1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
4  * Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
5  *
6  * Derived from Intel e1000 driver
7  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8  */
9 
10 #include <linux/atomic.h>
11 #include <linux/crc32.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/hardirq.h>
16 #include <linux/if_vlan.h>
17 #include <linux/in.h>
18 #include <linux/interrupt.h>
19 #include <linux/ip.h>
20 #include <linux/irqflags.h>
21 #include <linux/irqreturn.h>
22 #include <linux/mii.h>
23 #include <linux/net.h>
24 #include <linux/netdevice.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/pm.h>
28 #include <linux/skbuff.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32 #include <linux/tcp.h>
33 #include <linux/timer.h>
34 #include <linux/types.h>
35 #include <linux/workqueue.h>
36 
37 #include "atl2.h"
38 
39 #define ATL2_DRV_VERSION "2.2.3"
40 
41 static const char atl2_driver_name[] = "atl2";
42 static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver";
43 static const char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation.";
44 static const char atl2_driver_version[] = ATL2_DRV_VERSION;
45 static const struct ethtool_ops atl2_ethtool_ops;
46 
47 MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
48 MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
49 MODULE_LICENSE("GPL");
50 MODULE_VERSION(ATL2_DRV_VERSION);
51 
52 /*
53  * atl2_pci_tbl - PCI Device ID Table
54  */
55 static const struct pci_device_id atl2_pci_tbl[] = {
56 	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
57 	/* required last entry */
58 	{0,}
59 };
60 MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
61 
62 static void atl2_check_options(struct atl2_adapter *adapter);
63 
64 /**
65  * atl2_sw_init - Initialize general software structures (struct atl2_adapter)
66  * @adapter: board private structure to initialize
67  *
68  * atl2_sw_init initializes the Adapter private data structure.
69  * Fields are initialized based on PCI device information and
70  * OS network device settings (MTU size).
71  */
72 static int atl2_sw_init(struct atl2_adapter *adapter)
73 {
74 	struct atl2_hw *hw = &adapter->hw;
75 	struct pci_dev *pdev = adapter->pdev;
76 
77 	/* PCI config space info */
78 	hw->vendor_id = pdev->vendor;
79 	hw->device_id = pdev->device;
80 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
81 	hw->subsystem_id = pdev->subsystem_device;
82 	hw->revision_id  = pdev->revision;
83 
84 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
85 
86 	adapter->wol = 0;
87 	adapter->ict = 50000;  /* ~100ms */
88 	adapter->link_speed = SPEED_0;   /* hardware init */
89 	adapter->link_duplex = FULL_DUPLEX;
90 
91 	hw->phy_configured = false;
92 	hw->preamble_len = 7;
93 	hw->ipgt = 0x60;
94 	hw->min_ifg = 0x50;
95 	hw->ipgr1 = 0x40;
96 	hw->ipgr2 = 0x60;
97 	hw->retry_buf = 2;
98 	hw->max_retry = 0xf;
99 	hw->lcol = 0x37;
100 	hw->jam_ipg = 7;
101 	hw->fc_rxd_hi = 0;
102 	hw->fc_rxd_lo = 0;
103 	hw->max_frame_size = adapter->netdev->mtu;
104 
105 	spin_lock_init(&adapter->stats_lock);
106 
107 	set_bit(__ATL2_DOWN, &adapter->flags);
108 
109 	return 0;
110 }
111 
112 /**
113  * atl2_set_multi - Multicast and Promiscuous mode set
114  * @netdev: network interface device structure
115  *
116  * The set_multi entry point is called whenever the multicast address
117  * list or the network interface flags are updated.  This routine is
118  * responsible for configuring the hardware for proper multicast,
119  * promiscuous mode, and all-multi behavior.
120  */
121 static void atl2_set_multi(struct net_device *netdev)
122 {
123 	struct atl2_adapter *adapter = netdev_priv(netdev);
124 	struct atl2_hw *hw = &adapter->hw;
125 	struct netdev_hw_addr *ha;
126 	u32 rctl;
127 	u32 hash_value;
128 
129 	/* Check for Promiscuous and All Multicast modes */
130 	rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
131 
132 	if (netdev->flags & IFF_PROMISC) {
133 		rctl |= MAC_CTRL_PROMIS_EN;
134 	} else if (netdev->flags & IFF_ALLMULTI) {
135 		rctl |= MAC_CTRL_MC_ALL_EN;
136 		rctl &= ~MAC_CTRL_PROMIS_EN;
137 	} else
138 		rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
139 
140 	ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
141 
142 	/* clear the old settings from the multicast hash table */
143 	ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
144 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
145 
146 	/* comoute mc addresses' hash value ,and put it into hash table */
147 	netdev_for_each_mc_addr(ha, netdev) {
148 		hash_value = atl2_hash_mc_addr(hw, ha->addr);
149 		atl2_hash_set(hw, hash_value);
150 	}
151 }
152 
153 static void init_ring_ptrs(struct atl2_adapter *adapter)
154 {
155 	/* Read / Write Ptr Initialize: */
156 	adapter->txd_write_ptr = 0;
157 	atomic_set(&adapter->txd_read_ptr, 0);
158 
159 	adapter->rxd_read_ptr = 0;
160 	adapter->rxd_write_ptr = 0;
161 
162 	atomic_set(&adapter->txs_write_ptr, 0);
163 	adapter->txs_next_clear = 0;
164 }
165 
166 /**
167  * atl2_configure - Configure Transmit&Receive Unit after Reset
168  * @adapter: board private structure
169  *
170  * Configure the Tx /Rx unit of the MAC after a reset.
171  */
172 static int atl2_configure(struct atl2_adapter *adapter)
173 {
174 	struct atl2_hw *hw = &adapter->hw;
175 	u32 value;
176 
177 	/* clear interrupt status */
178 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
179 
180 	/* set MAC Address */
181 	value = (((u32)hw->mac_addr[2]) << 24) |
182 		(((u32)hw->mac_addr[3]) << 16) |
183 		(((u32)hw->mac_addr[4]) << 8) |
184 		(((u32)hw->mac_addr[5]));
185 	ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
186 	value = (((u32)hw->mac_addr[0]) << 8) |
187 		(((u32)hw->mac_addr[1]));
188 	ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
189 
190 	/* HI base address */
191 	ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
192 		(u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
193 
194 	/* LO base address */
195 	ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
196 		(u32)(adapter->txd_dma & 0x00000000ffffffffULL));
197 	ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
198 		(u32)(adapter->txs_dma & 0x00000000ffffffffULL));
199 	ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
200 		(u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
201 
202 	/* element count */
203 	ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
204 	ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
205 	ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM,  (u16)adapter->rxd_ring_size);
206 
207 	/* config Internal SRAM */
208 /*
209     ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
210     ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
211 */
212 
213 	/* config IPG/IFG */
214 	value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
215 		MAC_IPG_IFG_IPGT_SHIFT) |
216 		(((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
217 		MAC_IPG_IFG_MIFG_SHIFT) |
218 		(((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
219 		MAC_IPG_IFG_IPGR1_SHIFT)|
220 		(((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
221 		MAC_IPG_IFG_IPGR2_SHIFT);
222 	ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
223 
224 	/* config  Half-Duplex Control */
225 	value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
226 		(((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
227 		MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
228 		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
229 		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
230 		(((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
231 		MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
232 	ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
233 
234 	/* set Interrupt Moderator Timer */
235 	ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
236 	ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
237 
238 	/* set Interrupt Clear Timer */
239 	ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
240 
241 	/* set MTU */
242 	ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
243 		ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
244 
245 	/* 1590 */
246 	ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
247 
248 	/* flow control */
249 	ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
250 	ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
251 
252 	/* Init mailbox */
253 	ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
254 	ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
255 
256 	/* enable DMA read/write */
257 	ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
258 	ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
259 
260 	value = ATL2_READ_REG(&adapter->hw, REG_ISR);
261 	if ((value & ISR_PHY_LINKDOWN) != 0)
262 		value = 1; /* config failed */
263 	else
264 		value = 0;
265 
266 	/* clear all interrupt status */
267 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
268 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
269 	return value;
270 }
271 
272 /**
273  * atl2_setup_ring_resources - allocate Tx / RX descriptor resources
274  * @adapter: board private structure
275  *
276  * Return 0 on success, negative on failure
277  */
278 static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
279 {
280 	struct pci_dev *pdev = adapter->pdev;
281 	int size;
282 	u8 offset = 0;
283 
284 	/* real ring DMA buffer */
285 	adapter->ring_size = size =
286 		adapter->txd_ring_size * 1 + 7 +	/* dword align */
287 		adapter->txs_ring_size * 4 + 7 +	/* dword align */
288 		adapter->rxd_ring_size * 1536 + 127;	/* 128bytes align */
289 
290 	adapter->ring_vir_addr = pci_alloc_consistent(pdev, size,
291 		&adapter->ring_dma);
292 	if (!adapter->ring_vir_addr)
293 		return -ENOMEM;
294 	memset(adapter->ring_vir_addr, 0, adapter->ring_size);
295 
296 	/* Init TXD Ring */
297 	adapter->txd_dma = adapter->ring_dma ;
298 	offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
299 	adapter->txd_dma += offset;
300 	adapter->txd_ring = adapter->ring_vir_addr + offset;
301 
302 	/* Init TXS Ring */
303 	adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
304 	offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
305 	adapter->txs_dma += offset;
306 	adapter->txs_ring = (struct tx_pkt_status *)
307 		(((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
308 
309 	/* Init RXD Ring */
310 	adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
311 	offset = (adapter->rxd_dma & 127) ?
312 		(128 - (adapter->rxd_dma & 127)) : 0;
313 	if (offset > 7)
314 		offset -= 8;
315 	else
316 		offset += (128 - 8);
317 
318 	adapter->rxd_dma += offset;
319 	adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
320 		(adapter->txs_ring_size * 4 + offset));
321 
322 /*
323  * Read / Write Ptr Initialize:
324  *      init_ring_ptrs(adapter);
325  */
326 	return 0;
327 }
328 
329 /**
330  * atl2_irq_enable - Enable default interrupt generation settings
331  * @adapter: board private structure
332  */
333 static inline void atl2_irq_enable(struct atl2_adapter *adapter)
334 {
335 	ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
336 	ATL2_WRITE_FLUSH(&adapter->hw);
337 }
338 
339 /**
340  * atl2_irq_disable - Mask off interrupt generation on the NIC
341  * @adapter: board private structure
342  */
343 static inline void atl2_irq_disable(struct atl2_adapter *adapter)
344 {
345     ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
346     ATL2_WRITE_FLUSH(&adapter->hw);
347     synchronize_irq(adapter->pdev->irq);
348 }
349 
350 static void __atl2_vlan_mode(netdev_features_t features, u32 *ctrl)
351 {
352 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
353 		/* enable VLAN tag insert/strip */
354 		*ctrl |= MAC_CTRL_RMV_VLAN;
355 	} else {
356 		/* disable VLAN tag insert/strip */
357 		*ctrl &= ~MAC_CTRL_RMV_VLAN;
358 	}
359 }
360 
361 static void atl2_vlan_mode(struct net_device *netdev,
362 	netdev_features_t features)
363 {
364 	struct atl2_adapter *adapter = netdev_priv(netdev);
365 	u32 ctrl;
366 
367 	atl2_irq_disable(adapter);
368 
369 	ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
370 	__atl2_vlan_mode(features, &ctrl);
371 	ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
372 
373 	atl2_irq_enable(adapter);
374 }
375 
376 static void atl2_restore_vlan(struct atl2_adapter *adapter)
377 {
378 	atl2_vlan_mode(adapter->netdev, adapter->netdev->features);
379 }
380 
381 static netdev_features_t atl2_fix_features(struct net_device *netdev,
382 	netdev_features_t features)
383 {
384 	/*
385 	 * Since there is no support for separate rx/tx vlan accel
386 	 * enable/disable make sure tx flag is always in same state as rx.
387 	 */
388 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
389 		features |= NETIF_F_HW_VLAN_CTAG_TX;
390 	else
391 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
392 
393 	return features;
394 }
395 
396 static int atl2_set_features(struct net_device *netdev,
397 	netdev_features_t features)
398 {
399 	netdev_features_t changed = netdev->features ^ features;
400 
401 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
402 		atl2_vlan_mode(netdev, features);
403 
404 	return 0;
405 }
406 
407 static void atl2_intr_rx(struct atl2_adapter *adapter)
408 {
409 	struct net_device *netdev = adapter->netdev;
410 	struct rx_desc *rxd;
411 	struct sk_buff *skb;
412 
413 	do {
414 		rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
415 		if (!rxd->status.update)
416 			break; /* end of tx */
417 
418 		/* clear this flag at once */
419 		rxd->status.update = 0;
420 
421 		if (rxd->status.ok && rxd->status.pkt_size >= 60) {
422 			int rx_size = (int)(rxd->status.pkt_size - 4);
423 			/* alloc new buffer */
424 			skb = netdev_alloc_skb_ip_align(netdev, rx_size);
425 			if (NULL == skb) {
426 				/*
427 				 * Check that some rx space is free. If not,
428 				 * free one and mark stats->rx_dropped++.
