1 /* 2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved. 3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com> 4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com> 5 * 6 * Derived from Intel e1000 driver 7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the Free 11 * Software Foundation; either version 2 of the License, or (at your option) 12 * any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but WITHOUT 15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 17 * more details. 18 * 19 * You should have received a copy of the GNU General Public License along with 20 * this program; if not, write to the Free Software Foundation, Inc., 59 21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 22 * 23 * The full GNU General Public License is included in this distribution in the 24 * file called COPYING. 25 * 26 * Contact Information: 27 * Xiong Huang <xiong.huang@atheros.com> 28 * Jie Yang <jie.yang@atheros.com> 29 * Chris Snook <csnook@redhat.com> 30 * Jay Cliburn <jcliburn@gmail.com> 31 * 32 * This version is adapted from the Attansic reference driver. 33 * 34 * TODO: 35 * Add more ethtool functions. 36 * Fix abstruse irq enable/disable condition described here: 37 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2 38 * 39 * NEEDS TESTING: 40 * VLAN 41 * multicast 42 * promiscuous mode 43 * interrupt coalescing 44 * SMP torture testing 45 */ 46 47 #include <linux/atomic.h> 48 #include <asm/byteorder.h> 49 50 #include <linux/compiler.h> 51 #include <linux/crc32.h> 52 #include <linux/delay.h> 53 #include <linux/dma-mapping.h> 54 #include <linux/etherdevice.h> 55 #include <linux/hardirq.h> 56 #include <linux/if_ether.h> 57 #include <linux/if_vlan.h> 58 #include <linux/in.h> 59 #include <linux/interrupt.h> 60 #include <linux/ip.h> 61 #include <linux/irqflags.h> 62 #include <linux/irqreturn.h> 63 #include <linux/jiffies.h> 64 #include <linux/mii.h> 65 #include <linux/module.h> 66 #include <linux/moduleparam.h> 67 #include <linux/net.h> 68 #include <linux/netdevice.h> 69 #include <linux/pci.h> 70 #include <linux/pci_ids.h> 71 #include <linux/pm.h> 72 #include <linux/skbuff.h> 73 #include <linux/slab.h> 74 #include <linux/spinlock.h> 75 #include <linux/string.h> 76 #include <linux/tcp.h> 77 #include <linux/timer.h> 78 #include <linux/types.h> 79 #include <linux/workqueue.h> 80 81 #include <net/checksum.h> 82 83 #include "atl1.h" 84 85 #define ATLX_DRIVER_VERSION "2.1.3" 86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, " 87 "Chris Snook <csnook@redhat.com>, " 88 "Jay Cliburn <jcliburn@gmail.com>"); 89 MODULE_LICENSE("GPL"); 90 MODULE_VERSION(ATLX_DRIVER_VERSION); 91 92 /* Temporary hack for merging atl1 and atl2 */ 93 #include "atlx.c" 94 95 static const struct ethtool_ops atl1_ethtool_ops; 96 97 /* 98 * This is the only thing that needs to be changed to adjust the 99 * maximum number of ports that the driver can manage. 100 */ 101 #define ATL1_MAX_NIC 4 102 103 #define OPTION_UNSET -1 104 #define OPTION_DISABLED 0 105 #define OPTION_ENABLED 1 106 107 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET } 108 109 /* 110 * Interrupt Moderate Timer in units of 2 us 111 * 112 * Valid Range: 10-65535 113 * 114 * Default Value: 100 (200us) 115 */ 116 static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT; 117 static unsigned int num_int_mod_timer; 118 module_param_array_named(int_mod_timer, int_mod_timer, int, 119 &num_int_mod_timer, 0); 120 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer"); 121 122 #define DEFAULT_INT_MOD_CNT 100 /* 200us */ 123 #define MAX_INT_MOD_CNT 65000 124 #define MIN_INT_MOD_CNT 50 125 126 struct atl1_option { 127 enum { enable_option, range_option, list_option } type; 128 char *name; 129 char *err; 130 int def; 131 union { 132 struct { /* range_option info */ 133 int min; 134 int max; 135 } r; 136 struct { /* list_option info */ 137 int nr; 138 struct atl1_opt_list { 139 int i; 140 char *str; 141 } *p; 142 } l; 143 } arg; 144 }; 145 146 static int atl1_validate_option(int *value, struct atl1_option *opt, 147 struct pci_dev *pdev) 148 { 149 if (*value == OPTION_UNSET) { 150 *value = opt->def; 151 return 0; 152 } 153 154 switch (opt->type) { 155 case enable_option: 156 switch (*value) { 157 case OPTION_ENABLED: 158 dev_info(&pdev->dev, "%s enabled\n", opt->name); 159 return 0; 160 case OPTION_DISABLED: 161 dev_info(&pdev->dev, "%s disabled\n", opt->name); 162 return 0; 163 } 164 break; 165 case range_option: 166 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) { 167 dev_info(&pdev->dev, "%s set to %i\n", opt->name, 168 *value); 169 return 0; 170 } 171 break; 172 case list_option:{ 173 int i; 174 struct atl1_opt_list *ent; 175 176 for (i = 0; i < opt->arg.l.nr; i++) { 177 ent = &opt->arg.l.p[i]; 178 if (*value == ent->i) { 179 if (ent->str[0] != '\0') 180 dev_info(&pdev->dev, "%s\n", 181 ent->str); 182 return 0; 183 } 184 } 185 } 186 break; 187 188 default: 189 break; 190 } 191 192 dev_info(&pdev->dev, "invalid %s specified (%i) %s\n", 193 opt->name, *value, opt->err); 194 *value = opt->def; 195 return -1; 196 } 197 198 /** 199 * atl1_check_options - Range Checking for Command Line Parameters 200 * @adapter: board private structure 201 * 202 * This routine checks all command line parameters for valid user 203 * input. If an invalid value is given, or if no user specified 204 * value exists, a default value is used. The final value is stored 205 * in a variable in the adapter structure. 206 */ 207 static void atl1_check_options(struct atl1_adapter *adapter) 208 { 209 struct pci_dev *pdev = adapter->pdev; 210 int bd = adapter->bd_number; 211 if (bd >= ATL1_MAX_NIC) { 212 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd); 213 dev_notice(&pdev->dev, "using defaults for all values\n"); 214 } 215 { /* Interrupt Moderate Timer */ 216 struct atl1_option opt = { 217 .type = range_option, 218 .name = "Interrupt Moderator Timer", 219 .err = "using default of " 220 __MODULE_STRING(DEFAULT_INT_MOD_CNT), 221 .def = DEFAULT_INT_MOD_CNT, 222 .arg = {.r = {.min = MIN_INT_MOD_CNT, 223 .max = MAX_INT_MOD_CNT} } 224 }; 225 int val; 226 if (num_int_mod_timer > bd) { 227 val = int_mod_timer[bd]; 228 atl1_validate_option(&val, &opt, pdev); 229 adapter->imt = (u16) val; 230 } else 231 adapter->imt = (u16) (opt.def); 232 } 233 } 234 235 /* 236 * atl1_pci_tbl - PCI Device ID Table 237 */ 238 static const struct pci_device_id atl1_pci_tbl[] = { 239 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)}, 240 /* required last entry */ 241 {0,} 242 }; 243 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl); 244 245 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 246 NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP; 247 248 static int debug = -1; 249 module_param(debug, int, 0); 250 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)"); 251 252 /* 253 * Reset the transmit and receive units; mask and clear all interrupts. 254 * hw - Struct containing variables accessed by shared code 255 * return : 0 or idle status (if error) 256 */ 257 static s32 atl1_reset_hw(struct atl1_hw *hw) 258 { 259 struct pci_dev *pdev = hw->back->pdev; 260 struct atl1_adapter *adapter = hw->back; 261 u32 icr; 262 int i; 263 264 /* 265 * Clear Interrupt mask to stop board from generating 266 * interrupts & Clear any pending interrupt events 267 */ 268 /* 269 * atlx_irq_disable(adapter); 270 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR); 271 */ 272 273 /* 274 * Issue Soft Reset to the MAC. This will reset the chip's 275 * transmit, receive, DMA. It will not effect 276 * the current PCI configuration. The global reset bit is self- 277 * clearing, and should clear within a microsecond. 278 */ 279 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL); 280 ioread32(hw->hw_addr + REG_MASTER_CTRL); 281 282 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE); 283 ioread16(hw->hw_addr + REG_PHY_ENABLE); 284 285 /* delay about 1ms */ 286 msleep(1); 287 288 /* Wait at least 10ms for All module to be Idle */ 289 for (i = 0; i < 10; i++) { 290 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS); 291 if (!icr) 292 break; 293 /* delay 1 ms */ 294 msleep(1); 295 /* FIXME: still the right way to do this? */ 296 cpu_relax(); 297 } 298 299 if (icr) { 300 if (netif_msg_hw(adapter)) 301 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr); 302 return icr; 303 } 304 305 return 0; 306 } 307 308 /* function about EEPROM 309 * 310 * check_eeprom_exist 311 * return 0 if eeprom exist 312 */ 313 static int atl1_check_eeprom_exist(struct atl1_hw *hw) 314 { 315 u32 value; 316 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL); 317 if (value & SPI_FLASH_CTRL_EN_VPD) { 318 value &= ~SPI_FLASH_CTRL_EN_VPD; 319 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL); 320 } 321 322 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST); 323 return ((value & 0xFF00) == 0x6C00) ? 0 : 1; 324 } 325 326 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value) 327 { 328 int i; 329 u32 control; 330 331 if (offset & 3) 332 /* address do not align */ 333 return false; 334 335 iowrite32(0, hw->hw_addr + REG_VPD_DATA); 336 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT; 337 iowrite32(control, hw->hw_addr + REG_VPD_CAP); 338 ioread32(hw->hw_addr + REG_VPD_CAP); 339 340 for (i = 0; i < 10; i++) { 341 msleep(2); 342 control = ioread32(hw->hw_addr + REG_VPD_CAP); 343 if (control & VPD_CAP_VPD_FLAG) 344 break; 345 } 346 if (control & VPD_CAP_VPD_FLAG) { 347 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA); 348 return true; 349 } 350 /* timeout */ 351 return false; 352 } 353 354 /* 355 * Reads the value from a PHY register 356 * hw - Struct containing variables accessed by shared code 357 * reg_addr - address of the PHY register to read 358 */ 359 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data) 360 { 361 u32 val; 362 int i; 363 364 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | 365 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 << 366 MDIO_CLK_SEL_SHIFT; 367 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL); 368 ioread32(hw->hw_addr + REG_MDIO_CTRL); 369 370 for (i = 0; i < MDIO_WAIT_TIMES; i++) { 371 udelay(2); 372 val = ioread32(hw->hw_addr + REG_MDIO_CTRL); 373 if (!(val & (MDIO_START | MDIO_BUSY))) 374 break; 375 } 376 if (!(val & (MDIO_START | MDIO_BUSY))) { 377 *phy_data = (u16) val; 378 return 0; 379 } 380 return ATLX_ERR_PHY; 381 } 382 383 #define CUSTOM_SPI_CS_SETUP 2 384 #define CUSTOM_SPI_CLK_HI 2 385 #define CUSTOM_SPI_CLK_LO 2 386 #define CUSTOM_SPI_CS_HOLD 2 387 #define CUSTOM_SPI_CS_HI 3 388 389 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf) 390 { 391 int i; 392 u32 value; 393 394 iowrite32(0, hw->hw_addr + REG_SPI_DATA); 395 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR); 396 397 value = SPI_FLASH_CTRL_WAIT_READY | 398 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) << 399 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI & 400 SPI_FLASH_CTRL_CLK_HI_MASK) << 401 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO & 402 SPI_FLASH_CTRL_CLK_LO_MASK) << 403 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD & 404 SPI_FLASH_CTRL_CS_HOLD_MASK) << 405 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI & 406 SPI_FLASH_CTRL_CS_HI_MASK) << 407 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) << 408 SPI_FLASH_CTRL_INS_SHIFT; 409 410 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL); 411 412 value |= SPI_FLASH_CTRL_START; 413 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL); 414 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL); 415 416 for (i = 0; i < 10; i++) { 417 msleep(1); 418 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL); 419 if (!(value & SPI_FLASH_CTRL_START)) 420 break; 421 } 422 423 if (value & SPI_FLASH_CTRL_START) 424 return false; 425 426 *buf = ioread32(hw->hw_addr + REG_SPI_DATA); 427 428 return true; 429 } 430 431 /* 432 * get_permanent_address 433 * return 0 if get valid mac address, 434 */ 435 static int atl1_get_permanent_address(struct atl1_hw *hw) 436 { 437 u32 addr[2]; 438 u32 i, control; 439 u16 reg; 440 u8 eth_addr[ETH_ALEN]; 441 bool key_valid; 442 443 if (is_valid_ether_addr(hw->perm_mac_addr)) 444 return 0; 445 446 /* init */ 447 addr[0] = addr[1] = 0; 448 449 if (!atl1_check_eeprom_exist(hw)) { 450 reg = 0; 451 key_valid = false; 452 /* Read out all EEPROM content */ 453 i = 0; 454 while (1) { 455 if (atl1_read_eeprom(hw, i + 0x100, &control)) { 456 if (key_valid) { 457 if (reg == REG_MAC_STA_ADDR) 458 addr[0] = control; 459 else if (reg == (REG_MAC_STA_ADDR + 4)) 460 addr[1] = control; 461 key_valid = false; 462 } else if ((control & 0xff) == 0x5A) { 463 key_valid = true; 464 reg = (u16) (control >> 16); 465 } else 466 break; 467 } else 468 /* read error */ 469 break; 470 i += 4; 471 } 472 473 *(u32 *) ð_addr[2] = swab32(addr[0]); 474 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]); 475 if (is_valid_ether_addr(eth_addr)) { 476 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); 477 return 0; 478 } 479 } 480 481 /* see if SPI FLAGS exist ? */ 482 addr[0] = addr[1] = 0; 483 reg = 0; 484 key_valid = false; 485 i = 0; 486 while (1) { 487 if (atl1_spi_read(hw, i + 0x1f000, &control)) { 488 if (key_valid) { 489 if (reg == REG_MAC_STA_ADDR) 490 addr[0] = control; 491 else if (reg == (REG_MAC_STA_ADDR + 4)) 492 addr[1] = control; 493 key_valid = false; 494 } else if ((control & 0xff) == 0x5A) { 495 key_valid = true; 496 reg = (u16) (control >> 16); 497 } else 498 /* data end */ 499 break; 500 } else 501 /* read error */ 502 break; 503 i += 4; 504 } 505 506 *(u32 *) ð_addr[2] = swab32(addr[0]); 507 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]); 508 if (is_valid_ether_addr(eth_addr)) { 509 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); 510 return 0; 511 } 512 513 /* 514 * On some motherboards, the MAC address is written by the 515 * BIOS directly to the MAC register during POST, and is 516 * not stored in eeprom. If all else thus far has failed 517 * to fetch the permanent MAC address, try reading it directly. 