1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
4  * Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
5  *
6  * Derived from Intel e1000 driver
7  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8  */
9 
10 #include <linux/atomic.h>
11 #include <linux/crc32.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/hardirq.h>
16 #include <linux/if_vlan.h>
17 #include <linux/in.h>
18 #include <linux/interrupt.h>
19 #include <linux/ip.h>
20 #include <linux/irqflags.h>
21 #include <linux/irqreturn.h>
22 #include <linux/mii.h>
23 #include <linux/net.h>
24 #include <linux/netdevice.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/pm.h>
28 #include <linux/skbuff.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32 #include <linux/tcp.h>
33 #include <linux/timer.h>
34 #include <linux/types.h>
35 #include <linux/workqueue.h>
36 
37 #include "atl2.h"
38 
39 static const char atl2_driver_name[] = "atl2";
40 static const struct ethtool_ops atl2_ethtool_ops;
41 
42 MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
43 MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
44 MODULE_LICENSE("GPL");
45 
46 /*
47  * atl2_pci_tbl - PCI Device ID Table
48  */
49 static const struct pci_device_id atl2_pci_tbl[] = {
50 	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
51 	/* required last entry */
52 	{0,}
53 };
54 MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
55 
56 static void atl2_check_options(struct atl2_adapter *adapter);
57 
58 /**
59  * atl2_sw_init - Initialize general software structures (struct atl2_adapter)
60  * @adapter: board private structure to initialize
61  *
62  * atl2_sw_init initializes the Adapter private data structure.
63  * Fields are initialized based on PCI device information and
64  * OS network device settings (MTU size).
65  */
66 static int atl2_sw_init(struct atl2_adapter *adapter)
67 {
68 	struct atl2_hw *hw = &adapter->hw;
69 	struct pci_dev *pdev = adapter->pdev;
70 
71 	/* PCI config space info */
72 	hw->vendor_id = pdev->vendor;
73 	hw->device_id = pdev->device;
74 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
75 	hw->subsystem_id = pdev->subsystem_device;
76 	hw->revision_id  = pdev->revision;
77 
78 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
79 
80 	adapter->wol = 0;
81 	adapter->ict = 50000;  /* ~100ms */
82 	adapter->link_speed = SPEED_0;   /* hardware init */
83 	adapter->link_duplex = FULL_DUPLEX;
84 
85 	hw->phy_configured = false;
86 	hw->preamble_len = 7;
87 	hw->ipgt = 0x60;
88 	hw->min_ifg = 0x50;
89 	hw->ipgr1 = 0x40;
90 	hw->ipgr2 = 0x60;
91 	hw->retry_buf = 2;
92 	hw->max_retry = 0xf;
93 	hw->lcol = 0x37;
94 	hw->jam_ipg = 7;
95 	hw->fc_rxd_hi = 0;
96 	hw->fc_rxd_lo = 0;
97 	hw->max_frame_size = adapter->netdev->mtu;
98 
99 	spin_lock_init(&adapter->stats_lock);
100 
101 	set_bit(__ATL2_DOWN, &adapter->flags);
102 
103 	return 0;
104 }
105 
106 /**
107  * atl2_set_multi - Multicast and Promiscuous mode set
108  * @netdev: network interface device structure
109  *
110  * The set_multi entry point is called whenever the multicast address
111  * list or the network interface flags are updated.  This routine is
112  * responsible for configuring the hardware for proper multicast,
113  * promiscuous mode, and all-multi behavior.
114  */
115 static void atl2_set_multi(struct net_device *netdev)
116 {
117 	struct atl2_adapter *adapter = netdev_priv(netdev);
118 	struct atl2_hw *hw = &adapter->hw;
119 	struct netdev_hw_addr *ha;
120 	u32 rctl;
121 	u32 hash_value;
122 
123 	/* Check for Promiscuous and All Multicast modes */
124 	rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
125 
126 	if (netdev->flags & IFF_PROMISC) {
127 		rctl |= MAC_CTRL_PROMIS_EN;
128 	} else if (netdev->flags & IFF_ALLMULTI) {
129 		rctl |= MAC_CTRL_MC_ALL_EN;
130 		rctl &= ~MAC_CTRL_PROMIS_EN;
131 	} else
132 		rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
133 
134 	ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
135 
136 	/* clear the old settings from the multicast hash table */
137 	ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
138 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
139 
140 	/* comoute mc addresses' hash value ,and put it into hash table */
141 	netdev_for_each_mc_addr(ha, netdev) {
142 		hash_value = atl2_hash_mc_addr(hw, ha->addr);
143 		atl2_hash_set(hw, hash_value);
144 	}
145 }
146 
147 static void init_ring_ptrs(struct atl2_adapter *adapter)
148 {
149 	/* Read / Write Ptr Initialize: */
150 	adapter->txd_write_ptr = 0;
151 	atomic_set(&adapter->txd_read_ptr, 0);
152 
153 	adapter->rxd_read_ptr = 0;
154 	adapter->rxd_write_ptr = 0;
155 
156 	atomic_set(&adapter->txs_write_ptr, 0);
157 	adapter->txs_next_clear = 0;
158 }
159 
160 /**
161  * atl2_configure - Configure Transmit&Receive Unit after Reset
162  * @adapter: board private structure
163  *
164  * Configure the Tx /Rx unit of the MAC after a reset.
165  */
166 static int atl2_configure(struct atl2_adapter *adapter)
167 {
168 	struct atl2_hw *hw = &adapter->hw;
169 	u32 value;
170 
171 	/* clear interrupt status */
172 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
173 
174 	/* set MAC Address */
175 	value = (((u32)hw->mac_addr[2]) << 24) |
176 		(((u32)hw->mac_addr[3]) << 16) |
177 		(((u32)hw->mac_addr[4]) << 8) |
178 		(((u32)hw->mac_addr[5]));
179 	ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
180 	value = (((u32)hw->mac_addr[0]) << 8) |
181 		(((u32)hw->mac_addr[1]));
182 	ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
183 
184 	/* HI base address */
185 	ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
186 		(u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
187 
188 	/* LO base address */
189 	ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
190 		(u32)(adapter->txd_dma & 0x00000000ffffffffULL));
191 	ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
192 		(u32)(adapter->txs_dma & 0x00000000ffffffffULL));
193 	ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
194 		(u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
195 
196 	/* element count */
197 	ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
198 	ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
199 	ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM,  (u16)adapter->rxd_ring_size);
200 
201 	/* config Internal SRAM */
202 /*
203     ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
204     ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
205 */
206 
207 	/* config IPG/IFG */
208 	value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
209 		MAC_IPG_IFG_IPGT_SHIFT) |
210 		(((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
211 		MAC_IPG_IFG_MIFG_SHIFT) |
212 		(((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
213 		MAC_IPG_IFG_IPGR1_SHIFT)|
214 		(((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
215 		MAC_IPG_IFG_IPGR2_SHIFT);
216 	ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
217 
218 	/* config  Half-Duplex Control */
219 	value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
220 		(((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
221 		MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
222 		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
223 		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
224 		(((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
225 		MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
226 	ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
227 
228 	/* set Interrupt Moderator Timer */
229 	ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
230 	ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
231 
232 	/* set Interrupt Clear Timer */
233 	ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
234 
235 	/* set MTU */
236 	ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
237 		ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
238 
239 	/* 1590 */
240 	ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
241 
242 	/* flow control */
243 	ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
244 	ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
245 
246 	/* Init mailbox */
247 	ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
248 	ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
249 
250 	/* enable DMA read/write */
251 	ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
252 	ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
253 
254 	value = ATL2_READ_REG(&adapter->hw, REG_ISR);
255 	if ((value & ISR_PHY_LINKDOWN) != 0)
256 		value = 1; /* config failed */
257 	else
258 		value = 0;
259 
260 	/* clear all interrupt status */
261 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
262 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
263 	return value;
264 }
265 
266 /**
267  * atl2_setup_ring_resources - allocate Tx / RX descriptor resources
268  * @adapter: board private structure
269  *
270  * Return 0 on success, negative on failure
271  */
272 static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
273 {
274 	struct pci_dev *pdev = adapter->pdev;
275 	int size;
276 	u8 offset = 0;
277 
278 	/* real ring DMA buffer */
279 	adapter->ring_size = size =
280 		adapter->txd_ring_size * 1 + 7 +	/* dword align */
281 		adapter->txs_ring_size * 4 + 7 +	/* dword align */
282 		adapter->rxd_ring_size * 1536 + 127;	/* 128bytes align */
283 
284 	adapter->ring_vir_addr = pci_alloc_consistent(pdev, size,
285 		&adapter->ring_dma);
286 	if (!adapter->ring_vir_addr)
287 		return -ENOMEM;
288 
289 	/* Init TXD Ring */
290 	adapter->txd_dma = adapter->ring_dma ;
291 	offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
292 	adapter->txd_dma += offset;
293 	adapter->txd_ring = adapter->ring_vir_addr + offset;
294 
295 	/* Init TXS Ring */
296 	adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
297 	offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
298 	adapter->txs_dma += offset;
299 	adapter->txs_ring = (struct tx_pkt_status *)
300 		(((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
301 
302 	/* Init RXD Ring */
303 	adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
304 	offset = (adapter->rxd_dma & 127) ?
305 		(128 - (adapter->rxd_dma & 127)) : 0;
306 	if (offset > 7)
307 		offset -= 8;
308 	else
309 		offset += (128 - 8);
310 
311 	adapter->rxd_dma += offset;
312 	adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
313 		(adapter->txs_ring_size * 4 + offset));
314 
315 /*
316  * Read / Write Ptr Initialize:
317  *      init_ring_ptrs(adapter);
318  */
319 	return 0;
320 }
321 
322 /**
323  * atl2_irq_enable - Enable default interrupt generation settings
324  * @adapter: board private structure
325  */
326 static inline void atl2_irq_enable(struct atl2_adapter *adapter)
327 {
328 	ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
329 	ATL2_WRITE_FLUSH(&adapter->hw);
330 }
331 
332 /**
333  * atl2_irq_disable - Mask off interrupt generation on the NIC
334  * @adapter: board private structure
335  */
336 static inline void atl2_irq_disable(struct atl2_adapter *adapter)
337 {
338     ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
339     ATL2_WRITE_FLUSH(&adapter->hw);
340     synchronize_irq(adapter->pdev->irq);
341 }
342 
343 static void __atl2_vlan_mode(netdev_features_t features, u32 *ctrl)
344 {
345 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
346 		/* enable VLAN tag insert/strip */
347 		*ctrl |= MAC_CTRL_RMV_VLAN;
348 	} else {
349 		/* disable VLAN tag insert/strip */
350 		*ctrl &= ~MAC_CTRL_RMV_VLAN;
351 	}
352 }
353 
354 static void atl2_vlan_mode(struct net_device *netdev,
355 	netdev_features_t features)
356 {
357 	struct atl2_adapter *adapter = netdev_priv(netdev);
358 	u32 ctrl;
359 
360 	atl2_irq_disable(adapter);
361 
362 	ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
363 	__atl2_vlan_mode(features, &ctrl);
364 	ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
365 
366 	atl2_irq_enable(adapter);
367 }
368 
369 static void atl2_restore_vlan(struct atl2_adapter *adapter)
370 {
371 	atl2_vlan_mode(adapter->netdev, adapter->netdev->features);
372 }
373 
374 static netdev_features_t atl2_fix_features(struct net_device *netdev,
375 	netdev_features_t features)
376 {
377 	/*
378 	 * Since there is no support for separate rx/tx vlan accel
379 	 * enable/disable make sure tx flag is always in same state as rx.
380 	 */
381 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
382 		features |= NETIF_F_HW_VLAN_CTAG_TX;
383 	else
384 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
385 
386 	return features;
387 }
388 
389 static int atl2_set_features(struct net_device *netdev,
390 	netdev_features_t features)
391 {
392 	netdev_features_t changed = netdev->features ^ features;
393 
394 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
395 		atl2_vlan_mode(netdev, features);
396 
397 	return 0;
398 }
399 
400 static void atl2_intr_rx(struct atl2_adapter *adapter)
401 {
402 	struct net_device *netdev = adapter->netdev;
403 	struct rx_desc *rxd;
404 	struct sk_buff *skb;
405 
406 	do {
407 		rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
408 		if (!rxd->status.update)
409 			break; /* end of tx */
410 
411 		/* clear this flag at once */
412 		rxd->status.update = 0;
413 
414 		if (rxd->status.ok && rxd->status.pkt_size >= 60) {
415 			int rx_size = (int)(rxd->status.pkt_size - 4);
416 			/* alloc new buffer */
417 			skb = netdev_alloc_skb_ip_align(netdev, rx_size);
418 			if (NULL == skb) {
419 				/*
420 				 * Check that some rx space is free. If not,
421 				 * free one and mark stats->rx_dropped++.
