 		/* clear this flag at once */
432 		rxd->status.update = 0;
433 
434 		if (rxd->status.ok && rxd->status.pkt_size >= 60) {
435 			int rx_size = (int)(rxd->status.pkt_size - 4);
436 			/* alloc new buffer */
437 			skb = netdev_alloc_skb_ip_align(netdev, rx_size);
438 			if (NULL == skb) {
439 				/*
440 				 * Check that some rx space is free. If not,
441 				 * free one and mark stats->rx_dropped++.
442 				 */
443 				netdev->stats.rx_dropped++;
444 				break;
445 			}
446 			memcpy(skb->data, rxd->packet, rx_size);
447 			skb_put(skb, rx_size);
448 			skb->protocol = eth_type_trans(skb, netdev);
449 			if (rxd->status.vlan) {
450 				u16 vlan_tag = (rxd->status.vtag>>4) |
451 					((rxd->status.vtag&7) << 13) |
452 					((rxd->status.vtag&8) << 9);
453 
454 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
455 			}
456 			netif_rx(skb);
457 			netdev->stats.rx_bytes += rx_size;
458 			netdev->stats.rx_packets++;
459 		} else {
460 			netdev->stats.rx_errors++;
461 
462 			if (rxd->status.ok && rxd->status.pkt_size <= 60)
463 				netdev->stats.rx_length_errors++;
464 			if (rxd->status.mcast)
465 				netdev->stats.multicast++;
466 			if (rxd->status.crc)
467 				netdev->stats.rx_crc_errors++;
468 			if (rxd->status.align)
469 				netdev->stats.rx_frame_errors++;
470 		}
471 
472 		/* advance write ptr */
473 		if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
474 			adapter->rxd_write_ptr = 0;
475 	} while (1);
476 
477 	/* update mailbox? */
478 	adapter->rxd_read_ptr = adapter->rxd_write_ptr;
479 	ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
480 }
481 
482 static void atl2_intr_tx(struct atl2_adapter *adapter)
483 {
484 	struct net_device *netdev = adapter->netdev;
485 	u32 txd_read_ptr;
486 	u32 txs_write_ptr;
487 	struct tx_pkt_status *txs;
488 	struct tx_pkt_header *txph;
489 	int free_hole = 0;
490 
491 	do {
492 		txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
493 		txs = adapter->txs_ring + txs_write_ptr;
494 		if (!txs->update)
495 			break; /* tx stop here */
496 
497 		free_hole = 1;
498 		txs->update = 0;
499 
500 		if (++txs_write_ptr == adapter->txs_ring_size)
501 			txs_write_ptr = 0;
502 		atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
503 
504 		txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
505 		txph = (struct tx_pkt_header *)
506 			(((u8 *)adapter->txd_ring) + txd_read_ptr);
507 
508 		if (txph->pkt_size != txs->pkt_size) {
509 			struct tx_pkt_status *old_txs = txs;
510 			printk(KERN_WARNING
511 				"%s: txs packet size not consistent with txd"
512 				" txd_:0x%08x, txs_:0x%08x!\n",
513 				adapter->netdev->name,
514 				*(u32 *)txph, *(u32 *)txs);
515 			printk(KERN_WARNING
516 				"txd read ptr: 0x%x\n",
517 				txd_read_ptr);
518 			txs = adapter->txs_ring + txs_write_ptr;
519 			printk(KERN_WARNING
520 				"txs-behind:0x%08x\n",
521 				*(u32 *)txs);
522 			if (txs_write_ptr < 2) {
523 				txs = adapter->txs_ring +
524 					(adapter->txs_ring_size +
525 					txs_write_ptr - 2);
526 			} else {
527 				txs = adapter->txs_ring + (txs_write_ptr - 2);
528 			}
529 			printk(KERN_WARNING
530 				"txs-before:0x%08x\n",
531 				*(u32 *)txs);
532 			txs = old_txs;
533 		}
534 
535 		 /* 4for TPH */
536 		txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
537 		if (txd_read_ptr >= adapter->txd_ring_size)
538 			txd_read_ptr -= adapter->txd_ring_size;
539 
540 		atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
541 
542 		/* tx statistics: */
543 		if (txs->ok) {
544 			netdev->stats.tx_bytes += txs->pkt_size;
545 			netdev->stats.tx_packets++;
546 		}
547 		else
548 			netdev->stats.tx_errors++;
549 
550 		if (txs->defer)
551 			netdev->stats.collisions++;
552 		if (txs->abort_col)
553 			netdev->stats.tx_aborted_errors++;
554 		if (txs->late_col)
555 			netdev->stats.tx_window_errors++;
556 		if (txs->underun)
557 			netdev->stats.tx_fifo_errors++;
558 	} while (1);
559 
560 	if (free_hole) {
561 		if (netif_queue_stopped(adapter->netdev) &&
562 			netif_carrier_ok(adapter->netdev))
563 			netif_wake_queue(adapter->netdev);
564 	}
565 }
566 
567 static void atl2_check_for_link(struct atl2_adapter *adapter)
568 {
569 	struct net_device *netdev = adapter->netdev;
570 	u16 phy_data = 0;
571 
572 	spin_lock(&adapter->stats_lock);
573 	atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
574 	atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
575 	spin_unlock(&adapter->stats_lock);
576 
577 	/* notify upper layer link down ASAP */
578 	if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
579 		if (netif_carrier_ok(netdev)) { /* old link state: Up */
580 		printk(KERN_INFO "%s: %s NIC Link is Down\n",
581 			atl2_driver_name, netdev->name);
582 		adapter->link_speed = SPEED_0;
583 		netif_carrier_off(netdev);
584 		netif_stop_queue(netdev);
585 		}
586 	}
587 	schedule_work(&adapter->link_chg_task);
588 }
589 
590 static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
591 {
592 	u16 phy_data;
593 	spin_lock(&adapter->stats_lock);
594 	atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
595 	spin_unlock(&adapter->stats_lock);
596 }
597 
598 /**
599  * atl2_intr - Interrupt Handler
600  * @irq: interrupt number
601  * @data: pointer to a network interface device structure
602  */
603 static irqreturn_t atl2_intr(int irq, void *data)
604 {
605 	struct atl2_adapter *adapter = netdev_priv(data);
606 	struct atl2_hw *hw = &adapter->hw;
607 	u32 status;
608 
609 	status = ATL2_READ_REG(hw, REG_ISR);
610 	if (0 == status)
611 		return IRQ_NONE;
612 
613 	/* link event */
614 	if (status & ISR_PHY)
615 		atl2_clear_phy_int(adapter);
616 
617 	/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
618 	ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
619 
620 	/* check if PCIE PHY Link down */
621 	if (status & ISR_PHY_LINKDOWN) {
622 		if (netif_running(adapter->netdev)) { /* reset MAC */
623 			ATL2_WRITE_REG(hw, REG_ISR, 0);
624 			ATL2_WRITE_REG(hw, REG_IMR, 0);
625 			ATL2_WRITE_FLUSH(hw);
626 			schedule_work(&adapter->reset_task);
627 			return IRQ_HANDLED;
628 		}
629 	}
630 
631 	/* check if DMA read/write error? */
632 	if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
633 		ATL2_WRITE_REG(hw, REG_ISR, 0);
634 		ATL2_WRITE_REG(hw, REG_IMR, 0);
635 		ATL2_WRITE_FLUSH(hw);
636 		schedule_work(&adapter->reset_task);
637 		return IRQ_HANDLED;
638 	}
639 
640 	/* link event */
641 	if (status & (ISR_PHY | ISR_MANUAL)) {
642 		adapter->netdev->stats.tx_carrier_errors++;
643 		atl2_check_for_link(adapter);
644 	}
645 
646 	/* transmit event */
647 	if (status & ISR_TX_EVENT)
648 		atl2_intr_tx(adapter);
649 
650 	/* rx exception */
651 	if (status & ISR_RX_EVENT)
652 		atl2_intr_rx(adapter);
653 
654 	/* re-enable Interrupt */
655 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
656 	return IRQ_HANDLED;
657 }
658 
659 static int atl2_request_irq(struct atl2_adapter *adapter)
660 {
661 	struct net_device *netdev = adapter->netdev;
662 	int flags, err = 0;
663 
664 	flags = IRQF_SHARED;
665 	adapter->have_msi = true;
666 	err = pci_enable_msi(adapter->pdev);
667 	if (err)
668 		adapter->have_msi = false;
669 
670 	if (adapter->have_msi)
671 		flags &= ~IRQF_SHARED;
672 
673 	return request_irq(adapter->pdev->irq, atl2_intr, flags, netdev->name,
674 		netdev);
675 }
676 
677 /**
678  * atl2_free_ring_resources - Free Tx / RX descriptor Resources
679  * @adapter: board private structure
680  *
681  * Free all transmit software resources
682  */
683 static void atl2_free_ring_resources(struct atl2_adapter *adapter)
684 {
685 	struct pci_dev *pdev = adapter->pdev;
686 	pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr,
687 		adapter->ring_dma);
688 }
689 
690 /**
691  * atl2_open - Called when a network interface is made active
692  * @netdev: network interface device structure
693  *
694  * Returns 0 on success, negative value on failure
695  *
696  * The open entry point is called when a network interface is made
697  * active by the system (IFF_UP).  At this point all resources needed
698  * for transmit and receive operations are allocated, the interrupt
699  * handler is registered with the OS, the watchdog timer is started,
700  * and the stack is notified that the interface is ready.
701  */
702 static int atl2_open(struct net_device *netdev)
703 {
704 	struct atl2_adapter *adapter = netdev_priv(netdev);
705 	int err;
706 	u32 val;
707 
708 	/* disallow open during test */
709 	if (test_bit(__ATL2_TESTING, &adapter->flags))
710 		return -EBUSY;
711 
712 	/* allocate transmit descriptors */
713 	err = atl2_setup_ring_resources(adapter);
714 	if (err)
715 		return err;
716 
717 	err = atl2_init_hw(&adapter->hw);
718 	if (err) {
719 		err = -EIO;
720 		goto err_init_hw;
721 	}
722 
723 	/* hardware has been reset, we need to reload some things */
724 	atl2_set_multi(netdev);
725 	init_ring_ptrs(adapter);
726 
727 	atl2_restore_vlan(adapter);
728 
729 	if (atl2_configure(adapter)) {
730 		err = -EIO;
731 		goto err_config;
732 	}
733 
734 	err = atl2_request_irq(adapter);
735 	if (err)
736 		goto err_req_irq;
737 
738 	clear_bit(__ATL2_DOWN, &adapter->flags);
739 
740 	mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ));
741 
742 	val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
743 	ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
744 		val | MASTER_CTRL_MANUAL_INT);
745 
746 	atl2_irq_enable(adapter);
747 
748 	return 0;
749 
750 err_init_hw:
751 err_req_irq:
752 err_config:
753 	atl2_free_ring_resources(adapter);
754 	atl2_reset_hw(&adapter->hw);
755 
756 	return err;
757 }
758 
759 static void atl2_down(struct atl2_adapter *adapter)
760 {
761 	struct net_device *netdev = adapter->netdev;
762 
763 	/* signal that we're down so the interrupt handler does not
764 	 * reschedule our watchdog timer */
765 	set_bit(__ATL2_DOWN, &adapter->flags);
766 
767 	netif_tx_disable(netdev);
768 
769 	/* reset MAC to disable all RX/TX */
770 	atl2_reset_hw(&adapter->hw);
771 	msleep(1);
772 
773 	atl2_irq_disable(adapter);
774 
775 	del_timer_sync(&adapter->watchdog_timer);
776 	del_timer_sync(&adapter->phy_config_timer);
777 	clear_bit(0, &adapter->cfg_phy);
778 
779 	netif_carrier_off(netdev);
780 	adapter->link_speed = SPEED_0;
781 	adapter->link_duplex = -1;
782 }
783 
784 static void atl2_free_irq(struct atl2_adapter *adapter)
785 {
786 	struct net_device *netdev = adapter->netdev;
787 
788 	free_irq(adapter->pdev->irq, netdev);
789 
790 #ifdef CONFIG_PCI_MSI
791 	if (adapter->have_msi)
792 		pci_disable_msi(adapter->pdev);
793 #endif
794 }
795 
796 /**
797  * atl2_close - Disables a network interface
798  * @netdev: network interface device structure
799  *
800  * Returns 0, this is not allowed to fail
801  *
802  * The close entry point is called when an interface is de-activated
803  * by the OS.  The hardware is still under the drivers control, but
804  * needs to be disabled.  A global MAC reset is issued to stop the
805  * hardware, and all transmit and receive resources are freed.