518 */ 519 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR); 520 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4)); 521 *(u32 *) ð_addr[2] = swab32(addr[0]); 522 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]); 523 if (is_valid_ether_addr(eth_addr)) { 524 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); 525 return 0; 526 } 527 528 return 1; 529 } 530 531 /* 532 * Reads the adapter's MAC address from the EEPROM 533 * hw - Struct containing variables accessed by shared code 534 */ 535 static s32 atl1_read_mac_addr(struct atl1_hw *hw) 536 { 537 s32 ret = 0; 538 u16 i; 539 540 if (atl1_get_permanent_address(hw)) { 541 eth_random_addr(hw->perm_mac_addr); 542 ret = 1; 543 } 544 545 for (i = 0; i < ETH_ALEN; i++) 546 hw->mac_addr[i] = hw->perm_mac_addr[i]; 547 return ret; 548 } 549 550 /* 551 * Hashes an address to determine its location in the multicast table 552 * hw - Struct containing variables accessed by shared code 553 * mc_addr - the multicast address to hash 554 * 555 * atl1_hash_mc_addr 556 * purpose 557 * set hash value for a multicast address 558 * hash calcu processing : 559 * 1. calcu 32bit CRC for multicast address 560 * 2. reverse crc with MSB to LSB 561 */ 562 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr) 563 { 564 u32 crc32, value = 0; 565 int i; 566 567 crc32 = ether_crc_le(6, mc_addr); 568 for (i = 0; i < 32; i++) 569 value |= (((crc32 >> i) & 1) << (31 - i)); 570 571 return value; 572 } 573 574 /* 575 * Sets the bit in the multicast table corresponding to the hash value. 576 * hw - Struct containing variables accessed by shared code 577 * hash_value - Multicast address hash value 578 */ 579 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value) 580 { 581 u32 hash_bit, hash_reg; 582 u32 mta; 583 584 /* 585 * The HASH Table is a register array of 2 32-bit registers. 586 * It is treated like an array of 64 bits. We want to set 587 * bit BitArray[hash_value]. So we figure out what register 588 * the bit is in, read it, OR in the new bit, then write 589 * back the new value. The register is determined by the 590 * upper 7 bits of the hash value and the bit within that 591 * register are determined by the lower 5 bits of the value. 592 */ 593 hash_reg = (hash_value >> 31) & 0x1; 594 hash_bit = (hash_value >> 26) & 0x1F; 595 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2)); 596 mta |= (1 << hash_bit); 597 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2)); 598 } 599 600 /* 601 * Writes a value to a PHY register 602 * hw - Struct containing variables accessed by shared code 603 * reg_addr - address of the PHY register to write 604 * data - data to write to the PHY 605 */ 606 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data) 607 { 608 int i; 609 u32 val; 610 611 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | 612 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | 613 MDIO_SUP_PREAMBLE | 614 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; 615 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL); 616 ioread32(hw->hw_addr + REG_MDIO_CTRL); 617 618 for (i = 0; i < MDIO_WAIT_TIMES; i++) { 619 udelay(2); 620 val = ioread32(hw->hw_addr + REG_MDIO_CTRL); 621 if (!(val & (MDIO_START | MDIO_BUSY))) 622 break; 623 } 624 625 if (!(val & (MDIO_START | MDIO_BUSY))) 626 return 0; 627 628 return ATLX_ERR_PHY; 629 } 630 631 /* 632 * Make L001's PHY out of Power Saving State (bug) 633 * hw - Struct containing variables accessed by shared code 634 * when power on, L001's PHY always on Power saving State 635 * (Gigabit Link forbidden) 636 */ 637 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw) 638 { 639 s32 ret; 640 ret = atl1_write_phy_reg(hw, 29, 0x0029); 641 if (ret) 642 return ret; 643 return atl1_write_phy_reg(hw, 30, 0); 644 } 645 646 /* 647 * Resets the PHY and make all config validate 648 * hw - Struct containing variables accessed by shared code 649 * 650 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug) 651 */ 652 static s32 atl1_phy_reset(struct atl1_hw *hw) 653 { 654 struct pci_dev *pdev = hw->back->pdev; 655 struct atl1_adapter *adapter = hw->back; 656 s32 ret_val; 657 u16 phy_data; 658 659 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 660 hw->media_type == MEDIA_TYPE_1000M_FULL) 661 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN; 662 else { 663 switch (hw->media_type) { 664 case MEDIA_TYPE_100M_FULL: 665 phy_data = 666 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | 667 MII_CR_RESET; 668 break; 669 case MEDIA_TYPE_100M_HALF: 670 phy_data = MII_CR_SPEED_100 | MII_CR_RESET; 671 break; 672 case MEDIA_TYPE_10M_FULL: 673 phy_data = 674 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; 675 break; 676 default: 677 /* MEDIA_TYPE_10M_HALF: */ 678 phy_data = MII_CR_SPEED_10 | MII_CR_RESET; 679 break; 680 } 681 } 682 683 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data); 684 if (ret_val) { 685 u32 val; 686 int i; 687 /* pcie serdes link may be down! */ 688 if (netif_msg_hw(adapter)) 689 dev_dbg(&pdev->dev, "pcie phy link down\n"); 690 691 for (i = 0; i < 25; i++) { 692 msleep(1); 693 val = ioread32(hw->hw_addr + REG_MDIO_CTRL); 694 if (!(val & (MDIO_START | MDIO_BUSY))) 695 break; 696 } 697 698 if ((val & (MDIO_START | MDIO_BUSY)) != 0) { 699 if (netif_msg_hw(adapter)) 700 dev_warn(&pdev->dev, 701 "pcie link down at least 25ms\n"); 702 return ret_val; 703 } 704 } 705 return 0; 706 } 707 708 /* 709 * Configures PHY autoneg and flow control advertisement settings 710 * hw - Struct containing variables accessed by shared code 711 */ 712 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw) 713 { 714 s32 ret_val; 715 s16 mii_autoneg_adv_reg; 716 s16 mii_1000t_ctrl_reg; 717 718 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 719 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK; 720 721 /* Read the MII 1000Base-T Control Register (Address 9). */ 722 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK; 723 724 /* 725 * First we clear all the 10/100 mb speed bits in the Auto-Neg 726 * Advertisement Register (Address 4) and the 1000 mb speed bits in 727 * the 1000Base-T Control Register (Address 9). 728 */ 729 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK; 730 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK; 731 732 /* 733 * Need to parse media_type and set up 734 * the appropriate PHY registers. 735 */ 736 switch (hw->media_type) { 737 case MEDIA_TYPE_AUTO_SENSOR: 738 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS | 739 MII_AR_10T_FD_CAPS | 740 MII_AR_100TX_HD_CAPS | 741 MII_AR_100TX_FD_CAPS); 742 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS; 743 break; 744 745 case MEDIA_TYPE_1000M_FULL: 746 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS; 747 break; 748 749 case MEDIA_TYPE_100M_FULL: 750 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS; 751 break; 752 753 case MEDIA_TYPE_100M_HALF: 754 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS; 755 break; 756 757 case MEDIA_TYPE_10M_FULL: 758 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS; 759 break; 760 761 default: 762 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS; 763 break; 764 } 765 766 /* flow control fixed to enable all */ 767 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE); 768 769 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg; 770 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg; 771 772 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg); 773 if (ret_val) 774 return ret_val; 775 776 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg); 777 if (ret_val) 778 return ret_val; 779 780 return 0; 781 } 782 783 /* 784 * Configures link settings. 785 * hw - Struct containing variables accessed by shared code 786 * Assumes the hardware has previously been reset and the 787 * transmitter and receiver are not enabled. 788 */ 789 static s32 atl1_setup_link(struct atl1_hw *hw) 790 { 791 struct pci_dev *pdev = hw->back->pdev; 792 struct atl1_adapter *adapter = hw->back; 793 s32 ret_val; 794 795 /* 796 * Options: 797 * PHY will advertise value(s) parsed from 798 * autoneg_advertised and fc 799 * no matter what autoneg is , We will not wait link result. 800 */ 801 ret_val = atl1_phy_setup_autoneg_adv(hw); 802 if (ret_val) { 803 if (netif_msg_link(adapter)) 804 dev_dbg(&pdev->dev, 805 "error setting up autonegotiation\n"); 806 return ret_val; 807 } 808 /* SW.Reset , En-Auto-Neg if needed */ 809 ret_val = atl1_phy_reset(hw); 810 if (ret_val) { 811 if (netif_msg_link(adapter)) 812 dev_dbg(&pdev->dev, "error resetting phy\n"); 813 return ret_val; 814 } 815 hw->phy_configured = true; 816 return ret_val; 817 } 818 819 static void atl1_init_flash_opcode(struct atl1_hw *hw) 820 { 821 if (hw->flash_vendor >= ARRAY_SIZE(flash_table)) 822 /* Atmel */ 823 hw->flash_vendor = 0; 824 825 /* Init OP table */ 826 iowrite8(flash_table[hw->flash_vendor].cmd_program, 827 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM); 828 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase, 829 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE); 830 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase, 831 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE); 832 iowrite8(flash_table[hw->flash_vendor].cmd_rdid, 833 hw->hw_addr + REG_SPI_FLASH_OP_RDID); 834 iowrite8(flash_table[hw->flash_vendor].cmd_wren, 835 hw->hw_addr + REG_SPI_FLASH_OP_WREN); 836 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr, 837 hw->hw_addr + REG_SPI_FLASH_OP_RDSR); 838 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr, 839 hw->hw_addr + REG_SPI_FLASH_OP_WRSR); 840 iowrite8(flash_table[hw->flash_vendor].cmd_read, 841 hw->hw_addr + REG_SPI_FLASH_OP_READ); 842 } 843 844 /* 845 * Performs basic configuration of the adapter. 846 * hw - Struct containing variables accessed by shared code 847 * Assumes that the controller has previously been reset and is in a 848 * post-reset uninitialized state. Initializes multicast table, 849 * and Calls routines to setup link 850 * Leaves the transmit and receive units disabled and uninitialized. 851 */ 852 static s32 atl1_init_hw(struct atl1_hw *hw) 853 { 854 u32 ret_val = 0; 855 856 /* Zero out the Multicast HASH table */ 857 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE); 858 /* clear the old settings from the multicast hash table */ 859 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2)); 860 861 atl1_init_flash_opcode(hw); 862 863 if (!hw->phy_configured) { 864 /* enable GPHY LinkChange Interrupt */ 865 ret_val = atl1_write_phy_reg(hw, 18, 0xC00); 866 if (ret_val) 867 return ret_val; 868 /* make PHY out of power-saving state */ 869 ret_val = atl1_phy_leave_power_saving(hw); 870 if (ret_val) 871 return ret_val; 872 /* Call a subroutine to configure the link */ 873 ret_val = atl1_setup_link(hw); 874 } 875 return ret_val; 876 } 877 878 /* 879 * Detects the current speed and duplex settings of the hardware. 880 * hw - Struct containing variables accessed by shared code 881 * speed - Speed of the connection 882 * duplex - Duplex setting of the connection 883 */ 884 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex) 885 { 886 struct pci_dev *pdev = hw->back->pdev; 887 struct atl1_adapter *adapter = hw->back; 888 s32 ret_val; 889 u16 phy_data; 890 891 /* ; --- Read PHY Specific Status Register (17) */ 892 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data); 893 if (ret_val) 894 return ret_val; 895 896 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED)) 897 return ATLX_ERR_PHY_RES; 898 899 switch (phy_data & MII_ATLX_PSSR_SPEED) { 900 case MII_ATLX_PSSR_1000MBS: 901 *speed = SPEED_1000; 902 break; 903 case MII_ATLX_PSSR_100MBS: 904 *speed = SPEED_100; 905 break; 906 case MII_ATLX_PSSR_10MBS: 907 *speed = SPEED_10; 908 break; 909 default: 910 if (netif_msg_hw(adapter)) 911 dev_dbg(&pdev->dev, "error getting speed\n"); 912 return ATLX_ERR_PHY_SPEED; 913 } 914 if (phy_data & MII_ATLX_PSSR_DPLX) 915 *duplex = FULL_DUPLEX; 916 else 917 *duplex = HALF_DUPLEX; 918 919 return 0; 920 } 921 922 static void atl1_set_mac_addr(struct atl1_hw *hw) 923 { 924 u32 value; 925 /* 926 * 00-0B-6A-F6-00-DC 927 * 0: 6AF600DC 1: 000B 928 * low dword 929 */ 930 value = (((u32) hw->mac_addr[2]) << 24) | 931 (((u32) hw->mac_addr[3]) << 16) | 932 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5])); 933 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR); 934 /* high dword */ 935 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1])); 936 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2)); 937 } 938 939 /** 940 * atl1_sw_init - Initialize general software structures (struct atl1_adapter) 941 * @adapter: board private structure to initialize 942 * 943 * atl1_sw_init initializes the Adapter private data structure. 944 * Fields are initialized based on PCI device information and 945 * OS network device settings (MTU size). 