1 /*
2  * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3  * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4  * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5  *
6  * Derived from Intel e1000 driver
7  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called COPYING.
25  *
26  * Contact Information:
27  * Xiong Huang <xiong.huang@atheros.com>
28  * Jie Yang <jie.yang@atheros.com>
29  * Chris Snook <csnook@redhat.com>
30  * Jay Cliburn <jcliburn@gmail.com>
31  *
32  * This version is adapted from the Attansic reference driver.
33  *
34  * TODO:
35  * Add more ethtool functions.
36  * Fix abstruse irq enable/disable condition described here:
37  *	http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38  *
39  * NEEDS TESTING:
40  * VLAN
41  * multicast
42  * promiscuous mode
43  * interrupt coalescing
44  * SMP torture testing
45  */
46 
47 #include <linux/atomic.h>
48 #include <asm/byteorder.h>
49 
50 #include <linux/compiler.h>
51 #include <linux/crc32.h>
52 #include <linux/delay.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/etherdevice.h>
55 #include <linux/hardirq.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_vlan.h>
58 #include <linux/in.h>
59 #include <linux/interrupt.h>
60 #include <linux/ip.h>
61 #include <linux/irqflags.h>
62 #include <linux/irqreturn.h>
63 #include <linux/jiffies.h>
64 #include <linux/mii.h>
65 #include <linux/module.h>
66 #include <linux/moduleparam.h>
67 #include <linux/net.h>
68 #include <linux/netdevice.h>
69 #include <linux/pci.h>
70 #include <linux/pci_ids.h>
71 #include <linux/pm.h>
72 #include <linux/skbuff.h>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/string.h>
76 #include <linux/tcp.h>
77 #include <linux/timer.h>
78 #include <linux/types.h>
79 #include <linux/workqueue.h>
80 
81 #include <net/checksum.h>
82 
83 #include "atl1.h"
84 
85 #define ATLX_DRIVER_VERSION "2.1.3"
86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
87 	      "Chris Snook <csnook@redhat.com>, "
88 	      "Jay Cliburn <jcliburn@gmail.com>");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(ATLX_DRIVER_VERSION);
91 
92 /* Temporary hack for merging atl1 and atl2 */
93 #include "atlx.c"
94 
95 static const struct ethtool_ops atl1_ethtool_ops;
96 
97 /*
98  * This is the only thing that needs to be changed to adjust the
99  * maximum number of ports that the driver can manage.
100  */
101 #define ATL1_MAX_NIC 4
102 
103 #define OPTION_UNSET    -1
104 #define OPTION_DISABLED 0
105 #define OPTION_ENABLED  1
106 
107 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
108 
109 /*
110  * Interrupt Moderate Timer in units of 2 us
111  *
112  * Valid Range: 10-65535
113  *
114  * Default Value: 100 (200us)
115  */
116 static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
117 static unsigned int num_int_mod_timer;
118 module_param_array_named(int_mod_timer, int_mod_timer, int,
119 	&num_int_mod_timer, 0);
120 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
121 
122 #define DEFAULT_INT_MOD_CNT	100	/* 200us */
123 #define MAX_INT_MOD_CNT		65000
124 #define MIN_INT_MOD_CNT		50
125 
126 struct atl1_option {
127 	enum { enable_option, range_option, list_option } type;
128 	char *name;
129 	char *err;
130 	int def;
131 	union {
132 		struct {	/* range_option info */
133 			int min;
134 			int max;
135 		} r;
136 		struct {	/* list_option info */
137 			int nr;
138 			struct atl1_opt_list {
139 				int i;
140 				char *str;
141 			} *p;
142 		} l;
143 	} arg;
144 };
145 
146 static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
147 	struct pci_dev *pdev)
148 {
149 	if (*value == OPTION_UNSET) {
150 		*value = opt->def;
151 		return 0;
152 	}
153 
154 	switch (opt->type) {
155 	case enable_option:
156 		switch (*value) {
157 		case OPTION_ENABLED:
158 			dev_info(&pdev->dev, "%s enabled\n", opt->name);
159 			return 0;
160 		case OPTION_DISABLED:
161 			dev_info(&pdev->dev, "%s disabled\n", opt->name);
162 			return 0;
163 		}
164 		break;
165 	case range_option:
166 		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
167 			dev_info(&pdev->dev, "%s set to %i\n", opt->name,
168 				*value);
169 			return 0;
170 		}
171 		break;
172 	case list_option:{
173 			int i;
174 			struct atl1_opt_list *ent;
175 
176 			for (i = 0; i < opt->arg.l.nr; i++) {
177 				ent = &opt->arg.l.p[i];
178 				if (*value == ent->i) {
179 					if (ent->str[0] != '\0')
180 						dev_info(&pdev->dev, "%s\n",
181 							ent->str);
182 					return 0;
183 				}
184 			}
185 		}
186 		break;
187 
188 	default:
189 		break;
190 	}
191 
192 	dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
193 		opt->name, *value, opt->err);
194 	*value = opt->def;
195 	return -1;
196 }
197 
198 /*
199  * atl1_check_options - Range Checking for Command Line Parameters
200  * @adapter: board private structure
201  *
202  * This routine checks all command line parameters for valid user
203  * input.  If an invalid value is given, or if no user specified
204  * value exists, a default value is used.  The final value is stored
205  * in a variable in the adapter structure.
206  */
207 static void __devinit atl1_check_options(struct atl1_adapter *adapter)
208 {
209 	struct pci_dev *pdev = adapter->pdev;
210 	int bd = adapter->bd_number;
211 	if (bd >= ATL1_MAX_NIC) {
212 		dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
213 		dev_notice(&pdev->dev, "using defaults for all values\n");
214 	}
215 	{			/* Interrupt Moderate Timer */
216 		struct atl1_option opt = {
217 			.type = range_option,
218 			.name = "Interrupt Moderator Timer",
219 			.err = "using default of "
220 				__MODULE_STRING(DEFAULT_INT_MOD_CNT),
221 			.def = DEFAULT_INT_MOD_CNT,
222 			.arg = {.r = {.min = MIN_INT_MOD_CNT,
223 					.max = MAX_INT_MOD_CNT} }
224 		};
225 		int val;
226 		if (num_int_mod_timer > bd) {
227 			val = int_mod_timer[bd];
228 			atl1_validate_option(&val, &opt, pdev);
229 			adapter->imt = (u16) val;
230 		} else
231 			adapter->imt = (u16) (opt.def);
232 	}
233 }
234 
235 /*
236  * atl1_pci_tbl - PCI Device ID Table
237  */
238 static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = {
239 	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
240 	/* required last entry */
241 	{0,}
242 };
243 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
244 
245 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
246 	NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
247 
248 static int debug = -1;
249 module_param(debug, int, 0);
250 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
251 
252 /*
253  * Reset the transmit and receive units; mask and clear all interrupts.
254  * hw - Struct containing variables accessed by shared code
255  * return : 0  or  idle status (if error)
256  */
257 static s32 atl1_reset_hw(struct atl1_hw *hw)
258 {
259 	struct pci_dev *pdev = hw->back->pdev;
260 	struct atl1_adapter *adapter = hw->back;
261 	u32 icr;
262 	int i;
263 
264 	/*
265 	 * Clear Interrupt mask to stop board from generating
266 	 * interrupts & Clear any pending interrupt events
267 	 */
268 	/*
269 	 * iowrite32(0, hw->hw_addr + REG_IMR);
270 	 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
271 	 */
272 
273 	/*
274 	 * Issue Soft Reset to the MAC.  This will reset the chip's
275 	 * transmit, receive, DMA.  It will not effect
276 	 * the current PCI configuration.  The global reset bit is self-
277 	 * clearing, and should clear within a microsecond.
278 	 */
279 	iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
280 	ioread32(hw->hw_addr + REG_MASTER_CTRL);
281 
282 	iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
283 	ioread16(hw->hw_addr + REG_PHY_ENABLE);
284 
285 	/* delay about 1ms */
286 	msleep(1);
287 
288 	/* Wait at least 10ms for All module to be Idle */
289 	for (i = 0; i < 10; i++) {
290 		icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
291 		if (!icr)
292 			break;
293 		/* delay 1 ms */
294 		msleep(1);
295 		/* FIXME: still the right way to do this? */
296 		cpu_relax();
297 	}
298 
299 	if (icr) {
300 		if (netif_msg_hw(adapter))
301 			dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
302 		return icr;
303 	}
304 
305 	return 0;
306 }
307 
308 /* function about EEPROM
309  *
310  * check_eeprom_exist
311  * return 0 if eeprom exist
312  */
313 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
314 {
315 	u32 value;
316 	value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
317 	if (value & SPI_FLASH_CTRL_EN_VPD) {
318 		value &= ~SPI_FLASH_CTRL_EN_VPD;
319 		iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
320 	}
321 
322 	value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
323 	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
324 }
325 
326 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
327 {
328 	int i;
329 	u32 control;
330 
331 	if (offset & 3)
332 		/* address do not align */
333 		return false;
334 
335 	iowrite32(0, hw->hw_addr + REG_VPD_DATA);
336 	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
337 	iowrite32(control, hw->hw_addr + REG_VPD_CAP);
338 	ioread32(hw->hw_addr + REG_VPD_CAP);
339 
340 	for (i = 0; i < 10; i++) {
341 		msleep(2);
342 		control = ioread32(hw->hw_addr + REG_VPD_CAP);
343 		if (control & VPD_CAP_VPD_FLAG)
344 			break;
345 	}
346 	if (control & VPD_CAP_VPD_FLAG) {
347 		*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
348 		return true;
349 	}
350 	/* timeout */
351 	return false;
352 }
353 
354 /*
355  * Reads the value from a PHY register
356  * hw - Struct containing variables accessed by shared code
357  * reg_addr - address of the PHY register to read
358  */
359 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
360 {
361 	u32 val;
362 	int i;
363 
364 	val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
365 		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
366 		MDIO_CLK_SEL_SHIFT;
367 	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
368 	ioread32(hw->hw_addr + REG_MDIO_CTRL);
369 
370 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
371 		udelay(2);
372 		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
373 		if (!(val & (MDIO_START | MDIO_BUSY)))
374 			break;
375 	}
376 	if (!(val & (MDIO_START | MDIO_BUSY))) {
377 		*phy_data = (u16) val;
378 		return 0;
379 	}
380 	return ATLX_ERR_PHY;
381 }
382 
383 #define CUSTOM_SPI_CS_SETUP	2
384 #define CUSTOM_SPI_CLK_HI	2
385 #define CUSTOM_SPI_CLK_LO	2
386 #define CUSTOM_SPI_CS_HOLD	2
387 #define CUSTOM_SPI_CS_HI	3
388 
389 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
390 {
391 	int i;
392 	u32 value;
393 
394 	iowrite32(0, hw->hw_addr + REG_SPI_DATA);
395 	iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
396 
397 	value = SPI_FLASH_CTRL_WAIT_READY |
398 	    (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
399 	    SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
400 					     SPI_FLASH_CTRL_CLK_HI_MASK) <<
401 	    SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
402 					   SPI_FLASH_CTRL_CLK_LO_MASK) <<
403 	    SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
404 					   SPI_FLASH_CTRL_CS_HOLD_MASK) <<
405 	    SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
406 					    SPI_FLASH_CTRL_CS_HI_MASK) <<
407 	    SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
408 	    SPI_FLASH_CTRL_INS_SHIFT;
409 
410 	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
411 
412 	value |= SPI_FLASH_CTRL_START;
413 	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
414 	ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
415 
416 	for (i = 0; i < 10; i++) {
417 		msleep(1);
418 		value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
419 		if (!(value & SPI_FLASH_CTRL_START))
420 			break;
421 	}
422 
423 	if (value & SPI_FLASH_CTRL_START)
424 		return false;
425 
426 	*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
427 
428 	return true;
429 }
430 
431 /*
432  * get_permanent_address
433  * return 0 if get valid mac address,
434  */
435 static int atl1_get_permanent_address(struct atl1_hw *hw)
436 {
437 	u32 addr[2];
438 	u32 i, control;
439 	u16 reg;
440 	u8 eth_addr[ETH_ALEN];
441 	bool key_valid;
442 
443 	if (is_valid_ether_addr(hw->perm_mac_addr))
444 		return 0;
445 
446 	/* init */
447 	addr[0] = addr[1] = 0;
448 
449 	if (!atl1_check_eeprom_exist(hw)) {
450 		reg = 0;
451 		key_valid = false;
452 		/* Read out all EEPROM content */
453 		i = 0;
454 		while (1) {
455 			if (atl1_read_eeprom(hw, i + 0x100, &control)) {
456 				if (key_valid) {
457 					if (reg == REG_MAC_STA_ADDR)
458 						addr[0] = control;
459 					else if (reg == (REG_MAC_STA_ADDR + 4))
460 						addr[1] = control;
461 					key_valid = false;
462 				} else if ((control & 0xff) == 0x5A) {
463 					key_valid = true;
464 					reg = (u16) (control >> 16);
465 				} else
466 					break;
467 			} else
468 				/* read error */
469 				break;
470 			i += 4;
471 		}
472 
473 		*(u32 *) &eth_addr[2] = swab32(addr[0]);
474 		*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
475 		if (is_valid_ether_addr(eth_addr)) {
476 			memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
477 			return 0;
478 		}
479 	}
480 
481 	/* see if SPI FLAGS exist ? */
482 	addr[0] = addr[1] = 0;
483 	reg = 0;
484 	key_valid = false;
485 	i = 0;
486 	while (1) {
487 		if (atl1_spi_read(hw, i + 0x1f000, &control)) {
488 			if (key_valid) {
489 				if (reg == REG_MAC_STA_ADDR)
490 					addr[0] = control;
491 				else if (reg == (REG_MAC_STA_ADDR + 4))
492 					addr[1] = control;
493 				key_valid = false;
494 			} else if ((control & 0xff) == 0x5A) {
495 				key_valid = true;
496 				reg = (u16) (control >> 16);
497 			} else
498 				/* data end */
499 				break;
500 		} else
501 			/* read error */
502 			break;
503 		i += 4;
504 	}
505 
506 	*(u32 *) &eth_addr[2] = swab32(addr[0]);
507 	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
508 	if (is_valid_ether_addr(eth_addr)) {
509 		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
510 		return 0;
511 	}
512 
513 	/*
514 	 * On some motherboards, the MAC address is written by the
515 	 * BIOS directly to the MAC register during POST, and is
516 	 * not stored in eeprom.  If all else thus far has failed
517 	 * to fetch the permanent MAC address, try reading it directly.
