xref: /openbmc/linux/drivers/net/ethernet/atheros/atlx/atl2.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
3  * Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
4  *
5  * Derived from Intel e1000 driver
6  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 59
20  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
21  */
22 
23 #include <linux/atomic.h>
24 #include <linux/crc32.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/hardirq.h>
29 #include <linux/if_vlan.h>
30 #include <linux/in.h>
31 #include <linux/interrupt.h>
32 #include <linux/ip.h>
33 #include <linux/irqflags.h>
34 #include <linux/irqreturn.h>
35 #include <linux/mii.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/pm.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/tcp.h>
46 #include <linux/timer.h>
47 #include <linux/types.h>
48 #include <linux/workqueue.h>
49 
50 #include "atl2.h"
51 
52 #define ATL2_DRV_VERSION "2.2.3"
53 
54 static const char atl2_driver_name[] = "atl2";
55 static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver";
56 static const char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation.";
57 static const char atl2_driver_version[] = ATL2_DRV_VERSION;
58 static const struct ethtool_ops atl2_ethtool_ops;
59 
60 MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
61 MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
62 MODULE_LICENSE("GPL");
63 MODULE_VERSION(ATL2_DRV_VERSION);
64 
65 /*
66  * atl2_pci_tbl - PCI Device ID Table
67  */
68 static const struct pci_device_id atl2_pci_tbl[] = {
69 	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
70 	/* required last entry */
71 	{0,}
72 };
73 MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
74 
75 static void atl2_check_options(struct atl2_adapter *adapter);
76 
77 /**
78  * atl2_sw_init - Initialize general software structures (struct atl2_adapter)
79  * @adapter: board private structure to initialize
80  *
81  * atl2_sw_init initializes the Adapter private data structure.
82  * Fields are initialized based on PCI device information and
83  * OS network device settings (MTU size).
84  */
85 static int atl2_sw_init(struct atl2_adapter *adapter)
86 {
87 	struct atl2_hw *hw = &adapter->hw;
88 	struct pci_dev *pdev = adapter->pdev;
89 
90 	/* PCI config space info */
91 	hw->vendor_id = pdev->vendor;
92 	hw->device_id = pdev->device;
93 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
94 	hw->subsystem_id = pdev->subsystem_device;
95 	hw->revision_id  = pdev->revision;
96 
97 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
98 
99 	adapter->wol = 0;
100 	adapter->ict = 50000;  /* ~100ms */
101 	adapter->link_speed = SPEED_0;   /* hardware init */
102 	adapter->link_duplex = FULL_DUPLEX;
103 
104 	hw->phy_configured = false;
105 	hw->preamble_len = 7;
106 	hw->ipgt = 0x60;
107 	hw->min_ifg = 0x50;
108 	hw->ipgr1 = 0x40;
109 	hw->ipgr2 = 0x60;
110 	hw->retry_buf = 2;
111 	hw->max_retry = 0xf;
112 	hw->lcol = 0x37;
113 	hw->jam_ipg = 7;
114 	hw->fc_rxd_hi = 0;
115 	hw->fc_rxd_lo = 0;
116 	hw->max_frame_size = adapter->netdev->mtu;
117 
118 	spin_lock_init(&adapter->stats_lock);
119 
120 	set_bit(__ATL2_DOWN, &adapter->flags);
121 
122 	return 0;
123 }
124 
125 /**
126  * atl2_set_multi - Multicast and Promiscuous mode set
127  * @netdev: network interface device structure
128  *
129  * The set_multi entry point is called whenever the multicast address
130  * list or the network interface flags are updated.  This routine is
131  * responsible for configuring the hardware for proper multicast,
132  * promiscuous mode, and all-multi behavior.
133  */
134 static void atl2_set_multi(struct net_device *netdev)
135 {
136 	struct atl2_adapter *adapter = netdev_priv(netdev);
137 	struct atl2_hw *hw = &adapter->hw;
138 	struct netdev_hw_addr *ha;
139 	u32 rctl;
140 	u32 hash_value;
141 
142 	/* Check for Promiscuous and All Multicast modes */
143 	rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
144 
145 	if (netdev->flags & IFF_PROMISC) {
146 		rctl |= MAC_CTRL_PROMIS_EN;
147 	} else if (netdev->flags & IFF_ALLMULTI) {
148 		rctl |= MAC_CTRL_MC_ALL_EN;
149 		rctl &= ~MAC_CTRL_PROMIS_EN;
150 	} else
151 		rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
152 
153 	ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
154 
155 	/* clear the old settings from the multicast hash table */
156 	ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
157 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
158 
159 	/* comoute mc addresses' hash value ,and put it into hash table */
160 	netdev_for_each_mc_addr(ha, netdev) {
161 		hash_value = atl2_hash_mc_addr(hw, ha->addr);
162 		atl2_hash_set(hw, hash_value);
163 	}
164 }
165 
166 static void init_ring_ptrs(struct atl2_adapter *adapter)
167 {
168 	/* Read / Write Ptr Initialize: */
169 	adapter->txd_write_ptr = 0;
170 	atomic_set(&adapter->txd_read_ptr, 0);
171 
172 	adapter->rxd_read_ptr = 0;
173 	adapter->rxd_write_ptr = 0;
174 
175 	atomic_set(&adapter->txs_write_ptr, 0);
176 	adapter->txs_next_clear = 0;
177 }
178 
179 /**
180  * atl2_configure - Configure Transmit&Receive Unit after Reset
181  * @adapter: board private structure
182  *
183  * Configure the Tx /Rx unit of the MAC after a reset.
184  */
185 static int atl2_configure(struct atl2_adapter *adapter)
186 {
187 	struct atl2_hw *hw = &adapter->hw;
188 	u32 value;
189 
190 	/* clear interrupt status */
191 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
192 
193 	/* set MAC Address */
194 	value = (((u32)hw->mac_addr[2]) << 24) |
195 		(((u32)hw->mac_addr[3]) << 16) |
196 		(((u32)hw->mac_addr[4]) << 8) |
197 		(((u32)hw->mac_addr[5]));
198 	ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
199 	value = (((u32)hw->mac_addr[0]) << 8) |
200 		(((u32)hw->mac_addr[1]));
201 	ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
202 
203 	/* HI base address */
204 	ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
205 		(u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
206 
207 	/* LO base address */
208 	ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
209 		(u32)(adapter->txd_dma & 0x00000000ffffffffULL));
210 	ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
211 		(u32)(adapter->txs_dma & 0x00000000ffffffffULL));
212 	ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
213 		(u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
214 
215 	/* element count */
216 	ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
217 	ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
218 	ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM,  (u16)adapter->rxd_ring_size);
219 
220 	/* config Internal SRAM */
221 /*
222     ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
223     ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
224 */
225 
226 	/* config IPG/IFG */
227 	value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
228 		MAC_IPG_IFG_IPGT_SHIFT) |
229 		(((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
230 		MAC_IPG_IFG_MIFG_SHIFT) |
231 		(((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
232 		MAC_IPG_IFG_IPGR1_SHIFT)|
233 		(((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
234 		MAC_IPG_IFG_IPGR2_SHIFT);
235 	ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
236 
237 	/* config  Half-Duplex Control */
238 	value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
239 		(((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
240 		MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
241 		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
242 		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
243 		(((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
244 		MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
245 	ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
246 
247 	/* set Interrupt Moderator Timer */
248 	ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
249 	ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
250 
251 	/* set Interrupt Clear Timer */
252 	ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
253 
254 	/* set MTU */
255 	ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
256 		ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
257 
258 	/* 1590 */
259 	ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
260 
261 	/* flow control */
262 	ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
263 	ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
264 
265 	/* Init mailbox */
266 	ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
267 	ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
268 
269 	/* enable DMA read/write */
270 	ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
271 	ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
272 
273 	value = ATL2_READ_REG(&adapter->hw, REG_ISR);
274 	if ((value & ISR_PHY_LINKDOWN) != 0)
275 		value = 1; /* config failed */
276 	else
277 		value = 0;
278 
279 	/* clear all interrupt status */
280 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
281 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
282 	return value;
283 }
284 
285 /**
286  * atl2_setup_ring_resources - allocate Tx / RX descriptor resources
287  * @adapter: board private structure
288  *
289  * Return 0 on success, negative on failure
290  */
291 static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
292 {
293 	struct pci_dev *pdev = adapter->pdev;
294 	int size;
295 	u8 offset = 0;
296 
297 	/* real ring DMA buffer */
298 	adapter->ring_size = size =
299 		adapter->txd_ring_size * 1 + 7 +	/* dword align */
300 		adapter->txs_ring_size * 4 + 7 +	/* dword align */
301 		adapter->rxd_ring_size * 1536 + 127;	/* 128bytes align */
302 
303 	adapter->ring_vir_addr = pci_alloc_consistent(pdev, size,
304 		&adapter->ring_dma);
305 	if (!adapter->ring_vir_addr)
306 		return -ENOMEM;
307 	memset(adapter->ring_vir_addr, 0, adapter->ring_size);
308 
309 	/* Init TXD Ring */
310 	adapter->txd_dma = adapter->ring_dma ;
311 	offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
312 	adapter->txd_dma += offset;
313 	adapter->txd_ring = adapter->ring_vir_addr + offset;
314 
315 	/* Init TXS Ring */
316 	adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
317 	offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
318 	adapter->txs_dma += offset;
319 	adapter->txs_ring = (struct tx_pkt_status *)
320 		(((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
321 
322 	/* Init RXD Ring */
323 	adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
324 	offset = (adapter->rxd_dma & 127) ?
325 		(128 - (adapter->rxd_dma & 127)) : 0;
326 	if (offset > 7)
327 		offset -= 8;
328 	else
329 		offset += (128 - 8);
330 
331 	adapter->rxd_dma += offset;
332 	adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
333 		(adapter->txs_ring_size * 4 + offset));
334 
335 /*
336  * Read / Write Ptr Initialize:
337  *      init_ring_ptrs(adapter);
338  */
339 	return 0;
340 }
341 
342 /**
343  * atl2_irq_enable - Enable default interrupt generation settings
344  * @adapter: board private structure
345  */
346 static inline void atl2_irq_enable(struct atl2_adapter *adapter)
347 {
348 	ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
349 	ATL2_WRITE_FLUSH(&adapter->hw);
350 }
351 
352 /**
353  * atl2_irq_disable - Mask off interrupt generation on the NIC
354  * @adapter: board private structure
355  */
356 static inline void atl2_irq_disable(struct atl2_adapter *adapter)
357 {
358     ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
359     ATL2_WRITE_FLUSH(&adapter->hw);
360     synchronize_irq(adapter->pdev->irq);
361 }
362 
363 static void __atl2_vlan_mode(netdev_features_t features, u32 *ctrl)
364 {
365 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
366 		/* enable VLAN tag insert/strip */
367 		*ctrl |= MAC_CTRL_RMV_VLAN;
368 	} else {
369 		/* disable VLAN tag insert/strip */
370 		*ctrl &= ~MAC_CTRL_RMV_VLAN;
371 	}
372 }
373 
374 static void atl2_vlan_mode(struct net_device *netdev,
375 	netdev_features_t features)
376 {
377 	struct atl2_adapter *adapter = netdev_priv(netdev);
378 	u32 ctrl;
379 
380 	atl2_irq_disable(adapter);
381 
382 	ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
383 	__atl2_vlan_mode(features, &ctrl);
384 	ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
385 
386 	atl2_irq_enable(adapter);
387 }
388 
389 static void atl2_restore_vlan(struct atl2_adapter *adapter)
390 {
391 	atl2_vlan_mode(adapter->netdev, adapter->netdev->features);
392 }
393 
394 static netdev_features_t atl2_fix_features(struct net_device *netdev,
395 	netdev_features_t features)
396 {
397 	/*
398 	 * Since there is no support for separate rx/tx vlan accel
399 	 * enable/disable make sure tx flag is always in same state as rx.
400 	 */
401 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
402 		features |= NETIF_F_HW_VLAN_CTAG_TX;
403 	else
404 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
405 
406 	return features;
407 }
408 
409 static int atl2_set_features(struct net_device *netdev,
410 	netdev_features_t features)
411 {
412 	netdev_features_t changed = netdev->features ^ features;
413 
414 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
415 		atl2_vlan_mode(netdev, features);
416 
417 	return 0;
418 }
419 
420 static void atl2_intr_rx(struct atl2_adapter *adapter)
421 {
422 	struct net_device *netdev = adapter->netdev;
423 	struct rx_desc *rxd;
424 	struct sk_buff *skb;
425 
426 	do {
427 		rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
428 		if (!rxd->status.update)
429 			break; /* end of tx */
430 
431 		/* clear this flag at once */
432 		rxd->status.update = 0;
433 
434 		if (rxd->status.ok && rxd->status.pkt_size >= 60) {
435 			int rx_size = (int)(rxd->status.pkt_size - 4);
436 			/* alloc new buffer */
437 			skb = netdev_alloc_skb_ip_align(netdev, rx_size);
438 			if (NULL == skb) {
439 				/*
440 				 * Check that some rx space is free. If not,
441 				 * free one and mark stats->rx_dropped++.