806  */
807 static int atl2_close(struct net_device *netdev)
808 {
809 	struct atl2_adapter *adapter = netdev_priv(netdev);
810 
811 	WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
812 
813 	atl2_down(adapter);
814 	atl2_free_irq(adapter);
815 	atl2_free_ring_resources(adapter);
816 
817 	return 0;
818 }
819 
820 static inline int TxsFreeUnit(struct atl2_adapter *adapter)
821 {
822 	u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
823 
824 	return (adapter->txs_next_clear >= txs_write_ptr) ?
825 		(int) (adapter->txs_ring_size - adapter->txs_next_clear +
826 		txs_write_ptr - 1) :
827 		(int) (txs_write_ptr - adapter->txs_next_clear - 1);
828 }
829 
830 static inline int TxdFreeBytes(struct atl2_adapter *adapter)
831 {
832 	u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
833 
834 	return (adapter->txd_write_ptr >= txd_read_ptr) ?
835 		(int) (adapter->txd_ring_size - adapter->txd_write_ptr +
836 		txd_read_ptr - 1) :
837 		(int) (txd_read_ptr - adapter->txd_write_ptr - 1);
838 }
839 
840 static netdev_tx_t atl2_xmit_frame(struct sk_buff *skb,
841 					 struct net_device *netdev)
842 {
843 	struct atl2_adapter *adapter = netdev_priv(netdev);
844 	struct tx_pkt_header *txph;
845 	u32 offset, copy_len;
846 	int txs_unused;
847 	int txbuf_unused;
848 
849 	if (test_bit(__ATL2_DOWN, &adapter->flags)) {
850 		dev_kfree_skb_any(skb);
851 		return NETDEV_TX_OK;
852 	}
853 
854 	if (unlikely(skb->len <= 0)) {
855 		dev_kfree_skb_any(skb);
856 		return NETDEV_TX_OK;
857 	}
858 
859 	txs_unused = TxsFreeUnit(adapter);
860 	txbuf_unused = TxdFreeBytes(adapter);
861 
862 	if (skb->len + sizeof(struct tx_pkt_header) + 4  > txbuf_unused ||
863 		txs_unused < 1) {
864 		/* not enough resources */
865 		netif_stop_queue(netdev);
866 		return NETDEV_TX_BUSY;
867 	}
868 
869 	offset = adapter->txd_write_ptr;
870 
871 	txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
872 
873 	*(u32 *)txph = 0;
874 	txph->pkt_size = skb->len;
875 
876 	offset += 4;
877 	if (offset >= adapter->txd_ring_size)
878 		offset -= adapter->txd_ring_size;
879 	copy_len = adapter->txd_ring_size - offset;
880 	if (copy_len >= skb->len) {
881 		memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
882 		offset += ((u32)(skb->len + 3) & ~3);
883 	} else {
884 		memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
885 		memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
886 			skb->len-copy_len);
887 		offset = ((u32)(skb->len-copy_len + 3) & ~3);
888 	}
889 #ifdef NETIF_F_HW_VLAN_CTAG_TX
890 	if (skb_vlan_tag_present(skb)) {
891 		u16 vlan_tag = skb_vlan_tag_get(skb);
892 		vlan_tag = (vlan_tag << 4) |
893 			(vlan_tag >> 13) |
894 			((vlan_tag >> 9) & 0x8);
895 		txph->ins_vlan = 1;
896 		txph->vlan = vlan_tag;
897 	}
898 #endif
899 	if (offset >= adapter->txd_ring_size)
900 		offset -= adapter->txd_ring_size;
901 	adapter->txd_write_ptr = offset;
902 
903 	/* clear txs before send */
904 	adapter->txs_ring[adapter->txs_next_clear].update = 0;
905 	if (++adapter->txs_next_clear == adapter->txs_ring_size)
906 		adapter->txs_next_clear = 0;
907 
908 	ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
909 		(adapter->txd_write_ptr >> 2));
910 
911 	mmiowb();
912 	dev_kfree_skb_any(skb);
913 	return NETDEV_TX_OK;
914 }
915 
916 /**
917  * atl2_change_mtu - Change the Maximum Transfer Unit
918  * @netdev: network interface device structure
919  * @new_mtu: new value for maximum frame size
920  *
921  * Returns 0 on success, negative on failure
922  */
923 static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
924 {
925 	struct atl2_adapter *adapter = netdev_priv(netdev);
926 	struct atl2_hw *hw = &adapter->hw;
927 
928 	/* set MTU */
929 	netdev->mtu = new_mtu;
930 	hw->max_frame_size = new_mtu;
931 	ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ETH_HLEN +
932 		       VLAN_HLEN + ETH_FCS_LEN);
933 
934 	return 0;
935 }
936 
937 /**
938  * atl2_set_mac - Change the Ethernet Address of the NIC
939  * @netdev: network interface device structure
940  * @p: pointer to an address structure
941  *
942  * Returns 0 on success, negative on failure
943  */
944 static int atl2_set_mac(struct net_device *netdev, void *p)
945 {
946 	struct atl2_adapter *adapter = netdev_priv(netdev);
947 	struct sockaddr *addr = p;
948 
949 	if (!is_valid_ether_addr(addr->sa_data))
950 		return -EADDRNOTAVAIL;
951 
952 	if (netif_running(netdev))
953 		return -EBUSY;
954 
955 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
956 	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
957 
958 	atl2_set_mac_addr(&adapter->hw);
959 
960 	return 0;
961 }
962 
963 static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
964 {
965 	struct atl2_adapter *adapter = netdev_priv(netdev);
966 	struct mii_ioctl_data *data = if_mii(ifr);
967 	unsigned long flags;
968 
969 	switch (cmd) {
970 	case SIOCGMIIPHY:
971 		data->phy_id = 0;
972 		break;
973 	case SIOCGMIIREG:
974 		spin_lock_irqsave(&adapter->stats_lock, flags);
975 		if (atl2_read_phy_reg(&adapter->hw,
976 			data->reg_num & 0x1F, &data->val_out)) {
977 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
978 			return -EIO;
979 		}
980 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
981 		break;
982 	case SIOCSMIIREG:
983 		if (data->reg_num & ~(0x1F))
984 			return -EFAULT;
985 		spin_lock_irqsave(&adapter->stats_lock, flags);
986 		if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
987 			data->val_in)) {
988 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
989 			return -EIO;
990 		}
991 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
992 		break;
993 	default:
994 		return -EOPNOTSUPP;
995 	}
996 	return 0;
997 }
998 
999 static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1000 {
1001 	switch (cmd) {
1002 	case SIOCGMIIPHY:
1003 	case SIOCGMIIREG:
1004 	case SIOCSMIIREG:
1005 		return atl2_mii_ioctl(netdev, ifr, cmd);
1006 #ifdef ETHTOOL_OPS_COMPAT
1007 	case SIOCETHTOOL:
1008 		return ethtool_ioctl(ifr);
1009 #endif
1010 	default:
1011 		return -EOPNOTSUPP;
1012 	}
1013 }
1014 
1015 /**
1016  * atl2_tx_timeout - Respond to a Tx Hang
1017  * @netdev: network interface device structure
1018  */
1019 static void atl2_tx_timeout(struct net_device *netdev)
1020 {
1021 	struct atl2_adapter *adapter = netdev_priv(netdev);
1022 
1023 	/* Do the reset outside of interrupt context */
1024 	schedule_work(&adapter->reset_task);
1025 }
1026 
1027 /**
1028  * atl2_watchdog - Timer Call-back
1029  * @data: pointer to netdev cast into an unsigned long
1030  */
1031 static void atl2_watchdog(struct timer_list *t)
1032 {
1033 	struct atl2_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1034 
1035 	if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1036 		u32 drop_rxd, drop_rxs;
1037 		unsigned long flags;
1038 
1039 		spin_lock_irqsave(&adapter->stats_lock, flags);
1040 		drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
1041 		drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
1042 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
1043 
1044 		adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs;
1045 
1046 		/* Reset the timer */
1047 		mod_timer(&adapter->watchdog_timer,
1048 			  round_jiffies(jiffies + 4 * HZ));
1049 	}
1050 }
1051 
1052 /**
1053  * atl2_phy_config - Timer Call-back
1054  * @data: pointer to netdev cast into an unsigned long
1055  */
1056 static void atl2_phy_config(struct timer_list *t)
1057 {
1058 	struct atl2_adapter *adapter = from_timer(adapter, t,
1059 						  phy_config_timer);
1060 	struct atl2_hw *hw = &adapter->hw;
1061 	unsigned long flags;
1062 
1063 	spin_lock_irqsave(&adapter->stats_lock, flags);
1064 	atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
1065 	atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
1066 		MII_CR_RESTART_AUTO_NEG);
1067 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
1068 	clear_bit(0, &adapter->cfg_phy);
1069 }
1070 
1071 static int atl2_up(struct atl2_adapter *adapter)
1072 {
1073 	struct net_device *netdev = adapter->netdev;
1074 	int err = 0;
1075 	u32 val;
1076 
1077 	/* hardware has been reset, we need to reload some things */
1078 
1079 	err = atl2_init_hw(&adapter->hw);
1080 	if (err) {
1081 		err = -EIO;
1082 		return err;
1083 	}
1084 
1085 	atl2_set_multi(netdev);
1086 	init_ring_ptrs(adapter);
1087 
1088 	atl2_restore_vlan(adapter);
1089 
1090 	if (atl2_configure(adapter)) {
1091 		err = -EIO;
1092 		goto err_up;
1093 	}
1094 
1095 	clear_bit(__ATL2_DOWN, &adapter->flags);
1096 
1097 	val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
1098 	ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
1099 		MASTER_CTRL_MANUAL_INT);
1100 
1101 	atl2_irq_enable(adapter);
1102 
1103 err_up:
1104 	return err;
1105 }
1106 
1107 static void atl2_reinit_locked(struct atl2_adapter *adapter)
1108 {
1109 	WARN_ON(in_interrupt());
1110 	while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1111 		msleep(1);
1112 	atl2_down(adapter);
1113 	atl2_up(adapter);
1114 	clear_bit(__ATL2_RESETTING, &adapter->flags);
1115 }
1116 
1117 static void atl2_reset_task(struct work_struct *work)
1118 {
1119 	struct atl2_adapter *adapter;
1120 	adapter = container_of(work, struct atl2_adapter, reset_task);
1121 
1122 	atl2_reinit_locked(adapter);
1123 }
1124 
1125 static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
1126 {
1127 	u32 value;
1128 	struct atl2_hw *hw = &adapter->hw;
1129 	struct net_device *netdev = adapter->netdev;
1130 
1131 	/* Config MAC CTRL Register */
1132 	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1133 
1134 	/* duplex */
1135 	if (FULL_DUPLEX == adapter->link_duplex)
1136 		value |= MAC_CTRL_DUPLX;
1137 
1138 	/* flow control */
1139 	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1140 
1141 	/* PAD & CRC */
1142 	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1143 
1144 	/* preamble length */
1145 	value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
1146 		MAC_CTRL_PRMLEN_SHIFT);
1147 
1148 	/* vlan */
1149 	__atl2_vlan_mode(netdev->features, &value);
1150 
1151 	/* filter mode */
1152 	value |= MAC_CTRL_BC_EN;
1153 	if (netdev->flags & IFF_PROMISC)
1154 		value |= MAC_CTRL_PROMIS_EN;
