1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
4  * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
5  * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
6  *
7  * Derived from Intel e1000 driver
8  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
9  *
10  * Contact Information:
11  * Xiong Huang <xiong.huang@atheros.com>
12  * Jie Yang <jie.yang@atheros.com>
13  * Chris Snook <csnook@redhat.com>
14  * Jay Cliburn <jcliburn@gmail.com>
15  *
16  * This version is adapted from the Attansic reference driver.
17  *
18  * TODO:
19  * Add more ethtool functions.
20  * Fix abstruse irq enable/disable condition described here:
21  *	http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
22  *
23  * NEEDS TESTING:
24  * VLAN
25  * multicast
26  * promiscuous mode
27  * interrupt coalescing
28  * SMP torture testing
29  */
30 
31 #include <linux/atomic.h>
32 #include <asm/byteorder.h>
33 
34 #include <linux/compiler.h>
35 #include <linux/crc32.h>
36 #include <linux/delay.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/etherdevice.h>
39 #include <linux/hardirq.h>
40 #include <linux/if_ether.h>
41 #include <linux/if_vlan.h>
42 #include <linux/in.h>
43 #include <linux/interrupt.h>
44 #include <linux/ip.h>
45 #include <linux/irqflags.h>
46 #include <linux/irqreturn.h>
47 #include <linux/jiffies.h>
48 #include <linux/mii.h>
49 #include <linux/module.h>
50 #include <linux/net.h>
51 #include <linux/netdevice.h>
52 #include <linux/pci.h>
53 #include <linux/pci_ids.h>
54 #include <linux/pm.h>
55 #include <linux/skbuff.h>
56 #include <linux/slab.h>
57 #include <linux/spinlock.h>
58 #include <linux/string.h>
59 #include <linux/tcp.h>
60 #include <linux/timer.h>
61 #include <linux/types.h>
62 #include <linux/workqueue.h>
63 
64 #include <net/checksum.h>
65 
66 #include "atl1.h"
67 
68 #define ATLX_DRIVER_VERSION "2.1.3"
69 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
70 	      "Chris Snook <csnook@redhat.com>, "
71 	      "Jay Cliburn <jcliburn@gmail.com>");
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(ATLX_DRIVER_VERSION);
74 
75 /* Temporary hack for merging atl1 and atl2 */
76 #include "atlx.c"
77 
78 static const struct ethtool_ops atl1_ethtool_ops;
79 
80 /*
81  * This is the only thing that needs to be changed to adjust the
82  * maximum number of ports that the driver can manage.
83  */
84 #define ATL1_MAX_NIC 4
85 
86 #define OPTION_UNSET    -1
87 #define OPTION_DISABLED 0
88 #define OPTION_ENABLED  1
89 
90 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
91 
92 /*
93  * Interrupt Moderate Timer in units of 2 us
94  *
95  * Valid Range: 10-65535
96  *
97  * Default Value: 100 (200us)
98  */
99 static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
100 static unsigned int num_int_mod_timer;
101 module_param_array_named(int_mod_timer, int_mod_timer, int,
102 	&num_int_mod_timer, 0);
103 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
104 
105 #define DEFAULT_INT_MOD_CNT	100	/* 200us */
106 #define MAX_INT_MOD_CNT		65000
107 #define MIN_INT_MOD_CNT		50
108 
109 struct atl1_option {
110 	enum { enable_option, range_option, list_option } type;
111 	char *name;
112 	char *err;
113 	int def;
114 	union {
115 		struct {	/* range_option info */
116 			int min;
117 			int max;
118 		} r;
119 		struct {	/* list_option info */
120 			int nr;
121 			struct atl1_opt_list {
122 				int i;
123 				char *str;
124 			} *p;
125 		} l;
126 	} arg;
127 };
128 
129 static int atl1_validate_option(int *value, struct atl1_option *opt,
130 				struct pci_dev *pdev)
131 {
132 	if (*value == OPTION_UNSET) {
133 		*value = opt->def;
134 		return 0;
135 	}
136 
137 	switch (opt->type) {
138 	case enable_option:
139 		switch (*value) {
140 		case OPTION_ENABLED:
141 			dev_info(&pdev->dev, "%s enabled\n", opt->name);
142 			return 0;
143 		case OPTION_DISABLED:
144 			dev_info(&pdev->dev, "%s disabled\n", opt->name);
145 			return 0;
146 		}
147 		break;
148 	case range_option:
149 		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
150 			dev_info(&pdev->dev, "%s set to %i\n", opt->name,
151 				*value);
152 			return 0;
153 		}
154 		break;
155 	case list_option:{
156 			int i;
157 			struct atl1_opt_list *ent;
158 
159 			for (i = 0; i < opt->arg.l.nr; i++) {
160 				ent = &opt->arg.l.p[i];
161 				if (*value == ent->i) {
162 					if (ent->str[0] != '\0')
163 						dev_info(&pdev->dev, "%s\n",
164 							ent->str);
165 					return 0;
166 				}
167 			}
168 		}
169 		break;
170 
171 	default:
172 		break;
173 	}
174 
175 	dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
176 		opt->name, *value, opt->err);
177 	*value = opt->def;
178 	return -1;
179 }
180 
181 /**
182  * atl1_check_options - Range Checking for Command Line Parameters
183  * @adapter: board private structure
184  *
185  * This routine checks all command line parameters for valid user
186  * input.  If an invalid value is given, or if no user specified
187  * value exists, a default value is used.  The final value is stored
188  * in a variable in the adapter structure.
189  */
190 static void atl1_check_options(struct atl1_adapter *adapter)
191 {
192 	struct pci_dev *pdev = adapter->pdev;
193 	int bd = adapter->bd_number;
194 	if (bd >= ATL1_MAX_NIC) {
195 		dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
196 		dev_notice(&pdev->dev, "using defaults for all values\n");
197 	}
198 	{			/* Interrupt Moderate Timer */
199 		struct atl1_option opt = {
200 			.type = range_option,
201 			.name = "Interrupt Moderator Timer",
202 			.err = "using default of "
203 				__MODULE_STRING(DEFAULT_INT_MOD_CNT),
204 			.def = DEFAULT_INT_MOD_CNT,
205 			.arg = {.r = {.min = MIN_INT_MOD_CNT,
206 					.max = MAX_INT_MOD_CNT} }
207 		};
208 		int val;
209 		if (num_int_mod_timer > bd) {
210 			val = int_mod_timer[bd];
211 			atl1_validate_option(&val, &opt, pdev);
212 			adapter->imt = (u16) val;
213 		} else
214 			adapter->imt = (u16) (opt.def);
215 	}
216 }
217 
218 /*
219  * atl1_pci_tbl - PCI Device ID Table
220  */
221 static const struct pci_device_id atl1_pci_tbl[] = {
222 	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
223 	/* required last entry */
224 	{0,}
225 };
226 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
227 
228 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
229 	NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
230 
231 static int debug = -1;
232 module_param(debug, int, 0);
233 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
234 
235 /*
236  * Reset the transmit and receive units; mask and clear all interrupts.
237  * hw - Struct containing variables accessed by shared code
238  * return : 0  or  idle status (if error)
239  */
240 static s32 atl1_reset_hw(struct atl1_hw *hw)
241 {
242 	struct pci_dev *pdev = hw->back->pdev;
243 	struct atl1_adapter *adapter = hw->back;
244 	u32 icr;
245 	int i;
246 
247 	/*
248 	 * Clear Interrupt mask to stop board from generating
249 	 * interrupts & Clear any pending interrupt events
250 	 */
251 	/*
252 	 * atlx_irq_disable(adapter);
253 	 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
254 	 */
255 
256 	/*
257 	 * Issue Soft Reset to the MAC.  This will reset the chip's
258 	 * transmit, receive, DMA.  It will not effect
259 	 * the current PCI configuration.  The global reset bit is self-
260 	 * clearing, and should clear within a microsecond.
261 	 */
262 	iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
263 	ioread32(hw->hw_addr + REG_MASTER_CTRL);
264 
265 	iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
266 	ioread16(hw->hw_addr + REG_PHY_ENABLE);
267 
268 	/* delay about 1ms */
269 	msleep(1);
270 
271 	/* Wait at least 10ms for All module to be Idle */
272 	for (i = 0; i < 10; i++) {
273 		icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
274 		if (!icr)
275 			break;
276 		/* delay 1 ms */
277 		msleep(1);
278 		/* FIXME: still the right way to do this? */
279 		cpu_relax();
280 	}
281 
282 	if (icr) {
283 		if (netif_msg_hw(adapter))
284 			dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
285 		return icr;
286 	}
287 
288 	return 0;
289 }
290 
291 /* function about EEPROM
292  *
293  * check_eeprom_exist
294  * return 0 if eeprom exist
295  */
296 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
297 {
298 	u32 value;
299 	value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
300 	if (value & SPI_FLASH_CTRL_EN_VPD) {
301 		value &= ~SPI_FLASH_CTRL_EN_VPD;
302 		iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
303 	}
304 
305 	value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
306 	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
307 }
308 
309 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
310 {
311 	int i;
312 	u32 control;
313 
314 	if (offset & 3)
315 		/* address do not align */
316 		return false;
317 
318 	iowrite32(0, hw->hw_addr + REG_VPD_DATA);
319 	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
320 	iowrite32(control, hw->hw_addr + REG_VPD_CAP);
321 	ioread32(hw->hw_addr + REG_VPD_CAP);
322 
323 	for (i = 0; i < 10; i++) {
324 		msleep(2);
325 		control = ioread32(hw->hw_addr + REG_VPD_CAP);
326 		if (control & VPD_CAP_VPD_FLAG)
327 			break;
328 	}
329 	if (control & VPD_CAP_VPD_FLAG) {
330 		*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
331 		return true;
332 	}
333 	/* timeout */
334 	return false;
335 }
336 
337 /*
338  * Reads the value from a PHY register
339  * hw - Struct containing variables accessed by shared code
340  * reg_addr - address of the PHY register to read
341  */
342 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
343 {
344 	u32 val;
345 	int i;
346 
347 	val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
348 		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
349 		MDIO_CLK_SEL_SHIFT;
350 	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
351 	ioread32(hw->hw_addr + REG_MDIO_CTRL);
352 
353 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
354 		udelay(2);
355 		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
356 		if (!(val & (MDIO_START | MDIO_BUSY)))
357 			break;
358 	}
359 	if (!(val & (MDIO_START | MDIO_BUSY))) {
360 		*phy_data = (u16) val;
361 		return 0;
362 	}
363 	return ATLX_ERR_PHY;
364 }
365 
366 #define CUSTOM_SPI_CS_SETUP	2
367 #define CUSTOM_SPI_CLK_HI	2
368 #define CUSTOM_SPI_CLK_LO	2
369 #define CUSTOM_SPI_CS_HOLD	2
370 #define CUSTOM_SPI_CS_HI	3
371 
372 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
373 {
374 	int i;
375 	u32 value;
376 
377 	iowrite32(0, hw->hw_addr + REG_SPI_DATA);
378 	iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
379 
380 	value = SPI_FLASH_CTRL_WAIT_READY |
381 	    (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
382 	    SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
383 					     SPI_FLASH_CTRL_CLK_HI_MASK) <<
384 	    SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
385 					   SPI_FLASH_CTRL_CLK_LO_MASK) <<
386 	    SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
387 					   SPI_FLASH_CTRL_CS_HOLD_MASK) <<
388 	    SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
389 					    SPI_FLASH_CTRL_CS_HI_MASK) <<
390 	    SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
391 	    SPI_FLASH_CTRL_INS_SHIFT;
392 
393 	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
394 
395 	value |= SPI_FLASH_CTRL_START;
396 	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
397 	ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
398 
399 	for (i = 0; i < 10; i++) {
400 		msleep(1);
401 		value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
402 		if (!(value & SPI_FLASH_CTRL_START))
403 			break;
404 	}
405 
406 	if (value & SPI_FLASH_CTRL_START)
407 		return false;
408 
409 	*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
410 
411 	return true;
412 }
413 
414 /*
415  * get_permanent_address
416  * return 0 if get valid mac address,
417  */
418 static int atl1_get_permanent_address(struct atl1_hw *hw)
419 {
420 	u32 addr[2];
421 	u32 i, control;
422 	u16 reg;
423 	u8 eth_addr[ETH_ALEN];
424 	bool key_valid;
425 
426 	if (is_valid_ether_addr(hw->perm_mac_addr))
427 		return 0;
428 
429 	/* init */
430 	addr[0] = addr[1] = 0;
431 
432 	if (!atl1_check_eeprom_exist(hw)) {
433 		reg = 0;
434 		key_valid = false;
435 		/* Read out all EEPROM content */
436 		i = 0;
437 		while (1) {
438 			if (atl1_read_eeprom(hw, i + 0x100, &control)) {
439 				if (key_valid) {
440 					if (reg == REG_MAC_STA_ADDR)
441 						addr[0] = control;
442 					else if (reg == (REG_MAC_STA_ADDR + 4))
443 						addr[1] = control;
444 					key_valid = false;
445 				} else if ((control & 0xff) == 0x5A) {
446 					key_valid = true;
447 					reg = (u16) (control >> 16);
448 				} else
449 					break;
450 			} else
451 				/* read error */
452 				break;
453 			i += 4;
454 		}
455 
456 		*(u32 *) &eth_addr[2] = swab32(addr[0]);
457 		*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
458 		if (is_valid_ether_addr(eth_addr)) {
459 			memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
460 			return 0;
461 		}
462 	}
463 
464 	/* see if SPI FLAGS exist ? */
465 	addr[0] = addr[1] = 0;
466 	reg = 0;
467 	key_valid = false;
468 	i = 0;
469 	while (1) {
470 		if (atl1_spi_read(hw, i + 0x1f000, &control)) {
471 			if (key_valid) {
472 				if (reg == REG_MAC_STA_ADDR)
473 					addr[0] = control;
474 				else if (reg == (REG_MAC_STA_ADDR + 4))
475 					addr[1] = control;
476 				key_valid = false;
477 			} else if ((control & 0xff) == 0x5A) {
478 				key_valid = true;
479 				reg = (u16) (control >> 16);
480 			} else
481 				/* data end */
482 				break;
483 		} else
484 			/* read error */
485 			break;
486 		i += 4;
487 	}
488 
489 	*(u32 *) &eth_addr[2] = swab32(addr[0]);
490 	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
491 	if (is_valid_ether_addr(eth_addr)) {
492 		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
493 		return 0;
494 	}
495 
496 	/*
497 	 * On some motherboards, the MAC address is written by the
498 	 * BIOS directly to the MAC register during POST, and is
499 	 * not stored in eeprom.  If all else thus far has failed
500 	 * to fetch the permanent MAC address, try reading it directly.