442 				 */
443 				netdev->stats.rx_dropped++;
444 				break;
445 			}
446 			memcpy(skb->data, rxd->packet, rx_size);
447 			skb_put(skb, rx_size);
448 			skb->protocol = eth_type_trans(skb, netdev);
449 			if (rxd->status.vlan) {
450 				u16 vlan_tag = (rxd->status.vtag>>4) |
451 					((rxd->status.vtag&7) << 13) |
452 					((rxd->status.vtag&8) << 9);
453 
454 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
455 			}
456 			netif_rx(skb);
457 			netdev->stats.rx_bytes += rx_size;
458 			netdev->stats.rx_packets++;
459 		} else {
460 			netdev->stats.rx_errors++;
461 
462 			if (rxd->status.ok && rxd->status.pkt_size <= 60)
463 				netdev->stats.rx_length_errors++;
464 			if (rxd->status.mcast)
465 				netdev->stats.multicast++;
466 			if (rxd->status.crc)
467 				netdev->stats.rx_crc_errors++;
468 			if (rxd->status.align)
469 				netdev->stats.rx_frame_errors++;
470 		}
471 
472 		/* advance write ptr */
473 		if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
474 			adapter->rxd_write_ptr = 0;
475 	} while (1);
476 
477 	/* update mailbox? */
478 	adapter->rxd_read_ptr = adapter->rxd_write_ptr;
479 	ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
480 }
481 
482 static void atl2_intr_tx(struct atl2_adapter *adapter)
483 {
484 	struct net_device *netdev = adapter->netdev;
485 	u32 txd_read_ptr;
486 	u32 txs_write_ptr;
487 	struct tx_pkt_status *txs;
488 	struct tx_pkt_header *txph;
489 	int free_hole = 0;
490 
491 	do {
492 		txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
493 		txs = adapter->txs_ring + txs_write_ptr;
494 		if (!txs->update)
495 			break; /* tx stop here */
496 
497 		free_hole = 1;
498 		txs->update = 0;
499 
500 		if (++txs_write_ptr == adapter->txs_ring_size)
501 			txs_write_ptr = 0;
502 		atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
503 
504 		txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
505 		txph = (struct tx_pkt_header *)
506 			(((u8 *)adapter->txd_ring) + txd_read_ptr);
507 
508 		if (txph->pkt_size != txs->pkt_size) {
509 			struct tx_pkt_status *old_txs = txs;
510 			printk(KERN_WARNING
511 				"%s: txs packet size not consistent with txd"
512 				" txd_:0x%08x, txs_:0x%08x!\n",
513 				adapter->netdev->name,
514 				*(u32 *)txph, *(u32 *)txs);
515 			printk(KERN_WARNING
516 				"txd read ptr: 0x%x\n",
517 				txd_read_ptr);
518 			txs = adapter->txs_ring + txs_write_ptr;
519 			printk(KERN_WARNING
520 				"txs-behind:0x%08x\n",
521 				*(u32 *)txs);
522 			if (txs_write_ptr < 2) {
523 				txs = adapter->txs_ring +
524 					(adapter->txs_ring_size +
525 					txs_write_ptr - 2);
526 			} else {
527 				txs = adapter->txs_ring + (txs_write_ptr - 2);
528 			}
529 			printk(KERN_WARNING
530 				"txs-before:0x%08x\n",
531 				*(u32 *)txs);
532 			txs = old_txs;
533 		}
534 
535 		 /* 4for TPH */
536 		txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
537 		if (txd_read_ptr >= adapter->txd_ring_size)
538 			txd_read_ptr -= adapter->txd_ring_size;
539 
540 		atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
541 
542 		/* tx statistics: */
543 		if (txs->ok) {
544 			netdev->stats.tx_bytes += txs->pkt_size;
545 			netdev->stats.tx_packets++;
546 		}
547 		else
548 			netdev->stats.tx_errors++;
549 
550 		if (txs->defer)
551 			netdev->stats.collisions++;
552 		if (txs->abort_col)
553 			netdev->stats.tx_aborted_errors++;
554 		if (txs->late_col)
555 			netdev->stats.tx_window_errors++;
556 		if (txs->underun)
557 			netdev->stats.tx_fifo_errors++;
558 	} while (1);
559 
560 	if (free_hole) {
561 		if (netif_queue_stopped(adapter->netdev) &&
562 			netif_carrier_ok(adapter->netdev))
563 			netif_wake_queue(adapter->netdev);
564 	}
565 }
566 
567 static void atl2_check_for_link(struct atl2_adapter *adapter)
568 {
569 	struct net_device *netdev = adapter->netdev;
570 	u16 phy_data = 0;
571 
572 	spin_lock(&adapter->stats_lock);
573 	atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
574 	atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
575 	spin_unlock(&adapter->stats_lock);
576 
577 	/* notify upper layer link down ASAP */
578 	if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
579 		if (netif_carrier_ok(netdev)) { /* old link state: Up */
580 		printk(KERN_INFO "%s: %s NIC Link is Down\n",
581 			atl2_driver_name, netdev->name);
582 		adapter->link_speed = SPEED_0;
583 		netif_carrier_off(netdev);
584 		netif_stop_queue(netdev);
585 		}
586 	}
587 	schedule_work(&adapter->link_chg_task);
588 }
589 
590 static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
591 {
592 	u16 phy_data;
593 	spin_lock(&adapter->stats_lock);
594 	atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
595 	spin_unlock(&adapter->stats_lock);
596 }
597 
598 /**
599  * atl2_intr - Interrupt Handler
600  * @irq: interrupt number
601  * @data: pointer to a network interface device structure
602  */
603 static irqreturn_t atl2_intr(int irq, void *data)
604 {
605 	struct atl2_adapter *adapter = netdev_priv(data);
606 	struct atl2_hw *hw = &adapter->hw;
607 	u32 status;
608 
609 	status = ATL2_READ_REG(hw, REG_ISR);
610 	if (0 == status)
611 		return IRQ_NONE;
612 
613 	/* link event */
614 	if (status & ISR_PHY)
615 		atl2_clear_phy_int(adapter);
616 
617 	/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
618 	ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
619 
620 	/* check if PCIE PHY Link down */
621 	if (status & ISR_PHY_LINKDOWN) {
622 		if (netif_running(adapter->netdev)) { /* reset MAC */
623 			ATL2_WRITE_REG(hw, REG_ISR, 0);
624 			ATL2_WRITE_REG(hw, REG_IMR, 0);
625 			ATL2_WRITE_FLUSH(hw);
626 			schedule_work(&adapter->reset_task);
627 			return IRQ_HANDLED;
628 		}
629 	}
630 
631 	/* check if DMA read/write error? */
632 	if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
633 		ATL2_WRITE_REG(hw, REG_ISR, 0);
634 		ATL2_WRITE_REG(hw, REG_IMR, 0);
635 		ATL2_WRITE_FLUSH(hw);
636 		schedule_work(&adapter->reset_task);
637 		return IRQ_HANDLED;
638 	}
639 
640 	/* link event */
641 	if (status & (ISR_PHY | ISR_MANUAL)) {
642 		adapter->netdev->stats.tx_carrier_errors++;
643 		atl2_check_for_link(adapter);
644 	}
645 
646 	/* transmit event */
647 	if (status & ISR_TX_EVENT)
648 		atl2_intr_tx(adapter);
649 
650 	/* rx exception */
651 	if (status & ISR_RX_EVENT)
652 		atl2_intr_rx(adapter);
653 
654 	/* re-enable Interrupt */
655 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
656 	return IRQ_HANDLED;
657 }
658 
659 static int atl2_request_irq(struct atl2_adapter *adapter)
660 {
661 	struct net_device *netdev = adapter->netdev;
662 	int flags, err = 0;
663 
664 	flags = IRQF_SHARED;
665 	adapter->have_msi = true;
666 	err = pci_enable_msi(adapter->pdev);
667 	if (err)
668 		adapter->have_msi = false;
669 
670 	if (adapter->have_msi)
671 		flags &= ~IRQF_SHARED;
672 
673 	return request_irq(adapter->pdev->irq, atl2_intr, flags, netdev->name,
674 		netdev);
675 }
676 
677 /**
678  * atl2_free_ring_resources - Free Tx / RX descriptor Resources
679  * @adapter: board private structure
680  *
681  * Free all transmit software resources
682  */
683 static void atl2_free_ring_resources(struct atl2_adapter *adapter)
684 {
685 	struct pci_dev *pdev = adapter->pdev;
686 	pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr,
687 		adapter->ring_dma);
688 }
689 
690 /**
691  * atl2_open - Called when a network interface is made active
692  * @netdev: network interface device structure
693  *
694  * Returns 0 on success, negative value on failure
695  *
696  * The open entry point is called when a network interface is made
697  * active by the system (IFF_UP).  At this point all resources needed
698  * for transmit and receive operations are allocated, the interrupt
699  * handler is registered with the OS, the watchdog timer is started,
700  * and the stack is notified that the interface is ready.
701  */
702 static int atl2_open(struct net_device *netdev)
703 {
704 	struct atl2_adapter *adapter = netdev_priv(netdev);
705 	int err;
706 	u32 val;
707 
708 	/* disallow open during test */
709 	if (test_bit(__ATL2_TESTING, &adapter->flags))
710 		return -EBUSY;
711 
712 	/* allocate transmit descriptors */
713 	err = atl2_setup_ring_resources(adapter);
714 	if (err)
715 		return err;
716 
717 	err = atl2_init_hw(&adapter->hw);
718 	if (err) {
719 		err = -EIO;
720 		goto err_init_hw;
721 	}
722 
723 	/* hardware has been reset, we need to reload some things */
724 	atl2_set_multi(netdev);
725 	init_ring_ptrs(adapter);
726 
727 	atl2_restore_vlan(adapter);
728 
729 	if (atl2_configure(adapter)) {
730 		err = -EIO;
731 		goto err_config;
732 	}
733 
734 	err = atl2_request_irq(adapter);
735 	if (err)
736 		goto err_req_irq;
737 
738 	clear_bit(__ATL2_DOWN, &adapter->flags);
739 
740 	mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ));
741 
742 	val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
743 	ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
744 		val | MASTER_CTRL_MANUAL_INT);
745 
746 	atl2_irq_enable(adapter);
747 
748 	return 0;
749 
750 err_init_hw:
751 err_req_irq:
752 err_config:
753 	atl2_free_ring_resources(adapter);
754 	atl2_reset_hw(&adapter->hw);
755 
756 	return err;
757 }
758 
759 static void atl2_down(struct atl2_adapter *adapter)
760 {
761 	struct net_device *netdev = adapter->netdev;
762 
763 	/* signal that we're down so the interrupt handler does not
764 	 * reschedule our watchdog timer */
765 	set_bit(__ATL2_DOWN, &adapter->flags);
766 
767 	netif_tx_disable(netdev);
768 
769 	/* reset MAC to disable all RX/TX */
770 	atl2_reset_hw(&adapter->hw);
771 	msleep(1);
772 
773 	atl2_irq_disable(adapter);
774 
775 	del_timer_sync(&adapter->watchdog_timer);
776 	del_timer_sync(&adapter->phy_config_timer);
777 	clear_bit(0, &adapter->cfg_phy);
778 
779 	netif_carrier_off(netdev);
780 	adapter->link_speed = SPEED_0;
781 	adapter->link_duplex = -1;
782 }
783 
784 static void atl2_free_irq(struct atl2_adapter *adapter)
785 {
786 	struct net_device *netdev = adapter->netdev;
787 
788 	free_irq(adapter->pdev->irq, netdev);
789 
790 #ifdef CONFIG_PCI_MSI
791 	if (adapter->have_msi)
792 		pci_disable_msi(adapter->pdev);
793 #endif
794 }
795 
796 /**
797  * atl2_close - Disables a network interface
798  * @netdev: network interface device structure
799  *
800  * Returns 0, this is not allowed to fail
801  *
802  * The close entry point is called when an interface is de-activated
803  * by the OS.  The hardware is still under the drivers control, but
804  * needs to be disabled.  A global MAC reset is issued to stop the
805  * hardware, and all transmit and receive resources are freed.
806  */
807 static int atl2_close(struct net_device *netdev)
808 {
809 	struct atl2_adapter *adapter = netdev_priv(netdev);
810 
811 	WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
812 
813 	atl2_down(adapter);
814 	atl2_free_irq(adapter);
815 	atl2_free_ring_resources(adapter);
816 
817 	return 0;
818 }
819 
820 static inline int TxsFreeUnit(struct atl2_adapter *adapter)
821 {
822 	u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
823 
824 	return (adapter->txs_next_clear >= txs_write_ptr) ?