1155 	else if (netdev->flags & IFF_ALLMULTI)
1156 		value |= MAC_CTRL_MC_ALL_EN;
1157 
1158 	/* half retry buffer */
1159 	value |= (((u32)(adapter->hw.retry_buf &
1160 		MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1161 
1162 	ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1163 }
1164 
1165 static int atl2_check_link(struct atl2_adapter *adapter)
1166 {
1167 	struct atl2_hw *hw = &adapter->hw;
1168 	struct net_device *netdev = adapter->netdev;
1169 	int ret_val;
1170 	u16 speed, duplex, phy_data;
1171 	int reconfig = 0;
1172 
1173 	/* MII_BMSR must read twise */
1174 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1175 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1176 	if (!(phy_data&BMSR_LSTATUS)) { /* link down */
1177 		if (netif_carrier_ok(netdev)) { /* old link state: Up */
1178 			u32 value;
1179 			/* disable rx */
1180 			value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1181 			value &= ~MAC_CTRL_RX_EN;
1182 			ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1183 			adapter->link_speed = SPEED_0;
1184 			netif_carrier_off(netdev);
1185 			netif_stop_queue(netdev);
1186 		}
1187 		return 0;
1188 	}
1189 
1190 	/* Link Up */
1191 	ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1192 	if (ret_val)
1193 		return ret_val;
1194 	switch (hw->MediaType) {
1195 	case MEDIA_TYPE_100M_FULL:
1196 		if (speed  != SPEED_100 || duplex != FULL_DUPLEX)
1197 			reconfig = 1;
1198 		break;
1199 	case MEDIA_TYPE_100M_HALF:
1200 		if (speed  != SPEED_100 || duplex != HALF_DUPLEX)
1201 			reconfig = 1;
1202 		break;
1203 	case MEDIA_TYPE_10M_FULL:
1204 		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1205 			reconfig = 1;
1206 		break;
1207 	case MEDIA_TYPE_10M_HALF:
1208 		if (speed  != SPEED_10 || duplex != HALF_DUPLEX)
1209 			reconfig = 1;
1210 		break;
1211 	}
1212 	/* link result is our setting */
1213 	if (reconfig == 0) {
1214 		if (adapter->link_speed != speed ||
1215 			adapter->link_duplex != duplex) {
1216 			adapter->link_speed = speed;
1217 			adapter->link_duplex = duplex;
1218 			atl2_setup_mac_ctrl(adapter);
1219 			printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
1220 				atl2_driver_name, netdev->name,
1221 				adapter->link_speed,
1222 				adapter->link_duplex == FULL_DUPLEX ?
1223 					"Full Duplex" : "Half Duplex");
1224 		}
1225 
1226 		if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
1227 			netif_carrier_on(netdev);
1228 			netif_wake_queue(netdev);
1229 		}
1230 		return 0;
1231 	}
1232 
1233 	/* change original link status */
1234 	if (netif_carrier_ok(netdev)) {
1235 		u32 value;
1236 		/* disable rx */
1237 		value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1238 		value &= ~MAC_CTRL_RX_EN;
1239 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1240 
1241 		adapter->link_speed = SPEED_0;
1242 		netif_carrier_off(netdev);
1243 		netif_stop_queue(netdev);
1244 	}
1245 
1246 	/* auto-neg, insert timer to re-config phy
1247 	 * (if interval smaller than 5 seconds, something strange) */
1248 	if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1249 		if (!test_and_set_bit(0, &adapter->cfg_phy))
1250 			mod_timer(&adapter->phy_config_timer,
1251 				  round_jiffies(jiffies + 5 * HZ));
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 /**
1258  * atl2_link_chg_task - deal with link change event Out of interrupt context
1259  */
1260 static void atl2_link_chg_task(struct work_struct *work)
1261 {
1262 	struct atl2_adapter *adapter;
1263 	unsigned long flags;
1264 
1265 	adapter = container_of(work, struct atl2_adapter, link_chg_task);
1266 
1267 	spin_lock_irqsave(&adapter->stats_lock, flags);
1268 	atl2_check_link(adapter);
1269 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
1270 }
1271 
1272 static void atl2_setup_pcicmd(struct pci_dev *pdev)
1273 {
1274 	u16 cmd;
1275 
1276 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1277 
1278 	if (cmd & PCI_COMMAND_INTX_DISABLE)
1279 		cmd &= ~PCI_COMMAND_INTX_DISABLE;
1280 	if (cmd & PCI_COMMAND_IO)
1281 		cmd &= ~PCI_COMMAND_IO;
1282 	if (0 == (cmd & PCI_COMMAND_MEMORY))
1283 		cmd |= PCI_COMMAND_MEMORY;
1284 	if (0 == (cmd & PCI_COMMAND_MASTER))
1285 		cmd |= PCI_COMMAND_MASTER;
1286 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
1287 
1288 	/*
1289 	 * some motherboards BIOS(PXE/EFI) driver may set PME
1290 	 * while they transfer control to OS (Windows/Linux)
1291 	 * so we should clear this bit before NIC work normally
1292 	 */
1293 	pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
1294 }
1295 
1296 #ifdef CONFIG_NET_POLL_CONTROLLER
1297 static void atl2_poll_controller(struct net_device *netdev)
1298 {
1299 	disable_irq(netdev->irq);
1300 	atl2_intr(netdev->irq, netdev);
1301 	enable_irq(netdev->irq);
1302 }
1303 #endif
1304 
1305 
1306 static const struct net_device_ops atl2_netdev_ops = {
1307 	.ndo_open		= atl2_open,
1308 	.ndo_stop		= atl2_close,
1309 	.ndo_start_xmit		= atl2_xmit_frame,
1310 	.ndo_set_rx_mode	= atl2_set_multi,
1311 	.ndo_validate_addr	= eth_validate_addr,
1312 	.ndo_set_mac_address	= atl2_set_mac,
1313 	.ndo_change_mtu		= atl2_change_mtu,
1314 	.ndo_fix_features	= atl2_fix_features,
1315 	.ndo_set_features	= atl2_set_features,
1316 	.ndo_do_ioctl		= atl2_ioctl,
1317 	.ndo_tx_timeout		= atl2_tx_timeout,
1318 #ifdef CONFIG_NET_POLL_CONTROLLER
1319 	.ndo_poll_controller	= atl2_poll_controller,
1320 #endif
1321 };
1322 
1323 /**
1324  * atl2_probe - Device Initialization Routine
1325  * @pdev: PCI device information struct
1326  * @ent: entry in atl2_pci_tbl
1327  *
1328  * Returns 0 on success, negative on failure
1329  *
1330  * atl2_probe initializes an adapter identified by a pci_dev structure.
1331  * The OS initialization, configuring of the adapter private structure,
1332  * and a hardware reset occur.
1333  */
1334 static int atl2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1335 {
1336 	struct net_device *netdev;
1337 	struct atl2_adapter *adapter;
1338 	static int cards_found;
1339 	unsigned long mmio_start;
1340 	int mmio_len;
1341 	int err;
1342 
1343 	cards_found = 0;
1344 
1345 	err = pci_enable_device(pdev);
1346 	if (err)
1347 		return err;
1348 
1349 	/*
1350 	 * atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
1351 	 * until the kernel has the proper infrastructure to support 64-bit DMA
1352 	 * on these devices.
1353 	 */
1354 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) &&
1355 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1356 		printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
1357 		err = -EIO;
1358 		goto err_dma;
1359 	}
1360 
1361 	/* Mark all PCI regions associated with PCI device
1362 	 * pdev as being reserved by owner atl2_driver_name */
1363 	err = pci_request_regions(pdev, atl2_driver_name);
1364 	if (err)
1365 		goto err_pci_reg;
1366 
1367 	/* Enables bus-mastering on the device and calls
1368 	 * pcibios_set_master to do the needed arch specific settings */
1369 	pci_set_master(pdev);
1370 
1371 	netdev = alloc_etherdev(sizeof(struct atl2_adapter));
1372 	if (!netdev) {
1373 		err = -ENOMEM;
1374 		goto err_alloc_etherdev;
1375 	}
1376 
1377 	SET_NETDEV_DEV(netdev, &pdev->dev);
1378 
1379 	pci_set_drvdata(pdev, netdev);
1380 	adapter = netdev_priv(netdev);
1381 	adapter->netdev = netdev;
1382 	adapter->pdev = pdev;
1383 	adapter->hw.back = adapter;
1384 
1385 	mmio_start = pci_resource_start(pdev, 0x0);
1386 	mmio_len = pci_resource_len(pdev, 0x0);
1387 
1388 	adapter->hw.mem_rang = (u32)mmio_len;
1389 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1390 	if (!adapter->hw.hw_addr) {
1391 		err = -EIO;
1392 		goto err_ioremap;
1393 	}
1394 
1395 	atl2_setup_pcicmd(pdev);
1396 
1397 	netdev->netdev_ops = &atl2_netdev_ops;
1398 	netdev->ethtool_ops = &atl2_ethtool_ops;
1399 	netdev->watchdog_timeo = 5 * HZ;
1400 	netdev->min_mtu = 40;
1401 	netdev->max_mtu = ETH_DATA_LEN + VLAN_HLEN;
1402 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1403 
1404 	netdev->mem_start = mmio_start;
1405 	netdev->mem_end = mmio_start + mmio_len;
1406 	adapter->bd_number = cards_found;
1407 	adapter->pci_using_64 = false;
1408 
1409 	/* setup the private structure */
1410 	err = atl2_sw_init(adapter);
1411 	if (err)
1412 		goto err_sw_init;
1413 
1414 	netdev->hw_features = NETIF_F_HW_VLAN_CTAG_RX;
1415 	netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
1416 
1417 	/* Init PHY as early as possible due to power saving issue  */
1418 	atl2_phy_init(&adapter->hw);
1419 
1420 	/* reset the controller to
1421 	 * put the device in a known good starting state */
1422 
1423 	if (atl2_reset_hw(&adapter->hw)) {
1424 		err = -EIO;
1425 		goto err_reset;
1426 	}
1427 
1428 	/* copy the MAC address out of the EEPROM */
1429 	atl2_read_mac_addr(&adapter->hw);
1430 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1431 	if (!is_valid_ether_addr(netdev->dev_addr)) {
1432 		err = -EIO;
1433 		goto err_eeprom;
1434 	}
1435 
1436 	atl2_check_options(adapter);
1437 
1438 	timer_setup(&adapter->watchdog_timer, atl2_watchdog, 0);
1439 
1440 	timer_setup(&adapter->phy_config_timer, atl2_phy_config, 0);
1441 
1442 	INIT_WORK(&adapter->reset_task, atl2_reset_task);
1443 	INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
1444 
1445 	strcpy(netdev->name, "eth%d"); /* ?? */
1446 	err = register_netdev(netdev);
1447 	if (err)
1448 		goto err_register;
1449 
1450 	/* assume we have no link for now */
1451 	netif_carrier_off(netdev);
1452 	netif_stop_queue(netdev);
1453 
1454 	cards_found++;
1455 
1456 	return 0;
1457 
1458 err_reset:
1459 err_register:
1460 err_sw_init:
1461 err_eeprom:
1462 	iounmap(adapter->hw.hw_addr);
1463 err_ioremap:
1464 	free_netdev(netdev);
1465 err_alloc_etherdev:
1466 	pci_release_regions(pdev);
1467 err_pci_reg:
1468 err_dma:
1469 	pci_disable_device(pdev);
1470 	return err;
1471 }
1472 
1473 /**
1474  * atl2_remove - Device Removal Routine
1475  * @pdev: PCI device information struct
1476  *
1477  * atl2_remove is called by the PCI subsystem to alert the driver
1478  * that it should release a PCI device.  The could be caused by a
1479  * Hot-Plug event, or because the driver is going to be removed from
1480  * memory.