501 	 */
502 	addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
503 	addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
504 	*(u32 *) &eth_addr[2] = swab32(addr[0]);
505 	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
506 	if (is_valid_ether_addr(eth_addr)) {
507 		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
508 		return 0;
509 	}
510 
511 	return 1;
512 }
513 
514 /*
515  * Reads the adapter's MAC address from the EEPROM
516  * hw - Struct containing variables accessed by shared code
517  */
518 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
519 {
520 	s32 ret = 0;
521 	u16 i;
522 
523 	if (atl1_get_permanent_address(hw)) {
524 		eth_random_addr(hw->perm_mac_addr);
525 		ret = 1;
526 	}
527 
528 	for (i = 0; i < ETH_ALEN; i++)
529 		hw->mac_addr[i] = hw->perm_mac_addr[i];
530 	return ret;
531 }
532 
533 /*
534  * Hashes an address to determine its location in the multicast table
535  * hw - Struct containing variables accessed by shared code
536  * mc_addr - the multicast address to hash
537  *
538  * atl1_hash_mc_addr
539  *  purpose
540  *      set hash value for a multicast address
541  *      hash calcu processing :
542  *          1. calcu 32bit CRC for multicast address
543  *          2. reverse crc with MSB to LSB
544  */
545 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
546 {
547 	u32 crc32, value = 0;
548 	int i;
549 
550 	crc32 = ether_crc_le(6, mc_addr);
551 	for (i = 0; i < 32; i++)
552 		value |= (((crc32 >> i) & 1) << (31 - i));
553 
554 	return value;
555 }
556 
557 /*
558  * Sets the bit in the multicast table corresponding to the hash value.
559  * hw - Struct containing variables accessed by shared code
560  * hash_value - Multicast address hash value
561  */
562 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
563 {
564 	u32 hash_bit, hash_reg;
565 	u32 mta;
566 
567 	/*
568 	 * The HASH Table  is a register array of 2 32-bit registers.
569 	 * It is treated like an array of 64 bits.  We want to set
570 	 * bit BitArray[hash_value]. So we figure out what register
571 	 * the bit is in, read it, OR in the new bit, then write
572 	 * back the new value.  The register is determined by the
573 	 * upper 7 bits of the hash value and the bit within that
574 	 * register are determined by the lower 5 bits of the value.
575 	 */
576 	hash_reg = (hash_value >> 31) & 0x1;
577 	hash_bit = (hash_value >> 26) & 0x1F;
578 	mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
579 	mta |= (1 << hash_bit);
580 	iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
581 }
582 
583 /*
584  * Writes a value to a PHY register
585  * hw - Struct containing variables accessed by shared code
586  * reg_addr - address of the PHY register to write
587  * data - data to write to the PHY
588  */
589 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
590 {
591 	int i;
592 	u32 val;
593 
594 	val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
595 	    (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
596 	    MDIO_SUP_PREAMBLE |
597 	    MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
598 	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
599 	ioread32(hw->hw_addr + REG_MDIO_CTRL);
600 
601 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
602 		udelay(2);
603 		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
604 		if (!(val & (MDIO_START | MDIO_BUSY)))
605 			break;
606 	}
607 
608 	if (!(val & (MDIO_START | MDIO_BUSY)))
609 		return 0;
610 
611 	return ATLX_ERR_PHY;
612 }
613 
614 /*
615  * Make L001's PHY out of Power Saving State (bug)
616  * hw - Struct containing variables accessed by shared code
617  * when power on, L001's PHY always on Power saving State
618  * (Gigabit Link forbidden)
619  */
620 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
621 {
622 	s32 ret;
623 	ret = atl1_write_phy_reg(hw, 29, 0x0029);
624 	if (ret)
625 		return ret;
626 	return atl1_write_phy_reg(hw, 30, 0);
627 }
628 
629 /*
630  * Resets the PHY and make all config validate
631  * hw - Struct containing variables accessed by shared code
632  *
633  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
634  */
635 static s32 atl1_phy_reset(struct atl1_hw *hw)
636 {
637 	struct pci_dev *pdev = hw->back->pdev;
638 	struct atl1_adapter *adapter = hw->back;
639 	s32 ret_val;
640 	u16 phy_data;
641 
642 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
643 	    hw->media_type == MEDIA_TYPE_1000M_FULL)
644 		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
645 	else {
646 		switch (hw->media_type) {
647 		case MEDIA_TYPE_100M_FULL:
648 			phy_data =
649 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
650 			    MII_CR_RESET;
651 			break;
652 		case MEDIA_TYPE_100M_HALF:
653 			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
654 			break;
655 		case MEDIA_TYPE_10M_FULL:
656 			phy_data =
657 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
658 			break;
659 		default:
660 			/* MEDIA_TYPE_10M_HALF: */
661 			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
662 			break;
663 		}
664 	}
665 
666 	ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
667 	if (ret_val) {
668 		u32 val;
669 		int i;
670 		/* pcie serdes link may be down! */
671 		if (netif_msg_hw(adapter))
672 			dev_dbg(&pdev->dev, "pcie phy link down\n");
673 
674 		for (i = 0; i < 25; i++) {
675 			msleep(1);
676 			val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
677 			if (!(val & (MDIO_START | MDIO_BUSY)))
678 				break;
679 		}
680 
681 		if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
682 			if (netif_msg_hw(adapter))
683 				dev_warn(&pdev->dev,
684 					"pcie link down at least 25ms\n");
685 			return ret_val;
686 		}
687 	}
688 	return 0;
689 }
690 
691 /*
692  * Configures PHY autoneg and flow control advertisement settings
693  * hw - Struct containing variables accessed by shared code
694  */
695 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
696 {
697 	s32 ret_val;
698 	s16 mii_autoneg_adv_reg;
699 	s16 mii_1000t_ctrl_reg;
700 
701 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
702 	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
703 
704 	/* Read the MII 1000Base-T Control Register (Address 9). */
705 	mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
706 
707 	/*
708 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
709 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
710 	 * the  1000Base-T Control Register (Address 9).
711 	 */
712 	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
713 	mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
714 
715 	/*
716 	 * Need to parse media_type  and set up
717 	 * the appropriate PHY registers.
718 	 */
719 	switch (hw->media_type) {
720 	case MEDIA_TYPE_AUTO_SENSOR:
721 		mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
722 					MII_AR_10T_FD_CAPS |
723 					MII_AR_100TX_HD_CAPS |
724 					MII_AR_100TX_FD_CAPS);
725 		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
726 		break;
727 
728 	case MEDIA_TYPE_1000M_FULL:
729 		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
730 		break;
731 
732 	case MEDIA_TYPE_100M_FULL:
733 		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
734 		break;
735 
736 	case MEDIA_TYPE_100M_HALF:
737 		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
738 		break;
739 
740 	case MEDIA_TYPE_10M_FULL:
741 		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
742 		break;
743 
744 	default:
745 		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
746 		break;
747 	}
748 
749 	/* flow control fixed to enable all */
750 	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
751 
752 	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
753 	hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
754 
755 	ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
756 	if (ret_val)
757 		return ret_val;
758 
759 	ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
760 	if (ret_val)
761 		return ret_val;
762 
763 	return 0;
764 }
765 
766 /*
767  * Configures link settings.
768  * hw - Struct containing variables accessed by shared code
769  * Assumes the hardware has previously been reset and the
770  * transmitter and receiver are not enabled.
771  */
772 static s32 atl1_setup_link(struct atl1_hw *hw)
773 {
774 	struct pci_dev *pdev = hw->back->pdev;
775 	struct atl1_adapter *adapter = hw->back;
776 	s32 ret_val;
777 
778 	/*
779 	 * Options:
780 	 *  PHY will advertise value(s) parsed from
781 	 *  autoneg_advertised and fc
782 	 *  no matter what autoneg is , We will not wait link result.
783 	 */
784 	ret_val = atl1_phy_setup_autoneg_adv(hw);
785 	if (ret_val) {
786 		if (netif_msg_link(adapter))
787 			dev_dbg(&pdev->dev,
788 				"error setting up autonegotiation\n");
789 		return ret_val;
790 	}
791 	/* SW.Reset , En-Auto-Neg if needed */
792 	ret_val = atl1_phy_reset(hw);
793 	if (ret_val) {
794 		if (netif_msg_link(adapter))
795 			dev_dbg(&pdev->dev, "error resetting phy\n");
796 		return ret_val;
797 	}
798 	hw->phy_configured = true;
799 	return ret_val;
800 }
801 
802 static void atl1_init_flash_opcode(struct atl1_hw *hw)
803 {
804 	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
805 		/* Atmel */
806 		hw->flash_vendor = 0;
807 
808 	/* Init OP table */
809 	iowrite8(flash_table[hw->flash_vendor].cmd_program,
810 		hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
811 	iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
812 		hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
813 	iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
814 		hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
815 	iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
816 		hw->hw_addr + REG_SPI_FLASH_OP_RDID);
817 	iowrite8(flash_table[hw->flash_vendor].cmd_wren,
818 		hw->hw_addr + REG_SPI_FLASH_OP_WREN);
819 	iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
820 		hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
821 	iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
822 		hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
823 	iowrite8(flash_table[hw->flash_vendor].cmd_read,
824 		hw->hw_addr + REG_SPI_FLASH_OP_READ);
825 }
826 
827 /*
828  * Performs basic configuration of the adapter.
829  * hw - Struct containing variables accessed by shared code
830  * Assumes that the controller has previously been reset and is in a
831  * post-reset uninitialized state. Initializes multicast table,
832  * and  Calls routines to setup link
833  * Leaves the transmit and receive units disabled and uninitialized.
834  */
835 static s32 atl1_init_hw(struct atl1_hw *hw)
836 {
837 	u32 ret_val = 0;
838 
839 	/* Zero out the Multicast HASH table */
840 	iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
841 	/* clear the old settings from the multicast hash table */
842 	iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
843 
844 	atl1_init_flash_opcode(hw);
845 
846 	if (!hw->phy_configured) {
847 		/* enable GPHY LinkChange Interrupt */
848 		ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
849 		if (ret_val)
850 			return ret_val;
851 		/* make PHY out of power-saving state */
852 		ret_val = atl1_phy_leave_power_saving(hw);
853 		if (ret_val)
854 			return ret_val;
855 		/* Call a subroutine to configure the link */
856 		ret_val = atl1_setup_link(hw);
857 	}
858 	return ret_val;
859 }
860 
861 /*
862  * Detects the current speed and duplex settings of the hardware.
863  * hw - Struct containing variables accessed by shared code
864  * speed - Speed of the connection
865  * duplex - Duplex setting of the connection
866  */
867 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
868 {
869 	struct pci_dev *pdev = hw->back->pdev;
870 	struct atl1_adapter *adapter = hw->back;
871 	s32 ret_val;
872 	u16 phy_data;
873 
874 	/* ; --- Read   PHY Specific Status Register (17) */
875 	ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
876 	if (ret_val)
877 		return ret_val;
878 
879 	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
880 		return ATLX_ERR_PHY_RES;
881 
882 	switch (phy_data & MII_ATLX_PSSR_SPEED) {
883 	case MII_ATLX_PSSR_1000MBS:
884 		*speed = SPEED_1000;
885 		break;
886 	case MII_ATLX_PSSR_100MBS:
887 		*speed = SPEED_100;
888 		break;
889 	case MII_ATLX_PSSR_10MBS:
890 		*speed = SPEED_10;
891 		break;
892 	default:
893 		if (netif_msg_hw(adapter))
894 			dev_dbg(&pdev->dev, "error getting speed\n");
895 		return ATLX_ERR_PHY_SPEED;
896 	}
897 	if (phy_data & MII_ATLX_PSSR_DPLX)
898 		*duplex = FULL_DUPLEX;
899 	else
900 		*duplex = HALF_DUPLEX;
901 
902 	return 0;
903 }
904 
905 static void atl1_set_mac_addr(struct atl1_hw *hw)
906 {
907 	u32 value;
908 	/*
909 	 * 00-0B-6A-F6-00-DC
910 	 * 0:  6AF600DC   1: 000B
911 	 * low dword
912 	 */
913 	value = (((u32) hw->mac_addr[2]) << 24) |
914 	    (((u32) hw->mac_addr[3]) << 16) |
915 	    (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
916 	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
917 	/* high dword */
918 	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
919 	iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
920 }
921 
922 /**
923  * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
924  * @adapter: board private structure to initialize
925  *
926  * atl1_sw_init initializes the Adapter private data structure.
927  * Fields are initialized based on PCI device information and
928  * OS network device settings (MTU size).
929  */
930 static int atl1_sw_init(struct atl1_adapter *adapter)
931 {
932 	struct atl1_hw *hw = &adapter->hw;
933 	struct net_device *netdev = adapter->netdev;
934 
935 	hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
936 	hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
937 
938 	adapter->wol = 0;
939 	device_set_wakeup_enable(&adapter->pdev->dev, false);
940 	adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
941 	adapter->ict = 50000;		/* 100ms */
942 	adapter->link_speed = SPEED_0;	/* hardware init */
943 	adapter->link_duplex = FULL_DUPLEX;
944 
945 	hw->phy_configured = false;
946 	hw->preamble_len = 7;
947 	hw->ipgt = 0x60;
948 	hw->min_ifg = 0x50;
949 	hw->ipgr1 = 0x40;
950 	hw->ipgr2 = 0x60;
951 	hw->max_retry = 0xf;
952 	hw->lcol = 0x37;
953 	hw->jam_ipg = 7;
954 	hw->rfd_burst = 8;
955 	hw->rrd_burst = 8;
956 	hw->rfd_fetch_gap = 1;
957 	hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
958 	hw->rx_jumbo_lkah = 1;
959 	hw->rrd_ret_timer = 16;
960 	hw->tpd_burst = 4;
961 	hw->tpd_fetch_th = 16;
962 	hw->txf_burst = 0x100;
963 	hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
964 	hw->tpd_fetch_gap = 1;
965 	hw->rcb_value = atl1_rcb_64;
966 	hw->dma_ord = atl1_dma_ord_enh;
967 	hw->dmar_block = atl1_dma_req_256;
968 	hw->dmaw_block = atl1_dma_req_256;
969 	hw->cmb_rrd = 4;
970 	hw->cmb_tpd = 4;
971 	hw->cmb_rx_timer = 1;	/* about 2us */
972 	hw->cmb_tx_timer = 1;	/* about 2us */
973 	hw->smb_timer = 100000;	/* about 200ms */
974 
975 	spin_lock_init(&adapter->lock);
976 	spin_lock_init(&adapter->mb_lock);
977 
978 	return 0;
979 }
980 
981 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
982 {
983 	struct atl1_adapter *adapter = netdev_priv(netdev);
984 	u16 result;
985 
986 	atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
987 
988 	return result;
989 }
990 
991 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
992 	int val)
993 {
994 	struct atl1_adapter *adapter = netdev_priv(netdev);
995 
996 	atl1_write_phy_reg(&adapter->hw, reg_num, val);
997 }
998 
999 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1000 {
1001 	struct atl1_adapter *adapter = netdev_priv(netdev);
1002 	unsigned long flags;
1003 	int retval;
1004 
1005 	if (!netif_running(netdev))
1006 		return -EINVAL;
1007 
1008 	spin_lock_irqsave(&adapter->lock, flags);
1009 	retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1010 	spin_unlock_irqrestore(&adapter->lock, flags);
1011 
1012 	return retval;
1013 }
1014 
1015 /**
1016  * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1017  * @adapter: board private structure
1018  *
1019  * Return 0 on success, negative on failure
1020  */
1021 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1022 {
1023 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1024 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1025 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1026 	struct atl1_ring_header *ring_header = &adapter->ring_header;
1027 	struct pci_dev *pdev = adapter->pdev;
1028 	int size;
1029 	u8 offset = 0;
1030 
1031 	size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1032 	tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1033 	if (unlikely(!tpd_ring->buffer_info)) {
1034 		if (netif_msg_drv(adapter))
1035 			dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1036 				size);
1037 		goto err_nomem;
1038 	}
1039 	rfd_ring->buffer_info =
1040 		(tpd_ring->buffer_info + tpd_ring->count);
1041 
1042 	/*
1043 	 * real ring DMA buffer
1044 	 * each ring/block may need up to 8 bytes for alignment, hence the
1045 	 * additional 40 bytes tacked onto the end.