429 				 */
430 				netdev->stats.rx_dropped++;
431 				break;
432 			}
433 			memcpy(skb->data, rxd->packet, rx_size);
434 			skb_put(skb, rx_size);
435 			skb->protocol = eth_type_trans(skb, netdev);
436 			if (rxd->status.vlan) {
437 				u16 vlan_tag = (rxd->status.vtag>>4) |
438 					((rxd->status.vtag&7) << 13) |
439 					((rxd->status.vtag&8) << 9);
440 
441 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
442 			}
443 			netif_rx(skb);
444 			netdev->stats.rx_bytes += rx_size;
445 			netdev->stats.rx_packets++;
446 		} else {
447 			netdev->stats.rx_errors++;
448 
449 			if (rxd->status.ok && rxd->status.pkt_size <= 60)
450 				netdev->stats.rx_length_errors++;
451 			if (rxd->status.mcast)
452 				netdev->stats.multicast++;
453 			if (rxd->status.crc)
454 				netdev->stats.rx_crc_errors++;
455 			if (rxd->status.align)
456 				netdev->stats.rx_frame_errors++;
457 		}
458 
459 		/* advance write ptr */
460 		if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
461 			adapter->rxd_write_ptr = 0;
462 	} while (1);
463 
464 	/* update mailbox? */
465 	adapter->rxd_read_ptr = adapter->rxd_write_ptr;
466 	ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
467 }
468 
469 static void atl2_intr_tx(struct atl2_adapter *adapter)
470 {
471 	struct net_device *netdev = adapter->netdev;
472 	u32 txd_read_ptr;
473 	u32 txs_write_ptr;
474 	struct tx_pkt_status *txs;
475 	struct tx_pkt_header *txph;
476 	int free_hole = 0;
477 
478 	do {
479 		txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
480 		txs = adapter->txs_ring + txs_write_ptr;
481 		if (!txs->update)
482 			break; /* tx stop here */
483 
484 		free_hole = 1;
485 		txs->update = 0;
486 
487 		if (++txs_write_ptr == adapter->txs_ring_size)
488 			txs_write_ptr = 0;
489 		atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
490 
491 		txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
492 		txph = (struct tx_pkt_header *)
493 			(((u8 *)adapter->txd_ring) + txd_read_ptr);
494 
495 		if (txph->pkt_size != txs->pkt_size) {
496 			struct tx_pkt_status *old_txs = txs;
497 			printk(KERN_WARNING
498 				"%s: txs packet size not consistent with txd"
499 				" txd_:0x%08x, txs_:0x%08x!\n",
500 				adapter->netdev->name,
501 				*(u32 *)txph, *(u32 *)txs);
502 			printk(KERN_WARNING
503 				"txd read ptr: 0x%x\n",
504 				txd_read_ptr);
505 			txs = adapter->txs_ring + txs_write_ptr;
506 			printk(KERN_WARNING
507 				"txs-behind:0x%08x\n",
508 				*(u32 *)txs);
509 			if (txs_write_ptr < 2) {
510 				txs = adapter->txs_ring +
511 					(adapter->txs_ring_size +
512 					txs_write_ptr - 2);
513 			} else {
514 				txs = adapter->txs_ring + (txs_write_ptr - 2);
515 			}
516 			printk(KERN_WARNING
517 				"txs-before:0x%08x\n",
518 				*(u32 *)txs);
519 			txs = old_txs;
520 		}
521 
522 		 /* 4for TPH */
523 		txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
524 		if (txd_read_ptr >= adapter->txd_ring_size)
525 			txd_read_ptr -= adapter->txd_ring_size;
526 
527 		atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
528 
529 		/* tx statistics: */
530 		if (txs->ok) {
531 			netdev->stats.tx_bytes += txs->pkt_size;
532 			netdev->stats.tx_packets++;
533 		}
534 		else
535 			netdev->stats.tx_errors++;
536 
537 		if (txs->defer)
538 			netdev->stats.collisions++;
539 		if (txs->abort_col)
540 			netdev->stats.tx_aborted_errors++;
541 		if (txs->late_col)
542 			netdev->stats.tx_window_errors++;
543 		if (txs->underrun)
544 			netdev->stats.tx_fifo_errors++;
545 	} while (1);
546 
547 	if (free_hole) {
548 		if (netif_queue_stopped(adapter->netdev) &&
549 			netif_carrier_ok(adapter->netdev))
550 			netif_wake_queue(adapter->netdev);
551 	}
552 }
553 
554 static void atl2_check_for_link(struct atl2_adapter *adapter)
555 {
556 	struct net_device *netdev = adapter->netdev;
557 	u16 phy_data = 0;
558 
559 	spin_lock(&adapter->stats_lock);
560 	atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
561 	atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
562 	spin_unlock(&adapter->stats_lock);
563 
564 	/* notify upper layer link down ASAP */
565 	if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
566 		if (netif_carrier_ok(netdev)) { /* old link state: Up */
567 		printk(KERN_INFO "%s: %s NIC Link is Down\n",
568 			atl2_driver_name, netdev->name);
569 		adapter->link_speed = SPEED_0;
570 		netif_carrier_off(netdev);
571 		netif_stop_queue(netdev);
572 		}
573 	}
574 	schedule_work(&adapter->link_chg_task);
575 }
576 
577 static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
578 {
579 	u16 phy_data;
580 	spin_lock(&adapter->stats_lock);
581 	atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
582 	spin_unlock(&adapter->stats_lock);
583 }
584 
585 /**
586  * atl2_intr - Interrupt Handler
587  * @irq: interrupt number
588  * @data: pointer to a network interface device structure
589  */
590 static irqreturn_t atl2_intr(int irq, void *data)
591 {
592 	struct atl2_adapter *adapter = netdev_priv(data);
593 	struct atl2_hw *hw = &adapter->hw;
594 	u32 status;
595 
596 	status = ATL2_READ_REG(hw, REG_ISR);
597 	if (0 == status)
598 		return IRQ_NONE;
599 
600 	/* link event */
601 	if (status & ISR_PHY)
602 		atl2_clear_phy_int(adapter);
603 
604 	/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
605 	ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
606 
607 	/* check if PCIE PHY Link down */
608 	if (status & ISR_PHY_LINKDOWN) {
609 		if (netif_running(adapter->netdev)) { /* reset MAC */
610 			ATL2_WRITE_REG(hw, REG_ISR, 0);
611 			ATL2_WRITE_REG(hw, REG_IMR, 0);
612 			ATL2_WRITE_FLUSH(hw);
613 			schedule_work(&adapter->reset_task);
614 			return IRQ_HANDLED;
615 		}
616 	}
617 
618 	/* check if DMA read/write error? */
619 	if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
620 		ATL2_WRITE_REG(hw, REG_ISR, 0);
621 		ATL2_WRITE_REG(hw, REG_IMR, 0);
622 		ATL2_WRITE_FLUSH(hw);
623 		schedule_work(&adapter->reset_task);
624 		return IRQ_HANDLED;
625 	}
626 
627 	/* link event */
628 	if (status & (ISR_PHY | ISR_MANUAL)) {
629 		adapter->netdev->stats.tx_carrier_errors++;
630 		atl2_check_for_link(adapter);
631 	}
632 
633 	/* transmit event */
634 	if (status & ISR_TX_EVENT)
635 		atl2_intr_tx(adapter);
636 
637 	/* rx exception */
638 	if (status & ISR_RX_EVENT)
639 		atl2_intr_rx(adapter);
640 
641 	/* re-enable Interrupt */
642 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
643 	return IRQ_HANDLED;
644 }
645 
646 static int atl2_request_irq(struct atl2_adapter *adapter)
647 {
648 	struct net_device *netdev = adapter->netdev;
649 	int flags, err = 0;
650 
651 	flags = IRQF_SHARED;
652 	adapter->have_msi = true;
653 	err = pci_enable_msi(adapter->pdev);
654 	if (err)
655 		adapter->have_msi = false;
656 
657 	if (adapter->have_msi)
658 		flags &= ~IRQF_SHARED;
659 
660 	return request_irq(adapter->pdev->irq, atl2_intr, flags, netdev->name,
661 		netdev);
662 }
663 
664 /**
665  * atl2_free_ring_resources - Free Tx / RX descriptor Resources
666  * @adapter: board private structure
667  *
668  * Free all transmit software resources
669  */
670 static void atl2_free_ring_resources(struct atl2_adapter *adapter)
671 {
672 	struct pci_dev *pdev = adapter->pdev;
673 	pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr,
674 		adapter->ring_dma);
675 }
676 
677 /**
678  * atl2_open - Called when a network interface is made active
679  * @netdev: network interface device structure
680  *
681  * Returns 0 on success, negative value on failure
682  *
683  * The open entry point is called when a network interface is made
684  * active by the system (IFF_UP).  At this point all resources needed
685  * for transmit and receive operations are allocated, the interrupt
686  * handler is registered with the OS, the watchdog timer is started,
687  * and the stack is notified that the interface is ready.
688  */
689 static int atl2_open(struct net_device *netdev)
690 {
691 	struct atl2_adapter *adapter = netdev_priv(netdev);
692 	int err;
693 	u32 val;
694 
695 	/* disallow open during test */
696 	if (test_bit(__ATL2_TESTING, &adapter->flags))
697 		return -EBUSY;
698 
699 	/* allocate transmit descriptors */
700 	err = atl2_setup_ring_resources(adapter);
701 	if (err)
702 		return err;
703 
704 	err = atl2_init_hw(&adapter->hw);
705 	if (err) {
706 		err = -EIO;
707 		goto err_init_hw;
708 	}
709 
710 	/* hardware has been reset, we need to reload some things */
711 	atl2_set_multi(netdev);
712 	init_ring_ptrs(adapter);
713 
714 	atl2_restore_vlan(adapter);
715 
716 	if (atl2_configure(adapter)) {
717 		err = -EIO;
718 		goto err_config;
719 	}
720 
721 	err = atl2_request_irq(adapter);
722 	if (err)
723 		goto err_req_irq;
724 
725 	clear_bit(__ATL2_DOWN, &adapter->flags);
726 
727 	mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ));
728 
729 	val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
730 	ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
731 		val | MASTER_CTRL_MANUAL_INT);
732 
733 	atl2_irq_enable(adapter);
734 
735 	return 0;
736 
737 err_init_hw:
738 err_req_irq:
739 err_config:
740 	atl2_free_ring_resources(adapter);
741 	atl2_reset_hw(&adapter->hw);
742 
743 	return err;
744 }
745 
746 static void atl2_down(struct atl2_adapter *adapter)
747 {
748 	struct net_device *netdev = adapter->netdev;
749 
750 	/* signal that we're down so the interrupt handler does not
751 	 * reschedule our watchdog timer */
752 	set_bit(__ATL2_DOWN, &adapter->flags);
753 
754 	netif_tx_disable(netdev);
755 
756 	/* reset MAC to disable all RX/TX */
757 	atl2_reset_hw(&adapter->hw);
758 	msleep(1);
759 
760 	atl2_irq_disable(adapter);
761 
762 	del_timer_sync(&adapter->watchdog_timer);
763 	del_timer_sync(&adapter->phy_config_timer);
764 	clear_bit(0, &adapter->cfg_phy);
765 
766 	netif_carrier_off(netdev);
767 	adapter->link_speed = SPEED_0;
768 	adapter->link_duplex = -1;
769 }
770 
771 static void atl2_free_irq(struct atl2_adapter *adapter)
772 {
773 	struct net_device *netdev = adapter->netdev;
774 
775 	free_irq(adapter->pdev->irq, netdev);
776 
777 #ifdef CONFIG_PCI_MSI
778 	if (adapter->have_msi)
779 		pci_disable_msi(adapter->pdev);
780 #endif
781 }
782 
783 /**
784  * atl2_close - Disables a network interface
785  * @netdev: network interface device structure
786  *
787  * Returns 0, this is not allowed to fail
788  *
789  * The close entry point is called when an interface is de-activated
790  * by the OS.  The hardware is still under the drivers control, but
791  * needs to be disabled.  A global MAC reset is issued to stop the
792  * hardware, and all transmit and receive resources are freed.
793  */
794 static int atl2_close(struct net_device *netdev)
795 {
796 	struct atl2_adapter *adapter = netdev_priv(netdev);
797 
798 	WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
799 
800 	atl2_down(adapter);
801 	atl2_free_irq(adapter);
802 	atl2_free_ring_resources(adapter);
803 
804 	return 0;
805 }
806 
807 static inline int TxsFreeUnit(struct atl2_adapter *adapter)
808 {
809 	u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
810 
811 	return (adapter->txs_next_clear >= txs_write_ptr) ?