1481  */
1482 /* FIXME: write the original MAC address back in case it was changed from a
1483  * BIOS-set value, as in atl1 -- CHS */
1484 static void atl2_remove(struct pci_dev *pdev)
1485 {
1486 	struct net_device *netdev = pci_get_drvdata(pdev);
1487 	struct atl2_adapter *adapter = netdev_priv(netdev);
1488 
1489 	/* flush_scheduled work may reschedule our watchdog task, so
1490 	 * explicitly disable watchdog tasks from being rescheduled  */
1491 	set_bit(__ATL2_DOWN, &adapter->flags);
1492 
1493 	del_timer_sync(&adapter->watchdog_timer);
1494 	del_timer_sync(&adapter->phy_config_timer);
1495 	cancel_work_sync(&adapter->reset_task);
1496 	cancel_work_sync(&adapter->link_chg_task);
1497 
1498 	unregister_netdev(netdev);
1499 
1500 	atl2_force_ps(&adapter->hw);
1501 
1502 	iounmap(adapter->hw.hw_addr);
1503 	pci_release_regions(pdev);
1504 
1505 	free_netdev(netdev);
1506 
1507 	pci_disable_device(pdev);
1508 }
1509 
1510 static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
1511 {
1512 	struct net_device *netdev = pci_get_drvdata(pdev);
1513 	struct atl2_adapter *adapter = netdev_priv(netdev);
1514 	struct atl2_hw *hw = &adapter->hw;
1515 	u16 speed, duplex;
1516 	u32 ctrl = 0;
1517 	u32 wufc = adapter->wol;
1518 
1519 #ifdef CONFIG_PM
1520 	int retval = 0;
1521 #endif
1522 
1523 	netif_device_detach(netdev);
1524 
1525 	if (netif_running(netdev)) {
1526 		WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
1527 		atl2_down(adapter);
1528 	}
1529 
1530 #ifdef CONFIG_PM
1531 	retval = pci_save_state(pdev);
1532 	if (retval)
1533 		return retval;
1534 #endif
1535 
1536 	atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1537 	atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1538 	if (ctrl & BMSR_LSTATUS)
1539 		wufc &= ~ATLX_WUFC_LNKC;
1540 
1541 	if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
1542 		u32 ret_val;
1543 		/* get current link speed & duplex */
1544 		ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1545 		if (ret_val) {
1546 			printk(KERN_DEBUG
1547 				"%s: get speed&duplex error while suspend\n",
1548 				atl2_driver_name);
1549 			goto wol_dis;
1550 		}
1551 
1552 		ctrl = 0;
1553 
1554 		/* turn on magic packet wol */
1555 		if (wufc & ATLX_WUFC_MAG)
1556 			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
1557 
1558 		/* ignore Link Chg event when Link is up */
1559 		ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1560 
1561 		/* Config MAC CTRL Register */
1562 		ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1563 		if (FULL_DUPLEX == adapter->link_duplex)
1564 			ctrl |= MAC_CTRL_DUPLX;
1565 		ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1566 		ctrl |= (((u32)adapter->hw.preamble_len &
1567 			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1568 		ctrl |= (((u32)(adapter->hw.retry_buf &
1569 			MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
1570 			MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1571 		if (wufc & ATLX_WUFC_MAG) {
1572 			/* magic packet maybe Broadcast&multicast&Unicast */
1573 			ctrl |= MAC_CTRL_BC_EN;
1574 		}
1575 
1576 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
1577 
1578 		/* pcie patch */
1579 		ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1580 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1581 		ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1582 		ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1583 		ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1584 		ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1585 
1586 		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1587 		goto suspend_exit;
1588 	}
1589 
1590 	if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
1591 		/* link is down, so only LINK CHG WOL event enable */
1592 		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
1593 		ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1594 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
1595 
1596 		/* pcie patch */
1597 		ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1598 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1599 		ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1600 		ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1601 		ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1602 		ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1603 
1604 		hw->phy_configured = false; /* re-init PHY when resume */
1605 
1606 		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1607 
1608 		goto suspend_exit;
1609 	}
1610 
1611 wol_dis:
1612 	/* WOL disabled */
1613 	ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
1614 
1615 	/* pcie patch */
1616 	ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1617 	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1618 	ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1619 	ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1620 	ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1621 	ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1622 
1623 	atl2_force_ps(hw);
1624 	hw->phy_configured = false; /* re-init PHY when resume */
1625 
1626 	pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
1627 
1628 suspend_exit:
1629 	if (netif_running(netdev))
1630 		atl2_free_irq(adapter);
1631 
1632 	pci_disable_device(pdev);
1633 
1634 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
1635 
1636 	return 0;
1637 }
1638 
1639 #ifdef CONFIG_PM
1640 static int atl2_resume(struct pci_dev *pdev)
1641 {
1642 	struct net_device *netdev = pci_get_drvdata(pdev);
1643 	struct atl2_adapter *adapter = netdev_priv(netdev);
1644 	u32 err;
1645 
1646 	pci_set_power_state(pdev, PCI_D0);
1647 	pci_restore_state(pdev);
1648 
1649 	err = pci_enable_device(pdev);
1650 	if (err) {
1651 		printk(KERN_ERR
1652 			"atl2: Cannot enable PCI device from suspend\n");
1653 		return err;
1654 	}
1655 
1656 	pci_set_master(pdev);
1657 
1658 	ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
1659 
1660 	pci_enable_wake(pdev, PCI_D3hot, 0);
1661 	pci_enable_wake(pdev, PCI_D3cold, 0);
1662 
1663 	ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
1664 
1665 	if (netif_running(netdev)) {
1666 		err = atl2_request_irq(adapter);
1667 		if (err)
1668 			return err;
1669 	}
1670 
1671 	atl2_reset_hw(&adapter->hw);
1672 
1673 	if (netif_running(netdev))
1674 		atl2_up(adapter);
1675 
1676 	netif_device_attach(netdev);
1677 
1678 	return 0;
1679 }
1680 #endif
1681 
1682 static void atl2_shutdown(struct pci_dev *pdev)
1683 {
1684 	atl2_suspend(pdev, PMSG_SUSPEND);
1685 }
1686 
1687 static struct pci_driver atl2_driver = {
1688 	.name     = atl2_driver_name,
1689 	.id_table = atl2_pci_tbl,
1690 	.probe    = atl2_probe,
1691 	.remove   = atl2_remove,
1692 	/* Power Management Hooks */
1693 	.suspend  = atl2_suspend,
1694 #ifdef CONFIG_PM
1695 	.resume   = atl2_resume,
1696 #endif
1697 	.shutdown = atl2_shutdown,
1698 };
1699 
1700 /**
1701  * atl2_init_module - Driver Registration Routine
1702  *
1703  * atl2_init_module is the first routine called when the driver is
1704  * loaded. All it does is register with the PCI subsystem.
1705  */
1706 static int __init atl2_init_module(void)
1707 {
1708 	printk(KERN_INFO "%s - version %s\n", atl2_driver_string,
1709 		atl2_driver_version);
1710 	printk(KERN_INFO "%s\n", atl2_copyright);
1711 	return pci_register_driver(&atl2_driver);
1712 }
1713 module_init(atl2_init_module);
1714 
1715 /**
1716  * atl2_exit_module - Driver Exit Cleanup Routine
1717  *
1718  * atl2_exit_module is called just before the driver is removed
1719  * from memory.