422 				 */
423 				netdev->stats.rx_dropped++;
424 				break;
425 			}
426 			memcpy(skb->data, rxd->packet, rx_size);
427 			skb_put(skb, rx_size);
428 			skb->protocol = eth_type_trans(skb, netdev);
429 			if (rxd->status.vlan) {
430 				u16 vlan_tag = (rxd->status.vtag>>4) |
431 					((rxd->status.vtag&7) << 13) |
432 					((rxd->status.vtag&8) << 9);
433 
434 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
435 			}
436 			netif_rx(skb);
437 			netdev->stats.rx_bytes += rx_size;
438 			netdev->stats.rx_packets++;
439 		} else {
440 			netdev->stats.rx_errors++;
441 
442 			if (rxd->status.ok && rxd->status.pkt_size <= 60)
443 				netdev->stats.rx_length_errors++;
444 			if (rxd->status.mcast)
445 				netdev->stats.multicast++;
446 			if (rxd->status.crc)
447 				netdev->stats.rx_crc_errors++;
448 			if (rxd->status.align)
449 				netdev->stats.rx_frame_errors++;
450 		}
451 
452 		/* advance write ptr */
453 		if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
454 			adapter->rxd_write_ptr = 0;
455 	} while (1);
456 
457 	/* update mailbox? */
458 	adapter->rxd_read_ptr = adapter->rxd_write_ptr;
459 	ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
460 }
461 
462 static void atl2_intr_tx(struct atl2_adapter *adapter)
463 {
464 	struct net_device *netdev = adapter->netdev;
465 	u32 txd_read_ptr;
466 	u32 txs_write_ptr;
467 	struct tx_pkt_status *txs;
468 	struct tx_pkt_header *txph;
469 	int free_hole = 0;
470 
471 	do {
472 		txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
473 		txs = adapter->txs_ring + txs_write_ptr;
474 		if (!txs->update)
475 			break; /* tx stop here */
476 
477 		free_hole = 1;
478 		txs->update = 0;
479 
480 		if (++txs_write_ptr == adapter->txs_ring_size)
481 			txs_write_ptr = 0;
482 		atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
483 
484 		txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
485 		txph = (struct tx_pkt_header *)
486 			(((u8 *)adapter->txd_ring) + txd_read_ptr);
487 
488 		if (txph->pkt_size != txs->pkt_size) {
489 			struct tx_pkt_status *old_txs = txs;
490 			printk(KERN_WARNING
491 				"%s: txs packet size not consistent with txd"
492 				" txd_:0x%08x, txs_:0x%08x!\n",
493 				adapter->netdev->name,
494 				*(u32 *)txph, *(u32 *)txs);
495 			printk(KERN_WARNING
496 				"txd read ptr: 0x%x\n",
497 				txd_read_ptr);
498 			txs = adapter->txs_ring + txs_write_ptr;
499 			printk(KERN_WARNING
500 				"txs-behind:0x%08x\n",
501 				*(u32 *)txs);
502 			if (txs_write_ptr < 2) {
503 				txs = adapter->txs_ring +
504 					(adapter->txs_ring_size +
505 					txs_write_ptr - 2);
506 			} else {
507 				txs = adapter->txs_ring + (txs_write_ptr - 2);
508 			}
509 			printk(KERN_WARNING
510 				"txs-before:0x%08x\n",
511 				*(u32 *)txs);
512 			txs = old_txs;
513 		}
514 
515 		 /* 4for TPH */
516 		txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
517 		if (txd_read_ptr >= adapter->txd_ring_size)
518 			txd_read_ptr -= adapter->txd_ring_size;
519 
520 		atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
521 
522 		/* tx statistics: */
523 		if (txs->ok) {
524 			netdev->stats.tx_bytes += txs->pkt_size;
525 			netdev->stats.tx_packets++;
526 		}
527 		else
528 			netdev->stats.tx_errors++;
529 
530 		if (txs->defer)
531 			netdev->stats.collisions++;
532 		if (txs->abort_col)
533 			netdev->stats.tx_aborted_errors++;
534 		if (txs->late_col)
535 			netdev->stats.tx_window_errors++;
536 		if (txs->underrun)
537 			netdev->stats.tx_fifo_errors++;
538 	} while (1);
539 
540 	if (free_hole) {
541 		if (netif_queue_stopped(adapter->netdev) &&
542 			netif_carrier_ok(adapter->netdev))
543 			netif_wake_queue(adapter->netdev);
544 	}
545 }
546 
547 static void atl2_check_for_link(struct atl2_adapter *adapter)
548 {
549 	struct net_device *netdev = adapter->netdev;
550 	u16 phy_data = 0;
551 
552 	spin_lock(&adapter->stats_lock);
553 	atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
554 	atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
555 	spin_unlock(&adapter->stats_lock);
556 
557 	/* notify upper layer link down ASAP */
558 	if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
559 		if (netif_carrier_ok(netdev)) { /* old link state: Up */
560 		printk(KERN_INFO "%s: %s NIC Link is Down\n",
561 			atl2_driver_name, netdev->name);
562 		adapter->link_speed = SPEED_0;
563 		netif_carrier_off(netdev);
564 		netif_stop_queue(netdev);
565 		}
566 	}
567 	schedule_work(&adapter->link_chg_task);
568 }
569 
570 static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
571 {
572 	u16 phy_data;
573 	spin_lock(&adapter->stats_lock);
574 	atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
575 	spin_unlock(&adapter->stats_lock);
576 }
577 
578 /**
579  * atl2_intr - Interrupt Handler
580  * @irq: interrupt number
581  * @data: pointer to a network interface device structure
582  */
583 static irqreturn_t atl2_intr(int irq, void *data)
584 {
585 	struct atl2_adapter *adapter = netdev_priv(data);
586 	struct atl2_hw *hw = &adapter->hw;
587 	u32 status;
588 
589 	status = ATL2_READ_REG(hw, REG_ISR);
590 	if (0 == status)
591 		return IRQ_NONE;
592 
593 	/* link event */
594 	if (status & ISR_PHY)
595 		atl2_clear_phy_int(adapter);
596 
597 	/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
598 	ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
599 
600 	/* check if PCIE PHY Link down */
601 	if (status & ISR_PHY_LINKDOWN) {
602 		if (netif_running(adapter->netdev)) { /* reset MAC */
603 			ATL2_WRITE_REG(hw, REG_ISR, 0);
604 			ATL2_WRITE_REG(hw, REG_IMR, 0);
605 			ATL2_WRITE_FLUSH(hw);
606 			schedule_work(&adapter->reset_task);
607 			return IRQ_HANDLED;
608 		}
609 	}
610 
611 	/* check if DMA read/write error? */
612 	if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
613 		ATL2_WRITE_REG(hw, REG_ISR, 0);
614 		ATL2_WRITE_REG(hw, REG_IMR, 0);
615 		ATL2_WRITE_FLUSH(hw);
616 		schedule_work(&adapter->reset_task);
617 		return IRQ_HANDLED;
618 	}
619 
620 	/* link event */
621 	if (status & (ISR_PHY | ISR_MANUAL)) {
622 		adapter->netdev->stats.tx_carrier_errors++;
623 		atl2_check_for_link(adapter);
624 	}
625 
626 	/* transmit event */
627 	if (status & ISR_TX_EVENT)
628 		atl2_intr_tx(adapter);
629 
630 	/* rx exception */
631 	if (status & ISR_RX_EVENT)
632 		atl2_intr_rx(adapter);
633 
634 	/* re-enable Interrupt */
635 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
636 	return IRQ_HANDLED;
637 }
638 
639 static int atl2_request_irq(struct atl2_adapter *adapter)
640 {
641 	struct net_device *netdev = adapter->netdev;
642 	int flags, err = 0;
643 
644 	flags = IRQF_SHARED;
645 	adapter->have_msi = true;
646 	err = pci_enable_msi(adapter->pdev);
647 	if (err)
648 		adapter->have_msi = false;
649 
650 	if (adapter->have_msi)
651 		flags &= ~IRQF_SHARED;
652 
653 	return request_irq(adapter->pdev->irq, atl2_intr, flags, netdev->name,
654 		netdev);
655 }
656 
657 /**
658  * atl2_free_ring_resources - Free Tx / RX descriptor Resources
659  * @adapter: board private structure
660  *
661  * Free all transmit software resources
662  */
663 static void atl2_free_ring_resources(struct atl2_adapter *adapter)
664 {
665 	struct pci_dev *pdev = adapter->pdev;
666 	pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr,
667 		adapter->ring_dma);
668 }
669 
670 /**
671  * atl2_open - Called when a network interface is made active
672  * @netdev: network interface device structure
673  *
674  * Returns 0 on success, negative value on failure
675  *
676  * The open entry point is called when a network interface is made
677  * active by the system (IFF_UP).  At this point all resources needed
678  * for transmit and receive operations are allocated, the interrupt
679  * handler is registered with the OS, the watchdog timer is started,
680  * and the stack is notified that the interface is ready.
681  */
682 static int atl2_open(struct net_device *netdev)
683 {
684 	struct atl2_adapter *adapter = netdev_priv(netdev);
685 	int err;
686 	u32 val;
687 
688 	/* disallow open during test */
689 	if (test_bit(__ATL2_TESTING, &adapter->flags))
690 		return -EBUSY;
691 
692 	/* allocate transmit descriptors */
693 	err = atl2_setup_ring_resources(adapter);
694 	if (err)
695 		return err;
696 
697 	err = atl2_init_hw(&adapter->hw);
698 	if (err) {
699 		err = -EIO;
700 		goto err_init_hw;
701 	}
702 
703 	/* hardware has been reset, we need to reload some things */
704 	atl2_set_multi(netdev);
705 	init_ring_ptrs(adapter);
706 
707 	atl2_restore_vlan(adapter);
708 
709 	if (atl2_configure(adapter)) {
710 		err = -EIO;
711 		goto err_config;
712 	}
713 
714 	err = atl2_request_irq(adapter);
715 	if (err)
716 		goto err_req_irq;
717 
718 	clear_bit(__ATL2_DOWN, &adapter->flags);
719 
720 	mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ));
721 
722 	val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
723 	ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
724 		val | MASTER_CTRL_MANUAL_INT);
725 
726 	atl2_irq_enable(adapter);
727 
728 	return 0;
729 
730 err_init_hw:
731 err_req_irq:
732 err_config:
733 	atl2_free_ring_resources(adapter);
734 	atl2_reset_hw(&adapter->hw);
735 
736 	return err;
737 }
738 
739 static void atl2_down(struct atl2_adapter *adapter)
740 {
741 	struct net_device *netdev = adapter->netdev;
742 
743 	/* signal that we're down so the interrupt handler does not
744 	 * reschedule our watchdog timer */
745 	set_bit(__ATL2_DOWN, &adapter->flags);
746 
747 	netif_tx_disable(netdev);
748 
749 	/* reset MAC to disable all RX/TX */
750 	atl2_reset_hw(&adapter->hw);
751 	msleep(1);
752 
753 	atl2_irq_disable(adapter);
754 
755 	del_timer_sync(&adapter->watchdog_timer);
756 	del_timer_sync(&adapter->phy_config_timer);
757 	clear_bit(0, &adapter->cfg_phy);
758 
759 	netif_carrier_off(netdev);
760 	adapter->link_speed = SPEED_0;
761 	adapter->link_duplex = -1;
762 }
763 
764 static void atl2_free_irq(struct atl2_adapter *adapter)
765 {
766 	struct net_device *netdev = adapter->netdev;
767 
768 	free_irq(adapter->pdev->irq, netdev);
769 
770 #ifdef CONFIG_PCI_MSI
771 	if (adapter->have_msi)
772 		pci_disable_msi(adapter->pdev);
773 #endif
774 }
775 
776 /**
777  * atl2_close - Disables a network interface
778  * @netdev: network interface device structure
779  *
780  * Returns 0, this is not allowed to fail
781  *
782  * The close entry point is called when an interface is de-activated
783  * by the OS.  The hardware is still under the drivers control, but
784  * needs to be disabled.  A global MAC reset is issued to stop the
785  * hardware, and all transmit and receive resources are freed.
786  */
787 static int atl2_close(struct net_device *netdev)
788 {
789 	struct atl2_adapter *adapter = netdev_priv(netdev);
790 
791 	WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
792 
793 	atl2_down(adapter);
794 	atl2_free_irq(adapter);
795 	atl2_free_ring_resources(adapter);
796 
797 	return 0;
798 }
799 
800 static inline int TxsFreeUnit(struct atl2_adapter *adapter)
801 {
802 	u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
803 
804 	return (adapter->txs_next_clear >= txs_write_ptr) ?