518 	 */
519 	addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
520 	addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
521 	*(u32 *) &eth_addr[2] = swab32(addr[0]);
522 	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
523 	if (is_valid_ether_addr(eth_addr)) {
524 		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
525 		return 0;
526 	}
527 
528 	return 1;
529 }
530 
531 /*
532  * Reads the adapter's MAC address from the EEPROM
533  * hw - Struct containing variables accessed by shared code
534  */
535 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
536 {
537 	u16 i;
538 
539 	if (atl1_get_permanent_address(hw))
540 		random_ether_addr(hw->perm_mac_addr);
541 
542 	for (i = 0; i < ETH_ALEN; i++)
543 		hw->mac_addr[i] = hw->perm_mac_addr[i];
544 	return 0;
545 }
546 
547 /*
548  * Hashes an address to determine its location in the multicast table
549  * hw - Struct containing variables accessed by shared code
550  * mc_addr - the multicast address to hash
551  *
552  * atl1_hash_mc_addr
553  *  purpose
554  *      set hash value for a multicast address
555  *      hash calcu processing :
556  *          1. calcu 32bit CRC for multicast address
557  *          2. reverse crc with MSB to LSB
558  */
559 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
560 {
561 	u32 crc32, value = 0;
562 	int i;
563 
564 	crc32 = ether_crc_le(6, mc_addr);
565 	for (i = 0; i < 32; i++)
566 		value |= (((crc32 >> i) & 1) << (31 - i));
567 
568 	return value;
569 }
570 
571 /*
572  * Sets the bit in the multicast table corresponding to the hash value.
573  * hw - Struct containing variables accessed by shared code
574  * hash_value - Multicast address hash value
575  */
576 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
577 {
578 	u32 hash_bit, hash_reg;
579 	u32 mta;
580 
581 	/*
582 	 * The HASH Table  is a register array of 2 32-bit registers.
583 	 * It is treated like an array of 64 bits.  We want to set
584 	 * bit BitArray[hash_value]. So we figure out what register
585 	 * the bit is in, read it, OR in the new bit, then write
586 	 * back the new value.  The register is determined by the
587 	 * upper 7 bits of the hash value and the bit within that
588 	 * register are determined by the lower 5 bits of the value.
589 	 */
590 	hash_reg = (hash_value >> 31) & 0x1;
591 	hash_bit = (hash_value >> 26) & 0x1F;
592 	mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
593 	mta |= (1 << hash_bit);
594 	iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
595 }
596 
597 /*
598  * Writes a value to a PHY register
599  * hw - Struct containing variables accessed by shared code
600  * reg_addr - address of the PHY register to write
601  * data - data to write to the PHY
602  */
603 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
604 {
605 	int i;
606 	u32 val;
607 
608 	val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
609 	    (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
610 	    MDIO_SUP_PREAMBLE |
611 	    MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
612 	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
613 	ioread32(hw->hw_addr + REG_MDIO_CTRL);
614 
615 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
616 		udelay(2);
617 		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
618 		if (!(val & (MDIO_START | MDIO_BUSY)))
619 			break;
620 	}
621 
622 	if (!(val & (MDIO_START | MDIO_BUSY)))
623 		return 0;
624 
625 	return ATLX_ERR_PHY;
626 }
627 
628 /*
629  * Make L001's PHY out of Power Saving State (bug)
630  * hw - Struct containing variables accessed by shared code
631  * when power on, L001's PHY always on Power saving State
632  * (Gigabit Link forbidden)
633  */
634 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
635 {
636 	s32 ret;
637 	ret = atl1_write_phy_reg(hw, 29, 0x0029);
638 	if (ret)
639 		return ret;
640 	return atl1_write_phy_reg(hw, 30, 0);
641 }
642 
643 /*
644  * Resets the PHY and make all config validate
645  * hw - Struct containing variables accessed by shared code
646  *
647  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
648  */
649 static s32 atl1_phy_reset(struct atl1_hw *hw)
650 {
651 	struct pci_dev *pdev = hw->back->pdev;
652 	struct atl1_adapter *adapter = hw->back;
653 	s32 ret_val;
654 	u16 phy_data;
655 
656 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
657 	    hw->media_type == MEDIA_TYPE_1000M_FULL)
658 		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
659 	else {
660 		switch (hw->media_type) {
661 		case MEDIA_TYPE_100M_FULL:
662 			phy_data =
663 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
664 			    MII_CR_RESET;
665 			break;
666 		case MEDIA_TYPE_100M_HALF:
667 			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
668 			break;
669 		case MEDIA_TYPE_10M_FULL:
670 			phy_data =
671 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
672 			break;
673 		default:
674 			/* MEDIA_TYPE_10M_HALF: */
675 			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
676 			break;
677 		}
678 	}
679 
680 	ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
681 	if (ret_val) {
682 		u32 val;
683 		int i;
684 		/* pcie serdes link may be down! */
685 		if (netif_msg_hw(adapter))
686 			dev_dbg(&pdev->dev, "pcie phy link down\n");
687 
688 		for (i = 0; i < 25; i++) {
689 			msleep(1);
690 			val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
691 			if (!(val & (MDIO_START | MDIO_BUSY)))
692 				break;
693 		}
694 
695 		if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
696 			if (netif_msg_hw(adapter))
697 				dev_warn(&pdev->dev,
698 					"pcie link down at least 25ms\n");
699 			return ret_val;
700 		}
701 	}
702 	return 0;
703 }
704 
705 /*
706  * Configures PHY autoneg and flow control advertisement settings
707  * hw - Struct containing variables accessed by shared code
708  */
709 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
710 {
711 	s32 ret_val;
712 	s16 mii_autoneg_adv_reg;
713 	s16 mii_1000t_ctrl_reg;
714 
715 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
716 	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
717 
718 	/* Read the MII 1000Base-T Control Register (Address 9). */
719 	mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
720 
721 	/*
722 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
723 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
724 	 * the  1000Base-T Control Register (Address 9).
725 	 */
726 	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
727 	mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
728 
729 	/*
730 	 * Need to parse media_type  and set up
731 	 * the appropriate PHY registers.
732 	 */
733 	switch (hw->media_type) {
734 	case MEDIA_TYPE_AUTO_SENSOR:
735 		mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
736 					MII_AR_10T_FD_CAPS |
737 					MII_AR_100TX_HD_CAPS |
738 					MII_AR_100TX_FD_CAPS);
739 		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
740 		break;
741 
742 	case MEDIA_TYPE_1000M_FULL:
743 		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
744 		break;
745 
746 	case MEDIA_TYPE_100M_FULL:
747 		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
748 		break;
749 
750 	case MEDIA_TYPE_100M_HALF:
751 		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
752 		break;
753 
754 	case MEDIA_TYPE_10M_FULL:
755 		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
756 		break;
757 
758 	default:
759 		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
760 		break;
761 	}
762 
763 	/* flow control fixed to enable all */
764 	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
765 
766 	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
767 	hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
768 
769 	ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
770 	if (ret_val)
771 		return ret_val;
772 
773 	ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
774 	if (ret_val)
775 		return ret_val;
776 
777 	return 0;
778 }
779 
780 /*
781  * Configures link settings.
782  * hw - Struct containing variables accessed by shared code
783  * Assumes the hardware has previously been reset and the
784  * transmitter and receiver are not enabled.
785  */
786 static s32 atl1_setup_link(struct atl1_hw *hw)
787 {
788 	struct pci_dev *pdev = hw->back->pdev;
789 	struct atl1_adapter *adapter = hw->back;
790 	s32 ret_val;
791 
792 	/*
793 	 * Options:
794 	 *  PHY will advertise value(s) parsed from
795 	 *  autoneg_advertised and fc
796 	 *  no matter what autoneg is , We will not wait link result.
797 	 */
798 	ret_val = atl1_phy_setup_autoneg_adv(hw);
799 	if (ret_val) {
800 		if (netif_msg_link(adapter))
801 			dev_dbg(&pdev->dev,
802 				"error setting up autonegotiation\n");
803 		return ret_val;
804 	}
805 	/* SW.Reset , En-Auto-Neg if needed */
806 	ret_val = atl1_phy_reset(hw);
807 	if (ret_val) {
808 		if (netif_msg_link(adapter))
809 			dev_dbg(&pdev->dev, "error resetting phy\n");
810 		return ret_val;
811 	}
812 	hw->phy_configured = true;
813 	return ret_val;
814 }
815 
816 static void atl1_init_flash_opcode(struct atl1_hw *hw)
817 {
818 	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
819 		/* Atmel */
820 		hw->flash_vendor = 0;
821 
822 	/* Init OP table */
823 	iowrite8(flash_table[hw->flash_vendor].cmd_program,
824 		hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
825 	iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
826 		hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
827 	iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
828 		hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
829 	iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
830 		hw->hw_addr + REG_SPI_FLASH_OP_RDID);
831 	iowrite8(flash_table[hw->flash_vendor].cmd_wren,
832 		hw->hw_addr + REG_SPI_FLASH_OP_WREN);
833 	iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
834 		hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
835 	iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
836 		hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
837 	iowrite8(flash_table[hw->flash_vendor].cmd_read,
838 		hw->hw_addr + REG_SPI_FLASH_OP_READ);
839 }
840 
841 /*
842  * Performs basic configuration of the adapter.
843  * hw - Struct containing variables accessed by shared code
844  * Assumes that the controller has previously been reset and is in a
845  * post-reset uninitialized state. Initializes multicast table,
846  * and  Calls routines to setup link
847  * Leaves the transmit and receive units disabled and uninitialized.
848  */
849 static s32 atl1_init_hw(struct atl1_hw *hw)
850 {
851 	u32 ret_val = 0;
852 
853 	/* Zero out the Multicast HASH table */
854 	iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
855 	/* clear the old settings from the multicast hash table */
856 	iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
857 
858 	atl1_init_flash_opcode(hw);
859 
860 	if (!hw->phy_configured) {
861 		/* enable GPHY LinkChange Interrupt */
862 		ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
863 		if (ret_val)
864 			return ret_val;
865 		/* make PHY out of power-saving state */
866 		ret_val = atl1_phy_leave_power_saving(hw);
867 		if (ret_val)
868 			return ret_val;
869 		/* Call a subroutine to configure the link */
870 		ret_val = atl1_setup_link(hw);
871 	}
872 	return ret_val;
873 }
874 
875 /*
876  * Detects the current speed and duplex settings of the hardware.
877  * hw - Struct containing variables accessed by shared code
878  * speed - Speed of the connection
879  * duplex - Duplex setting of the connection
880  */
881 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
882 {
883 	struct pci_dev *pdev = hw->back->pdev;
884 	struct atl1_adapter *adapter = hw->back;
885 	s32 ret_val;
886 	u16 phy_data;
887 
888 	/* ; --- Read   PHY Specific Status Register (17) */
889 	ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
890 	if (ret_val)
891 		return ret_val;
892 
893 	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
894 		return ATLX_ERR_PHY_RES;
895 
896 	switch (phy_data & MII_ATLX_PSSR_SPEED) {
897 	case MII_ATLX_PSSR_1000MBS:
898 		*speed = SPEED_1000;
899 		break;
900 	case MII_ATLX_PSSR_100MBS:
901 		*speed = SPEED_100;
902 		break;
903 	case MII_ATLX_PSSR_10MBS:
904 		*speed = SPEED_10;
905 		break;
906 	default:
907 		if (netif_msg_hw(adapter))
908 			dev_dbg(&pdev->dev, "error getting speed\n");
909 		return ATLX_ERR_PHY_SPEED;
910 		break;
911 	}
912 	if (phy_data & MII_ATLX_PSSR_DPLX)
913 		*duplex = FULL_DUPLEX;
914 	else
915 		*duplex = HALF_DUPLEX;
916 
917 	return 0;
918 }
919 
920 static void atl1_set_mac_addr(struct atl1_hw *hw)
921 {
922 	u32 value;
923 	/*
924 	 * 00-0B-6A-F6-00-DC
925 	 * 0:  6AF600DC   1: 000B
926 	 * low dword
927 	 */
928 	value = (((u32) hw->mac_addr[2]) << 24) |
929 	    (((u32) hw->mac_addr[3]) << 16) |
930 	    (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
931 	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
932 	/* high dword */
933 	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
934 	iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
935 }
936 
937 /*
938  * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
939  * @adapter: board private structure to initialize
940  *
941  * atl1_sw_init initializes the Adapter private data structure.
942  * Fields are initialized based on PCI device information and
943  * OS network device settings (MTU size).
944  */
945 static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
946 {
947 	struct atl1_hw *hw = &adapter->hw;
948 	struct net_device *netdev = adapter->netdev;
949 
950 	hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
951 	hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
952 
953 	adapter->wol = 0;
954 	device_set_wakeup_enable(&adapter->pdev->dev, false);
955 	adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
956 	adapter->ict = 50000;		/* 100ms */
957 	adapter->link_speed = SPEED_0;	/* hardware init */
958 	adapter->link_duplex = FULL_DUPLEX;
959 
960 	hw->phy_configured = false;
961 	hw->preamble_len = 7;
962 	hw->ipgt = 0x60;
963 	hw->min_ifg = 0x50;
964 	hw->ipgr1 = 0x40;
965 	hw->ipgr2 = 0x60;
966 	hw->max_retry = 0xf;
967 	hw->lcol = 0x37;
968 	hw->jam_ipg = 7;
969 	hw->rfd_burst = 8;
970 	hw->rrd_burst = 8;
971 	hw->rfd_fetch_gap = 1;
972 	hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
973 	hw->rx_jumbo_lkah = 1;
974 	hw->rrd_ret_timer = 16;
975 	hw->tpd_burst = 4;
976 	hw->tpd_fetch_th = 16;
977 	hw->txf_burst = 0x100;
978 	hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
979 	hw->tpd_fetch_gap = 1;
980 	hw->rcb_value = atl1_rcb_64;
981 	hw->dma_ord = atl1_dma_ord_enh;
982 	hw->dmar_block = atl1_dma_req_256;
983 	hw->dmaw_block = atl1_dma_req_256;
984 	hw->cmb_rrd = 4;
985 	hw->cmb_tpd = 4;
986 	hw->cmb_rx_timer = 1;	/* about 2us */
987 	hw->cmb_tx_timer = 1;	/* about 2us */
988 	hw->smb_timer = 100000;	/* about 200ms */
989 
990 	spin_lock_init(&adapter->lock);
991 	spin_lock_init(&adapter->mb_lock);
992 
993 	return 0;
994 }
995 
996 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
997 {
998 	struct atl1_adapter *adapter = netdev_priv(netdev);
999 	u16 result;
1000 
1001 	atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1002 
1003 	return result;
1004 }
1005 
1006 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1007 	int val)
1008 {
1009 	struct atl1_adapter *adapter = netdev_priv(netdev);
1010 
1011 	atl1_write_phy_reg(&adapter->hw, reg_num, val);
1012 }
1013 
1014 /*
1015  * atl1_mii_ioctl -
1016  * @netdev:
1017  * @ifreq:
1018  * @cmd:
1019  */
1020 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1021 {
1022 	struct atl1_adapter *adapter = netdev_priv(netdev);
1023 	unsigned long flags;
1024 	int retval;
1025 
1026 	if (!netif_running(netdev))
1027 		return -EINVAL;
1028 
1029 	spin_lock_irqsave(&adapter->lock, flags);
1030 	retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1031 	spin_unlock_irqrestore(&adapter->lock, flags);
1032 
1033 	return retval;
1034 }
1035 
1036 /*
1037  * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1038  * @adapter: board private structure
1039  *
1040  * Return 0 on success, negative on failure
1041  */
1042 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1043 {
1044 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1045 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1046 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1047 	struct atl1_ring_header *ring_header = &adapter->ring_header;
1048 	struct pci_dev *pdev = adapter->pdev;
1049 	int size;
1050 	u8 offset = 0;
1051 
1052 	size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1053 	tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1054 	if (unlikely(!tpd_ring->buffer_info)) {
1055 		if (netif_msg_drv(adapter))
1056 			dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1057 				size);
1058 		goto err_nomem;
1059 	}
1060 	rfd_ring->buffer_info =
1061 		(struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
1062 
1063 	/*
1064 	 * real ring DMA buffer
1065 	 * each ring/block may need up to 8 bytes for alignment, hence the
1066 	 * additional 40 bytes tacked onto the end.