812 		(int) (adapter->txs_ring_size - adapter->txs_next_clear +
813 		txs_write_ptr - 1) :
814 		(int) (txs_write_ptr - adapter->txs_next_clear - 1);
815 }
816 
817 static inline int TxdFreeBytes(struct atl2_adapter *adapter)
818 {
819 	u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
820 
821 	return (adapter->txd_write_ptr >= txd_read_ptr) ?
822 		(int) (adapter->txd_ring_size - adapter->txd_write_ptr +
823 		txd_read_ptr - 1) :
824 		(int) (txd_read_ptr - adapter->txd_write_ptr - 1);
825 }
826 
827 static netdev_tx_t atl2_xmit_frame(struct sk_buff *skb,
828 					 struct net_device *netdev)
829 {
830 	struct atl2_adapter *adapter = netdev_priv(netdev);
831 	struct tx_pkt_header *txph;
832 	u32 offset, copy_len;
833 	int txs_unused;
834 	int txbuf_unused;
835 
836 	if (test_bit(__ATL2_DOWN, &adapter->flags)) {
837 		dev_kfree_skb_any(skb);
838 		return NETDEV_TX_OK;
839 	}
840 
841 	if (unlikely(skb->len <= 0)) {
842 		dev_kfree_skb_any(skb);
843 		return NETDEV_TX_OK;
844 	}
845 
846 	txs_unused = TxsFreeUnit(adapter);
847 	txbuf_unused = TxdFreeBytes(adapter);
848 
849 	if (skb->len + sizeof(struct tx_pkt_header) + 4  > txbuf_unused ||
850 		txs_unused < 1) {
851 		/* not enough resources */
852 		netif_stop_queue(netdev);
853 		return NETDEV_TX_BUSY;
854 	}
855 
856 	offset = adapter->txd_write_ptr;
857 
858 	txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
859 
860 	*(u32 *)txph = 0;
861 	txph->pkt_size = skb->len;
862 
863 	offset += 4;
864 	if (offset >= adapter->txd_ring_size)
865 		offset -= adapter->txd_ring_size;
866 	copy_len = adapter->txd_ring_size - offset;
867 	if (copy_len >= skb->len) {
868 		memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
869 		offset += ((u32)(skb->len + 3) & ~3);
870 	} else {
871 		memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
872 		memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
873 			skb->len-copy_len);
874 		offset = ((u32)(skb->len-copy_len + 3) & ~3);
875 	}
876 #ifdef NETIF_F_HW_VLAN_CTAG_TX
877 	if (skb_vlan_tag_present(skb)) {
878 		u16 vlan_tag = skb_vlan_tag_get(skb);
879 		vlan_tag = (vlan_tag << 4) |
880 			(vlan_tag >> 13) |
881 			((vlan_tag >> 9) & 0x8);
882 		txph->ins_vlan = 1;
883 		txph->vlan = vlan_tag;
884 	}
885 #endif
886 	if (offset >= adapter->txd_ring_size)
887 		offset -= adapter->txd_ring_size;
888 	adapter->txd_write_ptr = offset;
889 
890 	/* clear txs before send */
891 	adapter->txs_ring[adapter->txs_next_clear].update = 0;
892 	if (++adapter->txs_next_clear == adapter->txs_ring_size)
893 		adapter->txs_next_clear = 0;
894 
895 	ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
896 		(adapter->txd_write_ptr >> 2));
897 
898 	dev_consume_skb_any(skb);
899 	return NETDEV_TX_OK;
900 }
901 
902 /**
903  * atl2_change_mtu - Change the Maximum Transfer Unit
904  * @netdev: network interface device structure
905  * @new_mtu: new value for maximum frame size
906  *
907  * Returns 0 on success, negative on failure
908  */
909 static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
910 {
911 	struct atl2_adapter *adapter = netdev_priv(netdev);
912 	struct atl2_hw *hw = &adapter->hw;
913 
914 	/* set MTU */
915 	netdev->mtu = new_mtu;
916 	hw->max_frame_size = new_mtu;
917 	ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ETH_HLEN +
918 		       VLAN_HLEN + ETH_FCS_LEN);
919 
920 	return 0;
921 }
922 
923 /**
924  * atl2_set_mac - Change the Ethernet Address of the NIC
925  * @netdev: network interface device structure
926  * @p: pointer to an address structure
927  *
928  * Returns 0 on success, negative on failure
929  */
930 static int atl2_set_mac(struct net_device *netdev, void *p)
931 {
932 	struct atl2_adapter *adapter = netdev_priv(netdev);
933 	struct sockaddr *addr = p;
934 
935 	if (!is_valid_ether_addr(addr->sa_data))
936 		return -EADDRNOTAVAIL;
937 
938 	if (netif_running(netdev))
939 		return -EBUSY;
940 
941 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
942 	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
943 
944 	atl2_set_mac_addr(&adapter->hw);
945 
946 	return 0;
947 }
948 
949 static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
950 {
951 	struct atl2_adapter *adapter = netdev_priv(netdev);
952 	struct mii_ioctl_data *data = if_mii(ifr);
953 	unsigned long flags;
954 
955 	switch (cmd) {
956 	case SIOCGMIIPHY:
957 		data->phy_id = 0;
958 		break;
959 	case SIOCGMIIREG:
960 		spin_lock_irqsave(&adapter->stats_lock, flags);
961 		if (atl2_read_phy_reg(&adapter->hw,
962 			data->reg_num & 0x1F, &data->val_out)) {
963 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
964 			return -EIO;
965 		}
966 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
967 		break;
968 	case SIOCSMIIREG:
969 		if (data->reg_num & ~(0x1F))
970 			return -EFAULT;
971 		spin_lock_irqsave(&adapter->stats_lock, flags);
972 		if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
973 			data->val_in)) {
974 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
975 			return -EIO;
976 		}
977 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
978 		break;
979 	default:
980 		return -EOPNOTSUPP;
981 	}
982 	return 0;
983 }
984 
985 static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
986 {
987 	switch (cmd) {
988 	case SIOCGMIIPHY:
989 	case SIOCGMIIREG:
990 	case SIOCSMIIREG:
991 		return atl2_mii_ioctl(netdev, ifr, cmd);
992 #ifdef ETHTOOL_OPS_COMPAT
993 	case SIOCETHTOOL:
994 		return ethtool_ioctl(ifr);
995 #endif
996 	default:
997 		return -EOPNOTSUPP;
998 	}
999 }
1000 
1001 /**
1002  * atl2_tx_timeout - Respond to a Tx Hang
1003  * @netdev: network interface device structure
1004  */
1005 static void atl2_tx_timeout(struct net_device *netdev)
1006 {
1007 	struct atl2_adapter *adapter = netdev_priv(netdev);
1008 
1009 	/* Do the reset outside of interrupt context */
1010 	schedule_work(&adapter->reset_task);
1011 }
1012 
1013 /**
1014  * atl2_watchdog - Timer Call-back
1015  * @data: pointer to netdev cast into an unsigned long
1016  */
1017 static void atl2_watchdog(struct timer_list *t)
1018 {
1019 	struct atl2_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1020 
1021 	if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1022 		u32 drop_rxd, drop_rxs;
1023 		unsigned long flags;
1024 
1025 		spin_lock_irqsave(&adapter->stats_lock, flags);
1026 		drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
1027 		drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
1028 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
1029 
1030 		adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs;
1031 
1032 		/* Reset the timer */
1033 		mod_timer(&adapter->watchdog_timer,
1034 			  round_jiffies(jiffies + 4 * HZ));
1035 	}
1036 }
1037 
1038 /**
1039  * atl2_phy_config - Timer Call-back
1040  * @data: pointer to netdev cast into an unsigned long
1041  */
1042 static void atl2_phy_config(struct timer_list *t)
1043 {
1044 	struct atl2_adapter *adapter = from_timer(adapter, t,
1045 						  phy_config_timer);
1046 	struct atl2_hw *hw = &adapter->hw;
1047 	unsigned long flags;
1048 
1049 	spin_lock_irqsave(&adapter->stats_lock, flags);
1050 	atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
1051 	atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
1052 		MII_CR_RESTART_AUTO_NEG);
1053 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
1054 	clear_bit(0, &adapter->cfg_phy);
1055 }
1056 
1057 static int atl2_up(struct atl2_adapter *adapter)
1058 {
1059 	struct net_device *netdev = adapter->netdev;
1060 	int err = 0;
1061 	u32 val;
1062 
1063 	/* hardware has been reset, we need to reload some things */
1064 
1065 	err = atl2_init_hw(&adapter->hw);
1066 	if (err) {
1067 		err = -EIO;
1068 		return err;
1069 	}
1070 
1071 	atl2_set_multi(netdev);
1072 	init_ring_ptrs(adapter);
1073 
1074 	atl2_restore_vlan(adapter);
1075 
1076 	if (atl2_configure(adapter)) {
1077 		err = -EIO;
1078 		goto err_up;
1079 	}
1080 
1081 	clear_bit(__ATL2_DOWN, &adapter->flags);
1082 
1083 	val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
1084 	ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
1085 		MASTER_CTRL_MANUAL_INT);
1086 
1087 	atl2_irq_enable(adapter);
1088 
1089 err_up:
1090 	return err;
1091 }
1092 
1093 static void atl2_reinit_locked(struct atl2_adapter *adapter)
1094 {
1095 	WARN_ON(in_interrupt());
1096 	while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1097 		msleep(1);
1098 	atl2_down(adapter);
1099 	atl2_up(adapter);
1100 	clear_bit(__ATL2_RESETTING, &adapter->flags);
1101 }
1102 
1103 static void atl2_reset_task(struct work_struct *work)
1104 {
1105 	struct atl2_adapter *adapter;
1106 	adapter = container_of(work, struct atl2_adapter, reset_task);
1107 
1108 	atl2_reinit_locked(adapter);
1109 }
1110 
1111 static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
1112 {
1113 	u32 value;
1114 	struct atl2_hw *hw = &adapter->hw;
1115 	struct net_device *netdev = adapter->netdev;
1116 
1117 	/* Config MAC CTRL Register */
1118 	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1119 
1120 	/* duplex */
1121 	if (FULL_DUPLEX == adapter->link_duplex)
1122 		value |= MAC_CTRL_DUPLX;
1123 
1124 	/* flow control */
1125 	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1126 
1127 	/* PAD & CRC */
1128 	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1129 
1130 	/* preamble length */
1131 	value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
1132 		MAC_CTRL_PRMLEN_SHIFT);
1133 
1134 	/* vlan */
1135 	__atl2_vlan_mode(netdev->features, &value);
1136 
1137 	/* filter mode */
1138 	value |= MAC_CTRL_BC_EN;
1139 	if (netdev->flags & IFF_PROMISC)
1140 		value |= MAC_CTRL_PROMIS_EN;
1141 	else if (netdev->flags & IFF_ALLMULTI)
1142 		value |= MAC_CTRL_MC_ALL_EN;
1143 
1144 	/* half retry buffer */
1145 	value |= (((u32)(adapter->hw.retry_buf &
1146 		MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1147 
1148 	ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1149 }
1150 
1151 static int atl2_check_link(struct atl2_adapter *adapter)
1152 {
1153 	struct atl2_hw *hw = &adapter->hw;
1154 	struct net_device *netdev = adapter->netdev;
1155 	int ret_val;
1156 	u16 speed, duplex, phy_data;
1157 	int reconfig = 0;
1158 
1159 	/* MII_BMSR must read twise */
1160 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1161 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1162 	if (!(phy_data&BMSR_LSTATUS)) { /* link down */
1163 		if (netif_carrier_ok(netdev)) { /* old link state: Up */
1164 			u32 value;
1165 			/* disable rx */
1166 			value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1167 			value &= ~MAC_CTRL_RX_EN;
1168 			ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1169 			adapter->link_speed = SPEED_0;
1170 			netif_carrier_off(netdev);
1171 			netif_stop_queue(netdev);
1172 		}
1173 		return 0;
1174 	}
1175 
1176 	/* Link Up */
1177 	ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1178 	if (ret_val)
1179 		return ret_val;
1180 	switch (hw->MediaType) {
1181 	case MEDIA_TYPE_100M_FULL:
1182 		if (speed  != SPEED_100 || duplex != FULL_DUPLEX)
1183 			reconfig = 1;
1184 		break;
1185 	case MEDIA_TYPE_100M_HALF:
1186 		if (speed  != SPEED_100 || duplex != HALF_DUPLEX)
1187 			reconfig = 1;
1188 		break;
1189 	case MEDIA_TYPE_10M_FULL:
1190 		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1191 			reconfig = 1;
1192 		break;
1193 	case MEDIA_TYPE_10M_HALF:
1194 		if (speed  != SPEED_10 || duplex != HALF_DUPLEX)
1195 			reconfig = 1;
1196 		break;
1197 	}
1198 	/* link result is our setting */
1199 	if (reconfig == 0) {
1200 		if (adapter->link_speed != speed ||
1201 			adapter->link_duplex != duplex) {
1202 			adapter->link_speed = speed;
1203 			adapter->link_duplex = duplex;
1204 			atl2_setup_mac_ctrl(adapter);
1205 			printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
1206 				atl2_driver_name, netdev->name,
1207 				adapter->link_speed,
1208 				adapter->link_duplex == FULL_DUPLEX ?