946 */ 947 static int atl1_sw_init(struct atl1_adapter *adapter) 948 { 949 struct atl1_hw *hw = &adapter->hw; 950 struct net_device *netdev = adapter->netdev; 951 952 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 953 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 954 955 adapter->wol = 0; 956 device_set_wakeup_enable(&adapter->pdev->dev, false); 957 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7; 958 adapter->ict = 50000; /* 100ms */ 959 adapter->link_speed = SPEED_0; /* hardware init */ 960 adapter->link_duplex = FULL_DUPLEX; 961 962 hw->phy_configured = false; 963 hw->preamble_len = 7; 964 hw->ipgt = 0x60; 965 hw->min_ifg = 0x50; 966 hw->ipgr1 = 0x40; 967 hw->ipgr2 = 0x60; 968 hw->max_retry = 0xf; 969 hw->lcol = 0x37; 970 hw->jam_ipg = 7; 971 hw->rfd_burst = 8; 972 hw->rrd_burst = 8; 973 hw->rfd_fetch_gap = 1; 974 hw->rx_jumbo_th = adapter->rx_buffer_len / 8; 975 hw->rx_jumbo_lkah = 1; 976 hw->rrd_ret_timer = 16; 977 hw->tpd_burst = 4; 978 hw->tpd_fetch_th = 16; 979 hw->txf_burst = 0x100; 980 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3; 981 hw->tpd_fetch_gap = 1; 982 hw->rcb_value = atl1_rcb_64; 983 hw->dma_ord = atl1_dma_ord_enh; 984 hw->dmar_block = atl1_dma_req_256; 985 hw->dmaw_block = atl1_dma_req_256; 986 hw->cmb_rrd = 4; 987 hw->cmb_tpd = 4; 988 hw->cmb_rx_timer = 1; /* about 2us */ 989 hw->cmb_tx_timer = 1; /* about 2us */ 990 hw->smb_timer = 100000; /* about 200ms */ 991 992 spin_lock_init(&adapter->lock); 993 spin_lock_init(&adapter->mb_lock); 994 995 return 0; 996 } 997 998 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num) 999 { 1000 struct atl1_adapter *adapter = netdev_priv(netdev); 1001 u16 result; 1002 1003 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result); 1004 1005 return result; 1006 } 1007 1008 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num, 1009 int val) 1010 { 1011 struct atl1_adapter *adapter = netdev_priv(netdev); 1012 1013 atl1_write_phy_reg(&adapter->hw, reg_num, val); 1014 } 1015 1016 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1017 { 1018 struct atl1_adapter *adapter = netdev_priv(netdev); 1019 unsigned long flags; 1020 int retval; 1021 1022 if (!netif_running(netdev)) 1023 return -EINVAL; 1024 1025 spin_lock_irqsave(&adapter->lock, flags); 1026 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL); 1027 spin_unlock_irqrestore(&adapter->lock, flags); 1028 1029 return retval; 1030 } 1031 1032 /** 1033 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources 1034 * @adapter: board private structure 1035 * 1036 * Return 0 on success, negative on failure 1037 */ 1038 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter) 1039 { 1040 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 1041 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1042 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1043 struct atl1_ring_header *ring_header = &adapter->ring_header; 1044 struct pci_dev *pdev = adapter->pdev; 1045 int size; 1046 u8 offset = 0; 1047 1048 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count); 1049 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL); 1050 if (unlikely(!tpd_ring->buffer_info)) { 1051 if (netif_msg_drv(adapter)) 1052 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n", 1053 size); 1054 goto err_nomem; 1055 } 1056 rfd_ring->buffer_info = 1057 (tpd_ring->buffer_info + tpd_ring->count); 1058 1059 /* 1060 * real ring DMA buffer 1061 * each ring/block may need up to 8 bytes for alignment, hence the 1062 * additional 40 bytes tacked onto the end. 1063 */ 1064 ring_header->size = size = 1065 sizeof(struct tx_packet_desc) * tpd_ring->count 1066 + sizeof(struct rx_free_desc) * rfd_ring->count 1067 + sizeof(struct rx_return_desc) * rrd_ring->count 1068 + sizeof(struct coals_msg_block) 1069 + sizeof(struct stats_msg_block) 1070 + 40; 1071 1072 ring_header->desc = pci_alloc_consistent(pdev, ring_header->size, 1073 &ring_header->dma); 1074 if (unlikely(!ring_header->desc)) { 1075 if (netif_msg_drv(adapter)) 1076 dev_err(&pdev->dev, "pci_alloc_consistent failed\n"); 1077 goto err_nomem; 1078 } 1079 1080 memset(ring_header->desc, 0, ring_header->size); 1081 1082 /* init TPD ring */ 1083 tpd_ring->dma = ring_header->dma; 1084 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0; 1085 tpd_ring->dma += offset; 1086 tpd_ring->desc = (u8 *) ring_header->desc + offset; 1087 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count; 1088 1089 /* init RFD ring */ 1090 rfd_ring->dma = tpd_ring->dma + tpd_ring->size; 1091 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0; 1092 rfd_ring->dma += offset; 1093 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset); 1094 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count; 1095 1096 1097 /* init RRD ring */ 1098 rrd_ring->dma = rfd_ring->dma + rfd_ring->size; 1099 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0; 1100 rrd_ring->dma += offset; 1101 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset); 1102 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count; 1103 1104 1105 /* init CMB */ 1106 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size; 1107 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0; 1108 adapter->cmb.dma += offset; 1109 adapter->cmb.cmb = (struct coals_msg_block *) 1110 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset)); 1111 1112 /* init SMB */ 1113 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block); 1114 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0; 1115 adapter->smb.dma += offset; 1116 adapter->smb.smb = (struct stats_msg_block *) 1117 ((u8 *) adapter->cmb.cmb + 1118 (sizeof(struct coals_msg_block) + offset)); 1119 1120 return 0; 1121 1122 err_nomem: 1123 kfree(tpd_ring->buffer_info); 1124 return -ENOMEM; 1125 } 1126 1127 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter) 1128 { 1129 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 1130 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1131 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1132 1133 atomic_set(&tpd_ring->next_to_use, 0); 1134 atomic_set(&tpd_ring->next_to_clean, 0); 1135 1136 rfd_ring->next_to_clean = 0; 1137 atomic_set(&rfd_ring->next_to_use, 0); 1138 1139 rrd_ring->next_to_use = 0; 1140 atomic_set(&rrd_ring->next_to_clean, 0); 1141 } 1142 1143 /** 1144 * atl1_clean_rx_ring - Free RFD Buffers 1145 * @adapter: board private structure 1146 */ 1147 static void atl1_clean_rx_ring(struct atl1_adapter *adapter) 1148 { 1149 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1150 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1151 struct atl1_buffer *buffer_info; 1152 struct pci_dev *pdev = adapter->pdev; 1153 unsigned long size; 1154 unsigned int i; 1155 1156 /* Free all the Rx ring sk_buffs */ 1157 for (i = 0; i < rfd_ring->count; i++) { 1158 buffer_info = &rfd_ring->buffer_info[i]; 1159 if (buffer_info->dma) { 1160 pci_unmap_page(pdev, buffer_info->dma, 1161 buffer_info->length, PCI_DMA_FROMDEVICE); 1162 buffer_info->dma = 0; 1163 } 1164 if (buffer_info->skb) { 1165 dev_kfree_skb(buffer_info->skb); 1166 buffer_info->skb = NULL; 1167 } 1168 } 1169 1170 size = sizeof(struct atl1_buffer) * rfd_ring->count; 1171 memset(rfd_ring->buffer_info, 0, size); 1172 1173 /* Zero out the descriptor ring */ 1174 memset(rfd_ring->desc, 0, rfd_ring->size); 1175 1176 rfd_ring->next_to_clean = 0; 1177 atomic_set(&rfd_ring->next_to_use, 0); 1178 1179 rrd_ring->next_to_use = 0; 1180 atomic_set(&rrd_ring->next_to_clean, 0); 1181 } 1182 1183 /** 1184 * atl1_clean_tx_ring - Free Tx Buffers 1185 * @adapter: board private structure 1186 */ 1187 static void atl1_clean_tx_ring(struct atl1_adapter *adapter) 1188 { 1189 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 1190 struct atl1_buffer *buffer_info; 1191 struct pci_dev *pdev = adapter->pdev; 1192 unsigned long size; 1193 unsigned int i; 1194 1195 /* Free all the Tx ring sk_buffs */ 1196 for (i = 0; i < tpd_ring->count; i++) { 1197 buffer_info = &tpd_ring->buffer_info[i]; 1198 if (buffer_info->dma) { 1199 pci_unmap_page(pdev, buffer_info->dma, 1200 buffer_info->length, PCI_DMA_TODEVICE); 1201 buffer_info->dma = 0; 1202 } 1203 } 1204 1205 for (i = 0; i < tpd_ring->count; i++) { 1206 buffer_info = &tpd_ring->buffer_info[i]; 1207 if (buffer_info->skb) { 1208 dev_kfree_skb_any(buffer_info->skb); 1209 buffer_info->skb = NULL; 1210 } 1211 } 1212 1213 size = sizeof(struct atl1_buffer) * tpd_ring->count; 1214 memset(tpd_ring->buffer_info, 0, size); 1215 1216 /* Zero out the descriptor ring */ 1217 memset(tpd_ring->desc, 0, tpd_ring->size); 1218 1219 atomic_set(&tpd_ring->next_to_use, 0); 1220 atomic_set(&tpd_ring->next_to_clean, 0); 1221 } 1222 1223 /** 1224 * atl1_free_ring_resources - Free Tx / RX descriptor Resources 1225 * @adapter: board private structure 1226 * 1227 * Free all transmit software resources 1228 */ 1229 static void atl1_free_ring_resources(struct atl1_adapter *adapter) 1230 { 1231 struct pci_dev *pdev = adapter->pdev; 1232 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 1233 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1234 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1235 struct atl1_ring_header *ring_header = &adapter->ring_header; 1236 1237 atl1_clean_tx_ring(adapter); 1238 atl1_clean_rx_ring(adapter); 1239 1240 kfree(tpd_ring->buffer_info); 1241 pci_free_consistent(pdev, ring_header->size, ring_header->desc, 1242 ring_header->dma); 1243 1244 tpd_ring->buffer_info = NULL; 1245 tpd_ring->desc = NULL; 1246 tpd_ring->dma = 0; 1247 1248 rfd_ring->buffer_info = NULL; 1249 rfd_ring->desc = NULL; 1250 rfd_ring->dma = 0; 1251 1252 rrd_ring->desc = NULL; 1253 rrd_ring->dma = 0; 1254 1255 adapter->cmb.dma = 0; 1256 adapter->cmb.cmb = NULL; 1257 1258 adapter->smb.dma = 0; 1259 adapter->smb.smb = NULL; 1260 } 1261 1262 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter) 1263 { 1264 u32 value; 1265 struct atl1_hw *hw = &adapter->hw; 1266 struct net_device *netdev = adapter->netdev; 1267 /* Config MAC CTRL Register */ 1268 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN; 1269 /* duplex */ 1270 if (FULL_DUPLEX == adapter->link_duplex) 1271 value |= MAC_CTRL_DUPLX; 1272 /* speed */ 1273 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ? 1274 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) << 1275 MAC_CTRL_SPEED_SHIFT); 1276 /* flow control */ 1277 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW); 1278 /* PAD & CRC */ 1279 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); 1280 /* preamble length */ 1281 value |= (((u32) adapter->hw.preamble_len 1282 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); 1283 /* vlan */ 1284 __atlx_vlan_mode(netdev->features, &value); 1285 /* rx checksum 1286 if (adapter->rx_csum) 1287 value |= MAC_CTRL_RX_CHKSUM_EN; 1288 */ 1289 /* filter mode */ 1290 value |= MAC_CTRL_BC_EN; 1291 if (netdev->flags & IFF_PROMISC) 1292 value |= MAC_CTRL_PROMIS_EN; 1293 else if (netdev->flags & IFF_ALLMULTI) 1294 value |= MAC_CTRL_MC_ALL_EN; 1295 /* value |= MAC_CTRL_LOOPBACK; */ 1296 iowrite32(value, hw->hw_addr + REG_MAC_CTRL); 1297 } 1298 1299 static u32 atl1_check_link(struct atl1_adapter *adapter) 1300 { 1301 struct atl1_hw *hw = &adapter->hw; 1302 struct net_device *netdev = adapter->netdev; 1303 u32 ret_val; 1304 u16 speed, duplex, phy_data; 1305 int reconfig = 0; 1306 1307 /* MII_BMSR must read twice */ 1308 atl1_read_phy_reg(hw, MII_BMSR, &phy_data); 1309 atl1_read_phy_reg(hw, MII_BMSR, &phy_data); 1310 if (!(phy_data & BMSR_LSTATUS)) { 1311 /* link down */ 1312 if (netif_carrier_ok(netdev)) { 1313 /* old link state: Up */ 1314 if (netif_msg_link(adapter)) 1315 dev_info(&adapter->pdev->dev, "link is down\n"); 1316 adapter->link_speed = SPEED_0; 1317 netif_carrier_off(netdev); 1318 } 1319 return 0; 1320 } 1321 1322 /* Link Up */ 1323 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex); 1324 if (ret_val) 1325 return ret_val; 1326 1327 switch (hw->media_type) { 1328 case MEDIA_TYPE_1000M_FULL: 1329 if (speed != SPEED_1000 || duplex != FULL_DUPLEX) 1330 reconfig = 1; 1331 break; 1332 case MEDIA_TYPE_100M_FULL: 1333 if (speed != SPEED_100 || duplex != FULL_DUPLEX) 1334 reconfig = 1; 1335 break; 1336 case MEDIA_TYPE_100M_HALF: 1337 if (speed != SPEED_100 || duplex != HALF_DUPLEX) 1338 reconfig = 1; 1339 break; 1340 case MEDIA_TYPE_10M_FULL: 1341 if (speed != SPEED_10 || duplex != FULL_DUPLEX) 1342 reconfig = 1; 1343 break; 1344 case MEDIA_TYPE_10M_HALF: 1345 if (speed != SPEED_10 || duplex != HALF_DUPLEX) 1346 reconfig = 1; 1347 break; 1348 } 1349 1350 /* link result is our setting */ 1351 if (!reconfig) { 1352 if (adapter->link_speed != speed || 1353 adapter->link_duplex != duplex) { 1354 adapter->link_speed = speed; 1355 adapter->link_duplex = duplex; 1356 atl1_setup_mac_ctrl(adapter); 1357 if (netif_msg_link(adapter)) 1358 dev_info(&adapter->pdev->dev, 1359 "%s link is up %d Mbps %s\n", 1360 netdev->name, adapter->link_speed, 1361 adapter->link_duplex == FULL_DUPLEX ? 1362 "full duplex" : "half duplex"); 1363 } 1364 if (!netif_carrier_ok(netdev)) { 1365 /* Link down -> Up */ 1366 netif_carrier_on(netdev); 1367 } 1368 return 0; 1369 } 1370 1371 /* change original link status */ 1372 if (netif_carrier_ok(netdev)) { 1373 adapter->link_speed = SPEED_0; 1374 netif_carrier_off(netdev); 1375 netif_stop_queue(netdev); 1376 } 1377 1378 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR && 1379 hw->media_type != MEDIA_TYPE_1000M_FULL) { 1380 switch (hw->media_type) { 1381 case MEDIA_TYPE_100M_FULL: 1382 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | 1383 MII_CR_RESET; 1384 break; 1385 case MEDIA_TYPE_100M_HALF: 1386 phy_data = MII_CR_SPEED_100 | MII_CR_RESET; 1387 break; 1388 case MEDIA_TYPE_10M_FULL: 1389 phy_data = 1390 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; 1391 break; 1392 default: 1393 /* MEDIA_TYPE_10M_HALF: */ 1394 phy_data = MII_CR_SPEED_10 | MII_CR_RESET; 1395 break; 1396 } 1397 atl1_write_phy_reg(hw, MII_BMCR, phy_data); 1398 return 0; 1399 } 1400 1401 /* auto-neg, insert timer to re-config phy */ 1402 if (!adapter->phy_timer_pending) { 1403 adapter->phy_timer_pending = true; 1404 mod_timer(&adapter->phy_config_timer, 1405 round_jiffies(jiffies + 3 * HZ)); 1406 } 1407 1408 return 0; 1409 } 1410 1411 static void set_flow_ctrl_old(struct atl1_adapter *adapter) 1412 { 1413 u32 hi, lo, value; 1414 1415 /* RFD Flow Control */ 1416 value = adapter->rfd_ring.count; 1417 hi = value / 16; 1418 if (hi < 2) 1419 hi = 2; 1420 lo = value * 7 / 8; 1421 1422 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) | 1423 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT); 1424 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH); 1425 1426 /* RRD Flow Control */ 1427 value = adapter->rrd_ring.count; 1428 lo = value / 16; 1429 hi = value * 7 / 8; 1430 if (lo < 2) 1431 lo = 2; 1432 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) | 1433 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT); 1434 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH); 1435 } 1436 1437 static void set_flow_ctrl_new(struct atl1_hw *hw) 1438 { 1439 u32 hi, lo, value; 1440 1441 /* RXF Flow Control */ 1442 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN); 1443 lo = value / 16; 1444 if (lo < 192) 1445 lo = 192; 1446 hi = value * 7 / 8; 1447 if (hi < lo) 1448 hi = lo + 16; 1449 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) | 1450 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT); 1451 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH); 1452 1453 /* RRD Flow Control */ 1454 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN); 1455 lo = value / 8; 1456 hi = value * 7 / 8; 1457 if (lo < 2) 1458 lo = 2; 1459 if (hi < lo) 1460 hi = lo + 3; 1461 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) | 1462 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT); 1463 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH); 1464 } 1465 1466 /** 1467 * atl1_configure - Configure Transmit&Receive Unit after Reset 1468 * @adapter: board private structure 1469 * 1470 * Configure the Tx /Rx unit of the MAC after a reset. 