1067 	 */
1068 	ring_header->size = size =
1069 		sizeof(struct tx_packet_desc) * tpd_ring->count
1070 		+ sizeof(struct rx_free_desc) * rfd_ring->count
1071 		+ sizeof(struct rx_return_desc) * rrd_ring->count
1072 		+ sizeof(struct coals_msg_block)
1073 		+ sizeof(struct stats_msg_block)
1074 		+ 40;
1075 
1076 	ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1077 		&ring_header->dma);
1078 	if (unlikely(!ring_header->desc)) {
1079 		if (netif_msg_drv(adapter))
1080 			dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1081 		goto err_nomem;
1082 	}
1083 
1084 	memset(ring_header->desc, 0, ring_header->size);
1085 
1086 	/* init TPD ring */
1087 	tpd_ring->dma = ring_header->dma;
1088 	offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1089 	tpd_ring->dma += offset;
1090 	tpd_ring->desc = (u8 *) ring_header->desc + offset;
1091 	tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1092 
1093 	/* init RFD ring */
1094 	rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1095 	offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1096 	rfd_ring->dma += offset;
1097 	rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1098 	rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1099 
1100 
1101 	/* init RRD ring */
1102 	rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1103 	offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1104 	rrd_ring->dma += offset;
1105 	rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1106 	rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1107 
1108 
1109 	/* init CMB */
1110 	adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1111 	offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1112 	adapter->cmb.dma += offset;
1113 	adapter->cmb.cmb = (struct coals_msg_block *)
1114 		((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1115 
1116 	/* init SMB */
1117 	adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1118 	offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1119 	adapter->smb.dma += offset;
1120 	adapter->smb.smb = (struct stats_msg_block *)
1121 		((u8 *) adapter->cmb.cmb +
1122 		(sizeof(struct coals_msg_block) + offset));
1123 
1124 	return 0;
1125 
1126 err_nomem:
1127 	kfree(tpd_ring->buffer_info);
1128 	return -ENOMEM;
1129 }
1130 
1131 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1132 {
1133 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1134 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1135 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1136 
1137 	atomic_set(&tpd_ring->next_to_use, 0);
1138 	atomic_set(&tpd_ring->next_to_clean, 0);
1139 
1140 	rfd_ring->next_to_clean = 0;
1141 	atomic_set(&rfd_ring->next_to_use, 0);
1142 
1143 	rrd_ring->next_to_use = 0;
1144 	atomic_set(&rrd_ring->next_to_clean, 0);
1145 }
1146 
1147 /*
1148  * atl1_clean_rx_ring - Free RFD Buffers
1149  * @adapter: board private structure
1150  */
1151 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1152 {
1153 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1154 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1155 	struct atl1_buffer *buffer_info;
1156 	struct pci_dev *pdev = adapter->pdev;
1157 	unsigned long size;
1158 	unsigned int i;
1159 
1160 	/* Free all the Rx ring sk_buffs */
1161 	for (i = 0; i < rfd_ring->count; i++) {
1162 		buffer_info = &rfd_ring->buffer_info[i];
1163 		if (buffer_info->dma) {
1164 			pci_unmap_page(pdev, buffer_info->dma,
1165 				buffer_info->length, PCI_DMA_FROMDEVICE);
1166 			buffer_info->dma = 0;
1167 		}
1168 		if (buffer_info->skb) {
1169 			dev_kfree_skb(buffer_info->skb);
1170 			buffer_info->skb = NULL;
1171 		}
1172 	}
1173 
1174 	size = sizeof(struct atl1_buffer) * rfd_ring->count;
1175 	memset(rfd_ring->buffer_info, 0, size);
1176 
1177 	/* Zero out the descriptor ring */
1178 	memset(rfd_ring->desc, 0, rfd_ring->size);
1179 
1180 	rfd_ring->next_to_clean = 0;
1181 	atomic_set(&rfd_ring->next_to_use, 0);
1182 
1183 	rrd_ring->next_to_use = 0;
1184 	atomic_set(&rrd_ring->next_to_clean, 0);
1185 }
1186 
1187 /*
1188  * atl1_clean_tx_ring - Free Tx Buffers
1189  * @adapter: board private structure
1190  */
1191 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1192 {
1193 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1194 	struct atl1_buffer *buffer_info;
1195 	struct pci_dev *pdev = adapter->pdev;
1196 	unsigned long size;
1197 	unsigned int i;
1198 
1199 	/* Free all the Tx ring sk_buffs */
1200 	for (i = 0; i < tpd_ring->count; i++) {
1201 		buffer_info = &tpd_ring->buffer_info[i];
1202 		if (buffer_info->dma) {
1203 			pci_unmap_page(pdev, buffer_info->dma,
1204 				buffer_info->length, PCI_DMA_TODEVICE);
1205 			buffer_info->dma = 0;
1206 		}
1207 	}
1208 
1209 	for (i = 0; i < tpd_ring->count; i++) {
1210 		buffer_info = &tpd_ring->buffer_info[i];
1211 		if (buffer_info->skb) {
1212 			dev_kfree_skb_any(buffer_info->skb);
1213 			buffer_info->skb = NULL;
1214 		}
1215 	}
1216 
1217 	size = sizeof(struct atl1_buffer) * tpd_ring->count;
1218 	memset(tpd_ring->buffer_info, 0, size);
1219 
1220 	/* Zero out the descriptor ring */
1221 	memset(tpd_ring->desc, 0, tpd_ring->size);
1222 
1223 	atomic_set(&tpd_ring->next_to_use, 0);
1224 	atomic_set(&tpd_ring->next_to_clean, 0);
1225 }
1226 
1227 /*
1228  * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1229  * @adapter: board private structure
1230  *
1231  * Free all transmit software resources
1232  */
1233 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1234 {
1235 	struct pci_dev *pdev = adapter->pdev;
1236 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1237 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1238 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1239 	struct atl1_ring_header *ring_header = &adapter->ring_header;
1240 
1241 	atl1_clean_tx_ring(adapter);
1242 	atl1_clean_rx_ring(adapter);
1243 
1244 	kfree(tpd_ring->buffer_info);
1245 	pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1246 		ring_header->dma);
1247 
1248 	tpd_ring->buffer_info = NULL;
1249 	tpd_ring->desc = NULL;
1250 	tpd_ring->dma = 0;
1251 
1252 	rfd_ring->buffer_info = NULL;
1253 	rfd_ring->desc = NULL;
1254 	rfd_ring->dma = 0;
1255 
1256 	rrd_ring->desc = NULL;
1257 	rrd_ring->dma = 0;
1258 
1259 	adapter->cmb.dma = 0;
1260 	adapter->cmb.cmb = NULL;
1261 
1262 	adapter->smb.dma = 0;
1263 	adapter->smb.smb = NULL;
1264 }
1265 
1266 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1267 {
1268 	u32 value;
1269 	struct atl1_hw *hw = &adapter->hw;
1270 	struct net_device *netdev = adapter->netdev;
1271 	/* Config MAC CTRL Register */
1272 	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1273 	/* duplex */
1274 	if (FULL_DUPLEX == adapter->link_duplex)
1275 		value |= MAC_CTRL_DUPLX;
1276 	/* speed */
1277 	value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1278 			 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1279 		  MAC_CTRL_SPEED_SHIFT);
1280 	/* flow control */
1281 	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1282 	/* PAD & CRC */
1283 	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1284 	/* preamble length */
1285 	value |= (((u32) adapter->hw.preamble_len
1286 		   & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1287 	/* vlan */
1288 	__atlx_vlan_mode(netdev->features, &value);
1289 	/* rx checksum
1290 	   if (adapter->rx_csum)
1291 	   value |= MAC_CTRL_RX_CHKSUM_EN;
1292 	 */
1293 	/* filter mode */
1294 	value |= MAC_CTRL_BC_EN;
1295 	if (netdev->flags & IFF_PROMISC)
1296 		value |= MAC_CTRL_PROMIS_EN;
1297 	else if (netdev->flags & IFF_ALLMULTI)
1298 		value |= MAC_CTRL_MC_ALL_EN;
1299 	/* value |= MAC_CTRL_LOOPBACK; */
1300 	iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1301 }
1302 
1303 static u32 atl1_check_link(struct atl1_adapter *adapter)
1304 {
1305 	struct atl1_hw *hw = &adapter->hw;
1306 	struct net_device *netdev = adapter->netdev;
1307 	u32 ret_val;
1308 	u16 speed, duplex, phy_data;
1309 	int reconfig = 0;
1310 
1311 	/* MII_BMSR must read twice */
1312 	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1313 	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1314 	if (!(phy_data & BMSR_LSTATUS)) {
1315 		/* link down */
1316 		if (netif_carrier_ok(netdev)) {
1317 			/* old link state: Up */
1318 			if (netif_msg_link(adapter))
1319 				dev_info(&adapter->pdev->dev, "link is down\n");
1320 			adapter->link_speed = SPEED_0;
1321 			netif_carrier_off(netdev);
1322 		}
1323 		return 0;
1324 	}
1325 
1326 	/* Link Up */
1327 	ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1328 	if (ret_val)
1329 		return ret_val;
1330 
1331 	switch (hw->media_type) {
1332 	case MEDIA_TYPE_1000M_FULL:
1333 		if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1334 			reconfig = 1;
1335 		break;
1336 	case MEDIA_TYPE_100M_FULL:
1337 		if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1338 			reconfig = 1;
1339 		break;
1340 	case MEDIA_TYPE_100M_HALF:
1341 		if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1342 			reconfig = 1;
1343 		break;
1344 	case MEDIA_TYPE_10M_FULL:
1345 		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1346 			reconfig = 1;
1347 		break;
1348 	case MEDIA_TYPE_10M_HALF:
1349 		if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1350 			reconfig = 1;
1351 		break;
1352 	}
1353 
1354 	/* link result is our setting */
1355 	if (!reconfig) {
1356 		if (adapter->link_speed != speed ||
1357 		    adapter->link_duplex != duplex) {
1358 			adapter->link_speed = speed;
1359 			adapter->link_duplex = duplex;
1360 			atl1_setup_mac_ctrl(adapter);
1361 			if (netif_msg_link(adapter))
1362 				dev_info(&adapter->pdev->dev,
1363 					"%s link is up %d Mbps %s\n",
1364 					netdev->name, adapter->link_speed,
1365 					adapter->link_duplex == FULL_DUPLEX ?
1366 					"full duplex" : "half duplex");
1367 		}
1368 		if (!netif_carrier_ok(netdev)) {
1369 			/* Link down -> Up */
1370 			netif_carrier_on(netdev);
1371 		}
1372 		return 0;
1373 	}
1374 
1375 	/* change original link status */
1376 	if (netif_carrier_ok(netdev)) {
1377 		adapter->link_speed = SPEED_0;
1378 		netif_carrier_off(netdev);
1379 		netif_stop_queue(netdev);
1380 	}
1381 
1382 	if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1383 	    hw->media_type != MEDIA_TYPE_1000M_FULL) {
1384 		switch (hw->media_type) {
1385 		case MEDIA_TYPE_100M_FULL:
1386 			phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1387 			           MII_CR_RESET;
1388 			break;
1389 		case MEDIA_TYPE_100M_HALF:
1390 			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1391 			break;
1392 		case MEDIA_TYPE_10M_FULL:
1393 			phy_data =
1394 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1395 			break;
1396 		default:
1397 			/* MEDIA_TYPE_10M_HALF: */
1398 			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1399 			break;
1400 		}
1401 		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1402 		return 0;
1403 	}
1404 
1405 	/* auto-neg, insert timer to re-config phy */
1406 	if (!adapter->phy_timer_pending) {
1407 		adapter->phy_timer_pending = true;
1408 		mod_timer(&adapter->phy_config_timer,
1409 			  round_jiffies(jiffies + 3 * HZ));
1410 	}
1411 
1412 	return 0;
1413 }
1414 
1415 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1416 {
1417 	u32 hi, lo, value;
1418 
1419 	/* RFD Flow Control */
1420 	value = adapter->rfd_ring.count;
1421 	hi = value / 16;
1422 	if (hi < 2)
1423 		hi = 2;
1424 	lo = value * 7 / 8;
1425 
1426 	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1427 		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1428 	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1429 
1430 	/* RRD Flow Control */
1431 	value = adapter->rrd_ring.count;
1432 	lo = value / 16;
1433 	hi = value * 7 / 8;
1434 	if (lo < 2)
1435 		lo = 2;
1436 	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1437 		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1438 	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1439 }
1440 
1441 static void set_flow_ctrl_new(struct atl1_hw *hw)
1442 {
1443 	u32 hi, lo, value;
1444 
1445 	/* RXF Flow Control */
1446 	value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1447 	lo = value / 16;
1448 	if (lo < 192)
1449 		lo = 192;
1450 	hi = value * 7 / 8;
1451 	if (hi < lo)
1452 		hi = lo + 16;
1453 	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1454 		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1455 	iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1456 
1457 	/* RRD Flow Control */
1458 	value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1459 	lo = value / 8;
1460 	hi = value * 7 / 8;
1461 	if (lo < 2)
1462 		lo = 2;
1463 	if (hi < lo)
1464 		hi = lo + 3;
1465 	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1466 		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1467 	iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1468 }
1469 
1470 /*
1471  * atl1_configure - Configure Transmit&Receive Unit after Reset
1472  * @adapter: board private structure
1473  *
1474  * Configure the Tx /Rx unit of the MAC after a reset.