805 		(int) (adapter->txs_ring_size - adapter->txs_next_clear +
806 		txs_write_ptr - 1) :
807 		(int) (txs_write_ptr - adapter->txs_next_clear - 1);
808 }
809 
810 static inline int TxdFreeBytes(struct atl2_adapter *adapter)
811 {
812 	u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
813 
814 	return (adapter->txd_write_ptr >= txd_read_ptr) ?
815 		(int) (adapter->txd_ring_size - adapter->txd_write_ptr +
816 		txd_read_ptr - 1) :
817 		(int) (txd_read_ptr - adapter->txd_write_ptr - 1);
818 }
819 
820 static netdev_tx_t atl2_xmit_frame(struct sk_buff *skb,
821 					 struct net_device *netdev)
822 {
823 	struct atl2_adapter *adapter = netdev_priv(netdev);
824 	struct tx_pkt_header *txph;
825 	u32 offset, copy_len;
826 	int txs_unused;
827 	int txbuf_unused;
828 
829 	if (test_bit(__ATL2_DOWN, &adapter->flags)) {
830 		dev_kfree_skb_any(skb);
831 		return NETDEV_TX_OK;
832 	}
833 
834 	if (unlikely(skb->len <= 0)) {
835 		dev_kfree_skb_any(skb);
836 		return NETDEV_TX_OK;
837 	}
838 
839 	txs_unused = TxsFreeUnit(adapter);
840 	txbuf_unused = TxdFreeBytes(adapter);
841 
842 	if (skb->len + sizeof(struct tx_pkt_header) + 4  > txbuf_unused ||
843 		txs_unused < 1) {
844 		/* not enough resources */
845 		netif_stop_queue(netdev);
846 		return NETDEV_TX_BUSY;
847 	}
848 
849 	offset = adapter->txd_write_ptr;
850 
851 	txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
852 
853 	*(u32 *)txph = 0;
854 	txph->pkt_size = skb->len;
855 
856 	offset += 4;
857 	if (offset >= adapter->txd_ring_size)
858 		offset -= adapter->txd_ring_size;
859 	copy_len = adapter->txd_ring_size - offset;
860 	if (copy_len >= skb->len) {
861 		memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
862 		offset += ((u32)(skb->len + 3) & ~3);
863 	} else {
864 		memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
865 		memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
866 			skb->len-copy_len);
867 		offset = ((u32)(skb->len-copy_len + 3) & ~3);
868 	}
869 #ifdef NETIF_F_HW_VLAN_CTAG_TX
870 	if (skb_vlan_tag_present(skb)) {
871 		u16 vlan_tag = skb_vlan_tag_get(skb);
872 		vlan_tag = (vlan_tag << 4) |
873 			(vlan_tag >> 13) |
874 			((vlan_tag >> 9) & 0x8);
875 		txph->ins_vlan = 1;
876 		txph->vlan = vlan_tag;
877 	}
878 #endif
879 	if (offset >= adapter->txd_ring_size)
880 		offset -= adapter->txd_ring_size;
881 	adapter->txd_write_ptr = offset;
882 
883 	/* clear txs before send */
884 	adapter->txs_ring[adapter->txs_next_clear].update = 0;
885 	if (++adapter->txs_next_clear == adapter->txs_ring_size)
886 		adapter->txs_next_clear = 0;
887 
888 	ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
889 		(adapter->txd_write_ptr >> 2));
890 
891 	dev_consume_skb_any(skb);
892 	return NETDEV_TX_OK;
893 }
894 
895 /**
896  * atl2_change_mtu - Change the Maximum Transfer Unit
897  * @netdev: network interface device structure
898  * @new_mtu: new value for maximum frame size
899  *
900  * Returns 0 on success, negative on failure
901  */
902 static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
903 {
904 	struct atl2_adapter *adapter = netdev_priv(netdev);
905 	struct atl2_hw *hw = &adapter->hw;
906 
907 	/* set MTU */
908 	netdev->mtu = new_mtu;
909 	hw->max_frame_size = new_mtu;
910 	ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ETH_HLEN +
911 		       VLAN_HLEN + ETH_FCS_LEN);
912 
913 	return 0;
914 }
915 
916 /**
917  * atl2_set_mac - Change the Ethernet Address of the NIC
918  * @netdev: network interface device structure
919  * @p: pointer to an address structure
920  *
921  * Returns 0 on success, negative on failure
922  */
923 static int atl2_set_mac(struct net_device *netdev, void *p)
924 {
925 	struct atl2_adapter *adapter = netdev_priv(netdev);
926 	struct sockaddr *addr = p;
927 
928 	if (!is_valid_ether_addr(addr->sa_data))
929 		return -EADDRNOTAVAIL;
930 
931 	if (netif_running(netdev))
932 		return -EBUSY;
933 
934 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
935 	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
936 
937 	atl2_set_mac_addr(&adapter->hw);
938 
939 	return 0;
940 }
941 
942 static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
943 {
944 	struct atl2_adapter *adapter = netdev_priv(netdev);
945 	struct mii_ioctl_data *data = if_mii(ifr);
946 	unsigned long flags;
947 
948 	switch (cmd) {
949 	case SIOCGMIIPHY:
950 		data->phy_id = 0;
951 		break;
952 	case SIOCGMIIREG:
953 		spin_lock_irqsave(&adapter->stats_lock, flags);
954 		if (atl2_read_phy_reg(&adapter->hw,
955 			data->reg_num & 0x1F, &data->val_out)) {
956 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
957 			return -EIO;
958 		}
959 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
960 		break;
961 	case SIOCSMIIREG:
962 		if (data->reg_num & ~(0x1F))
963 			return -EFAULT;
964 		spin_lock_irqsave(&adapter->stats_lock, flags);
965 		if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
966 			data->val_in)) {
967 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
968 			return -EIO;
969 		}
970 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
971 		break;
972 	default:
973 		return -EOPNOTSUPP;
974 	}
975 	return 0;
976 }
977 
978 static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
979 {
980 	switch (cmd) {
981 	case SIOCGMIIPHY:
982 	case SIOCGMIIREG:
983 	case SIOCSMIIREG:
984 		return atl2_mii_ioctl(netdev, ifr, cmd);
985 #ifdef ETHTOOL_OPS_COMPAT
986 	case SIOCETHTOOL:
987 		return ethtool_ioctl(ifr);
988 #endif
989 	default:
990 		return -EOPNOTSUPP;
991 	}
992 }
993 
994 /**
995  * atl2_tx_timeout - Respond to a Tx Hang
996  * @netdev: network interface device structure
997  */
998 static void atl2_tx_timeout(struct net_device *netdev, unsigned int txqueue)
999 {
1000 	struct atl2_adapter *adapter = netdev_priv(netdev);
1001 
1002 	/* Do the reset outside of interrupt context */
1003 	schedule_work(&adapter->reset_task);
1004 }
1005 
1006 /**
1007  * atl2_watchdog - Timer Call-back
1008  * @data: pointer to netdev cast into an unsigned long
1009  */
1010 static void atl2_watchdog(struct timer_list *t)
1011 {
1012 	struct atl2_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1013 
1014 	if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1015 		u32 drop_rxd, drop_rxs;
1016 		unsigned long flags;
1017 
1018 		spin_lock_irqsave(&adapter->stats_lock, flags);
1019 		drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
1020 		drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
1021 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
1022 
1023 		adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs;
1024 
1025 		/* Reset the timer */
1026 		mod_timer(&adapter->watchdog_timer,
1027 			  round_jiffies(jiffies + 4 * HZ));
1028 	}
1029 }
1030 
1031 /**
1032  * atl2_phy_config - Timer Call-back
1033  * @data: pointer to netdev cast into an unsigned long
1034  */
1035 static void atl2_phy_config(struct timer_list *t)
1036 {
1037 	struct atl2_adapter *adapter = from_timer(adapter, t,
1038 						  phy_config_timer);
1039 	struct atl2_hw *hw = &adapter->hw;
1040 	unsigned long flags;
1041 
1042 	spin_lock_irqsave(&adapter->stats_lock, flags);
1043 	atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
1044 	atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
1045 		MII_CR_RESTART_AUTO_NEG);
1046 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
1047 	clear_bit(0, &adapter->cfg_phy);
1048 }
1049 
1050 static int atl2_up(struct atl2_adapter *adapter)
1051 {
1052 	struct net_device *netdev = adapter->netdev;
1053 	int err = 0;
1054 	u32 val;
1055 
1056 	/* hardware has been reset, we need to reload some things */
1057 
1058 	err = atl2_init_hw(&adapter->hw);
1059 	if (err) {
1060 		err = -EIO;
1061 		return err;
1062 	}
1063 
1064 	atl2_set_multi(netdev);
1065 	init_ring_ptrs(adapter);
1066 
1067 	atl2_restore_vlan(adapter);
1068 
1069 	if (atl2_configure(adapter)) {
1070 		err = -EIO;
1071 		goto err_up;
1072 	}
1073 
1074 	clear_bit(__ATL2_DOWN, &adapter->flags);
1075 
1076 	val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
1077 	ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
1078 		MASTER_CTRL_MANUAL_INT);
1079 
1080 	atl2_irq_enable(adapter);
1081 
1082 err_up:
1083 	return err;
1084 }
1085 
1086 static void atl2_reinit_locked(struct atl2_adapter *adapter)
1087 {
1088 	WARN_ON(in_interrupt());
1089 	while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1090 		msleep(1);
1091 	atl2_down(adapter);
1092 	atl2_up(adapter);
1093 	clear_bit(__ATL2_RESETTING, &adapter->flags);
1094 }
1095 
1096 static void atl2_reset_task(struct work_struct *work)
1097 {
1098 	struct atl2_adapter *adapter;
1099 	adapter = container_of(work, struct atl2_adapter, reset_task);
1100 
1101 	atl2_reinit_locked(adapter);
1102 }
1103 
1104 static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
1105 {
1106 	u32 value;
1107 	struct atl2_hw *hw = &adapter->hw;
1108 	struct net_device *netdev = adapter->netdev;
1109 
1110 	/* Config MAC CTRL Register */
1111 	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1112 
1113 	/* duplex */
1114 	if (FULL_DUPLEX == adapter->link_duplex)
1115 		value |= MAC_CTRL_DUPLX;
1116 
1117 	/* flow control */
1118 	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1119 
1120 	/* PAD & CRC */
1121 	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1122 
1123 	/* preamble length */
1124 	value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
1125 		MAC_CTRL_PRMLEN_SHIFT);
1126 
1127 	/* vlan */
1128 	__atl2_vlan_mode(netdev->features, &value);
1129 
1130 	/* filter mode */
1131 	value |= MAC_CTRL_BC_EN;
1132 	if (netdev->flags & IFF_PROMISC)
1133 		value |= MAC_CTRL_PROMIS_EN;
1134 	else if (netdev->flags & IFF_ALLMULTI)
1135 		value |= MAC_CTRL_MC_ALL_EN;
1136 
1137 	/* half retry buffer */
1138 	value |= (((u32)(adapter->hw.retry_buf &
1139 		MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1140 
1141 	ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1142 }
1143 
1144 static int atl2_check_link(struct atl2_adapter *adapter)
1145 {
1146 	struct atl2_hw *hw = &adapter->hw;
1147 	struct net_device *netdev = adapter->netdev;
1148 	int ret_val;
1149 	u16 speed, duplex, phy_data;
1150 	int reconfig = 0;
1151 
1152 	/* MII_BMSR must read twise */
1153 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1154 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1155 	if (!(phy_data&BMSR_LSTATUS)) { /* link down */
1156 		if (netif_carrier_ok(netdev)) { /* old link state: Up */
1157 			u32 value;
1158 			/* disable rx */
1159 			value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1160 			value &= ~MAC_CTRL_RX_EN;
1161 			ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1162 			adapter->link_speed = SPEED_0;
1163 			netif_carrier_off(netdev);
1164 			netif_stop_queue(netdev);
1165 		}
1166 		return 0;
1167 	}
1168 
1169 	/* Link Up */
1170 	ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1171 	if (ret_val)
1172 		return ret_val;
1173 	switch (hw->MediaType) {
1174 	case MEDIA_TYPE_100M_FULL:
1175 		if (speed  != SPEED_100 || duplex != FULL_DUPLEX)
1176 			reconfig = 1;
1177 		break;
1178 	case MEDIA_TYPE_100M_HALF:
1179 		if (speed  != SPEED_100 || duplex != HALF_DUPLEX)
1180 			reconfig = 1;
1181 		break;
1182 	case MEDIA_TYPE_10M_FULL:
1183 		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1184 			reconfig = 1;
1185 		break;
1186 	case MEDIA_TYPE_10M_HALF:
1187 		if (speed  != SPEED_10 || duplex != HALF_DUPLEX)
1188 			reconfig = 1;
1189 		break;
1190 	}
1191 	/* link result is our setting */
1192 	if (reconfig == 0) {
1193 		if (adapter->link_speed != speed ||
1194 			adapter->link_duplex != duplex) {
1195 			adapter->link_speed = speed;
1196 			adapter->link_duplex = duplex;
1197 			atl2_setup_mac_ctrl(adapter);
1198 			printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
1199 				atl2_driver_name, netdev->name,
1200 				adapter->link_speed,
1201 				adapter->link_duplex == FULL_DUPLEX ?