1046 	 */
1047 	ring_header->size = size =
1048 		sizeof(struct tx_packet_desc) * tpd_ring->count
1049 		+ sizeof(struct rx_free_desc) * rfd_ring->count
1050 		+ sizeof(struct rx_return_desc) * rrd_ring->count
1051 		+ sizeof(struct coals_msg_block)
1052 		+ sizeof(struct stats_msg_block)
1053 		+ 40;
1054 
1055 	ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1056 		&ring_header->dma);
1057 	if (unlikely(!ring_header->desc)) {
1058 		if (netif_msg_drv(adapter))
1059 			dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1060 		goto err_nomem;
1061 	}
1062 
1063 	/* init TPD ring */
1064 	tpd_ring->dma = ring_header->dma;
1065 	offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1066 	tpd_ring->dma += offset;
1067 	tpd_ring->desc = (u8 *) ring_header->desc + offset;
1068 	tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1069 
1070 	/* init RFD ring */
1071 	rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1072 	offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1073 	rfd_ring->dma += offset;
1074 	rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1075 	rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1076 
1077 
1078 	/* init RRD ring */
1079 	rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1080 	offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1081 	rrd_ring->dma += offset;
1082 	rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1083 	rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1084 
1085 
1086 	/* init CMB */
1087 	adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1088 	offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1089 	adapter->cmb.dma += offset;
1090 	adapter->cmb.cmb = (struct coals_msg_block *)
1091 		((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1092 
1093 	/* init SMB */
1094 	adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1095 	offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1096 	adapter->smb.dma += offset;
1097 	adapter->smb.smb = (struct stats_msg_block *)
1098 		((u8 *) adapter->cmb.cmb +
1099 		(sizeof(struct coals_msg_block) + offset));
1100 
1101 	return 0;
1102 
1103 err_nomem:
1104 	kfree(tpd_ring->buffer_info);
1105 	return -ENOMEM;
1106 }
1107 
1108 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1109 {
1110 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1111 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1112 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1113 
1114 	atomic_set(&tpd_ring->next_to_use, 0);
1115 	atomic_set(&tpd_ring->next_to_clean, 0);
1116 
1117 	rfd_ring->next_to_clean = 0;
1118 	atomic_set(&rfd_ring->next_to_use, 0);
1119 
1120 	rrd_ring->next_to_use = 0;
1121 	atomic_set(&rrd_ring->next_to_clean, 0);
1122 }
1123 
1124 /**
1125  * atl1_clean_rx_ring - Free RFD Buffers
1126  * @adapter: board private structure
1127  */
1128 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1129 {
1130 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1131 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1132 	struct atl1_buffer *buffer_info;
1133 	struct pci_dev *pdev = adapter->pdev;
1134 	unsigned long size;
1135 	unsigned int i;
1136 
1137 	/* Free all the Rx ring sk_buffs */
1138 	for (i = 0; i < rfd_ring->count; i++) {
1139 		buffer_info = &rfd_ring->buffer_info[i];
1140 		if (buffer_info->dma) {
1141 			pci_unmap_page(pdev, buffer_info->dma,
1142 				buffer_info->length, PCI_DMA_FROMDEVICE);
1143 			buffer_info->dma = 0;
1144 		}
1145 		if (buffer_info->skb) {
1146 			dev_kfree_skb(buffer_info->skb);
1147 			buffer_info->skb = NULL;
1148 		}
1149 	}
1150 
1151 	size = sizeof(struct atl1_buffer) * rfd_ring->count;
1152 	memset(rfd_ring->buffer_info, 0, size);
1153 
1154 	/* Zero out the descriptor ring */
1155 	memset(rfd_ring->desc, 0, rfd_ring->size);
1156 
1157 	rfd_ring->next_to_clean = 0;
1158 	atomic_set(&rfd_ring->next_to_use, 0);
1159 
1160 	rrd_ring->next_to_use = 0;
1161 	atomic_set(&rrd_ring->next_to_clean, 0);
1162 }
1163 
1164 /**
1165  * atl1_clean_tx_ring - Free Tx Buffers
1166  * @adapter: board private structure
1167  */
1168 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1169 {
1170 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1171 	struct atl1_buffer *buffer_info;
1172 	struct pci_dev *pdev = adapter->pdev;
1173 	unsigned long size;
1174 	unsigned int i;
1175 
1176 	/* Free all the Tx ring sk_buffs */
1177 	for (i = 0; i < tpd_ring->count; i++) {
1178 		buffer_info = &tpd_ring->buffer_info[i];
1179 		if (buffer_info->dma) {
1180 			pci_unmap_page(pdev, buffer_info->dma,
1181 				buffer_info->length, PCI_DMA_TODEVICE);
1182 			buffer_info->dma = 0;
1183 		}
1184 	}
1185 
1186 	for (i = 0; i < tpd_ring->count; i++) {
1187 		buffer_info = &tpd_ring->buffer_info[i];
1188 		if (buffer_info->skb) {
1189 			dev_kfree_skb_any(buffer_info->skb);
1190 			buffer_info->skb = NULL;
1191 		}
1192 	}
1193 
1194 	size = sizeof(struct atl1_buffer) * tpd_ring->count;
1195 	memset(tpd_ring->buffer_info, 0, size);
1196 
1197 	/* Zero out the descriptor ring */
1198 	memset(tpd_ring->desc, 0, tpd_ring->size);
1199 
1200 	atomic_set(&tpd_ring->next_to_use, 0);
1201 	atomic_set(&tpd_ring->next_to_clean, 0);
1202 }
1203 
1204 /**
1205  * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1206  * @adapter: board private structure
1207  *
1208  * Free all transmit software resources
1209  */
1210 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1211 {
1212 	struct pci_dev *pdev = adapter->pdev;
1213 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1214 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1215 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1216 	struct atl1_ring_header *ring_header = &adapter->ring_header;
1217 
1218 	atl1_clean_tx_ring(adapter);
1219 	atl1_clean_rx_ring(adapter);
1220 
1221 	kfree(tpd_ring->buffer_info);
1222 	pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1223 		ring_header->dma);
1224 
1225 	tpd_ring->buffer_info = NULL;
1226 	tpd_ring->desc = NULL;
1227 	tpd_ring->dma = 0;
1228 
1229 	rfd_ring->buffer_info = NULL;
1230 	rfd_ring->desc = NULL;
1231 	rfd_ring->dma = 0;
1232 
1233 	rrd_ring->desc = NULL;
1234 	rrd_ring->dma = 0;
1235 
1236 	adapter->cmb.dma = 0;
1237 	adapter->cmb.cmb = NULL;
1238 
1239 	adapter->smb.dma = 0;
1240 	adapter->smb.smb = NULL;
1241 }
1242 
1243 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1244 {
1245 	u32 value;
1246 	struct atl1_hw *hw = &adapter->hw;
1247 	struct net_device *netdev = adapter->netdev;
1248 	/* Config MAC CTRL Register */
1249 	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1250 	/* duplex */
1251 	if (FULL_DUPLEX == adapter->link_duplex)
1252 		value |= MAC_CTRL_DUPLX;
1253 	/* speed */
1254 	value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1255 			 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1256 		  MAC_CTRL_SPEED_SHIFT);
1257 	/* flow control */
1258 	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1259 	/* PAD & CRC */
1260 	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1261 	/* preamble length */
1262 	value |= (((u32) adapter->hw.preamble_len
1263 		   & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1264 	/* vlan */
1265 	__atlx_vlan_mode(netdev->features, &value);
1266 	/* rx checksum
1267 	   if (adapter->rx_csum)
1268 	   value |= MAC_CTRL_RX_CHKSUM_EN;
1269 	 */
1270 	/* filter mode */
1271 	value |= MAC_CTRL_BC_EN;
1272 	if (netdev->flags & IFF_PROMISC)
1273 		value |= MAC_CTRL_PROMIS_EN;
1274 	else if (netdev->flags & IFF_ALLMULTI)
1275 		value |= MAC_CTRL_MC_ALL_EN;
1276 	/* value |= MAC_CTRL_LOOPBACK; */
1277 	iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1278 }
1279 
1280 static u32 atl1_check_link(struct atl1_adapter *adapter)
1281 {
1282 	struct atl1_hw *hw = &adapter->hw;
1283 	struct net_device *netdev = adapter->netdev;
1284 	u32 ret_val;
1285 	u16 speed, duplex, phy_data;
1286 	int reconfig = 0;
1287 
1288 	/* MII_BMSR must read twice */
1289 	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1290 	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1291 	if (!(phy_data & BMSR_LSTATUS)) {
1292 		/* link down */
1293 		if (netif_carrier_ok(netdev)) {
1294 			/* old link state: Up */
1295 			if (netif_msg_link(adapter))
1296 				dev_info(&adapter->pdev->dev, "link is down\n");
1297 			adapter->link_speed = SPEED_0;
1298 			netif_carrier_off(netdev);
1299 		}
1300 		return 0;
1301 	}
1302 
1303 	/* Link Up */
1304 	ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1305 	if (ret_val)
1306 		return ret_val;
1307 
1308 	switch (hw->media_type) {
1309 	case MEDIA_TYPE_1000M_FULL:
1310 		if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1311 			reconfig = 1;
1312 		break;
1313 	case MEDIA_TYPE_100M_FULL:
1314 		if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1315 			reconfig = 1;
1316 		break;
1317 	case MEDIA_TYPE_100M_HALF:
1318 		if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1319 			reconfig = 1;
1320 		break;
1321 	case MEDIA_TYPE_10M_FULL:
1322 		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1323 			reconfig = 1;
1324 		break;
1325 	case MEDIA_TYPE_10M_HALF:
1326 		if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1327 			reconfig = 1;
1328 		break;
1329 	}
1330 
1331 	/* link result is our setting */
1332 	if (!reconfig) {
1333 		if (adapter->link_speed != speed ||
1334 		    adapter->link_duplex != duplex) {
1335 			adapter->link_speed = speed;
1336 			adapter->link_duplex = duplex;
1337 			atl1_setup_mac_ctrl(adapter);
1338 			if (netif_msg_link(adapter))
1339 				dev_info(&adapter->pdev->dev,
1340 					"%s link is up %d Mbps %s\n",
1341 					netdev->name, adapter->link_speed,
1342 					adapter->link_duplex == FULL_DUPLEX ?
1343 					"full duplex" : "half duplex");
1344 		}
1345 		if (!netif_carrier_ok(netdev)) {
1346 			/* Link down -> Up */
1347 			netif_carrier_on(netdev);
1348 		}
1349 		return 0;
1350 	}
1351 
1352 	/* change original link status */
1353 	if (netif_carrier_ok(netdev)) {
1354 		adapter->link_speed = SPEED_0;
1355 		netif_carrier_off(netdev);
1356 		netif_stop_queue(netdev);
1357 	}
1358 
1359 	if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1360 	    hw->media_type != MEDIA_TYPE_1000M_FULL) {
1361 		switch (hw->media_type) {
1362 		case MEDIA_TYPE_100M_FULL:
1363 			phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1364 			           MII_CR_RESET;
1365 			break;
1366 		case MEDIA_TYPE_100M_HALF:
1367 			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1368 			break;
1369 		case MEDIA_TYPE_10M_FULL:
1370 			phy_data =
1371 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1372 			break;
1373 		default:
1374 			/* MEDIA_TYPE_10M_HALF: */
1375 			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1376 			break;
1377 		}
1378 		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1379 		return 0;
1380 	}
1381 
1382 	/* auto-neg, insert timer to re-config phy */
1383 	if (!adapter->phy_timer_pending) {
1384 		adapter->phy_timer_pending = true;
1385 		mod_timer(&adapter->phy_config_timer,
1386 			  round_jiffies(jiffies + 3 * HZ));
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1393 {
1394 	u32 hi, lo, value;
1395 
1396 	/* RFD Flow Control */
1397 	value = adapter->rfd_ring.count;
1398 	hi = value / 16;
1399 	if (hi < 2)
1400 		hi = 2;
1401 	lo = value * 7 / 8;
1402 
1403 	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1404 		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1405 	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1406 
1407 	/* RRD Flow Control */
1408 	value = adapter->rrd_ring.count;
1409 	lo = value / 16;
1410 	hi = value * 7 / 8;
1411 	if (lo < 2)
1412 		lo = 2;
1413 	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1414 		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1415 	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1416 }
1417 
1418 static void set_flow_ctrl_new(struct atl1_hw *hw)
1419 {
1420 	u32 hi, lo, value;
1421 
1422 	/* RXF Flow Control */
1423 	value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1424 	lo = value / 16;
1425 	if (lo < 192)
1426 		lo = 192;
1427 	hi = value * 7 / 8;
1428 	if (hi < lo)
1429 		hi = lo + 16;
1430 	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1431 		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1432 	iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1433 
1434 	/* RRD Flow Control */
1435 	value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1436 	lo = value / 8;
1437 	hi = value * 7 / 8;
1438 	if (lo < 2)
1439 		lo = 2;
1440 	if (hi < lo)
1441 		hi = lo + 3;
1442 	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1443 		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1444 	iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1445 }
1446 
1447 /**
1448  * atl1_configure - Configure Transmit&Receive Unit after Reset
1449  * @adapter: board private structure
1450  *
1451  * Configure the Tx /Rx unit of the MAC after a reset.