1475  */
1476 static u32 atl1_configure(struct atl1_adapter *adapter)
1477 {
1478 	struct atl1_hw *hw = &adapter->hw;
1479 	u32 value;
1480 
1481 	/* clear interrupt status */
1482 	iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1483 
1484 	/* set MAC Address */
1485 	value = (((u32) hw->mac_addr[2]) << 24) |
1486 		(((u32) hw->mac_addr[3]) << 16) |
1487 		(((u32) hw->mac_addr[4]) << 8) |
1488 		(((u32) hw->mac_addr[5]));
1489 	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1490 	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1491 	iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1492 
1493 	/* tx / rx ring */
1494 
1495 	/* HI base address */
1496 	iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1497 		hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1498 	/* LO base address */
1499 	iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1500 		hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1501 	iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1502 		hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1503 	iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1504 		hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1505 	iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1506 		hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1507 	iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1508 		hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1509 
1510 	/* element count */
1511 	value = adapter->rrd_ring.count;
1512 	value <<= 16;
1513 	value += adapter->rfd_ring.count;
1514 	iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1515 	iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1516 		REG_DESC_TPD_RING_SIZE);
1517 
1518 	/* Load Ptr */
1519 	iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1520 
1521 	/* config Mailbox */
1522 	value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1523 		  & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1524 		((atomic_read(&adapter->rrd_ring.next_to_clean)
1525 		& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1526 		((atomic_read(&adapter->rfd_ring.next_to_use)
1527 		& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1528 	iowrite32(value, hw->hw_addr + REG_MAILBOX);
1529 
1530 	/* config IPG/IFG */
1531 	value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1532 		 << MAC_IPG_IFG_IPGT_SHIFT) |
1533 		(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1534 		<< MAC_IPG_IFG_MIFG_SHIFT) |
1535 		(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1536 		<< MAC_IPG_IFG_IPGR1_SHIFT) |
1537 		(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1538 		<< MAC_IPG_IFG_IPGR2_SHIFT);
1539 	iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1540 
1541 	/* config  Half-Duplex Control */
1542 	value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1543 		(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1544 		<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1545 		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1546 		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1547 		(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1548 		<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1549 	iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1550 
1551 	/* set Interrupt Moderator Timer */
1552 	iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1553 	iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1554 
1555 	/* set Interrupt Clear Timer */
1556 	iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1557 
1558 	/* set max frame size hw will accept */
1559 	iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1560 
1561 	/* jumbo size & rrd retirement timer */
1562 	value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1563 		 << RXQ_JMBOSZ_TH_SHIFT) |
1564 		(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1565 		<< RXQ_JMBO_LKAH_SHIFT) |
1566 		(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1567 		<< RXQ_RRD_TIMER_SHIFT);
1568 	iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1569 
1570 	/* Flow Control */
1571 	switch (hw->dev_rev) {
1572 	case 0x8001:
1573 	case 0x9001:
1574 	case 0x9002:
1575 	case 0x9003:
1576 		set_flow_ctrl_old(adapter);
1577 		break;
1578 	default:
1579 		set_flow_ctrl_new(hw);
1580 		break;
1581 	}
1582 
1583 	/* config TXQ */
1584 	value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1585 		 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1586 		(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1587 		<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1588 		(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1589 		<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1590 		TXQ_CTRL_EN;
1591 	iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1592 
1593 	/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1594 	value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1595 		<< TX_JUMBO_TASK_TH_SHIFT) |
1596 		(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1597 		<< TX_TPD_MIN_IPG_SHIFT);
1598 	iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1599 
1600 	/* config RXQ */
1601 	value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1602 		<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1603 		(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1604 		<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1605 		(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1606 		<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1607 		RXQ_CTRL_EN;
1608 	iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1609 
1610 	/* config DMA Engine */
1611 	value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1612 		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1613 		((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1614 		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1615 		DMA_CTRL_DMAW_EN;
1616 	value |= (u32) hw->dma_ord;
1617 	if (atl1_rcb_128 == hw->rcb_value)
1618 		value |= DMA_CTRL_RCB_VALUE;
1619 	iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1620 
1621 	/* config CMB / SMB */
1622 	value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1623 		hw->cmb_tpd : adapter->tpd_ring.count;
1624 	value <<= 16;
1625 	value |= hw->cmb_rrd;
1626 	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1627 	value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1628 	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1629 	iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1630 
1631 	/* --- enable CMB / SMB */
1632 	value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1633 	iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1634 
1635 	value = ioread32(adapter->hw.hw_addr + REG_ISR);
1636 	if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1637 		value = 1;	/* config failed */
1638 	else
1639 		value = 0;
1640 
1641 	/* clear all interrupt status */
1642 	iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1643 	iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1644 	return value;
1645 }
1646 
1647 /*
1648  * atl1_pcie_patch - Patch for PCIE module
1649  */
1650 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1651 {
1652 	u32 value;
1653 
1654 	/* much vendor magic here */
1655 	value = 0x6500;
1656 	iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1657 	/* pcie flow control mode change */
1658 	value = ioread32(adapter->hw.hw_addr + 0x1008);
1659 	value |= 0x8000;
1660 	iowrite32(value, adapter->hw.hw_addr + 0x1008);
1661 }
1662 
1663 /*
1664  * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1665  * on PCI Command register is disable.
1666  * The function enable this bit.
1667  * Brackett, 2006/03/15
1668  */
1669 static void atl1_via_workaround(struct atl1_adapter *adapter)
1670 {
1671 	unsigned long value;
1672 
1673 	value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1674 	if (value & PCI_COMMAND_INTX_DISABLE)
1675 		value &= ~PCI_COMMAND_INTX_DISABLE;
1676 	iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1677 }
1678 
1679 static void atl1_inc_smb(struct atl1_adapter *adapter)
1680 {
1681 	struct net_device *netdev = adapter->netdev;
1682 	struct stats_msg_block *smb = adapter->smb.smb;
1683 
1684 	/* Fill out the OS statistics structure */
1685 	adapter->soft_stats.rx_packets += smb->rx_ok;
1686 	adapter->soft_stats.tx_packets += smb->tx_ok;
1687 	adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1688 	adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1689 	adapter->soft_stats.multicast += smb->rx_mcast;
1690 	adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
1691 		smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
1692 
1693 	/* Rx Errors */
1694 	adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
1695 		smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
1696 		smb->rx_rrd_ov + smb->rx_align_err);
1697 	adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1698 	adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1699 	adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1700 	adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1701 	adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
1702 		smb->rx_rxf_ov);
1703 
1704 	adapter->soft_stats.rx_pause += smb->rx_pause;
1705 	adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1706 	adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1707 
1708 	/* Tx Errors */
1709 	adapter->soft_stats.tx_errors += (smb->tx_late_col +
1710 		smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
1711 	adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1712 	adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1713 	adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1714 
1715 	adapter->soft_stats.excecol += smb->tx_abort_col;
1716 	adapter->soft_stats.deffer += smb->tx_defer;
1717 	adapter->soft_stats.scc += smb->tx_1_col;
1718 	adapter->soft_stats.mcc += smb->tx_2_col;
1719 	adapter->soft_stats.latecol += smb->tx_late_col;
1720 	adapter->soft_stats.tx_underun += smb->tx_underrun;
1721 	adapter->soft_stats.tx_trunc += smb->tx_trunc;
1722 	adapter->soft_stats.tx_pause += smb->tx_pause;
1723 
1724 	netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1725 	netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1726 	netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1727 	netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1728 	netdev->stats.multicast = adapter->soft_stats.multicast;
1729 	netdev->stats.collisions = adapter->soft_stats.collisions;
1730 	netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1731 	netdev->stats.rx_over_errors =
1732 		adapter->soft_stats.rx_missed_errors;
1733 	netdev->stats.rx_length_errors =
1734 		adapter->soft_stats.rx_length_errors;
1735 	netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1736 	netdev->stats.rx_frame_errors =
1737 		adapter->soft_stats.rx_frame_errors;
1738 	netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1739 	netdev->stats.rx_missed_errors =
1740 		adapter->soft_stats.rx_missed_errors;
1741 	netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1742 	netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1743 	netdev->stats.tx_aborted_errors =
1744 		adapter->soft_stats.tx_aborted_errors;
1745 	netdev->stats.tx_window_errors =
1746 		adapter->soft_stats.tx_window_errors;
1747 	netdev->stats.tx_carrier_errors =
1748 		adapter->soft_stats.tx_carrier_errors;
1749 }
1750 
1751 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1752 {
1753 	unsigned long flags;
1754 	u32 tpd_next_to_use;
1755 	u32 rfd_next_to_use;
1756 	u32 rrd_next_to_clean;
1757 	u32 value;
1758 
1759 	spin_lock_irqsave(&adapter->mb_lock, flags);
1760 
1761 	tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1762 	rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1763 	rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1764 
1765 	value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1766 		MB_RFD_PROD_INDX_SHIFT) |
1767 		((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1768 		MB_RRD_CONS_INDX_SHIFT) |
1769 		((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1770 		MB_TPD_PROD_INDX_SHIFT);
1771 	iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1772 
1773 	spin_unlock_irqrestore(&adapter->mb_lock, flags);
1774 }
1775 
1776 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1777 	struct rx_return_desc *rrd, u16 offset)
1778 {
1779 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1780 
1781 	while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1782 		rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1783 		if (++rfd_ring->next_to_clean == rfd_ring->count) {
1784 			rfd_ring->next_to_clean = 0;
1785 		}
1786 	}
1787 }
1788 
1789 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1790 	struct rx_return_desc *rrd)
1791 {
1792 	u16 num_buf;
1793 
1794 	num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1795 		adapter->rx_buffer_len;
1796 	if (rrd->num_buf == num_buf)
1797 		/* clean alloc flag for bad rrd */
1798 		atl1_clean_alloc_flag(adapter, rrd, num_buf);
1799 }
1800 
1801 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1802 	struct rx_return_desc *rrd, struct sk_buff *skb)
1803 {
1804 	struct pci_dev *pdev = adapter->pdev;
1805 
1806 	/*
1807 	 * The L1 hardware contains a bug that erroneously sets the
1808 	 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1809 	 * fragmented IP packet is received, even though the packet
1810 	 * is perfectly valid and its checksum is correct. There's
1811 	 * no way to distinguish between one of these good packets
1812 	 * and a packet that actually contains a TCP/UDP checksum
1813 	 * error, so all we can do is allow it to be handed up to
1814 	 * the higher layers and let it be sorted out there.
1815 	 */
1816 
1817 	skb_checksum_none_assert(skb);
1818 
1819 	if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1820 		if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1821 					ERR_FLAG_CODE | ERR_FLAG_OV)) {
1822 			adapter->hw_csum_err++;
1823 			if (netif_msg_rx_err(adapter))
1824 				dev_printk(KERN_DEBUG, &pdev->dev,
1825 					"rx checksum error\n");
1826 			return;
1827 		}
1828 	}
1829 
1830 	/* not IPv4 */
1831 	if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1832 		/* checksum is invalid, but it's not an IPv4 pkt, so ok */
1833 		return;
1834 
1835 	/* IPv4 packet */
1836 	if (likely(!(rrd->err_flg &
1837 		(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1838 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1839 		adapter->hw_csum_good++;
1840 		return;
1841 	}
1842 }
1843 
1844 /*
1845  * atl1_alloc_rx_buffers - Replace used receive buffers
1846  * @adapter: address of board private structure
1847  */
1848 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1849 {
1850 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1851 	struct pci_dev *pdev = adapter->pdev;
1852 	struct page *page;
1853 	unsigned long offset;
1854 	struct atl1_buffer *buffer_info, *next_info;
1855 	struct sk_buff *skb;
1856 	u16 num_alloc = 0;
1857 	u16 rfd_next_to_use, next_next;
1858 	struct rx_free_desc *rfd_desc;
1859 
1860 	next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1861 	if (++next_next == rfd_ring->count)
1862 		next_next = 0;
1863 	buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1864 	next_info = &rfd_ring->buffer_info[next_next];
1865 
1866 	while (!buffer_info->alloced && !next_info->alloced) {
1867 		if (buffer_info->skb) {
1868 			buffer_info->alloced = 1;
1869 			goto next;
1870 		}
1871 
1872 		rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1873 
1874 		skb = netdev_alloc_skb_ip_align(adapter->netdev,
1875 						adapter->rx_buffer_len);
1876 		if (unlikely(!skb)) {
1877 			/* Better luck next round */
1878 			adapter->netdev->stats.rx_dropped++;
1879 			break;
1880 		}
1881 
1882 		buffer_info->alloced = 1;
1883 		buffer_info->skb = skb;
1884 		buffer_info->length = (u16) adapter->rx_buffer_len;
1885 		page = virt_to_page(skb->data);
1886 		offset = (unsigned long)skb->data & ~PAGE_MASK;
1887 		buffer_info->dma = pci_map_page(pdev, page, offset,
1888 						adapter->rx_buffer_len,
1889 						PCI_DMA_FROMDEVICE);
1890 		rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1891 		rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1892 		rfd_desc->coalese = 0;
1893 
1894 next:
1895 		rfd_next_to_use = next_next;
1896 		if (unlikely(++next_next == rfd_ring->count))
1897 			next_next = 0;
1898 
1899 		buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1900 		next_info = &rfd_ring->buffer_info[next_next];
1901 		num_alloc++;
1902 	}
1903 
1904 	if (num_alloc) {
1905 		/*
1906 		 * Force memory writes to complete before letting h/w
1907 		 * know there are new descriptors to fetch.  (Only
1908 		 * applicable for weak-ordered memory model archs,
1909 		 * such as IA-64).