1202 					"Full Duplex" : "Half Duplex");
1203 		}
1204 
1205 		if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
1206 			netif_carrier_on(netdev);
1207 			netif_wake_queue(netdev);
1208 		}
1209 		return 0;
1210 	}
1211 
1212 	/* change original link status */
1213 	if (netif_carrier_ok(netdev)) {
1214 		u32 value;
1215 		/* disable rx */
1216 		value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1217 		value &= ~MAC_CTRL_RX_EN;
1218 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1219 
1220 		adapter->link_speed = SPEED_0;
1221 		netif_carrier_off(netdev);
1222 		netif_stop_queue(netdev);
1223 	}
1224 
1225 	/* auto-neg, insert timer to re-config phy
1226 	 * (if interval smaller than 5 seconds, something strange) */
1227 	if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1228 		if (!test_and_set_bit(0, &adapter->cfg_phy))
1229 			mod_timer(&adapter->phy_config_timer,
1230 				  round_jiffies(jiffies + 5 * HZ));
1231 	}
1232 
1233 	return 0;
1234 }
1235 
1236 /**
1237  * atl2_link_chg_task - deal with link change event Out of interrupt context
1238  */
1239 static void atl2_link_chg_task(struct work_struct *work)
1240 {
1241 	struct atl2_adapter *adapter;
1242 	unsigned long flags;
1243 
1244 	adapter = container_of(work, struct atl2_adapter, link_chg_task);
1245 
1246 	spin_lock_irqsave(&adapter->stats_lock, flags);
1247 	atl2_check_link(adapter);
1248 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
1249 }
1250 
1251 static void atl2_setup_pcicmd(struct pci_dev *pdev)
1252 {
1253 	u16 cmd;
1254 
1255 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1256 
1257 	if (cmd & PCI_COMMAND_INTX_DISABLE)
1258 		cmd &= ~PCI_COMMAND_INTX_DISABLE;
1259 	if (cmd & PCI_COMMAND_IO)
1260 		cmd &= ~PCI_COMMAND_IO;
1261 	if (0 == (cmd & PCI_COMMAND_MEMORY))
1262 		cmd |= PCI_COMMAND_MEMORY;
1263 	if (0 == (cmd & PCI_COMMAND_MASTER))
1264 		cmd |= PCI_COMMAND_MASTER;
1265 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
1266 
1267 	/*
1268 	 * some motherboards BIOS(PXE/EFI) driver may set PME
1269 	 * while they transfer control to OS (Windows/Linux)
1270 	 * so we should clear this bit before NIC work normally
1271 	 */
1272 	pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
1273 }
1274 
1275 #ifdef CONFIG_NET_POLL_CONTROLLER
1276 static void atl2_poll_controller(struct net_device *netdev)
1277 {
1278 	disable_irq(netdev->irq);
1279 	atl2_intr(netdev->irq, netdev);
1280 	enable_irq(netdev->irq);
1281 }
1282 #endif
1283 
1284 
1285 static const struct net_device_ops atl2_netdev_ops = {
1286 	.ndo_open		= atl2_open,
1287 	.ndo_stop		= atl2_close,
1288 	.ndo_start_xmit		= atl2_xmit_frame,
1289 	.ndo_set_rx_mode	= atl2_set_multi,
1290 	.ndo_validate_addr	= eth_validate_addr,
1291 	.ndo_set_mac_address	= atl2_set_mac,
1292 	.ndo_change_mtu		= atl2_change_mtu,
1293 	.ndo_fix_features	= atl2_fix_features,
1294 	.ndo_set_features	= atl2_set_features,
1295 	.ndo_do_ioctl		= atl2_ioctl,
1296 	.ndo_tx_timeout		= atl2_tx_timeout,
1297 #ifdef CONFIG_NET_POLL_CONTROLLER
1298 	.ndo_poll_controller	= atl2_poll_controller,
1299 #endif
1300 };
1301 
1302 /**
1303  * atl2_probe - Device Initialization Routine
1304  * @pdev: PCI device information struct
1305  * @ent: entry in atl2_pci_tbl
1306  *
1307  * Returns 0 on success, negative on failure
1308  *
1309  * atl2_probe initializes an adapter identified by a pci_dev structure.
1310  * The OS initialization, configuring of the adapter private structure,
1311  * and a hardware reset occur.
1312  */
1313 static int atl2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1314 {
1315 	struct net_device *netdev;
1316 	struct atl2_adapter *adapter;
1317 	static int cards_found = 0;
1318 	unsigned long mmio_start;
1319 	int mmio_len;
1320 	int err;
1321 
1322 	err = pci_enable_device(pdev);
1323 	if (err)
1324 		return err;
1325 
1326 	/*
1327 	 * atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
1328 	 * until the kernel has the proper infrastructure to support 64-bit DMA
1329 	 * on these devices.
1330 	 */
1331 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) &&
1332 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1333 		printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
1334 		err = -EIO;
1335 		goto err_dma;
1336 	}
1337 
1338 	/* Mark all PCI regions associated with PCI device
1339 	 * pdev as being reserved by owner atl2_driver_name */
1340 	err = pci_request_regions(pdev, atl2_driver_name);
1341 	if (err)
1342 		goto err_pci_reg;
1343 
1344 	/* Enables bus-mastering on the device and calls
1345 	 * pcibios_set_master to do the needed arch specific settings */
1346 	pci_set_master(pdev);
1347 
1348 	netdev = alloc_etherdev(sizeof(struct atl2_adapter));
1349 	if (!netdev) {
1350 		err = -ENOMEM;
1351 		goto err_alloc_etherdev;
1352 	}
1353 
1354 	SET_NETDEV_DEV(netdev, &pdev->dev);
1355 
1356 	pci_set_drvdata(pdev, netdev);
1357 	adapter = netdev_priv(netdev);
1358 	adapter->netdev = netdev;
1359 	adapter->pdev = pdev;
1360 	adapter->hw.back = adapter;
1361 
1362 	mmio_start = pci_resource_start(pdev, 0x0);
1363 	mmio_len = pci_resource_len(pdev, 0x0);
1364 
1365 	adapter->hw.mem_rang = (u32)mmio_len;
1366 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1367 	if (!adapter->hw.hw_addr) {
1368 		err = -EIO;
1369 		goto err_ioremap;
1370 	}
1371 
1372 	atl2_setup_pcicmd(pdev);
1373 
1374 	netdev->netdev_ops = &atl2_netdev_ops;
1375 	netdev->ethtool_ops = &atl2_ethtool_ops;
1376 	netdev->watchdog_timeo = 5 * HZ;
1377 	netdev->min_mtu = 40;
1378 	netdev->max_mtu = ETH_DATA_LEN + VLAN_HLEN;
1379 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1380 
1381 	netdev->mem_start = mmio_start;
1382 	netdev->mem_end = mmio_start + mmio_len;
1383 	adapter->bd_number = cards_found;
1384 	adapter->pci_using_64 = false;
1385 
1386 	/* setup the private structure */
1387 	err = atl2_sw_init(adapter);
1388 	if (err)
1389 		goto err_sw_init;
1390 
1391 	netdev->hw_features = NETIF_F_HW_VLAN_CTAG_RX;
1392 	netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
1393 
1394 	/* Init PHY as early as possible due to power saving issue  */
1395 	atl2_phy_init(&adapter->hw);
1396 
1397 	/* reset the controller to
1398 	 * put the device in a known good starting state */
1399 
1400 	if (atl2_reset_hw(&adapter->hw)) {
1401 		err = -EIO;
1402 		goto err_reset;
1403 	}
1404 
1405 	/* copy the MAC address out of the EEPROM */
1406 	atl2_read_mac_addr(&adapter->hw);
1407 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1408 	if (!is_valid_ether_addr(netdev->dev_addr)) {
1409 		err = -EIO;
1410 		goto err_eeprom;
1411 	}
1412 
1413 	atl2_check_options(adapter);
1414 
1415 	timer_setup(&adapter->watchdog_timer, atl2_watchdog, 0);
1416 
1417 	timer_setup(&adapter->phy_config_timer, atl2_phy_config, 0);
1418 
1419 	INIT_WORK(&adapter->reset_task, atl2_reset_task);
1420 	INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
1421 
1422 	strcpy(netdev->name, "eth%d"); /* ?? */
1423 	err = register_netdev(netdev);
1424 	if (err)
1425 		goto err_register;
1426 
1427 	/* assume we have no link for now */
1428 	netif_carrier_off(netdev);
1429 	netif_stop_queue(netdev);
1430 
1431 	cards_found++;
1432 
1433 	return 0;
1434 
1435 err_reset:
1436 err_register:
1437 err_sw_init:
1438 err_eeprom:
1439 	iounmap(adapter->hw.hw_addr);
1440 err_ioremap:
1441 	free_netdev(netdev);
1442 err_alloc_etherdev:
1443 	pci_release_regions(pdev);
1444 err_pci_reg:
1445 err_dma:
1446 	pci_disable_device(pdev);
1447 	return err;
1448 }
1449 
1450 /**
1451  * atl2_remove - Device Removal Routine
1452  * @pdev: PCI device information struct
1453  *
1454  * atl2_remove is called by the PCI subsystem to alert the driver
1455  * that it should release a PCI device.  The could be caused by a
1456  * Hot-Plug event, or because the driver is going to be removed from
1457  * memory.