1209 					"Full Duplex" : "Half Duplex");
1210 		}
1211 
1212 		if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
1213 			netif_carrier_on(netdev);
1214 			netif_wake_queue(netdev);
1215 		}
1216 		return 0;
1217 	}
1218 
1219 	/* change original link status */
1220 	if (netif_carrier_ok(netdev)) {
1221 		u32 value;
1222 		/* disable rx */
1223 		value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1224 		value &= ~MAC_CTRL_RX_EN;
1225 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1226 
1227 		adapter->link_speed = SPEED_0;
1228 		netif_carrier_off(netdev);
1229 		netif_stop_queue(netdev);
1230 	}
1231 
1232 	/* auto-neg, insert timer to re-config phy
1233 	 * (if interval smaller than 5 seconds, something strange) */
1234 	if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1235 		if (!test_and_set_bit(0, &adapter->cfg_phy))
1236 			mod_timer(&adapter->phy_config_timer,
1237 				  round_jiffies(jiffies + 5 * HZ));
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 /**
1244  * atl2_link_chg_task - deal with link change event Out of interrupt context
1245  */
1246 static void atl2_link_chg_task(struct work_struct *work)
1247 {
1248 	struct atl2_adapter *adapter;
1249 	unsigned long flags;
1250 
1251 	adapter = container_of(work, struct atl2_adapter, link_chg_task);
1252 
1253 	spin_lock_irqsave(&adapter->stats_lock, flags);
1254 	atl2_check_link(adapter);
1255 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
1256 }
1257 
1258 static void atl2_setup_pcicmd(struct pci_dev *pdev)
1259 {
1260 	u16 cmd;
1261 
1262 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1263 
1264 	if (cmd & PCI_COMMAND_INTX_DISABLE)
1265 		cmd &= ~PCI_COMMAND_INTX_DISABLE;
1266 	if (cmd & PCI_COMMAND_IO)
1267 		cmd &= ~PCI_COMMAND_IO;
1268 	if (0 == (cmd & PCI_COMMAND_MEMORY))
1269 		cmd |= PCI_COMMAND_MEMORY;
1270 	if (0 == (cmd & PCI_COMMAND_MASTER))
1271 		cmd |= PCI_COMMAND_MASTER;
1272 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
1273 
1274 	/*
1275 	 * some motherboards BIOS(PXE/EFI) driver may set PME
1276 	 * while they transfer control to OS (Windows/Linux)
1277 	 * so we should clear this bit before NIC work normally
1278 	 */
1279 	pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
1280 }
1281 
1282 #ifdef CONFIG_NET_POLL_CONTROLLER
1283 static void atl2_poll_controller(struct net_device *netdev)
1284 {
1285 	disable_irq(netdev->irq);
1286 	atl2_intr(netdev->irq, netdev);
1287 	enable_irq(netdev->irq);
1288 }
1289 #endif
1290 
1291 
1292 static const struct net_device_ops atl2_netdev_ops = {
1293 	.ndo_open		= atl2_open,
1294 	.ndo_stop		= atl2_close,
1295 	.ndo_start_xmit		= atl2_xmit_frame,
1296 	.ndo_set_rx_mode	= atl2_set_multi,
1297 	.ndo_validate_addr	= eth_validate_addr,
1298 	.ndo_set_mac_address	= atl2_set_mac,
1299 	.ndo_change_mtu		= atl2_change_mtu,
1300 	.ndo_fix_features	= atl2_fix_features,
1301 	.ndo_set_features	= atl2_set_features,
1302 	.ndo_do_ioctl		= atl2_ioctl,
1303 	.ndo_tx_timeout		= atl2_tx_timeout,
1304 #ifdef CONFIG_NET_POLL_CONTROLLER
1305 	.ndo_poll_controller	= atl2_poll_controller,
1306 #endif
1307 };
1308 
1309 /**
1310  * atl2_probe - Device Initialization Routine
1311  * @pdev: PCI device information struct
1312  * @ent: entry in atl2_pci_tbl
1313  *
1314  * Returns 0 on success, negative on failure
1315  *
1316  * atl2_probe initializes an adapter identified by a pci_dev structure.
1317  * The OS initialization, configuring of the adapter private structure,
1318  * and a hardware reset occur.
1319  */
1320 static int atl2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1321 {
1322 	struct net_device *netdev;
1323 	struct atl2_adapter *adapter;
1324 	static int cards_found = 0;
1325 	unsigned long mmio_start;
1326 	int mmio_len;
1327 	int err;
1328 
1329 	err = pci_enable_device(pdev);
1330 	if (err)
1331 		return err;
1332 
1333 	/*
1334 	 * atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
1335 	 * until the kernel has the proper infrastructure to support 64-bit DMA
1336 	 * on these devices.
1337 	 */
1338 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) &&
1339 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1340 		printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
1341 		err = -EIO;
1342 		goto err_dma;
1343 	}
1344 
1345 	/* Mark all PCI regions associated with PCI device
1346 	 * pdev as being reserved by owner atl2_driver_name */
1347 	err = pci_request_regions(pdev, atl2_driver_name);
1348 	if (err)
1349 		goto err_pci_reg;
1350 
1351 	/* Enables bus-mastering on the device and calls
1352 	 * pcibios_set_master to do the needed arch specific settings */
1353 	pci_set_master(pdev);
1354 
1355 	netdev = alloc_etherdev(sizeof(struct atl2_adapter));
1356 	if (!netdev) {
1357 		err = -ENOMEM;
1358 		goto err_alloc_etherdev;
1359 	}
1360 
1361 	SET_NETDEV_DEV(netdev, &pdev->dev);
1362 
1363 	pci_set_drvdata(pdev, netdev);
1364 	adapter = netdev_priv(netdev);
1365 	adapter->netdev = netdev;
1366 	adapter->pdev = pdev;
1367 	adapter->hw.back = adapter;
1368 
1369 	mmio_start = pci_resource_start(pdev, 0x0);
1370 	mmio_len = pci_resource_len(pdev, 0x0);
1371 
1372 	adapter->hw.mem_rang = (u32)mmio_len;
1373 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1374 	if (!adapter->hw.hw_addr) {
1375 		err = -EIO;
1376 		goto err_ioremap;
1377 	}
1378 
1379 	atl2_setup_pcicmd(pdev);
1380 
1381 	netdev->netdev_ops = &atl2_netdev_ops;
1382 	netdev->ethtool_ops = &atl2_ethtool_ops;
1383 	netdev->watchdog_timeo = 5 * HZ;
1384 	netdev->min_mtu = 40;
1385 	netdev->max_mtu = ETH_DATA_LEN + VLAN_HLEN;
1386 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1387 
1388 	netdev->mem_start = mmio_start;
1389 	netdev->mem_end = mmio_start + mmio_len;
1390 	adapter->bd_number = cards_found;
1391 	adapter->pci_using_64 = false;
1392 
1393 	/* setup the private structure */
1394 	err = atl2_sw_init(adapter);
1395 	if (err)
1396 		goto err_sw_init;
1397 
1398 	netdev->hw_features = NETIF_F_HW_VLAN_CTAG_RX;
1399 	netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
1400 
1401 	/* Init PHY as early as possible due to power saving issue  */
1402 	atl2_phy_init(&adapter->hw);
1403 
1404 	/* reset the controller to
1405 	 * put the device in a known good starting state */
1406 
1407 	if (atl2_reset_hw(&adapter->hw)) {
1408 		err = -EIO;
1409 		goto err_reset;
1410 	}
1411 
1412 	/* copy the MAC address out of the EEPROM */
1413 	atl2_read_mac_addr(&adapter->hw);
1414 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1415 	if (!is_valid_ether_addr(netdev->dev_addr)) {
1416 		err = -EIO;
1417 		goto err_eeprom;
1418 	}
1419 
1420 	atl2_check_options(adapter);
1421 
1422 	timer_setup(&adapter->watchdog_timer, atl2_watchdog, 0);
1423 
1424 	timer_setup(&adapter->phy_config_timer, atl2_phy_config, 0);
1425 
1426 	INIT_WORK(&adapter->reset_task, atl2_reset_task);
1427 	INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
1428 
1429 	strcpy(netdev->name, "eth%d"); /* ?? */
1430 	err = register_netdev(netdev);
1431 	if (err)
1432 		goto err_register;
1433 
1434 	/* assume we have no link for now */
1435 	netif_carrier_off(netdev);
1436 	netif_stop_queue(netdev);
1437 
1438 	cards_found++;
1439 
1440 	return 0;
1441 
1442 err_reset:
1443 err_register:
1444 err_sw_init:
1445 err_eeprom:
1446 	iounmap(adapter->hw.hw_addr);
1447 err_ioremap:
1448 	free_netdev(netdev);
1449 err_alloc_etherdev:
1450 	pci_release_regions(pdev);
1451 err_pci_reg:
1452 err_dma:
1453 	pci_disable_device(pdev);
1454 	return err;
1455 }
1456 
1457 /**
1458  * atl2_remove - Device Removal Routine
1459  * @pdev: PCI device information struct
1460  *
1461  * atl2_remove is called by the PCI subsystem to alert the driver
1462  * that it should release a PCI device.  The could be caused by a
1463  * Hot-Plug event, or because the driver is going to be removed from
1464  * memory.
