1 /* 2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved. 3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com> 4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com> 5 * 6 * Derived from Intel e1000 driver 7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the Free 11 * Software Foundation; either version 2 of the License, or (at your option) 12 * any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but WITHOUT 15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 17 * more details. 18 * 19 * You should have received a copy of the GNU General Public License along with 20 * this program; if not, write to the Free Software Foundation, Inc., 59 21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 22 * 23 * The full GNU General Public License is included in this distribution in the 24 * file called COPYING. 25 * 26 * Contact Information: 27 * Xiong Huang <xiong.huang@atheros.com> 28 * Jie Yang <jie.yang@atheros.com> 29 * Chris Snook <csnook@redhat.com> 30 * Jay Cliburn <jcliburn@gmail.com> 31 * 32 * This version is adapted from the Attansic reference driver. 33 * 34 * TODO: 35 * Add more ethtool functions. 36 * Fix abstruse irq enable/disable condition described here: 37 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2 38 * 39 * NEEDS TESTING: 40 * VLAN 41 * multicast 42 * promiscuous mode 43 * interrupt coalescing 44 * SMP torture testing 45 */ 46 47 #include <linux/atomic.h> 48 #include <asm/byteorder.h> 49 50 #include <linux/compiler.h> 51 #include <linux/crc32.h> 52 #include <linux/delay.h> 53 #include <linux/dma-mapping.h> 54 #include <linux/etherdevice.h> 55 #include <linux/hardirq.h> 56 #include <linux/if_ether.h> 57 #include <linux/if_vlan.h> 58 #include <linux/in.h> 59 #include <linux/interrupt.h> 60 #include <linux/ip.h> 61 #include <linux/irqflags.h> 62 #include <linux/irqreturn.h> 63 #include <linux/jiffies.h> 64 #include <linux/mii.h> 65 #include <linux/module.h> 66 #include <linux/moduleparam.h> 67 #include <linux/net.h> 68 #include <linux/netdevice.h> 69 #include <linux/pci.h> 70 #include <linux/pci_ids.h> 71 #include <linux/pm.h> 72 #include <linux/skbuff.h> 73 #include <linux/slab.h> 74 #include <linux/spinlock.h> 75 #include <linux/string.h> 76 #include <linux/tcp.h> 77 #include <linux/timer.h> 78 #include <linux/types.h> 79 #include <linux/workqueue.h> 80 81 #include <net/checksum.h> 82 83 #include "atl1.h" 84 85 #define ATLX_DRIVER_VERSION "2.1.3" 86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, " 87 "Chris Snook <csnook@redhat.com>, " 88 "Jay Cliburn <jcliburn@gmail.com>"); 89 MODULE_LICENSE("GPL"); 90 MODULE_VERSION(ATLX_DRIVER_VERSION); 91 92 /* Temporary hack for merging atl1 and atl2 */ 93 #include "atlx.c" 94 95 static const struct ethtool_ops atl1_ethtool_ops; 96 97 /* 98 * This is the only thing that needs to be changed to adjust the 99 * maximum number of ports that the driver can manage. 100 */ 101 #define ATL1_MAX_NIC 4 102 103 #define OPTION_UNSET -1 104 #define OPTION_DISABLED 0 105 #define OPTION_ENABLED 1 106 107 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET } 108 109 /* 110 * Interrupt Moderate Timer in units of 2 us 111 * 112 * Valid Range: 10-65535 113 * 114 * Default Value: 100 (200us) 115 */ 116 static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT; 117 static unsigned int num_int_mod_timer; 118 module_param_array_named(int_mod_timer, int_mod_timer, int, 119 &num_int_mod_timer, 0); 120 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer"); 121 122 #define DEFAULT_INT_MOD_CNT 100 /* 200us */ 123 #define MAX_INT_MOD_CNT 65000 124 #define MIN_INT_MOD_CNT 50 125 126 struct atl1_option { 127 enum { enable_option, range_option, list_option } type; 128 char *name; 129 char *err; 130 int def; 131 union { 132 struct { /* range_option info */ 133 int min; 134 int max; 135 } r; 136 struct { /* list_option info */ 137 int nr; 138 struct atl1_opt_list { 139 int i; 140 char *str; 141 } *p; 142 } l; 143 } arg; 144 }; 145 146 static int __devinit atl1_validate_option(int *value, struct atl1_option *opt, 147 struct pci_dev *pdev) 148 { 149 if (*value == OPTION_UNSET) { 150 *value = opt->def; 151 