1720  */
1721 static void __exit atl2_exit_module(void)
1722 {
1723 	pci_unregister_driver(&atl2_driver);
1724 }
1725 module_exit(atl2_exit_module);
1726 
1727 static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1728 {
1729 	struct atl2_adapter *adapter = hw->back;
1730 	pci_read_config_word(adapter->pdev, reg, value);
1731 }
1732 
1733 static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1734 {
1735 	struct atl2_adapter *adapter = hw->back;
1736 	pci_write_config_word(adapter->pdev, reg, *value);
1737 }
1738 
1739 static int atl2_get_link_ksettings(struct net_device *netdev,
1740 				   struct ethtool_link_ksettings *cmd)
1741 {
1742 	struct atl2_adapter *adapter = netdev_priv(netdev);
1743 	struct atl2_hw *hw = &adapter->hw;
1744 	u32 supported, advertising;
1745 
1746 	supported = (SUPPORTED_10baseT_Half |
1747 		SUPPORTED_10baseT_Full |
1748 		SUPPORTED_100baseT_Half |
1749 		SUPPORTED_100baseT_Full |
1750 		SUPPORTED_Autoneg |
1751 		SUPPORTED_TP);
1752 	advertising = ADVERTISED_TP;
1753 
1754 	advertising |= ADVERTISED_Autoneg;
1755 	advertising |= hw->autoneg_advertised;
1756 
1757 	cmd->base.port = PORT_TP;
1758 	cmd->base.phy_address = 0;
1759 
1760 	if (adapter->link_speed != SPEED_0) {
1761 		cmd->base.speed = adapter->link_speed;
1762 		if (adapter->link_duplex == FULL_DUPLEX)
1763 			cmd->base.duplex = DUPLEX_FULL;
1764 		else
1765 			cmd->base.duplex = DUPLEX_HALF;
1766 	} else {
1767 		cmd->base.speed = SPEED_UNKNOWN;
1768 		cmd->base.duplex = DUPLEX_UNKNOWN;
1769 	}
1770 
1771 	cmd->base.autoneg = AUTONEG_ENABLE;
1772 
1773 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1774 						supported);
1775 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1776 						advertising);
1777 
1778 	return 0;
1779 }
1780 
1781 static int atl2_set_link_ksettings(struct net_device *netdev,
1782 				   const struct ethtool_link_ksettings *cmd)
1783 {
1784 	struct atl2_adapter *adapter = netdev_priv(netdev);
1785 	struct atl2_hw *hw = &adapter->hw;
1786 	u32 advertising;
1787 
1788 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
1789 						cmd->link_modes.advertising);
1790 
1791 	while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1792 		msleep(1);
1793 
1794 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1795 #define MY_ADV_MASK	(ADVERTISE_10_HALF | \
1796 			 ADVERTISE_10_FULL | \
1797 			 ADVERTISE_100_HALF| \
1798 			 ADVERTISE_100_FULL)
1799 
1800 		if ((advertising & MY_ADV_MASK) == MY_ADV_MASK) {
1801 			hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
1802 			hw->autoneg_advertised =  MY_ADV_MASK;
1803 		} else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_FULL) {
1804 			hw->MediaType = MEDIA_TYPE_100M_FULL;
1805 			hw->autoneg_advertised = ADVERTISE_100_FULL;
1806 		} else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_HALF) {
1807 			hw->MediaType = MEDIA_TYPE_100M_HALF;
1808 			hw->autoneg_advertised = ADVERTISE_100_HALF;
1809 		} else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_FULL) {
1810 			hw->MediaType = MEDIA_TYPE_10M_FULL;
1811 			hw->autoneg_advertised = ADVERTISE_10_FULL;
1812 		}  else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_HALF) {
1813 			hw->MediaType = MEDIA_TYPE_10M_HALF;
1814 			hw->autoneg_advertised = ADVERTISE_10_HALF;
1815 		} else {
1816 			clear_bit(__ATL2_RESETTING, &adapter->flags);
1817 			return -EINVAL;
1818 		}
1819 		advertising = hw->autoneg_advertised |
1820 			ADVERTISED_TP | ADVERTISED_Autoneg;
1821 	} else {
1822 		clear_bit(__ATL2_RESETTING, &adapter->flags);
1823 		return -EINVAL;
1824 	}
1825 
1826 	/* reset the link */
1827 	if (netif_running(adapter->netdev)) {
1828 		atl2_down(adapter);
1829 		atl2_up(adapter);
1830 	} else
1831 		atl2_reset_hw(&adapter->hw);
1832 
1833 	clear_bit(__ATL2_RESETTING, &adapter->flags);
1834 	return 0;
1835 }
1836 
1837 static u32 atl2_get_msglevel(struct net_device *netdev)
1838 {
1839 	return 0;
1840 }
1841 
1842 /*
1843  * It's sane for this to be empty, but we might want to take advantage of this.
1844  */
1845 static void atl2_set_msglevel(struct net_device *netdev, u32 data)
1846 {
1847 }
1848 
1849 static int atl2_get_regs_len(struct net_device *netdev)
1850 {
1851 #define ATL2_REGS_LEN 42
1852 	return sizeof(u32) * ATL2_REGS_LEN;
1853 }
1854 
1855 static void atl2_get_regs(struct net_device *netdev,
1856 	struct ethtool_regs *regs, void *p)
1857 {
1858 	struct atl2_adapter *adapter = netdev_priv(netdev);
1859 	struct atl2_hw *hw = &adapter->hw;
1860 	u32 *regs_buff = p;
1861 	u16 phy_data;
1862 
1863 	memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
1864 
1865 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
1866 
1867 	regs_buff[0]  = ATL2_READ_REG(hw, REG_VPD_CAP);
1868 	regs_buff[1]  = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
1869 	regs_buff[2]  = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
1870 	regs_buff[3]  = ATL2_READ_REG(hw, REG_TWSI_CTRL);
1871 	regs_buff[4]  = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
1872 	regs_buff[5]  = ATL2_READ_REG(hw, REG_MASTER_CTRL);
1873 	regs_buff[6]  = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
1874 	regs_buff[7]  = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
1875 	regs_buff[8]  = ATL2_READ_REG(hw, REG_PHY_ENABLE);
1876 	regs_buff[9]  = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
1877 	regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
1878 	regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
1879 	regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
1880 	regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
1881 	regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
1882 	regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
1883 	regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
1884 	regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
1885 	regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
1886 	regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
1887 	regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
1888 	regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
1889 	regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
1890 	regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
1891 	regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
1892 	regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
1893 	regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
1894 	regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
1895 	regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
1896 	regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
1897 	regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
1898 	regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
1899 	regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
1900 	regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
1901 	regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
1902 	regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
1903 	regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
1904 	regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
1905 	regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
1906 
1907 	atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
1908 	regs_buff[40] = (u32)phy_data;
1909 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1910 	regs_buff[41] = (u32)phy_data;
1911 }
1912 
1913 static int atl2_get_eeprom_len(struct net_device *netdev)
1914 {
1915 	struct atl2_adapter *adapter = netdev_priv(netdev);
1916 
1917 	if (!atl2_check_eeprom_exist(&adapter->hw))
1918 		return 512;
1919 	else
1920 		return 0;
1921 }
1922 
1923 static int atl2_get_eeprom(struct net_device *netdev,
1924 	struct ethtool_eeprom *eeprom, u8 *bytes)
1925 {
1926 	struct atl2_adapter *adapter = netdev_priv(netdev);
1927 	struct atl2_hw *hw = &adapter->hw;
1928 	u32 *eeprom_buff;
1929 	int first_dword, last_dword;
1930 	int ret_val = 0;
1931 	int i;
1932 
1933 	if (eeprom->len == 0)
1934 		return -EINVAL;
1935 
1936 	if (atl2_check_eeprom_exist(hw))
1937 		return -EINVAL;
1938 
1939 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
1940 
1941 	first_dword = eeprom->offset >> 2;
1942 	last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1943 
1944 	eeprom_buff = kmalloc(sizeof(u32) * (last_dword - first_dword + 1),
1945 		GFP_KERNEL);
1946 	if (!eeprom_buff)
1947 		return -ENOMEM;
1948 
1949 	for (i = first_dword; i < last_dword; i++) {
1950 		if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword]))) {
1951 			ret_val = -EIO;
1952 			goto free;
1953 		}
1954 	}
1955 
1956 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
1957 		eeprom->len);
1958 free:
1959 	kfree(eeprom_buff);
1960 
1961 	return ret_val;
1962 }
1963 
1964 static int atl2_set_eeprom(struct net_device *netdev,
1965 	struct ethtool_eeprom *eeprom, u8 *bytes)
1966 {
1967 	struct atl2_adapter *adapter = netdev_priv(netdev);
1968 	struct atl2_hw *hw = &adapter->hw;
1969 	u32 *eeprom_buff;
1970 	u32 *ptr;
1971 	int max_len, first_dword, last_dword, ret_val = 0;
1972 	int i;
1973 
1974 	if (eeprom->len == 0)
1975 		return -EOPNOTSUPP;
1976 
1977 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
1978 		return -EFAULT;
1979 
1980 	max_len = 512;
1981 
1982 	first_dword = eeprom->offset >> 2;
1983 	last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1984 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1985 	if (!eeprom_buff)
1986 		return -ENOMEM;
1987 
1988 	ptr = eeprom_buff;
1989 
1990 	if (eeprom->offset & 3) {
1991 		/* need read/modify/write of first changed EEPROM word */
1992 		/* only the second byte of the word is being modified */
1993 		if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0]))) {
1994 			ret_val = -EIO;
1995 			goto out;
1996 		}
1997 		ptr++;
1998 	}
1999 	if (((eeprom->offset + eeprom->len) & 3)) {
2000 		/*
2001 		 * need read/modify/write of last changed EEPROM word
2002 		 * only the first byte of the word is being modified
2003 		 */
2004 		if (!atl2_read_eeprom(hw, last_dword * 4,
2005 					&(eeprom_buff[last_dword - first_dword]))) {
2006 			ret_val = -EIO;
2007 			goto out;
2008 		}
2009 	}
2010 
2011 	/* Device's eeprom is always little-endian, word addressable */
2012 	memcpy(ptr, bytes, eeprom->len);
2013 
2014 	for (i = 0; i < last_dword - first_dword + 1; i++) {
2015 		if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i])) {
2016 			ret_val = -EIO;
2017 			goto out;
2018 		}
2019 	}
2020  out:
2021 	kfree(eeprom_buff);
2022 	return ret_val;
2023 }
2024 
2025 static void atl2_get_drvinfo(struct net_device *netdev,
2026 	struct ethtool_drvinfo *drvinfo)
2027 {
2028 	struct atl2_adapter *adapter = netdev_priv(netdev);
2029 
2030 	strlcpy(drvinfo->driver,  atl2_driver_name, sizeof(drvinfo->driver));
2031 	strlcpy(drvinfo->version, atl2_driver_version,
2032 		sizeof(drvinfo->version));
2033 	strlcpy(drvinfo->fw_version, "L2", sizeof(drvinfo->fw_version));
2034 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
2035 		sizeof(drvinfo->bus_info));
2036 }
2037 
2038 static void atl2_get_wol(struct net_device *netdev,
2039 	struct ethtool_wolinfo *wol)
2040 {
2041 	struct atl2_adapter *adapter = netdev_priv(netdev);
2042 
2043 	wol->supported = WAKE_MAGIC;
2044 	wol->wolopts = 0;
2045 
2046 	if (adapter->wol & ATLX_WUFC_EX)
2047 		wol->wolopts |= WAKE_UCAST;
2048 	if (adapter->wol & ATLX_WUFC_MC)
2049 		wol->wolopts |= WAKE_MCAST;
2050 	if (adapter->wol & ATLX_WUFC_BC)
2051 		wol->wolopts |= WAKE_BCAST;
2052 	if (adapter->wol & ATLX_WUFC_MAG)
2053 		wol->wolopts |= WAKE_MAGIC;
2054 	if (adapter->wol & ATLX_WUFC_LNKC)
2055 		wol->wolopts |= WAKE_PHY;
2056 }
2057 
2058 static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2059 {
2060 	struct atl2_adapter *adapter = netdev_priv(netdev);
2061 
2062 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2063 		return -EOPNOTSUPP;
2064 
2065 	if (wol->wolopts & (WAKE_UCAST | WAKE_BCAST | WAKE_MCAST))
2066 		return -EOPNOTSUPP;
2067 
2068 	/* these settings will always override what we currently have */
2069 	adapter->wol = 0;
2070 
2071 	if (wol->wolopts & WAKE_MAGIC)
2072 		adapter->wol |= ATLX_WUFC_MAG;
2073 	if (wol->wolopts & WAKE_PHY)
2074 		adapter->wol |= ATLX_WUFC_LNKC;
2075 
2076 	return 0;
2077 }
2078 
2079 static int atl2_nway_reset(struct net_device *netdev)
2080 {
2081 	struct atl2_adapter *adapter = netdev_priv(netdev);
2082 	if (netif_running(netdev))
2083 		atl2_reinit_locked(adapter);
2084 	return 0;
2085 }
2086 
2087 static const struct ethtool_ops atl2_ethtool_ops = {
2088 	.get_drvinfo		= atl2_get_drvinfo,
2089 	.get_regs_len		= atl2_get_regs_len,
2090 	.get_regs		= atl2_get_regs,
2091 	.get_wol		= atl2_get_wol,
2092 	.set_wol		= atl2_set_wol,
2093 	.get_msglevel		= atl2_get_msglevel,
2094 	.set_msglevel		= atl2_set_msglevel,
2095 	.nway_reset		= atl2_nway_reset,
2096 	.get_link		= ethtool_op_get_link,
2097 	.get_eeprom_len		= atl2_get_eeprom_len,
2098 	.get_eeprom		= atl2_get_eeprom,
2099 	.set_eeprom		= atl2_set_eeprom,
2100 	.get_link_ksettings	= atl2_get_link_ksettings,
2101 	.set_link_ksettings	= atl2_set_link_ksettings,
2102 };
2103 
2104 #define LBYTESWAP(a)  ((((a) & 0x00ff00ff) << 8) | \
2105 	(((a) & 0xff00ff00) >> 8))
2106 #define LONGSWAP(a)   ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
2107 #define SHORTSWAP(a)  (((a) << 8) | ((a) >> 8))
2108 
2109 /*
2110  * Reset the transmit and receive units; mask and clear all interrupts.