1471 */ 1472 static u32 atl1_configure(struct atl1_adapter *adapter) 1473 { 1474 struct atl1_hw *hw = &adapter->hw; 1475 u32 value; 1476 1477 /* clear interrupt status */ 1478 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR); 1479 1480 /* set MAC Address */ 1481 value = (((u32) hw->mac_addr[2]) << 24) | 1482 (((u32) hw->mac_addr[3]) << 16) | 1483 (((u32) hw->mac_addr[4]) << 8) | 1484 (((u32) hw->mac_addr[5])); 1485 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR); 1486 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1])); 1487 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4)); 1488 1489 /* tx / rx ring */ 1490 1491 /* HI base address */ 1492 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32), 1493 hw->hw_addr + REG_DESC_BASE_ADDR_HI); 1494 /* LO base address */ 1495 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL), 1496 hw->hw_addr + REG_DESC_RFD_ADDR_LO); 1497 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL), 1498 hw->hw_addr + REG_DESC_RRD_ADDR_LO); 1499 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL), 1500 hw->hw_addr + REG_DESC_TPD_ADDR_LO); 1501 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL), 1502 hw->hw_addr + REG_DESC_CMB_ADDR_LO); 1503 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL), 1504 hw->hw_addr + REG_DESC_SMB_ADDR_LO); 1505 1506 /* element count */ 1507 value = adapter->rrd_ring.count; 1508 value <<= 16; 1509 value += adapter->rfd_ring.count; 1510 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE); 1511 iowrite32(adapter->tpd_ring.count, hw->hw_addr + 1512 REG_DESC_TPD_RING_SIZE); 1513 1514 /* Load Ptr */ 1515 iowrite32(1, hw->hw_addr + REG_LOAD_PTR); 1516 1517 /* config Mailbox */ 1518 value = ((atomic_read(&adapter->tpd_ring.next_to_use) 1519 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) | 1520 ((atomic_read(&adapter->rrd_ring.next_to_clean) 1521 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) | 1522 ((atomic_read(&adapter->rfd_ring.next_to_use) 1523 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT); 1524 iowrite32(value, hw->hw_addr + REG_MAILBOX); 1525 1526 /* config IPG/IFG */ 1527 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK) 1528 << MAC_IPG_IFG_IPGT_SHIFT) | 1529 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) 1530 << MAC_IPG_IFG_MIFG_SHIFT) | 1531 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) 1532 << MAC_IPG_IFG_IPGR1_SHIFT) | 1533 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) 1534 << MAC_IPG_IFG_IPGR2_SHIFT); 1535 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG); 1536 1537 /* config Half-Duplex Control */ 1538 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) | 1539 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) 1540 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) | 1541 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN | 1542 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) | 1543 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) 1544 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT); 1545 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL); 1546 1547 /* set Interrupt Moderator Timer */ 1548 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT); 1549 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL); 1550 1551 /* set Interrupt Clear Timer */ 1552 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER); 1553 1554 /* set max frame size hw will accept */ 1555 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU); 1556 1557 /* jumbo size & rrd retirement timer */ 1558 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK) 1559 << RXQ_JMBOSZ_TH_SHIFT) | 1560 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK) 1561 << RXQ_JMBO_LKAH_SHIFT) | 1562 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK) 1563 << RXQ_RRD_TIMER_SHIFT); 1564 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM); 1565 1566 /* Flow Control */ 1567 switch (hw->dev_rev) { 1568 case 0x8001: 1569 case 0x9001: 1570 case 0x9002: 1571 case 0x9003: 1572 set_flow_ctrl_old(adapter); 1573 break; 1574 default: 1575 set_flow_ctrl_new(hw); 1576 break; 1577 } 1578 1579 /* config TXQ */ 1580 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK) 1581 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) | 1582 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK) 1583 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) | 1584 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK) 1585 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE | 1586 TXQ_CTRL_EN; 1587 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL); 1588 1589 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */ 1590 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK) 1591 << TX_JUMBO_TASK_TH_SHIFT) | 1592 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK) 1593 << TX_TPD_MIN_IPG_SHIFT); 1594 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG); 1595 1596 /* config RXQ */ 1597 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK) 1598 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) | 1599 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK) 1600 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) | 1601 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK) 1602 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN | 1603 RXQ_CTRL_EN; 1604 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL); 1605 1606 /* config DMA Engine */ 1607 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK) 1608 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) | 1609 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK) 1610 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN | 1611 DMA_CTRL_DMAW_EN; 1612 value |= (u32) hw->dma_ord; 1613 if (atl1_rcb_128 == hw->rcb_value) 1614 value |= DMA_CTRL_RCB_VALUE; 1615 iowrite32(value, hw->hw_addr + REG_DMA_CTRL); 1616 1617 /* config CMB / SMB */ 1618 value = (hw->cmb_tpd > adapter->tpd_ring.count) ? 1619 hw->cmb_tpd : adapter->tpd_ring.count; 1620 value <<= 16; 1621 value |= hw->cmb_rrd; 1622 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH); 1623 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16); 1624 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER); 1625 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER); 1626 1627 /* --- enable CMB / SMB */ 1628 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN; 1629 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL); 1630 1631 value = ioread32(adapter->hw.hw_addr + REG_ISR); 1632 if (unlikely((value & ISR_PHY_LINKDOWN) != 0)) 1633 value = 1; /* config failed */ 1634 else 1635 value = 0; 1636 1637 /* clear all interrupt status */ 1638 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR); 1639 iowrite32(0, adapter->hw.hw_addr + REG_ISR); 1640 return value; 1641 } 1642 1643 /* 1644 * atl1_pcie_patch - Patch for PCIE module 1645 */ 1646 static void atl1_pcie_patch(struct atl1_adapter *adapter) 1647 { 1648 u32 value; 1649 1650 /* much vendor magic here */ 1651 value = 0x6500; 1652 iowrite32(value, adapter->hw.hw_addr + 0x12FC); 1653 /* pcie flow control mode change */ 1654 value = ioread32(adapter->hw.hw_addr + 0x1008); 1655 value |= 0x8000; 1656 iowrite32(value, adapter->hw.hw_addr + 0x1008); 1657 } 1658 1659 /* 1660 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400 1661 * on PCI Command register is disable. 1662 * The function enable this bit. 1663 * Brackett, 2006/03/15 1664 */ 1665 static void atl1_via_workaround(struct atl1_adapter *adapter) 1666 { 1667 unsigned long value; 1668 1669 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND); 1670 if (value & PCI_COMMAND_INTX_DISABLE) 1671 value &= ~PCI_COMMAND_INTX_DISABLE; 1672 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND); 1673 } 1674 1675 static void atl1_inc_smb(struct atl1_adapter *adapter) 1676 { 1677 struct net_device *netdev = adapter->netdev; 1678 struct stats_msg_block *smb = adapter->smb.smb; 1679 1680 u64 new_rx_errors = smb->rx_frag + 1681 smb->rx_fcs_err + 1682 smb->rx_len_err + 1683 smb->rx_sz_ov + 1684 smb->rx_rxf_ov + 1685 smb->rx_rrd_ov + 1686 smb->rx_align_err; 1687 u64 new_tx_errors = smb->tx_late_col + 1688 smb->tx_abort_col + 1689 smb->tx_underrun + 1690 smb->tx_trunc; 1691 1692 /* Fill out the OS statistics structure */ 1693 adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors; 1694 adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors; 1695 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt; 1696 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt; 1697 adapter->soft_stats.multicast += smb->rx_mcast; 1698 adapter->soft_stats.collisions += smb->tx_1_col + 1699 smb->tx_2_col + 1700 smb->tx_late_col + 1701 smb->tx_abort_col; 1702 1703 /* Rx Errors */ 1704 adapter->soft_stats.rx_errors += new_rx_errors; 1705 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov; 1706 adapter->soft_stats.rx_length_errors += smb->rx_len_err; 1707 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err; 1708 adapter->soft_stats.rx_frame_errors += smb->rx_align_err; 1709 1710 adapter->soft_stats.rx_pause += smb->rx_pause; 1711 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov; 1712 adapter->soft_stats.rx_trunc += smb->rx_sz_ov; 1713 1714 /* Tx Errors */ 1715 adapter->soft_stats.tx_errors += new_tx_errors; 1716 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun; 1717 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col; 1718 adapter->soft_stats.tx_window_errors += smb->tx_late_col; 1719 1720 adapter->soft_stats.excecol += smb->tx_abort_col; 1721 adapter->soft_stats.deffer += smb->tx_defer; 1722 adapter->soft_stats.scc += smb->tx_1_col; 1723 adapter->soft_stats.mcc += smb->tx_2_col; 1724 adapter->soft_stats.latecol += smb->tx_late_col; 1725 adapter->soft_stats.tx_underun += smb->tx_underrun; 1726 adapter->soft_stats.tx_trunc += smb->tx_trunc; 1727 adapter->soft_stats.tx_pause += smb->tx_pause; 1728 1729 netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes; 1730 netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes; 1731 netdev->stats.multicast = adapter->soft_stats.multicast; 1732 netdev->stats.collisions = adapter->soft_stats.collisions; 1733 netdev->stats.rx_errors = adapter->soft_stats.rx_errors; 1734 netdev->stats.rx_length_errors = 1735 adapter->soft_stats.rx_length_errors; 1736 netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors; 1737 netdev->stats.rx_frame_errors = 1738 adapter->soft_stats.rx_frame_errors; 1739 netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors; 1740 netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov; 1741 netdev->stats.tx_errors = adapter->soft_stats.tx_errors; 1742 netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors; 1743 netdev->stats.tx_aborted_errors = 1744 adapter->soft_stats.tx_aborted_errors; 1745 netdev->stats.tx_window_errors = 1746 adapter->soft_stats.tx_window_errors; 1747 netdev->stats.tx_carrier_errors = 1748 adapter->soft_stats.tx_carrier_errors; 1749 1750 netdev->stats.rx_packets = adapter->soft_stats.rx_packets; 1751 netdev->stats.tx_packets = adapter->soft_stats.tx_packets; 1752 } 1753 1754 static void atl1_update_mailbox(struct atl1_adapter *adapter) 1755 { 1756 unsigned long flags; 1757 u32 tpd_next_to_use; 1758 u32 rfd_next_to_use; 1759 u32 rrd_next_to_clean; 1760 u32 value; 1761 1762 spin_lock_irqsave(&adapter->mb_lock, flags); 1763 1764 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use); 1765 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use); 1766 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean); 1767 1768 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) << 1769 MB_RFD_PROD_INDX_SHIFT) | 1770 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) << 1771 MB_RRD_CONS_INDX_SHIFT) | 1772 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) << 1773 MB_TPD_PROD_INDX_SHIFT); 1774 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX); 1775 1776 spin_unlock_irqrestore(&adapter->mb_lock, flags); 1777 } 1778 1779 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter, 1780 struct rx_return_desc *rrd, u16 offset) 1781 { 1782 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1783 1784 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) { 1785 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0; 1786 if (++rfd_ring->next_to_clean == rfd_ring->count) { 1787 rfd_ring->next_to_clean = 0; 1788 } 1789 } 1790 } 1791 1792 static void atl1_update_rfd_index(struct atl1_adapter *adapter, 1793 struct rx_return_desc *rrd) 1794 { 1795 u16 num_buf; 1796 1797 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) / 1798 adapter->rx_buffer_len; 1799 if (rrd->num_buf == num_buf) 1800 /* clean alloc flag for bad rrd */ 1801 atl1_clean_alloc_flag(adapter, rrd, num_buf); 1802 } 1803 1804 static void atl1_rx_checksum(struct atl1_adapter *adapter, 1805 struct rx_return_desc *rrd, struct sk_buff *skb) 1806 { 1807 struct pci_dev *pdev = adapter->pdev; 1808 1809 /* 1810 * The L1 hardware contains a bug that erroneously sets the 1811 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a 1812 * fragmented IP packet is received, even though the packet 1813 * is perfectly valid and its checksum is correct. There's 1814 * no way to distinguish between one of these good packets 1815 * and a packet that actually contains a TCP/UDP checksum 1816 * error, so all we can do is allow it to be handed up to 1817 * the higher layers and let it be sorted out there. 1818 */ 1819 1820 skb_checksum_none_assert(skb); 1821 1822 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) { 1823 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC | 1824 ERR_FLAG_CODE | ERR_FLAG_OV)) { 1825 adapter->hw_csum_err++; 1826 if (netif_msg_rx_err(adapter)) 1827 dev_printk(KERN_DEBUG, &pdev->dev, 1828 "rx checksum error\n"); 1829 return; 1830 } 1831 } 1832 1833 /* not IPv4 */ 1834 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4)) 1835 /* checksum is invalid, but it's not an IPv4 pkt, so ok */ 1836 return; 1837 1838 /* IPv4 packet */ 1839 if (likely(!