1465  */
1466 /* FIXME: write the original MAC address back in case it was changed from a
1467  * BIOS-set value, as in atl1 -- CHS */
1468 static void atl2_remove(struct pci_dev *pdev)
1469 {
1470 	struct net_device *netdev = pci_get_drvdata(pdev);
1471 	struct atl2_adapter *adapter = netdev_priv(netdev);
1472 
1473 	/* flush_scheduled work may reschedule our watchdog task, so
1474 	 * explicitly disable watchdog tasks from being rescheduled  */
1475 	set_bit(__ATL2_DOWN, &adapter->flags);
1476 
1477 	del_timer_sync(&adapter->watchdog_timer);
1478 	del_timer_sync(&adapter->phy_config_timer);
1479 	cancel_work_sync(&adapter->reset_task);
1480 	cancel_work_sync(&adapter->link_chg_task);
1481 
1482 	unregister_netdev(netdev);
1483 
1484 	atl2_force_ps(&adapter->hw);
1485 
1486 	iounmap(adapter->hw.hw_addr);
1487 	pci_release_regions(pdev);
1488 
1489 	free_netdev(netdev);
1490 
1491 	pci_disable_device(pdev);
1492 }
1493 
1494 static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
1495 {
1496 	struct net_device *netdev = pci_get_drvdata(pdev);
1497 	struct atl2_adapter *adapter = netdev_priv(netdev);
1498 	struct atl2_hw *hw = &adapter->hw;
1499 	u16 speed, duplex;
1500 	u32 ctrl = 0;
1501 	u32 wufc = adapter->wol;
1502 
1503 #ifdef CONFIG_PM
1504 	int retval = 0;
1505 #endif
1506 
1507 	netif_device_detach(netdev);
1508 
1509 	if (netif_running(netdev)) {
1510 		WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
1511 		atl2_down(adapter);
1512 	}
1513 
1514 #ifdef CONFIG_PM
1515 	retval = pci_save_state(pdev);
1516 	if (retval)
1517 		return retval;
1518 #endif
1519 
1520 	atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1521 	atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1522 	if (ctrl & BMSR_LSTATUS)
1523 		wufc &= ~ATLX_WUFC_LNKC;
1524 
1525 	if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
1526 		u32 ret_val;
1527 		/* get current link speed & duplex */
1528 		ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1529 		if (ret_val) {
1530 			printk(KERN_DEBUG
1531 				"%s: get speed&duplex error while suspend\n",
1532 				atl2_driver_name);
1533 			goto wol_dis;
1534 		}
1535 
1536 		ctrl = 0;
1537 
1538 		/* turn on magic packet wol */
1539 		if (wufc & ATLX_WUFC_MAG)
1540 			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
1541 
1542 		/* ignore Link Chg event when Link is up */
1543 		ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1544 
1545 		/* Config MAC CTRL Register */
1546 		ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1547 		if (FULL_DUPLEX == adapter->link_duplex)
1548 			ctrl |= MAC_CTRL_DUPLX;
1549 		ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1550 		ctrl |= (((u32)adapter->hw.preamble_len &
1551 			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1552 		ctrl |= (((u32)(adapter->hw.retry_buf &
1553 			MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
1554 			MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1555 		if (wufc & ATLX_WUFC_MAG) {
1556 			/* magic packet maybe Broadcast&multicast&Unicast */
1557 			ctrl |= MAC_CTRL_BC_EN;
1558 		}
1559 
1560 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
1561 
1562 		/* pcie patch */
1563 		ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1564 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1565 		ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1566 		ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1567 		ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1568 		ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1569 
1570 		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1571 		goto suspend_exit;
1572 	}
1573 
1574 	if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
1575 		/* link is down, so only LINK CHG WOL event enable */
1576 		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
1577 		ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1578 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
1579 
1580 		/* pcie patch */
1581 		ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1582 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1583 		ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1584 		ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1585 		ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1586 		ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1587 
1588 		hw->phy_configured = false; /* re-init PHY when resume */
1589 
1590 		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1591 
1592 		goto suspend_exit;
1593 	}
1594 
1595 wol_dis:
1596 	/* WOL disabled */
1597 	ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
1598 
1599 	/* pcie patch */
1600 	ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1601 	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1602 	ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1603 	ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1604 	ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1605 	ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1606 
1607 	atl2_force_ps(hw);
1608 	hw->phy_configured = false; /* re-init PHY when resume */
1609 
1610 	pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
1611 
1612 suspend_exit:
1613 	if (netif_running(netdev))
1614 		atl2_free_irq(adapter);
1615 
1616 	pci_disable_device(pdev);
1617 
1618 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
1619 
1620 	return 0;
1621 }
1622 
1623 #ifdef CONFIG_PM
1624 static int atl2_resume(struct pci_dev *pdev)
1625 {
1626 	struct net_device *netdev = pci_get_drvdata(pdev);
1627 	struct atl2_adapter *adapter = netdev_priv(netdev);
1628 	u32 err;
1629 
1630 	pci_set_power_state(pdev, PCI_D0);
1631 	pci_restore_state(pdev);
1632 
1633 	err = pci_enable_device(pdev);
1634 	if (err) {
1635 		printk(KERN_ERR
1636 			"atl2: Cannot enable PCI device from suspend\n");
1637 		return err;
1638 	}
1639 
1640 	pci_set_master(pdev);
1641 
1642 	ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
1643 
1644 	pci_enable_wake(pdev, PCI_D3hot, 0);
1645 	pci_enable_wake(pdev, PCI_D3cold, 0);
1646 
1647 	ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
1648 
1649 	if (netif_running(netdev)) {
1650 		err = atl2_request_irq(adapter);
1651 		if (err)
1652 			return err;
1653 	}
1654 
1655 	atl2_reset_hw(&adapter->hw);
1656 
1657 	if (netif_running(netdev))
1658 		atl2_up(adapter);
1659 
1660 	netif_device_attach(netdev);
1661 
1662 	return 0;
1663 }
1664 #endif
1665 
1666 static void atl2_shutdown(struct pci_dev *pdev)
1667 {
1668 	atl2_suspend(pdev, PMSG_SUSPEND);
1669 }
1670 
1671 static struct pci_driver atl2_driver = {
1672 	.name     = atl2_driver_name,
1673 	.id_table = atl2_pci_tbl,
1674 	.probe    = atl2_probe,
1675 	.remove   = atl2_remove,
1676 	/* Power Management Hooks */
1677 	.suspend  = atl2_suspend,
1678 #ifdef CONFIG_PM
1679 	.resume   = atl2_resume,
1680 #endif
1681 	.shutdown = atl2_shutdown,
1682 };
1683 
1684 /**
1685  * atl2_init_module - Driver Registration Routine
1686  *
1687  * atl2_init_module is the first routine called when the driver is
1688  * loaded. All it does is register with the PCI subsystem.
1689  */
1690 static int __init atl2_init_module(void)
1691 {
1692 	printk(KERN_INFO "%s - version %s\n", atl2_driver_string,
1693 		atl2_driver_version);
1694 	printk(KERN_INFO "%s\n", atl2_copyright);
1695 	return pci_register_driver(&atl2_driver);
1696 }
1697 module_init(atl2_init_module);
1698 
1699 /**
1700  * atl2_exit_module - Driver Exit Cleanup Routine
1701  *
1702  * atl2_exit_module is called just before the driver is removed
1703  * from memory.
1704  */
1705 static void __exit atl2_exit_module(void)
1706 {
1707 	pci_unregister_driver(&atl2_driver);
1708 }
1709 module_exit(atl2_exit_module);
1710 
1711 static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1712 {
1713 	struct atl2_adapter *adapter = hw->back;
1714 	pci_read_config_word(adapter->pdev, reg, value);
1715 }
1716 
1717 static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1718 {
1719 	struct atl2_adapter *adapter = hw->back;
1720 	pci_write_config_word(adapter->pdev, reg, *value);
1721 }
1722 
1723 static int atl2_get_link_ksettings(struct net_device *netdev,
1724 				   struct ethtool_link_ksettings *cmd)
1725 {
1726 	struct atl2_adapter *adapter = netdev_priv(netdev);
1727 	struct atl2_hw *hw = &adapter->hw;
1728 	u32 supported, advertising;
1729 
1730 	supported = (SUPPORTED_10baseT_Half |
1731 		SUPPORTED_10baseT_Full |
1732 		SUPPORTED_100baseT_Half |
1733 		SUPPORTED_100baseT_Full |
1734 		SUPPORTED_Autoneg |
1735 		SUPPORTED_TP);
1736 	advertising = ADVERTISED_TP;
1737 
1738 	advertising |= ADVERTISED_Autoneg;
1739 	advertising |= hw->autoneg_advertised;
1740 
1741 	cmd->base.port = PORT_TP;
1742 	cmd->base.phy_address = 0;
1743 
1744 	if (adapter->link_speed != SPEED_0) {
1745 		cmd->base.speed = adapter->link_speed;
1746 		if (adapter->link_duplex == FULL_DUPLEX)
1747 			cmd->base.duplex = DUPLEX_FULL;
1748 		else
1749 			cmd->base.duplex = DUPLEX_HALF;
1750 	} else {
1751 		cmd->base.speed = SPEED_UNKNOWN;
1752 		cmd->base.duplex = DUPLEX_UNKNOWN;
1753 	}
1754 
1755 	cmd->base.autoneg = AUTONEG_ENABLE;
1756 
1757 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1758 						supported);
1759 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1760 						advertising);
1761 
1762 	return 0;
1763 }
1764 
1765 static int atl2_set_link_ksettings(struct net_device *netdev,
1766 				   const struct ethtool_link_ksettings *cmd)
1767 {
1768 	struct atl2_adapter *adapter = netdev_priv(netdev);
1769 	struct atl2_hw *hw = &adapter->hw;
1770 	u32 advertising;
1771 
1772 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
1773 						cmd->link_modes.advertising);
1774 
1775 	while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1776 		msleep(1);
1777 
1778 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1779 #define MY_ADV_MASK	(ADVERTISE_10_HALF | \
1780 			 ADVERTISE_10_FULL | \
1781 			 ADVERTISE_100_HALF| \
1782 			 ADVERTISE_100_FULL)
1783 
1784 		if ((advertising & MY_ADV_MASK) == MY_ADV_MASK) {
1785 			hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
1786 			hw->autoneg_advertised =  MY_ADV_MASK;
1787 		} else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_FULL) {
1788 			hw->MediaType = MEDIA_TYPE_100M_FULL;
1789 			hw->autoneg_advertised = ADVERTISE_100_FULL;
1790 		} else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_HALF) {
1791 			hw->MediaType = MEDIA_TYPE_100M_HALF;
1792 			hw->autoneg_advertised = ADVERTISE_100_HALF;
1793 		} else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_FULL) {
1794 			hw->MediaType = MEDIA_TYPE_10M_FULL;
1795 			hw->autoneg_advertised = ADVERTISE_10_FULL;
1796 		}  else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_HALF) {
1797 			hw->MediaType = MEDIA_TYPE_10M_HALF;
1798 			hw->autoneg_advertised = ADVERTISE_10_HALF;
1799 		} else {
1800 			clear_bit(__ATL2_RESETTING, &adapter->flags);
1801 			return -EINVAL;
1802 		}
1803 		advertising = hw->autoneg_advertised |
1804 			ADVERTISED_TP | ADVERTISED_Autoneg;
1805 	} else {
1806 		clear_bit(__ATL2_RESETTING, &adapter->flags);
1807 		return -EINVAL;
1808 	}
1809 
1810 	/* reset the link */
1811 	if (netif_running(adapter->netdev)) {
1812 		atl2_down(adapter);
1813 		atl2_up(adapter);
1814 	} else
1815 		atl2_reset_hw(&adapter->hw);
1816 
1817 	clear_bit(__ATL2_RESETTING, &adapter->flags);
1818 	return 0;
1819 }
1820 
1821 static u32 atl2_get_msglevel(struct net_device *netdev)
1822 {
1823 	return 0;
1824 }
1825 
1826 /*
1827  * It's sane for this to be empty, but we might want to take advantage of this.