return 0; 152 } 153 154 switch (opt->type) { 155 case enable_option: 156 switch (*value) { 157 case OPTION_ENABLED: 158 dev_info(&pdev->dev, "%s enabled\n", opt->name); 159 return 0; 160 case OPTION_DISABLED: 161 dev_info(&pdev->dev, "%s disabled\n", opt->name); 162 return 0; 163 } 164 break; 165 case range_option: 166 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) { 167 dev_info(&pdev->dev, "%s set to %i\n", opt->name, 168 *value); 169 return 0; 170 } 171 break; 172 case list_option:{ 173 int i; 174 struct atl1_opt_list *ent; 175 176 for (i = 0; i < opt->arg.l.nr; i++) { 177 ent = &opt->arg.l.p[i]; 178 if (*value == ent->i) { 179 if (ent->str[0] != '\0') 180 dev_info(&pdev->dev, "%s\n", 181 ent->str); 182 return 0; 183 } 184 } 185 } 186 break; 187 188 default: 189 break; 190 } 191 192 dev_info(&pdev->dev, "invalid %s specified (%i) %s\n", 193 opt->name, *value, opt->err); 194 *value = opt->def; 195 return -1; 196 } 197 198 /* 199 * atl1_check_options - Range Checking for Command Line Parameters 200 * @adapter: board private structure 201 * 202 * This routine checks all command line parameters for valid user 203 * input. If an invalid value is given, or if no user specified 204 * value exists, a default value is used. The final value is stored 205 * in a variable in the adapter structure. 206 */ 207 static void __devinit atl1_check_options(struct atl1_adapter *adapter) 208 { 209 struct pci_dev *pdev = adapter->pdev; 210 int bd = adapter->bd_number; 211 if (bd >= ATL1_MAX_NIC) { 212 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd); 213 dev_notice(&pdev->dev, "using defaults for all values\n"); 214 } 215 { /* Interrupt Moderate Timer */ 216 struct atl1_option opt = { 217 .type = range_option, 218 .name = "Interrupt Moderator Timer", 219 .err = "using default of " 220 __MODULE_STRING(DEFAULT_INT_MOD_CNT), 221 .def = DEFAULT_INT_MOD_CNT, 222 .arg = {.r = {.min = MIN_INT_MOD_CNT, 223 .max = MAX_INT_MOD_CNT} } 224 }; 225 int val; 226 if (num_int_mod_timer > bd) { 227 val = int_mod_timer[bd]; 228 atl1_validate_option(&val, &opt, pdev); 229 adapter->imt = (u16) val; 230 } else 231 adapter->imt = (u16) (opt.def); 232 } 233 } 234 235 /* 236 * atl1_pci_tbl - PCI Device ID Table 237 */ 238 static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = { 239 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)}, 240 /* required last entry */ 241 {0,} 242 }; 243 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl); 244 245 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 246 NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP; 247 248 static int debug = -1; 249 module_param(debug, int, 0); 250 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)"); 251 252 /* 253 * Reset the transmit and receive units; mask and clear all interrupts. 254 * hw - Struct containing variables accessed by shared code 255 * return : 0 or idle status (if error) 256 */ 257 static s32 atl1_reset_hw(struct atl1_hw *hw) 258 { 259 struct pci_dev *pdev = hw->back->pdev; 260 struct atl1_adapter *adapter = hw->back; 261 u32 icr; 262 int i; 263 264 /* 265 * Clear Interrupt mask to stop board from generating 266 * interrupts & Clear any pending interrupt events 267 */ 268 /* 269 * iowrite32(0, hw->hw_addr + REG_IMR); 270 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR); 271 */ 272 273 /* 274 * Issue Soft Reset to the MAC. This will reset the chip's 275 * transmit, receive, DMA. It will not effect 276 * the current PCI configuration. The global reset bit is self- 277 * clearing, and should clear within a microsecond. 