825 		(int) (adapter->txs_ring_size - adapter->txs_next_clear +
826 		txs_write_ptr - 1) :
827 		(int) (txs_write_ptr - adapter->txs_next_clear - 1);
828 }
829 
830 static inline int TxdFreeBytes(struct atl2_adapter *adapter)
831 {
832 	u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
833 
834 	return (adapter->txd_write_ptr >= txd_read_ptr) ?
835 		(int) (adapter->txd_ring_size - adapter->txd_write_ptr +
836 		txd_read_ptr - 1) :
837 		(int) (txd_read_ptr - adapter->txd_write_ptr - 1);
838 }
839 
840 static netdev_tx_t atl2_xmit_frame(struct sk_buff *skb,
841 					 struct net_device *netdev)
842 {
843 	struct atl2_adapter *adapter = netdev_priv(netdev);
844 	struct tx_pkt_header *txph;
845 	u32 offset, copy_len;
846 	int txs_unused;
847 	int txbuf_unused;
848 
849 	if (test_bit(__ATL2_DOWN, &adapter->flags)) {
850 		dev_kfree_skb_any(skb);
851 		return NETDEV_TX_OK;
852 	}
853 
854 	if (unlikely(skb->len <= 0)) {
855 		dev_kfree_skb_any(skb);
856 		return NETDEV_TX_OK;
857 	}
858 
859 	txs_unused = TxsFreeUnit(adapter);
860 	txbuf_unused = TxdFreeBytes(adapter);
861 
862 	if (skb->len + sizeof(struct tx_pkt_header) + 4  > txbuf_unused ||
863 		txs_unused < 1) {
864 		/* not enough resources */
865 		netif_stop_queue(netdev);
866 		return NETDEV_TX_BUSY;
867 	}
868 
869 	offset = adapter->txd_write_ptr;
870 
871 	txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
872 
873 	*(u32 *)txph = 0;
874 	txph->pkt_size = skb->len;
875 
876 	offset += 4;
877 	if (offset >= adapter->txd_ring_size)
878 		offset -= adapter->txd_ring_size;
879 	copy_len = adapter->txd_ring_size - offset;
880 	if (copy_len >= skb->len) {
881 		memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
882 		offset += ((u32)(skb->len + 3) & ~3);
883 	} else {
884 		memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
885 		memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
886 			skb->len-copy_len);
887 		offset = ((u32)(skb->len-copy_len + 3) & ~3);
888 	}
889 #ifdef NETIF_F_HW_VLAN_CTAG_TX
890 	if (skb_vlan_tag_present(skb)) {
891 		u16 vlan_tag = skb_vlan_tag_get(skb);
892 		vlan_tag = (vlan_tag << 4) |
893 			(vlan_tag >> 13) |
894 			((vlan_tag >> 9) & 0x8);
895 		txph->ins_vlan = 1;
896 		txph->vlan = vlan_tag;
897 	}
898 #endif
899 	if (offset >= adapter->txd_ring_size)
900 		offset -= adapter->txd_ring_size;
901 	adapter->txd_write_ptr = offset;
902 
903 	/* clear txs before send */
904 	adapter->txs_ring[adapter->txs_next_clear].update = 0;
905 	if (++adapter->txs_next_clear == adapter->txs_ring_size)
906 		adapter->txs_next_clear = 0;
907 
908 	ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
909 		(adapter->txd_write_ptr >> 2));
910 
911 	mmiowb();
912 	dev_kfree_skb_any(skb);
913 	return NETDEV_TX_OK;
914 }
915 
916 /**
917  * atl2_change_mtu - Change the Maximum Transfer Unit
918  * @netdev: network interface device structure
919  * @new_mtu: new value for maximum frame size
920  *
921  * Returns 0 on success, negative on failure
922  */
923 static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
924 {
925 	struct atl2_adapter *adapter = netdev_priv(netdev);
926 	struct atl2_hw *hw = &adapter->hw;
927 
928 	/* set MTU */
929 	netdev->mtu = new_mtu;
930 	hw->max_frame_size = new_mtu;
931 	ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ETH_HLEN +
932 		       VLAN_HLEN + ETH_FCS_LEN);
933 
934 	return 0;
935 }
936 
937 /**
938  * atl2_set_mac - Change the Ethernet Address of the NIC
939  * @netdev: network interface device structure
940  * @p: pointer to an address structure
941  *
942  * Returns 0 on success, negative on failure
943  */
944 static int atl2_set_mac(struct net_device *netdev, void *p)
945 {
946 	struct atl2_adapter *adapter = netdev_priv(netdev);
947 	struct sockaddr *addr = p;
948 
949 	if (!is_valid_ether_addr(addr->sa_data))
950 		return -EADDRNOTAVAIL;
951 
952 	if (netif_running(netdev))
953 		return -EBUSY;
954 
955 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
956 	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
957 
958 	atl2_set_mac_addr(&adapter->hw);
959 
960 	return 0;
961 }
962 
963 static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
964 {
965 	struct atl2_adapter *adapter = netdev_priv(netdev);
966 	struct mii_ioctl_data *data = if_mii(ifr);
967 	unsigned long flags;
968 
969 	switch (cmd) {
970 	case SIOCGMIIPHY:
971 		data->phy_id = 0;
972 		break;
973 	case SIOCGMIIREG:
974 		spin_lock_irqsave(&adapter->stats_lock, flags);
975 		if (atl2_read_phy_reg(&adapter->hw,
976 			data->reg_num & 0x1F, &data->val_out)) {
977 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
978 			return -EIO;
979 		}
980 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
981 		break;
982 	case SIOCSMIIREG:
983 		if (data->reg_num & ~(0x1F))
984 			return -EFAULT;
985 		spin_lock_irqsave(&adapter->stats_lock, flags);
986 		if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
987 			data->val_in)) {
988 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
989 			return -EIO;
990 		}
991 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
992 		break;
993 	default:
994 		return -EOPNOTSUPP;
995 	}
996 	return 0;
997 }
998 
999 static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1000 {
1001 	switch (cmd) {
1002 	case SIOCGMIIPHY:
1003 	case SIOCGMIIREG:
1004 	case SIOCSMIIREG:
1005 		return atl2_mii_ioctl(netdev, ifr, cmd);
1006 #ifdef ETHTOOL_OPS_COMPAT
1007 	case SIOCETHTOOL:
1008 		return ethtool_ioctl(ifr);
1009 #endif
1010 	default:
1011 		return -EOPNOTSUPP;
1012 	}
1013 }
1014 
1015 /**
1016  * atl2_tx_timeout - Respond to a Tx Hang
1017  * @netdev: network interface device structure
1018  */
1019 static void atl2_tx_timeout(struct net_device *netdev)
1020 {
1021 	struct atl2_adapter *adapter = netdev_priv(netdev);
1022 
1023 	/* Do the reset outside of interrupt context */
1024 	schedule_work(&adapter->reset_task);
1025 }
1026 
1027 /**
1028  * atl2_watchdog - Timer Call-back
1029  * @data: pointer to netdev cast into an unsigned long
1030  */
1031 static void atl2_watchdog(unsigned long data)
1032 {
1033 	struct atl2_adapter *adapter = (struct atl2_adapter *) data;
1034 
1035 	if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1036 		u32 drop_rxd, drop_rxs;
1037 		unsigned long flags;
1038 
1039 		spin_lock_irqsave(&adapter->stats_lock, flags);
1040 		drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
1041 		drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
1042 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
1043 
1044 		adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs;
1045 
1046 		/* Reset the timer */
1047 		mod_timer(&adapter->watchdog_timer,
1048 			  round_jiffies(jiffies + 4 * HZ));
1049 	}
1050 }
1051 
1052 /**
1053  * atl2_phy_config - Timer Call-back
1054  * @data: pointer to netdev cast into an unsigned long
1055  */
1056 static void atl2_phy_config(unsigned long data)
1057 {
1058 	struct atl2_adapter *adapter = (struct atl2_adapter *) data;
1059 	struct atl2_hw *hw = &adapter->hw;
1060 	unsigned long flags;
1061 
1062 	spin_lock_irqsave(&adapter->stats_lock, flags);
1063 	atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
1064 	atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
1065 		MII_CR_RESTART_AUTO_NEG);
1066 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
1067 	clear_bit(0, &adapter->cfg_phy);
1068 }
1069 
1070 static int atl2_up(struct atl2_adapter *adapter)
1071 {
1072 	struct net_device *netdev = adapter->netdev;
1073 	int err = 0;
1074 	u32 val;
1075 
1076 	/* hardware has been reset, we need to reload some things */
1077 
1078 	err = atl2_init_hw(&adapter->hw);
1079 	if (err) {
1080 		err = -EIO;
1081 		return err;
1082 	}
1083 
1084 	atl2_set_multi(netdev);
1085 	init_ring_ptrs(adapter);
1086 
1087 	atl2_restore_vlan(adapter);
1088 
1089 	if (atl2_configure(adapter)) {
1090 		err = -EIO;
1091 		goto err_up;
1092 	}
1093 
1094 	clear_bit(__ATL2_DOWN, &adapter->flags);
1095 
1096 	val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
1097 	ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
1098 		MASTER_CTRL_MANUAL_INT);
1099 
1100 	atl2_irq_enable(adapter);
1101 
1102 err_up:
1103 	return err;
1104 }
1105 
1106 static void atl2_reinit_locked(struct atl2_adapter *adapter)
1107 {
1108 	WARN_ON(in_interrupt());
1109 	while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1110 		msleep(1);
1111 	atl2_down(adapter);
1112 	atl2_up(adapter);
1113 	clear_bit(__ATL2_RESETTING, &adapter->flags);
1114 }
1115 
1116 static void atl2_reset_task(struct work_struct *work)
1117 {
1118 	struct atl2_adapter *adapter;
1119 	adapter = container_of(work, struct atl2_adapter, reset_task);
1120 
1121 	atl2_reinit_locked(adapter);
1122 }
1123 
1124 static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
1125 {
1126 	u32 value;
1127 	struct atl2_hw *hw = &adapter->hw;
1128 	struct net_device *netdev = adapter->netdev;
1129 
1130 	/* Config MAC CTRL Register */
1131 	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1132 
1133 	/* duplex */
1134 	if (FULL_DUPLEX == adapter->link_duplex)
1135 		value |= MAC_CTRL_DUPLX;
1136 
1137 	/* flow control */
1138 	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1139 
1140 	/* PAD & CRC */
1141 	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1142 
1143 	/* preamble length */
1144 	value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
1145 		MAC_CTRL_PRMLEN_SHIFT);
1146 
1147 	/* vlan */
1148 	__atl2_vlan_mode(netdev->features, &value);
1149 
1150 	/* filter mode */
1151 	value |= MAC_CTRL_BC_EN;
1152 	if (netdev->flags & IFF_PROMISC)
1153 		value |= MAC_CTRL_PROMIS_EN;
1154 	else if (netdev->flags & IFF_ALLMULTI)
1155 		value |= MAC_CTRL_MC_ALL_EN;
1156 
1157 	/* half retry buffer */
1158 	value |= (((u32)(adapter->hw.retry_buf &
1159 		MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1160 
1161 	ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1162 }
1163 
1164 static int atl2_check_link(struct atl2_adapter *adapter)
1165 {
1166 	struct atl2_hw *hw = &adapter->hw;
1167 	struct net_device *netdev = adapter->netdev;
1168 	int ret_val;
1169 	u16 speed, duplex, phy_data;
1170 	int reconfig = 0;
1171 
1172 	/* MII_BMSR must read twise */
1173 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1174 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1175 	if (!(phy_data&BMSR_LSTATUS)) { /* link down */
1176 		if (netif_carrier_ok(netdev)) { /* old link state: Up */
1177 			u32 value;
1178 			/* disable rx */
1179 			value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1180 			value &= ~MAC_CTRL_RX_EN;
1181 			ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1182 			adapter->link_speed = SPEED_0;
1183 			netif_carrier_off(netdev);
1184 			netif_stop_queue(netdev);
1185 		}
1186 		return 0;
1187 	}
1188 
1189 	/* Link Up */
1190 	ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1191 	if (ret_val)
1192 		return ret_val;
1193 	switch (hw->MediaType) {
1194 	case MEDIA_TYPE_100M_FULL:
1195 		if (speed  != SPEED_100 || duplex != FULL_DUPLEX)
1196 			reconfig = 1;
1197 		break;
1198 	case MEDIA_TYPE_100M_HALF:
1199 		if (speed  != SPEED_100 || duplex != HALF_DUPLEX)
1200 			reconfig = 1;
1201 		break;
1202 	case MEDIA_TYPE_10M_FULL:
1203 		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1204 			reconfig = 1;
1205 		break;
1206 	case MEDIA_TYPE_10M_HALF:
1207 		if (speed  != SPEED_10 || duplex != HALF_DUPLEX)
1208 			reconfig = 1;
1209 		break;
1210 	}
1211 	/* link result is our setting */
1212 	if (reconfig == 0) {
1213 		if (adapter->link_speed != speed ||
1214 			adapter->link_duplex != duplex) {
1215 			adapter->link_speed = speed;
1216 			adapter->link_duplex = duplex;
1217 			atl2_setup_mac_ctrl(adapter);
1218 			printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
1219 				atl2_driver_name, netdev->name,
1220 				adapter->link_speed,
1221 				adapter->link_duplex == FULL_DUPLEX ?