(rrd->err_flg & 1840 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) { 1841 skb->ip_summed = CHECKSUM_UNNECESSARY; 1842 adapter->hw_csum_good++; 1843 return; 1844 } 1845 } 1846 1847 /** 1848 * atl1_alloc_rx_buffers - Replace used receive buffers 1849 * @adapter: address of board private structure 1850 */ 1851 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter) 1852 { 1853 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1854 struct pci_dev *pdev = adapter->pdev; 1855 struct page *page; 1856 unsigned long offset; 1857 struct atl1_buffer *buffer_info, *next_info; 1858 struct sk_buff *skb; 1859 u16 num_alloc = 0; 1860 u16 rfd_next_to_use, next_next; 1861 struct rx_free_desc *rfd_desc; 1862 1863 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use); 1864 if (++next_next == rfd_ring->count) 1865 next_next = 0; 1866 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; 1867 next_info = &rfd_ring->buffer_info[next_next]; 1868 1869 while (!buffer_info->alloced && !next_info->alloced) { 1870 if (buffer_info->skb) { 1871 buffer_info->alloced = 1; 1872 goto next; 1873 } 1874 1875 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use); 1876 1877 skb = netdev_alloc_skb_ip_align(adapter->netdev, 1878 adapter->rx_buffer_len); 1879 if (unlikely(!skb)) { 1880 /* Better luck next round */ 1881 adapter->soft_stats.rx_dropped++; 1882 break; 1883 } 1884 1885 buffer_info->alloced = 1; 1886 buffer_info->skb = skb; 1887 buffer_info->length = (u16) adapter->rx_buffer_len; 1888 page = virt_to_page(skb->data); 1889 offset = (unsigned long)skb->data & ~PAGE_MASK; 1890 buffer_info->dma = pci_map_page(pdev, page, offset, 1891 adapter->rx_buffer_len, 1892 PCI_DMA_FROMDEVICE); 1893 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 1894 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len); 1895 rfd_desc->coalese = 0; 1896 1897 next: 1898 rfd_next_to_use = next_next; 1899 if (unlikely(++next_next == rfd_ring->count)) 1900 next_next = 0; 1901 1902 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; 1903 next_info = &rfd_ring->buffer_info[next_next]; 1904 num_alloc++; 1905 } 1906 1907 if (num_alloc) { 1908 /* 1909 * Force memory writes to complete before letting h/w 1910 * know there are new descriptors to fetch. (Only 1911 * applicable for weak-ordered memory model archs, 1912 * such as IA-64). 1913 */ 1914 wmb(); 1915 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use); 1916 } 1917 return num_alloc; 1918 } 1919 1920 static int atl1_intr_rx(struct atl1_adapter *adapter, int budget) 1921 { 1922 int i, count; 1923 u16 length; 1924 u16 rrd_next_to_clean; 1925 u32 value; 1926 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1927 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1928 struct atl1_buffer *buffer_info; 1929 struct rx_return_desc *rrd; 1930 struct sk_buff *skb; 1931 1932 count = 0; 1933 1934 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean); 1935 1936 while (count < budget) { 1937 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean); 1938 i = 1; 1939 if (likely(rrd->xsz.valid)) { /* packet valid */ 1940 chk_rrd: 1941 /* check rrd status */ 1942 if (likely(rrd->num_buf == 1)) 1943 goto rrd_ok; 1944 else if (netif_msg_rx_err(adapter)) { 1945 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1946 "unexpected RRD buffer count\n"); 1947 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1948 "rx_buf_len = %d\n", 1949 adapter->rx_buffer_len); 1950 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1951 "RRD num_buf = %d\n", 1952 rrd->num_buf); 1953 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1954 "RRD pkt_len = %d\n", 1955 rrd->xsz.xsum_sz.pkt_size); 1956 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1957 "RRD pkt_flg = 0x%08X\n", 1958 rrd->pkt_flg); 1959 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1960 "RRD err_flg = 0x%08X\n", 1961 rrd->err_flg); 1962 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1963 "RRD vlan_tag = 0x%08X\n", 1964 rrd->vlan_tag); 1965 } 1966 1967 /* rrd seems to be bad */ 1968 if (unlikely(i-- > 0)) { 1969 /* rrd may not be DMAed completely */ 1970 udelay(1); 1971 goto chk_rrd; 1972 } 1973 /* bad rrd */ 1974 if (netif_msg_rx_err(adapter)) 1975 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1976 "bad RRD\n"); 1977 /* see if update RFD index */ 1978 if (rrd->num_buf > 1) 1979 atl1_update_rfd_index(adapter, rrd); 1980 1981 /* update rrd */ 1982 rrd->xsz.valid = 0; 1983 if (++rrd_next_to_clean == rrd_ring->count) 1984 rrd_next_to_clean = 0; 1985 count++; 1986 continue; 1987 } else { /* current rrd still not be updated */ 1988 1989 break; 1990 } 1991 rrd_ok: 1992 /* clean alloc flag for bad rrd */ 1993 atl1_clean_alloc_flag(adapter, rrd, 0); 1994 1995 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx]; 1996 if (++rfd_ring->next_to_clean == rfd_ring->count) 1997 rfd_ring->next_to_clean = 0; 1998 1999 /* update rrd next to clean */ 2000 if (++rrd_next_to_clean == rrd_ring->count) 2001 rrd_next_to_clean = 0; 2002 count++; 2003 2004 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) { 2005 if (!(rrd->err_flg & 2006 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM 2007 | ERR_FLAG_LEN))) { 2008 /* packet error, don't need upstream */ 2009 buffer_info->alloced = 0; 2010 rrd->xsz.valid = 0; 2011 continue; 2012 } 2013 } 2014 2015 /* Good Receive */ 2016 pci_unmap_page(adapter->pdev, buffer_info->dma, 2017 buffer_info->length, PCI_DMA_FROMDEVICE); 2018 buffer_info->dma = 0; 2019 skb = buffer_info->skb; 2020 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size); 2021 2022 skb_put(skb, length - ETH_FCS_LEN); 2023 2024 /* Receive Checksum Offload */ 2025 atl1_rx_checksum(adapter, rrd, skb); 2026 skb->protocol = eth_type_trans(skb, adapter->netdev); 2027 2028 if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) { 2029 u16 vlan_tag = (rrd->vlan_tag >> 4) | 2030 ((rrd->vlan_tag & 7) << 13) | 2031 ((rrd->vlan_tag & 8) << 9); 2032 2033 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 2034 } 2035 netif_receive_skb(skb); 2036 2037 /* let protocol layer free skb */ 2038 buffer_info->skb = NULL; 2039 buffer_info->alloced = 0; 2040 rrd->xsz.valid = 0; 2041 } 2042 2043 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean); 2044 2045 atl1_alloc_rx_buffers(adapter); 2046 2047 /* update mailbox ? */ 2048 if (count) { 2049 u32 tpd_next_to_use; 2050 u32 rfd_next_to_use; 2051 2052 spin_lock(&adapter->mb_lock); 2053 2054 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use); 2055 rfd_next_to_use = 2056 atomic_read(&adapter->rfd_ring.next_to_use); 2057 rrd_next_to_clean = 2058 atomic_read(&adapter->rrd_ring.next_to_clean); 2059 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) << 2060 MB_RFD_PROD_INDX_SHIFT) | 2061 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) << 2062 MB_RRD_CONS_INDX_SHIFT) | 2063 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) << 2064 MB_TPD_PROD_INDX_SHIFT); 2065 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX); 2066 spin_unlock(&adapter->mb_lock); 2067 } 2068 2069 return count; 2070 } 2071 2072 static int atl1_intr_tx(struct atl1_adapter *adapter) 2073 { 2074 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 2075 struct atl1_buffer *buffer_info; 2076 u16 sw_tpd_next_to_clean; 2077 u16 cmb_tpd_next_to_clean; 2078 int count = 0; 2079 2080 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean); 2081 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx); 2082 2083 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) { 2084 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean]; 2085 if (buffer_info->dma) { 2086 pci_unmap_page(adapter->pdev, buffer_info->dma, 2087 buffer_info->length, PCI_DMA_TODEVICE); 2088 buffer_info->dma = 0; 2089 } 2090 2091 if (buffer_info->skb) { 2092 dev_kfree_skb_irq(buffer_info->skb); 2093 buffer_info->skb = NULL; 2094 } 2095 2096 if (++sw_tpd_next_to_clean == tpd_ring->count) 2097 sw_tpd_next_to_clean = 0; 2098 2099 count++; 2100 } 2101 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean); 2102 2103 if (netif_queue_stopped(adapter->netdev) && 2104 netif_carrier_ok(adapter->netdev)) 2105 netif_wake_queue(adapter->netdev); 2106 2107 return count; 2108 } 2109 2110 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring) 2111 { 2112 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean); 2113 u16 next_to_use = atomic_read(&tpd_ring->next_to_use); 2114 return (next_to_clean > next_to_use) ? 2115 next_to_clean - next_to_use - 1 : 2116 tpd_ring->count + next_to_clean - next_to_use - 1; 2117 } 2118 2119 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb, 2120 struct tx_packet_desc *ptpd) 2121 { 2122 u8 hdr_len, ip_off; 2123 u32 real_len; 2124 2125 if (skb_shinfo(skb)->gso_size) { 2126 int err; 2127 2128 err = skb_cow_head(skb, 0); 2129 if (err < 0) 2130 return err; 2131 2132 if (skb->protocol == htons(ETH_P_IP)) { 2133 struct iphdr *iph = ip_hdr(skb); 2134 2135 real_len = (((unsigned char *)iph - skb->data) + 2136 ntohs(iph->tot_len)); 2137 if (real_len < skb->len) 2138 pskb_trim(skb, real_len); 2139 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb)); 2140 if (skb->len == hdr_len) { 2141 iph->check = 0; 2142 tcp_hdr(skb)->check = 2143 ~csum_tcpudp_magic(iph->saddr, 2144 iph->daddr, tcp_hdrlen(skb), 2145 IPPROTO_TCP, 0); 2146 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) << 2147 TPD_IPHL_SHIFT; 2148 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) & 2149 TPD_TCPHDRLEN_MASK) << 2150 TPD_TCPHDRLEN_SHIFT; 2151 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT; 2152 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT; 2153 return 1; 2154 } 2155 2156 iph->check = 0; 2157 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2158 iph->daddr, 0, IPPROTO_TCP, 0); 2159 ip_off = (unsigned char *)iph - 2160 (unsigned char *) skb_network_header(skb); 2161 if (ip_off == 8) /* 802.3-SNAP frame */ 2162 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT; 2163 else if (ip_off != 0) 2164 return -2; 2165 2166 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) << 2167 TPD_IPHL_SHIFT; 2168 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) & 2169 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT; 2170 ptpd->word3 |= (skb_shinfo(skb)->gso_size & 2171 TPD_MSS_MASK) << TPD_MSS_SHIFT; 2172 ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT; 2173 return 3; 2174 } 2175 } 2176 return 0; 2177 } 2178 2179 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb, 2180 struct tx_packet_desc *ptpd) 2181 { 2182 u8 css, cso; 2183 2184 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { 2185 css = skb_checksum_start_offset(skb); 2186 cso = css + (u8) skb->csum_offset; 2187 if (unlikely(css & 0x1)) { 2188 /* L1 hardware requires an even number here */ 2189 if (netif_msg_tx_err(adapter)) 2190 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 2191 "payload offset not an even number\n"); 2192 return -1; 2193 } 2194 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) << 2195 TPD_PLOADOFFSET_SHIFT; 2196 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) << 2197 TPD_CCSUMOFFSET_SHIFT; 2198 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT; 2199 return true; 2200 } 2201 return 0; 2202 } 2203 2204 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb, 2205 struct tx_packet_desc *ptpd) 2206 { 2207 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 2208 struct atl1_buffer *buffer_info; 2209 u16 buf_len = skb->len; 2210 struct page *page; 2211 unsigned long offset; 2212 unsigned int nr_frags; 2213 unsigned int f; 2214 int retval; 2215 u16 next_to_use; 2216 u16 data_len; 2217 u8 hdr_len; 2218 2219 buf_len -= skb->data_len; 2220 nr_frags = skb_shinfo(skb)->nr_frags; 2221 next_to_use = atomic_read(&tpd_ring->next_to_use); 2222 buffer_info = &tpd_ring->buffer_info[next_to_use]; 2223 BUG_ON(buffer_info->skb); 2224 /* put skb in last TPD */ 2225 buffer_info->skb = NULL; 2226 2227 retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK; 2228 if (retval) { 2229 /* TSO */ 2230 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2231 buffer_info->length = hdr_len; 2232 page = virt_to_page(skb->data); 2233 offset = (unsigned long)skb->data & ~PAGE_MASK; 2234 buffer_info->dma = pci_map_page(adapter->pdev, page, 2235 offset, hdr_len, 2236 PCI_DMA_TODEVICE); 2237 2238 if (++next_to_use == tpd_ring->count) 2239 next_to_use = 0; 2240 2241 if (buf_len > hdr_len) { 2242 int i, nseg; 2243 2244 data_len = buf_len - hdr_len; 2245 nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) / 2246 ATL1_MAX_TX_BUF_LEN; 2247 for (i = 0; i < nseg; i++) { 2248 buffer_info = 2249 &tpd_ring->buffer_info[next_to_use]; 2250 buffer_info->skb = NULL; 2251 buffer_info->length = 2252 (ATL1_MAX_TX_BUF_LEN >= 2253 data_len) ? ATL1_MAX_TX_BUF_LEN : data_len; 2254 data_len -= buffer_info->length; 2255 page = virt_to_page(skb->data + 2256 (hdr_len + i * ATL1_MAX_TX_BUF_LEN)); 2257 offset = (unsigned long)(skb->data + 2258 (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) & 2259 ~PAGE_MASK; 2260 buffer_info->dma = pci_map_page(adapter->pdev, 2261 page, offset, buffer_info->length, 2262 PCI_DMA_TODEVICE); 2263 if (++next_to_use == tpd_ring->count) 2264 next_to_use = 0; 2265 } 2266 } 2267 } else { 2268 /* not TSO */ 2269 buffer_info->length = buf_len; 2270 page = virt_to_page(skb->data); 2271 offset = (unsigned long)skb->data & ~PAGE_MASK; 2272 buffer_info->dma = pci_map_page(adapter->pdev, page, 2273 offset, buf_len, PCI_DMA_TODEVICE); 2274 if (++next_to_use == tpd_ring->count) 2275 next_to_use = 0; 2276 } 2277 2278 for (f = 0; f < nr_frags; f++) { 2279 const struct skb_frag_struct *frag; 2280 u16 i, nseg; 2281 2282 frag = &skb_shinfo(skb)->frags[f]; 2283 buf_len = skb_frag_size(frag); 2284 2285 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) / 2286 ATL1_MAX_TX_BUF_LEN; 2287 for (i = 0; i < nseg; i++) { 2288 buffer_info = &tpd_ring->buffer_info[next_to_use]; 2289 BUG_ON(buffer_info->skb); 2290 2291 buffer_info->skb = NULL; 2292 buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ? 