2111  *
2112  * hw - Struct containing variables accessed by shared code
2113  * return : 0  or  idle status (if error)
2114  */
2115 static s32 atl2_reset_hw(struct atl2_hw *hw)
2116 {
2117 	u32 icr;
2118 	u16 pci_cfg_cmd_word;
2119 	int i;
2120 
2121 	/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
2122 	atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2123 	if ((pci_cfg_cmd_word &
2124 		(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
2125 		(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
2126 		pci_cfg_cmd_word |=
2127 			(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
2128 		atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2129 	}
2130 
2131 	/* Clear Interrupt mask to stop board from generating
2132 	 * interrupts & Clear any pending interrupt events
2133 	 */
2134 	/* FIXME */
2135 	/* ATL2_WRITE_REG(hw, REG_IMR, 0); */
2136 	/* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
2137 
2138 	/* Issue Soft Reset to the MAC.  This will reset the chip's
2139 	 * transmit, receive, DMA.  It will not effect
2140 	 * the current PCI configuration.  The global reset bit is self-
2141 	 * clearing, and should clear within a microsecond.
2142 	 */
2143 	ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
2144 	wmb();
2145 	msleep(1); /* delay about 1ms */
2146 
2147 	/* Wait at least 10ms for All module to be Idle */
2148 	for (i = 0; i < 10; i++) {
2149 		icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
2150 		if (!icr)
2151 			break;
2152 		msleep(1); /* delay 1 ms */
2153 		cpu_relax();
2154 	}
2155 
2156 	if (icr)
2157 		return icr;
2158 
2159 	return 0;
2160 }
2161 
2162 #define CUSTOM_SPI_CS_SETUP        2
2163 #define CUSTOM_SPI_CLK_HI          2
2164 #define CUSTOM_SPI_CLK_LO          2
2165 #define CUSTOM_SPI_CS_HOLD         2
2166 #define CUSTOM_SPI_CS_HI           3
2167 
2168 static struct atl2_spi_flash_dev flash_table[] =
2169 {
2170 /* MFR    WRSR  READ  PROGRAM WREN  WRDI  RDSR  RDID  SECTOR_ERASE CHIP_ERASE */
2171 {"Atmel", 0x0,  0x03, 0x02,   0x06, 0x04, 0x05, 0x15, 0x52,        0x62 },
2172 {"SST",   0x01, 0x03, 0x02,   0x06, 0x04, 0x05, 0x90, 0x20,        0x60 },
2173 {"ST",    0x01, 0x03, 0x02,   0x06, 0x04, 0x05, 0xAB, 0xD8,        0xC7 },
2174 };
2175 
2176 static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
2177 {
2178 	int i;
2179 	u32 value;
2180 
2181 	ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
2182 	ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
2183 
2184 	value = SPI_FLASH_CTRL_WAIT_READY |
2185 		(CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
2186 			SPI_FLASH_CTRL_CS_SETUP_SHIFT |
2187 		(CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
2188 			SPI_FLASH_CTRL_CLK_HI_SHIFT |
2189 		(CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
2190 			SPI_FLASH_CTRL_CLK_LO_SHIFT |
2191 		(CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
2192 			SPI_FLASH_CTRL_CS_HOLD_SHIFT |
2193 		(CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
2194 			SPI_FLASH_CTRL_CS_HI_SHIFT |
2195 		(0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
2196 
2197 	ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2198 
2199 	value |= SPI_FLASH_CTRL_START;
2200 
2201 	ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2202 
2203 	for (i = 0; i < 10; i++) {
2204 		msleep(1);
2205 		value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2206 		if (!(value & SPI_FLASH_CTRL_START))
2207 			break;
2208 	}
2209 
2210 	if (value & SPI_FLASH_CTRL_START)
2211 		return false;
2212 
2213 	*buf = ATL2_READ_REG(hw, REG_SPI_DATA);
2214 
2215 	return true;
2216 }
2217 
2218 /*
2219  * get_permanent_address
2220  * return 0 if get valid mac address,
2221  */
2222 static int get_permanent_address(struct atl2_hw *hw)
2223 {
2224 	u32 Addr[2];
2225 	u32 i, Control;
2226 	u16 Register;
2227 	u8  EthAddr[ETH_ALEN];
2228 	bool KeyValid;
2229 
2230 	if (is_valid_ether_addr(hw->perm_mac_addr))
2231 		return 0;
2232 
2233 	Addr[0] = 0;
2234 	Addr[1] = 0;
2235 
2236 	if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
2237 		Register = 0;
2238 		KeyValid = false;
2239 
2240 		/* Read out all EEPROM content */
2241 		i = 0;
2242 		while (1) {
2243 			if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
2244 				if (KeyValid) {
2245 					if (Register == REG_MAC_STA_ADDR)
2246 						Addr[0] = Control;
2247 					else if (Register ==
2248 						(REG_MAC_STA_ADDR + 4))
2249 						Addr[1] = Control;
2250 					KeyValid = false;
2251 				} else if ((Control & 0xff) == 0x5A) {
2252 					KeyValid = true;
2253 					Register = (u16) (Control >> 16);
2254 				} else {
2255 			/* assume data end while encount an invalid KEYWORD */
2256 					break;
2257 				}
2258 			} else {
2259 				break; /* read error */
2260 			}
2261 			i += 4;
2262 		}
2263 
2264 		*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2265 		*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2266 
2267 		if (is_valid_ether_addr(EthAddr)) {
2268 			memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2269 			return 0;
2270 		}
2271 		return 1;
2272 	}
2273 
2274 	/* see if SPI flash exists? */
2275 	Addr[0] = 0;
2276 	Addr[1] = 0;
2277 	Register = 0;
2278 	KeyValid = false;
2279 	i = 0;
2280 	while (1) {
2281 		if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
2282 			if (KeyValid) {
2283 				if (Register == REG_MAC_STA_ADDR)
2284 					Addr[0] = Control;
2285 				else if (Register == (REG_MAC_STA_ADDR + 4))
2286 					Addr[1] = Control;
2287 				KeyValid = false;
2288 			} else if ((Control & 0xff) == 0x5A) {
2289 				KeyValid = true;
2290 				Register = (u16) (Control >> 16);
2291 			} else {
2292 				break; /* data end */
2293 			}
2294 		} else {
2295 			break; /* read error */
2296 		}
2297 		i += 4;
2298 	}
2299 
2300 	*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2301 	*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
2302 	if (is_valid_ether_addr(EthAddr)) {
2303 		memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2304 		return 0;
2305 	}
2306 	/* maybe MAC-address is from BIOS */
2307 	Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
2308 	Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
2309 	*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2310 	*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2311 
2312 	if (is_valid_ether_addr(EthAddr)) {
2313 		memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2314 		return 0;
2315 	}
2316 
2317 	return 1;
2318 }
2319 
2320 /*
2321  * Reads the adapter's MAC address from the EEPROM
2322  *
2323  * hw - Struct containing variables accessed by shared code
2324  */
2325 static s32 atl2_read_mac_addr(struct atl2_hw *hw)
2326 {
2327 	if (get_permanent_address(hw)) {
2328 		/* for test */
2329 		/* FIXME: shouldn't we use eth_random_addr() here? */
2330 		hw->perm_mac_addr[0] = 0x00;
2331 		hw->perm_mac_addr[1] = 0x13;
2332 		hw->perm_mac_addr[2] = 0x74;
2333 		hw->perm_mac_addr[3] = 0x00;
2334 		hw->perm_mac_addr[4] = 0x5c;
2335 		hw->perm_mac_addr[5] = 0x38;
2336 	}
2337 
2338 	memcpy(hw->mac_addr, hw->perm_mac_addr, ETH_ALEN);
2339 
2340 	return 0;
2341 }
2342 
2343 /*
2344  * Hashes an address to determine its location in the multicast table
2345  *
2346  * hw - Struct containing variables accessed by shared code
2347  * mc_addr - the multicast address to hash
2348  *
2349  * atl2_hash_mc_addr
2350  *  purpose
2351  *      set hash value for a multicast address
2352  *      hash calcu processing :
2353  *          1. calcu 32bit CRC for multicast address
2354  *          2. reverse crc with MSB to LSB
2355  */
2356 static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
2357 {
2358 	u32 crc32, value;
2359 	int i;
2360 
2361 	value = 0;
2362 	crc32 = ether_crc_le(6, mc_addr);
2363 
2364 	for (i = 0; i < 32; i++)
2365 		value |= (((crc32 >> i) & 1) << (31 - i));
2366 
2367 	return value;
2368 }
2369 
2370 /*
2371  * Sets the bit in the multicast table corresponding to the hash value.
2372  *
2373  * hw - Struct containing variables accessed by shared code
2374  * hash_value - Multicast address hash value
2375  */
2376 static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
2377 {
2378 	u32 hash_bit, hash_reg;
2379 	u32 mta;
2380 
2381 	/* The HASH Table  is a register array of 2 32-bit registers.
2382 	 * It is treated like an array of 64 bits.  We want to set
2383 	 * bit BitArray[hash_value]. So we figure out what register
2384 	 * the bit is in, read it, OR in the new bit, then write
2385 	 * back the new value.  The register is determined by the
2386 	 * upper 7 bits of the hash value and the bit within that
2387 	 * register are determined by the lower 5 bits of the value.