1222 					"Full Duplex" : "Half Duplex");
1223 		}
1224 
1225 		if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
1226 			netif_carrier_on(netdev);
1227 			netif_wake_queue(netdev);
1228 		}
1229 		return 0;
1230 	}
1231 
1232 	/* change original link status */
1233 	if (netif_carrier_ok(netdev)) {
1234 		u32 value;
1235 		/* disable rx */
1236 		value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1237 		value &= ~MAC_CTRL_RX_EN;
1238 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1239 
1240 		adapter->link_speed = SPEED_0;
1241 		netif_carrier_off(netdev);
1242 		netif_stop_queue(netdev);
1243 	}
1244 
1245 	/* auto-neg, insert timer to re-config phy
1246 	 * (if interval smaller than 5 seconds, something strange) */
1247 	if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1248 		if (!test_and_set_bit(0, &adapter->cfg_phy))
1249 			mod_timer(&adapter->phy_config_timer,
1250 				  round_jiffies(jiffies + 5 * HZ));
1251 	}
1252 
1253 	return 0;
1254 }
1255 
1256 /**
1257  * atl2_link_chg_task - deal with link change event Out of interrupt context
1258  */
1259 static void atl2_link_chg_task(struct work_struct *work)
1260 {
1261 	struct atl2_adapter *adapter;
1262 	unsigned long flags;
1263 
1264 	adapter = container_of(work, struct atl2_adapter, link_chg_task);
1265 
1266 	spin_lock_irqsave(&adapter->stats_lock, flags);
1267 	atl2_check_link(adapter);
1268 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
1269 }
1270 
1271 static void atl2_setup_pcicmd(struct pci_dev *pdev)
1272 {
1273 	u16 cmd;
1274 
1275 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1276 
1277 	if (cmd & PCI_COMMAND_INTX_DISABLE)
1278 		cmd &= ~PCI_COMMAND_INTX_DISABLE;
1279 	if (cmd & PCI_COMMAND_IO)
1280 		cmd &= ~PCI_COMMAND_IO;
1281 	if (0 == (cmd & PCI_COMMAND_MEMORY))
1282 		cmd |= PCI_COMMAND_MEMORY;
1283 	if (0 == (cmd & PCI_COMMAND_MASTER))
1284 		cmd |= PCI_COMMAND_MASTER;
1285 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
1286 
1287 	/*
1288 	 * some motherboards BIOS(PXE/EFI) driver may set PME
1289 	 * while they transfer control to OS (Windows/Linux)
1290 	 * so we should clear this bit before NIC work normally
1291 	 */
1292 	pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
1293 }
1294 
1295 #ifdef CONFIG_NET_POLL_CONTROLLER
1296 static void atl2_poll_controller(struct net_device *netdev)
1297 {
1298 	disable_irq(netdev->irq);
1299 	atl2_intr(netdev->irq, netdev);
1300 	enable_irq(netdev->irq);
1301 }
1302 #endif
1303 
1304 
1305 static const struct net_device_ops atl2_netdev_ops = {
1306 	.ndo_open		= atl2_open,
1307 	.ndo_stop		= atl2_close,
1308 	.ndo_start_xmit		= atl2_xmit_frame,
1309 	.ndo_set_rx_mode	= atl2_set_multi,
1310 	.ndo_validate_addr	= eth_validate_addr,
1311 	.ndo_set_mac_address	= atl2_set_mac,
1312 	.ndo_change_mtu		= atl2_change_mtu,
1313 	.ndo_fix_features	= atl2_fix_features,
1314 	.ndo_set_features	= atl2_set_features,
1315 	.ndo_do_ioctl		= atl2_ioctl,
1316 	.ndo_tx_timeout		= atl2_tx_timeout,
1317 #ifdef CONFIG_NET_POLL_CONTROLLER
1318 	.ndo_poll_controller	= atl2_poll_controller,
1319 #endif
1320 };
1321 
1322 /**
1323  * atl2_probe - Device Initialization Routine
1324  * @pdev: PCI device information struct
1325  * @ent: entry in atl2_pci_tbl
1326  *
1327  * Returns 0 on success, negative on failure
1328  *
1329  * atl2_probe initializes an adapter identified by a pci_dev structure.
1330  * The OS initialization, configuring of the adapter private structure,
1331  * and a hardware reset occur.
1332  */
1333 static int atl2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1334 {
1335 	struct net_device *netdev;
1336 	struct atl2_adapter *adapter;
1337 	static int cards_found;
1338 	unsigned long mmio_start;
1339 	int mmio_len;
1340 	int err;
1341 
1342 	cards_found = 0;
1343 
1344 	err = pci_enable_device(pdev);
1345 	if (err)
1346 		return err;
1347 
1348 	/*
1349 	 * atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
1350 	 * until the kernel has the proper infrastructure to support 64-bit DMA
1351 	 * on these devices.
1352 	 */
1353 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) &&
1354 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1355 		printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
1356 		err = -EIO;
1357 		goto err_dma;
1358 	}
1359 
1360 	/* Mark all PCI regions associated with PCI device
1361 	 * pdev as being reserved by owner atl2_driver_name */
1362 	err = pci_request_regions(pdev, atl2_driver_name);
1363 	if (err)
1364 		goto err_pci_reg;
1365 
1366 	/* Enables bus-mastering on the device and calls
1367 	 * pcibios_set_master to do the needed arch specific settings */
1368 	pci_set_master(pdev);
1369 
1370 	netdev = alloc_etherdev(sizeof(struct atl2_adapter));
1371 	if (!netdev) {
1372 		err = -ENOMEM;
1373 		goto err_alloc_etherdev;
1374 	}
1375 
1376 	SET_NETDEV_DEV(netdev, &pdev->dev);
1377 
1378 	pci_set_drvdata(pdev, netdev);
1379 	adapter = netdev_priv(netdev);
1380 	adapter->netdev = netdev;
1381 	adapter->pdev = pdev;
1382 	adapter->hw.back = adapter;
1383 
1384 	mmio_start = pci_resource_start(pdev, 0x0);
1385 	mmio_len = pci_resource_len(pdev, 0x0);
1386 
1387 	adapter->hw.mem_rang = (u32)mmio_len;
1388 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1389 	if (!adapter->hw.hw_addr) {
1390 		err = -EIO;
1391 		goto err_ioremap;
1392 	}
1393 
1394 	atl2_setup_pcicmd(pdev);
1395 
1396 	netdev->netdev_ops = &atl2_netdev_ops;
1397 	netdev->ethtool_ops = &atl2_ethtool_ops;
1398 	netdev->watchdog_timeo = 5 * HZ;
1399 	netdev->min_mtu = 40;
1400 	netdev->max_mtu = ETH_DATA_LEN + VLAN_HLEN;
1401 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1402 
1403 	netdev->mem_start = mmio_start;
1404 	netdev->mem_end = mmio_start + mmio_len;
1405 	adapter->bd_number = cards_found;
1406 	adapter->pci_using_64 = false;
1407 
1408 	/* setup the private structure */
1409 	err = atl2_sw_init(adapter);
1410 	if (err)
1411 		goto err_sw_init;
1412 
1413 	netdev->hw_features = NETIF_F_HW_VLAN_CTAG_RX;
1414 	netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
1415 
1416 	/* Init PHY as early as possible due to power saving issue  */
1417 	atl2_phy_init(&adapter->hw);
1418 
1419 	/* reset the controller to
1420 	 * put the device in a known good starting state */
1421 
1422 	if (atl2_reset_hw(&adapter->hw)) {
1423 		err = -EIO;
1424 		goto err_reset;
1425 	}
1426 
1427 	/* copy the MAC address out of the EEPROM */
1428 	atl2_read_mac_addr(&adapter->hw);
1429 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1430 	if (!is_valid_ether_addr(netdev->dev_addr)) {
1431 		err = -EIO;
1432 		goto err_eeprom;
1433 	}
1434 
1435 	atl2_check_options(adapter);
1436 
1437 	setup_timer(&adapter->watchdog_timer, atl2_watchdog,
1438 		    (unsigned long)adapter);
1439 
1440 	setup_timer(&adapter->phy_config_timer, atl2_phy_config,
1441 		    (unsigned long)adapter);
1442 
1443 	INIT_WORK(&adapter->reset_task, atl2_reset_task);
1444 	INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
1445 
1446 	strcpy(netdev->name, "eth%d"); /* ?? */
1447 	err = register_netdev(netdev);
1448 	if (err)
1449 		goto err_register;
1450 
1451 	/* assume we have no link for now */
1452 	netif_carrier_off(netdev);
1453 	netif_stop_queue(netdev);
1454 
1455 	cards_found++;
1456 
1457 	return 0;
1458 
1459 err_reset:
1460 err_register:
1461 err_sw_init:
1462 err_eeprom:
1463 	iounmap(adapter->hw.hw_addr);
1464 err_ioremap:
1465 	free_netdev(netdev);
1466 err_alloc_etherdev:
1467 	pci_release_regions(pdev);
1468 err_pci_reg:
1469 err_dma:
1470 	pci_disable_device(pdev);
1471 	return err;
1472 }
1473 
1474 /**
1475  * atl2_remove - Device Removal Routine
1476  * @pdev: PCI device information struct
1477  *
1478  * atl2_remove is called by the PCI subsystem to alert the driver
1479  * that it should release a PCI device.  The could be caused by a
1480  * Hot-Plug event, or because the driver is going to be removed from
1481  * memory.