1828  */
1829 static void atl2_set_msglevel(struct net_device *netdev, u32 data)
1830 {
1831 }
1832 
1833 static int atl2_get_regs_len(struct net_device *netdev)
1834 {
1835 #define ATL2_REGS_LEN 42
1836 	return sizeof(u32) * ATL2_REGS_LEN;
1837 }
1838 
1839 static void atl2_get_regs(struct net_device *netdev,
1840 	struct ethtool_regs *regs, void *p)
1841 {
1842 	struct atl2_adapter *adapter = netdev_priv(netdev);
1843 	struct atl2_hw *hw = &adapter->hw;
1844 	u32 *regs_buff = p;
1845 	u16 phy_data;
1846 
1847 	memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
1848 
1849 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
1850 
1851 	regs_buff[0]  = ATL2_READ_REG(hw, REG_VPD_CAP);
1852 	regs_buff[1]  = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
1853 	regs_buff[2]  = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
1854 	regs_buff[3]  = ATL2_READ_REG(hw, REG_TWSI_CTRL);
1855 	regs_buff[4]  = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
1856 	regs_buff[5]  = ATL2_READ_REG(hw, REG_MASTER_CTRL);
1857 	regs_buff[6]  = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
1858 	regs_buff[7]  = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
1859 	regs_buff[8]  = ATL2_READ_REG(hw, REG_PHY_ENABLE);
1860 	regs_buff[9]  = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
1861 	regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
1862 	regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
1863 	regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
1864 	regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
1865 	regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
1866 	regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
1867 	regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
1868 	regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
1869 	regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
1870 	regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
1871 	regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
1872 	regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
1873 	regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
1874 	regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
1875 	regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
1876 	regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
1877 	regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
1878 	regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
1879 	regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
1880 	regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
1881 	regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
1882 	regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
1883 	regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
1884 	regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
1885 	regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
1886 	regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
1887 	regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
1888 	regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
1889 	regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
1890 
1891 	atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
1892 	regs_buff[40] = (u32)phy_data;
1893 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1894 	regs_buff[41] = (u32)phy_data;
1895 }
1896 
1897 static int atl2_get_eeprom_len(struct net_device *netdev)
1898 {
1899 	struct atl2_adapter *adapter = netdev_priv(netdev);
1900 
1901 	if (!atl2_check_eeprom_exist(&adapter->hw))
1902 		return 512;
1903 	else
1904 		return 0;
1905 }
1906 
1907 static int atl2_get_eeprom(struct net_device *netdev,
1908 	struct ethtool_eeprom *eeprom, u8 *bytes)
1909 {
1910 	struct atl2_adapter *adapter = netdev_priv(netdev);
1911 	struct atl2_hw *hw = &adapter->hw;
1912 	u32 *eeprom_buff;
1913 	int first_dword, last_dword;
1914 	int ret_val = 0;
1915 	int i;
1916 
1917 	if (eeprom->len == 0)
1918 		return -EINVAL;
1919 
1920 	if (atl2_check_eeprom_exist(hw))
1921 		return -EINVAL;
1922 
1923 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
1924 
1925 	first_dword = eeprom->offset >> 2;
1926 	last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1927 
1928 	eeprom_buff = kmalloc_array(last_dword - first_dword + 1, sizeof(u32),
1929 				    GFP_KERNEL);
1930 	if (!eeprom_buff)
1931 		return -ENOMEM;
1932 
1933 	for (i = first_dword; i < last_dword; i++) {
1934 		if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword]))) {
1935 			ret_val = -EIO;
1936 			goto free;
1937 		}
1938 	}
1939 
1940 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
1941 		eeprom->len);
1942 free:
1943 	kfree(eeprom_buff);
1944 
1945 	return ret_val;
1946 }
1947 
1948 static int atl2_set_eeprom(struct net_device *netdev,
1949 	struct ethtool_eeprom *eeprom, u8 *bytes)
1950 {
1951 	struct atl2_adapter *adapter = netdev_priv(netdev);
1952 	struct atl2_hw *hw = &adapter->hw;
1953 	u32 *eeprom_buff;
1954 	u32 *ptr;
1955 	int max_len, first_dword, last_dword, ret_val = 0;
1956 	int i;
1957 
1958 	if (eeprom->len == 0)
1959 		return -EOPNOTSUPP;
1960 
1961 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
1962 		return -EFAULT;
1963 
1964 	max_len = 512;
1965 
1966 	first_dword = eeprom->offset >> 2;
1967 	last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1968 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1969 	if (!eeprom_buff)
1970 		return -ENOMEM;
1971 
1972 	ptr = eeprom_buff;
1973 
1974 	if (eeprom->offset & 3) {
1975 		/* need read/modify/write of first changed EEPROM word */
1976 		/* only the second byte of the word is being modified */
1977 		if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0]))) {
1978 			ret_val = -EIO;
1979 			goto out;
1980 		}
1981 		ptr++;
1982 	}
1983 	if (((eeprom->offset + eeprom->len) & 3)) {
1984 		/*
1985 		 * need read/modify/write of last changed EEPROM word
1986 		 * only the first byte of the word is being modified
1987 		 */
1988 		if (!atl2_read_eeprom(hw, last_dword * 4,
1989 					&(eeprom_buff[last_dword - first_dword]))) {
1990 			ret_val = -EIO;
1991 			goto out;
1992 		}
1993 	}
1994 
1995 	/* Device's eeprom is always little-endian, word addressable */
1996 	memcpy(ptr, bytes, eeprom->len);
1997 
1998 	for (i = 0; i < last_dword - first_dword + 1; i++) {
1999 		if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i])) {
2000 			ret_val = -EIO;
2001 			goto out;
2002 		}
2003 	}
2004  out:
2005 	kfree(eeprom_buff);
2006 	return ret_val;
2007 }
2008 
2009 static void atl2_get_drvinfo(struct net_device *netdev,
2010 	struct ethtool_drvinfo *drvinfo)
2011 {
2012 	struct atl2_adapter *adapter = netdev_priv(netdev);
2013 
2014 	strlcpy(drvinfo->driver,  atl2_driver_name, sizeof(drvinfo->driver));
2015 	strlcpy(drvinfo->version, atl2_driver_version,
2016 		sizeof(drvinfo->version));
2017 	strlcpy(drvinfo->fw_version, "L2", sizeof(drvinfo->fw_version));
2018 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
2019 		sizeof(drvinfo->bus_info));
2020 }
2021 
2022 static void atl2_get_wol(struct net_device *netdev,
2023 	struct ethtool_wolinfo *wol)
2024 {
2025 	struct atl2_adapter *adapter = netdev_priv(netdev);
2026 
2027 	wol->supported = WAKE_MAGIC;
2028 	wol->wolopts = 0;
2029 
2030 	if (adapter->wol & ATLX_WUFC_EX)
2031 		wol->wolopts |= WAKE_UCAST;
2032 	if (adapter->wol & ATLX_WUFC_MC)
2033 		wol->wolopts |= WAKE_MCAST;
2034 	if (adapter->wol & ATLX_WUFC_BC)
2035 		wol->wolopts |= WAKE_BCAST;
2036 	if (adapter->wol & ATLX_WUFC_MAG)
2037 		wol->wolopts |= WAKE_MAGIC;
2038 	if (adapter->wol & ATLX_WUFC_LNKC)
2039 		wol->wolopts |= WAKE_PHY;
2040 }
2041 
2042 static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2043 {
2044 	struct atl2_adapter *adapter = netdev_priv(netdev);
2045 
2046 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2047 		return -EOPNOTSUPP;
2048 
2049 	if (wol->wolopts & (WAKE_UCAST | WAKE_BCAST | WAKE_MCAST))
2050 		return -EOPNOTSUPP;
2051 
2052 	/* these settings will always override what we currently have */
2053 	adapter->wol = 0;
2054 
2055 	if (wol->wolopts & WAKE_MAGIC)
2056 		adapter->wol |= ATLX_WUFC_MAG;
2057 	if (wol->wolopts & WAKE_PHY)
2058 		adapter->wol |= ATLX_WUFC_LNKC;
2059 
2060 	return 0;
2061 }
2062 
2063 static int atl2_nway_reset(struct net_device *netdev)
2064 {
2065 	struct atl2_adapter *adapter = netdev_priv(netdev);
2066 	if (netif_running(netdev))
2067 		atl2_reinit_locked(adapter);
2068 	return 0;
2069 }
2070 
2071 static const struct ethtool_ops atl2_ethtool_ops = {
2072 	.get_drvinfo		= atl2_get_drvinfo,
2073 	.get_regs_len		= atl2_get_regs_len,
2074 	.get_regs		= atl2_get_regs,
2075 	.get_wol		= atl2_get_wol,
2076 	.set_wol		= atl2_set_wol,
2077 	.get_msglevel		= atl2_get_msglevel,
2078 	.set_msglevel		= atl2_set_msglevel,
2079 	.nway_reset		= atl2_nway_reset,
2080 	.get_link		= ethtool_op_get_link,
2081 	.get_eeprom_len		= atl2_get_eeprom_len,
2082 	.get_eeprom		= atl2_get_eeprom,
2083 	.set_eeprom		= atl2_set_eeprom,
2084 	.get_link_ksettings	= atl2_get_link_ksettings,
2085 	.set_link_ksettings	= atl2_set_link_ksettings,
2086 };
2087 
2088 #define LBYTESWAP(a)  ((((a) & 0x00ff00ff) << 8) | \
2089 	(((a) & 0xff00ff00) >> 8))
2090 #define LONGSWAP(a)   ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
2091 #define SHORTSWAP(a)  (((a) << 8) | ((a) >> 8))
2092 
2093 /*
2094  * Reset the transmit and receive units; mask and clear all interrupts.
2095  *
2096  * hw - Struct containing variables accessed by shared code
2097  * return : 0  or  idle status (if error)
2098  */
2099 static s32 atl2_reset_hw(struct atl2_hw *hw)
2100 {
2101 	u32 icr;
2102 	u16 pci_cfg_cmd_word;
2103 	int i;
2104 
2105 	/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
2106 	atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2107 	if ((pci_cfg_cmd_word &
2108 		(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
2109 		(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
2110 		pci_cfg_cmd_word |=
2111 			(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
2112 		atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2113 	}
2114 
2115 	/* Clear Interrupt mask to stop board from generating
2116 	 * interrupts & Clear any pending interrupt events
2117 	 */
2118 	/* FIXME */
2119 	/* ATL2_WRITE_REG(hw, REG_IMR, 0); */
2120 	/* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
2121 
2122 	/* Issue Soft Reset to the MAC.  This will reset the chip's
2123 	 * transmit, receive, DMA.  It will not effect
2124 	 * the current PCI configuration.  The global reset bit is self-
2125 	 * clearing, and should clear within a microsecond.
2126 	 */
2127 	ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
2128 	wmb();
2129 	msleep(1); /* delay about 1ms */
2130 
2131 	/* Wait at least 10ms for All module to be Idle */
2132 	for (i = 0; i < 10; i++) {
2133 		icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
2134 		if (!icr)
2135 			break;
2136 		msleep(1); /* delay 1 ms */
2137 		cpu_relax();
2138 	}
2139 
2140 	if (icr)
2141 		return icr;
2142 
2143 	return 0;
2144 }
2145 
2146 #define CUSTOM_SPI_CS_SETUP        2
2147 #define CUSTOM_SPI_CLK_HI          2
2148 #define CUSTOM_SPI_CLK_LO          2
2149 #define CUSTOM_SPI_CS_HOLD         2
2150 #define CUSTOM_SPI_CS_HI           3
2151 
2152 static struct atl2_spi_flash_dev flash_table[] =
2153 {
2154 /* MFR    WRSR  READ  PROGRAM WREN  WRDI  RDSR  RDID  SECTOR_ERASE CHIP_ERASE */
2155 {"Atmel", 0x0,  0x03, 0x02,   0x06, 0x04, 0x05, 0x15, 0x52,        0x62 },
2156 {"SST",   0x01, 0x03, 0x02,   0x06, 0x04, 0x05, 0x90, 0x20,        0x60 },
2157 {"ST",    0x01, 0x03, 0x02,   0x06, 0x04, 0x05, 0xAB, 0xD8,        0xC7 },
2158 };
2159 
2160 static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
2161 {
2162 	int i;
2163 	u32 value;
2164 
2165 	ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
2166 	ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
2167 
2168 	value = SPI_FLASH_CTRL_WAIT_READY |
2169 		(CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
2170 			SPI_FLASH_CTRL_CS_SETUP_SHIFT |
2171 		(CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
2172 			SPI_FLASH_CTRL_CLK_HI_SHIFT |
2173 		(CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
2174 			SPI_FLASH_CTRL_CLK_LO_SHIFT |
2175 		(CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
2176 			SPI_FLASH_CTRL_CS_HOLD_SHIFT |
2177 		(CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
2178 			SPI_FLASH_CTRL_CS_HI_SHIFT |
2179 		(0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
2180 
2181 	ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2182 
2183 	value |= SPI_FLASH_CTRL_START;
2184 
2185 	ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2186 
2187 	for (i = 0; i < 10; i++) {
2188 		msleep(1);
2189 		value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2190 		if (!(value & SPI_FLASH_CTRL_START))
2191 			break;
2192 	}
2193 
2194 	if (value & SPI_FLASH_CTRL_START)
2195 		return false;
2196 
2197 	*buf = ATL2_READ_REG(hw, REG_SPI_DATA);
2198 
2199 	return true;
2200 }
2201 
2202 /*
2203  * get_permanent_address
2204  * return 0 if get valid mac address,
2205  */
2206 static int get_permanent_address(struct atl2_hw *hw)
2207 {
2208 	u32 Addr[2];
2209 	u32 i, Control;
2210 	u16 Register;
2211 	u8  EthAddr[ETH_ALEN];
2212 	bool KeyValid;
2213 
2214 	if (is_valid_ether_addr(hw->perm_mac_addr))
2215 		return 0;
2216 
2217 	Addr[0] = 0;
2218 	Addr[1] = 0;
2219 
2220 	if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
2221 		Register = 0;
2222 		KeyValid = false;
2223 
2224 		/* Read out all EEPROM content */
2225 		i = 0;
2226 		while (1) {
2227 			if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
2228 				if (KeyValid) {
2229 					if (Register == REG_MAC_STA_ADDR)
2230 						Addr[0] = Control;
2231 					else if (Register ==
2232 						(REG_MAC_STA_ADDR + 4))
2233 						Addr[1] = Control;
2234 					KeyValid = false;
2235 				} else if ((Control & 0xff) == 0x5A) {
2236 					KeyValid = true;
2237 					Register = (u16) (Control >> 16);
2238 				} else {
2239 			/* assume data end while encount an invalid KEYWORD */
2240 					break;
2241 				}
2242 			} else {
2243 				break; /* read error */
2244 			}
2245 			i += 4;
2246 		}
2247 
2248 		*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2249 		*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2250 
2251 		if (is_valid_ether_addr(EthAddr)) {
2252 			memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2253 			return 0;
2254 		}
2255 		return 1;
2256 	}
2257 
2258 	/* see if SPI flash exists? */
2259 	Addr[0] = 0;
2260 	Addr[1] = 0;
2261 	Register = 0;
2262 	KeyValid = false;
2263 	i = 0;
2264 	while (1) {
2265 		if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
2266 			if (KeyValid) {
2267 				if (Register == REG_MAC_STA_ADDR)
2268 					Addr[0] = Control;
2269 				else if (Register == (REG_MAC_STA_ADDR + 4))
2270 					Addr[1] = Control;
2271 				KeyValid = false;
2272 			} else if ((Control & 0xff) == 0x5A) {
2273 				KeyValid = true;
2274 				Register = (u16) (Control >> 16);
2275 			} else {
2276 				break; /* data end */
2277 			}
2278 		} else {
2279 			break; /* read error */
2280 		}
2281 		i += 4;
2282 	}
2283 
2284 	*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2285 	*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
2286 	if (is_valid_ether_addr(EthAddr)) {
2287 		memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2288 		return 0;
2289 	}
2290 	/* maybe MAC-address is from BIOS */
2291 	Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
2292 	Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
2293 	*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2294 	*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2295 
2296 	if (is_valid_ether_addr(EthAddr)) {
2297 		memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2298 		return 0;
2299 	}
2300 
2301 	return 1;
2302 }
2303 
2304 /*
2305  * Reads the adapter's MAC address from the EEPROM
2306  *
2307  * hw - Struct containing variables accessed by shared code
2308  */
2309 static s32 atl2_read_mac_addr(struct atl2_hw *hw)
2310 {
2311 	if (get_permanent_address(hw)) {
2312 		/* for test */
2313 		/* FIXME: shouldn't we use eth_random_addr() here? */
2314 		hw->perm_mac_addr[0] = 0x00;
2315 		hw->perm_mac_addr[1] = 0x13;
2316 		hw->perm_mac_addr[2] = 0x74;
2317 		hw->perm_mac_addr[3] = 0x00;
2318 		hw->perm_mac_addr[4] = 0x5c;
2319 		hw->perm_mac_addr[5] = 0x38;
2320 	}
2321 
2322 	memcpy(hw->mac_addr, hw->perm_mac_addr, ETH_ALEN);
2323 
2324 	return 0;
2325 }
2326 
2327 /*
2328  * Hashes an address to determine its location in the multicast table
2329  *
2330  * hw - Struct containing variables accessed by shared code
2331  * mc_addr - the multicast address to hash
2332  *
2333  * atl2_hash_mc_addr
2334  *  purpose
2335  *      set hash value for a multicast address
2336  *      hash calcu processing :
2337  *          1. calcu 32bit CRC for multicast address
2338  *          2. reverse crc with MSB to LSB
2339  */
2340 static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
2341 {
2342 	u32 crc32, value;
2343 	int i;
2344 
2345 	value = 0;
2346 	crc32 = ether_crc_le(6, mc_addr);
2347 
2348 	for (i = 0; i < 32; i++)
2349 		value |= (((crc32 >> i) & 1) << (31 - i));
2350 
2351 	return value;
2352 }
2353 
2354 /*
2355  * Sets the bit in the multicast table corresponding to the hash value.