1458  */
1459 /* FIXME: write the original MAC address back in case it was changed from a
1460  * BIOS-set value, as in atl1 -- CHS */
1461 static void atl2_remove(struct pci_dev *pdev)
1462 {
1463 	struct net_device *netdev = pci_get_drvdata(pdev);
1464 	struct atl2_adapter *adapter = netdev_priv(netdev);
1465 
1466 	/* flush_scheduled work may reschedule our watchdog task, so
1467 	 * explicitly disable watchdog tasks from being rescheduled  */
1468 	set_bit(__ATL2_DOWN, &adapter->flags);
1469 
1470 	del_timer_sync(&adapter->watchdog_timer);
1471 	del_timer_sync(&adapter->phy_config_timer);
1472 	cancel_work_sync(&adapter->reset_task);
1473 	cancel_work_sync(&adapter->link_chg_task);
1474 
1475 	unregister_netdev(netdev);
1476 
1477 	atl2_force_ps(&adapter->hw);
1478 
1479 	iounmap(adapter->hw.hw_addr);
1480 	pci_release_regions(pdev);
1481 
1482 	free_netdev(netdev);
1483 
1484 	pci_disable_device(pdev);
1485 }
1486 
1487 static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
1488 {
1489 	struct net_device *netdev = pci_get_drvdata(pdev);
1490 	struct atl2_adapter *adapter = netdev_priv(netdev);
1491 	struct atl2_hw *hw = &adapter->hw;
1492 	u16 speed, duplex;
1493 	u32 ctrl = 0;
1494 	u32 wufc = adapter->wol;
1495 
1496 #ifdef CONFIG_PM
1497 	int retval = 0;
1498 #endif
1499 
1500 	netif_device_detach(netdev);
1501 
1502 	if (netif_running(netdev)) {
1503 		WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
1504 		atl2_down(adapter);
1505 	}
1506 
1507 #ifdef CONFIG_PM
1508 	retval = pci_save_state(pdev);
1509 	if (retval)
1510 		return retval;
1511 #endif
1512 
1513 	atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1514 	atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1515 	if (ctrl & BMSR_LSTATUS)
1516 		wufc &= ~ATLX_WUFC_LNKC;
1517 
1518 	if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
1519 		u32 ret_val;
1520 		/* get current link speed & duplex */
1521 		ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1522 		if (ret_val) {
1523 			printk(KERN_DEBUG
1524 				"%s: get speed&duplex error while suspend\n",
1525 				atl2_driver_name);
1526 			goto wol_dis;
1527 		}
1528 
1529 		ctrl = 0;
1530 
1531 		/* turn on magic packet wol */
1532 		if (wufc & ATLX_WUFC_MAG)
1533 			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
1534 
1535 		/* ignore Link Chg event when Link is up */
1536 		ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1537 
1538 		/* Config MAC CTRL Register */
1539 		ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1540 		if (FULL_DUPLEX == adapter->link_duplex)
1541 			ctrl |= MAC_CTRL_DUPLX;
1542 		ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1543 		ctrl |= (((u32)adapter->hw.preamble_len &
1544 			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1545 		ctrl |= (((u32)(adapter->hw.retry_buf &
1546 			MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
1547 			MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1548 		if (wufc & ATLX_WUFC_MAG) {
1549 			/* magic packet maybe Broadcast&multicast&Unicast */
1550 			ctrl |= MAC_CTRL_BC_EN;
1551 		}
1552 
1553 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
1554 
1555 		/* pcie patch */
1556 		ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1557 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1558 		ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1559 		ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1560 		ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1561 		ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1562 
1563 		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1564 		goto suspend_exit;
1565 	}
1566 
1567 	if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
1568 		/* link is down, so only LINK CHG WOL event enable */
1569 		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
1570 		ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1571 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
1572 
1573 		/* pcie patch */
1574 		ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1575 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1576 		ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1577 		ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1578 		ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1579 		ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1580 
1581 		hw->phy_configured = false; /* re-init PHY when resume */
1582 
1583 		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1584 
1585 		goto suspend_exit;
1586 	}
1587 
1588 wol_dis:
1589 	/* WOL disabled */
1590 	ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
1591 
1592 	/* pcie patch */
1593 	ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1594 	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1595 	ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1596 	ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1597 	ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1598 	ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1599 
1600 	atl2_force_ps(hw);
1601 	hw->phy_configured = false; /* re-init PHY when resume */
1602 
1603 	pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
1604 
1605 suspend_exit:
1606 	if (netif_running(netdev))
1607 		atl2_free_irq(adapter);
1608 
1609 	pci_disable_device(pdev);
1610 
1611 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
1612 
1613 	return 0;
1614 }
1615 
1616 #ifdef CONFIG_PM
1617 static int atl2_resume(struct pci_dev *pdev)
1618 {
1619 	struct net_device *netdev = pci_get_drvdata(pdev);
1620 	struct atl2_adapter *adapter = netdev_priv(netdev);
1621 	u32 err;
1622 
1623 	pci_set_power_state(pdev, PCI_D0);
1624 	pci_restore_state(pdev);
1625 
1626 	err = pci_enable_device(pdev);
1627 	if (err) {
1628 		printk(KERN_ERR
1629 			"atl2: Cannot enable PCI device from suspend\n");
1630 		return err;
1631 	}
1632 
1633 	pci_set_master(pdev);
1634 
1635 	ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
1636 
1637 	pci_enable_wake(pdev, PCI_D3hot, 0);
1638 	pci_enable_wake(pdev, PCI_D3cold, 0);
1639 
1640 	ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
1641 
1642 	if (netif_running(netdev)) {
1643 		err = atl2_request_irq(adapter);
1644 		if (err)
1645 			return err;
1646 	}
1647 
1648 	atl2_reset_hw(&adapter->hw);
1649 
1650 	if (netif_running(netdev))
1651 		atl2_up(adapter);
1652 
1653 	netif_device_attach(netdev);
1654 
1655 	return 0;
1656 }
1657 #endif
1658 
1659 static void atl2_shutdown(struct pci_dev *pdev)
1660 {
1661 	atl2_suspend(pdev, PMSG_SUSPEND);
1662 }
1663 
1664 static struct pci_driver atl2_driver = {
1665 	.name     = atl2_driver_name,
1666 	.id_table = atl2_pci_tbl,
1667 	.probe    = atl2_probe,
1668 	.remove   = atl2_remove,
1669 	/* Power Management Hooks */
1670 	.suspend  = atl2_suspend,
1671 #ifdef CONFIG_PM
1672 	.resume   = atl2_resume,
1673 #endif
1674 	.shutdown = atl2_shutdown,
1675 };
1676 
1677 /**
1678  * atl2_init_module - Driver Registration Routine
1679  *
1680  * atl2_init_module is the first routine called when the driver is
1681  * loaded. All it does is register with the PCI subsystem.
1682  */
1683 static int __init atl2_init_module(void)
1684 {
1685 	return pci_register_driver(&atl2_driver);
1686 }
1687 module_init(atl2_init_module);
1688 
1689 /**
1690  * atl2_exit_module - Driver Exit Cleanup Routine
1691  *
1692  * atl2_exit_module is called just before the driver is removed
1693  * from memory.
1694  */
1695 static void __exit atl2_exit_module(void)
1696 {
1697 	pci_unregister_driver(&atl2_driver);
1698 }
1699 module_exit(atl2_exit_module);
1700 
1701 static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1702 {
1703 	struct atl2_adapter *adapter = hw->back;
1704 	pci_read_config_word(adapter->pdev, reg, value);
1705 }
1706 
1707 static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1708 {
1709 	struct atl2_adapter *adapter = hw->back;
1710 	pci_write_config_word(adapter->pdev, reg, *value);
1711 }
1712 
1713 static int atl2_get_link_ksettings(struct net_device *netdev,
1714 				   struct ethtool_link_ksettings *cmd)
1715 {
1716 	struct atl2_adapter *adapter = netdev_priv(netdev);
1717 	struct atl2_hw *hw = &adapter->hw;
1718 	u32 supported, advertising;
1719 
1720 	supported = (SUPPORTED_10baseT_Half |
1721 		SUPPORTED_10baseT_Full |
1722 		SUPPORTED_100baseT_Half |
1723 		SUPPORTED_100baseT_Full |
1724 		SUPPORTED_Autoneg |
1725 		SUPPORTED_TP);
1726 	advertising = ADVERTISED_TP;
1727 
1728 	advertising |= ADVERTISED_Autoneg;
1729 	advertising |= hw->autoneg_advertised;
1730 
1731 	cmd->base.port = PORT_TP;
1732 	cmd->base.phy_address = 0;
1733 
1734 	if (adapter->link_speed != SPEED_0) {
1735 		cmd->base.speed = adapter->link_speed;
1736 		if (adapter->link_duplex == FULL_DUPLEX)
1737 			cmd->base.duplex = DUPLEX_FULL;
1738 		else
1739 			cmd->base.duplex = DUPLEX_HALF;
1740 	} else {
1741 		cmd->base.speed = SPEED_UNKNOWN;
1742 		cmd->base.duplex = DUPLEX_UNKNOWN;
1743 	}
1744 
1745 	cmd->base.autoneg = AUTONEG_ENABLE;
1746 
1747 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1748 						supported);
1749 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1750 						advertising);
1751 
1752 	return 0;
1753 }
1754 
1755 static int atl2_set_link_ksettings(struct net_device *netdev,
1756 				   const struct ethtool_link_ksettings *cmd)
1757 {
1758 	struct atl2_adapter *adapter = netdev_priv(netdev);
1759 	struct atl2_hw *hw = &adapter->hw;
1760 	u32 advertising;
1761 
1762 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
1763 						cmd->link_modes.advertising);
1764 
1765 	while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1766 		msleep(1);
1767 
1768 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1769 #define MY_ADV_MASK	(ADVERTISE_10_HALF | \
1770 			 ADVERTISE_10_FULL | \
1771 			 ADVERTISE_100_HALF| \
1772 			 ADVERTISE_100_FULL)
1773 
1774 		if ((advertising & MY_ADV_MASK) == MY_ADV_MASK) {
1775 			hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
1776 			hw->autoneg_advertised =  MY_ADV_MASK;
1777 		} else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_FULL) {
1778 			hw->MediaType = MEDIA_TYPE_100M_FULL;
1779 			hw->autoneg_advertised = ADVERTISE_100_FULL;
1780 		} else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_HALF) {
1781 			hw->MediaType = MEDIA_TYPE_100M_HALF;
1782 			hw->autoneg_advertised = ADVERTISE_100_HALF;
1783 		} else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_FULL) {
1784 			hw->MediaType = MEDIA_TYPE_10M_FULL;
1785 			hw->autoneg_advertised = ADVERTISE_10_FULL;
1786 		}  else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_HALF) {
1787 			hw->MediaType = MEDIA_TYPE_10M_HALF;
1788 			hw->autoneg_advertised = ADVERTISE_10_HALF;
1789 		} else {
1790 			clear_bit(__ATL2_RESETTING, &adapter->flags);
1791 			return -EINVAL;
1792 		}
1793 		advertising = hw->autoneg_advertised |
1794 			ADVERTISED_TP | ADVERTISED_Autoneg;
1795 	} else {
1796 		clear_bit(__ATL2_RESETTING, &adapter->flags);
1797 		return -EINVAL;
1798 	}
1799 
1800 	/* reset the link */
1801 	if (netif_running(adapter->netdev)) {
1802 		atl2_down(adapter);
1803 		atl2_up(adapter);
1804 	} else
1805 		atl2_reset_hw(&adapter->hw);
1806 
1807 	clear_bit(__ATL2_RESETTING, &adapter->flags);
1808 	return 0;
1809 }
1810 
1811 static u32 atl2_get_msglevel(struct net_device *netdev)
1812 {
1813 	return 0;
1814 }
1815 
1816 /*
1817  * It's sane for this to be empty, but we might want to take advantage of this.