2388 	 */
2389 	hash_reg = (hash_value >> 31) & 0x1;
2390 	hash_bit = (hash_value >> 26) & 0x1F;
2391 
2392 	mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
2393 
2394 	mta |= (1 << hash_bit);
2395 
2396 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
2397 }
2398 
2399 /*
2400  * atl2_init_pcie - init PCIE module
2401  */
2402 static void atl2_init_pcie(struct atl2_hw *hw)
2403 {
2404     u32 value;
2405     value = LTSSM_TEST_MODE_DEF;
2406     ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
2407 
2408     value = PCIE_DLL_TX_CTRL1_DEF;
2409     ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
2410 }
2411 
2412 static void atl2_init_flash_opcode(struct atl2_hw *hw)
2413 {
2414 	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
2415 		hw->flash_vendor = 0; /* ATMEL */
2416 
2417 	/* Init OP table */
2418 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
2419 		flash_table[hw->flash_vendor].cmdPROGRAM);
2420 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
2421 		flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
2422 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
2423 		flash_table[hw->flash_vendor].cmdCHIP_ERASE);
2424 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
2425 		flash_table[hw->flash_vendor].cmdRDID);
2426 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
2427 		flash_table[hw->flash_vendor].cmdWREN);
2428 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
2429 		flash_table[hw->flash_vendor].cmdRDSR);
2430 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
2431 		flash_table[hw->flash_vendor].cmdWRSR);
2432 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
2433 		flash_table[hw->flash_vendor].cmdREAD);
2434 }
2435 
2436 /********************************************************************
2437 * Performs basic configuration of the adapter.
2438 *
2439 * hw - Struct containing variables accessed by shared code
2440 * Assumes that the controller has previously been reset and is in a
2441 * post-reset uninitialized state. Initializes multicast table,
2442 * and  Calls routines to setup link
2443 * Leaves the transmit and receive units disabled and uninitialized.
2444 ********************************************************************/
2445 static s32 atl2_init_hw(struct atl2_hw *hw)
2446 {
2447 	u32 ret_val = 0;
2448 
2449 	atl2_init_pcie(hw);
2450 
2451 	/* Zero out the Multicast HASH table */
2452 	/* clear the old settings from the multicast hash table */
2453 	ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
2454 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
2455 
2456 	atl2_init_flash_opcode(hw);
2457 
2458 	ret_val = atl2_phy_init(hw);
2459 
2460 	return ret_val;
2461 }
2462 
2463 /*
2464  * Detects the current speed and duplex settings of the hardware.
2465  *
2466  * hw - Struct containing variables accessed by shared code
2467  * speed - Speed of the connection
2468  * duplex - Duplex setting of the connection
2469  */
2470 static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
2471 	u16 *duplex)
2472 {
2473 	s32 ret_val;
2474 	u16 phy_data;
2475 
2476 	/* Read PHY Specific Status Register (17) */
2477 	ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
2478 	if (ret_val)
2479 		return ret_val;
2480 
2481 	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
2482 		return ATLX_ERR_PHY_RES;
2483 
2484 	switch (phy_data & MII_ATLX_PSSR_SPEED) {
2485 	case MII_ATLX_PSSR_100MBS:
2486 		*speed = SPEED_100;
2487 		break;
2488 	case MII_ATLX_PSSR_10MBS:
2489 		*speed = SPEED_10;
2490 		break;
2491 	default:
2492 		return ATLX_ERR_PHY_SPEED;
2493 	}
2494 
2495 	if (phy_data & MII_ATLX_PSSR_DPLX)
2496 		*duplex = FULL_DUPLEX;
2497 	else
2498 		*duplex = HALF_DUPLEX;
2499 
2500 	return 0;
2501 }
2502 
2503 /*
2504  * Reads the value from a PHY register
2505  * hw - Struct containing variables accessed by shared code
2506  * reg_addr - address of the PHY register to read
2507  */
2508 static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
2509 {
2510 	u32 val;
2511 	int i;
2512 
2513 	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
2514 		MDIO_START |
2515 		MDIO_SUP_PREAMBLE |
2516 		MDIO_RW |
2517 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2518 	ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2519 
2520 	wmb();
2521 
2522 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2523 		udelay(2);
2524 		val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2525 		if (!(val & (MDIO_START | MDIO_BUSY)))
2526 			break;
2527 		wmb();
2528 	}
2529 	if (!(val & (MDIO_START | MDIO_BUSY))) {
2530 		*phy_data = (u16)val;
2531 		return 0;
2532 	}
2533 
2534 	return ATLX_ERR_PHY;
2535 }
2536 
2537 /*
2538  * Writes a value to a PHY register
2539  * hw - Struct containing variables accessed by shared code
2540  * reg_addr - address of the PHY register to write
2541  * data - data to write to the PHY
2542  */
2543 static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
2544 {
2545 	int i;
2546 	u32 val;
2547 
2548 	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
2549 		(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
2550 		MDIO_SUP_PREAMBLE |
2551 		MDIO_START |
2552 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2553 	ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2554 
2555 	wmb();
2556 
2557 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2558 		udelay(2);
2559 		val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2560 		if (!(val & (MDIO_START | MDIO_BUSY)))
2561 			break;
2562 
2563 		wmb();
2564 	}
2565 
2566 	if (!(val & (MDIO_START | MDIO_BUSY)))
2567 		return 0;
2568 
2569 	return ATLX_ERR_PHY;
2570 }
2571 
2572 /*
2573  * Configures PHY autoneg and flow control advertisement settings
2574  *
2575  * hw - Struct containing variables accessed by shared code
2576  */
2577 static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
2578 {
2579 	s32 ret_val;
2580 	s16 mii_autoneg_adv_reg;
2581 
2582 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
2583 	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
2584 
2585 	/* Need to parse autoneg_advertised  and set up
2586 	 * the appropriate PHY registers.  First we will parse for
2587 	 * autoneg_advertised software override.  Since we can advertise
2588 	 * a plethora of combinations, we need to check each bit
2589 	 * individually.
2590 	 */
2591 
2592 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
2593 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2594 	 * the  1000Base-T Control Register (Address 9). */
2595 	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
2596 
2597 	/* Need to parse MediaType and setup the
2598 	 * appropriate PHY registers. */
2599 	switch (hw->MediaType) {
2600 	case MEDIA_TYPE_AUTO_SENSOR:
2601 		mii_autoneg_adv_reg |=
2602 			(MII_AR_10T_HD_CAPS |
2603 			MII_AR_10T_FD_CAPS  |
2604 			MII_AR_100TX_HD_CAPS|
2605 			MII_AR_100TX_FD_CAPS);
2606 		hw->autoneg_advertised =
2607 			ADVERTISE_10_HALF |
2608 			ADVERTISE_10_FULL |
2609 			ADVERTISE_100_HALF|
2610 			ADVERTISE_100_FULL;
2611 		break;
2612 	case MEDIA_TYPE_100M_FULL:
2613 		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
2614 		hw->autoneg_advertised = ADVERTISE_100_FULL;
2615 		break;
2616 	case MEDIA_TYPE_100M_HALF:
2617 		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
2618 		hw->autoneg_advertised = ADVERTISE_100_HALF;
2619 		break;
2620 	case MEDIA_TYPE_10M_FULL:
2621 		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
2622 		hw->autoneg_advertised = ADVERTISE_10_FULL;
2623 		break;
2624 	default:
2625 		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
2626 		hw->autoneg_advertised = ADVERTISE_10_HALF;
2627 		break;
2628 	}
2629 
2630 	/* flow control fixed to enable all */
2631 	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
2632 
2633 	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
2634 
2635 	ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
2636 
2637 	if (ret_val)
2638 		return ret_val;
2639 
2640 	return 0;
2641 }
2642 
2643 /*
2644  * Resets the PHY and make all config validate
2645  *
2646  * hw - Struct containing variables accessed by shared code
2647  *
2648  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
2649  */
2650 static s32 atl2_phy_commit(struct atl2_hw *hw)
2651 {
2652 	s32 ret_val;
2653 	u16 phy_data;
2654 
2655 	phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2656 	ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
2657 	if (ret_val) {
2658 		u32 val;
2659 		int i;
2660 		/* pcie serdes link may be down ! */
2661 		for (i = 0; i < 25; i++) {
2662 			msleep(1);
2663 			val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2664 			if (!(val & (MDIO_START | MDIO_BUSY)))
2665 				break;
2666 		}
2667 
2668 		if (0 != (val & (MDIO_START | MDIO_BUSY))) {
2669 			printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
2670 			return ret_val;
2671 		}
2672 	}
2673 	return 0;
2674 }
2675 
2676 static s32 atl2_phy_init(struct atl2_hw *hw)
2677 {
2678 	s32 ret_val;
2679 	u16 phy_val;
2680 
2681 	if (hw->phy_configured)
2682 		return 0;
2683 
2684 	/* Enable PHY */
2685 	ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
2686 	ATL2_WRITE_FLUSH(hw);
2687 	msleep(1);
2688 
2689 	/* check if the PHY is in powersaving mode */
2690 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2691 	atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2692 
2693 	/* 024E / 124E 0r 0274 / 1274 ? */
2694 	if (phy_val & 0x1000) {
2695 		phy_val &= ~0x1000;
2696 		atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
2697 	}
2698 
2699 	msleep(1);
2700 
2701 	/*Enable PHY LinkChange Interrupt */
2702 	ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
2703 	if (ret_val)
2704 		return ret_val;
2705 
2706 	/* setup AutoNeg parameters */
2707 	ret_val = atl2_phy_setup_autoneg_adv(hw);
2708 	if (ret_val)
2709 		return ret_val;
2710 
2711 	/* SW.Reset & En-Auto-Neg to restart Auto-Neg */
2712 	ret_val = atl2_phy_commit(hw);
2713 	if (ret_val)
2714 		return ret_val;
2715 
2716 	hw->phy_configured = true;
2717 
2718 	return ret_val;
2719 }
2720 
2721 static void atl2_set_mac_addr(struct atl2_hw *hw)
2722 {
2723 	u32 value;
2724 	/* 00-0B-6A-F6-00-DC
2725 	 * 0:  6AF600DC   1: 000B
2726 	 * low dword */
2727 	value = (((u32)hw->mac_addr[2]) << 24) |
2728 		(((u32)hw->mac_addr[3]) << 16) |
2729 		(((u32)hw->mac_addr[4]) << 8)  |
2730 		(((u32)hw->mac_addr[5]));
2731 	ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
2732 	/* hight dword */
2733 	value = (((u32)hw->mac_addr[0]) << 8) |
2734 		(((u32)hw->mac_addr[1]));
2735 	ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
2736 }
2737 
2738 /*
2739  * check_eeprom_exist
2740  * return 0 if eeprom exist
2741  */
2742 static int atl2_check_eeprom_exist(struct atl2_hw *hw)
2743 {
2744 	u32 value;
2745 
2746 	value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2747 	if (value & SPI_FLASH_CTRL_EN_VPD) {
2748 		value &= ~SPI_FLASH_CTRL_EN_VPD;
2749 		ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2750 	}
2751 	value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
2752 	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
2753 }
2754 
2755 /* FIXME: This doesn't look right. -- CHS */
2756 static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
2757 {
2758 	return true;
2759 }
2760 
2761 static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
2762 {
2763 	int i;
2764 	u32    Control;
2765 
2766 	if (Offset & 0x3)
2767 		return false; /* address do not align */
2768 
2769 	ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
2770 	Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
2771 	ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
2772 
2773 	for (i = 0; i < 10; i++) {
2774 		msleep(2);
2775 		Control = ATL2_READ_REG(hw, REG_VPD_CAP);
2776 		if (Control & VPD_CAP_VPD_FLAG)
2777 			break;
2778 	}
2779 
2780 	if (Control & VPD_CAP_VPD_FLAG) {
2781 		*pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
2782 		return true;
2783 	}
2784 	return false; /* timeout */
2785 }
2786 
2787 static void atl2_force_ps(struct atl2_hw *hw)
2788 {
2789 	u16 phy_val;
2790 
2791 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2792 	atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2793 	atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
2794 
2795 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
2796 	atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
2797 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
2798 	atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
2799 }
2800 
2801 /* This is the only thing that needs to be changed to adjust the
2802  * maximum number of ports that the driver can manage.