2293 ATL1_MAX_TX_BUF_LEN : buf_len; 2294 buf_len -= buffer_info->length; 2295 buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev, 2296 frag, i * ATL1_MAX_TX_BUF_LEN, 2297 buffer_info->length, DMA_TO_DEVICE); 2298 2299 if (++next_to_use == tpd_ring->count) 2300 next_to_use = 0; 2301 } 2302 } 2303 2304 /* last tpd's buffer-info */ 2305 buffer_info->skb = skb; 2306 } 2307 2308 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count, 2309 struct tx_packet_desc *ptpd) 2310 { 2311 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 2312 struct atl1_buffer *buffer_info; 2313 struct tx_packet_desc *tpd; 2314 u16 j; 2315 u32 val; 2316 u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use); 2317 2318 for (j = 0; j < count; j++) { 2319 buffer_info = &tpd_ring->buffer_info[next_to_use]; 2320 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use); 2321 if (tpd != ptpd) 2322 memcpy(tpd, ptpd, sizeof(struct tx_packet_desc)); 2323 tpd->buffer_addr = cpu_to_le64(buffer_info->dma); 2324 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT); 2325 tpd->word2 |= (cpu_to_le16(buffer_info->length) & 2326 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT; 2327 2328 /* 2329 * if this is the first packet in a TSO chain, set 2330 * TPD_HDRFLAG, otherwise, clear it. 2331 */ 2332 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & 2333 TPD_SEGMENT_EN_MASK; 2334 if (val) { 2335 if (!j) 2336 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT; 2337 else 2338 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT); 2339 } 2340 2341 if (j == (count - 1)) 2342 tpd->word3 |= 1 << TPD_EOP_SHIFT; 2343 2344 if (++next_to_use == tpd_ring->count) 2345 next_to_use = 0; 2346 } 2347 /* 2348 * Force memory writes to complete before letting h/w 2349 * know there are new descriptors to fetch. (Only 2350 * applicable for weak-ordered memory model archs, 2351 * such as IA-64). 2352 */ 2353 wmb(); 2354 2355 atomic_set(&tpd_ring->next_to_use, next_to_use); 2356 } 2357 2358 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb, 2359 struct net_device *netdev) 2360 { 2361 struct atl1_adapter *adapter = netdev_priv(netdev); 2362 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 2363 int len; 2364 int tso; 2365 int count = 1; 2366 int ret_val; 2367 struct tx_packet_desc *ptpd; 2368 u16 vlan_tag; 2369 unsigned int nr_frags = 0; 2370 unsigned int mss = 0; 2371 unsigned int f; 2372 unsigned int proto_hdr_len; 2373 2374 len = skb_headlen(skb); 2375 2376 if (unlikely(skb->len <= 0)) { 2377 dev_kfree_skb_any(skb); 2378 return NETDEV_TX_OK; 2379 } 2380 2381 nr_frags = skb_shinfo(skb)->nr_frags; 2382 for (f = 0; f < nr_frags; f++) { 2383 unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]); 2384 count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) / 2385 ATL1_MAX_TX_BUF_LEN; 2386 } 2387 2388 mss = skb_shinfo(skb)->gso_size; 2389 if (mss) { 2390 if (skb->protocol == htons(ETH_P_IP)) { 2391 proto_hdr_len = (skb_transport_offset(skb) + 2392 tcp_hdrlen(skb)); 2393 if (unlikely(proto_hdr_len > len)) { 2394 dev_kfree_skb_any(skb); 2395 return NETDEV_TX_OK; 2396 } 2397 /* need additional TPD ? */ 2398 if (proto_hdr_len != len) 2399 count += (len - proto_hdr_len + 2400 ATL1_MAX_TX_BUF_LEN - 1) / 2401 ATL1_MAX_TX_BUF_LEN; 2402 } 2403 } 2404 2405 if (atl1_tpd_avail(&adapter->tpd_ring) < count) { 2406 /* not enough descriptors */ 2407 netif_stop_queue(netdev); 2408 if (netif_msg_tx_queued(adapter)) 2409 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 2410 "tx busy\n"); 2411 return NETDEV_TX_BUSY; 2412 } 2413 2414 ptpd = ATL1_TPD_DESC(tpd_ring, 2415 (u16) atomic_read(&tpd_ring->next_to_use)); 2416 memset(ptpd, 0, sizeof(struct tx_packet_desc)); 2417 2418 if (skb_vlan_tag_present(skb)) { 2419 vlan_tag = skb_vlan_tag_get(skb); 2420 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) | 2421 ((vlan_tag >> 9) & 0x8); 2422 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT; 2423 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) << 2424 TPD_VLANTAG_SHIFT; 2425 } 2426 2427 tso = atl1_tso(adapter, skb, ptpd); 2428 if (tso < 0) { 2429 dev_kfree_skb_any(skb); 2430 return NETDEV_TX_OK; 2431 } 2432 2433 if (!tso) { 2434 ret_val = atl1_tx_csum(adapter, skb, ptpd); 2435 if (ret_val < 0) { 2436 dev_kfree_skb_any(skb); 2437 return NETDEV_TX_OK; 2438 } 2439 } 2440 2441 atl1_tx_map(adapter, skb, ptpd); 2442 atl1_tx_queue(adapter, count, ptpd); 2443 atl1_update_mailbox(adapter); 2444 mmiowb(); 2445 return NETDEV_TX_OK; 2446 } 2447 2448 static int atl1_rings_clean(struct napi_struct *napi, int budget) 2449 { 2450 struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi); 2451 int work_done = atl1_intr_rx(adapter, budget); 2452 2453 if (atl1_intr_tx(adapter)) 2454 work_done = budget; 2455 2456 /* Let's come again to process some more packets */ 2457 if (work_done >= budget) 2458 return work_done; 2459 2460 napi_complete(napi); 2461 /* re-enable Interrupt */ 2462 if (likely(adapter->int_enabled)) 2463 atlx_imr_set(adapter, IMR_NORMAL_MASK); 2464 return work_done; 2465 } 2466 2467 static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter) 2468 { 2469 if (!napi_schedule_prep(&adapter->napi)) 2470 /* It is possible in case even the RX/TX ints are disabled via IMR 2471 * register the ISR bits are set anyway (but do not produce IRQ). 2472 * To handle such situation the napi functions used to check is 2473 * something scheduled or not. 2474 */ 2475 return 0; 2476 2477 __napi_schedule(&adapter->napi); 2478 2479 /* 2480 * Disable RX/TX ints via IMR register if it is 2481 * allowed. NAPI handler must reenable them in same 2482 * way. 2483 */ 2484 if (!adapter->int_enabled) 2485 return 1; 2486 2487 atlx_imr_set(adapter, IMR_NORXTX_MASK); 2488 return 1; 2489 } 2490 2491 /** 2492 * atl1_intr - Interrupt Handler 2493 * @irq: interrupt number 2494 * @data: pointer to a network interface device structure 2495 */ 2496 static irqreturn_t atl1_intr(int irq, void *data) 2497 { 2498 struct atl1_adapter *adapter = netdev_priv(data); 2499 u32 status; 2500 2501 status = adapter->cmb.cmb->int_stats; 2502 if (!status) 2503 return IRQ_NONE; 2504 2505 /* clear CMB interrupt status at once, 2506 * but leave rx/tx interrupt status in case it should be dropped 2507 * only if rx/tx processing queued. In other case interrupt 2508 * can be lost. 2509 */ 2510 adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX); 2511 2512 if (status & ISR_GPHY) /* clear phy status */ 2513 atlx_clear_phy_int(adapter); 2514 2515 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */ 2516 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR); 2517 2518 /* check if SMB intr */ 2519 if (status & ISR_SMB) 2520 atl1_inc_smb(adapter); 2521 2522 /* check if PCIE PHY Link down */ 2523 if (status & ISR_PHY_LINKDOWN) { 2524 if (netif_msg_intr(adapter)) 2525 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 2526 "pcie phy link down %x\n", status); 2527 if (netif_running(adapter->netdev)) { /* reset MAC */ 2528 atlx_irq_disable(adapter); 2529 schedule_work(&adapter->reset_dev_task); 2530 return IRQ_HANDLED; 2531 } 2532 } 2533 2534 /* check if DMA read/write error ? */ 2535 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) { 2536 if (netif_msg_intr(adapter)) 2537 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 2538 "pcie DMA r/w error (status = 0x%x)\n", 2539 status); 2540 atlx_irq_disable(adapter); 2541 schedule_work(&adapter->reset_dev_task); 2542 return IRQ_HANDLED; 2543 } 2544 2545 /* link event */ 2546 if (status & ISR_GPHY) { 2547 adapter->soft_stats.tx_carrier_errors++; 2548 atl1_check_for_link(adapter); 2549 } 2550 2551 /* transmit or receive event */ 2552 if (status & (ISR_CMB_TX | ISR_CMB_RX) && 2553 atl1_sched_rings_clean(adapter)) 2554 adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats & 2555 ~(ISR_CMB_TX | ISR_CMB_RX); 2556 2557 /* rx exception */ 2558 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN | 2559 ISR_RRD_OV | ISR_HOST_RFD_UNRUN | 2560 ISR_HOST_RRD_OV))) { 2561 if (netif_msg_intr(adapter)) 2562 dev_printk(KERN_DEBUG, 2563 &adapter->pdev->dev, 2564 "rx exception, ISR = 0x%x\n", 2565 status); 2566 atl1_sched_rings_clean(adapter); 2567 } 2568 2569 /* re-enable Interrupt */ 2570 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR); 2571 return IRQ_HANDLED; 2572 } 2573 2574 2575 /** 2576 * atl1_phy_config - Timer Call-back 2577 * @data: pointer to netdev cast into an unsigned long 2578 */ 2579 static void atl1_phy_config(unsigned long data) 2580 { 2581 struct atl1_adapter *adapter = (struct atl1_adapter *)data; 2582 struct atl1_hw *hw = &adapter->hw; 2583 unsigned long flags; 2584 2585 spin_lock_irqsave(&adapter->lock, flags); 2586 adapter->phy_timer_pending = false; 2587 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); 2588 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg); 2589 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN); 2590 spin_unlock_irqrestore(&adapter->lock, flags); 2591 } 2592 2593 /* 2594 * Orphaned vendor comment left intact here: 2595 * <vendor comment> 2596 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT 2597 * will assert. We do soft reset <0x1400=1> according 2598 * with the SPEC. BUT, it seemes that PCIE or DMA 2599 * state-machine will not be reset. DMAR_TO_INT will 2600 * assert again and again. 2601 * </vendor comment> 2602 */ 2603 2604 static int atl1_reset(struct atl1_adapter *adapter) 2605 { 2606 int ret; 2607 ret = atl1_reset_hw(&adapter->hw); 2608 if (ret) 2609 return ret; 2610 return atl1_init_hw(&adapter->hw); 2611 } 2612 2613 static s32 atl1_up(struct atl1_adapter *adapter) 2614 { 2615 struct net_device *netdev = adapter->netdev; 2616 int err; 2617 int irq_flags = 0; 2618 2619 /* hardware has been reset, we need to reload some things */ 2620 atlx_set_multi(netdev); 2621 atl1_init_ring_ptrs(adapter); 2622 atlx_restore_vlan(adapter); 2623 err = atl1_alloc_rx_buffers(adapter); 2624 if (unlikely(!err)) 2625 /* no RX BUFFER allocated */ 2626 return -ENOMEM; 2627 2628 if (unlikely(atl1_configure(adapter))) { 2629 err = -EIO; 2630 goto err_up; 2631 } 2632 2633 err = pci_enable_msi(adapter->pdev); 2634 if (err) { 2635 if (netif_msg_ifup(adapter)) 2636 dev_info(&adapter->pdev->dev, 2637 "Unable to enable MSI: %d\n", err); 2638 irq_flags |= IRQF_SHARED; 2639 } 2640 2641 err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags, 2642 netdev->name, netdev); 2643 if (unlikely(err)) 2644 goto err_up; 2645 2646 napi_enable(&adapter->napi); 2647 atlx_irq_enable(adapter); 2648 atl1_check_link(adapter); 2649 netif_start_queue(netdev); 2650 return 0; 2651 2652 err_up: 2653 pci_disable_msi(adapter->pdev); 2654 /* free rx_buffers */ 2655 atl1_clean_rx_ring(adapter); 2656 return err; 2657 } 2658 2659 static void atl1_down(struct atl1_adapter *adapter) 2660 { 2661 struct net_device *netdev = adapter->netdev; 2662 2663 napi_disable(&adapter->napi); 2664 netif_stop_queue(netdev); 2665 del_timer_sync(&adapter->phy_config_timer); 2666 adapter->phy_timer_pending = false; 2667 2668 atlx_irq_disable(adapter); 2669 free_irq(adapter->pdev->irq, netdev); 2670 pci_disable_msi(adapter->pdev); 2671 atl1_reset_hw(&adapter->hw); 2672 adapter->cmb.cmb->int_stats = 0; 2673 2674 adapter->link_speed = SPEED_0; 2675 adapter->link_duplex = -1; 2676 netif_carrier_off(netdev); 2677 2678 atl1_clean_tx_ring(adapter); 2679 atl1_clean_rx_ring(adapter); 2680 } 2681 2682 static void atl1_reset_dev_task(struct work_struct *work) 2683 { 2684 struct atl1_adapter *adapter = 2685 container_of(work, struct atl1_adapter, reset_dev_task); 2686 struct net_device *netdev = adapter->netdev; 2687 2688 netif_device_detach(netdev); 2689 atl1_down(adapter); 2690 atl1_up(adapter); 2691 netif_device_attach(netdev); 2692 } 2693 2694 /** 2695 * atl1_change_mtu - Change the Maximum Transfer Unit 2696 * @netdev: network interface device structure 2697 * @new_mtu: new value for maximum frame size 2698 * 2699 * Returns 0 on success, negative on failure 2700 */ 2701 static int atl1_change_mtu(struct net_device *netdev, int new_mtu) 2702 { 2703 struct atl1_adapter *adapter = netdev_priv(netdev); 2704 int old_mtu = netdev->mtu; 2705 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2706 2707 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || 2708 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 2709 if (netif_msg_link(adapter)) 2710 dev_warn(&adapter->pdev->dev, "invalid MTU setting\n"); 2711 return -EINVAL; 2712 } 2713 2714 adapter->hw.max_frame_size = max_frame; 2715 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3; 2716 adapter->rx_buffer_len = (max_frame + 7) & ~7; 2717 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8; 2718 2719 netdev->mtu = new_mtu; 2720 if ((old_mtu != new_mtu) && netif_running(netdev)) { 2721 atl1_down(adapter); 2722 atl1_up(adapter); 2723 } 2724 2725 return 0; 2726 } 2727 2728 /** 2729 * atl1_open - Called when a network interface is made active 2730 * @netdev: network interface device structure 2731 * 2732 * Returns 0 on success, negative value on failure 2733 * 2734 * The open entry point is called when a network interface is made 2735 * active by the system (IFF_UP). At this point all resources needed 2736 * for transmit and receive operations are allocated, the interrupt 2737 * handler is registered with the OS, the watchdog timer is started, 2738 * and the stack is notified that the interface is ready. 2739 */ 2740 static int atl1_open(struct net_device *netdev) 2741 { 2742 struct atl1_adapter *adapter = netdev_priv(netdev); 2743 int err; 2744 2745 netif_carrier_off(netdev); 2746 2747 /* allocate transmit descriptors */ 2748 err = atl1_setup_ring_resources(adapter); 2749 if (err) 2750 return err; 2751 2752 err = atl1_up(adapter); 2753 if (err) 2754 goto err_up; 2755 2756 return 0; 2757 2758 err_up: 2759 atl1_reset(adapter); 2760 return err; 2761 } 2762 2763 /** 2764 * atl1_close - Disables a network interface 2765 * @netdev: network interface device structure 2766 * 2767 * Returns 0, this is not allowed to fail 2768 * 2769 * The close entry point is called when an interface is de-activated 2770 * by the OS. The hardware is still under the drivers control, but 2771 * needs to be disabled. A global MAC reset is issued to stop the 2772 * hardware, and all transmit and receive resources are freed. 