1818  */
1819 static void atl2_set_msglevel(struct net_device *netdev, u32 data)
1820 {
1821 }
1822 
1823 static int atl2_get_regs_len(struct net_device *netdev)
1824 {
1825 #define ATL2_REGS_LEN 42
1826 	return sizeof(u32) * ATL2_REGS_LEN;
1827 }
1828 
1829 static void atl2_get_regs(struct net_device *netdev,
1830 	struct ethtool_regs *regs, void *p)
1831 {
1832 	struct atl2_adapter *adapter = netdev_priv(netdev);
1833 	struct atl2_hw *hw = &adapter->hw;
1834 	u32 *regs_buff = p;
1835 	u16 phy_data;
1836 
1837 	memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
1838 
1839 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
1840 
1841 	regs_buff[0]  = ATL2_READ_REG(hw, REG_VPD_CAP);
1842 	regs_buff[1]  = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
1843 	regs_buff[2]  = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
1844 	regs_buff[3]  = ATL2_READ_REG(hw, REG_TWSI_CTRL);
1845 	regs_buff[4]  = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
1846 	regs_buff[5]  = ATL2_READ_REG(hw, REG_MASTER_CTRL);
1847 	regs_buff[6]  = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
1848 	regs_buff[7]  = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
1849 	regs_buff[8]  = ATL2_READ_REG(hw, REG_PHY_ENABLE);
1850 	regs_buff[9]  = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
1851 	regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
1852 	regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
1853 	regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
1854 	regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
1855 	regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
1856 	regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
1857 	regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
1858 	regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
1859 	regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
1860 	regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
1861 	regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
1862 	regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
1863 	regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
1864 	regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
1865 	regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
1866 	regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
1867 	regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
1868 	regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
1869 	regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
1870 	regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
1871 	regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
1872 	regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
1873 	regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
1874 	regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
1875 	regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
1876 	regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
1877 	regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
1878 	regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
1879 	regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
1880 
1881 	atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
1882 	regs_buff[40] = (u32)phy_data;
1883 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1884 	regs_buff[41] = (u32)phy_data;
1885 }
1886 
1887 static int atl2_get_eeprom_len(struct net_device *netdev)
1888 {
1889 	struct atl2_adapter *adapter = netdev_priv(netdev);
1890 
1891 	if (!atl2_check_eeprom_exist(&adapter->hw))
1892 		return 512;
1893 	else
1894 		return 0;
1895 }
1896 
1897 static int atl2_get_eeprom(struct net_device *netdev,
1898 	struct ethtool_eeprom *eeprom, u8 *bytes)
1899 {
1900 	struct atl2_adapter *adapter = netdev_priv(netdev);
1901 	struct atl2_hw *hw = &adapter->hw;
1902 	u32 *eeprom_buff;
1903 	int first_dword, last_dword;
1904 	int ret_val = 0;
1905 	int i;
1906 
1907 	if (eeprom->len == 0)
1908 		return -EINVAL;
1909 
1910 	if (atl2_check_eeprom_exist(hw))
1911 		return -EINVAL;
1912 
1913 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
1914 
1915 	first_dword = eeprom->offset >> 2;
1916 	last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1917 
1918 	eeprom_buff = kmalloc_array(last_dword - first_dword + 1, sizeof(u32),
1919 				    GFP_KERNEL);
1920 	if (!eeprom_buff)
1921 		return -ENOMEM;
1922 
1923 	for (i = first_dword; i < last_dword; i++) {
1924 		if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword]))) {
1925 			ret_val = -EIO;
1926 			goto free;
1927 		}
1928 	}
1929 
1930 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
1931 		eeprom->len);
1932 free:
1933 	kfree(eeprom_buff);
1934 
1935 	return ret_val;
1936 }
1937 
1938 static int atl2_set_eeprom(struct net_device *netdev,
1939 	struct ethtool_eeprom *eeprom, u8 *bytes)
1940 {
1941 	struct atl2_adapter *adapter = netdev_priv(netdev);
1942 	struct atl2_hw *hw = &adapter->hw;
1943 	u32 *eeprom_buff;
1944 	u32 *ptr;
1945 	int max_len, first_dword, last_dword, ret_val = 0;
1946 	int i;
1947 
1948 	if (eeprom->len == 0)
1949 		return -EOPNOTSUPP;
1950 
1951 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
1952 		return -EFAULT;
1953 
1954 	max_len = 512;
1955 
1956 	first_dword = eeprom->offset >> 2;
1957 	last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1958 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1959 	if (!eeprom_buff)
1960 		return -ENOMEM;
1961 
1962 	ptr = eeprom_buff;
1963 
1964 	if (eeprom->offset & 3) {
1965 		/* need read/modify/write of first changed EEPROM word */
1966 		/* only the second byte of the word is being modified */
1967 		if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0]))) {
1968 			ret_val = -EIO;
1969 			goto out;
1970 		}
1971 		ptr++;
1972 	}
1973 	if (((eeprom->offset + eeprom->len) & 3)) {
1974 		/*
1975 		 * need read/modify/write of last changed EEPROM word
1976 		 * only the first byte of the word is being modified
1977 		 */
1978 		if (!atl2_read_eeprom(hw, last_dword * 4,
1979 					&(eeprom_buff[last_dword - first_dword]))) {
1980 			ret_val = -EIO;
1981 			goto out;
1982 		}
1983 	}
1984 
1985 	/* Device's eeprom is always little-endian, word addressable */
1986 	memcpy(ptr, bytes, eeprom->len);
1987 
1988 	for (i = 0; i < last_dword - first_dword + 1; i++) {
1989 		if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i])) {
1990 			ret_val = -EIO;
1991 			goto out;
1992 		}
1993 	}
1994  out:
1995 	kfree(eeprom_buff);
1996 	return ret_val;
1997 }
1998 
1999 static void atl2_get_drvinfo(struct net_device *netdev,
2000 	struct ethtool_drvinfo *drvinfo)
2001 {
2002 	struct atl2_adapter *adapter = netdev_priv(netdev);
2003 
2004 	strlcpy(drvinfo->driver,  atl2_driver_name, sizeof(drvinfo->driver));
2005 	strlcpy(drvinfo->fw_version, "L2", sizeof(drvinfo->fw_version));
2006 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
2007 		sizeof(drvinfo->bus_info));
2008 }
2009 
2010 static void atl2_get_wol(struct net_device *netdev,
2011 	struct ethtool_wolinfo *wol)
2012 {
2013 	struct atl2_adapter *adapter = netdev_priv(netdev);
2014 
2015 	wol->supported = WAKE_MAGIC;
2016 	wol->wolopts = 0;
2017 
2018 	if (adapter->wol & ATLX_WUFC_EX)
2019 		wol->wolopts |= WAKE_UCAST;
2020 	if (adapter->wol & ATLX_WUFC_MC)
2021 		wol->wolopts |= WAKE_MCAST;
2022 	if (adapter->wol & ATLX_WUFC_BC)
2023 		wol->wolopts |= WAKE_BCAST;
2024 	if (adapter->wol & ATLX_WUFC_MAG)
2025 		wol->wolopts |= WAKE_MAGIC;
2026 	if (adapter->wol & ATLX_WUFC_LNKC)
2027 		wol->wolopts |= WAKE_PHY;
2028 }
2029 
2030 static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2031 {
2032 	struct atl2_adapter *adapter = netdev_priv(netdev);
2033 
2034 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2035 		return -EOPNOTSUPP;
2036 
2037 	if (wol->wolopts & (WAKE_UCAST | WAKE_BCAST | WAKE_MCAST))
2038 		return -EOPNOTSUPP;
2039 
2040 	/* these settings will always override what we currently have */
2041 	adapter->wol = 0;
2042 
2043 	if (wol->wolopts & WAKE_MAGIC)
2044 		adapter->wol |= ATLX_WUFC_MAG;
2045 	if (wol->wolopts & WAKE_PHY)
2046 		adapter->wol |= ATLX_WUFC_LNKC;
2047 
2048 	return 0;
2049 }
2050 
2051 static int atl2_nway_reset(struct net_device *netdev)
2052 {
2053 	struct atl2_adapter *adapter = netdev_priv(netdev);
2054 	if (netif_running(netdev))
2055 		atl2_reinit_locked(adapter);
2056 	return 0;
2057 }
2058 
2059 static const struct ethtool_ops atl2_ethtool_ops = {
2060 	.get_drvinfo		= atl2_get_drvinfo,
2061 	.get_regs_len		= atl2_get_regs_len,
2062 	.get_regs		= atl2_get_regs,
2063 	.get_wol		= atl2_get_wol,
2064 	.set_wol		= atl2_set_wol,
2065 	.get_msglevel		= atl2_get_msglevel,
2066 	.set_msglevel		= atl2_set_msglevel,
2067 	.nway_reset		= atl2_nway_reset,
2068 	.get_link		= ethtool_op_get_link,
2069 	.get_eeprom_len		= atl2_get_eeprom_len,
2070 	.get_eeprom		= atl2_get_eeprom,
2071 	.set_eeprom		= atl2_set_eeprom,
2072 	.get_link_ksettings	= atl2_get_link_ksettings,
2073 	.set_link_ksettings	= atl2_set_link_ksettings,
2074 };
2075 
2076 #define LBYTESWAP(a)  ((((a) & 0x00ff00ff) << 8) | \
2077 	(((a) & 0xff00ff00) >> 8))
2078 #define LONGSWAP(a)   ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
2079 #define SHORTSWAP(a)  (((a) << 8) | ((a) >> 8))
2080 
2081 /*
2082  * Reset the transmit and receive units; mask and clear all interrupts.
2083  *
2084  * hw - Struct containing variables accessed by shared code
2085  * return : 0  or  idle status (if error)
2086  */
2087 static s32 atl2_reset_hw(struct atl2_hw *hw)
2088 {
2089 	u32 icr;
2090 	u16 pci_cfg_cmd_word;
2091 	int i;
2092 
2093 	/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
2094 	atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2095 	if ((pci_cfg_cmd_word &
2096 		(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
2097 		(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
2098 		pci_cfg_cmd_word |=
2099 			(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
2100 		atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2101 	}
2102 
2103 	/* Clear Interrupt mask to stop board from generating
2104 	 * interrupts & Clear any pending interrupt events
2105 	 */
2106 	/* FIXME */
2107 	/* ATL2_WRITE_REG(hw, REG_IMR, 0); */
2108 	/* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
2109 
2110 	/* Issue Soft Reset to the MAC.  This will reset the chip's
2111 	 * transmit, receive, DMA.  It will not effect
2112 	 * the current PCI configuration.  The global reset bit is self-
2113 	 * clearing, and should clear within a microsecond.
2114 	 */
2115 	ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
2116 	wmb();
2117 	msleep(1); /* delay about 1ms */
2118 
2119 	/* Wait at least 10ms for All module to be Idle */
2120 	for (i = 0; i < 10; i++) {
2121 		icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
2122 		if (!icr)
2123 			break;
2124 		msleep(1); /* delay 1 ms */
2125 		cpu_relax();
2126 	}
2127 
2128 	if (icr)
2129 		return icr;
2130 
2131 	return 0;
2132 }
2133 
2134 #define CUSTOM_SPI_CS_SETUP        2
2135 #define CUSTOM_SPI_CLK_HI          2
2136 #define CUSTOM_SPI_CLK_LO          2
2137 #define CUSTOM_SPI_CS_HOLD         2
2138 #define CUSTOM_SPI_CS_HI           3
2139 
2140 static struct atl2_spi_flash_dev flash_table[] =
2141 {
2142 /* MFR    WRSR  READ  PROGRAM WREN  WRDI  RDSR  RDID  SECTOR_ERASE CHIP_ERASE */
2143 {"Atmel", 0x0,  0x03, 0x02,   0x06, 0x04, 0x05, 0x15, 0x52,        0x62 },
2144 {"SST",   0x01, 0x03, 0x02,   0x06, 0x04, 0x05, 0x90, 0x20,        0x60 },
2145 {"ST",    0x01, 0x03, 0x02,   0x06, 0x04, 0x05, 0xAB, 0xD8,        0xC7 },
2146 };
2147 
2148 static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
2149 {
2150 	int i;
2151 	u32 value;
2152 
2153 	ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
2154 	ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
2155 
2156 	value = SPI_FLASH_CTRL_WAIT_READY |
2157 		(CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
2158 			SPI_FLASH_CTRL_CS_SETUP_SHIFT |
2159 		(CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
2160 			SPI_FLASH_CTRL_CLK_HI_SHIFT |
2161 		(CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
2162 			SPI_FLASH_CTRL_CLK_LO_SHIFT |
2163 		(CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
2164 			SPI_FLASH_CTRL_CS_HOLD_SHIFT |
2165 		(CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
2166 			SPI_FLASH_CTRL_CS_HI_SHIFT |
2167 		(0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
2168 
2169 	ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2170 
2171 	value |= SPI_FLASH_CTRL_START;
2172 
2173 	ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2174 
2175 	for (i = 0; i < 10; i++) {
2176 		msleep(1);
2177 		value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2178 		if (!(value & SPI_FLASH_CTRL_START))
2179 			break;
2180 	}
2181 
2182 	if (value & SPI_FLASH_CTRL_START)
2183 		return false;
2184 
2185 	*buf = ATL2_READ_REG(hw, REG_SPI_DATA);
2186 
2187 	return true;
2188 }
2189 
2190 /*
2191  * get_permanent_address
2192  * return 0 if get valid mac address,
2193  */
2194 static int get_permanent_address(struct atl2_hw *hw)
2195 {
2196 	u32 Addr[2];
2197 	u32 i, Control;
2198 	u16 Register;
2199 	u8  EthAddr[ETH_ALEN];
2200 	bool KeyValid;
2201 
2202 	if (is_valid_ether_addr(hw->perm_mac_addr))
2203 		return 0;
2204 
2205 	Addr[0] = 0;
2206 	Addr[1] = 0;
2207 
2208 	if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
2209 		Register = 0;
2210 		KeyValid = false;
2211 
2212 		/* Read out all EEPROM content */
2213 		i = 0;
2214 		while (1) {
2215 			if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
2216 				if (KeyValid) {
2217 					if (Register == REG_MAC_STA_ADDR)
2218 						Addr[0] = Control;
2219 					else if (Register ==
2220 						(REG_MAC_STA_ADDR + 4))
2221 						Addr[1] = Control;
2222 					KeyValid = false;
2223 				} else if ((Control & 0xff) == 0x5A) {
2224 					KeyValid = true;
2225 					Register = (u16) (Control >> 16);
2226 				} else {
2227 			/* assume data end while encount an invalid KEYWORD */
2228 					break;
2229 				}
2230 			} else {
2231 				break; /* read error */
2232 			}
2233 			i += 4;
2234 		}
2235 
2236 		*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2237 		*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2238 
2239 		if (is_valid_ether_addr(EthAddr)) {
2240 			memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2241 			return 0;
2242 		}
2243 		return 1;
2244 	}
2245 
2246 	/* see if SPI flash exists? */
2247 	Addr[0] = 0;
2248 	Addr[1] = 0;
2249 	Register = 0;
2250 	KeyValid = false;
2251 	i = 0;
2252 	while (1) {
2253 		if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
2254 			if (KeyValid) {
2255 				if (Register == REG_MAC_STA_ADDR)
2256 					Addr[0] = Control;
2257 				else if (Register == (REG_MAC_STA_ADDR + 4))
2258 					Addr[1] = Control;
2259 				KeyValid = false;
2260 			} else if ((Control & 0xff) == 0x5A) {
2261 				KeyValid = true;
2262 				Register = (u16) (Control >> 16);
2263 			} else {
2264 				break; /* data end */
2265 			}
2266 		} else {
2267 			break; /* read error */
2268 		}
2269 		i += 4;
2270 	}
2271 
2272 	*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2273 	*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
2274 	if (is_valid_ether_addr(EthAddr)) {
2275 		memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2276 		return 0;
2277 	}
2278 	/* maybe MAC-address is from BIOS */
2279 	Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
2280 	Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
2281 	*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2282 	*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2283 
2284 	if (is_valid_ether_addr(EthAddr)) {
2285 		memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2286 		return 0;
2287 	}
2288 
2289 	return 1;
2290 }
2291 
2292 /*
2293  * Reads the adapter's MAC address from the EEPROM
2294  *
2295  * hw - Struct containing variables accessed by shared code
2296  */
2297 static s32 atl2_read_mac_addr(struct atl2_hw *hw)
2298 {
2299 	if (get_permanent_address(hw)) {
2300 		/* for test */
2301 		/* FIXME: shouldn't we use eth_random_addr() here? */
2302 		hw->perm_mac_addr[0] = 0x00;
2303 		hw->perm_mac_addr[1] = 0x13;
2304 		hw->perm_mac_addr[2] = 0x74;
2305 		hw->perm_mac_addr[3] = 0x00;
2306 		hw->perm_mac_addr[4] = 0x5c;
2307 		hw->perm_mac_addr[5] = 0x38;
2308 	}
2309 
2310 	memcpy(hw->mac_addr, hw->perm_mac_addr, ETH_ALEN);
2311 
2312 	return 0;
2313 }
2314 
2315 /*
2316  * Hashes an address to determine its location in the multicast table
2317  *
2318  * hw - Struct containing variables accessed by shared code
2319  * mc_addr - the multicast address to hash
2320  *
2321  * atl2_hash_mc_addr
2322  *  purpose
2323  *      set hash value for a multicast address
2324  *      hash calcu processing :
2325  *          1. calcu 32bit CRC for multicast address
2326  *          2. reverse crc with MSB to LSB
2327  */
2328 static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
2329 {
2330 	u32 crc32, value;
2331 	int i;
2332 
2333 	value = 0;
2334 	crc32 = ether_crc_le(6, mc_addr);
2335 
2336 	for (i = 0; i < 32; i++)
2337 		value |= (((crc32 >> i) & 1) << (31 - i));
2338 
2339 	return value;
2340 }
2341 
2342 /*
2343  * Sets the bit in the multicast table corresponding to the hash value.