1452  */
1453 static u32 atl1_configure(struct atl1_adapter *adapter)
1454 {
1455 	struct atl1_hw *hw = &adapter->hw;
1456 	u32 value;
1457 
1458 	/* clear interrupt status */
1459 	iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1460 
1461 	/* set MAC Address */
1462 	value = (((u32) hw->mac_addr[2]) << 24) |
1463 		(((u32) hw->mac_addr[3]) << 16) |
1464 		(((u32) hw->mac_addr[4]) << 8) |
1465 		(((u32) hw->mac_addr[5]));
1466 	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1467 	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1468 	iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1469 
1470 	/* tx / rx ring */
1471 
1472 	/* HI base address */
1473 	iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1474 		hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1475 	/* LO base address */
1476 	iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1477 		hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1478 	iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1479 		hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1480 	iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1481 		hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1482 	iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1483 		hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1484 	iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1485 		hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1486 
1487 	/* element count */
1488 	value = adapter->rrd_ring.count;
1489 	value <<= 16;
1490 	value += adapter->rfd_ring.count;
1491 	iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1492 	iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1493 		REG_DESC_TPD_RING_SIZE);
1494 
1495 	/* Load Ptr */
1496 	iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1497 
1498 	/* config Mailbox */
1499 	value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1500 		  & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1501 		((atomic_read(&adapter->rrd_ring.next_to_clean)
1502 		& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1503 		((atomic_read(&adapter->rfd_ring.next_to_use)
1504 		& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1505 	iowrite32(value, hw->hw_addr + REG_MAILBOX);
1506 
1507 	/* config IPG/IFG */
1508 	value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1509 		 << MAC_IPG_IFG_IPGT_SHIFT) |
1510 		(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1511 		<< MAC_IPG_IFG_MIFG_SHIFT) |
1512 		(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1513 		<< MAC_IPG_IFG_IPGR1_SHIFT) |
1514 		(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1515 		<< MAC_IPG_IFG_IPGR2_SHIFT);
1516 	iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1517 
1518 	/* config  Half-Duplex Control */
1519 	value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1520 		(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1521 		<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1522 		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1523 		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1524 		(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1525 		<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1526 	iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1527 
1528 	/* set Interrupt Moderator Timer */
1529 	iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1530 	iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1531 
1532 	/* set Interrupt Clear Timer */
1533 	iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1534 
1535 	/* set max frame size hw will accept */
1536 	iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1537 
1538 	/* jumbo size & rrd retirement timer */
1539 	value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1540 		 << RXQ_JMBOSZ_TH_SHIFT) |
1541 		(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1542 		<< RXQ_JMBO_LKAH_SHIFT) |
1543 		(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1544 		<< RXQ_RRD_TIMER_SHIFT);
1545 	iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1546 
1547 	/* Flow Control */
1548 	switch (hw->dev_rev) {
1549 	case 0x8001:
1550 	case 0x9001:
1551 	case 0x9002:
1552 	case 0x9003:
1553 		set_flow_ctrl_old(adapter);
1554 		break;
1555 	default:
1556 		set_flow_ctrl_new(hw);
1557 		break;
1558 	}
1559 
1560 	/* config TXQ */
1561 	value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1562 		 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1563 		(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1564 		<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1565 		(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1566 		<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1567 		TXQ_CTRL_EN;
1568 	iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1569 
1570 	/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1571 	value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1572 		<< TX_JUMBO_TASK_TH_SHIFT) |
1573 		(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1574 		<< TX_TPD_MIN_IPG_SHIFT);
1575 	iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1576 
1577 	/* config RXQ */
1578 	value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1579 		<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1580 		(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1581 		<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1582 		(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1583 		<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1584 		RXQ_CTRL_EN;
1585 	iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1586 
1587 	/* config DMA Engine */
1588 	value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1589 		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1590 		((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1591 		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1592 		DMA_CTRL_DMAW_EN;
1593 	value |= (u32) hw->dma_ord;
1594 	if (atl1_rcb_128 == hw->rcb_value)
1595 		value |= DMA_CTRL_RCB_VALUE;
1596 	iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1597 
1598 	/* config CMB / SMB */
1599 	value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1600 		hw->cmb_tpd : adapter->tpd_ring.count;
1601 	value <<= 16;
1602 	value |= hw->cmb_rrd;
1603 	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1604 	value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1605 	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1606 	iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1607 
1608 	/* --- enable CMB / SMB */
1609 	value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1610 	iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1611 
1612 	value = ioread32(adapter->hw.hw_addr + REG_ISR);
1613 	if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1614 		value = 1;	/* config failed */
1615 	else
1616 		value = 0;
1617 
1618 	/* clear all interrupt status */
1619 	iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1620 	iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1621 	return value;
1622 }
1623 
1624 /*
1625  * atl1_pcie_patch - Patch for PCIE module
1626  */
1627 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1628 {
1629 	u32 value;
1630 
1631 	/* much vendor magic here */
1632 	value = 0x6500;
1633 	iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1634 	/* pcie flow control mode change */
1635 	value = ioread32(adapter->hw.hw_addr + 0x1008);
1636 	value |= 0x8000;
1637 	iowrite32(value, adapter->hw.hw_addr + 0x1008);
1638 }
1639 
1640 /*
1641  * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1642  * on PCI Command register is disable.
1643  * The function enable this bit.
1644  * Brackett, 2006/03/15
1645  */
1646 static void atl1_via_workaround(struct atl1_adapter *adapter)
1647 {
1648 	unsigned long value;
1649 
1650 	value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1651 	if (value & PCI_COMMAND_INTX_DISABLE)
1652 		value &= ~PCI_COMMAND_INTX_DISABLE;
1653 	iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1654 }
1655 
1656 static void atl1_inc_smb(struct atl1_adapter *adapter)
1657 {
1658 	struct net_device *netdev = adapter->netdev;
1659 	struct stats_msg_block *smb = adapter->smb.smb;
1660 
1661 	u64 new_rx_errors = smb->rx_frag +
1662 			    smb->rx_fcs_err +
1663 			    smb->rx_len_err +
1664 			    smb->rx_sz_ov +
1665 			    smb->rx_rxf_ov +
1666 			    smb->rx_rrd_ov +
1667 			    smb->rx_align_err;
1668 	u64 new_tx_errors = smb->tx_late_col +
1669 			    smb->tx_abort_col +
1670 			    smb->tx_underrun +
1671 			    smb->tx_trunc;
1672 
1673 	/* Fill out the OS statistics structure */
1674 	adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1675 	adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1676 	adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1677 	adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1678 	adapter->soft_stats.multicast += smb->rx_mcast;
1679 	adapter->soft_stats.collisions += smb->tx_1_col +
1680 					  smb->tx_2_col +
1681 					  smb->tx_late_col +
1682 					  smb->tx_abort_col;
1683 
1684 	/* Rx Errors */
1685 	adapter->soft_stats.rx_errors += new_rx_errors;
1686 	adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1687 	adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1688 	adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1689 	adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1690 
1691 	adapter->soft_stats.rx_pause += smb->rx_pause;
1692 	adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1693 	adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1694 
1695 	/* Tx Errors */
1696 	adapter->soft_stats.tx_errors += new_tx_errors;
1697 	adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1698 	adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1699 	adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1700 
1701 	adapter->soft_stats.excecol += smb->tx_abort_col;
1702 	adapter->soft_stats.deffer += smb->tx_defer;
1703 	adapter->soft_stats.scc += smb->tx_1_col;
1704 	adapter->soft_stats.mcc += smb->tx_2_col;
1705 	adapter->soft_stats.latecol += smb->tx_late_col;
1706 	adapter->soft_stats.tx_underrun += smb->tx_underrun;
1707 	adapter->soft_stats.tx_trunc += smb->tx_trunc;
1708 	adapter->soft_stats.tx_pause += smb->tx_pause;
1709 
1710 	netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1711 	netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1712 	netdev->stats.multicast = adapter->soft_stats.multicast;
1713 	netdev->stats.collisions = adapter->soft_stats.collisions;
1714 	netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1715 	netdev->stats.rx_length_errors =
1716 		adapter->soft_stats.rx_length_errors;
1717 	netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1718 	netdev->stats.rx_frame_errors =
1719 		adapter->soft_stats.rx_frame_errors;
1720 	netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1721 	netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1722 	netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1723 	netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1724 	netdev->stats.tx_aborted_errors =
1725 		adapter->soft_stats.tx_aborted_errors;
1726 	netdev->stats.tx_window_errors =
1727 		adapter->soft_stats.tx_window_errors;
1728 	netdev->stats.tx_carrier_errors =
1729 		adapter->soft_stats.tx_carrier_errors;
1730 
1731 	netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1732 	netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1733 }
1734 
1735 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1736 {
1737 	unsigned long flags;
1738 	u32 tpd_next_to_use;
1739 	u32 rfd_next_to_use;
1740 	u32 rrd_next_to_clean;
1741 	u32 value;
1742 
1743 	spin_lock_irqsave(&adapter->mb_lock, flags);
1744 
1745 	tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1746 	rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1747 	rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1748 
1749 	value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1750 		MB_RFD_PROD_INDX_SHIFT) |
1751 		((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1752 		MB_RRD_CONS_INDX_SHIFT) |
1753 		((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1754 		MB_TPD_PROD_INDX_SHIFT);
1755 	iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1756 
1757 	spin_unlock_irqrestore(&adapter->mb_lock, flags);
1758 }
1759 
1760 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1761 	struct rx_return_desc *rrd, u16 offset)
1762 {
1763 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1764 
1765 	while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1766 		rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1767 		if (++rfd_ring->next_to_clean == rfd_ring->count) {
1768 			rfd_ring->next_to_clean = 0;
1769 		}
1770 	}
1771 }
1772 
1773 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1774 	struct rx_return_desc *rrd)
1775 {
1776 	u16 num_buf;
1777 
1778 	num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1779 		adapter->rx_buffer_len;
1780 	if (rrd->num_buf == num_buf)
1781 		/* clean alloc flag for bad rrd */
1782 		atl1_clean_alloc_flag(adapter, rrd, num_buf);
1783 }
1784 
1785 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1786 	struct rx_return_desc *rrd, struct sk_buff *skb)
1787 {
1788 	struct pci_dev *pdev = adapter->pdev;
1789 
1790 	/*
1791 	 * The L1 hardware contains a bug that erroneously sets the
1792 	 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1793 	 * fragmented IP packet is received, even though the packet
1794 	 * is perfectly valid and its checksum is correct. There's
1795 	 * no way to distinguish between one of these good packets
1796 	 * and a packet that actually contains a TCP/UDP checksum
1797 	 * error, so all we can do is allow it to be handed up to
1798 	 * the higher layers and let it be sorted out there.
1799 	 */
1800 
1801 	skb_checksum_none_assert(skb);
1802 
1803 	if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1804 		if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1805 					ERR_FLAG_CODE | ERR_FLAG_OV)) {
1806 			adapter->hw_csum_err++;
1807 			if (netif_msg_rx_err(adapter))
1808 				dev_printk(KERN_DEBUG, &pdev->dev,
1809 					"rx checksum error\n");
1810 			return;
1811 		}
1812 	}
1813 
1814 	/* not IPv4 */
1815 	if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1816 		/* checksum is invalid, but it's not an IPv4 pkt, so ok */
1817 		return;
1818 
1819 	/* IPv4 packet */
1820 	if (likely(!(rrd->err_flg &
1821 		(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1822 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1823 		adapter->hw_csum_good++;
1824 		return;
1825 	}
1826 }
1827 
1828 /**
1829  * atl1_alloc_rx_buffers - Replace used receive buffers
1830  * @adapter: address of board private structure
1831  */
1832 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1833 {
1834 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1835 	struct pci_dev *pdev = adapter->pdev;
1836 	struct page *page;
1837 	unsigned long offset;
1838 	struct atl1_buffer *buffer_info, *next_info;
1839 	struct sk_buff *skb;
1840 	u16 num_alloc = 0;
1841 	u16 rfd_next_to_use, next_next;
1842 	struct rx_free_desc *rfd_desc;
1843 
1844 	next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1845 	if (++next_next == rfd_ring->count)
1846 		next_next = 0;
1847 	buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1848 	next_info = &rfd_ring->buffer_info[next_next];
1849 
1850 	while (!buffer_info->alloced && !next_info->alloced) {
1851 		if (buffer_info->skb) {
1852 			buffer_info->alloced = 1;
1853 			goto next;
1854 		}
1855 
1856 		rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1857 
1858 		skb = netdev_alloc_skb_ip_align(adapter->netdev,
1859 						adapter->rx_buffer_len);
1860 		if (unlikely(!skb)) {
1861 			/* Better luck next round */
1862 			adapter->soft_stats.rx_dropped++;
1863 			break;
1864 		}
1865 
1866 		buffer_info->alloced = 1;
1867 		buffer_info->skb = skb;
1868 		buffer_info->length = (u16) adapter->rx_buffer_len;
1869 		page = virt_to_page(skb->data);
1870 		offset = offset_in_page(skb->data);
1871 		buffer_info->dma = pci_map_page(pdev, page, offset,
1872 						adapter->rx_buffer_len,
1873 						PCI_DMA_FROMDEVICE);
1874 		rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1875 		rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1876 		rfd_desc->coalese = 0;
1877 
1878 next:
1879 		rfd_next_to_use = next_next;
1880 		if (unlikely(++next_next == rfd_ring->count))
1881 			next_next = 0;
1882 
1883 		buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1884 		next_info = &rfd_ring->buffer_info[next_next];
1885 		num_alloc++;
1886 	}
1887 
1888 	if (num_alloc) {
1889 		/*
1890 		 * Force memory writes to complete before letting h/w
1891 		 * know there are new descriptors to fetch.  (Only
1892 		 * applicable for weak-ordered memory model archs,
1893 		 * such as IA-64).