1910 		 */
1911 		wmb();
1912 		atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1913 	}
1914 	return num_alloc;
1915 }
1916 
1917 static void atl1_intr_rx(struct atl1_adapter *adapter)
1918 {
1919 	int i, count;
1920 	u16 length;
1921 	u16 rrd_next_to_clean;
1922 	u32 value;
1923 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1924 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1925 	struct atl1_buffer *buffer_info;
1926 	struct rx_return_desc *rrd;
1927 	struct sk_buff *skb;
1928 
1929 	count = 0;
1930 
1931 	rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1932 
1933 	while (1) {
1934 		rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1935 		i = 1;
1936 		if (likely(rrd->xsz.valid)) {	/* packet valid */
1937 chk_rrd:
1938 			/* check rrd status */
1939 			if (likely(rrd->num_buf == 1))
1940 				goto rrd_ok;
1941 			else if (netif_msg_rx_err(adapter)) {
1942 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1943 					"unexpected RRD buffer count\n");
1944 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1945 					"rx_buf_len = %d\n",
1946 					adapter->rx_buffer_len);
1947 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948 					"RRD num_buf = %d\n",
1949 					rrd->num_buf);
1950 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951 					"RRD pkt_len = %d\n",
1952 					rrd->xsz.xsum_sz.pkt_size);
1953 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1954 					"RRD pkt_flg = 0x%08X\n",
1955 					rrd->pkt_flg);
1956 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957 					"RRD err_flg = 0x%08X\n",
1958 					rrd->err_flg);
1959 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960 					"RRD vlan_tag = 0x%08X\n",
1961 					rrd->vlan_tag);
1962 			}
1963 
1964 			/* rrd seems to be bad */
1965 			if (unlikely(i-- > 0)) {
1966 				/* rrd may not be DMAed completely */
1967 				udelay(1);
1968 				goto chk_rrd;
1969 			}
1970 			/* bad rrd */
1971 			if (netif_msg_rx_err(adapter))
1972 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1973 					"bad RRD\n");
1974 			/* see if update RFD index */
1975 			if (rrd->num_buf > 1)
1976 				atl1_update_rfd_index(adapter, rrd);
1977 
1978 			/* update rrd */
1979 			rrd->xsz.valid = 0;
1980 			if (++rrd_next_to_clean == rrd_ring->count)
1981 				rrd_next_to_clean = 0;
1982 			count++;
1983 			continue;
1984 		} else {	/* current rrd still not be updated */
1985 
1986 			break;
1987 		}
1988 rrd_ok:
1989 		/* clean alloc flag for bad rrd */
1990 		atl1_clean_alloc_flag(adapter, rrd, 0);
1991 
1992 		buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1993 		if (++rfd_ring->next_to_clean == rfd_ring->count)
1994 			rfd_ring->next_to_clean = 0;
1995 
1996 		/* update rrd next to clean */
1997 		if (++rrd_next_to_clean == rrd_ring->count)
1998 			rrd_next_to_clean = 0;
1999 		count++;
2000 
2001 		if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2002 			if (!(rrd->err_flg &
2003 				(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2004 				| ERR_FLAG_LEN))) {
2005 				/* packet error, don't need upstream */
2006 				buffer_info->alloced = 0;
2007 				rrd->xsz.valid = 0;
2008 				continue;
2009 			}
2010 		}
2011 
2012 		/* Good Receive */
2013 		pci_unmap_page(adapter->pdev, buffer_info->dma,
2014 			       buffer_info->length, PCI_DMA_FROMDEVICE);
2015 		buffer_info->dma = 0;
2016 		skb = buffer_info->skb;
2017 		length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2018 
2019 		skb_put(skb, length - ETH_FCS_LEN);
2020 
2021 		/* Receive Checksum Offload */
2022 		atl1_rx_checksum(adapter, rrd, skb);
2023 		skb->protocol = eth_type_trans(skb, adapter->netdev);
2024 
2025 		if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2026 			u16 vlan_tag = (rrd->vlan_tag >> 4) |
2027 					((rrd->vlan_tag & 7) << 13) |
2028 					((rrd->vlan_tag & 8) << 9);
2029 
2030 			__vlan_hwaccel_put_tag(skb, vlan_tag);
2031 		}
2032 		netif_rx(skb);
2033 
2034 		/* let protocol layer free skb */
2035 		buffer_info->skb = NULL;
2036 		buffer_info->alloced = 0;
2037 		rrd->xsz.valid = 0;
2038 	}
2039 
2040 	atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2041 
2042 	atl1_alloc_rx_buffers(adapter);
2043 
2044 	/* update mailbox ? */
2045 	if (count) {
2046 		u32 tpd_next_to_use;
2047 		u32 rfd_next_to_use;
2048 
2049 		spin_lock(&adapter->mb_lock);
2050 
2051 		tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2052 		rfd_next_to_use =
2053 		    atomic_read(&adapter->rfd_ring.next_to_use);
2054 		rrd_next_to_clean =
2055 		    atomic_read(&adapter->rrd_ring.next_to_clean);
2056 		value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2057 			MB_RFD_PROD_INDX_SHIFT) |
2058                         ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2059 			MB_RRD_CONS_INDX_SHIFT) |
2060                         ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2061 			MB_TPD_PROD_INDX_SHIFT);
2062 		iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2063 		spin_unlock(&adapter->mb_lock);
2064 	}
2065 }
2066 
2067 static void atl1_intr_tx(struct atl1_adapter *adapter)
2068 {
2069 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2070 	struct atl1_buffer *buffer_info;
2071 	u16 sw_tpd_next_to_clean;
2072 	u16 cmb_tpd_next_to_clean;
2073 
2074 	sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2075 	cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2076 
2077 	while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2078 		buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2079 		if (buffer_info->dma) {
2080 			pci_unmap_page(adapter->pdev, buffer_info->dma,
2081 				       buffer_info->length, PCI_DMA_TODEVICE);
2082 			buffer_info->dma = 0;
2083 		}
2084 
2085 		if (buffer_info->skb) {
2086 			dev_kfree_skb_irq(buffer_info->skb);
2087 			buffer_info->skb = NULL;
2088 		}
2089 
2090 		if (++sw_tpd_next_to_clean == tpd_ring->count)
2091 			sw_tpd_next_to_clean = 0;
2092 	}
2093 	atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2094 
2095 	if (netif_queue_stopped(adapter->netdev) &&
2096 	    netif_carrier_ok(adapter->netdev))
2097 		netif_wake_queue(adapter->netdev);
2098 }
2099 
2100 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2101 {
2102 	u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2103 	u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2104 	return (next_to_clean > next_to_use) ?
2105 		next_to_clean - next_to_use - 1 :
2106 		tpd_ring->count + next_to_clean - next_to_use - 1;
2107 }
2108 
2109 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2110 	struct tx_packet_desc *ptpd)
2111 {
2112 	u8 hdr_len, ip_off;
2113 	u32 real_len;
2114 	int err;
2115 
2116 	if (skb_shinfo(skb)->gso_size) {
2117 		if (skb_header_cloned(skb)) {
2118 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2119 			if (unlikely(err))
2120 				return -1;
2121 		}
2122 
2123 		if (skb->protocol == htons(ETH_P_IP)) {
2124 			struct iphdr *iph = ip_hdr(skb);
2125 
2126 			real_len = (((unsigned char *)iph - skb->data) +
2127 				ntohs(iph->tot_len));
2128 			if (real_len < skb->len)
2129 				pskb_trim(skb, real_len);
2130 			hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2131 			if (skb->len == hdr_len) {
2132 				iph->check = 0;
2133 				tcp_hdr(skb)->check =
2134 					~csum_tcpudp_magic(iph->saddr,
2135 					iph->daddr, tcp_hdrlen(skb),
2136 					IPPROTO_TCP, 0);
2137 				ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2138 					TPD_IPHL_SHIFT;
2139 				ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2140 					TPD_TCPHDRLEN_MASK) <<
2141 					TPD_TCPHDRLEN_SHIFT;
2142 				ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2143 				ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2144 				return 1;
2145 			}
2146 
2147 			iph->check = 0;
2148 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2149 					iph->daddr, 0, IPPROTO_TCP, 0);
2150 			ip_off = (unsigned char *)iph -
2151 				(unsigned char *) skb_network_header(skb);
2152 			if (ip_off == 8) /* 802.3-SNAP frame */
2153 				ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2154 			else if (ip_off != 0)
2155 				return -2;
2156 
2157 			ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2158 				TPD_IPHL_SHIFT;
2159 			ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2160 				TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2161 			ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2162 				TPD_MSS_MASK) << TPD_MSS_SHIFT;
2163 			ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2164 			return 3;
2165 		}
2166 	}
2167 	return false;
2168 }
2169 
2170 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2171 	struct tx_packet_desc *ptpd)
2172 {
2173 	u8 css, cso;
2174 
2175 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2176 		css = skb_checksum_start_offset(skb);
2177 		cso = css + (u8) skb->csum_offset;
2178 		if (unlikely(css & 0x1)) {
2179 			/* L1 hardware requires an even number here */
2180 			if (netif_msg_tx_err(adapter))
2181 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2182 					"payload offset not an even number\n");
2183 			return -1;
2184 		}
2185 		ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2186 			TPD_PLOADOFFSET_SHIFT;
2187 		ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2188 			TPD_CCSUMOFFSET_SHIFT;
2189 		ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2190 		return true;
2191 	}
2192 	return 0;
2193 }
2194 
2195 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2196 	struct tx_packet_desc *ptpd)
2197 {
2198 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2199 	struct atl1_buffer *buffer_info;
2200 	u16 buf_len = skb->len;
2201 	struct page *page;
2202 	unsigned long offset;
2203 	unsigned int nr_frags;
2204 	unsigned int f;
2205 	int retval;
2206 	u16 next_to_use;
2207 	u16 data_len;
2208 	u8 hdr_len;
2209 
2210 	buf_len -= skb->data_len;
2211 	nr_frags = skb_shinfo(skb)->nr_frags;
2212 	next_to_use = atomic_read(&tpd_ring->next_to_use);
2213 	buffer_info = &tpd_ring->buffer_info[next_to_use];
2214 	BUG_ON(buffer_info->skb);
2215 	/* put skb in last TPD */
2216 	buffer_info->skb = NULL;
2217 
2218 	retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2219 	if (retval) {
2220 		/* TSO */
2221 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2222 		buffer_info->length = hdr_len;
2223 		page = virt_to_page(skb->data);
2224 		offset = (unsigned long)skb->data & ~PAGE_MASK;
2225 		buffer_info->dma = pci_map_page(adapter->pdev, page,
2226 						offset, hdr_len,
2227 						PCI_DMA_TODEVICE);
2228 
2229 		if (++next_to_use == tpd_ring->count)
2230 			next_to_use = 0;
2231 
2232 		if (buf_len > hdr_len) {
2233 			int i, nseg;
2234 
2235 			data_len = buf_len - hdr_len;
2236 			nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2237 				ATL1_MAX_TX_BUF_LEN;
2238 			for (i = 0; i < nseg; i++) {
2239 				buffer_info =
2240 				    &tpd_ring->buffer_info[next_to_use];
2241 				buffer_info->skb = NULL;
2242 				buffer_info->length =
2243 				    (ATL1_MAX_TX_BUF_LEN >=
2244 				     data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2245 				data_len -= buffer_info->length;
2246 				page = virt_to_page(skb->data +
2247 					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2248 				offset = (unsigned long)(skb->data +
2249 					(hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2250 					~PAGE_MASK;
2251 				buffer_info->dma = pci_map_page(adapter->pdev,
2252 					page, offset, buffer_info->length,
2253 					PCI_DMA_TODEVICE);
2254 				if (++next_to_use == tpd_ring->count)
2255 					next_to_use = 0;
2256 			}
2257 		}
2258 	} else {
2259 		/* not TSO */
2260 		buffer_info->length = buf_len;
2261 		page = virt_to_page(skb->data);
2262 		offset = (unsigned long)skb->data & ~PAGE_MASK;
2263 		buffer_info->dma = pci_map_page(adapter->pdev, page,
2264 			offset, buf_len, PCI_DMA_TODEVICE);
2265 		if (++next_to_use == tpd_ring->count)
2266 			next_to_use = 0;
2267 	}
2268 
2269 	for (f = 0; f < nr_frags; f++) {
2270 		const struct skb_frag_struct *frag;
2271 		u16 i, nseg;
2272 
2273 		frag = &skb_shinfo(skb)->frags[f];
2274 		buf_len = skb_frag_size(frag);
2275 
2276 		nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2277 			ATL1_MAX_TX_BUF_LEN;
2278 		for (i = 0; i < nseg; i++) {
2279 			buffer_info = &tpd_ring->buffer_info[next_to_use];
2280 			BUG_ON(buffer_info->skb);
2281 
2282 			buffer_info->skb = NULL;
2283 			buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2284 				ATL1_MAX_TX_BUF_LEN : buf_len;
2285 			buf_len -= buffer_info->length;
2286 			buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2287 				frag, i * ATL1_MAX_TX_BUF_LEN,
2288 				buffer_info->length, DMA_TO_DEVICE);
2289 
2290 			if (++next_to_use == tpd_ring->count)
2291 				next_to_use = 0;
2292 		}
2293 	}
2294 
2295 	/* last tpd's buffer-info */
2296 	buffer_info->skb = skb;
2297 }
2298 
2299 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2300        struct tx_packet_desc *ptpd)
2301 {
2302 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2303 	struct atl1_buffer *buffer_info;
2304 	struct tx_packet_desc *tpd;
2305 	u16 j;
2306 	u32 val;
2307 	u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2308 
2309 	for (j = 0; j < count; j++) {
2310 		buffer_info = &tpd_ring->buffer_info[next_to_use];
2311 		tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2312 		if (tpd != ptpd)
2313 			memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2314 		tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2315 		tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2316 		tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2317 			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2318 
2319 		/*
2320 		 * if this is the first packet in a TSO chain, set
2321 		 * TPD_HDRFLAG, otherwise, clear it.
2322 		 */
2323 		val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2324 			TPD_SEGMENT_EN_MASK;
2325 		if (val) {
2326 			if (!j)
2327 				tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2328 			else
2329 				tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2330 		}
2331 
2332 		if (j == (count - 1))
2333 			tpd->word3 |= 1 << TPD_EOP_SHIFT;
2334 
2335 		if (++next_to_use == tpd_ring->count)
2336 			next_to_use = 0;
2337 	}
2338 	/*
2339 	 * Force memory writes to complete before letting h/w
2340 	 * know there are new descriptors to fetch.  (Only
2341 	 * applicable for weak-ordered memory model archs,
2342 	 * such as IA-64).