2773 */ 2774 static int atl1_close(struct net_device *netdev) 2775 { 2776 struct atl1_adapter *adapter = netdev_priv(netdev); 2777 atl1_down(adapter); 2778 atl1_free_ring_resources(adapter); 2779 return 0; 2780 } 2781 2782 #ifdef CONFIG_PM_SLEEP 2783 static int atl1_suspend(struct device *dev) 2784 { 2785 struct pci_dev *pdev = to_pci_dev(dev); 2786 struct net_device *netdev = pci_get_drvdata(pdev); 2787 struct atl1_adapter *adapter = netdev_priv(netdev); 2788 struct atl1_hw *hw = &adapter->hw; 2789 u32 ctrl = 0; 2790 u32 wufc = adapter->wol; 2791 u32 val; 2792 u16 speed; 2793 u16 duplex; 2794 2795 netif_device_detach(netdev); 2796 if (netif_running(netdev)) 2797 atl1_down(adapter); 2798 2799 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl); 2800 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl); 2801 val = ctrl & BMSR_LSTATUS; 2802 if (val) 2803 wufc &= ~ATLX_WUFC_LNKC; 2804 if (!wufc) 2805 goto disable_wol; 2806 2807 if (val) { 2808 val = atl1_get_speed_and_duplex(hw, &speed, &duplex); 2809 if (val) { 2810 if (netif_msg_ifdown(adapter)) 2811 dev_printk(KERN_DEBUG, &pdev->dev, 2812 "error getting speed/duplex\n"); 2813 goto disable_wol; 2814 } 2815 2816 ctrl = 0; 2817 2818 /* enable magic packet WOL */ 2819 if (wufc & ATLX_WUFC_MAG) 2820 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN); 2821 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL); 2822 ioread32(hw->hw_addr + REG_WOL_CTRL); 2823 2824 /* configure the mac */ 2825 ctrl = MAC_CTRL_RX_EN; 2826 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 : 2827 MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT); 2828 if (duplex == FULL_DUPLEX) 2829 ctrl |= MAC_CTRL_DUPLX; 2830 ctrl |= (((u32)adapter->hw.preamble_len & 2831 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); 2832 __atlx_vlan_mode(netdev->features, &ctrl); 2833 if (wufc & ATLX_WUFC_MAG) 2834 ctrl |= MAC_CTRL_BC_EN; 2835 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL); 2836 ioread32(hw->hw_addr + REG_MAC_CTRL); 2837 2838 /* poke the PHY */ 2839 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC); 2840 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 2841 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC); 2842 ioread32(hw->hw_addr + REG_PCIE_PHYMISC); 2843 } else { 2844 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN); 2845 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL); 2846 ioread32(hw->hw_addr + REG_WOL_CTRL); 2847 iowrite32(0, hw->hw_addr + REG_MAC_CTRL); 2848 ioread32(hw->hw_addr + REG_MAC_CTRL); 2849 hw->phy_configured = false; 2850 } 2851 2852 return 0; 2853 2854 disable_wol: 2855 iowrite32(0, hw->hw_addr + REG_WOL_CTRL); 2856 ioread32(hw->hw_addr + REG_WOL_CTRL); 2857 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC); 2858 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 2859 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC); 2860 ioread32(hw->hw_addr + REG_PCIE_PHYMISC); 2861 hw->phy_configured = false; 2862 2863 return 0; 2864 } 2865 2866 static int atl1_resume(struct device *dev) 2867 { 2868 struct pci_dev *pdev = to_pci_dev(dev); 2869 struct net_device *netdev = pci_get_drvdata(pdev); 2870 struct atl1_adapter *adapter = netdev_priv(netdev); 2871 2872 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL); 2873 2874 atl1_reset_hw(&adapter->hw); 2875 2876 if (netif_running(netdev)) { 2877 adapter->cmb.cmb->int_stats = 0; 2878 atl1_up(adapter); 2879 } 2880 netif_device_attach(netdev); 2881 2882 return 0; 2883 } 2884 #endif 2885 2886 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume); 2887 2888 static void atl1_shutdown(struct pci_dev *pdev) 2889 { 2890 struct net_device *netdev = pci_get_drvdata(pdev); 2891 struct atl1_adapter *adapter = netdev_priv(netdev); 2892 2893 #ifdef CONFIG_PM_SLEEP 2894 atl1_suspend(&pdev->dev); 2895 #endif 2896 pci_wake_from_d3(pdev, adapter->wol); 2897 pci_set_power_state(pdev, PCI_D3hot); 2898 } 2899 2900 #ifdef CONFIG_NET_POLL_CONTROLLER 2901 static void atl1_poll_controller(struct net_device *netdev) 2902 { 2903 disable_irq(netdev->irq); 2904 atl1_intr(netdev->irq, netdev); 2905 enable_irq(netdev->irq); 2906 } 2907 #endif 2908 2909 static const struct net_device_ops atl1_netdev_ops = { 2910 .ndo_open = atl1_open, 2911 .ndo_stop = atl1_close, 2912 .ndo_start_xmit = atl1_xmit_frame, 2913 .ndo_set_rx_mode = atlx_set_multi, 2914 .ndo_validate_addr = eth_validate_addr, 2915 .ndo_set_mac_address = atl1_set_mac, 2916 .ndo_change_mtu = atl1_change_mtu, 2917 .ndo_fix_features = atlx_fix_features, 2918 .ndo_set_features = atlx_set_features, 2919 .ndo_do_ioctl = atlx_ioctl, 2920 .ndo_tx_timeout = atlx_tx_timeout, 2921 #ifdef CONFIG_NET_POLL_CONTROLLER 2922 .ndo_poll_controller = atl1_poll_controller, 2923 #endif 2924 }; 2925 2926 /** 2927 * atl1_probe - Device Initialization Routine 2928 * @pdev: PCI device information struct 2929 * @ent: entry in atl1_pci_tbl 2930 * 2931 * Returns 0 on success, negative on failure 2932 * 2933 * atl1_probe initializes an adapter identified by a pci_dev structure. 2934 * The OS initialization, configuring of the adapter private structure, 2935 * and a hardware reset occur. 2936 */ 2937 static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2938 { 2939 struct net_device *netdev; 2940 struct atl1_adapter *adapter; 2941 static int cards_found = 0; 2942 int err; 2943 2944 err = pci_enable_device(pdev); 2945 if (err) 2946 return err; 2947 2948 /* 2949 * The atl1 chip can DMA to 64-bit addresses, but it uses a single 2950 * shared register for the high 32 bits, so only a single, aligned, 2951 * 4 GB physical address range can be used at a time. 2952 * 2953 * Supporting 64-bit DMA on this hardware is more trouble than it's 2954 * worth. It is far easier to limit to 32-bit DMA than update 2955 * various kernel subsystems to support the mechanics required by a 2956 * fixed-high-32-bit system. 2957 */ 2958 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2959 if (err) { 2960 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2961 goto err_dma; 2962 } 2963 /* 2964 * Mark all PCI regions associated with PCI device 2965 * pdev as being reserved by owner atl1_driver_name 2966 */ 2967 err = pci_request_regions(pdev, ATLX_DRIVER_NAME); 2968 if (err) 2969 goto err_request_regions; 2970 2971 /* 2972 * Enables bus-mastering on the device and calls 2973 * pcibios_set_master to do the needed arch specific settings 2974 */ 2975 pci_set_master(pdev); 2976 2977 netdev = alloc_etherdev(sizeof(struct atl1_adapter)); 2978 if (!netdev) { 2979 err = -ENOMEM; 2980 goto err_alloc_etherdev; 2981 } 2982 SET_NETDEV_DEV(netdev, &pdev->dev); 2983 2984 pci_set_drvdata(pdev, netdev); 2985 adapter = netdev_priv(netdev); 2986 adapter->netdev = netdev; 2987 adapter->pdev = pdev; 2988 adapter->hw.back = adapter; 2989 adapter->msg_enable = netif_msg_init(debug, atl1_default_msg); 2990 2991 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0); 2992 if (!adapter->hw.hw_addr) { 2993 err = -EIO; 2994 goto err_pci_iomap; 2995 } 2996 /* get device revision number */ 2997 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr + 2998 (REG_MASTER_CTRL + 2)); 2999 if (netif_msg_probe(adapter)) 3000 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION); 3001 3002 /* set default ring resource counts */ 3003 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD; 3004 adapter->tpd_ring.count = ATL1_DEFAULT_TPD; 3005 3006 adapter->mii.dev = netdev; 3007 adapter->mii.mdio_read = mdio_read; 3008 adapter->mii.mdio_write = mdio_write; 3009 adapter->mii.phy_id_mask = 0x1f; 3010 adapter->mii.reg_num_mask = 0x1f; 3011 3012 netdev->netdev_ops = &atl1_netdev_ops; 3013 netdev->watchdog_timeo = 5 * HZ; 3014 netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64); 3015 3016 netdev->ethtool_ops = &atl1_ethtool_ops; 3017 adapter->bd_number = cards_found; 3018 3019 /* setup the private structure */ 3020 err = atl1_sw_init(adapter); 3021 if (err) 3022 goto err_common; 3023 3024 netdev->features = NETIF_F_HW_CSUM; 3025 netdev->features |= NETIF_F_SG; 3026 netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX); 3027 3028 netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO | 3029 NETIF_F_HW_VLAN_CTAG_RX; 3030 3031 /* is this valid? see atl1_setup_mac_ctrl() */ 3032 netdev->features |= NETIF_F_RXCSUM; 3033 3034 /* 3035 * patch for some L1 of old version, 3036 * the final version of L1 may not need these 3037 * patches 3038 */ 3039 /* atl1_pcie_patch(adapter); */ 3040 3041 /* really reset GPHY core */ 3042 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE); 3043 3044 /* 3045 * reset the controller to 3046 * put the device in a known good starting state 3047 */ 3048 if (atl1_reset_hw(&adapter->hw)) { 3049 err = -EIO; 3050 goto err_common; 3051 } 3052 3053 /* copy the MAC address out of the EEPROM */ 3054 if (atl1_read_mac_addr(&adapter->hw)) { 3055 /* mark random mac */ 3056 netdev->addr_assign_type = NET_ADDR_RANDOM; 3057 } 3058 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); 3059 3060 if (!is_valid_ether_addr(netdev->dev_addr)) { 3061 err = -EIO; 3062 goto err_common; 3063 } 3064 3065 atl1_check_options(adapter); 3066 3067 /* pre-init the MAC, and setup link */ 3068 err = atl1_init_hw(&adapter->hw); 3069 if (err) { 3070 err = -EIO; 3071 goto err_common; 3072 } 3073 3074 atl1_pcie_patch(adapter); 3075 /* assume we have no link for now */ 3076 netif_carrier_off(netdev); 3077 3078 setup_timer(&adapter->phy_config_timer, atl1_phy_config, 3079 (unsigned long)adapter); 3080 adapter->phy_timer_pending = false; 3081 3082 INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task); 3083 3084 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task); 3085 3086 err = register_netdev(netdev); 3087 if (err) 3088 goto err_common; 3089 3090 cards_found++; 3091 atl1_via_workaround(adapter); 3092 return 0; 3093 3094 err_common: 3095 pci_iounmap(pdev, adapter->hw.hw_addr); 3096 err_pci_iomap: 3097 free_netdev(netdev); 3098 err_alloc_etherdev: 3099 pci_release_regions(pdev); 3100 err_dma: 3101 err_request_regions: 3102 pci_disable_device(pdev); 3103 return err; 3104 } 3105 3106 /** 3107 * atl1_remove - Device Removal Routine 3108 * @pdev: PCI device information struct 3109 * 3110 * atl1_remove is called by the PCI subsystem to alert the driver 3111 * that it should release a PCI device. The could be caused by a 3112 * Hot-Plug event, or because the driver is going to be removed from 3113 * memory. 3114 */ 3115 static void atl1_remove(struct pci_dev *pdev) 3116 { 3117 struct net_device *netdev = pci_get_drvdata(pdev); 3118 struct atl1_adapter *adapter; 3119 /* Device not available. Return. */ 3120 if (!netdev) 3121 return; 3122 3123 adapter = netdev_priv(netdev); 3124 3125 /* 3126 * Some atl1 boards lack persistent storage for their MAC, and get it 3127 * from the BIOS during POST. If we've been messing with the MAC 3128 * address, we need to save the permanent one. 3129 */ 3130 if (!ether_addr_equal_unaligned(adapter->hw.mac_addr, 3131 adapter->hw.perm_mac_addr)) { 3132 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, 3133 ETH_ALEN); 3134 atl1_set_mac_addr(&adapter->hw); 3135 } 3136 3137 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE); 3138 unregister_netdev(netdev); 3139 pci_iounmap(pdev, adapter->hw.hw_addr); 3140 pci_release_regions(pdev); 3141 free_netdev(netdev); 3142 pci_disable_device(pdev); 3143 } 3144 3145 static struct pci_driver atl1_driver = { 3146 .name = ATLX_DRIVER_NAME, 3147 .id_table = atl1_pci_tbl, 3148 .probe = atl1_probe, 3149 .remove = atl1_remove, 3150 .shutdown = atl1_shutdown, 3151 .driver.pm = &atl1_pm_ops, 3152 }; 3153 3154 struct atl1_stats { 3155 char stat_string[ETH_GSTRING_LEN]; 3156 int sizeof_stat; 3157 int stat_offset; 3158 }; 3159 3160 #define ATL1_STAT(m) \ 3161 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m) 3162 3163 static struct atl1_stats atl1_gstrings_stats[] = { 3164 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)}, 3165 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)}, 3166 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)}, 3167 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)}, 3168 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)}, 3169 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)}, 3170 {"multicast", ATL1_STAT(soft_stats.multicast)}, 3171 {"collisions", ATL1_STAT(soft_stats.collisions)}, 3172 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)}, 3173 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)}, 3174 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)}, 3175 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)}, 3176 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)}, 3177 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)}, 3178 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)}, 3179 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)}, 3180 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)}, 3181 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)}, 3182 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)}, 3183 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)}, 3184 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)}, 3185 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)}, 3186 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)}, 3187 {"tx_underun", ATL1_STAT(soft_stats.tx_underun)}, 3188 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)}, 3189 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)}, 3190 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)}, 3191 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)}, 3192 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)} 3193 }; 3194 3195 static void atl1_get_ethtool_stats(struct net_device *netdev, 3196 struct ethtool_stats *stats, u64 *data) 3197 { 3198 struct atl1_adapter *adapter = netdev_priv(netdev); 3199 int i; 3200 char *p; 3201 3202 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) { 3203 