2356  *
2357  * hw - Struct containing variables accessed by shared code
2358  * hash_value - Multicast address hash value
2359  */
2360 static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
2361 {
2362 	u32 hash_bit, hash_reg;
2363 	u32 mta;
2364 
2365 	/* The HASH Table  is a register array of 2 32-bit registers.
2366 	 * It is treated like an array of 64 bits.  We want to set
2367 	 * bit BitArray[hash_value]. So we figure out what register
2368 	 * the bit is in, read it, OR in the new bit, then write
2369 	 * back the new value.  The register is determined by the
2370 	 * upper 7 bits of the hash value and the bit within that
2371 	 * register are determined by the lower 5 bits of the value.
2372 	 */
2373 	hash_reg = (hash_value >> 31) & 0x1;
2374 	hash_bit = (hash_value >> 26) & 0x1F;
2375 
2376 	mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
2377 
2378 	mta |= (1 << hash_bit);
2379 
2380 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
2381 }
2382 
2383 /*
2384  * atl2_init_pcie - init PCIE module
2385  */
2386 static void atl2_init_pcie(struct atl2_hw *hw)
2387 {
2388     u32 value;
2389     value = LTSSM_TEST_MODE_DEF;
2390     ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
2391 
2392     value = PCIE_DLL_TX_CTRL1_DEF;
2393     ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
2394 }
2395 
2396 static void atl2_init_flash_opcode(struct atl2_hw *hw)
2397 {
2398 	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
2399 		hw->flash_vendor = 0; /* ATMEL */
2400 
2401 	/* Init OP table */
2402 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
2403 		flash_table[hw->flash_vendor].cmdPROGRAM);
2404 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
2405 		flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
2406 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
2407 		flash_table[hw->flash_vendor].cmdCHIP_ERASE);
2408 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
2409 		flash_table[hw->flash_vendor].cmdRDID);
2410 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
2411 		flash_table[hw->flash_vendor].cmdWREN);
2412 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
2413 		flash_table[hw->flash_vendor].cmdRDSR);
2414 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
2415 		flash_table[hw->flash_vendor].cmdWRSR);
2416 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
2417 		flash_table[hw->flash_vendor].cmdREAD);
2418 }
2419 
2420 /********************************************************************
2421 * Performs basic configuration of the adapter.
2422 *
2423 * hw - Struct containing variables accessed by shared code
2424 * Assumes that the controller has previously been reset and is in a
2425 * post-reset uninitialized state. Initializes multicast table,
2426 * and  Calls routines to setup link
2427 * Leaves the transmit and receive units disabled and uninitialized.
2428 ********************************************************************/
2429 static s32 atl2_init_hw(struct atl2_hw *hw)
2430 {
2431 	u32 ret_val = 0;
2432 
2433 	atl2_init_pcie(hw);
2434 
2435 	/* Zero out the Multicast HASH table */
2436 	/* clear the old settings from the multicast hash table */
2437 	ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
2438 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
2439 
2440 	atl2_init_flash_opcode(hw);
2441 
2442 	ret_val = atl2_phy_init(hw);
2443 
2444 	return ret_val;
2445 }
2446 
2447 /*
2448  * Detects the current speed and duplex settings of the hardware.
2449  *
2450  * hw - Struct containing variables accessed by shared code
2451  * speed - Speed of the connection
2452  * duplex - Duplex setting of the connection
2453  */
2454 static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
2455 	u16 *duplex)
2456 {
2457 	s32 ret_val;
2458 	u16 phy_data;
2459 
2460 	/* Read PHY Specific Status Register (17) */
2461 	ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
2462 	if (ret_val)
2463 		return ret_val;
2464 
2465 	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
2466 		return ATLX_ERR_PHY_RES;
2467 
2468 	switch (phy_data & MII_ATLX_PSSR_SPEED) {
2469 	case MII_ATLX_PSSR_100MBS:
2470 		*speed = SPEED_100;
2471 		break;
2472 	case MII_ATLX_PSSR_10MBS:
2473 		*speed = SPEED_10;
2474 		break;
2475 	default:
2476 		return ATLX_ERR_PHY_SPEED;
2477 	}
2478 
2479 	if (phy_data & MII_ATLX_PSSR_DPLX)
2480 		*duplex = FULL_DUPLEX;
2481 	else
2482 		*duplex = HALF_DUPLEX;
2483 
2484 	return 0;
2485 }
2486 
2487 /*
2488  * Reads the value from a PHY register
2489  * hw - Struct containing variables accessed by shared code
2490  * reg_addr - address of the PHY register to read
2491  */
2492 static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
2493 {
2494 	u32 val;
2495 	int i;
2496 
2497 	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
2498 		MDIO_START |
2499 		MDIO_SUP_PREAMBLE |
2500 		MDIO_RW |
2501 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2502 	ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2503 
2504 	wmb();
2505 
2506 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2507 		udelay(2);
2508 		val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2509 		if (!(val & (MDIO_START | MDIO_BUSY)))
2510 			break;
2511 		wmb();
2512 	}
2513 	if (!(val & (MDIO_START | MDIO_BUSY))) {
2514 		*phy_data = (u16)val;
2515 		return 0;
2516 	}
2517 
2518 	return ATLX_ERR_PHY;
2519 }
2520 
2521 /*
2522  * Writes a value to a PHY register
2523  * hw - Struct containing variables accessed by shared code
2524  * reg_addr - address of the PHY register to write
2525  * data - data to write to the PHY
2526  */
2527 static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
2528 {
2529 	int i;
2530 	u32 val;
2531 
2532 	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
2533 		(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
2534 		MDIO_SUP_PREAMBLE |
2535 		MDIO_START |
2536 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2537 	ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2538 
2539 	wmb();
2540 
2541 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2542 		udelay(2);
2543 		val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2544 		if (!(val & (MDIO_START | MDIO_BUSY)))
2545 			break;
2546 
2547 		wmb();
2548 	}
2549 
2550 	if (!(val & (MDIO_START | MDIO_BUSY)))
2551 		return 0;
2552 
2553 	return ATLX_ERR_PHY;
2554 }
2555 
2556 /*
2557  * Configures PHY autoneg and flow control advertisement settings
2558  *
2559  * hw - Struct containing variables accessed by shared code
2560  */
2561 static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
2562 {
2563 	s32 ret_val;
2564 	s16 mii_autoneg_adv_reg;
2565 
2566 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
2567 	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
2568 
2569 	/* Need to parse autoneg_advertised  and set up
2570 	 * the appropriate PHY registers.  First we will parse for
2571 	 * autoneg_advertised software override.  Since we can advertise
2572 	 * a plethora of combinations, we need to check each bit
2573 	 * individually.
2574 	 */
2575 
2576 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
2577 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2578 	 * the  1000Base-T Control Register (Address 9). */
2579 	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
2580 
2581 	/* Need to parse MediaType and setup the
2582 	 * appropriate PHY registers. */
2583 	switch (hw->MediaType) {
2584 	case MEDIA_TYPE_AUTO_SENSOR:
2585 		mii_autoneg_adv_reg |=
2586 			(MII_AR_10T_HD_CAPS |
2587 			MII_AR_10T_FD_CAPS  |
2588 			MII_AR_100TX_HD_CAPS|
2589 			MII_AR_100TX_FD_CAPS);
2590 		hw->autoneg_advertised =
2591 			ADVERTISE_10_HALF |
2592 			ADVERTISE_10_FULL |
2593 			ADVERTISE_100_HALF|
2594 			ADVERTISE_100_FULL;
2595 		break;
2596 	case MEDIA_TYPE_100M_FULL:
2597 		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
2598 		hw->autoneg_advertised = ADVERTISE_100_FULL;
2599 		break;
2600 	case MEDIA_TYPE_100M_HALF:
2601 		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
2602 		hw->autoneg_advertised = ADVERTISE_100_HALF;
2603 		break;
2604 	case MEDIA_TYPE_10M_FULL:
2605 		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
2606 		hw->autoneg_advertised = ADVERTISE_10_FULL;
2607 		break;
2608 	default:
2609 		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
2610 		hw->autoneg_advertised = ADVERTISE_10_HALF;
2611 		break;
2612 	}
2613 
2614 	/* flow control fixed to enable all */
2615 	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
2616 
2617 	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
2618 
2619 	ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
2620 
2621 	if (ret_val)
2622 		return ret_val;
2623 
2624 	return 0;
2625 }
2626 
2627 /*
2628  * Resets the PHY and make all config validate
2629  *
2630  * hw - Struct containing variables accessed by shared code
2631  *
2632  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
2633  */
2634 static s32 atl2_phy_commit(struct atl2_hw *hw)
2635 {
2636 	s32 ret_val;
2637 	u16 phy_data;
2638 
2639 	phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2640 	ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
2641 	if (ret_val) {
2642 		u32 val;
2643 		int i;
2644 		/* pcie serdes link may be down ! */
2645 		for (i = 0; i < 25; i++) {
2646 			msleep(1);
2647 			val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2648 			if (!(val & (MDIO_START | MDIO_BUSY)))
2649 				break;
2650 		}
2651 
2652 		if (0 != (val & (MDIO_START | MDIO_BUSY))) {
2653 			printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
2654 			return ret_val;
2655 		}
2656 	}
2657 	return 0;
2658 }
2659 
2660 static s32 atl2_phy_init(struct atl2_hw *hw)
2661 {
2662 	s32 ret_val;
2663 	u16 phy_val;
2664 
2665 	if (hw->phy_configured)
2666 		return 0;
2667 
2668 	/* Enable PHY */
2669 	ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
2670 	ATL2_WRITE_FLUSH(hw);
2671 	msleep(1);
2672 
2673 	/* check if the PHY is in powersaving mode */
2674 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2675 	atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2676 
2677 	/* 024E / 124E 0r 0274 / 1274 ? */
2678 	if (phy_val & 0x1000) {
2679 		phy_val &= ~0x1000;
2680 		atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
2681 	}
2682 
2683 	msleep(1);
2684 
2685 	/*Enable PHY LinkChange Interrupt */
2686 	ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
2687 	if (ret_val)
2688 		return ret_val;
2689 
2690 	/* setup AutoNeg parameters */
2691 	ret_val = atl2_phy_setup_autoneg_adv(hw);
2692 	if (ret_val)
2693 		return ret_val;
2694 
2695 	/* SW.Reset & En-Auto-Neg to restart Auto-Neg */
2696 	ret_val = atl2_phy_commit(hw);
2697 	if (ret_val)
2698 		return ret_val;
2699 
2700 	hw->phy_configured = true;
2701 
2702 	return ret_val;
2703 }
2704 
2705 static void atl2_set_mac_addr(struct atl2_hw *hw)
2706 {
2707 	u32 value;
2708 	/* 00-0B-6A-F6-00-DC
2709 	 * 0:  6AF600DC   1: 000B
2710 	 * low dword */
2711 	value = (((u32)hw->mac_addr[2]) << 24) |
2712 		(((u32)hw->mac_addr[3]) << 16) |
2713 		(((u32)hw->mac_addr[4]) << 8)  |
2714 		(((u32)hw->mac_addr[5]));
2715 	ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
2716 	/* hight dword */
2717 	value = (((u32)hw->mac_addr[0]) << 8) |
2718 		(((u32)hw->mac_addr[1]));
2719 	ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
2720 }
2721 
2722 /*
2723  * check_eeprom_exist
2724  * return 0 if eeprom exist
2725  */
2726 static int atl2_check_eeprom_exist(struct atl2_hw *hw)
2727 {
2728 	u32 value;
2729 
2730 	value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2731 	if (value & SPI_FLASH_CTRL_EN_VPD) {
2732 		value &= ~SPI_FLASH_CTRL_EN_VPD;
2733 		ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2734 	}
2735 	value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
2736 	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
2737 }
2738 
2739 /* FIXME: This doesn't look right. -- CHS */
2740 static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
2741 {
2742 	return true;
2743 }
2744 
2745 static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
2746 {
2747 	int i;
2748 	u32    Control;
2749 
2750 	if (Offset & 0x3)
2751 		return false; /* address do not align */
2752 
2753 	ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
2754 	Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
2755 	ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
2756 
2757 	for (i = 0; i < 10; i++) {
2758 		msleep(2);
2759 		Control = ATL2_READ_REG(hw, REG_VPD_CAP);
2760 		if (Control & VPD_CAP_VPD_FLAG)
2761 			break;
2762 	}
2763 
2764 	if (Control & VPD_CAP_VPD_FLAG) {
2765 		*pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
2766 		return true;
2767 	}
2768 	return false; /* timeout */
2769 }
2770 
2771 static void atl2_force_ps(struct atl2_hw *hw)
2772 {
2773 	u16 phy_val;
2774 
2775 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2776 	atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2777 	atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
2778 
2779 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
2780 	atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
2781 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
2782 	atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
2783 }
2784 
2785 /* This is the only thing that needs to be changed to adjust the
2786  * maximum number of ports that the driver can manage.