1894 		 */
1895 		wmb();
1896 		atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1897 	}
1898 	return num_alloc;
1899 }
1900 
1901 static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1902 {
1903 	int i, count;
1904 	u16 length;
1905 	u16 rrd_next_to_clean;
1906 	u32 value;
1907 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1908 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1909 	struct atl1_buffer *buffer_info;
1910 	struct rx_return_desc *rrd;
1911 	struct sk_buff *skb;
1912 
1913 	count = 0;
1914 
1915 	rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1916 
1917 	while (count < budget) {
1918 		rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1919 		i = 1;
1920 		if (likely(rrd->xsz.valid)) {	/* packet valid */
1921 chk_rrd:
1922 			/* check rrd status */
1923 			if (likely(rrd->num_buf == 1))
1924 				goto rrd_ok;
1925 			else if (netif_msg_rx_err(adapter)) {
1926 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1927 					"unexpected RRD buffer count\n");
1928 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1929 					"rx_buf_len = %d\n",
1930 					adapter->rx_buffer_len);
1931 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1932 					"RRD num_buf = %d\n",
1933 					rrd->num_buf);
1934 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1935 					"RRD pkt_len = %d\n",
1936 					rrd->xsz.xsum_sz.pkt_size);
1937 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1938 					"RRD pkt_flg = 0x%08X\n",
1939 					rrd->pkt_flg);
1940 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1941 					"RRD err_flg = 0x%08X\n",
1942 					rrd->err_flg);
1943 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1944 					"RRD vlan_tag = 0x%08X\n",
1945 					rrd->vlan_tag);
1946 			}
1947 
1948 			/* rrd seems to be bad */
1949 			if (unlikely(i-- > 0)) {
1950 				/* rrd may not be DMAed completely */
1951 				udelay(1);
1952 				goto chk_rrd;
1953 			}
1954 			/* bad rrd */
1955 			if (netif_msg_rx_err(adapter))
1956 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957 					"bad RRD\n");
1958 			/* see if update RFD index */
1959 			if (rrd->num_buf > 1)
1960 				atl1_update_rfd_index(adapter, rrd);
1961 
1962 			/* update rrd */
1963 			rrd->xsz.valid = 0;
1964 			if (++rrd_next_to_clean == rrd_ring->count)
1965 				rrd_next_to_clean = 0;
1966 			count++;
1967 			continue;
1968 		} else {	/* current rrd still not be updated */
1969 
1970 			break;
1971 		}
1972 rrd_ok:
1973 		/* clean alloc flag for bad rrd */
1974 		atl1_clean_alloc_flag(adapter, rrd, 0);
1975 
1976 		buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1977 		if (++rfd_ring->next_to_clean == rfd_ring->count)
1978 			rfd_ring->next_to_clean = 0;
1979 
1980 		/* update rrd next to clean */
1981 		if (++rrd_next_to_clean == rrd_ring->count)
1982 			rrd_next_to_clean = 0;
1983 		count++;
1984 
1985 		if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1986 			if (!(rrd->err_flg &
1987 				(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
1988 				| ERR_FLAG_LEN))) {
1989 				/* packet error, don't need upstream */
1990 				buffer_info->alloced = 0;
1991 				rrd->xsz.valid = 0;
1992 				continue;
1993 			}
1994 		}
1995 
1996 		/* Good Receive */
1997 		pci_unmap_page(adapter->pdev, buffer_info->dma,
1998 			       buffer_info->length, PCI_DMA_FROMDEVICE);
1999 		buffer_info->dma = 0;
2000 		skb = buffer_info->skb;
2001 		length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2002 
2003 		skb_put(skb, length - ETH_FCS_LEN);
2004 
2005 		/* Receive Checksum Offload */
2006 		atl1_rx_checksum(adapter, rrd, skb);
2007 		skb->protocol = eth_type_trans(skb, adapter->netdev);
2008 
2009 		if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2010 			u16 vlan_tag = (rrd->vlan_tag >> 4) |
2011 					((rrd->vlan_tag & 7) << 13) |
2012 					((rrd->vlan_tag & 8) << 9);
2013 
2014 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2015 		}
2016 		netif_receive_skb(skb);
2017 
2018 		/* let protocol layer free skb */
2019 		buffer_info->skb = NULL;
2020 		buffer_info->alloced = 0;
2021 		rrd->xsz.valid = 0;
2022 	}
2023 
2024 	atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2025 
2026 	atl1_alloc_rx_buffers(adapter);
2027 
2028 	/* update mailbox ? */
2029 	if (count) {
2030 		u32 tpd_next_to_use;
2031 		u32 rfd_next_to_use;
2032 
2033 		spin_lock(&adapter->mb_lock);
2034 
2035 		tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2036 		rfd_next_to_use =
2037 		    atomic_read(&adapter->rfd_ring.next_to_use);
2038 		rrd_next_to_clean =
2039 		    atomic_read(&adapter->rrd_ring.next_to_clean);
2040 		value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2041 			MB_RFD_PROD_INDX_SHIFT) |
2042                         ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2043 			MB_RRD_CONS_INDX_SHIFT) |
2044                         ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2045 			MB_TPD_PROD_INDX_SHIFT);
2046 		iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2047 		spin_unlock(&adapter->mb_lock);
2048 	}
2049 
2050 	return count;
2051 }
2052 
2053 static int atl1_intr_tx(struct atl1_adapter *adapter)
2054 {
2055 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2056 	struct atl1_buffer *buffer_info;
2057 	u16 sw_tpd_next_to_clean;
2058 	u16 cmb_tpd_next_to_clean;
2059 	int count = 0;
2060 
2061 	sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2062 	cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2063 
2064 	while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2065 		buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2066 		if (buffer_info->dma) {
2067 			pci_unmap_page(adapter->pdev, buffer_info->dma,
2068 				       buffer_info->length, PCI_DMA_TODEVICE);
2069 			buffer_info->dma = 0;
2070 		}
2071 
2072 		if (buffer_info->skb) {
2073 			dev_consume_skb_irq(buffer_info->skb);
2074 			buffer_info->skb = NULL;
2075 		}
2076 
2077 		if (++sw_tpd_next_to_clean == tpd_ring->count)
2078 			sw_tpd_next_to_clean = 0;
2079 
2080 		count++;
2081 	}
2082 	atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2083 
2084 	if (netif_queue_stopped(adapter->netdev) &&
2085 	    netif_carrier_ok(adapter->netdev))
2086 		netif_wake_queue(adapter->netdev);
2087 
2088 	return count;
2089 }
2090 
2091 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2092 {
2093 	u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2094 	u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2095 	return (next_to_clean > next_to_use) ?
2096 		next_to_clean - next_to_use - 1 :
2097 		tpd_ring->count + next_to_clean - next_to_use - 1;
2098 }
2099 
2100 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2101 		    struct tx_packet_desc *ptpd)
2102 {
2103 	u8 hdr_len, ip_off;
2104 	u32 real_len;
2105 
2106 	if (skb_shinfo(skb)->gso_size) {
2107 		int err;
2108 
2109 		err = skb_cow_head(skb, 0);
2110 		if (err < 0)
2111 			return err;
2112 
2113 		if (skb->protocol == htons(ETH_P_IP)) {
2114 			struct iphdr *iph = ip_hdr(skb);
2115 
2116 			real_len = (((unsigned char *)iph - skb->data) +
2117 				ntohs(iph->tot_len));
2118 			if (real_len < skb->len)
2119 				pskb_trim(skb, real_len);
2120 			hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2121 			if (skb->len == hdr_len) {
2122 				iph->check = 0;
2123 				tcp_hdr(skb)->check =
2124 					~csum_tcpudp_magic(iph->saddr,
2125 					iph->daddr, tcp_hdrlen(skb),
2126 					IPPROTO_TCP, 0);
2127 				ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2128 					TPD_IPHL_SHIFT;
2129 				ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2130 					TPD_TCPHDRLEN_MASK) <<
2131 					TPD_TCPHDRLEN_SHIFT;
2132 				ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2133 				ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2134 				return 1;
2135 			}
2136 
2137 			iph->check = 0;
2138 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2139 					iph->daddr, 0, IPPROTO_TCP, 0);
2140 			ip_off = (unsigned char *)iph -
2141 				(unsigned char *) skb_network_header(skb);
2142 			if (ip_off == 8) /* 802.3-SNAP frame */
2143 				ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2144 			else if (ip_off != 0)
2145 				return -2;
2146 
2147 			ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2148 				TPD_IPHL_SHIFT;
2149 			ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2150 				TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2151 			ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2152 				TPD_MSS_MASK) << TPD_MSS_SHIFT;
2153 			ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2154 			return 3;
2155 		}
2156 	}
2157 	return 0;
2158 }
2159 
2160 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2161 	struct tx_packet_desc *ptpd)
2162 {
2163 	u8 css, cso;
2164 
2165 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2166 		css = skb_checksum_start_offset(skb);
2167 		cso = css + (u8) skb->csum_offset;
2168 		if (unlikely(css & 0x1)) {
2169 			/* L1 hardware requires an even number here */
2170 			if (netif_msg_tx_err(adapter))
2171 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2172 					"payload offset not an even number\n");
2173 			return -1;
2174 		}
2175 		ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2176 			TPD_PLOADOFFSET_SHIFT;
2177 		ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2178 			TPD_CCSUMOFFSET_SHIFT;
2179 		ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2180 		return true;
2181 	}
2182 	return 0;
2183 }
2184 
2185 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2186 	struct tx_packet_desc *ptpd)
2187 {
2188 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2189 	struct atl1_buffer *buffer_info;
2190 	u16 buf_len = skb->len;
2191 	struct page *page;
2192 	unsigned long offset;
2193 	unsigned int nr_frags;
2194 	unsigned int f;
2195 	int retval;
2196 	u16 next_to_use;
2197 	u16 data_len;
2198 	u8 hdr_len;
2199 
2200 	buf_len -= skb->data_len;
2201 	nr_frags = skb_shinfo(skb)->nr_frags;
2202 	next_to_use = atomic_read(&tpd_ring->next_to_use);
2203 	buffer_info = &tpd_ring->buffer_info[next_to_use];
2204 	BUG_ON(buffer_info->skb);
2205 	/* put skb in last TPD */
2206 	buffer_info->skb = NULL;
2207 
2208 	retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2209 	if (retval) {
2210 		/* TSO */
2211 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2212 		buffer_info->length = hdr_len;
2213 		page = virt_to_page(skb->data);
2214 		offset = offset_in_page(skb->data);
2215 		buffer_info->dma = pci_map_page(adapter->pdev, page,
2216 						offset, hdr_len,
2217 						PCI_DMA_TODEVICE);
2218 
2219 		if (++next_to_use == tpd_ring->count)
2220 			next_to_use = 0;
2221 
2222 		if (buf_len > hdr_len) {
2223 			int i, nseg;
2224 
2225 			data_len = buf_len - hdr_len;
2226 			nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2227 				ATL1_MAX_TX_BUF_LEN;
2228 			for (i = 0; i < nseg; i++) {
2229 				buffer_info =
2230 				    &tpd_ring->buffer_info[next_to_use];
2231 				buffer_info->skb = NULL;
2232 				buffer_info->length =
2233 				    (ATL1_MAX_TX_BUF_LEN >=
2234 				     data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2235 				data_len -= buffer_info->length;
2236 				page = virt_to_page(skb->data +
2237 					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2238 				offset = offset_in_page(skb->data +
2239 					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2240 				buffer_info->dma = pci_map_page(adapter->pdev,
2241 					page, offset, buffer_info->length,
2242 					PCI_DMA_TODEVICE);
2243 				if (++next_to_use == tpd_ring->count)
2244 					next_to_use = 0;
2245 			}
2246 		}
2247 	} else {
2248 		/* not TSO */
2249 		buffer_info->length = buf_len;
2250 		page = virt_to_page(skb->data);
2251 		offset = offset_in_page(skb->data);
2252 		buffer_info->dma = pci_map_page(adapter->pdev, page,
2253 			offset, buf_len, PCI_DMA_TODEVICE);
2254 		if (++next_to_use == tpd_ring->count)
2255 			next_to_use = 0;
2256 	}
2257 
2258 	for (f = 0; f < nr_frags; f++) {
2259 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2260 		u16 i, nseg;
2261 
2262 		buf_len = skb_frag_size(frag);
2263 
2264 		nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2265 			ATL1_MAX_TX_BUF_LEN;
2266 		for (i = 0; i < nseg; i++) {
2267 			buffer_info = &tpd_ring->buffer_info[next_to_use];
2268 			BUG_ON(buffer_info->skb);
2269 
2270 			buffer_info->skb = NULL;
2271 			buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2272 				ATL1_MAX_TX_BUF_LEN : buf_len;
2273 			buf_len -= buffer_info->length;
2274 			buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2275 				frag, i * ATL1_MAX_TX_BUF_LEN,
2276 				buffer_info->length, DMA_TO_DEVICE);
2277 
2278 			if (++next_to_use == tpd_ring->count)
2279 				next_to_use = 0;
2280 		}
2281 	}
2282 
2283 	/* last tpd's buffer-info */
2284 	buffer_info->skb = skb;
2285 }
2286 
2287 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2288        struct tx_packet_desc *ptpd)
2289 {
2290 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2291 	struct atl1_buffer *buffer_info;
2292 	struct tx_packet_desc *tpd;
2293 	u16 j;
2294 	u32 val;
2295 	u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2296 
2297 	for (j = 0; j < count; j++) {
2298 		buffer_info = &tpd_ring->buffer_info[next_to_use];
2299 		tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2300 		if (tpd != ptpd)
2301 			memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2302 		tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2303 		tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2304 		tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2305 			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2306 
2307 		/*
2308 		 * if this is the first packet in a TSO chain, set
2309 		 * TPD_HDRFLAG, otherwise, clear it.
2310 		 */
2311 		val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2312 			TPD_SEGMENT_EN_MASK;
2313 		if (val) {
2314 			if (!j)
2315 				tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2316 			else
2317 				tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2318 		}
2319 
2320 		if (j == (count - 1))
2321 			tpd->word3 |= 1 << TPD_EOP_SHIFT;
2322 
2323 		if (++next_to_use == tpd_ring->count)
2324 			next_to_use = 0;
2325 	}
2326 	/*
2327 	 * Force memory writes to complete before letting h/w
2328 	 * know there are new descriptors to fetch.  (Only
2329 	 * applicable for weak-ordered memory model archs,
2330 	 * such as IA-64).