2343 	 */
2344 	wmb();
2345 
2346 	atomic_set(&tpd_ring->next_to_use, next_to_use);
2347 }
2348 
2349 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2350 					 struct net_device *netdev)
2351 {
2352 	struct atl1_adapter *adapter = netdev_priv(netdev);
2353 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2354 	int len;
2355 	int tso;
2356 	int count = 1;
2357 	int ret_val;
2358 	struct tx_packet_desc *ptpd;
2359 	u16 vlan_tag;
2360 	unsigned int nr_frags = 0;
2361 	unsigned int mss = 0;
2362 	unsigned int f;
2363 	unsigned int proto_hdr_len;
2364 
2365 	len = skb_headlen(skb);
2366 
2367 	if (unlikely(skb->len <= 0)) {
2368 		dev_kfree_skb_any(skb);
2369 		return NETDEV_TX_OK;
2370 	}
2371 
2372 	nr_frags = skb_shinfo(skb)->nr_frags;
2373 	for (f = 0; f < nr_frags; f++) {
2374 		unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2375 		count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2376 			 ATL1_MAX_TX_BUF_LEN;
2377 	}
2378 
2379 	mss = skb_shinfo(skb)->gso_size;
2380 	if (mss) {
2381 		if (skb->protocol == htons(ETH_P_IP)) {
2382 			proto_hdr_len = (skb_transport_offset(skb) +
2383 					 tcp_hdrlen(skb));
2384 			if (unlikely(proto_hdr_len > len)) {
2385 				dev_kfree_skb_any(skb);
2386 				return NETDEV_TX_OK;
2387 			}
2388 			/* need additional TPD ? */
2389 			if (proto_hdr_len != len)
2390 				count += (len - proto_hdr_len +
2391 					ATL1_MAX_TX_BUF_LEN - 1) /
2392 					ATL1_MAX_TX_BUF_LEN;
2393 		}
2394 	}
2395 
2396 	if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2397 		/* not enough descriptors */
2398 		netif_stop_queue(netdev);
2399 		if (netif_msg_tx_queued(adapter))
2400 			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2401 				"tx busy\n");
2402 		return NETDEV_TX_BUSY;
2403 	}
2404 
2405 	ptpd = ATL1_TPD_DESC(tpd_ring,
2406 		(u16) atomic_read(&tpd_ring->next_to_use));
2407 	memset(ptpd, 0, sizeof(struct tx_packet_desc));
2408 
2409 	if (vlan_tx_tag_present(skb)) {
2410 		vlan_tag = vlan_tx_tag_get(skb);
2411 		vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2412 			((vlan_tag >> 9) & 0x8);
2413 		ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2414 		ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2415 			TPD_VLANTAG_SHIFT;
2416 	}
2417 
2418 	tso = atl1_tso(adapter, skb, ptpd);
2419 	if (tso < 0) {
2420 		dev_kfree_skb_any(skb);
2421 		return NETDEV_TX_OK;
2422 	}
2423 
2424 	if (!tso) {
2425 		ret_val = atl1_tx_csum(adapter, skb, ptpd);
2426 		if (ret_val < 0) {
2427 			dev_kfree_skb_any(skb);
2428 			return NETDEV_TX_OK;
2429 		}
2430 	}
2431 
2432 	atl1_tx_map(adapter, skb, ptpd);
2433 	atl1_tx_queue(adapter, count, ptpd);
2434 	atl1_update_mailbox(adapter);
2435 	mmiowb();
2436 	return NETDEV_TX_OK;
2437 }
2438 
2439 /*
2440  * atl1_intr - Interrupt Handler
2441  * @irq: interrupt number
2442  * @data: pointer to a network interface device structure
2443  * @pt_regs: CPU registers structure
2444  */
2445 static irqreturn_t atl1_intr(int irq, void *data)
2446 {
2447 	struct atl1_adapter *adapter = netdev_priv(data);
2448 	u32 status;
2449 	int max_ints = 10;
2450 
2451 	status = adapter->cmb.cmb->int_stats;
2452 	if (!status)
2453 		return IRQ_NONE;
2454 
2455 	do {
2456 		/* clear CMB interrupt status at once */
2457 		adapter->cmb.cmb->int_stats = 0;
2458 
2459 		if (status & ISR_GPHY)	/* clear phy status */
2460 			atlx_clear_phy_int(adapter);
2461 
2462 		/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2463 		iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2464 
2465 		/* check if SMB intr */
2466 		if (status & ISR_SMB)
2467 			atl1_inc_smb(adapter);
2468 
2469 		/* check if PCIE PHY Link down */
2470 		if (status & ISR_PHY_LINKDOWN) {
2471 			if (netif_msg_intr(adapter))
2472 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2473 					"pcie phy link down %x\n", status);
2474 			if (netif_running(adapter->netdev)) {	/* reset MAC */
2475 				iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2476 				schedule_work(&adapter->pcie_dma_to_rst_task);
2477 				return IRQ_HANDLED;
2478 			}
2479 		}
2480 
2481 		/* check if DMA read/write error ? */
2482 		if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2483 			if (netif_msg_intr(adapter))
2484 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2485 					"pcie DMA r/w error (status = 0x%x)\n",
2486 					status);
2487 			iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2488 			schedule_work(&adapter->pcie_dma_to_rst_task);
2489 			return IRQ_HANDLED;
2490 		}
2491 
2492 		/* link event */
2493 		if (status & ISR_GPHY) {
2494 			adapter->soft_stats.tx_carrier_errors++;
2495 			atl1_check_for_link(adapter);
2496 		}
2497 
2498 		/* transmit event */
2499 		if (status & ISR_CMB_TX)
2500 			atl1_intr_tx(adapter);
2501 
2502 		/* rx exception */
2503 		if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2504 			ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2505 			ISR_HOST_RRD_OV | ISR_CMB_RX))) {
2506 			if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2507 				ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2508 				ISR_HOST_RRD_OV))
2509 				if (netif_msg_intr(adapter))
2510 					dev_printk(KERN_DEBUG,
2511 						&adapter->pdev->dev,
2512 						"rx exception, ISR = 0x%x\n",
2513 						status);
2514 			atl1_intr_rx(adapter);
2515 		}
2516 
2517 		if (--max_ints < 0)
2518 			break;
2519 
2520 	} while ((status = adapter->cmb.cmb->int_stats));
2521 
2522 	/* re-enable Interrupt */
2523 	iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2524 	return IRQ_HANDLED;
2525 }
2526 
2527 
2528 /*
2529  * atl1_phy_config - Timer Call-back
2530  * @data: pointer to netdev cast into an unsigned long
2531  */
2532 static void atl1_phy_config(unsigned long data)
2533 {
2534 	struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2535 	struct atl1_hw *hw = &adapter->hw;
2536 	unsigned long flags;
2537 
2538 	spin_lock_irqsave(&adapter->lock, flags);
2539 	adapter->phy_timer_pending = false;
2540 	atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2541 	atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2542 	atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2543 	spin_unlock_irqrestore(&adapter->lock, flags);
2544 }
2545 
2546 /*
2547  * Orphaned vendor comment left intact here:
2548  * <vendor comment>
2549  * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2550  * will assert. We do soft reset <0x1400=1> according
2551  * with the SPEC. BUT, it seemes that PCIE or DMA
2552  * state-machine will not be reset. DMAR_TO_INT will
2553  * assert again and again.
2554  * </vendor comment>
2555  */
2556 
2557 static int atl1_reset(struct atl1_adapter *adapter)
2558 {
2559 	int ret;
2560 	ret = atl1_reset_hw(&adapter->hw);
2561 	if (ret)
2562 		return ret;
2563 	return atl1_init_hw(&adapter->hw);
2564 }
2565 
2566 static s32 atl1_up(struct atl1_adapter *adapter)
2567 {
2568 	struct net_device *netdev = adapter->netdev;
2569 	int err;
2570 	int irq_flags = 0;
2571 
2572 	/* hardware has been reset, we need to reload some things */
2573 	atlx_set_multi(netdev);
2574 	atl1_init_ring_ptrs(adapter);
2575 	atlx_restore_vlan(adapter);
2576 	err = atl1_alloc_rx_buffers(adapter);
2577 	if (unlikely(!err))
2578 		/* no RX BUFFER allocated */
2579 		return -ENOMEM;
2580 
2581 	if (unlikely(atl1_configure(adapter))) {
2582 		err = -EIO;
2583 		goto err_up;
2584 	}
2585 
2586 	err = pci_enable_msi(adapter->pdev);
2587 	if (err) {
2588 		if (netif_msg_ifup(adapter))
2589 			dev_info(&adapter->pdev->dev,
2590 				"Unable to enable MSI: %d\n", err);
2591 		irq_flags |= IRQF_SHARED;
2592 	}
2593 
2594 	err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2595 			netdev->name, netdev);
2596 	if (unlikely(err))
2597 		goto err_up;
2598 
2599 	atlx_irq_enable(adapter);
2600 	atl1_check_link(adapter);
2601 	netif_start_queue(netdev);
2602 	return 0;
2603 
2604 err_up:
2605 	pci_disable_msi(adapter->pdev);
2606 	/* free rx_buffers */
2607 	atl1_clean_rx_ring(adapter);
2608 	return err;
2609 }
2610 
2611 static void atl1_down(struct atl1_adapter *adapter)
2612 {
2613 	struct net_device *netdev = adapter->netdev;
2614 
2615 	netif_stop_queue(netdev);
2616 	del_timer_sync(&adapter->phy_config_timer);
2617 	adapter->phy_timer_pending = false;
2618 
2619 	atlx_irq_disable(adapter);
2620 	free_irq(adapter->pdev->irq, netdev);
2621 	pci_disable_msi(adapter->pdev);
2622 	atl1_reset_hw(&adapter->hw);
2623 	adapter->cmb.cmb->int_stats = 0;
2624 
2625 	adapter->link_speed = SPEED_0;
2626 	adapter->link_duplex = -1;
2627 	netif_carrier_off(netdev);
2628 
2629 	atl1_clean_tx_ring(adapter);
2630 	atl1_clean_rx_ring(adapter);
2631 }
2632 
2633 static void atl1_tx_timeout_task(struct work_struct *work)
2634 {
2635 	struct atl1_adapter *adapter =
2636 		container_of(work, struct atl1_adapter, tx_timeout_task);
2637 	struct net_device *netdev = adapter->netdev;
2638 
2639 	netif_device_detach(netdev);
2640 	atl1_down(adapter);
2641 	atl1_up(adapter);
2642 	netif_device_attach(netdev);
2643 }
2644 
2645 /*
2646  * atl1_change_mtu - Change the Maximum Transfer Unit
2647  * @netdev: network interface device structure
2648  * @new_mtu: new value for maximum frame size
2649  *
2650  * Returns 0 on success, negative on failure
2651  */
2652 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2653 {
2654 	struct atl1_adapter *adapter = netdev_priv(netdev);
2655 	int old_mtu = netdev->mtu;
2656 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2657 
2658 	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2659 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2660 		if (netif_msg_link(adapter))
2661 			dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2662 		return -EINVAL;
2663 	}
2664 
2665 	adapter->hw.max_frame_size = max_frame;
2666 	adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2667 	adapter->rx_buffer_len = (max_frame + 7) & ~7;
2668 	adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2669 
2670 	netdev->mtu = new_mtu;
2671 	if ((old_mtu != new_mtu) && netif_running(netdev)) {
2672 		atl1_down(adapter);
2673 		atl1_up(adapter);
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 /*
2680  * atl1_open - Called when a network interface is made active
2681  * @netdev: network interface device structure
2682  *
2683  * Returns 0 on success, negative value on failure
2684  *
2685  * The open entry point is called when a network interface is made
2686  * active by the system (IFF_UP).  At this point all resources needed
2687  * for transmit and receive operations are allocated, the interrupt
2688  * handler is registered with the OS, the watchdog timer is started,
2689  * and the stack is notified that the interface is ready.
2690  */
2691 static int atl1_open(struct net_device *netdev)
2692 {
2693 	struct atl1_adapter *adapter = netdev_priv(netdev);
2694 	int err;
2695 
2696 	netif_carrier_off(netdev);
2697 
2698 	/* allocate transmit descriptors */
2699 	err = atl1_setup_ring_resources(adapter);
2700 	if (err)
2701 		return err;
2702 
2703 	err = atl1_up(adapter);
2704 	if (err)
2705 		goto err_up;
2706 
2707 	return 0;
2708 
2709 err_up:
2710 	atl1_reset(adapter);
2711 	return err;
2712 }
2713 
2714 /*
2715  * atl1_close - Disables a network interface
2716  * @netdev: network interface device structure
2717  *
2718  * Returns 0, this is not allowed to fail
2719  *
2720  * The close entry point is called when an interface is de-activated
2721  * by the OS.  The hardware is still under the drivers control, but
2722  * needs to be disabled.  A global MAC reset is issued to stop the
2723  * hardware, and all transmit and receive resources are freed.
2724  */
2725 static int atl1_close(struct net_device *netdev)
2726 {
2727 	struct atl1_adapter *adapter = netdev_priv(netdev);
2728 	atl1_down(adapter);
2729 	atl1_free_ring_resources(adapter);
2730 	return 0;
2731 }
2732 
2733 #ifdef CONFIG_PM
2734 static int atl1_suspend(struct device *dev)
2735 {
2736 	struct pci_dev *pdev = to_pci_dev(dev);
2737 	struct net_device *netdev = pci_get_drvdata(pdev);
2738 	struct atl1_adapter *adapter = netdev_priv(netdev);
2739 	struct atl1_hw *hw = &adapter->hw;
2740 	u32 ctrl = 0;
2741 	u32 wufc = adapter->wol;
2742 	u32 val;
2743 	u16 speed;
2744 	u16 duplex;
2745 
2746 	netif_device_detach(netdev);
2747 	if (netif_running(netdev))
2748 		atl1_down(adapter);
2749 
2750 	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2751 	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2752 	val = ctrl & BMSR_LSTATUS;
2753 	if (val)
2754 		wufc &= ~ATLX_WUFC_LNKC;
2755 	if (!wufc)
2756 		goto disable_wol;
2757 
2758 	if (val) {
2759 		val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2760 		if (val) {
2761 			if (netif_msg_ifdown(adapter))
2762 				dev_printk(KERN_DEBUG, &pdev->dev,
2763 					"error getting speed/duplex\n");
2764 			goto disable_wol;
2765 		}
2766 
2767 		ctrl = 0;
2768 
2769 		/* enable magic packet WOL */
2770 		if (wufc & ATLX_WUFC_MAG)
2771 			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2772 		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2773 		ioread32(hw->hw_addr + REG_WOL_CTRL);
2774 
2775 		/* configure the mac */
2776 		ctrl = MAC_CTRL_RX_EN;
2777 		ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2778 			MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2779 		if (duplex == FULL_DUPLEX)
2780 			ctrl |= MAC_CTRL_DUPLX;
2781 		ctrl |= (((u32)adapter->hw.preamble_len &
2782 			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2783 		__atlx_vlan_mode(netdev->features, &ctrl);
2784 		if (wufc & ATLX_WUFC_MAG)
2785 			ctrl |= MAC_CTRL_BC_EN;
2786 		iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2787 		ioread32(hw->hw_addr + REG_MAC_CTRL);
2788 
2789 		/* poke the PHY */
2790 		ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2791 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2792 		iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2793 		ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2794 	} else {
2795 		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2796 		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2797 		ioread32(hw->hw_addr + REG_WOL_CTRL);
2798 		iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2799 		ioread32(hw->hw_addr + REG_MAC_CTRL);
2800 		hw->phy_configured = false;
2801 	}
2802 
2803 	return 0;
2804 
2805  disable_wol:
2806 	iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2807 	ioread32(hw->hw_addr + REG_WOL_CTRL);
2808 	ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2809 	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2810 	iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2811 	ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2812 	hw->phy_configured = false;
2813 
2814 	return 0;
2815 }
2816 
2817 static int atl1_resume(struct device *dev)
2818 {
2819 	struct pci_dev *pdev = to_pci_dev(dev);
2820 	struct net_device *netdev = pci_get_drvdata(pdev);
2821 	struct atl1_adapter *adapter = netdev_priv(netdev);
2822 
2823 	iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2824 
2825 	atl1_reset_hw(&adapter->hw);
2826 
2827 	if (netif_running(netdev)) {
2828 		adapter->cmb.cmb->int_stats = 0;
2829 		atl1_up(adapter);
2830 	}
2831 	netif_device_attach(netdev);
2832 
2833 	return 0;
2834 }
2835 
2836 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2837 #define ATL1_PM_OPS	(&atl1_pm_ops)
2838 
2839 #else
2840 
2841 static int atl1_suspend(struct device *dev) { return 0; }
2842 
2843 #define ATL1_PM_OPS	NULL
2844 #endif
2845 
2846 static void atl1_shutdown(struct pci_dev *pdev)
2847 {
2848 	struct net_device *netdev = pci_get_drvdata(pdev);
2849 	struct atl1_adapter *adapter = netdev_priv(netdev);
2850 
2851 	atl1_suspend(&pdev->dev);
2852 	pci_wake_from_d3(pdev, adapter->wol);
2853 	pci_set_power_state(pdev, PCI_D3hot);
2854 }
2855 
2856 #ifdef CONFIG_NET_POLL_CONTROLLER
2857 static void atl1_poll_controller(struct net_device *netdev)
2858 {
2859 	disable_irq(netdev->irq);
2860 	atl1_intr(netdev->irq, netdev);
2861 	enable_irq(netdev->irq);
2862 }
2863 #endif
2864 
2865 static const struct net_device_ops atl1_netdev_ops = {
2866 	.ndo_open		= atl1_open,
2867 	.ndo_stop		= atl1_close,
2868 	.ndo_start_xmit		= atl1_xmit_frame,
2869 	.ndo_set_rx_mode	= atlx_set_multi,
2870 	.ndo_validate_addr	= eth_validate_addr,
2871 	.ndo_set_mac_address	= atl1_set_mac,
2872 	.ndo_change_mtu		= atl1_change_mtu,
2873 	.ndo_fix_features	= atlx_fix_features,
2874 	.ndo_set_features	= atlx_set_features,
2875 	.ndo_do_ioctl		= atlx_ioctl,
2876 	.ndo_tx_timeout		= atlx_tx_timeout,
2877 #ifdef CONFIG_NET_POLL_CONTROLLER
2878 	.ndo_poll_controller	= atl1_poll_controller,
2879 #endif
2880 };
2881 
2882 /*
2883  * atl1_probe - Device Initialization Routine
2884  * @pdev: PCI device information struct
2885  * @ent: entry in atl1_pci_tbl
2886  *
2887  * Returns 0 on success, negative on failure
2888  *
2889  * atl1_probe initializes an adapter identified by a pci_dev structure.