2787  */
2788 #define ATL2_MAX_NIC 4
2789 
2790 #define OPTION_UNSET    -1
2791 #define OPTION_DISABLED 0
2792 #define OPTION_ENABLED  1
2793 
2794 /* All parameters are treated the same, as an integer array of values.
2795  * This macro just reduces the need to repeat the same declaration code
2796  * over and over (plus this helps to avoid typo bugs).
2797  */
2798 #define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
2799 #ifndef module_param_array
2800 /* Module Parameters are always initialized to -1, so that the driver
2801  * can tell the difference between no user specified value or the
2802  * user asking for the default value.
2803  * The true default values are loaded in when atl2_check_options is called.
2804  *
2805  * This is a GCC extension to ANSI C.
2806  * See the item "Labeled Elements in Initializers" in the section
2807  * "Extensions to the C Language Family" of the GCC documentation.
2808  */
2809 
2810 #define ATL2_PARAM(X, desc) \
2811     static const int X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
2812     MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
2813     MODULE_PARM_DESC(X, desc);
2814 #else
2815 #define ATL2_PARAM(X, desc) \
2816     static int X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
2817     static unsigned int num_##X; \
2818     module_param_array_named(X, X, int, &num_##X, 0); \
2819     MODULE_PARM_DESC(X, desc);
2820 #endif
2821 
2822 /*
2823  * Transmit Memory Size
2824  * Valid Range: 64-2048
2825  * Default Value: 128
2826  */
2827 #define ATL2_MIN_TX_MEMSIZE		4	/* 4KB */
2828 #define ATL2_MAX_TX_MEMSIZE		64	/* 64KB */
2829 #define ATL2_DEFAULT_TX_MEMSIZE		8	/* 8KB */
2830 ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
2831 
2832 /*
2833  * Receive Memory Block Count
2834  * Valid Range: 16-512
2835  * Default Value: 128
2836  */
2837 #define ATL2_MIN_RXD_COUNT		16
2838 #define ATL2_MAX_RXD_COUNT		512
2839 #define ATL2_DEFAULT_RXD_COUNT		64
2840 ATL2_PARAM(RxMemBlock, "Number of receive memory block");
2841 
2842 /*
2843  * User Specified MediaType Override
2844  *
2845  * Valid Range: 0-5
2846  *  - 0    - auto-negotiate at all supported speeds
2847  *  - 1    - only link at 1000Mbps Full Duplex
2848  *  - 2    - only link at 100Mbps Full Duplex
2849  *  - 3    - only link at 100Mbps Half Duplex
2850  *  - 4    - only link at 10Mbps Full Duplex
2851  *  - 5    - only link at 10Mbps Half Duplex
2852  * Default Value: 0
2853  */
2854 ATL2_PARAM(MediaType, "MediaType Select");
2855 
2856 /*
2857  * Interrupt Moderate Timer in units of 2048 ns (~2 us)
2858  * Valid Range: 10-65535
2859  * Default Value: 45000(90ms)
2860  */
2861 #define INT_MOD_DEFAULT_CNT	100 /* 200us */
2862 #define INT_MOD_MAX_CNT		65000
2863 #define INT_MOD_MIN_CNT		50
2864 ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
2865 
2866 /*
2867  * FlashVendor
2868  * Valid Range: 0-2
2869  * 0 - Atmel
2870  * 1 - SST
2871  * 2 - ST
2872  */
2873 ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
2874 
2875 #define AUTONEG_ADV_DEFAULT	0x2F
2876 #define AUTONEG_ADV_MASK	0x2F
2877 #define FLOW_CONTROL_DEFAULT	FLOW_CONTROL_FULL
2878 
2879 #define FLASH_VENDOR_DEFAULT	0
2880 #define FLASH_VENDOR_MIN	0
2881 #define FLASH_VENDOR_MAX	2
2882 
2883 struct atl2_option {
2884 	enum { enable_option, range_option, list_option } type;
2885 	char *name;
2886 	char *err;
2887 	int  def;
2888 	union {
2889 		struct { /* range_option info */
2890 			int min;
2891 			int max;
2892 		} r;
2893 		struct { /* list_option info */
2894 			int nr;
2895 			struct atl2_opt_list { int i; char *str; } *p;
2896 		} l;
2897 	} arg;
2898 };
2899 
2900 static int atl2_validate_option(int *value, struct atl2_option *opt)
2901 {
2902 	int i;
2903 	struct atl2_opt_list *ent;
2904 
2905 	if (*value == OPTION_UNSET) {
2906 		*value = opt->def;
2907 		return 0;
2908 	}
2909 
2910 	switch (opt->type) {
2911 	case enable_option:
2912 		switch (*value) {
2913 		case OPTION_ENABLED:
2914 			printk(KERN_INFO "%s Enabled\n", opt->name);
2915 			return 0;
2916 		case OPTION_DISABLED:
2917 			printk(KERN_INFO "%s Disabled\n", opt->name);
2918 			return 0;
2919 		}
2920 		break;
2921 	case range_option:
2922 		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
2923 			printk(KERN_INFO "%s set to %i\n", opt->name, *value);
2924 			return 0;
2925 		}
2926 		break;
2927 	case list_option:
2928 		for (i = 0; i < opt->arg.l.nr; i++) {
2929 			ent = &opt->arg.l.p[i];
2930 			if (*value == ent->i) {
2931 				if (ent->str[0] != '\0')
2932 					printk(KERN_INFO "%s\n", ent->str);
2933 				return 0;
2934 			}
2935 		}
2936 		break;
2937 	default:
2938 		BUG();
2939 	}
2940 
2941 	printk(KERN_INFO "Invalid %s specified (%i) %s\n",
2942 		opt->name, *value, opt->err);
2943 	*value = opt->def;
2944 	return -1;
2945 }
2946 
2947 /**
2948  * atl2_check_options - Range Checking for Command Line Parameters
2949  * @adapter: board private structure
2950  *
2951  * This routine checks all command line parameters for valid user
2952  * input.  If an invalid value is given, or if no user specified
2953  * value exists, a default value is used.  The final value is stored
2954  * in a variable in the adapter structure.
2955  */
2956 static void atl2_check_options(struct atl2_adapter *adapter)
2957 {
2958 	int val;
2959 	struct atl2_option opt;
2960 	int bd = adapter->bd_number;
2961 	if (bd >= ATL2_MAX_NIC) {
2962 		printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
2963 			bd);
2964 		printk(KERN_NOTICE "Using defaults for all values\n");
2965 #ifndef module_param_array
2966 		bd = ATL2_MAX_NIC;
2967 #endif
2968 	}
2969 
2970 	/* Bytes of Transmit Memory */
2971 	opt.type = range_option;
2972 	opt.name = "Bytes of Transmit Memory";
2973 	opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
2974 	opt.def = ATL2_DEFAULT_TX_MEMSIZE;
2975 	opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
2976 	opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
2977 #ifdef module_param_array
2978 	if (num_TxMemSize > bd) {
2979 #endif
2980 		val = TxMemSize[bd];
2981 		atl2_validate_option(&val, &opt);
2982 		adapter->txd_ring_size = ((u32) val) * 1024;
2983 #ifdef module_param_array
2984 	} else
2985 		adapter->txd_ring_size = ((u32)opt.def) * 1024;
2986 #endif
2987 	/* txs ring size: */
2988 	adapter->txs_ring_size = adapter->txd_ring_size / 128;
2989 	if (adapter->txs_ring_size > 160)
2990 		adapter->txs_ring_size = 160;
2991 
2992 	/* Receive Memory Block Count */
2993 	opt.type = range_option;
2994 	opt.name = "Number of receive memory block";
2995 	opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
2996 	opt.def = ATL2_DEFAULT_RXD_COUNT;
2997 	opt.arg.r.min = ATL2_MIN_RXD_COUNT;
2998 	opt.arg.r.max = ATL2_MAX_RXD_COUNT;
2999 #ifdef module_param_array
3000 	if (num_RxMemBlock > bd) {
3001 #endif
3002 		val = RxMemBlock[bd];
3003 		atl2_validate_option(&val, &opt);
3004 		adapter->rxd_ring_size = (u32)val;
3005 		/* FIXME */
3006 		/* ((u16)val)&~1; */	/* even number */
3007 #ifdef module_param_array
3008 	} else
3009 		adapter->rxd_ring_size = (u32)opt.def;
3010 #endif
3011 	/* init RXD Flow control value */
3012 	adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
3013 	adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
3014 		(adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
3015 		(adapter->rxd_ring_size / 12);
3016 
3017 	/* Interrupt Moderate Timer */
3018 	opt.type = range_option;
3019 	opt.name = "Interrupt Moderate Timer";
3020 	opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
3021 	opt.def = INT_MOD_DEFAULT_CNT;
3022 	opt.arg.r.min = INT_MOD_MIN_CNT;
3023 	opt.arg.r.max = INT_MOD_MAX_CNT;
3024 #ifdef module_param_array
3025 	if (num_IntModTimer > bd) {
3026 #endif
3027 		val = IntModTimer[bd];
3028 		atl2_validate_option(&val, &opt);
3029 		adapter->imt = (u16) val;
3030 #ifdef module_param_array
3031 	} else
3032 		adapter->imt = (u16)(opt.def);
3033 #endif
3034 	/* Flash Vendor */
3035 	opt.type = range_option;
3036 	opt.name = "SPI Flash Vendor";
3037 	opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
3038 	opt.def = FLASH_VENDOR_DEFAULT;
3039 	opt.arg.r.min = FLASH_VENDOR_MIN;
3040 	opt.arg.r.max = FLASH_VENDOR_MAX;
3041 #ifdef module_param_array
3042 	if (num_FlashVendor > bd) {
3043 #endif
3044 		val = FlashVendor[bd];
3045 		atl2_validate_option(&val, &opt);
3046 		adapter->hw.flash_vendor = (u8) val;
3047 #ifdef module_param_array
3048 	} else
3049 		adapter->hw.flash_vendor = (u8)(opt.def);
3050 #endif
3051 	/* MediaType */
3052 	opt.type = range_option;
3053 	opt.name = "Speed/Duplex Selection";
3054 	opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
3055 	opt.def = MEDIA_TYPE_AUTO_SENSOR;
3056 	opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
3057 	opt.arg.r.max = MEDIA_TYPE_10M_HALF;
3058 #ifdef module_param_array
3059 	if (num_MediaType > bd) {
3060 #endif
3061 		val = MediaType[bd];
3062 		atl2_validate_option(&val, &opt);
3063 		adapter->hw.MediaType = (u16) val;
3064 #ifdef module_param_array
3065 	} else
3066 		adapter->hw.MediaType = (u16)(opt.def);
3067 #endif
3068 }
3069