2331 	 */
2332 	wmb();
2333 
2334 	atomic_set(&tpd_ring->next_to_use, next_to_use);
2335 }
2336 
2337 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2338 					 struct net_device *netdev)
2339 {
2340 	struct atl1_adapter *adapter = netdev_priv(netdev);
2341 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2342 	int len;
2343 	int tso;
2344 	int count = 1;
2345 	int ret_val;
2346 	struct tx_packet_desc *ptpd;
2347 	u16 vlan_tag;
2348 	unsigned int nr_frags = 0;
2349 	unsigned int mss = 0;
2350 	unsigned int f;
2351 	unsigned int proto_hdr_len;
2352 
2353 	len = skb_headlen(skb);
2354 
2355 	if (unlikely(skb->len <= 0)) {
2356 		dev_kfree_skb_any(skb);
2357 		return NETDEV_TX_OK;
2358 	}
2359 
2360 	nr_frags = skb_shinfo(skb)->nr_frags;
2361 	for (f = 0; f < nr_frags; f++) {
2362 		unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2363 		count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2364 			 ATL1_MAX_TX_BUF_LEN;
2365 	}
2366 
2367 	mss = skb_shinfo(skb)->gso_size;
2368 	if (mss) {
2369 		if (skb->protocol == htons(ETH_P_IP)) {
2370 			proto_hdr_len = (skb_transport_offset(skb) +
2371 					 tcp_hdrlen(skb));
2372 			if (unlikely(proto_hdr_len > len)) {
2373 				dev_kfree_skb_any(skb);
2374 				return NETDEV_TX_OK;
2375 			}
2376 			/* need additional TPD ? */
2377 			if (proto_hdr_len != len)
2378 				count += (len - proto_hdr_len +
2379 					ATL1_MAX_TX_BUF_LEN - 1) /
2380 					ATL1_MAX_TX_BUF_LEN;
2381 		}
2382 	}
2383 
2384 	if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2385 		/* not enough descriptors */
2386 		netif_stop_queue(netdev);
2387 		if (netif_msg_tx_queued(adapter))
2388 			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2389 				"tx busy\n");
2390 		return NETDEV_TX_BUSY;
2391 	}
2392 
2393 	ptpd = ATL1_TPD_DESC(tpd_ring,
2394 		(u16) atomic_read(&tpd_ring->next_to_use));
2395 	memset(ptpd, 0, sizeof(struct tx_packet_desc));
2396 
2397 	if (skb_vlan_tag_present(skb)) {
2398 		vlan_tag = skb_vlan_tag_get(skb);
2399 		vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2400 			((vlan_tag >> 9) & 0x8);
2401 		ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2402 		ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2403 			TPD_VLANTAG_SHIFT;
2404 	}
2405 
2406 	tso = atl1_tso(adapter, skb, ptpd);
2407 	if (tso < 0) {
2408 		dev_kfree_skb_any(skb);
2409 		return NETDEV_TX_OK;
2410 	}
2411 
2412 	if (!tso) {
2413 		ret_val = atl1_tx_csum(adapter, skb, ptpd);
2414 		if (ret_val < 0) {
2415 			dev_kfree_skb_any(skb);
2416 			return NETDEV_TX_OK;
2417 		}
2418 	}
2419 
2420 	atl1_tx_map(adapter, skb, ptpd);
2421 	atl1_tx_queue(adapter, count, ptpd);
2422 	atl1_update_mailbox(adapter);
2423 	return NETDEV_TX_OK;
2424 }
2425 
2426 static int atl1_rings_clean(struct napi_struct *napi, int budget)
2427 {
2428 	struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2429 	int work_done = atl1_intr_rx(adapter, budget);
2430 
2431 	if (atl1_intr_tx(adapter))
2432 		work_done = budget;
2433 
2434 	/* Let's come again to process some more packets */
2435 	if (work_done >= budget)
2436 		return work_done;
2437 
2438 	napi_complete_done(napi, work_done);
2439 	/* re-enable Interrupt */
2440 	if (likely(adapter->int_enabled))
2441 		atlx_imr_set(adapter, IMR_NORMAL_MASK);
2442 	return work_done;
2443 }
2444 
2445 static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2446 {
2447 	if (!napi_schedule_prep(&adapter->napi))
2448 		/* It is possible in case even the RX/TX ints are disabled via IMR
2449 		 * register the ISR bits are set anyway (but do not produce IRQ).
2450 		 * To handle such situation the napi functions used to check is
2451 		 * something scheduled or not.
2452 		 */
2453 		return 0;
2454 
2455 	__napi_schedule(&adapter->napi);
2456 
2457 	/*
2458 	 * Disable RX/TX ints via IMR register if it is
2459 	 * allowed. NAPI handler must reenable them in same
2460 	 * way.
2461 	 */
2462 	if (!adapter->int_enabled)
2463 		return 1;
2464 
2465 	atlx_imr_set(adapter, IMR_NORXTX_MASK);
2466 	return 1;
2467 }
2468 
2469 /**
2470  * atl1_intr - Interrupt Handler
2471  * @irq: interrupt number
2472  * @data: pointer to a network interface device structure
2473  */
2474 static irqreturn_t atl1_intr(int irq, void *data)
2475 {
2476 	struct atl1_adapter *adapter = netdev_priv(data);
2477 	u32 status;
2478 
2479 	status = adapter->cmb.cmb->int_stats;
2480 	if (!status)
2481 		return IRQ_NONE;
2482 
2483 	/* clear CMB interrupt status at once,
2484 	 * but leave rx/tx interrupt status in case it should be dropped
2485 	 * only if rx/tx processing queued. In other case interrupt
2486 	 * can be lost.
2487 	 */
2488 	adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2489 
2490 	if (status & ISR_GPHY)	/* clear phy status */
2491 		atlx_clear_phy_int(adapter);
2492 
2493 	/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2494 	iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2495 
2496 	/* check if SMB intr */
2497 	if (status & ISR_SMB)
2498 		atl1_inc_smb(adapter);
2499 
2500 	/* check if PCIE PHY Link down */
2501 	if (status & ISR_PHY_LINKDOWN) {
2502 		if (netif_msg_intr(adapter))
2503 			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2504 				"pcie phy link down %x\n", status);
2505 		if (netif_running(adapter->netdev)) {	/* reset MAC */
2506 			atlx_irq_disable(adapter);
2507 			schedule_work(&adapter->reset_dev_task);
2508 			return IRQ_HANDLED;
2509 		}
2510 	}
2511 
2512 	/* check if DMA read/write error ? */
2513 	if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2514 		if (netif_msg_intr(adapter))
2515 			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2516 				"pcie DMA r/w error (status = 0x%x)\n",
2517 				status);
2518 		atlx_irq_disable(adapter);
2519 		schedule_work(&adapter->reset_dev_task);
2520 		return IRQ_HANDLED;
2521 	}
2522 
2523 	/* link event */
2524 	if (status & ISR_GPHY) {
2525 		adapter->soft_stats.tx_carrier_errors++;
2526 		atl1_check_for_link(adapter);
2527 	}
2528 
2529 	/* transmit or receive event */
2530 	if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2531 	    atl1_sched_rings_clean(adapter))
2532 		adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2533 					      ~(ISR_CMB_TX | ISR_CMB_RX);
2534 
2535 	/* rx exception */
2536 	if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2537 		ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2538 		ISR_HOST_RRD_OV))) {
2539 		if (netif_msg_intr(adapter))
2540 			dev_printk(KERN_DEBUG,
2541 				&adapter->pdev->dev,
2542 				"rx exception, ISR = 0x%x\n",
2543 				status);
2544 		atl1_sched_rings_clean(adapter);
2545 	}
2546 
2547 	/* re-enable Interrupt */
2548 	iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2549 	return IRQ_HANDLED;
2550 }
2551 
2552 
2553 /**
2554  * atl1_phy_config - Timer Call-back
2555  * @data: pointer to netdev cast into an unsigned long
2556  */
2557 static void atl1_phy_config(struct timer_list *t)
2558 {
2559 	struct atl1_adapter *adapter = from_timer(adapter, t,
2560 						  phy_config_timer);
2561 	struct atl1_hw *hw = &adapter->hw;
2562 	unsigned long flags;
2563 
2564 	spin_lock_irqsave(&adapter->lock, flags);
2565 	adapter->phy_timer_pending = false;
2566 	atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2567 	atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2568 	atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2569 	spin_unlock_irqrestore(&adapter->lock, flags);
2570 }
2571 
2572 /*
2573  * Orphaned vendor comment left intact here:
2574  * <vendor comment>
2575  * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2576  * will assert. We do soft reset <0x1400=1> according
2577  * with the SPEC. BUT, it seemes that PCIE or DMA
2578  * state-machine will not be reset. DMAR_TO_INT will
2579  * assert again and again.
2580  * </vendor comment>
2581  */
2582 
2583 static int atl1_reset(struct atl1_adapter *adapter)
2584 {
2585 	int ret;
2586 	ret = atl1_reset_hw(&adapter->hw);
2587 	if (ret)
2588 		return ret;
2589 	return atl1_init_hw(&adapter->hw);
2590 }
2591 
2592 static s32 atl1_up(struct atl1_adapter *adapter)
2593 {
2594 	struct net_device *netdev = adapter->netdev;
2595 	int err;
2596 	int irq_flags = 0;
2597 
2598 	/* hardware has been reset, we need to reload some things */
2599 	atlx_set_multi(netdev);
2600 	atl1_init_ring_ptrs(adapter);
2601 	atlx_restore_vlan(adapter);
2602 	err = atl1_alloc_rx_buffers(adapter);
2603 	if (unlikely(!err))
2604 		/* no RX BUFFER allocated */
2605 		return -ENOMEM;
2606 
2607 	if (unlikely(atl1_configure(adapter))) {
2608 		err = -EIO;
2609 		goto err_up;
2610 	}
2611 
2612 	err = pci_enable_msi(adapter->pdev);
2613 	if (err) {
2614 		if (netif_msg_ifup(adapter))
2615 			dev_info(&adapter->pdev->dev,
2616 				"Unable to enable MSI: %d\n", err);
2617 		irq_flags |= IRQF_SHARED;
2618 	}
2619 
2620 	err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2621 			netdev->name, netdev);
2622 	if (unlikely(err))
2623 		goto err_up;
2624 
2625 	napi_enable(&adapter->napi);
2626 	atlx_irq_enable(adapter);
2627 	atl1_check_link(adapter);
2628 	netif_start_queue(netdev);
2629 	return 0;
2630 
2631 err_up:
2632 	pci_disable_msi(adapter->pdev);
2633 	/* free rx_buffers */
2634 	atl1_clean_rx_ring(adapter);
2635 	return err;
2636 }
2637 
2638 static void atl1_down(struct atl1_adapter *adapter)
2639 {
2640 	struct net_device *netdev = adapter->netdev;
2641 
2642 	napi_disable(&adapter->napi);
2643 	netif_stop_queue(netdev);
2644 	del_timer_sync(&adapter->phy_config_timer);
2645 	adapter->phy_timer_pending = false;
2646 
2647 	atlx_irq_disable(adapter);
2648 	free_irq(adapter->pdev->irq, netdev);
2649 	pci_disable_msi(adapter->pdev);
2650 	atl1_reset_hw(&adapter->hw);
2651 	adapter->cmb.cmb->int_stats = 0;
2652 
2653 	adapter->link_speed = SPEED_0;
2654 	adapter->link_duplex = -1;
2655 	netif_carrier_off(netdev);
2656 
2657 	atl1_clean_tx_ring(adapter);
2658 	atl1_clean_rx_ring(adapter);
2659 }
2660 
2661 static void atl1_reset_dev_task(struct work_struct *work)
2662 {
2663 	struct atl1_adapter *adapter =
2664 		container_of(work, struct atl1_adapter, reset_dev_task);
2665 	struct net_device *netdev = adapter->netdev;
2666 
2667 	netif_device_detach(netdev);
2668 	atl1_down(adapter);
2669 	atl1_up(adapter);
2670 	netif_device_attach(netdev);
2671 }
2672 
2673 /**
2674  * atl1_change_mtu - Change the Maximum Transfer Unit
2675  * @netdev: network interface device structure
2676  * @new_mtu: new value for maximum frame size
2677  *
2678  * Returns 0 on success, negative on failure
2679  */
2680 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2681 {
2682 	struct atl1_adapter *adapter = netdev_priv(netdev);
2683 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2684 
2685 	adapter->hw.max_frame_size = max_frame;
2686 	adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2687 	adapter->rx_buffer_len = (max_frame + 7) & ~7;
2688 	adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2689 
2690 	netdev->mtu = new_mtu;
2691 	if (netif_running(netdev)) {
2692 		atl1_down(adapter);
2693 		atl1_up(adapter);
2694 	}
2695 
2696 	return 0;
2697 }
2698 
2699 /**
2700  * atl1_open - Called when a network interface is made active
2701  * @netdev: network interface device structure
2702  *
2703  * Returns 0 on success, negative value on failure
2704  *
2705  * The open entry point is called when a network interface is made
2706  * active by the system (IFF_UP).  At this point all resources needed
2707  * for transmit and receive operations are allocated, the interrupt
2708  * handler is registered with the OS, the watchdog timer is started,
2709  * and the stack is notified that the interface is ready.
2710  */
2711 static int atl1_open(struct net_device *netdev)
2712 {
2713 	struct atl1_adapter *adapter = netdev_priv(netdev);
2714 	int err;
2715 
2716 	netif_carrier_off(netdev);
2717 
2718 	/* allocate transmit descriptors */
2719 	err = atl1_setup_ring_resources(adapter);
2720 	if (err)
2721 		return err;
2722 
2723 	err = atl1_up(adapter);
2724 	if (err)
2725 		goto err_up;
2726 
2727 	return 0;
2728 
2729 err_up:
2730 	atl1_reset(adapter);
2731 	return err;
2732 }
2733 
2734 /**
2735  * atl1_close - Disables a network interface
2736  * @netdev: network interface device structure
2737  *
2738  * Returns 0, this is not allowed to fail
2739  *
2740  * The close entry point is called when an interface is de-activated
2741  * by the OS.  The hardware is still under the drivers control, but
2742  * needs to be disabled.  A global MAC reset is issued to stop the
2743  * hardware, and all transmit and receive resources are freed.