1482  */
1483 /* FIXME: write the original MAC address back in case it was changed from a
1484  * BIOS-set value, as in atl1 -- CHS */
1485 static void atl2_remove(struct pci_dev *pdev)
1486 {
1487 	struct net_device *netdev = pci_get_drvdata(pdev);
1488 	struct atl2_adapter *adapter = netdev_priv(netdev);
1489 
1490 	/* flush_scheduled work may reschedule our watchdog task, so
1491 	 * explicitly disable watchdog tasks from being rescheduled  */
1492 	set_bit(__ATL2_DOWN, &adapter->flags);
1493 
1494 	del_timer_sync(&adapter->watchdog_timer);
1495 	del_timer_sync(&adapter->phy_config_timer);
1496 	cancel_work_sync(&adapter->reset_task);
1497 	cancel_work_sync(&adapter->link_chg_task);
1498 
1499 	unregister_netdev(netdev);
1500 
1501 	atl2_force_ps(&adapter->hw);
1502 
1503 	iounmap(adapter->hw.hw_addr);
1504 	pci_release_regions(pdev);
1505 
1506 	free_netdev(netdev);
1507 
1508 	pci_disable_device(pdev);
1509 }
1510 
1511 static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
1512 {
1513 	struct net_device *netdev = pci_get_drvdata(pdev);
1514 	struct atl2_adapter *adapter = netdev_priv(netdev);
1515 	struct atl2_hw *hw = &adapter->hw;
1516 	u16 speed, duplex;
1517 	u32 ctrl = 0;
1518 	u32 wufc = adapter->wol;
1519 
1520 #ifdef CONFIG_PM
1521 	int retval = 0;
1522 #endif
1523 
1524 	netif_device_detach(netdev);
1525 
1526 	if (netif_running(netdev)) {
1527 		WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
1528 		atl2_down(adapter);
1529 	}
1530 
1531 #ifdef CONFIG_PM
1532 	retval = pci_save_state(pdev);
1533 	if (retval)
1534 		return retval;
1535 #endif
1536 
1537 	atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1538 	atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1539 	if (ctrl & BMSR_LSTATUS)
1540 		wufc &= ~ATLX_WUFC_LNKC;
1541 
1542 	if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
1543 		u32 ret_val;
1544 		/* get current link speed & duplex */
1545 		ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1546 		if (ret_val) {
1547 			printk(KERN_DEBUG
1548 				"%s: get speed&duplex error while suspend\n",
1549 				atl2_driver_name);
1550 			goto wol_dis;
1551 		}
1552 
1553 		ctrl = 0;
1554 
1555 		/* turn on magic packet wol */
1556 		if (wufc & ATLX_WUFC_MAG)
1557 			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
1558 
1559 		/* ignore Link Chg event when Link is up */
1560 		ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1561 
1562 		/* Config MAC CTRL Register */
1563 		ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1564 		if (FULL_DUPLEX == adapter->link_duplex)
1565 			ctrl |= MAC_CTRL_DUPLX;
1566 		ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1567 		ctrl |= (((u32)adapter->hw.preamble_len &
1568 			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1569 		ctrl |= (((u32)(adapter->hw.retry_buf &
1570 			MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
1571 			MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1572 		if (wufc & ATLX_WUFC_MAG) {
1573 			/* magic packet maybe Broadcast&multicast&Unicast */
1574 			ctrl |= MAC_CTRL_BC_EN;
1575 		}
1576 
1577 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
1578 
1579 		/* pcie patch */
1580 		ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1581 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1582 		ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1583 		ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1584 		ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1585 		ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1586 
1587 		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1588 		goto suspend_exit;
1589 	}
1590 
1591 	if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
1592 		/* link is down, so only LINK CHG WOL event enable */
1593 		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
1594 		ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1595 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
1596 
1597 		/* pcie patch */
1598 		ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1599 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1600 		ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1601 		ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1602 		ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1603 		ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1604 
1605 		hw->phy_configured = false; /* re-init PHY when resume */
1606 
1607 		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1608 
1609 		goto suspend_exit;
1610 	}
1611 
1612 wol_dis:
1613 	/* WOL disabled */
1614 	ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
1615 
1616 	/* pcie patch */
1617 	ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1618 	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1619 	ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1620 	ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1621 	ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1622 	ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1623 
1624 	atl2_force_ps(hw);
1625 	hw->phy_configured = false; /* re-init PHY when resume */
1626 
1627 	pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
1628 
1629 suspend_exit:
1630 	if (netif_running(netdev))
1631 		atl2_free_irq(adapter);
1632 
1633 	pci_disable_device(pdev);
1634 
1635 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
1636 
1637 	return 0;
1638 }
1639 
1640 #ifdef CONFIG_PM
1641 static int atl2_resume(struct pci_dev *pdev)
1642 {
1643 	struct net_device *netdev = pci_get_drvdata(pdev);
1644 	struct atl2_adapter *adapter = netdev_priv(netdev);
1645 	u32 err;
1646 
1647 	pci_set_power_state(pdev, PCI_D0);
1648 	pci_restore_state(pdev);
1649 
1650 	err = pci_enable_device(pdev);
1651 	if (err) {
1652 		printk(KERN_ERR
1653 			"atl2: Cannot enable PCI device from suspend\n");
1654 		return err;
1655 	}
1656 
1657 	pci_set_master(pdev);
1658 
1659 	ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
1660 
1661 	pci_enable_wake(pdev, PCI_D3hot, 0);
1662 	pci_enable_wake(pdev, PCI_D3cold, 0);
1663 
1664 	ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
1665 
1666 	if (netif_running(netdev)) {
1667 		err = atl2_request_irq(adapter);
1668 		if (err)
1669 			return err;
1670 	}
1671 
1672 	atl2_reset_hw(&adapter->hw);
1673 
1674 	if (netif_running(netdev))
1675 		atl2_up(adapter);
1676 
1677 	netif_device_attach(netdev);
1678 
1679 	return 0;
1680 }
1681 #endif
1682 
1683 static void atl2_shutdown(struct pci_dev *pdev)
1684 {
1685 	atl2_suspend(pdev, PMSG_SUSPEND);
1686 }
1687 
1688 static struct pci_driver atl2_driver = {
1689 	.name     = atl2_driver_name,
1690 	.id_table = atl2_pci_tbl,
1691 	.probe    = atl2_probe,
1692 	.remove   = atl2_remove,
1693 	/* Power Management Hooks */
1694 	.suspend  = atl2_suspend,
1695 #ifdef CONFIG_PM
1696 	.resume   = atl2_resume,
1697 #endif
1698 	.shutdown = atl2_shutdown,
1699 };
1700 
1701 /**
1702  * atl2_init_module - Driver Registration Routine
1703  *
1704  * atl2_init_module is the first routine called when the driver is
1705  * loaded. All it does is register with the PCI subsystem.
1706  */
1707 static int __init atl2_init_module(void)
1708 {
1709 	printk(KERN_INFO "%s - version %s\n", atl2_driver_string,
1710 		atl2_driver_version);
1711 	printk(KERN_INFO "%s\n", atl2_copyright);
1712 	return pci_register_driver(&atl2_driver);
1713 }
1714 module_init(atl2_init_module);
1715 
1716 /**
1717  * atl2_exit_module - Driver Exit Cleanup Routine
1718  *
1719  * atl2_exit_module is called just before the driver is removed
1720  * from memory.
1721  */
1722 static void __exit atl2_exit_module(void)
1723 {
1724 	pci_unregister_driver(&atl2_driver);
1725 }
1726 module_exit(atl2_exit_module);
1727 
1728 static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1729 {
1730 	struct atl2_adapter *adapter = hw->back;
1731 	pci_read_config_word(adapter->pdev, reg, value);
1732 }
1733 
1734 static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1735 {
1736 	struct atl2_adapter *adapter = hw->back;
1737 	pci_write_config_word(adapter->pdev, reg, *value);
1738 }
1739 
1740 static int atl2_get_link_ksettings(struct net_device *netdev,
1741 				   struct ethtool_link_ksettings *cmd)
1742 {
1743 	struct atl2_adapter *adapter = netdev_priv(netdev);
1744 	struct atl2_hw *hw = &adapter->hw;
1745 	u32 supported, advertising;
1746 
1747 	supported = (SUPPORTED_10baseT_Half |
1748 		SUPPORTED_10baseT_Full |
1749 		SUPPORTED_100baseT_Half |
1750 		SUPPORTED_100baseT_Full |
1751 		SUPPORTED_Autoneg |
1752 		SUPPORTED_TP);
1753 	advertising = ADVERTISED_TP;
1754 
1755 	advertising |= ADVERTISED_Autoneg;
1756 	advertising |= hw->autoneg_advertised;
1757 
1758 	cmd->base.port = PORT_TP;
1759 	cmd->base.phy_address = 0;
1760 
1761 	if (adapter->link_speed != SPEED_0) {
1762 		cmd->base.speed = adapter->link_speed;
1763 		if (adapter->link_duplex == FULL_DUPLEX)
1764 			cmd->base.duplex = DUPLEX_FULL;
1765 		else
1766 			cmd->base.duplex = DUPLEX_HALF;
1767 	} else {
1768 		cmd->base.speed = SPEED_UNKNOWN;
1769 		cmd->base.duplex = DUPLEX_UNKNOWN;
1770 	}
1771 
1772 	cmd->base.autoneg = AUTONEG_ENABLE;
1773 
1774 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1775 						supported);
1776 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1777 						advertising);
1778 
1779 	return 0;
1780 }
1781 
1782 static int atl2_set_link_ksettings(struct net_device *netdev,
1783 				   const struct ethtool_link_ksettings *cmd)
1784 {
1785 	struct atl2_adapter *adapter = netdev_priv(netdev);
1786 	struct atl2_hw *hw = &adapter->hw;
1787 	u32 advertising;
1788 
1789 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
1790 						cmd->link_modes.advertising);
1791 
1792 	while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1793 		msleep(1);
1794 
1795 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1796 #define MY_ADV_MASK	(ADVERTISE_10_HALF | \
1797 			 ADVERTISE_10_FULL | \
1798 			 ADVERTISE_100_HALF| \
1799 			 ADVERTISE_100_FULL)
1800 
1801 		if ((advertising & MY_ADV_MASK) == MY_ADV_MASK) {
1802 			hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
1803 			hw->autoneg_advertised =  MY_ADV_MASK;
1804 		} else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_FULL) {
1805 			hw->MediaType = MEDIA_TYPE_100M_FULL;
1806 			hw->autoneg_advertised = ADVERTISE_100_FULL;
1807 		} else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_HALF) {
1808 			hw->MediaType = MEDIA_TYPE_100M_HALF;
1809 			hw->autoneg_advertised = ADVERTISE_100_HALF;
1810 		} else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_FULL) {
1811 			hw->MediaType = MEDIA_TYPE_10M_FULL;
1812 			hw->autoneg_advertised = ADVERTISE_10_FULL;
1813 		}  else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_HALF) {
1814 			hw->MediaType = MEDIA_TYPE_10M_HALF;
1815 			hw->autoneg_advertised = ADVERTISE_10_HALF;
1816 		} else {
1817 			clear_bit(__ATL2_RESETTING, &adapter->flags);
1818 			return -EINVAL;
1819 		}
1820 		advertising = hw->autoneg_advertised |
1821 			ADVERTISED_TP | ADVERTISED_Autoneg;
1822 	} else {
1823 		clear_bit(__ATL2_RESETTING, &adapter->flags);
1824 		return -EINVAL;
1825 	}
1826 
1827 	/* reset the link */
1828 	if (netif_running(adapter->netdev)) {
1829 		atl2_down(adapter);
1830 		atl2_up(adapter);
1831 	} else
1832 		atl2_reset_hw(&adapter->hw);
1833 
1834 	clear_bit(__ATL2_RESETTING, &adapter->flags);
1835 	return 0;
1836 }
1837 
1838 static u32 atl2_get_msglevel(struct net_device *netdev)
1839 {
1840 	return 0;
1841 }
1842 
1843 /*
1844  * It's sane for this to be empty, but we might want to take advantage of this.