2344  *
2345  * hw - Struct containing variables accessed by shared code
2346  * hash_value - Multicast address hash value
2347  */
2348 static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
2349 {
2350 	u32 hash_bit, hash_reg;
2351 	u32 mta;
2352 
2353 	/* The HASH Table  is a register array of 2 32-bit registers.
2354 	 * It is treated like an array of 64 bits.  We want to set
2355 	 * bit BitArray[hash_value]. So we figure out what register
2356 	 * the bit is in, read it, OR in the new bit, then write
2357 	 * back the new value.  The register is determined by the
2358 	 * upper 7 bits of the hash value and the bit within that
2359 	 * register are determined by the lower 5 bits of the value.
2360 	 */
2361 	hash_reg = (hash_value >> 31) & 0x1;
2362 	hash_bit = (hash_value >> 26) & 0x1F;
2363 
2364 	mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
2365 
2366 	mta |= (1 << hash_bit);
2367 
2368 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
2369 }
2370 
2371 /*
2372  * atl2_init_pcie - init PCIE module
2373  */
2374 static void atl2_init_pcie(struct atl2_hw *hw)
2375 {
2376     u32 value;
2377     value = LTSSM_TEST_MODE_DEF;
2378     ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
2379 
2380     value = PCIE_DLL_TX_CTRL1_DEF;
2381     ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
2382 }
2383 
2384 static void atl2_init_flash_opcode(struct atl2_hw *hw)
2385 {
2386 	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
2387 		hw->flash_vendor = 0; /* ATMEL */
2388 
2389 	/* Init OP table */
2390 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
2391 		flash_table[hw->flash_vendor].cmdPROGRAM);
2392 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
2393 		flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
2394 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
2395 		flash_table[hw->flash_vendor].cmdCHIP_ERASE);
2396 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
2397 		flash_table[hw->flash_vendor].cmdRDID);
2398 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
2399 		flash_table[hw->flash_vendor].cmdWREN);
2400 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
2401 		flash_table[hw->flash_vendor].cmdRDSR);
2402 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
2403 		flash_table[hw->flash_vendor].cmdWRSR);
2404 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
2405 		flash_table[hw->flash_vendor].cmdREAD);
2406 }
2407 
2408 /********************************************************************
2409 * Performs basic configuration of the adapter.
2410 *
2411 * hw - Struct containing variables accessed by shared code
2412 * Assumes that the controller has previously been reset and is in a
2413 * post-reset uninitialized state. Initializes multicast table,
2414 * and  Calls routines to setup link
2415 * Leaves the transmit and receive units disabled and uninitialized.
2416 ********************************************************************/
2417 static s32 atl2_init_hw(struct atl2_hw *hw)
2418 {
2419 	u32 ret_val = 0;
2420 
2421 	atl2_init_pcie(hw);
2422 
2423 	/* Zero out the Multicast HASH table */
2424 	/* clear the old settings from the multicast hash table */
2425 	ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
2426 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
2427 
2428 	atl2_init_flash_opcode(hw);
2429 
2430 	ret_val = atl2_phy_init(hw);
2431 
2432 	return ret_val;
2433 }
2434 
2435 /*
2436  * Detects the current speed and duplex settings of the hardware.
2437  *
2438  * hw - Struct containing variables accessed by shared code
2439  * speed - Speed of the connection
2440  * duplex - Duplex setting of the connection
2441  */
2442 static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
2443 	u16 *duplex)
2444 {
2445 	s32 ret_val;
2446 	u16 phy_data;
2447 
2448 	/* Read PHY Specific Status Register (17) */
2449 	ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
2450 	if (ret_val)
2451 		return ret_val;
2452 
2453 	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
2454 		return ATLX_ERR_PHY_RES;
2455 
2456 	switch (phy_data & MII_ATLX_PSSR_SPEED) {
2457 	case MII_ATLX_PSSR_100MBS:
2458 		*speed = SPEED_100;
2459 		break;
2460 	case MII_ATLX_PSSR_10MBS:
2461 		*speed = SPEED_10;
2462 		break;
2463 	default:
2464 		return ATLX_ERR_PHY_SPEED;
2465 	}
2466 
2467 	if (phy_data & MII_ATLX_PSSR_DPLX)
2468 		*duplex = FULL_DUPLEX;
2469 	else
2470 		*duplex = HALF_DUPLEX;
2471 
2472 	return 0;
2473 }
2474 
2475 /*
2476  * Reads the value from a PHY register
2477  * hw - Struct containing variables accessed by shared code
2478  * reg_addr - address of the PHY register to read
2479  */
2480 static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
2481 {
2482 	u32 val;
2483 	int i;
2484 
2485 	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
2486 		MDIO_START |
2487 		MDIO_SUP_PREAMBLE |
2488 		MDIO_RW |
2489 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2490 	ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2491 
2492 	wmb();
2493 
2494 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2495 		udelay(2);
2496 		val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2497 		if (!(val & (MDIO_START | MDIO_BUSY)))
2498 			break;
2499 		wmb();
2500 	}
2501 	if (!(val & (MDIO_START | MDIO_BUSY))) {
2502 		*phy_data = (u16)val;
2503 		return 0;
2504 	}
2505 
2506 	return ATLX_ERR_PHY;
2507 }
2508 
2509 /*
2510  * Writes a value to a PHY register
2511  * hw - Struct containing variables accessed by shared code
2512  * reg_addr - address of the PHY register to write
2513  * data - data to write to the PHY
2514  */
2515 static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
2516 {
2517 	int i;
2518 	u32 val;
2519 
2520 	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
2521 		(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
2522 		MDIO_SUP_PREAMBLE |
2523 		MDIO_START |
2524 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2525 	ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2526 
2527 	wmb();
2528 
2529 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2530 		udelay(2);
2531 		val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2532 		if (!(val & (MDIO_START | MDIO_BUSY)))
2533 			break;
2534 
2535 		wmb();
2536 	}
2537 
2538 	if (!(val & (MDIO_START | MDIO_BUSY)))
2539 		return 0;
2540 
2541 	return ATLX_ERR_PHY;
2542 }
2543 
2544 /*
2545  * Configures PHY autoneg and flow control advertisement settings
2546  *
2547  * hw - Struct containing variables accessed by shared code
2548  */
2549 static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
2550 {
2551 	s32 ret_val;
2552 	s16 mii_autoneg_adv_reg;
2553 
2554 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
2555 	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
2556 
2557 	/* Need to parse autoneg_advertised  and set up
2558 	 * the appropriate PHY registers.  First we will parse for
2559 	 * autoneg_advertised software override.  Since we can advertise
2560 	 * a plethora of combinations, we need to check each bit
2561 	 * individually.
2562 	 */
2563 
2564 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
2565 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2566 	 * the  1000Base-T Control Register (Address 9). */
2567 	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
2568 
2569 	/* Need to parse MediaType and setup the
2570 	 * appropriate PHY registers. */
2571 	switch (hw->MediaType) {
2572 	case MEDIA_TYPE_AUTO_SENSOR:
2573 		mii_autoneg_adv_reg |=
2574 			(MII_AR_10T_HD_CAPS |
2575 			MII_AR_10T_FD_CAPS  |
2576 			MII_AR_100TX_HD_CAPS|
2577 			MII_AR_100TX_FD_CAPS);
2578 		hw->autoneg_advertised =
2579 			ADVERTISE_10_HALF |
2580 			ADVERTISE_10_FULL |
2581 			ADVERTISE_100_HALF|
2582 			ADVERTISE_100_FULL;
2583 		break;
2584 	case MEDIA_TYPE_100M_FULL:
2585 		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
2586 		hw->autoneg_advertised = ADVERTISE_100_FULL;
2587 		break;
2588 	case MEDIA_TYPE_100M_HALF:
2589 		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
2590 		hw->autoneg_advertised = ADVERTISE_100_HALF;
2591 		break;
2592 	case MEDIA_TYPE_10M_FULL:
2593 		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
2594 		hw->autoneg_advertised = ADVERTISE_10_FULL;
2595 		break;
2596 	default:
2597 		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
2598 		hw->autoneg_advertised = ADVERTISE_10_HALF;
2599 		break;
2600 	}
2601 
2602 	/* flow control fixed to enable all */
2603 	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
2604 
2605 	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
2606 
2607 	ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
2608 
2609 	if (ret_val)
2610 		return ret_val;
2611 
2612 	return 0;
2613 }
2614 
2615 /*
2616  * Resets the PHY and make all config validate
2617  *
2618  * hw - Struct containing variables accessed by shared code
2619  *
2620  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
2621  */
2622 static s32 atl2_phy_commit(struct atl2_hw *hw)
2623 {
2624 	s32 ret_val;
2625 	u16 phy_data;
2626 
2627 	phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2628 	ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
2629 	if (ret_val) {
2630 		u32 val;
2631 		int i;
2632 		/* pcie serdes link may be down ! */
2633 		for (i = 0; i < 25; i++) {
2634 			msleep(1);
2635 			val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2636 			if (!(val & (MDIO_START | MDIO_BUSY)))
2637 				break;
2638 		}
2639 
2640 		if (0 != (val & (MDIO_START | MDIO_BUSY))) {
2641 			printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
2642 			return ret_val;
2643 		}
2644 	}
2645 	return 0;
2646 }
2647 
2648 static s32 atl2_phy_init(struct atl2_hw *hw)
2649 {
2650 	s32 ret_val;
2651 	u16 phy_val;
2652 
2653 	if (hw->phy_configured)
2654 		return 0;
2655 
2656 	/* Enable PHY */
2657 	ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
2658 	ATL2_WRITE_FLUSH(hw);
2659 	msleep(1);
2660 
2661 	/* check if the PHY is in powersaving mode */
2662 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2663 	atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2664 
2665 	/* 024E / 124E 0r 0274 / 1274 ? */
2666 	if (phy_val & 0x1000) {
2667 		phy_val &= ~0x1000;
2668 		atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
2669 	}
2670 
2671 	msleep(1);
2672 
2673 	/*Enable PHY LinkChange Interrupt */
2674 	ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
2675 	if (ret_val)
2676 		return ret_val;
2677 
2678 	/* setup AutoNeg parameters */
2679 	ret_val = atl2_phy_setup_autoneg_adv(hw);
2680 	if (ret_val)
2681 		return ret_val;
2682 
2683 	/* SW.Reset & En-Auto-Neg to restart Auto-Neg */
2684 	ret_val = atl2_phy_commit(hw);
2685 	if (ret_val)
2686 		return ret_val;
2687 
2688 	hw->phy_configured = true;
2689 
2690 	return ret_val;
2691 }
2692 
2693 static void atl2_set_mac_addr(struct atl2_hw *hw)
2694 {
2695 	u32 value;
2696 	/* 00-0B-6A-F6-00-DC
2697 	 * 0:  6AF600DC   1: 000B
2698 	 * low dword */
2699 	value = (((u32)hw->mac_addr[2]) << 24) |
2700 		(((u32)hw->mac_addr[3]) << 16) |
2701 		(((u32)hw->mac_addr[4]) << 8)  |
2702 		(((u32)hw->mac_addr[5]));
2703 	ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
2704 	/* hight dword */
2705 	value = (((u32)hw->mac_addr[0]) << 8) |
2706 		(((u32)hw->mac_addr[1]));
2707 	ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
2708 }
2709 
2710 /*
2711  * check_eeprom_exist
2712  * return 0 if eeprom exist
2713  */
2714 static int atl2_check_eeprom_exist(struct atl2_hw *hw)
2715 {
2716 	u32 value;
2717 
2718 	value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2719 	if (value & SPI_FLASH_CTRL_EN_VPD) {
2720 		value &= ~SPI_FLASH_CTRL_EN_VPD;
2721 		ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2722 	}
2723 	value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
2724 	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
2725 }
2726 
2727 /* FIXME: This doesn't look right. -- CHS */
2728 static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
2729 {
2730 	return true;
2731 }
2732 
2733 static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
2734 {
2735 	int i;
2736 	u32    Control;
2737 
2738 	if (Offset & 0x3)
2739 		return false; /* address do not align */
2740 
2741 	ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
2742 	Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
2743 	ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
2744 
2745 	for (i = 0; i < 10; i++) {
2746 		msleep(2);
2747 		Control = ATL2_READ_REG(hw, REG_VPD_CAP);
2748 		if (Control & VPD_CAP_VPD_FLAG)
2749 			break;
2750 	}
2751 
2752 	if (Control & VPD_CAP_VPD_FLAG) {
2753 		*pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
2754 		return true;
2755 	}
2756 	return false; /* timeout */
2757 }
2758 
2759 static void atl2_force_ps(struct atl2_hw *hw)
2760 {
2761 	u16 phy_val;
2762 
2763 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2764 	atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2765 	atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
2766 
2767 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
2768 	atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
2769 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
2770 	atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
2771 }
2772 
2773 /* This is the only thing that needs to be changed to adjust the
2774  * maximum number of ports that the driver can manage.