2744  */
2745 static int atl1_close(struct net_device *netdev)
2746 {
2747 	struct atl1_adapter *adapter = netdev_priv(netdev);
2748 	atl1_down(adapter);
2749 	atl1_free_ring_resources(adapter);
2750 	return 0;
2751 }
2752 
2753 #ifdef CONFIG_PM_SLEEP
2754 static int atl1_suspend(struct device *dev)
2755 {
2756 	struct net_device *netdev = dev_get_drvdata(dev);
2757 	struct atl1_adapter *adapter = netdev_priv(netdev);
2758 	struct atl1_hw *hw = &adapter->hw;
2759 	u32 ctrl = 0;
2760 	u32 wufc = adapter->wol;
2761 	u32 val;
2762 	u16 speed;
2763 	u16 duplex;
2764 
2765 	netif_device_detach(netdev);
2766 	if (netif_running(netdev))
2767 		atl1_down(adapter);
2768 
2769 	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2770 	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2771 	val = ctrl & BMSR_LSTATUS;
2772 	if (val)
2773 		wufc &= ~ATLX_WUFC_LNKC;
2774 	if (!wufc)
2775 		goto disable_wol;
2776 
2777 	if (val) {
2778 		val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2779 		if (val) {
2780 			if (netif_msg_ifdown(adapter))
2781 				dev_printk(KERN_DEBUG, dev,
2782 					"error getting speed/duplex\n");
2783 			goto disable_wol;
2784 		}
2785 
2786 		ctrl = 0;
2787 
2788 		/* enable magic packet WOL */
2789 		if (wufc & ATLX_WUFC_MAG)
2790 			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2791 		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2792 		ioread32(hw->hw_addr + REG_WOL_CTRL);
2793 
2794 		/* configure the mac */
2795 		ctrl = MAC_CTRL_RX_EN;
2796 		ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2797 			MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2798 		if (duplex == FULL_DUPLEX)
2799 			ctrl |= MAC_CTRL_DUPLX;
2800 		ctrl |= (((u32)adapter->hw.preamble_len &
2801 			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2802 		__atlx_vlan_mode(netdev->features, &ctrl);
2803 		if (wufc & ATLX_WUFC_MAG)
2804 			ctrl |= MAC_CTRL_BC_EN;
2805 		iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2806 		ioread32(hw->hw_addr + REG_MAC_CTRL);
2807 
2808 		/* poke the PHY */
2809 		ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2810 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2811 		iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2812 		ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2813 	} else {
2814 		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2815 		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2816 		ioread32(hw->hw_addr + REG_WOL_CTRL);
2817 		iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2818 		ioread32(hw->hw_addr + REG_MAC_CTRL);
2819 		hw->phy_configured = false;
2820 	}
2821 
2822 	return 0;
2823 
2824  disable_wol:
2825 	iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2826 	ioread32(hw->hw_addr + REG_WOL_CTRL);
2827 	ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2828 	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2829 	iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2830 	ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2831 	hw->phy_configured = false;
2832 
2833 	return 0;
2834 }
2835 
2836 static int atl1_resume(struct device *dev)
2837 {
2838 	struct net_device *netdev = dev_get_drvdata(dev);
2839 	struct atl1_adapter *adapter = netdev_priv(netdev);
2840 
2841 	iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2842 
2843 	atl1_reset_hw(&adapter->hw);
2844 
2845 	if (netif_running(netdev)) {
2846 		adapter->cmb.cmb->int_stats = 0;
2847 		atl1_up(adapter);
2848 	}
2849 	netif_device_attach(netdev);
2850 
2851 	return 0;
2852 }
2853 #endif
2854 
2855 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2856 
2857 static void atl1_shutdown(struct pci_dev *pdev)
2858 {
2859 	struct net_device *netdev = pci_get_drvdata(pdev);
2860 	struct atl1_adapter *adapter = netdev_priv(netdev);
2861 
2862 #ifdef CONFIG_PM_SLEEP
2863 	atl1_suspend(&pdev->dev);
2864 #endif
2865 	pci_wake_from_d3(pdev, adapter->wol);
2866 	pci_set_power_state(pdev, PCI_D3hot);
2867 }
2868 
2869 #ifdef CONFIG_NET_POLL_CONTROLLER
2870 static void atl1_poll_controller(struct net_device *netdev)
2871 {
2872 	disable_irq(netdev->irq);
2873 	atl1_intr(netdev->irq, netdev);
2874 	enable_irq(netdev->irq);
2875 }
2876 #endif
2877 
2878 static const struct net_device_ops atl1_netdev_ops = {
2879 	.ndo_open		= atl1_open,
2880 	.ndo_stop		= atl1_close,
2881 	.ndo_start_xmit		= atl1_xmit_frame,
2882 	.ndo_set_rx_mode	= atlx_set_multi,
2883 	.ndo_validate_addr	= eth_validate_addr,
2884 	.ndo_set_mac_address	= atl1_set_mac,
2885 	.ndo_change_mtu		= atl1_change_mtu,
2886 	.ndo_fix_features	= atlx_fix_features,
2887 	.ndo_set_features	= atlx_set_features,
2888 	.ndo_do_ioctl		= atlx_ioctl,
2889 	.ndo_tx_timeout		= atlx_tx_timeout,
2890 #ifdef CONFIG_NET_POLL_CONTROLLER
2891 	.ndo_poll_controller	= atl1_poll_controller,
2892 #endif
2893 };
2894 
2895 /**
2896  * atl1_probe - Device Initialization Routine
2897  * @pdev: PCI device information struct
2898  * @ent: entry in atl1_pci_tbl
2899  *
2900  * Returns 0 on success, negative on failure
2901  *
2902  * atl1_probe initializes an adapter identified by a pci_dev structure.
2903  * The OS initialization, configuring of the adapter private structure,
2904  * and a hardware reset occur.
2905  */
2906 static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2907 {
2908 	struct net_device *netdev;
2909 	struct atl1_adapter *adapter;
2910 	static int cards_found = 0;
2911 	int err;
2912 
2913 	err = pci_enable_device(pdev);
2914 	if (err)
2915 		return err;
2916 
2917 	/*
2918 	 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2919 	 * shared register for the high 32 bits, so only a single, aligned,
2920 	 * 4 GB physical address range can be used at a time.
2921 	 *
2922 	 * Supporting 64-bit DMA on this hardware is more trouble than it's
2923 	 * worth.  It is far easier to limit to 32-bit DMA than update
2924 	 * various kernel subsystems to support the mechanics required by a
2925 	 * fixed-high-32-bit system.
2926 	 */
2927 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2928 	if (err) {
2929 		dev_err(&pdev->dev, "no usable DMA configuration\n");
2930 		goto err_dma;
2931 	}
2932 	/*
2933 	 * Mark all PCI regions associated with PCI device
2934 	 * pdev as being reserved by owner atl1_driver_name
2935 	 */
2936 	err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2937 	if (err)
2938 		goto err_request_regions;
2939 
2940 	/*
2941 	 * Enables bus-mastering on the device and calls
2942 	 * pcibios_set_master to do the needed arch specific settings
2943 	 */
2944 	pci_set_master(pdev);
2945 
2946 	netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2947 	if (!netdev) {
2948 		err = -ENOMEM;
2949 		goto err_alloc_etherdev;
2950 	}
2951 	SET_NETDEV_DEV(netdev, &pdev->dev);
2952 
2953 	pci_set_drvdata(pdev, netdev);
2954 	adapter = netdev_priv(netdev);
2955 	adapter->netdev = netdev;
2956 	adapter->pdev = pdev;
2957 	adapter->hw.back = adapter;
2958 	adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2959 
2960 	adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2961 	if (!adapter->hw.hw_addr) {
2962 		err = -EIO;
2963 		goto err_pci_iomap;
2964 	}
2965 	/* get device revision number */
2966 	adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2967 		(REG_MASTER_CTRL + 2));
2968 	if (netif_msg_probe(adapter))
2969 		dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2970 
2971 	/* set default ring resource counts */
2972 	adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2973 	adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2974 
2975 	adapter->mii.dev = netdev;
2976 	adapter->mii.mdio_read = mdio_read;
2977 	adapter->mii.mdio_write = mdio_write;
2978 	adapter->mii.phy_id_mask = 0x1f;
2979 	adapter->mii.reg_num_mask = 0x1f;
2980 
2981 	netdev->netdev_ops = &atl1_netdev_ops;
2982 	netdev->watchdog_timeo = 5 * HZ;
2983 	netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
2984 
2985 	netdev->ethtool_ops = &atl1_ethtool_ops;
2986 	adapter->bd_number = cards_found;
2987 
2988 	/* setup the private structure */
2989 	err = atl1_sw_init(adapter);
2990 	if (err)
2991 		goto err_common;
2992 
2993 	netdev->features = NETIF_F_HW_CSUM;
2994 	netdev->features |= NETIF_F_SG;
2995 	netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
2996 
2997 	netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
2998 			      NETIF_F_HW_VLAN_CTAG_RX;
2999 
3000 	/* is this valid? see atl1_setup_mac_ctrl() */
3001 	netdev->features |= NETIF_F_RXCSUM;
3002 
3003 	/* MTU range: 42 - 10218 */
3004 	netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN);
3005 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE -
3006 			  (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3007 
3008 	/*
3009 	 * patch for some L1 of old version,
3010 	 * the final version of L1 may not need these
3011 	 * patches
3012 	 */
3013 	/* atl1_pcie_patch(adapter); */
3014 
3015 	/* really reset GPHY core */
3016 	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3017 
3018 	/*
3019 	 * reset the controller to
3020 	 * put the device in a known good starting state
3021 	 */
3022 	if (atl1_reset_hw(&adapter->hw)) {
3023 		err = -EIO;
3024 		goto err_common;
3025 	}
3026 
3027 	/* copy the MAC address out of the EEPROM */
3028 	if (atl1_read_mac_addr(&adapter->hw)) {
3029 		/* mark random mac */
3030 		netdev->addr_assign_type = NET_ADDR_RANDOM;
3031 	}
3032 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3033 
3034 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3035 		err = -EIO;
3036 		goto err_common;
3037 	}
3038 
3039 	atl1_check_options(adapter);
3040 
3041 	/* pre-init the MAC, and setup link */
3042 	err = atl1_init_hw(&adapter->hw);
3043 	if (err) {
3044 		err = -EIO;
3045 		goto err_common;
3046 	}
3047 
3048 	atl1_pcie_patch(adapter);
3049 	/* assume we have no link for now */
3050 	netif_carrier_off(netdev);
3051 
3052 	timer_setup(&adapter->phy_config_timer, atl1_phy_config, 0);
3053 	adapter->phy_timer_pending = false;
3054 
3055 	INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3056 
3057 	INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3058 
3059 	err = register_netdev(netdev);
3060 	if (err)
3061 		goto err_common;
3062 
3063 	cards_found++;
3064 	atl1_via_workaround(adapter);
3065 	return 0;
3066 
3067 err_common:
3068 	pci_iounmap(pdev, adapter->hw.hw_addr);
3069 err_pci_iomap:
3070 	free_netdev(netdev);
3071 err_alloc_etherdev:
3072 	pci_release_regions(pdev);
3073 err_dma:
3074 err_request_regions:
3075 	pci_disable_device(pdev);
3076 	return err;
3077 }
3078 
3079 /**
3080  * atl1_remove - Device Removal Routine
3081  * @pdev: PCI device information struct
3082  *
3083  * atl1_remove is called by the PCI subsystem to alert the driver
3084  * that it should release a PCI device.  The could be caused by a
3085  * Hot-Plug event, or because the driver is going to be removed from
3086  * memory.
3087  */
3088 static void atl1_remove(struct pci_dev *pdev)
3089 {
3090 	struct net_device *netdev = pci_get_drvdata(pdev);
3091 	struct atl1_adapter *adapter;
3092 	/* Device not available. Return. */
3093 	if (!netdev)
3094 		return;
3095 
3096 	adapter = netdev_priv(netdev);
3097 
3098 	/*
3099 	 * Some atl1 boards lack persistent storage for their MAC, and get it
3100 	 * from the BIOS during POST.  If we've been messing with the MAC
3101 	 * address, we need to save the permanent one.
3102 	 */
3103 	if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3104 					adapter->hw.perm_mac_addr)) {
3105 		memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3106 			ETH_ALEN);
3107 		atl1_set_mac_addr(&adapter->hw);
3108 	}
3109 
3110 	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3111 	unregister_netdev(netdev);
3112 	pci_iounmap(pdev, adapter->hw.hw_addr);
3113 	pci_release_regions(pdev);
3114 	free_netdev(netdev);
3115 	pci_disable_device(pdev);
3116 }
3117 
3118 static struct pci_driver atl1_driver = {
3119 	.name = ATLX_DRIVER_NAME,
3120 	.id_table = atl1_pci_tbl,
3121 	.probe = atl1_probe,
3122 	.remove = atl1_remove,
3123 	.shutdown = atl1_shutdown,
3124 	.driver.pm = &atl1_pm_ops,
3125 };
3126 
3127 struct atl1_stats {
3128 	char stat_string[ETH_GSTRING_LEN];
3129 	int sizeof_stat;
3130 	int stat_offset;
3131 };
3132 
3133 #define ATL1_STAT(m) \
3134 	sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3135 
3136 static struct atl1_stats atl1_gstrings_stats[] = {
3137 	{"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3138 	{"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3139 	{"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3140 	{"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3141 	{"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3142 	{"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3143 	{"multicast", ATL1_STAT(soft_stats.multicast)},
3144 	{"collisions", ATL1_STAT(soft_stats.collisions)},
3145 	{"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3146 	{"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3147 	{"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3148 	{"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3149 	{"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3150 	{"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3151 	{"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3152 	{"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3153 	{"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3154 	{"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3155 	{"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3156 	{"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3157 	{"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3158 	{"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3159 	{"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3160 	{"tx_underrun", ATL1_STAT(soft_stats.tx_underrun)},
3161 	{"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3162 	{"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3163 	{"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3164 	{"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3165 	{"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3166 };
3167 
3168 static void atl1_get_ethtool_stats(struct net_device *netdev,
3169 	struct ethtool_stats *stats, u64 *data)
3170 {
3171 	struct atl1_adapter *adapter = netdev_priv(netdev);
3172 	int i;
3173 	char *p;
3174 
3175 	for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3176 		p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3177 		data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3178 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3179 	}