1845  */
1846 static void atl2_set_msglevel(struct net_device *netdev, u32 data)
1847 {
1848 }
1849 
1850 static int atl2_get_regs_len(struct net_device *netdev)
1851 {
1852 #define ATL2_REGS_LEN 42
1853 	return sizeof(u32) * ATL2_REGS_LEN;
1854 }
1855 
1856 static void atl2_get_regs(struct net_device *netdev,
1857 	struct ethtool_regs *regs, void *p)
1858 {
1859 	struct atl2_adapter *adapter = netdev_priv(netdev);
1860 	struct atl2_hw *hw = &adapter->hw;
1861 	u32 *regs_buff = p;
1862 	u16 phy_data;
1863 
1864 	memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
1865 
1866 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
1867 
1868 	regs_buff[0]  = ATL2_READ_REG(hw, REG_VPD_CAP);
1869 	regs_buff[1]  = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
1870 	regs_buff[2]  = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
1871 	regs_buff[3]  = ATL2_READ_REG(hw, REG_TWSI_CTRL);
1872 	regs_buff[4]  = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
1873 	regs_buff[5]  = ATL2_READ_REG(hw, REG_MASTER_CTRL);
1874 	regs_buff[6]  = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
1875 	regs_buff[7]  = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
1876 	regs_buff[8]  = ATL2_READ_REG(hw, REG_PHY_ENABLE);
1877 	regs_buff[9]  = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
1878 	regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
1879 	regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
1880 	regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
1881 	regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
1882 	regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
1883 	regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
1884 	regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
1885 	regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
1886 	regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
1887 	regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
1888 	regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
1889 	regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
1890 	regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
1891 	regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
1892 	regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
1893 	regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
1894 	regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
1895 	regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
1896 	regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
1897 	regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
1898 	regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
1899 	regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
1900 	regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
1901 	regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
1902 	regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
1903 	regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
1904 	regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
1905 	regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
1906 	regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
1907 
1908 	atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
1909 	regs_buff[40] = (u32)phy_data;
1910 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1911 	regs_buff[41] = (u32)phy_data;
1912 }
1913 
1914 static int atl2_get_eeprom_len(struct net_device *netdev)
1915 {
1916 	struct atl2_adapter *adapter = netdev_priv(netdev);
1917 
1918 	if (!atl2_check_eeprom_exist(&adapter->hw))
1919 		return 512;
1920 	else
1921 		return 0;
1922 }
1923 
1924 static int atl2_get_eeprom(struct net_device *netdev,
1925 	struct ethtool_eeprom *eeprom, u8 *bytes)
1926 {
1927 	struct atl2_adapter *adapter = netdev_priv(netdev);
1928 	struct atl2_hw *hw = &adapter->hw;
1929 	u32 *eeprom_buff;
1930 	int first_dword, last_dword;
1931 	int ret_val = 0;
1932 	int i;
1933 
1934 	if (eeprom->len == 0)
1935 		return -EINVAL;
1936 
1937 	if (atl2_check_eeprom_exist(hw))
1938 		return -EINVAL;
1939 
1940 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
1941 
1942 	first_dword = eeprom->offset >> 2;
1943 	last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1944 
1945 	eeprom_buff = kmalloc(sizeof(u32) * (last_dword - first_dword + 1),
1946 		GFP_KERNEL);
1947 	if (!eeprom_buff)
1948 		return -ENOMEM;
1949 
1950 	for (i = first_dword; i < last_dword; i++) {
1951 		if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword]))) {
1952 			ret_val = -EIO;
1953 			goto free;
1954 		}
1955 	}
1956 
1957 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
1958 		eeprom->len);
1959 free:
1960 	kfree(eeprom_buff);
1961 
1962 	return ret_val;
1963 }
1964 
1965 static int atl2_set_eeprom(struct net_device *netdev,
1966 	struct ethtool_eeprom *eeprom, u8 *bytes)
1967 {
1968 	struct atl2_adapter *adapter = netdev_priv(netdev);
1969 	struct atl2_hw *hw = &adapter->hw;
1970 	u32 *eeprom_buff;
1971 	u32 *ptr;
1972 	int max_len, first_dword, last_dword, ret_val = 0;
1973 	int i;
1974 
1975 	if (eeprom->len == 0)
1976 		return -EOPNOTSUPP;
1977 
1978 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
1979 		return -EFAULT;
1980 
1981 	max_len = 512;
1982 
1983 	first_dword = eeprom->offset >> 2;
1984 	last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1985 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1986 	if (!eeprom_buff)
1987 		return -ENOMEM;
1988 
1989 	ptr = eeprom_buff;
1990 
1991 	if (eeprom->offset & 3) {
1992 		/* need read/modify/write of first changed EEPROM word */
1993 		/* only the second byte of the word is being modified */
1994 		if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0]))) {
1995 			ret_val = -EIO;
1996 			goto out;
1997 		}
1998 		ptr++;
1999 	}
2000 	if (((eeprom->offset + eeprom->len) & 3)) {
2001 		/*
2002 		 * need read/modify/write of last changed EEPROM word
2003 		 * only the first byte of the word is being modified
2004 		 */
2005 		if (!atl2_read_eeprom(hw, last_dword * 4,
2006 					&(eeprom_buff[last_dword - first_dword]))) {
2007 			ret_val = -EIO;
2008 			goto out;
2009 		}
2010 	}
2011 
2012 	/* Device's eeprom is always little-endian, word addressable */
2013 	memcpy(ptr, bytes, eeprom->len);
2014 
2015 	for (i = 0; i < last_dword - first_dword + 1; i++) {
2016 		if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i])) {
2017 			ret_val = -EIO;
2018 			goto out;
2019 		}
2020 	}
2021  out:
2022 	kfree(eeprom_buff);
2023 	return ret_val;
2024 }
2025 
2026 static void atl2_get_drvinfo(struct net_device *netdev,
2027 	struct ethtool_drvinfo *drvinfo)
2028 {
2029 	struct atl2_adapter *adapter = netdev_priv(netdev);
2030 
2031 	strlcpy(drvinfo->driver,  atl2_driver_name, sizeof(drvinfo->driver));
2032 	strlcpy(drvinfo->version, atl2_driver_version,
2033 		sizeof(drvinfo->version));
2034 	strlcpy(drvinfo->fw_version, "L2", sizeof(drvinfo->fw_version));
2035 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
2036 		sizeof(drvinfo->bus_info));
2037 }
2038 
2039 static void atl2_get_wol(struct net_device *netdev,
2040 	struct ethtool_wolinfo *wol)
2041 {
2042 	struct atl2_adapter *adapter = netdev_priv(netdev);
2043 
2044 	wol->supported = WAKE_MAGIC;
2045 	wol->wolopts = 0;
2046 
2047 	if (adapter->wol & ATLX_WUFC_EX)
2048 		wol->wolopts |= WAKE_UCAST;
2049 	if (adapter->wol & ATLX_WUFC_MC)
2050 		wol->wolopts |= WAKE_MCAST;
2051 	if (adapter->wol & ATLX_WUFC_BC)
2052 		wol->wolopts |= WAKE_BCAST;
2053 	if (adapter->wol & ATLX_WUFC_MAG)
2054 		wol->wolopts |= WAKE_MAGIC;
2055 	if (adapter->wol & ATLX_WUFC_LNKC)
2056 		wol->wolopts |= WAKE_PHY;
2057 }
2058 
2059 static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2060 {
2061 	struct atl2_adapter *adapter = netdev_priv(netdev);
2062 
2063 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2064 		return -EOPNOTSUPP;
2065 
2066 	if (wol->wolopts & (WAKE_UCAST | WAKE_BCAST | WAKE_MCAST))
2067 		return -EOPNOTSUPP;
2068 
2069 	/* these settings will always override what we currently have */
2070 	adapter->wol = 0;
2071 
2072 	if (wol->wolopts & WAKE_MAGIC)
2073 		adapter->wol |= ATLX_WUFC_MAG;
2074 	if (wol->wolopts & WAKE_PHY)
2075 		adapter->wol |= ATLX_WUFC_LNKC;
2076 
2077 	return 0;
2078 }
2079 
2080 static int atl2_nway_reset(struct net_device *netdev)
2081 {
2082 	struct atl2_adapter *adapter = netdev_priv(netdev);
2083 	if (netif_running(netdev))
2084 		atl2_reinit_locked(adapter);
2085 	return 0;
2086 }
2087 
2088 static const struct ethtool_ops atl2_ethtool_ops = {
2089 	.get_drvinfo		= atl2_get_drvinfo,
2090 	.get_regs_len		= atl2_get_regs_len,
2091 	.get_regs		= atl2_get_regs,
2092 	.get_wol		= atl2_get_wol,
2093 	.set_wol		= atl2_set_wol,
2094 	.get_msglevel		= atl2_get_msglevel,
2095 	.set_msglevel		= atl2_set_msglevel,
2096 	.nway_reset		= atl2_nway_reset,
2097 	.get_link		= ethtool_op_get_link,
2098 	.get_eeprom_len		= atl2_get_eeprom_len,
2099 	.get_eeprom		= atl2_get_eeprom,
2100 	.set_eeprom		= atl2_set_eeprom,
2101 	.get_link_ksettings	= atl2_get_link_ksettings,
2102 	.set_link_ksettings	= atl2_set_link_ksettings,
2103 };
2104 
2105 #define LBYTESWAP(a)  ((((a) & 0x00ff00ff) << 8) | \
2106 	(((a) & 0xff00ff00) >> 8))
2107 #define LONGSWAP(a)   ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
2108 #define SHORTSWAP(a)  (((a) << 8) | ((a) >> 8))
2109 
2110 /*
2111  * Reset the transmit and receive units; mask and clear all interrupts.
2112  *
2113  * hw - Struct containing variables accessed by shared code
2114  * return : 0  or  idle status (if error)
2115  */
2116 static s32 atl2_reset_hw(struct atl2_hw *hw)
2117 {
2118 	u32 icr;
2119 	u16 pci_cfg_cmd_word;
2120 	int i;
2121 
2122 	/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
2123 	atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2124 	if ((pci_cfg_cmd_word &
2125 		(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
2126 		(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
2127 		pci_cfg_cmd_word |=
2128 			(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
2129 		atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2130 	}
2131 
2132 	/* Clear Interrupt mask to stop board from generating
2133 	 * interrupts & Clear any pending interrupt events
2134 	 */
2135 	/* FIXME */
2136 	/* ATL2_WRITE_REG(hw, REG_IMR, 0); */
2137 	/* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
2138 
2139 	/* Issue Soft Reset to the MAC.  This will reset the chip's
2140 	 * transmit, receive, DMA.  It will not effect
2141 	 * the current PCI configuration.  The global reset bit is self-
2142 	 * clearing, and should clear within a microsecond.
2143 	 */
2144 	ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
2145 	wmb();
2146 	msleep(1); /* delay about 1ms */
2147 
2148 	/* Wait at least 10ms for All module to be Idle */
2149 	for (i = 0; i < 10; i++) {
2150 		icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
2151 		if (!icr)
2152 			break;
2153 		msleep(1); /* delay 1 ms */
2154 		cpu_relax();
2155 	}
2156 
2157 	if (icr)
2158 		return icr;
2159 
2160 	return 0;
2161 }
2162 
2163 #define CUSTOM_SPI_CS_SETUP        2
2164 #define CUSTOM_SPI_CLK_HI          2
2165 #define CUSTOM_SPI_CLK_LO          2
2166 #define CUSTOM_SPI_CS_HOLD         2
2167 #define CUSTOM_SPI_CS_HI           3
2168 
2169 static struct atl2_spi_flash_dev flash_table[] =
2170 {
2171 /* MFR    WRSR  READ  PROGRAM WREN  WRDI  RDSR  RDID  SECTOR_ERASE CHIP_ERASE */
2172 {"Atmel", 0x0,  0x03, 0x02,   0x06, 0x04, 0x05, 0x15, 0x52,        0x62 },
2173 {"SST",   0x01, 0x03, 0x02,   0x06, 0x04, 0x05, 0x90, 0x20,        0x60 },
2174 {"ST",    0x01, 0x03, 0x02,   0x06, 0x04, 0x05, 0xAB, 0xD8,        0xC7 },
2175 };
2176 
2177 static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
2178 {
2179 	int i;
2180 	u32 value;
2181 
2182 	ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
2183 	ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
2184 
2185 	value = SPI_FLASH_CTRL_WAIT_READY |
2186 		(CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
2187 			SPI_FLASH_CTRL_CS_SETUP_SHIFT |
2188 		(CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
2189 			SPI_FLASH_CTRL_CLK_HI_SHIFT |
2190 		(CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
2191 			SPI_FLASH_CTRL_CLK_LO_SHIFT |
2192 		(CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
2193 			SPI_FLASH_CTRL_CS_HOLD_SHIFT |
2194 		(CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
2195 			SPI_FLASH_CTRL_CS_HI_SHIFT |
2196 		(0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
2197 
2198 	ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2199 
2200 	value |= SPI_FLASH_CTRL_START;
2201 
2202 	ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2203 
2204 	for (i = 0; i < 10; i++) {
2205 		msleep(1);
2206 		value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2207 		if (!(value & SPI_FLASH_CTRL_START))
2208 			break;
2209 	}
2210 
2211 	if (value & SPI_FLASH_CTRL_START)
2212 		return false;
2213 
2214 	*buf = ATL2_READ_REG(hw, REG_SPI_DATA);
2215 
2216 	return true;
2217 }
2218 
2219 /*
2220  * get_permanent_address
2221  * return 0 if get valid mac address,
2222  */
2223 static int get_permanent_address(struct atl2_hw *hw)
2224 {
2225 	u32 Addr[2];
2226 	u32 i, Control;
2227 	u16 Register;
2228 	u8  EthAddr[ETH_ALEN];
2229 	bool KeyValid;
2230 
2231 	if (is_valid_ether_addr(hw->perm_mac_addr))
2232 		return 0;
2233 
2234 	Addr[0] = 0;
2235 	Addr[1] = 0;
2236 
2237 	if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
2238 		Register = 0;
2239 		KeyValid = false;
2240 
2241 		/* Read out all EEPROM content */
2242 		i = 0;
2243 		while (1) {
2244 			if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
2245 				if (KeyValid) {
2246 					if (Register == REG_MAC_STA_ADDR)
2247 						Addr[0] = Control;
2248 					else if (Register ==
2249 						(REG_MAC_STA_ADDR + 4))
2250 						Addr[1] = Control;
2251 					KeyValid = false;
2252 				} else if ((Control & 0xff) == 0x5A) {
2253 					KeyValid = true;
2254 					Register = (u16) (Control >> 16);
2255 				} else {
2256 			/* assume data end while encount an invalid KEYWORD */
2257 					break;
2258 				}
2259 			} else {
2260 				break; /* read error */
2261 			}
2262 			i += 4;
2263 		}
2264 
2265 		*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2266 		*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2267 
2268 		if (is_valid_ether_addr(EthAddr)) {
2269 			memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2270 			return 0;
2271 		}
2272 		return 1;
2273 	}
2274 
2275 	/* see if SPI flash exists? */
2276 	Addr[0] = 0;
2277 	Addr[1] = 0;
2278 	Register = 0;
2279 	KeyValid = false;
2280 	i = 0;
2281 	while (1) {
2282 		if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
2283 			if (KeyValid) {
2284 				if (Register == REG_MAC_STA_ADDR)
2285 					Addr[0] = Control;
2286 				else if (Register == (REG_MAC_STA_ADDR + 4))
2287 					Addr[1] = Control;
2288 				KeyValid = false;
2289 			} else if ((Control & 0xff) == 0x5A) {
2290 				KeyValid = true;
2291 				Register = (u16) (Control >> 16);
2292 			} else {
2293 				break; /* data end */
2294 			}
2295 		} else {
2296 			break; /* read error */
2297 		}
2298 		i += 4;
2299 	}
2300 
2301 	*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2302 	*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
2303 	if (is_valid_ether_addr(EthAddr)) {
2304 		memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2305 		return 0;
2306 	}
2307 	/* maybe MAC-address is from BIOS */
2308 	Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
2309 	Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
2310 	*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2311 	*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2312 
2313 	if (is_valid_ether_addr(EthAddr)) {
2314 		memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2315 		return 0;
2316 	}
2317 
2318 	return 1;
2319 }
2320 
2321 /*
2322  * Reads the adapter's MAC address from the EEPROM
2323  *
2324  * hw - Struct containing variables accessed by shared code
2325  */
2326 static s32 atl2_read_mac_addr(struct atl2_hw *hw)
2327 {
2328 	if (get_permanent_address(hw)) {
2329 		/* for test */
2330 		/* FIXME: shouldn't we use eth_random_addr() here? */
2331 		hw->perm_mac_addr[0] = 0x00;
2332 		hw->perm_mac_addr[1] = 0x13;
2333 		hw->perm_mac_addr[2] = 0x74;
2334 		hw->perm_mac_addr[3] = 0x00;
2335 		hw->perm_mac_addr[4] = 0x5c;
2336 		hw->perm_mac_addr[5] = 0x38;
2337 	}
2338 
2339 	memcpy(hw->mac_addr, hw->perm_mac_addr, ETH_ALEN);
2340 
2341 	return 0;
2342 }
2343 
2344 /*
2345  * Hashes an address to determine its location in the multicast table
2346  *
2347  * hw - Struct containing variables accessed by shared code
2348  * mc_addr - the multicast address to hash
2349  *
2350  * atl2_hash_mc_addr
2351  *  purpose
2352  *      set hash value for a multicast address
2353  *      hash calcu processing :
2354  *          1. calcu 32bit CRC for multicast address
2355  *          2. reverse crc with MSB to LSB
2356  */
2357 static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
2358 {
2359 	u32 crc32, value;
2360 	int i;
2361 
2362 	value = 0;
2363 	crc32 = ether_crc_le(6, mc_addr);
2364 
2365 	for (i = 0; i < 32; i++)
2366 		value |= (((crc32 >> i) & 1) << (31 - i));
2367 
2368 	return value;
2369 }
2370 
2371 /*
2372  * Sets the bit in the multicast table corresponding to the hash value.