2775  */
2776 #define ATL2_MAX_NIC 4
2777 
2778 #define OPTION_UNSET    -1
2779 #define OPTION_DISABLED 0
2780 #define OPTION_ENABLED  1
2781 
2782 /* All parameters are treated the same, as an integer array of values.
2783  * This macro just reduces the need to repeat the same declaration code
2784  * over and over (plus this helps to avoid typo bugs).
2785  */
2786 #define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
2787 #ifndef module_param_array
2788 /* Module Parameters are always initialized to -1, so that the driver
2789  * can tell the difference between no user specified value or the
2790  * user asking for the default value.
2791  * The true default values are loaded in when atl2_check_options is called.
2792  *
2793  * This is a GCC extension to ANSI C.
2794  * See the item "Labeled Elements in Initializers" in the section
2795  * "Extensions to the C Language Family" of the GCC documentation.
2796  */
2797 
2798 #define ATL2_PARAM(X, desc) \
2799     static const int X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
2800     MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
2801     MODULE_PARM_DESC(X, desc);
2802 #else
2803 #define ATL2_PARAM(X, desc) \
2804     static int X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
2805     static unsigned int num_##X; \
2806     module_param_array_named(X, X, int, &num_##X, 0); \
2807     MODULE_PARM_DESC(X, desc);
2808 #endif
2809 
2810 /*
2811  * Transmit Memory Size
2812  * Valid Range: 64-2048
2813  * Default Value: 128
2814  */
2815 #define ATL2_MIN_TX_MEMSIZE		4	/* 4KB */
2816 #define ATL2_MAX_TX_MEMSIZE		64	/* 64KB */
2817 #define ATL2_DEFAULT_TX_MEMSIZE		8	/* 8KB */
2818 ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
2819 
2820 /*
2821  * Receive Memory Block Count
2822  * Valid Range: 16-512
2823  * Default Value: 128
2824  */
2825 #define ATL2_MIN_RXD_COUNT		16
2826 #define ATL2_MAX_RXD_COUNT		512
2827 #define ATL2_DEFAULT_RXD_COUNT		64
2828 ATL2_PARAM(RxMemBlock, "Number of receive memory block");
2829 
2830 /*
2831  * User Specified MediaType Override
2832  *
2833  * Valid Range: 0-5
2834  *  - 0    - auto-negotiate at all supported speeds
2835  *  - 1    - only link at 1000Mbps Full Duplex
2836  *  - 2    - only link at 100Mbps Full Duplex
2837  *  - 3    - only link at 100Mbps Half Duplex
2838  *  - 4    - only link at 10Mbps Full Duplex
2839  *  - 5    - only link at 10Mbps Half Duplex
2840  * Default Value: 0
2841  */
2842 ATL2_PARAM(MediaType, "MediaType Select");
2843 
2844 /*
2845  * Interrupt Moderate Timer in units of 2048 ns (~2 us)
2846  * Valid Range: 10-65535
2847  * Default Value: 45000(90ms)
2848  */
2849 #define INT_MOD_DEFAULT_CNT	100 /* 200us */
2850 #define INT_MOD_MAX_CNT		65000
2851 #define INT_MOD_MIN_CNT		50
2852 ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
2853 
2854 /*
2855  * FlashVendor
2856  * Valid Range: 0-2
2857  * 0 - Atmel
2858  * 1 - SST
2859  * 2 - ST
2860  */
2861 ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
2862 
2863 #define AUTONEG_ADV_DEFAULT	0x2F
2864 #define AUTONEG_ADV_MASK	0x2F
2865 #define FLOW_CONTROL_DEFAULT	FLOW_CONTROL_FULL
2866 
2867 #define FLASH_VENDOR_DEFAULT	0
2868 #define FLASH_VENDOR_MIN	0
2869 #define FLASH_VENDOR_MAX	2
2870 
2871 struct atl2_option {
2872 	enum { enable_option, range_option, list_option } type;
2873 	char *name;
2874 	char *err;
2875 	int  def;
2876 	union {
2877 		struct { /* range_option info */
2878 			int min;
2879 			int max;
2880 		} r;
2881 		struct { /* list_option info */
2882 			int nr;
2883 			struct atl2_opt_list { int i; char *str; } *p;
2884 		} l;
2885 	} arg;
2886 };
2887 
2888 static int atl2_validate_option(int *value, struct atl2_option *opt)
2889 {
2890 	int i;
2891 	struct atl2_opt_list *ent;
2892 
2893 	if (*value == OPTION_UNSET) {
2894 		*value = opt->def;
2895 		return 0;
2896 	}
2897 
2898 	switch (opt->type) {
2899 	case enable_option:
2900 		switch (*value) {
2901 		case OPTION_ENABLED:
2902 			printk(KERN_INFO "%s Enabled\n", opt->name);
2903 			return 0;
2904 		case OPTION_DISABLED:
2905 			printk(KERN_INFO "%s Disabled\n", opt->name);
2906 			return 0;
2907 		}
2908 		break;
2909 	case range_option:
2910 		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
2911 			printk(KERN_INFO "%s set to %i\n", opt->name, *value);
2912 			return 0;
2913 		}
2914 		break;
2915 	case list_option:
2916 		for (i = 0; i < opt->arg.l.nr; i++) {
2917 			ent = &opt->arg.l.p[i];
2918 			if (*value == ent->i) {
2919 				if (ent->str[0] != '\0')
2920 					printk(KERN_INFO "%s\n", ent->str);
2921 				return 0;
2922 			}
2923 		}
2924 		break;
2925 	default:
2926 		BUG();
2927 	}
2928 
2929 	printk(KERN_INFO "Invalid %s specified (%i) %s\n",
2930 		opt->name, *value, opt->err);
2931 	*value = opt->def;
2932 	return -1;
2933 }
2934 
2935 /**
2936  * atl2_check_options - Range Checking for Command Line Parameters
2937  * @adapter: board private structure
2938  *
2939  * This routine checks all command line parameters for valid user
2940  * input.  If an invalid value is given, or if no user specified
2941  * value exists, a default value is used.  The final value is stored
2942  * in a variable in the adapter structure.
2943  */
2944 static void atl2_check_options(struct atl2_adapter *adapter)
2945 {
2946 	int val;
2947 	struct atl2_option opt;
2948 	int bd = adapter->bd_number;
2949 	if (bd >= ATL2_MAX_NIC) {
2950 		printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
2951 			bd);
2952 		printk(KERN_NOTICE "Using defaults for all values\n");
2953 #ifndef module_param_array
2954 		bd = ATL2_MAX_NIC;
2955 #endif
2956 	}
2957 
2958 	/* Bytes of Transmit Memory */
2959 	opt.type = range_option;
2960 	opt.name = "Bytes of Transmit Memory";
2961 	opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
2962 	opt.def = ATL2_DEFAULT_TX_MEMSIZE;
2963 	opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
2964 	opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
2965 #ifdef module_param_array
2966 	if (num_TxMemSize > bd) {
2967 #endif
2968 		val = TxMemSize[bd];
2969 		atl2_validate_option(&val, &opt);
2970 		adapter->txd_ring_size = ((u32) val) * 1024;
2971 #ifdef module_param_array
2972 	} else
2973 		adapter->txd_ring_size = ((u32)opt.def) * 1024;
2974 #endif
2975 	/* txs ring size: */
2976 	adapter->txs_ring_size = adapter->txd_ring_size / 128;
2977 	if (adapter->txs_ring_size > 160)
2978 		adapter->txs_ring_size = 160;
2979 
2980 	/* Receive Memory Block Count */
2981 	opt.type = range_option;
2982 	opt.name = "Number of receive memory block";
2983 	opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
2984 	opt.def = ATL2_DEFAULT_RXD_COUNT;
2985 	opt.arg.r.min = ATL2_MIN_RXD_COUNT;
2986 	opt.arg.r.max = ATL2_MAX_RXD_COUNT;
2987 #ifdef module_param_array
2988 	if (num_RxMemBlock > bd) {
2989 #endif
2990 		val = RxMemBlock[bd];
2991 		atl2_validate_option(&val, &opt);
2992 		adapter->rxd_ring_size = (u32)val;
2993 		/* FIXME */
2994 		/* ((u16)val)&~1; */	/* even number */
2995 #ifdef module_param_array
2996 	} else
2997 		adapter->rxd_ring_size = (u32)opt.def;
2998 #endif
2999 	/* init RXD Flow control value */
3000 	adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
3001 	adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
3002 		(adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
3003 		(adapter->rxd_ring_size / 12);
3004 
3005 	/* Interrupt Moderate Timer */
3006 	opt.type = range_option;
3007 	opt.name = "Interrupt Moderate Timer";
3008 	opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
3009 	opt.def = INT_MOD_DEFAULT_CNT;
3010 	opt.arg.r.min = INT_MOD_MIN_CNT;
3011 	opt.arg.r.max = INT_MOD_MAX_CNT;
3012 #ifdef module_param_array
3013 	if (num_IntModTimer > bd) {
3014 #endif
3015 		val = IntModTimer[bd];
3016 		atl2_validate_option(&val, &opt);
3017 		adapter->imt = (u16) val;
3018 #ifdef module_param_array
3019 	} else
3020 		adapter->imt = (u16)(opt.def);
3021 #endif
3022 	/* Flash Vendor */
3023 	opt.type = range_option;
3024 	opt.name = "SPI Flash Vendor";
3025 	opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
3026 	opt.def = FLASH_VENDOR_DEFAULT;
3027 	opt.arg.r.min = FLASH_VENDOR_MIN;
3028 	opt.arg.r.max = FLASH_VENDOR_MAX;
3029 #ifdef module_param_array
3030 	if (num_FlashVendor > bd) {
3031 #endif
3032 		val = FlashVendor[bd];
3033 		atl2_validate_option(&val, &opt);
3034 		adapter->hw.flash_vendor = (u8) val;
3035 #ifdef module_param_array
3036 	} else
3037 		adapter->hw.flash_vendor = (u8)(opt.def);
3038 #endif
3039 	/* MediaType */
3040 	opt.type = range_option;
3041 	opt.name = "Speed/Duplex Selection";
3042 	opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
3043 	opt.def = MEDIA_TYPE_AUTO_SENSOR;
3044 	opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
3045 	opt.arg.r.max = MEDIA_TYPE_10M_HALF;
3046 #ifdef module_param_array
3047 	if (num_MediaType > bd) {
3048 #endif
3049 		val = MediaType[bd];
3050 		atl2_validate_option(&val, &opt);
3051 		adapter->hw.MediaType = (u16) val;
3052 #ifdef module_param_array
3053 	} else
3054 		adapter->hw.MediaType = (u16)(opt.def);
3055 #endif
3056 }
3057