3180 
3181 }
3182 
3183 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3184 {
3185 	switch (sset) {
3186 	case ETH_SS_STATS:
3187 		return ARRAY_SIZE(atl1_gstrings_stats);
3188 	default:
3189 		return -EOPNOTSUPP;
3190 	}
3191 }
3192 
3193 static int atl1_get_link_ksettings(struct net_device *netdev,
3194 				   struct ethtool_link_ksettings *cmd)
3195 {
3196 	struct atl1_adapter *adapter = netdev_priv(netdev);
3197 	struct atl1_hw *hw = &adapter->hw;
3198 	u32 supported, advertising;
3199 
3200 	supported = (SUPPORTED_10baseT_Half |
3201 			   SUPPORTED_10baseT_Full |
3202 			   SUPPORTED_100baseT_Half |
3203 			   SUPPORTED_100baseT_Full |
3204 			   SUPPORTED_1000baseT_Full |
3205 			   SUPPORTED_Autoneg | SUPPORTED_TP);
3206 	advertising = ADVERTISED_TP;
3207 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3208 	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3209 		advertising |= ADVERTISED_Autoneg;
3210 		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3211 			advertising |= ADVERTISED_Autoneg;
3212 			advertising |=
3213 			    (ADVERTISED_10baseT_Half |
3214 			     ADVERTISED_10baseT_Full |
3215 			     ADVERTISED_100baseT_Half |
3216 			     ADVERTISED_100baseT_Full |
3217 			     ADVERTISED_1000baseT_Full);
3218 		} else
3219 			advertising |= (ADVERTISED_1000baseT_Full);
3220 	}
3221 	cmd->base.port = PORT_TP;
3222 	cmd->base.phy_address = 0;
3223 
3224 	if (netif_carrier_ok(adapter->netdev)) {
3225 		u16 link_speed, link_duplex;
3226 		atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3227 		cmd->base.speed = link_speed;
3228 		if (link_duplex == FULL_DUPLEX)
3229 			cmd->base.duplex = DUPLEX_FULL;
3230 		else
3231 			cmd->base.duplex = DUPLEX_HALF;
3232 	} else {
3233 		cmd->base.speed = SPEED_UNKNOWN;
3234 		cmd->base.duplex = DUPLEX_UNKNOWN;
3235 	}
3236 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3237 	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3238 		cmd->base.autoneg = AUTONEG_ENABLE;
3239 	else
3240 		cmd->base.autoneg = AUTONEG_DISABLE;
3241 
3242 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3243 						supported);
3244 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3245 						advertising);
3246 
3247 	return 0;
3248 }
3249 
3250 static int atl1_set_link_ksettings(struct net_device *netdev,
3251 				   const struct ethtool_link_ksettings *cmd)
3252 {
3253 	struct atl1_adapter *adapter = netdev_priv(netdev);
3254 	struct atl1_hw *hw = &adapter->hw;
3255 	u16 phy_data;
3256 	int ret_val = 0;
3257 	u16 old_media_type = hw->media_type;
3258 
3259 	if (netif_running(adapter->netdev)) {
3260 		if (netif_msg_link(adapter))
3261 			dev_dbg(&adapter->pdev->dev,
3262 				"ethtool shutting down adapter\n");
3263 		atl1_down(adapter);
3264 	}
3265 
3266 	if (cmd->base.autoneg == AUTONEG_ENABLE)
3267 		hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3268 	else {
3269 		u32 speed = cmd->base.speed;
3270 		if (speed == SPEED_1000) {
3271 			if (cmd->base.duplex != DUPLEX_FULL) {
3272 				if (netif_msg_link(adapter))
3273 					dev_warn(&adapter->pdev->dev,
3274 						"1000M half is invalid\n");
3275 				ret_val = -EINVAL;
3276 				goto exit_sset;
3277 			}
3278 			hw->media_type = MEDIA_TYPE_1000M_FULL;
3279 		} else if (speed == SPEED_100) {
3280 			if (cmd->base.duplex == DUPLEX_FULL)
3281 				hw->media_type = MEDIA_TYPE_100M_FULL;
3282 			else
3283 				hw->media_type = MEDIA_TYPE_100M_HALF;
3284 		} else {
3285 			if (cmd->base.duplex == DUPLEX_FULL)
3286 				hw->media_type = MEDIA_TYPE_10M_FULL;
3287 			else
3288 				hw->media_type = MEDIA_TYPE_10M_HALF;
3289 		}
3290 	}
3291 
3292 	if (atl1_phy_setup_autoneg_adv(hw)) {
3293 		ret_val = -EINVAL;
3294 		if (netif_msg_link(adapter))
3295 			dev_warn(&adapter->pdev->dev,
3296 				"invalid ethtool speed/duplex setting\n");
3297 		goto exit_sset;
3298 	}
3299 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3300 	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3301 		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3302 	else {
3303 		switch (hw->media_type) {
3304 		case MEDIA_TYPE_100M_FULL:
3305 			phy_data =
3306 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3307 			    MII_CR_RESET;
3308 			break;
3309 		case MEDIA_TYPE_100M_HALF:
3310 			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3311 			break;
3312 		case MEDIA_TYPE_10M_FULL:
3313 			phy_data =
3314 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3315 			break;
3316 		default:
3317 			/* MEDIA_TYPE_10M_HALF: */
3318 			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3319 			break;
3320 		}
3321 	}
3322 	atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3323 exit_sset:
3324 	if (ret_val)
3325 		hw->media_type = old_media_type;
3326 
3327 	if (netif_running(adapter->netdev)) {
3328 		if (netif_msg_link(adapter))
3329 			dev_dbg(&adapter->pdev->dev,
3330 				"ethtool starting adapter\n");
3331 		atl1_up(adapter);
3332 	} else if (!ret_val) {
3333 		if (netif_msg_link(adapter))
3334 			dev_dbg(&adapter->pdev->dev,
3335 				"ethtool resetting adapter\n");
3336 		atl1_reset(adapter);
3337 	}
3338 	return ret_val;
3339 }
3340 
3341 static void atl1_get_drvinfo(struct net_device *netdev,
3342 	struct ethtool_drvinfo *drvinfo)
3343 {
3344 	struct atl1_adapter *adapter = netdev_priv(netdev);
3345 
3346 	strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3347 	strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3348 		sizeof(drvinfo->version));
3349 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3350 		sizeof(drvinfo->bus_info));
3351 }
3352 
3353 static void atl1_get_wol(struct net_device *netdev,
3354 	struct ethtool_wolinfo *wol)
3355 {
3356 	struct atl1_adapter *adapter = netdev_priv(netdev);
3357 
3358 	wol->supported = WAKE_MAGIC;
3359 	wol->wolopts = 0;
3360 	if (adapter->wol & ATLX_WUFC_MAG)
3361 		wol->wolopts |= WAKE_MAGIC;
3362 }
3363 
3364 static int atl1_set_wol(struct net_device *netdev,
3365 	struct ethtool_wolinfo *wol)
3366 {
3367 	struct atl1_adapter *adapter = netdev_priv(netdev);
3368 
3369 	if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3370 		WAKE_ARP | WAKE_MAGICSECURE))
3371 		return -EOPNOTSUPP;
3372 	adapter->wol = 0;
3373 	if (wol->wolopts & WAKE_MAGIC)
3374 		adapter->wol |= ATLX_WUFC_MAG;
3375 
3376 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3377 
3378 	return 0;
3379 }
3380 
3381 static u32 atl1_get_msglevel(struct net_device *netdev)
3382 {
3383 	struct atl1_adapter *adapter = netdev_priv(netdev);
3384 	return adapter->msg_enable;
3385 }
3386 
3387 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3388 {
3389 	struct atl1_adapter *adapter = netdev_priv(netdev);
3390 	adapter->msg_enable = value;
3391 }
3392 
3393 static int atl1_get_regs_len(struct net_device *netdev)
3394 {
3395 	return ATL1_REG_COUNT * sizeof(u32);
3396 }
3397 
3398 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3399 	void *p)
3400 {
3401 	struct atl1_adapter *adapter = netdev_priv(netdev);
3402 	struct atl1_hw *hw = &adapter->hw;
3403 	unsigned int i;
3404 	u32 *regbuf = p;
3405 
3406 	for (i = 0; i < ATL1_REG_COUNT; i++) {
3407 		/*
3408 		 * This switch statement avoids reserved regions
3409 		 * of register space.
3410 		 */
3411 		switch (i) {
3412 		case 6 ... 9:
3413 		case 14:
3414 		case 29 ... 31:
3415 		case 34 ... 63:
3416 		case 75 ... 127:
3417 		case 136 ... 1023:
3418 		case 1027 ... 1087:
3419 		case 1091 ... 1151:
3420 		case 1194 ... 1195:
3421 		case 1200 ... 1201:
3422 		case 1206 ... 1213:
3423 		case 1216 ... 1279:
3424 		case 1290 ... 1311:
3425 		case 1323 ... 1343:
3426 		case 1358 ... 1359:
3427 		case 1368 ... 1375:
3428 		case 1378 ... 1383:
3429 		case 1388 ... 1391:
3430 		case 1393 ... 1395:
3431 		case 1402 ... 1403:
3432 		case 1410 ... 1471:
3433 		case 1522 ... 1535:
3434 			/* reserved region; don't read it */
3435 			regbuf[i] = 0;
3436 			break;
3437 		default:
3438 			/* unreserved region */
3439 			regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3440 		}
3441 	}
3442 }
3443 
3444 static void atl1_get_ringparam(struct net_device *netdev,
3445 	struct ethtool_ringparam *ring)
3446 {
3447 	struct atl1_adapter *adapter = netdev_priv(netdev);
3448 	struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3449 	struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3450 
3451 	ring->rx_max_pending = ATL1_MAX_RFD;
3452 	ring->tx_max_pending = ATL1_MAX_TPD;
3453 	ring->rx_pending = rxdr->count;
3454 	ring->tx_pending = txdr->count;
3455 }
3456 
3457 static int atl1_set_ringparam(struct net_device *netdev,
3458 	struct ethtool_ringparam *ring)
3459 {
3460 	struct atl1_adapter *adapter = netdev_priv(netdev);
3461 	struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3462 	struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3463 	struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3464 
3465 	struct atl1_tpd_ring tpd_old, tpd_new;
3466 	struct atl1_rfd_ring rfd_old, rfd_new;
3467 	struct atl1_rrd_ring rrd_old, rrd_new;
3468 	struct atl1_ring_header rhdr_old, rhdr_new;
3469 	struct atl1_smb smb;
3470 	struct atl1_cmb cmb;
3471 	int err;
3472 
3473 	tpd_old = adapter->tpd_ring;
3474 	rfd_old = adapter->rfd_ring;
3475 	rrd_old = adapter->rrd_ring;
3476 	rhdr_old = adapter->ring_header;
3477 
3478 	if (netif_running(adapter->netdev))
3479 		atl1_down(adapter);
3480 
3481 	rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3482 	rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3483 			rfdr->count;
3484 	rfdr->count = (rfdr->count + 3) & ~3;
3485 	rrdr->count = rfdr->count;
3486 
3487 	tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3488 	tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3489 			tpdr->count;
3490 	tpdr->count = (tpdr->count + 3) & ~3;
3491 
3492 	if (netif_running(adapter->netdev)) {
3493 		/* try to get new resources before deleting old */
3494 		err = atl1_setup_ring_resources(adapter);
3495 		if (err)
3496 			goto err_setup_ring;
3497 
3498 		/*
3499 		 * save the new, restore the old in order to free it,
3500 		 * then restore the new back again
3501 		 */
3502 
3503 		rfd_new = adapter->rfd_ring;
3504 		rrd_new = adapter->rrd_ring;
3505 		tpd_new = adapter->tpd_ring;
3506 		rhdr_new = adapter->ring_header;
3507 		adapter->rfd_ring = rfd_old;
3508 		adapter->rrd_ring = rrd_old;
3509 		adapter->tpd_ring = tpd_old;
3510 		adapter->ring_header = rhdr_old;
3511 		/*
3512 		 * Save SMB and CMB, since atl1_free_ring_resources
3513 		 * will clear them.
3514 		 */
3515 		smb = adapter->smb;
3516 		cmb = adapter->cmb;
3517 		atl1_free_ring_resources(adapter);
3518 		adapter->rfd_ring = rfd_new;
3519 		adapter->rrd_ring = rrd_new;
3520 		adapter->tpd_ring = tpd_new;
3521 		adapter->ring_header = rhdr_new;
3522 		adapter->smb = smb;
3523 		adapter->cmb = cmb;
3524 
3525 		err = atl1_up(adapter);
3526 		if (err)
3527 			return err;
3528 	}
3529 	return 0;
3530 
3531 err_setup_ring:
3532 	adapter->rfd_ring = rfd_old;
3533 	adapter->rrd_ring = rrd_old;
3534 	adapter->tpd_ring = tpd_old;
3535 	adapter->ring_header = rhdr_old;
3536 	atl1_up(adapter);
3537 	return err;
3538 }
3539 
3540 static void atl1_get_pauseparam(struct net_device *netdev,
3541 	struct ethtool_pauseparam *epause)
3542 {
3543 	struct atl1_adapter *adapter = netdev_priv(netdev);
3544 	struct atl1_hw *hw = &adapter->hw;
3545 
3546 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3547 	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3548 		epause->autoneg = AUTONEG_ENABLE;
3549 	} else {
3550 		epause->autoneg = AUTONEG_DISABLE;
3551 	}
3552 	epause->rx_pause = 1;
3553 	epause->tx_pause = 1;
3554 }
3555 
3556 static int atl1_set_pauseparam(struct net_device *netdev,
3557 	struct ethtool_pauseparam *epause)
3558 {
3559 	struct atl1_adapter *adapter = netdev_priv(netdev);
3560 	struct atl1_hw *hw = &adapter->hw;
3561 
3562 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3563 	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3564 		epause->autoneg = AUTONEG_ENABLE;
3565 	} else {
3566 		epause->autoneg = AUTONEG_DISABLE;
3567 	}
3568 
3569 	epause->rx_pause = 1;
3570 	epause->tx_pause = 1;
3571 
3572 	return 0;
3573 }
3574 
3575 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3576 	u8 *data)
3577 {
3578 	u8 *p = data;
3579 	int i;
3580 
3581 	switch (stringset) {
3582 	case ETH_SS_STATS:
3583 		for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3584 			memcpy(p, atl1_gstrings_stats[i].stat_string,
3585 				ETH_GSTRING_LEN);
3586 			p += ETH_GSTRING_LEN;
3587 		}
3588 		break;
3589 	}
3590 }
3591 
3592 static int atl1_nway_reset(struct net_device *netdev)
3593 {
3594 	struct atl1_adapter *adapter = netdev_priv(netdev);
3595 	struct atl1_hw *hw = &adapter->hw;
3596 
3597 	if (netif_running(netdev)) {
3598 		u16 phy_data;
3599 		atl1_down(adapter);
3600 
3601 		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3602 			hw->media_type == MEDIA_TYPE_1000M_FULL) {
3603 			phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3604 		} else {
3605 			switch (hw->media_type) {
3606 			case MEDIA_TYPE_100M_FULL:
3607 				phy_data = MII_CR_FULL_DUPLEX |
3608 					MII_CR_SPEED_100 | MII_CR_RESET;
3609 				break;
3610 			case MEDIA_TYPE_100M_HALF:
3611 				phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3612 				break;
3613 			case MEDIA_TYPE_10M_FULL:
3614 				phy_data = MII_CR_FULL_DUPLEX |
3615 					MII_CR_SPEED_10 | MII_CR_RESET;
3616 				break;
3617 			default:
3618 				/* MEDIA_TYPE_10M_HALF */
3619 				phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3620 			}
3621 		}
3622 		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3623 		atl1_up(adapter);
3624 	}
3625 	return 0;
3626 }
3627 
3628 static const struct ethtool_ops atl1_ethtool_ops = {
3629 	.get_drvinfo		= atl1_get_drvinfo,
3630 	.get_wol		= atl1_get_wol,
3631 	.set_wol		= atl1_set_wol,
3632 	.get_msglevel		= atl1_get_msglevel,
3633 	.set_msglevel		= atl1_set_msglevel,
3634 	.get_regs_len		= atl1_get_regs_len,
3635 	.get_regs		= atl1_get_regs,
3636 	.get_ringparam		= atl1_get_ringparam,
3637 	.set_ringparam		= atl1_set_ringparam,
3638 	.get_pauseparam		= atl1_get_pauseparam,
3639 	.set_pauseparam		= atl1_set_pauseparam,
3640 	.get_link		= ethtool_op_get_link,
3641 	.get_strings		= atl1_get_strings,
3642 	.nway_reset		= atl1_nway_reset,
3643 	.get_ethtool_stats	= atl1_get_ethtool_stats,
3644 	.get_sset_count		= atl1_get_sset_count,
3645 	.get_link_ksettings	= atl1_get_link_ksettings,
3646 	.set_link_ksettings	= atl1_set_link_ksettings,
3647 };
3648 
3649 module_pci_driver(atl1_driver);
3650