2373  *
2374  * hw - Struct containing variables accessed by shared code
2375  * hash_value - Multicast address hash value
2376  */
2377 static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
2378 {
2379 	u32 hash_bit, hash_reg;
2380 	u32 mta;
2381 
2382 	/* The HASH Table  is a register array of 2 32-bit registers.
2383 	 * It is treated like an array of 64 bits.  We want to set
2384 	 * bit BitArray[hash_value]. So we figure out what register
2385 	 * the bit is in, read it, OR in the new bit, then write
2386 	 * back the new value.  The register is determined by the
2387 	 * upper 7 bits of the hash value and the bit within that
2388 	 * register are determined by the lower 5 bits of the value.
2389 	 */
2390 	hash_reg = (hash_value >> 31) & 0x1;
2391 	hash_bit = (hash_value >> 26) & 0x1F;
2392 
2393 	mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
2394 
2395 	mta |= (1 << hash_bit);
2396 
2397 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
2398 }
2399 
2400 /*
2401  * atl2_init_pcie - init PCIE module
2402  */
2403 static void atl2_init_pcie(struct atl2_hw *hw)
2404 {
2405     u32 value;
2406     value = LTSSM_TEST_MODE_DEF;
2407     ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
2408 
2409     value = PCIE_DLL_TX_CTRL1_DEF;
2410     ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
2411 }
2412 
2413 static void atl2_init_flash_opcode(struct atl2_hw *hw)
2414 {
2415 	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
2416 		hw->flash_vendor = 0; /* ATMEL */
2417 
2418 	/* Init OP table */
2419 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
2420 		flash_table[hw->flash_vendor].cmdPROGRAM);
2421 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
2422 		flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
2423 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
2424 		flash_table[hw->flash_vendor].cmdCHIP_ERASE);
2425 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
2426 		flash_table[hw->flash_vendor].cmdRDID);
2427 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
2428 		flash_table[hw->flash_vendor].cmdWREN);
2429 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
2430 		flash_table[hw->flash_vendor].cmdRDSR);
2431 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
2432 		flash_table[hw->flash_vendor].cmdWRSR);
2433 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
2434 		flash_table[hw->flash_vendor].cmdREAD);
2435 }
2436 
2437 /********************************************************************
2438 * Performs basic configuration of the adapter.
2439 *
2440 * hw - Struct containing variables accessed by shared code
2441 * Assumes that the controller has previously been reset and is in a
2442 * post-reset uninitialized state. Initializes multicast table,
2443 * and  Calls routines to setup link
2444 * Leaves the transmit and receive units disabled and uninitialized.
2445 ********************************************************************/
2446 static s32 atl2_init_hw(struct atl2_hw *hw)
2447 {
2448 	u32 ret_val = 0;
2449 
2450 	atl2_init_pcie(hw);
2451 
2452 	/* Zero out the Multicast HASH table */
2453 	/* clear the old settings from the multicast hash table */
2454 	ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
2455 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
2456 
2457 	atl2_init_flash_opcode(hw);
2458 
2459 	ret_val = atl2_phy_init(hw);
2460 
2461 	return ret_val;
2462 }
2463 
2464 /*
2465  * Detects the current speed and duplex settings of the hardware.
2466  *
2467  * hw - Struct containing variables accessed by shared code
2468  * speed - Speed of the connection
2469  * duplex - Duplex setting of the connection
2470  */
2471 static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
2472 	u16 *duplex)
2473 {
2474 	s32 ret_val;
2475 	u16 phy_data;
2476 
2477 	/* Read PHY Specific Status Register (17) */
2478 	ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
2479 	if (ret_val)
2480 		return ret_val;
2481 
2482 	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
2483 		return ATLX_ERR_PHY_RES;
2484 
2485 	switch (phy_data & MII_ATLX_PSSR_SPEED) {
2486 	case MII_ATLX_PSSR_100MBS:
2487 		*speed = SPEED_100;
2488 		break;
2489 	case MII_ATLX_PSSR_10MBS:
2490 		*speed = SPEED_10;
2491 		break;
2492 	default:
2493 		return ATLX_ERR_PHY_SPEED;
2494 	}
2495 
2496 	if (phy_data & MII_ATLX_PSSR_DPLX)
2497 		*duplex = FULL_DUPLEX;
2498 	else
2499 		*duplex = HALF_DUPLEX;
2500 
2501 	return 0;
2502 }
2503 
2504 /*
2505  * Reads the value from a PHY register
2506  * hw - Struct containing variables accessed by shared code
2507  * reg_addr - address of the PHY register to read
2508  */
2509 static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
2510 {
2511 	u32 val;
2512 	int i;
2513 
2514 	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
2515 		MDIO_START |
2516 		MDIO_SUP_PREAMBLE |
2517 		MDIO_RW |
2518 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2519 	ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2520 
2521 	wmb();
2522 
2523 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2524 		udelay(2);
2525 		val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2526 		if (!(val & (MDIO_START | MDIO_BUSY)))
2527 			break;
2528 		wmb();
2529 	}
2530 	if (!(val & (MDIO_START | MDIO_BUSY))) {
2531 		*phy_data = (u16)val;
2532 		return 0;
2533 	}
2534 
2535 	return ATLX_ERR_PHY;
2536 }
2537 
2538 /*
2539  * Writes a value to a PHY register
2540  * hw - Struct containing variables accessed by shared code
2541  * reg_addr - address of the PHY register to write
2542  * data - data to write to the PHY
2543  */
2544 static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
2545 {
2546 	int i;
2547 	u32 val;
2548 
2549 	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
2550 		(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
2551 		MDIO_SUP_PREAMBLE |
2552 		MDIO_START |
2553 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2554 	ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2555 
2556 	wmb();
2557 
2558 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2559 		udelay(2);
2560 		val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2561 		if (!(val & (MDIO_START | MDIO_BUSY)))
2562 			break;
2563 
2564 		wmb();
2565 	}
2566 
2567 	if (!(val & (MDIO_START | MDIO_BUSY)))
2568 		return 0;
2569 
2570 	return ATLX_ERR_PHY;
2571 }
2572 
2573 /*
2574  * Configures PHY autoneg and flow control advertisement settings
2575  *
2576  * hw - Struct containing variables accessed by shared code
2577  */
2578 static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
2579 {
2580 	s32 ret_val;
2581 	s16 mii_autoneg_adv_reg;
2582 
2583 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
2584 	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
2585 
2586 	/* Need to parse autoneg_advertised  and set up
2587 	 * the appropriate PHY registers.  First we will parse for
2588 	 * autoneg_advertised software override.  Since we can advertise
2589 	 * a plethora of combinations, we need to check each bit
2590 	 * individually.
2591 	 */
2592 
2593 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
2594 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2595 	 * the  1000Base-T Control Register (Address 9). */
2596 	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
2597 
2598 	/* Need to parse MediaType and setup the
2599 	 * appropriate PHY registers. */
2600 	switch (hw->MediaType) {
2601 	case MEDIA_TYPE_AUTO_SENSOR:
2602 		mii_autoneg_adv_reg |=
2603 			(MII_AR_10T_HD_CAPS |
2604 			MII_AR_10T_FD_CAPS  |
2605 			MII_AR_100TX_HD_CAPS|
2606 			MII_AR_100TX_FD_CAPS);
2607 		hw->autoneg_advertised =
2608 			ADVERTISE_10_HALF |
2609 			ADVERTISE_10_FULL |
2610 			ADVERTISE_100_HALF|
2611 			ADVERTISE_100_FULL;
2612 		break;
2613 	case MEDIA_TYPE_100M_FULL:
2614 		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
2615 		hw->autoneg_advertised = ADVERTISE_100_FULL;
2616 		break;
2617 	case MEDIA_TYPE_100M_HALF:
2618 		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
2619 		hw->autoneg_advertised = ADVERTISE_100_HALF;
2620 		break;
2621 	case MEDIA_TYPE_10M_FULL:
2622 		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
2623 		hw->autoneg_advertised = ADVERTISE_10_FULL;
2624 		break;
2625 	default:
2626 		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
2627 		hw->autoneg_advertised = ADVERTISE_10_HALF;
2628 		break;
2629 	}
2630 
2631 	/* flow control fixed to enable all */
2632 	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
2633 
2634 	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
2635 
2636 	ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
2637 
2638 	if (ret_val)
2639 		return ret_val;
2640 
2641 	return 0;
2642 }
2643 
2644 /*
2645  * Resets the PHY and make all config validate
2646  *
2647  * hw - Struct containing variables accessed by shared code
2648  *
2649  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
2650  */
2651 static s32 atl2_phy_commit(struct atl2_hw *hw)
2652 {
2653 	s32 ret_val;
2654 	u16 phy_data;
2655 
2656 	phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2657 	ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
2658 	if (ret_val) {
2659 		u32 val;
2660 		int i;
2661 		/* pcie serdes link may be down ! */
2662 		for (i = 0; i < 25; i++) {
2663 			msleep(1);
2664 			val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2665 			if (!(val & (MDIO_START | MDIO_BUSY)))
2666 				break;
2667 		}
2668 
2669 		if (0 != (val & (MDIO_START | MDIO_BUSY))) {
2670 			printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
2671 			return ret_val;
2672 		}
2673 	}
2674 	return 0;
2675 }
2676 
2677 static s32 atl2_phy_init(struct atl2_hw *hw)
2678 {
2679 	s32 ret_val;
2680 	u16 phy_val;
2681 
2682 	if (hw->phy_configured)
2683 		return 0;
2684 
2685 	/* Enable PHY */
2686 	ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
2687 	ATL2_WRITE_FLUSH(hw);
2688 	msleep(1);
2689 
2690 	/* check if the PHY is in powersaving mode */
2691 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2692 	atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2693 
2694 	/* 024E / 124E 0r 0274 / 1274 ? */
2695 	if (phy_val & 0x1000) {
2696 		phy_val &= ~0x1000;
2697 		atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
2698 	}
2699 
2700 	msleep(1);
2701 
2702 	/*Enable PHY LinkChange Interrupt */
2703 	ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
2704 	if (ret_val)
2705 		return ret_val;
2706 
2707 	/* setup AutoNeg parameters */
2708 	ret_val = atl2_phy_setup_autoneg_adv(hw);
2709 	if (ret_val)
2710 		return ret_val;
2711 
2712 	/* SW.Reset & En-Auto-Neg to restart Auto-Neg */
2713 	ret_val = atl2_phy_commit(hw);
2714 	if (ret_val)
2715 		return ret_val;
2716 
2717 	hw->phy_configured = true;
2718 
2719 	return ret_val;
2720 }
2721 
2722 static void atl2_set_mac_addr(struct atl2_hw *hw)
2723 {
2724 	u32 value;
2725 	/* 00-0B-6A-F6-00-DC
2726 	 * 0:  6AF600DC   1: 000B
2727 	 * low dword */
2728 	value = (((u32)hw->mac_addr[2]) << 24) |
2729 		(((u32)hw->mac_addr[3]) << 16) |
2730 		(((u32)hw->mac_addr[4]) << 8)  |
2731 		(((u32)hw->mac_addr[5]));
2732 	ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
2733 	/* hight dword */
2734 	value = (((u32)hw->mac_addr[0]) << 8) |
2735 		(((u32)hw->mac_addr[1]));
2736 	ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
2737 }
2738 
2739 /*
2740  * check_eeprom_exist
2741  * return 0 if eeprom exist
2742  */
2743 static int atl2_check_eeprom_exist(struct atl2_hw *hw)
2744 {
2745 	u32 value;
2746 
2747 	value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2748 	if (value & SPI_FLASH_CTRL_EN_VPD) {
2749 		value &= ~SPI_FLASH_CTRL_EN_VPD;
2750 		ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2751 	}
2752 	value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
2753 	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
2754 }
2755 
2756 /* FIXME: This doesn't look right. -- CHS */
2757 static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
2758 {
2759 	return true;
2760 }
2761 
2762 static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
2763 {
2764 	int i;
2765 	u32    Control;
2766 
2767 	if (Offset & 0x3)
2768 		return false; /* address do not align */
2769 
2770 	ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
2771 	Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
2772 	ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
2773 
2774 	for (i = 0; i < 10; i++) {
2775 		msleep(2);
2776 		Control = ATL2_READ_REG(hw, REG_VPD_CAP);
2777 		if (Control & VPD_CAP_VPD_FLAG)
2778 			break;
2779 	}
2780 
2781 	if (Control & VPD_CAP_VPD_FLAG) {
2782 		*pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
2783 		return true;
2784 	}
2785 	return false; /* timeout */
2786 }
2787 
2788 static void atl2_force_ps(struct atl2_hw *hw)
2789 {
2790 	u16 phy_val;
2791 
2792 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2793 	atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2794 	atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
2795 
2796 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
2797 	atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
2798 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
2799 	atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
2800 }
2801 
2802 /* This is the only thing that needs to be changed to adjust the
2803  * maximum number of ports that the driver can manage.