2890  * The OS initialization, configuring of the adapter private structure,
2891  * and a hardware reset occur.
2892  */
2893 static int __devinit atl1_probe(struct pci_dev *pdev,
2894 	const struct pci_device_id *ent)
2895 {
2896 	struct net_device *netdev;
2897 	struct atl1_adapter *adapter;
2898 	static int cards_found = 0;
2899 	int err;
2900 
2901 	err = pci_enable_device(pdev);
2902 	if (err)
2903 		return err;
2904 
2905 	/*
2906 	 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2907 	 * shared register for the high 32 bits, so only a single, aligned,
2908 	 * 4 GB physical address range can be used at a time.
2909 	 *
2910 	 * Supporting 64-bit DMA on this hardware is more trouble than it's
2911 	 * worth.  It is far easier to limit to 32-bit DMA than update
2912 	 * various kernel subsystems to support the mechanics required by a
2913 	 * fixed-high-32-bit system.
2914 	 */
2915 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2916 	if (err) {
2917 		dev_err(&pdev->dev, "no usable DMA configuration\n");
2918 		goto err_dma;
2919 	}
2920 	/*
2921 	 * Mark all PCI regions associated with PCI device
2922 	 * pdev as being reserved by owner atl1_driver_name
2923 	 */
2924 	err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2925 	if (err)
2926 		goto err_request_regions;
2927 
2928 	/*
2929 	 * Enables bus-mastering on the device and calls
2930 	 * pcibios_set_master to do the needed arch specific settings
2931 	 */
2932 	pci_set_master(pdev);
2933 
2934 	netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2935 	if (!netdev) {
2936 		err = -ENOMEM;
2937 		goto err_alloc_etherdev;
2938 	}
2939 	SET_NETDEV_DEV(netdev, &pdev->dev);
2940 
2941 	pci_set_drvdata(pdev, netdev);
2942 	adapter = netdev_priv(netdev);
2943 	adapter->netdev = netdev;
2944 	adapter->pdev = pdev;
2945 	adapter->hw.back = adapter;
2946 	adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2947 
2948 	adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2949 	if (!adapter->hw.hw_addr) {
2950 		err = -EIO;
2951 		goto err_pci_iomap;
2952 	}
2953 	/* get device revision number */
2954 	adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2955 		(REG_MASTER_CTRL + 2));
2956 	if (netif_msg_probe(adapter))
2957 		dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2958 
2959 	/* set default ring resource counts */
2960 	adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2961 	adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2962 
2963 	adapter->mii.dev = netdev;
2964 	adapter->mii.mdio_read = mdio_read;
2965 	adapter->mii.mdio_write = mdio_write;
2966 	adapter->mii.phy_id_mask = 0x1f;
2967 	adapter->mii.reg_num_mask = 0x1f;
2968 
2969 	netdev->netdev_ops = &atl1_netdev_ops;
2970 	netdev->watchdog_timeo = 5 * HZ;
2971 
2972 	netdev->ethtool_ops = &atl1_ethtool_ops;
2973 	adapter->bd_number = cards_found;
2974 
2975 	/* setup the private structure */
2976 	err = atl1_sw_init(adapter);
2977 	if (err)
2978 		goto err_common;
2979 
2980 	netdev->features = NETIF_F_HW_CSUM;
2981 	netdev->features |= NETIF_F_SG;
2982 	netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
2983 
2984 	netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
2985 			      NETIF_F_HW_VLAN_RX;
2986 
2987 	/* is this valid? see atl1_setup_mac_ctrl() */
2988 	netdev->features |= NETIF_F_RXCSUM;
2989 
2990 	/*
2991 	 * patch for some L1 of old version,
2992 	 * the final version of L1 may not need these
2993 	 * patches
2994 	 */
2995 	/* atl1_pcie_patch(adapter); */
2996 
2997 	/* really reset GPHY core */
2998 	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
2999 
3000 	/*
3001 	 * reset the controller to
3002 	 * put the device in a known good starting state
3003 	 */
3004 	if (atl1_reset_hw(&adapter->hw)) {
3005 		err = -EIO;
3006 		goto err_common;
3007 	}
3008 
3009 	/* copy the MAC address out of the EEPROM */
3010 	atl1_read_mac_addr(&adapter->hw);
3011 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3012 
3013 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3014 		err = -EIO;
3015 		goto err_common;
3016 	}
3017 
3018 	atl1_check_options(adapter);
3019 
3020 	/* pre-init the MAC, and setup link */
3021 	err = atl1_init_hw(&adapter->hw);
3022 	if (err) {
3023 		err = -EIO;
3024 		goto err_common;
3025 	}
3026 
3027 	atl1_pcie_patch(adapter);
3028 	/* assume we have no link for now */
3029 	netif_carrier_off(netdev);
3030 
3031 	setup_timer(&adapter->phy_config_timer, atl1_phy_config,
3032 		    (unsigned long)adapter);
3033 	adapter->phy_timer_pending = false;
3034 
3035 	INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
3036 
3037 	INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3038 
3039 	INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
3040 
3041 	err = register_netdev(netdev);
3042 	if (err)
3043 		goto err_common;
3044 
3045 	cards_found++;
3046 	atl1_via_workaround(adapter);
3047 	return 0;
3048 
3049 err_common:
3050 	pci_iounmap(pdev, adapter->hw.hw_addr);
3051 err_pci_iomap:
3052 	free_netdev(netdev);
3053 err_alloc_etherdev:
3054 	pci_release_regions(pdev);
3055 err_dma:
3056 err_request_regions:
3057 	pci_disable_device(pdev);
3058 	return err;
3059 }
3060 
3061 /*
3062  * atl1_remove - Device Removal Routine
3063  * @pdev: PCI device information struct
3064  *
3065  * atl1_remove is called by the PCI subsystem to alert the driver
3066  * that it should release a PCI device.  The could be caused by a
3067  * Hot-Plug event, or because the driver is going to be removed from
3068  * memory.
3069  */
3070 static void __devexit atl1_remove(struct pci_dev *pdev)
3071 {
3072 	struct net_device *netdev = pci_get_drvdata(pdev);
3073 	struct atl1_adapter *adapter;
3074 	/* Device not available. Return. */
3075 	if (!netdev)
3076 		return;
3077 
3078 	adapter = netdev_priv(netdev);
3079 
3080 	/*
3081 	 * Some atl1 boards lack persistent storage for their MAC, and get it
3082 	 * from the BIOS during POST.  If we've been messing with the MAC
3083 	 * address, we need to save the permanent one.
3084 	 */
3085 	if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
3086 		memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3087 			ETH_ALEN);
3088 		atl1_set_mac_addr(&adapter->hw);
3089 	}
3090 
3091 	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3092 	unregister_netdev(netdev);
3093 	pci_iounmap(pdev, adapter->hw.hw_addr);
3094 	pci_release_regions(pdev);
3095 	free_netdev(netdev);
3096 	pci_disable_device(pdev);
3097 }
3098 
3099 static struct pci_driver atl1_driver = {
3100 	.name = ATLX_DRIVER_NAME,
3101 	.id_table = atl1_pci_tbl,
3102 	.probe = atl1_probe,
3103 	.remove = __devexit_p(atl1_remove),
3104 	.shutdown = atl1_shutdown,
3105 	.driver.pm = ATL1_PM_OPS,
3106 };
3107 
3108 /*
3109  * atl1_exit_module - Driver Exit Cleanup Routine
3110  *
3111  * atl1_exit_module is called just before the driver is removed
3112  * from memory.
3113  */
3114 static void __exit atl1_exit_module(void)
3115 {
3116 	pci_unregister_driver(&atl1_driver);
3117 }
3118 
3119 /*
3120  * atl1_init_module - Driver Registration Routine
3121  *
3122  * atl1_init_module is the first routine called when the driver is
3123  * loaded. All it does is register with the PCI subsystem.
3124  */
3125 static int __init atl1_init_module(void)
3126 {
3127 	return pci_register_driver(&atl1_driver);
3128 }
3129 
3130 module_init(atl1_init_module);
3131 module_exit(atl1_exit_module);
3132 
3133 struct atl1_stats {
3134 	char stat_string[ETH_GSTRING_LEN];
3135 	int sizeof_stat;
3136 	int stat_offset;
3137 };
3138 
3139 #define ATL1_STAT(m) \
3140 	sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3141 
3142 static struct atl1_stats atl1_gstrings_stats[] = {
3143 	{"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3144 	{"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3145 	{"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3146 	{"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3147 	{"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3148 	{"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3149 	{"multicast", ATL1_STAT(soft_stats.multicast)},
3150 	{"collisions", ATL1_STAT(soft_stats.collisions)},
3151 	{"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3152 	{"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3153 	{"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3154 	{"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3155 	{"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3156 	{"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3157 	{"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3158 	{"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3159 	{"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3160 	{"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3161 	{"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3162 	{"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3163 	{"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3164 	{"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3165 	{"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3166 	{"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3167 	{"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3168 	{"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3169 	{"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3170 	{"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3171 	{"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3172 };
3173 
3174 static void atl1_get_ethtool_stats(struct net_device *netdev,
3175 	struct ethtool_stats *stats, u64 *data)
3176 {
3177 	struct atl1_adapter *adapter = netdev_priv(netdev);
3178 	int i;
3179 	char *p;
3180 
3181 	for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3182 		p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3183 		data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3184 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3185 	}
3186 
3187 }
3188 
3189 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3190 {
3191 	switch (sset) {
3192 	case ETH_SS_STATS:
3193 		return ARRAY_SIZE(atl1_gstrings_stats);
3194 	default:
3195 		return -EOPNOTSUPP;
3196 	}
3197 }
3198 
3199 static int atl1_get_settings(struct net_device *netdev,
3200 	struct ethtool_cmd *ecmd)
3201 {
3202 	struct atl1_adapter *adapter = netdev_priv(netdev);
3203 	struct atl1_hw *hw = &adapter->hw;
3204 
3205 	ecmd->supported = (SUPPORTED_10baseT_Half |
3206 			   SUPPORTED_10baseT_Full |
3207 			   SUPPORTED_100baseT_Half |
3208 			   SUPPORTED_100baseT_Full |
3209 			   SUPPORTED_1000baseT_Full |
3210 			   SUPPORTED_Autoneg | SUPPORTED_TP);
3211 	ecmd->advertising = ADVERTISED_TP;
3212 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3213 	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3214 		ecmd->advertising |= ADVERTISED_Autoneg;
3215 		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3216 			ecmd->advertising |= ADVERTISED_Autoneg;
3217 			ecmd->advertising |=
3218 			    (ADVERTISED_10baseT_Half |
3219 			     ADVERTISED_10baseT_Full |
3220 			     ADVERTISED_100baseT_Half |
3221 			     ADVERTISED_100baseT_Full |
3222 			     ADVERTISED_1000baseT_Full);
3223 		} else
3224 			ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3225 	}
3226 	ecmd->port = PORT_TP;
3227 	ecmd->phy_address = 0;
3228 	ecmd->transceiver = XCVR_INTERNAL;
3229 
3230 	if (netif_carrier_ok(adapter->netdev)) {
3231 		u16 link_speed, link_duplex;
3232 		atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3233 		ethtool_cmd_speed_set(ecmd, link_speed);
3234 		if (link_duplex == FULL_DUPLEX)
3235 			ecmd->duplex = DUPLEX_FULL;
3236 		else
3237 			ecmd->duplex = DUPLEX_HALF;
3238 	} else {
3239 		ethtool_cmd_speed_set(ecmd, -1);
3240 		ecmd->duplex = -1;
3241 	}
3242 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3243 	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3244 		ecmd->autoneg = AUTONEG_ENABLE;
3245 	else
3246 		ecmd->autoneg = AUTONEG_DISABLE;
3247 
3248 	return 0;
3249 }
3250 
3251 static int atl1_set_settings(struct net_device *netdev,
3252 	struct ethtool_cmd *ecmd)
3253 {
3254 	struct atl1_adapter *adapter = netdev_priv(netdev);
3255 	struct atl1_hw *hw = &adapter->hw;
3256 	u16 phy_data;
3257 	int ret_val = 0;
3258 	u16 old_media_type = hw->media_type;
3259 
3260 	if (netif_running(adapter->netdev)) {
3261 		if (netif_msg_link(adapter))
3262 			dev_dbg(&adapter->pdev->dev,