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset; 3204 data[i] = (atl1_gstrings_stats[i].sizeof_stat == 3205 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 3206 } 3207 3208 } 3209 3210 static int atl1_get_sset_count(struct net_device *netdev, int sset) 3211 { 3212 switch (sset) { 3213 case ETH_SS_STATS: 3214 return ARRAY_SIZE(atl1_gstrings_stats); 3215 default: 3216 return -EOPNOTSUPP; 3217 } 3218 } 3219 3220 static int atl1_get_settings(struct net_device *netdev, 3221 struct ethtool_cmd *ecmd) 3222 { 3223 struct atl1_adapter *adapter = netdev_priv(netdev); 3224 struct atl1_hw *hw = &adapter->hw; 3225 3226 ecmd->supported = (SUPPORTED_10baseT_Half | 3227 SUPPORTED_10baseT_Full | 3228 SUPPORTED_100baseT_Half | 3229 SUPPORTED_100baseT_Full | 3230 SUPPORTED_1000baseT_Full | 3231 SUPPORTED_Autoneg | SUPPORTED_TP); 3232 ecmd->advertising = ADVERTISED_TP; 3233 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3234 hw->media_type == MEDIA_TYPE_1000M_FULL) { 3235 ecmd->advertising |= ADVERTISED_Autoneg; 3236 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) { 3237 ecmd->advertising |= ADVERTISED_Autoneg; 3238 ecmd->advertising |= 3239 (ADVERTISED_10baseT_Half | 3240 ADVERTISED_10baseT_Full | 3241 ADVERTISED_100baseT_Half | 3242 ADVERTISED_100baseT_Full | 3243 ADVERTISED_1000baseT_Full); 3244 } else 3245 ecmd->advertising |= (ADVERTISED_1000baseT_Full); 3246 } 3247 ecmd->port = PORT_TP; 3248 ecmd->phy_address = 0; 3249 ecmd->transceiver = XCVR_INTERNAL; 3250 3251 if (netif_carrier_ok(adapter->netdev)) { 3252 u16 link_speed, link_duplex; 3253 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex); 3254 ethtool_cmd_speed_set(ecmd, link_speed); 3255 if (link_duplex == FULL_DUPLEX) 3256 ecmd->duplex = DUPLEX_FULL; 3257 else 3258 ecmd->duplex = DUPLEX_HALF; 3259 } else { 3260 ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN); 3261 ecmd->duplex = DUPLEX_UNKNOWN; 3262 } 3263 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3264 hw->media_type == MEDIA_TYPE_1000M_FULL) 3265 ecmd->autoneg = AUTONEG_ENABLE; 3266 else 3267 ecmd->autoneg = AUTONEG_DISABLE; 3268 3269 return 0; 3270 } 3271 3272 static int atl1_set_settings(struct net_device *netdev, 3273 struct ethtool_cmd *ecmd) 3274 { 3275 struct atl1_adapter *adapter = netdev_priv(netdev); 3276 struct atl1_hw *hw = &adapter->hw; 3277 u16 phy_data; 3278 int ret_val = 0; 3279 u16 old_media_type = hw->media_type; 3280 3281 if (netif_running(adapter->netdev)) { 3282 if (netif_msg_link(adapter)) 3283 dev_dbg(&adapter->pdev->dev, 3284 "ethtool shutting down adapter\n"); 3285 atl1_down(adapter); 3286 } 3287 3288 if (ecmd->autoneg == AUTONEG_ENABLE) 3289 hw->media_type = MEDIA_TYPE_AUTO_SENSOR; 3290 else { 3291 u32 speed = ethtool_cmd_speed(ecmd); 3292 if (speed == SPEED_1000) { 3293 if (ecmd->duplex != DUPLEX_FULL) { 3294 if (netif_msg_link(adapter)) 3295 dev_warn(&adapter->pdev->dev, 3296 "1000M half is invalid\n"); 3297 ret_val = -EINVAL; 3298 goto exit_sset; 3299 } 3300 hw->media_type = MEDIA_TYPE_1000M_FULL; 3301 } else if (speed == SPEED_100) { 3302 if (ecmd->duplex == DUPLEX_FULL) 3303 hw->media_type = MEDIA_TYPE_100M_FULL; 3304 else 3305 hw->media_type = MEDIA_TYPE_100M_HALF; 3306 } else { 3307 if (ecmd->duplex == DUPLEX_FULL) 3308 hw->media_type = MEDIA_TYPE_10M_FULL; 3309 else 3310 hw->media_type = MEDIA_TYPE_10M_HALF; 3311 } 3312 } 3313 switch (hw->media_type) { 3314 case MEDIA_TYPE_AUTO_SENSOR: 3315 ecmd->advertising = 3316 ADVERTISED_10baseT_Half | 3317 ADVERTISED_10baseT_Full | 3318 ADVERTISED_100baseT_Half | 3319 ADVERTISED_100baseT_Full | 3320 ADVERTISED_1000baseT_Full | 3321 ADVERTISED_Autoneg | ADVERTISED_TP; 3322 break; 3323 case MEDIA_TYPE_1000M_FULL: 3324 ecmd->advertising = 3325 ADVERTISED_1000baseT_Full | 3326 ADVERTISED_Autoneg | ADVERTISED_TP; 3327 break; 3328 default: 3329 ecmd->advertising = 0; 3330 break; 3331 } 3332 if (atl1_phy_setup_autoneg_adv(hw)) { 3333 ret_val = -EINVAL; 3334 if (netif_msg_link(adapter)) 3335 dev_warn(&adapter->pdev->dev, 3336 "invalid ethtool speed/duplex setting\n"); 3337 goto exit_sset; 3338 } 3339 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3340 hw->media_type == MEDIA_TYPE_1000M_FULL) 3341 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN; 3342 else { 3343 switch (hw->media_type) { 3344 case MEDIA_TYPE_100M_FULL: 3345 phy_data = 3346 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | 3347 MII_CR_RESET; 3348 break; 3349 case MEDIA_TYPE_100M_HALF: 3350 phy_data = MII_CR_SPEED_100 | MII_CR_RESET; 3351 break; 3352 case MEDIA_TYPE_10M_FULL: 3353 phy_data = 3354 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; 3355 break; 3356 default: 3357 /* MEDIA_TYPE_10M_HALF: */ 3358 phy_data = MII_CR_SPEED_10 | MII_CR_RESET; 3359 break; 3360 } 3361 } 3362 atl1_write_phy_reg(hw, MII_BMCR, phy_data); 3363 exit_sset: 3364 if (ret_val) 3365 hw->media_type = old_media_type; 3366 3367 if (netif_running(adapter->netdev)) { 3368 if (netif_msg_link(adapter)) 3369 dev_dbg(&adapter->pdev->dev, 3370 "ethtool starting adapter\n"); 3371 atl1_up(adapter); 3372 } else if (!ret_val) { 3373 if (netif_msg_link(adapter)) 3374 dev_dbg(&adapter->pdev->dev, 3375 "ethtool resetting adapter\n"); 3376 atl1_reset(adapter); 3377 } 3378 return ret_val; 3379 } 3380 3381 static void atl1_get_drvinfo(struct net_device *netdev, 3382 struct ethtool_drvinfo *drvinfo) 3383 { 3384 struct atl1_adapter *adapter = netdev_priv(netdev); 3385 3386 strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver)); 3387 strlcpy(drvinfo->version, ATLX_DRIVER_VERSION, 3388 sizeof(drvinfo->version)); 3389 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 3390 sizeof(drvinfo->bus_info)); 3391 } 3392 3393 static void atl1_get_wol(struct net_device *netdev, 3394 struct ethtool_wolinfo *wol) 3395 { 3396 struct atl1_adapter *adapter = netdev_priv(netdev); 3397 3398 wol->supported = WAKE_MAGIC; 3399 wol->wolopts = 0; 3400 if (adapter->wol & ATLX_WUFC_MAG) 3401 wol->wolopts |= WAKE_MAGIC; 3402 } 3403 3404 static int atl1_set_wol(struct net_device *netdev, 3405 struct ethtool_wolinfo *wol) 3406 { 3407 struct atl1_adapter *adapter = netdev_priv(netdev); 3408 3409 if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 3410 WAKE_ARP | WAKE_MAGICSECURE)) 3411 return -EOPNOTSUPP; 3412 adapter->wol = 0; 3413 if (wol->wolopts & WAKE_MAGIC) 3414 adapter->wol |= ATLX_WUFC_MAG; 3415 3416 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 3417 3418 return 0; 3419 } 3420 3421 static u32 atl1_get_msglevel(struct net_device *netdev) 3422 { 3423 struct atl1_adapter *adapter = netdev_priv(netdev); 3424 return adapter->msg_enable; 3425 } 3426 3427 static void atl1_set_msglevel(struct net_device *netdev, u32 value) 3428 { 3429 struct atl1_adapter *adapter = netdev_priv(netdev); 3430 adapter->msg_enable = value; 3431 } 3432 3433 static int atl1_get_regs_len(struct net_device *netdev) 3434 { 3435 return ATL1_REG_COUNT * sizeof(u32); 3436 } 3437 3438 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs, 3439 void *p) 3440 { 3441 struct atl1_adapter *adapter = netdev_priv(netdev); 3442 struct atl1_hw *hw = &adapter->hw; 3443 unsigned int i; 3444 u32 *regbuf = p; 3445 3446 for (i = 0; i < ATL1_REG_COUNT; i++) { 3447 /* 3448 * This switch statement avoids reserved regions 3449 * of register space. 3450 */ 3451 switch (i) { 3452 case 6 ... 9: 3453 case 14: 3454 case 29 ... 31: 3455 case 34 ... 63: 3456 case 75 ... 127: 3457 case 136 ... 1023: 3458 case 1027 ... 1087: 3459 case 1091 ... 1151: 3460 case 1194 ... 1195: 3461 case 1200 ... 1201: 3462 case 1206 ... 1213: 3463 case 1216 ... 1279: 3464 case 1290 ... 1311: 3465 case 1323 ... 1343: 3466 case 1358 ... 1359: 3467 case 1368 ... 1375: 3468 case 1378 ... 1383: 3469 case 1388 ... 1391: 3470 case 1393 ... 1395: 3471 case 1402 ... 1403: 3472 case 1410 ... 1471: 3473 case 1522 ... 1535: 3474 /* reserved region; don't read it */ 3475 regbuf[i] = 0; 3476 break; 3477 default: 3478 /* unreserved region */ 3479 regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32))); 3480 } 3481 } 3482 } 3483 3484 static void atl1_get_ringparam(struct net_device *netdev, 3485 struct ethtool_ringparam *ring) 3486 { 3487 struct atl1_adapter *adapter = netdev_priv(netdev); 3488 struct atl1_tpd_ring *txdr = &adapter->tpd_ring; 3489 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring; 3490 3491 ring->rx_max_pending = ATL1_MAX_RFD; 3492 ring->tx_max_pending = ATL1_MAX_TPD; 3493 ring->rx_pending = rxdr->count; 3494 ring->tx_pending = txdr->count; 3495 } 3496 3497 static int atl1_set_ringparam(struct net_device *netdev, 3498 struct ethtool_ringparam *ring) 3499 { 3500 struct atl1_adapter *adapter = netdev_priv(netdev); 3501 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring; 3502 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring; 3503 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring; 3504 3505 struct atl1_tpd_ring tpd_old, tpd_new; 3506 struct atl1_rfd_ring rfd_old, rfd_new; 3507 struct atl1_rrd_ring rrd_old, rrd_new; 3508 struct atl1_ring_header rhdr_old, rhdr_new; 3509 struct atl1_smb smb; 3510 struct atl1_cmb cmb; 3511 int err; 3512 3513 tpd_old = adapter->tpd_ring; 3514 rfd_old = adapter->rfd_ring; 3515 rrd_old = adapter->rrd_ring; 3516 rhdr_old = adapter->ring_header; 3517 3518 if (netif_running(adapter->netdev)) 3519 atl1_down(adapter); 3520 3521 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD); 3522 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD : 3523 rfdr->count; 3524 rfdr->count = (rfdr->count + 3) & ~3; 3525 rrdr->count = rfdr->count; 3526 3527 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD); 3528 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD : 3529 tpdr->count; 3530 tpdr->count = (tpdr->count + 3) & ~3; 3531 3532 if (netif_running(adapter->netdev)) { 3533 /* try to get new resources before deleting old */ 3534 err = atl1_setup_ring_resources(adapter); 3535 if (err) 3536 goto err_setup_ring; 3537 3538 /* 3539 * save the new, restore the old in order to free it, 3540 * then restore the new back again 3541 */ 3542 3543 rfd_new = adapter->rfd_ring; 3544 rrd_new = adapter->rrd_ring; 3545 tpd_new = adapter->tpd_ring; 3546 rhdr_new = adapter->ring_header; 3547 adapter->rfd_ring = rfd_old; 3548 adapter->rrd_ring = rrd_old; 3549 adapter->tpd_ring = tpd_old; 3550 adapter->ring_header = rhdr_old; 3551 /* 3552 * Save SMB and CMB, since atl1_free_ring_resources 3553 * will clear them. 3554 */ 3555 smb = adapter->smb; 3556 cmb = adapter->cmb; 3557 atl1_free_ring_resources(adapter); 3558 adapter->rfd_ring = rfd_new; 3559 adapter->rrd_ring = rrd_new; 3560 adapter->tpd_ring = tpd_new; 3561 adapter->ring_header = rhdr_new; 3562 adapter->smb = smb; 3563 adapter->cmb = cmb; 3564 3565 err = atl1_up(adapter); 3566 if (err) 3567 return err; 3568 } 3569 return 0; 3570 3571 err_setup_ring: 3572 adapter->rfd_ring = rfd_old; 3573 adapter->rrd_ring = rrd_old; 3574 adapter->tpd_ring = tpd_old; 3575 adapter->ring_header = rhdr_old; 3576 atl1_up(adapter); 3577 return err; 3578 } 3579 3580 static void atl1_get_pauseparam(struct net_device *netdev, 3581 struct ethtool_pauseparam *epause) 3582 { 3583 struct atl1_adapter *adapter = netdev_priv(netdev); 3584 struct atl1_hw *hw = &adapter->hw; 3585 3586 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3587 hw->media_type == MEDIA_TYPE_1000M_FULL) { 3588 epause->autoneg = AUTONEG_ENABLE; 3589 } else { 3590 epause->autoneg = AUTONEG_DISABLE; 3591 } 3592 epause->rx_pause = 1; 3593 epause->tx_pause = 1; 3594 } 3595 3596 static int atl1_set_pauseparam(struct net_device *netdev, 3597 struct ethtool_pauseparam *epause) 3598 { 3599 struct atl1_adapter *adapter = netdev_priv(netdev); 3600 struct atl1_hw *hw = &adapter->hw; 3601 3602 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3603 hw->media_type == MEDIA_TYPE_1000M_FULL) { 3604 epause->autoneg = AUTONEG_ENABLE; 3605 } else { 3606 epause->autoneg = AUTONEG_DISABLE; 3607 } 3608 3609 epause->rx_pause = 1; 3610 epause->tx_pause = 1; 3611 3612 return 0; 3613 } 3614 3615 static void atl1_get_strings(struct net_device *netdev, u32 stringset, 3616 u8 *data) 3617 { 3618 u8 *p = data; 3619 int i; 3620 3621 switch (stringset) { 3622 case ETH_SS_STATS: 3623 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) { 3624 memcpy(p, atl1_gstrings_stats[i].stat_string, 3625 ETH_GSTRING_LEN); 3626 p += ETH_GSTRING_LEN; 3627 } 3628 break; 3629 } 3630 } 3631 3632 static int atl1_nway_reset(struct net_device *netdev) 3633 { 3634 struct atl1_adapter *adapter = netdev_priv(netdev); 3635 struct atl1_hw *hw = &adapter->hw; 3636 3637 if (netif_running(netdev)) { 3638 u16 phy_data; 3639 atl1_down(adapter); 3640 3641 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3642 hw->media_type == MEDIA_TYPE_1000M_FULL) { 3643 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN; 3644 } else { 3645 switch (hw->media_type) { 3646 case MEDIA_TYPE_100M_FULL: 3647 phy_data = MII_CR_FULL_DUPLEX | 3648 MII_CR_SPEED_100 | MII_CR_RESET; 3649 break; 3650 case MEDIA_TYPE_100M_HALF: 3651 phy_data = MII_CR_SPEED_100 | MII_CR_RESET; 3652 break; 3653 case MEDIA_TYPE_10M_FULL: 3654 phy_data = MII_CR_FULL_DUPLEX | 3655 MII_CR_SPEED_10 | MII_CR_RESET; 3656 break; 3657 default: 3658 /* MEDIA_TYPE_10M_HALF */ 3659 phy_data = MII_CR_SPEED_10 | MII_CR_RESET; 3660 } 3661 } 3662 atl1_write_phy_reg(hw, MII_BMCR, phy_data); 3663 atl1_up(adapter); 3664 } 3665 return 0; 3666 } 3667 3668 static const struct ethtool_ops atl1_ethtool_ops = { 3669 .get_settings = atl1_get_settings, 3670 .set_settings = atl1_set_settings, 3671 .get_drvinfo = atl1_get_drvinfo, 3672 .get_wol = atl1_get_wol, 3673 .set_wol = atl1_set_wol, 3674 .get_msglevel = atl1_get_msglevel, 3675 .set_msglevel = atl1_set_msglevel, 3676 .get_regs_len = atl1_get_regs_len, 3677 .get_regs = atl1_get_regs, 3678 .get_ringparam = atl1_get_ringparam, 3679 .set_ringparam = atl1_set_ringparam, 3680 .get_pauseparam = atl1_get_pauseparam, 3681 .set_pauseparam = atl1_set_pauseparam, 3682 .get_link = ethtool_op_get_link, 3683 .get_strings = atl1_get_strings, 3684 .nway_reset = atl1_nway_reset, 3685 .get_ethtool_stats = atl1_get_ethtool_stats, 3686 .get_sset_count = atl1_get_sset_count, 3687 }; 3688 3689 module_pci_driver(atl1_driver); 3690