2803  */
2804 #define ATL2_MAX_NIC 4
2805 
2806 #define OPTION_UNSET    -1
2807 #define OPTION_DISABLED 0
2808 #define OPTION_ENABLED  1
2809 
2810 /* All parameters are treated the same, as an integer array of values.
2811  * This macro just reduces the need to repeat the same declaration code
2812  * over and over (plus this helps to avoid typo bugs).
2813  */
2814 #define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
2815 #ifndef module_param_array
2816 /* Module Parameters are always initialized to -1, so that the driver
2817  * can tell the difference between no user specified value or the
2818  * user asking for the default value.
2819  * The true default values are loaded in when atl2_check_options is called.
2820  *
2821  * This is a GCC extension to ANSI C.
2822  * See the item "Labeled Elements in Initializers" in the section
2823  * "Extensions to the C Language Family" of the GCC documentation.
2824  */
2825 
2826 #define ATL2_PARAM(X, desc) \
2827     static const int X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
2828     MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
2829     MODULE_PARM_DESC(X, desc);
2830 #else
2831 #define ATL2_PARAM(X, desc) \
2832     static int X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
2833     static unsigned int num_##X; \
2834     module_param_array_named(X, X, int, &num_##X, 0); \
2835     MODULE_PARM_DESC(X, desc);
2836 #endif
2837 
2838 /*
2839  * Transmit Memory Size
2840  * Valid Range: 64-2048
2841  * Default Value: 128
2842  */
2843 #define ATL2_MIN_TX_MEMSIZE		4	/* 4KB */
2844 #define ATL2_MAX_TX_MEMSIZE		64	/* 64KB */
2845 #define ATL2_DEFAULT_TX_MEMSIZE		8	/* 8KB */
2846 ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
2847 
2848 /*
2849  * Receive Memory Block Count
2850  * Valid Range: 16-512
2851  * Default Value: 128
2852  */
2853 #define ATL2_MIN_RXD_COUNT		16
2854 #define ATL2_MAX_RXD_COUNT		512
2855 #define ATL2_DEFAULT_RXD_COUNT		64
2856 ATL2_PARAM(RxMemBlock, "Number of receive memory block");
2857 
2858 /*
2859  * User Specified MediaType Override
2860  *
2861  * Valid Range: 0-5
2862  *  - 0    - auto-negotiate at all supported speeds
2863  *  - 1    - only link at 1000Mbps Full Duplex
2864  *  - 2    - only link at 100Mbps Full Duplex
2865  *  - 3    - only link at 100Mbps Half Duplex
2866  *  - 4    - only link at 10Mbps Full Duplex
2867  *  - 5    - only link at 10Mbps Half Duplex
2868  * Default Value: 0
2869  */
2870 ATL2_PARAM(MediaType, "MediaType Select");
2871 
2872 /*
2873  * Interrupt Moderate Timer in units of 2048 ns (~2 us)
2874  * Valid Range: 10-65535
2875  * Default Value: 45000(90ms)
2876  */
2877 #define INT_MOD_DEFAULT_CNT	100 /* 200us */
2878 #define INT_MOD_MAX_CNT		65000
2879 #define INT_MOD_MIN_CNT		50
2880 ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
2881 
2882 /*
2883  * FlashVendor
2884  * Valid Range: 0-2
2885  * 0 - Atmel
2886  * 1 - SST
2887  * 2 - ST
2888  */
2889 ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
2890 
2891 #define AUTONEG_ADV_DEFAULT	0x2F
2892 #define AUTONEG_ADV_MASK	0x2F
2893 #define FLOW_CONTROL_DEFAULT	FLOW_CONTROL_FULL
2894 
2895 #define FLASH_VENDOR_DEFAULT	0
2896 #define FLASH_VENDOR_MIN	0
2897 #define FLASH_VENDOR_MAX	2
2898 
2899 struct atl2_option {
2900 	enum { enable_option, range_option, list_option } type;
2901 	char *name;
2902 	char *err;
2903 	int  def;
2904 	union {
2905 		struct { /* range_option info */
2906 			int min;
2907 			int max;
2908 		} r;
2909 		struct { /* list_option info */
2910 			int nr;
2911 			struct atl2_opt_list { int i; char *str; } *p;
2912 		} l;
2913 	} arg;
2914 };
2915 
2916 static int atl2_validate_option(int *value, struct atl2_option *opt)
2917 {
2918 	int i;
2919 	struct atl2_opt_list *ent;
2920 
2921 	if (*value == OPTION_UNSET) {
2922 		*value = opt->def;
2923 		return 0;
2924 	}
2925 
2926 	switch (opt->type) {
2927 	case enable_option:
2928 		switch (*value) {
2929 		case OPTION_ENABLED:
2930 			printk(KERN_INFO "%s Enabled\n", opt->name);
2931 			return 0;
2932 		case OPTION_DISABLED:
2933 			printk(KERN_INFO "%s Disabled\n", opt->name);
2934 			return 0;
2935 		}
2936 		break;
2937 	case range_option:
2938 		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
2939 			printk(KERN_INFO "%s set to %i\n", opt->name, *value);
2940 			return 0;
2941 		}
2942 		break;
2943 	case list_option:
2944 		for (i = 0; i < opt->arg.l.nr; i++) {
2945 			ent = &opt->arg.l.p[i];
2946 			if (*value == ent->i) {
2947 				if (ent->str[0] != '\0')
2948 					printk(KERN_INFO "%s\n", ent->str);
2949 			return 0;
2950 			}
2951 		}
2952 		break;
2953 	default:
2954 		BUG();
2955 	}
2956 
2957 	printk(KERN_INFO "Invalid %s specified (%i) %s\n",
2958 		opt->name, *value, opt->err);
2959 	*value = opt->def;
2960 	return -1;
2961 }
2962 
2963 /**
2964  * atl2_check_options - Range Checking for Command Line Parameters
2965  * @adapter: board private structure
2966  *
2967  * This routine checks all command line parameters for valid user
2968  * input.  If an invalid value is given, or if no user specified
2969  * value exists, a default value is used.  The final value is stored
2970  * in a variable in the adapter structure.
2971  */
2972 static void atl2_check_options(struct atl2_adapter *adapter)
2973 {
2974 	int val;
2975 	struct atl2_option opt;
2976 	int bd = adapter->bd_number;
2977 	if (bd >= ATL2_MAX_NIC) {
2978 		printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
2979 			bd);
2980 		printk(KERN_NOTICE "Using defaults for all values\n");
2981 #ifndef module_param_array
2982 		bd = ATL2_MAX_NIC;
2983 #endif
2984 	}
2985 
2986 	/* Bytes of Transmit Memory */
2987 	opt.type = range_option;
2988 	opt.name = "Bytes of Transmit Memory";
2989 	opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
2990 	opt.def = ATL2_DEFAULT_TX_MEMSIZE;
2991 	opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
2992 	opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
2993 #ifdef module_param_array
2994 	if (num_TxMemSize > bd) {
2995 #endif
2996 		val = TxMemSize[bd];
2997 		atl2_validate_option(&val, &opt);
2998 		adapter->txd_ring_size = ((u32) val) * 1024;
2999 #ifdef module_param_array
3000 	} else
3001 		adapter->txd_ring_size = ((u32)opt.def) * 1024;
3002 #endif
3003 	/* txs ring size: */
3004 	adapter->txs_ring_size = adapter->txd_ring_size / 128;
3005 	if (adapter->txs_ring_size > 160)
3006 		adapter->txs_ring_size = 160;
3007 
3008 	/* Receive Memory Block Count */
3009 	opt.type = range_option;
3010 	opt.name = "Number of receive memory block";
3011 	opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
3012 	opt.def = ATL2_DEFAULT_RXD_COUNT;
3013 	opt.arg.r.min = ATL2_MIN_RXD_COUNT;
3014 	opt.arg.r.max = ATL2_MAX_RXD_COUNT;
3015 #ifdef module_param_array
3016 	if (num_RxMemBlock > bd) {
3017 #endif
3018 		val = RxMemBlock[bd];
3019 		atl2_validate_option(&val, &opt);
3020 		adapter->rxd_ring_size = (u32)val;
3021 		/* FIXME */
3022 		/* ((u16)val)&~1; */	/* even number */
3023 #ifdef module_param_array
3024 	} else
3025 		adapter->rxd_ring_size = (u32)opt.def;
3026 #endif
3027 	/* init RXD Flow control value */
3028 	adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
3029 	adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
3030 		(adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
3031 		(adapter->rxd_ring_size / 12);
3032 
3033 	/* Interrupt Moderate Timer */
3034 	opt.type = range_option;
3035 	opt.name = "Interrupt Moderate Timer";
3036 	opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
3037 	opt.def = INT_MOD_DEFAULT_CNT;
3038 	opt.arg.r.min = INT_MOD_MIN_CNT;
3039 	opt.arg.r.max = INT_MOD_MAX_CNT;
3040 #ifdef module_param_array
3041 	if (num_IntModTimer > bd) {
3042 #endif
3043 		val = IntModTimer[bd];
3044 		atl2_validate_option(&val, &opt);
3045 		adapter->imt = (u16) val;
3046 #ifdef module_param_array
3047 	} else
3048 		adapter->imt = (u16)(opt.def);
3049 #endif
3050 	/* Flash Vendor */
3051 	opt.type = range_option;
3052 	opt.name = "SPI Flash Vendor";
3053 	opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
3054 	opt.def = FLASH_VENDOR_DEFAULT;
3055 	opt.arg.r.min = FLASH_VENDOR_MIN;
3056 	opt.arg.r.max = FLASH_VENDOR_MAX;
3057 #ifdef module_param_array
3058 	if (num_FlashVendor > bd) {
3059 #endif
3060 		val = FlashVendor[bd];
3061 		atl2_validate_option(&val, &opt);
3062 		adapter->hw.flash_vendor = (u8) val;
3063 #ifdef module_param_array
3064 	} else
3065 		adapter->hw.flash_vendor = (u8)(opt.def);
3066 #endif
3067 	/* MediaType */
3068 	opt.type = range_option;
3069 	opt.name = "Speed/Duplex Selection";
3070 	opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
3071 	opt.def = MEDIA_TYPE_AUTO_SENSOR;
3072 	opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
3073 	opt.arg.r.max = MEDIA_TYPE_10M_HALF;
3074 #ifdef module_param_array
3075 	if (num_MediaType > bd) {
3076 #endif
3077 		val = MediaType[bd];
3078 		atl2_validate_option(&val, &opt);
3079 		adapter->hw.MediaType = (u16) val;
3080 #ifdef module_param_array
3081 	} else
3082 		adapter->hw.MediaType = (u16)(opt.def);
3083 #endif
3084 }
3085