3263 				"ethtool shutting down adapter\n");
3264 		atl1_down(adapter);
3265 	}
3266 
3267 	if (ecmd->autoneg == AUTONEG_ENABLE)
3268 		hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3269 	else {
3270 		u32 speed = ethtool_cmd_speed(ecmd);
3271 		if (speed == SPEED_1000) {
3272 			if (ecmd->duplex != DUPLEX_FULL) {
3273 				if (netif_msg_link(adapter))
3274 					dev_warn(&adapter->pdev->dev,
3275 						"1000M half is invalid\n");
3276 				ret_val = -EINVAL;
3277 				goto exit_sset;
3278 			}
3279 			hw->media_type = MEDIA_TYPE_1000M_FULL;
3280 		} else if (speed == SPEED_100) {
3281 			if (ecmd->duplex == DUPLEX_FULL)
3282 				hw->media_type = MEDIA_TYPE_100M_FULL;
3283 			else
3284 				hw->media_type = MEDIA_TYPE_100M_HALF;
3285 		} else {
3286 			if (ecmd->duplex == DUPLEX_FULL)
3287 				hw->media_type = MEDIA_TYPE_10M_FULL;
3288 			else
3289 				hw->media_type = MEDIA_TYPE_10M_HALF;
3290 		}
3291 	}
3292 	switch (hw->media_type) {
3293 	case MEDIA_TYPE_AUTO_SENSOR:
3294 		ecmd->advertising =
3295 		    ADVERTISED_10baseT_Half |
3296 		    ADVERTISED_10baseT_Full |
3297 		    ADVERTISED_100baseT_Half |
3298 		    ADVERTISED_100baseT_Full |
3299 		    ADVERTISED_1000baseT_Full |
3300 		    ADVERTISED_Autoneg | ADVERTISED_TP;
3301 		break;
3302 	case MEDIA_TYPE_1000M_FULL:
3303 		ecmd->advertising =
3304 		    ADVERTISED_1000baseT_Full |
3305 		    ADVERTISED_Autoneg | ADVERTISED_TP;
3306 		break;
3307 	default:
3308 		ecmd->advertising = 0;
3309 		break;
3310 	}
3311 	if (atl1_phy_setup_autoneg_adv(hw)) {
3312 		ret_val = -EINVAL;
3313 		if (netif_msg_link(adapter))
3314 			dev_warn(&adapter->pdev->dev,
3315 				"invalid ethtool speed/duplex setting\n");
3316 		goto exit_sset;
3317 	}
3318 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3319 	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3320 		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3321 	else {
3322 		switch (hw->media_type) {
3323 		case MEDIA_TYPE_100M_FULL:
3324 			phy_data =
3325 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3326 			    MII_CR_RESET;
3327 			break;
3328 		case MEDIA_TYPE_100M_HALF:
3329 			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3330 			break;
3331 		case MEDIA_TYPE_10M_FULL:
3332 			phy_data =
3333 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3334 			break;
3335 		default:
3336 			/* MEDIA_TYPE_10M_HALF: */
3337 			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3338 			break;
3339 		}
3340 	}
3341 	atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3342 exit_sset:
3343 	if (ret_val)
3344 		hw->media_type = old_media_type;
3345 
3346 	if (netif_running(adapter->netdev)) {
3347 		if (netif_msg_link(adapter))
3348 			dev_dbg(&adapter->pdev->dev,
3349 				"ethtool starting adapter\n");
3350 		atl1_up(adapter);
3351 	} else if (!ret_val) {
3352 		if (netif_msg_link(adapter))
3353 			dev_dbg(&adapter->pdev->dev,
3354 				"ethtool resetting adapter\n");
3355 		atl1_reset(adapter);
3356 	}
3357 	return ret_val;
3358 }
3359 
3360 static void atl1_get_drvinfo(struct net_device *netdev,
3361 	struct ethtool_drvinfo *drvinfo)
3362 {
3363 	struct atl1_adapter *adapter = netdev_priv(netdev);
3364 
3365 	strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3366 	strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3367 		sizeof(drvinfo->version));
3368 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3369 		sizeof(drvinfo->bus_info));
3370 	drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3371 }
3372 
3373 static void atl1_get_wol(struct net_device *netdev,
3374 	struct ethtool_wolinfo *wol)
3375 {
3376 	struct atl1_adapter *adapter = netdev_priv(netdev);
3377 
3378 	wol->supported = WAKE_MAGIC;
3379 	wol->wolopts = 0;
3380 	if (adapter->wol & ATLX_WUFC_MAG)
3381 		wol->wolopts |= WAKE_MAGIC;
3382 }
3383 
3384 static int atl1_set_wol(struct net_device *netdev,
3385 	struct ethtool_wolinfo *wol)
3386 {
3387 	struct atl1_adapter *adapter = netdev_priv(netdev);
3388 
3389 	if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3390 		WAKE_ARP | WAKE_MAGICSECURE))
3391 		return -EOPNOTSUPP;
3392 	adapter->wol = 0;
3393 	if (wol->wolopts & WAKE_MAGIC)
3394 		adapter->wol |= ATLX_WUFC_MAG;
3395 
3396 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3397 
3398 	return 0;
3399 }
3400 
3401 static u32 atl1_get_msglevel(struct net_device *netdev)
3402 {
3403 	struct atl1_adapter *adapter = netdev_priv(netdev);
3404 	return adapter->msg_enable;
3405 }
3406 
3407 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3408 {
3409 	struct atl1_adapter *adapter = netdev_priv(netdev);
3410 	adapter->msg_enable = value;
3411 }
3412 
3413 static int atl1_get_regs_len(struct net_device *netdev)
3414 {
3415 	return ATL1_REG_COUNT * sizeof(u32);
3416 }
3417 
3418 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3419 	void *p)
3420 {
3421 	struct atl1_adapter *adapter = netdev_priv(netdev);
3422 	struct atl1_hw *hw = &adapter->hw;
3423 	unsigned int i;
3424 	u32 *regbuf = p;
3425 
3426 	for (i = 0; i < ATL1_REG_COUNT; i++) {
3427 		/*
3428 		 * This switch statement avoids reserved regions
3429 		 * of register space.
3430 		 */
3431 		switch (i) {
3432 		case 6 ... 9:
3433 		case 14:
3434 		case 29 ... 31:
3435 		case 34 ... 63:
3436 		case 75 ... 127:
3437 		case 136 ... 1023:
3438 		case 1027 ... 1087:
3439 		case 1091 ... 1151:
3440 		case 1194 ... 1195:
3441 		case 1200 ... 1201:
3442 		case 1206 ... 1213:
3443 		case 1216 ... 1279:
3444 		case 1290 ... 1311:
3445 		case 1323 ... 1343:
3446 		case 1358 ... 1359:
3447 		case 1368 ... 1375:
3448 		case 1378 ... 1383:
3449 		case 1388 ... 1391:
3450 		case 1393 ... 1395:
3451 		case 1402 ... 1403:
3452 		case 1410 ... 1471:
3453 		case 1522 ... 1535:
3454 			/* reserved region; don't read it */
3455 			regbuf[i] = 0;
3456 			break;
3457 		default:
3458 			/* unreserved region */
3459 			regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3460 		}
3461 	}
3462 }
3463 
3464 static void atl1_get_ringparam(struct net_device *netdev,
3465 	struct ethtool_ringparam *ring)
3466 {
3467 	struct atl1_adapter *adapter = netdev_priv(netdev);
3468 	struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3469 	struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3470 
3471 	ring->rx_max_pending = ATL1_MAX_RFD;
3472 	ring->tx_max_pending = ATL1_MAX_TPD;
3473 	ring->rx_pending = rxdr->count;
3474 	ring->tx_pending = txdr->count;
3475 }
3476 
3477 static int atl1_set_ringparam(struct net_device *netdev,
3478 	struct ethtool_ringparam *ring)
3479 {
3480 	struct atl1_adapter *adapter = netdev_priv(netdev);
3481 	struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3482 	struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3483 	struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3484 
3485 	struct atl1_tpd_ring tpd_old, tpd_new;
3486 	struct atl1_rfd_ring rfd_old, rfd_new;
3487 	struct atl1_rrd_ring rrd_old, rrd_new;
3488 	struct atl1_ring_header rhdr_old, rhdr_new;
3489 	struct atl1_smb smb;
3490 	struct atl1_cmb cmb;
3491 	int err;
3492 
3493 	tpd_old = adapter->tpd_ring;
3494 	rfd_old = adapter->rfd_ring;
3495 	rrd_old = adapter->rrd_ring;
3496 	rhdr_old = adapter->ring_header;
3497 
3498 	if (netif_running(adapter->netdev))
3499 		atl1_down(adapter);
3500 
3501 	rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3502 	rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3503 			rfdr->count;
3504 	rfdr->count = (rfdr->count + 3) & ~3;
3505 	rrdr->count = rfdr->count;
3506 
3507 	tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3508 	tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3509 			tpdr->count;
3510 	tpdr->count = (tpdr->count + 3) & ~3;
3511 
3512 	if (netif_running(adapter->netdev)) {
3513 		/* try to get new resources before deleting old */
3514 		err = atl1_setup_ring_resources(adapter);
3515 		if (err)
3516 			goto err_setup_ring;
3517 
3518 		/*
3519 		 * save the new, restore the old in order to free it,
3520 		 * then restore the new back again
3521 		 */
3522 
3523 		rfd_new = adapter->rfd_ring;
3524 		rrd_new = adapter->rrd_ring;
3525 		tpd_new = adapter->tpd_ring;
3526 		rhdr_new = adapter->ring_header;
3527 		adapter->rfd_ring = rfd_old;
3528 		adapter->rrd_ring = rrd_old;
3529 		adapter->tpd_ring = tpd_old;
3530 		adapter->ring_header = rhdr_old;
3531 		/*
3532 		 * Save SMB and CMB, since atl1_free_ring_resources
3533 		 * will clear them.
3534 		 */
3535 		smb = adapter->smb;
3536 		cmb = adapter->cmb;
3537 		atl1_free_ring_resources(adapter);
3538 		adapter->rfd_ring = rfd_new;
3539 		adapter->rrd_ring = rrd_new;
3540 		adapter->tpd_ring = tpd_new;
3541 		adapter->ring_header = rhdr_new;
3542 		adapter->smb = smb;
3543 		adapter->cmb = cmb;
3544 
3545 		err = atl1_up(adapter);
3546 		if (err)
3547 			return err;
3548 	}
3549 	return 0;
3550 
3551 err_setup_ring:
3552 	adapter->rfd_ring = rfd_old;
3553 	adapter->rrd_ring = rrd_old;
3554 	adapter->tpd_ring = tpd_old;
3555 	adapter->ring_header = rhdr_old;
3556 	atl1_up(adapter);
3557 	return err;
3558 }
3559 
3560 static void atl1_get_pauseparam(struct net_device *netdev,
3561 	struct ethtool_pauseparam *epause)
3562 {
3563 	struct atl1_adapter *adapter = netdev_priv(netdev);
3564 	struct atl1_hw *hw = &adapter->hw;
3565 
3566 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3567 	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3568 		epause->autoneg = AUTONEG_ENABLE;
3569 	} else {
3570 		epause->autoneg = AUTONEG_DISABLE;
3571 	}
3572 	epause->rx_pause = 1;
3573 	epause->tx_pause = 1;
3574 }
3575 
3576 static int atl1_set_pauseparam(struct net_device *netdev,
3577 	struct ethtool_pauseparam *epause)
3578 {
3579 	struct atl1_adapter *adapter = netdev_priv(netdev);
3580 	struct atl1_hw *hw = &adapter->hw;
3581 
3582 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3583 	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3584 		epause->autoneg = AUTONEG_ENABLE;
3585 	} else {
3586 		epause->autoneg = AUTONEG_DISABLE;
3587 	}
3588 
3589 	epause->rx_pause = 1;
3590 	epause->tx_pause = 1;
3591 
3592 	return 0;
3593 }
3594 
3595 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3596 	u8 *data)
3597 {
3598 	u8 *p = data;
3599 	int i;
3600 
3601 	switch (stringset) {
3602 	case ETH_SS_STATS:
3603 		for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3604 			memcpy(p, atl1_gstrings_stats[i].stat_string,
3605 				ETH_GSTRING_LEN);
3606 			p += ETH_GSTRING_LEN;
3607 		}
3608 		break;
3609 	}
3610 }
3611 
3612 static int atl1_nway_reset(struct net_device *netdev)
3613 {
3614 	struct atl1_adapter *adapter = netdev_priv(netdev);
3615 	struct atl1_hw *hw = &adapter->hw;
3616 
3617 	if (netif_running(netdev)) {
3618 		u16 phy_data;
3619 		atl1_down(adapter);
3620 
3621 		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3622 			hw->media_type == MEDIA_TYPE_1000M_FULL) {
3623 			phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3624 		} else {
3625 			switch (hw->media_type) {
3626 			case MEDIA_TYPE_100M_FULL:
3627 				phy_data = MII_CR_FULL_DUPLEX |
3628 					MII_CR_SPEED_100 | MII_CR_RESET;
3629 				break;
3630 			case MEDIA_TYPE_100M_HALF:
3631 				phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3632 				break;
3633 			case MEDIA_TYPE_10M_FULL:
3634 				phy_data = MII_CR_FULL_DUPLEX |
3635 					MII_CR_SPEED_10 | MII_CR_RESET;
3636 				break;
3637 			default:
3638 				/* MEDIA_TYPE_10M_HALF */
3639 				phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3640 			}
3641 		}
3642 		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3643 		atl1_up(adapter);
3644 	}
3645 	return 0;
3646 }
3647 
3648 static const struct ethtool_ops atl1_ethtool_ops = {
3649 	.get_settings		= atl1_get_settings,
3650 	.set_settings		= atl1_set_settings,
3651 	.get_drvinfo		= atl1_get_drvinfo,
3652 	.get_wol		= atl1_get_wol,
3653 	.set_wol		= atl1_set_wol,
3654 	.get_msglevel		= atl1_get_msglevel,
3655 	.set_msglevel		= atl1_set_msglevel,
3656 	.get_regs_len		= atl1_get_regs_len,
3657 	.get_regs		= atl1_get_regs,
3658 	.get_ringparam		= atl1_get_ringparam,
3659 	.set_ringparam		= atl1_set_ringparam,
3660 	.get_pauseparam		= atl1_get_pauseparam,
3661 	.set_pauseparam		= atl1_set_pauseparam,
3662 	.get_link		= ethtool_op_get_link,
3663 	.get_strings		= atl1_get_strings,
3664 	.nway_reset		= atl1_nway_reset,
3665 	.get_ethtool_stats	= atl1_get_ethtool_stats,
3666 	.get_sset_count		= atl1_get_sset_count,
3667 };
3668