2804  */
2805 #define ATL2_MAX_NIC 4
2806 
2807 #define OPTION_UNSET    -1
2808 #define OPTION_DISABLED 0
2809 #define OPTION_ENABLED  1
2810 
2811 /* All parameters are treated the same, as an integer array of values.
2812  * This macro just reduces the need to repeat the same declaration code
2813  * over and over (plus this helps to avoid typo bugs).
2814  */
2815 #define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
2816 #ifndef module_param_array
2817 /* Module Parameters are always initialized to -1, so that the driver
2818  * can tell the difference between no user specified value or the
2819  * user asking for the default value.
2820  * The true default values are loaded in when atl2_check_options is called.
2821  *
2822  * This is a GCC extension to ANSI C.
2823  * See the item "Labeled Elements in Initializers" in the section
2824  * "Extensions to the C Language Family" of the GCC documentation.
2825  */
2826 
2827 #define ATL2_PARAM(X, desc) \
2828     static const int X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
2829     MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
2830     MODULE_PARM_DESC(X, desc);
2831 #else
2832 #define ATL2_PARAM(X, desc) \
2833     static int X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
2834     static unsigned int num_##X; \
2835     module_param_array_named(X, X, int, &num_##X, 0); \
2836     MODULE_PARM_DESC(X, desc);
2837 #endif
2838 
2839 /*
2840  * Transmit Memory Size
2841  * Valid Range: 64-2048
2842  * Default Value: 128
2843  */
2844 #define ATL2_MIN_TX_MEMSIZE		4	/* 4KB */
2845 #define ATL2_MAX_TX_MEMSIZE		64	/* 64KB */
2846 #define ATL2_DEFAULT_TX_MEMSIZE		8	/* 8KB */
2847 ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
2848 
2849 /*
2850  * Receive Memory Block Count
2851  * Valid Range: 16-512
2852  * Default Value: 128
2853  */
2854 #define ATL2_MIN_RXD_COUNT		16
2855 #define ATL2_MAX_RXD_COUNT		512
2856 #define ATL2_DEFAULT_RXD_COUNT		64
2857 ATL2_PARAM(RxMemBlock, "Number of receive memory block");
2858 
2859 /*
2860  * User Specified MediaType Override
2861  *
2862  * Valid Range: 0-5
2863  *  - 0    - auto-negotiate at all supported speeds
2864  *  - 1    - only link at 1000Mbps Full Duplex
2865  *  - 2    - only link at 100Mbps Full Duplex
2866  *  - 3    - only link at 100Mbps Half Duplex
2867  *  - 4    - only link at 10Mbps Full Duplex
2868  *  - 5    - only link at 10Mbps Half Duplex
2869  * Default Value: 0
2870  */
2871 ATL2_PARAM(MediaType, "MediaType Select");
2872 
2873 /*
2874  * Interrupt Moderate Timer in units of 2048 ns (~2 us)
2875  * Valid Range: 10-65535
2876  * Default Value: 45000(90ms)
2877  */
2878 #define INT_MOD_DEFAULT_CNT	100 /* 200us */
2879 #define INT_MOD_MAX_CNT		65000
2880 #define INT_MOD_MIN_CNT		50
2881 ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
2882 
2883 /*
2884  * FlashVendor
2885  * Valid Range: 0-2
2886  * 0 - Atmel
2887  * 1 - SST
2888  * 2 - ST
2889  */
2890 ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
2891 
2892 #define AUTONEG_ADV_DEFAULT	0x2F
2893 #define AUTONEG_ADV_MASK	0x2F
2894 #define FLOW_CONTROL_DEFAULT	FLOW_CONTROL_FULL
2895 
2896 #define FLASH_VENDOR_DEFAULT	0
2897 #define FLASH_VENDOR_MIN	0
2898 #define FLASH_VENDOR_MAX	2
2899 
2900 struct atl2_option {
2901 	enum { enable_option, range_option, list_option } type;
2902 	char *name;
2903 	char *err;
2904 	int  def;
2905 	union {
2906 		struct { /* range_option info */
2907 			int min;
2908 			int max;
2909 		} r;
2910 		struct { /* list_option info */
2911 			int nr;
2912 			struct atl2_opt_list { int i; char *str; } *p;
2913 		} l;
2914 	} arg;
2915 };
2916 
2917 static int atl2_validate_option(int *value, struct atl2_option *opt)
2918 {
2919 	int i;
2920 	struct atl2_opt_list *ent;
2921 
2922 	if (*value == OPTION_UNSET) {
2923 		*value = opt->def;
2924 		return 0;
2925 	}
2926 
2927 	switch (opt->type) {
2928 	case enable_option:
2929 		switch (*value) {
2930 		case OPTION_ENABLED:
2931 			printk(KERN_INFO "%s Enabled\n", opt->name);
2932 			return 0;
2933 		case OPTION_DISABLED:
2934 			printk(KERN_INFO "%s Disabled\n", opt->name);
2935 			return 0;
2936 		}
2937 		break;
2938 	case range_option:
2939 		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
2940 			printk(KERN_INFO "%s set to %i\n", opt->name, *value);
2941 			return 0;
2942 		}
2943 		break;
2944 	case list_option:
2945 		for (i = 0; i < opt->arg.l.nr; i++) {
2946 			ent = &opt->arg.l.p[i];
2947 			if (*value == ent->i) {
2948 				if (ent->str[0] != '\0')
2949 					printk(KERN_INFO "%s\n", ent->str);
2950 			return 0;
2951 			}
2952 		}
2953 		break;
2954 	default:
2955 		BUG();
2956 	}
2957 
2958 	printk(KERN_INFO "Invalid %s specified (%i) %s\n",
2959 		opt->name, *value, opt->err);
2960 	*value = opt->def;
2961 	return -1;
2962 }
2963 
2964 /**
2965  * atl2_check_options - Range Checking for Command Line Parameters
2966  * @adapter: board private structure
2967  *
2968  * This routine checks all command line parameters for valid user
2969  * input.  If an invalid value is given, or if no user specified
2970  * value exists, a default value is used.  The final value is stored
2971  * in a variable in the adapter structure.
2972  */
2973 static void atl2_check_options(struct atl2_adapter *adapter)
2974 {
2975 	int val;
2976 	struct atl2_option opt;
2977 	int bd = adapter->bd_number;
2978 	if (bd >= ATL2_MAX_NIC) {
2979 		printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
2980 			bd);
2981 		printk(KERN_NOTICE "Using defaults for all values\n");
2982 #ifndef module_param_array
2983 		bd = ATL2_MAX_NIC;
2984 #endif
2985 	}
2986 
2987 	/* Bytes of Transmit Memory */
2988 	opt.type = range_option;
2989 	opt.name = "Bytes of Transmit Memory";
2990 	opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
2991 	opt.def = ATL2_DEFAULT_TX_MEMSIZE;
2992 	opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
2993 	opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
2994 #ifdef module_param_array
2995 	if (num_TxMemSize > bd) {
2996 #endif
2997 		val = TxMemSize[bd];
2998 		atl2_validate_option(&val, &opt);
2999 		adapter->txd_ring_size = ((u32) val) * 1024;
3000 #ifdef module_param_array
3001 	} else
3002 		adapter->txd_ring_size = ((u32)opt.def) * 1024;
3003 #endif
3004 	/* txs ring size: */
3005 	adapter->txs_ring_size = adapter->txd_ring_size / 128;
3006 	if (adapter->txs_ring_size > 160)
3007 		adapter->txs_ring_size = 160;
3008 
3009 	/* Receive Memory Block Count */
3010 	opt.type = range_option;
3011 	opt.name = "Number of receive memory block";
3012 	opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
3013 	opt.def = ATL2_DEFAULT_RXD_COUNT;
3014 	opt.arg.r.min = ATL2_MIN_RXD_COUNT;
3015 	opt.arg.r.max = ATL2_MAX_RXD_COUNT;
3016 #ifdef module_param_array
3017 	if (num_RxMemBlock > bd) {
3018 #endif
3019 		val = RxMemBlock[bd];
3020 		atl2_validate_option(&val, &opt);
3021 		adapter->rxd_ring_size = (u32)val;
3022 		/* FIXME */
3023 		/* ((u16)val)&~1; */	/* even number */
3024 #ifdef module_param_array
3025 	} else
3026 		adapter->rxd_ring_size = (u32)opt.def;
3027 #endif
3028 	/* init RXD Flow control value */
3029 	adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
3030 	adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
3031 		(adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
3032 		(adapter->rxd_ring_size / 12);
3033 
3034 	/* Interrupt Moderate Timer */
3035 	opt.type = range_option;
3036 	opt.name = "Interrupt Moderate Timer";
3037 	opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
3038 	opt.def = INT_MOD_DEFAULT_CNT;
3039 	opt.arg.r.min = INT_MOD_MIN_CNT;
3040 	opt.arg.r.max = INT_MOD_MAX_CNT;
3041 #ifdef module_param_array
3042 	if (num_IntModTimer > bd) {
3043 #endif
3044 		val = IntModTimer[bd];
3045 		atl2_validate_option(&val, &opt);
3046 		adapter->imt = (u16) val;
3047 #ifdef module_param_array
3048 	} else
3049 		adapter->imt = (u16)(opt.def);
3050 #endif
3051 	/* Flash Vendor */
3052 	opt.type = range_option;
3053 	opt.name = "SPI Flash Vendor";
3054 	opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
3055 	opt.def = FLASH_VENDOR_DEFAULT;
3056 	opt.arg.r.min = FLASH_VENDOR_MIN;
3057 	opt.arg.r.max = FLASH_VENDOR_MAX;
3058 #ifdef module_param_array
3059 	if (num_FlashVendor > bd) {
3060 #endif
3061 		val = FlashVendor[bd];
3062 		atl2_validate_option(&val, &opt);
3063 		adapter->hw.flash_vendor = (u8) val;
3064 #ifdef module_param_array
3065 	} else
3066 		adapter->hw.flash_vendor = (u8)(opt.def);
3067 #endif
3068 	/* MediaType */
3069 	opt.type = range_option;
3070 	opt.name = "Speed/Duplex Selection";
3071 	opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
3072 	opt.def = MEDIA_TYPE_AUTO_SENSOR;
3073 	opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
3074 	opt.arg.r.max = MEDIA_TYPE_10M_HALF;
3075 #ifdef module_param_array
3076 	if (num_MediaType > bd) {
3077 #endif
3078 		val = MediaType[bd];
3079 		atl2_validate_option(&val, &opt);
3080 		adapter->hw.MediaType = (u16) val;
3081 #ifdef module_param_array
3082 	} else
3083 		adapter->hw.MediaType = (u16)(opt.def);
3084 #endif
3085 }
3086