278 */ 279 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL); 280 ioread32(hw->hw_addr + REG_MASTER_CTRL); 281 282 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE); 283 ioread16(hw->hw_addr + REG_PHY_ENABLE); 284 285 /* delay about 1ms */ 286 msleep(1); 287 288 /* Wait at least 10ms for All module to be Idle */ 289 for (i = 0; i < 10; i++) { 290 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS); 291 if (!icr) 292 break; 293 /* delay 1 ms */ 294 msleep(1); 295 /* FIXME: still the right way to do this? */ 296 cpu_relax(); 297 } 298 299 if (icr) { 300 if (netif_msg_hw(adapter)) 301 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr); 302 return icr; 303 } 304 305 return 0; 306 } 307 308 /* function about EEPROM 309 * 310 * check_eeprom_exist 311 * return 0 if eeprom exist 312 */ 313 static int atl1_check_eeprom_exist(struct atl1_hw *hw) 314 { 315 u32 value; 316 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL); 317 if (value & SPI_FLASH_CTRL_EN_VPD) { 318 value &= ~SPI_FLASH_CTRL_EN_VPD; 319 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL); 320 } 321 322 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST); 323 return ((value & 0xFF00) == 0x6C00) ? 0 : 1; 324 } 325 326 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value) 327 { 328 int i; 329 u32 control; 330 331 if (offset & 3) 332 /* address do not align */ 333 return false; 334 335 iowrite32(0, hw->hw_addr + REG_VPD_DATA); 336 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT; 337 iowrite32(control, hw->hw_addr + REG_VPD_CAP); 338 ioread32(hw->hw_addr + REG_VPD_CAP); 339 340 for (i = 0; i < 10; i++) { 341 msleep(2); 342 control = ioread32(hw->hw_addr + REG_VPD_CAP); 343 if (control & VPD_CAP_VPD_FLAG) 344 break; 345 } 346 if (control & VPD_CAP_VPD_FLAG) { 347 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA); 348 return true; 349 } 350 /* timeout */ 351 return false; 352 } 353 354 /* 355 * Reads the value from a PHY register 356 * hw - Struct containing variables accessed by shared code 357 * reg_addr - address of the PHY register to read 358 */ 359 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data) 360 { 361 u32 val; 362 int i; 363 364 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | 365 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 << 366 MDIO_CLK_SEL_SHIFT; 367 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL); 368 ioread32(hw->hw_addr + REG_MDIO_CTRL); 369 370 for (i = 0; i < MDIO_WAIT_TIMES; i++) { 371 udelay(2); 372 val = ioread32(hw->hw_addr + REG_MDIO_CTRL); 373 if (!(val & (MDIO_START | MDIO_BUSY))) 374 break; 375 } 376 if (!(val & (MDIO_START | MDIO_BUSY))) { 377 *phy_data = (u16) val; 378 return 0; 379 } 380 return ATLX_ERR_PHY; 381 } 382 383 #define CUSTOM_SPI_CS_SETUP 2 384 #define CUSTOM_SPI_CLK_HI 2 385 #define CUSTOM_SPI_CLK_LO 2 386 #define CUSTOM_SPI_CS_HOLD 2 387 #define CUSTOM_SPI_CS_HI 3 388 389 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf) 390 { 391 int i; 392 u32 value; 393 394 iowrite32(0, hw->hw_addr + REG_SPI_DATA); 395 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR); 396 397 value = SPI_FLASH_CTRL_WAIT_READY | 398 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) << 399 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI & 400 SPI_FLASH_CTRL_CLK_HI_MASK) << 401 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO & 402 SPI_FLASH_CTRL_CLK_LO_MASK) << 403 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD & 404 SPI_FLASH_CTRL_CS_HOLD_MASK) << 405 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI & 406 SPI_FLASH_CTRL_CS_HI_MASK) << 407 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) << 408 SPI_FLASH_CTRL_INS_SHIFT; 409 410 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL); 411 412 value |= SPI_FLASH_CTRL_START; 413 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL); 414 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL); 415 416 for (i = 0; i < 10; i++) { 417 msleep(1); 418 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL); 419 if (!(value & SPI_FLASH_CTRL_START)) 420 break; 421 } 422 423 if (value & SPI_FLASH_CTRL_START) 424 return false; 425 426 *buf = ioread32(hw->hw_addr + REG_SPI_DATA); 427 428 return true; 429 } 430 431 /* 432 * get_permanent_address 433 * return 0 if get valid mac address, 434 */ 435 static int atl1_get_permanent_address(struct atl1_hw *hw) 436 { 437 u32 addr[2]; 438 u32 i, control; 439 u16 reg; 440 u8 eth_addr[ETH_ALEN]; 441 bool key_valid; 442 443 if (is_valid_ether_addr(hw->perm_mac_addr)) 444 return 0; 445 446 /* init */ 447 addr[0] = addr[1] = 0; 448 449 if (!atl1_check_eeprom_exist(hw)) { 450 reg = 0; 451 key_valid = false; 452 /* Read out all EEPROM content */ 453 i = 0; 454 while (1) { 455 if (atl1_read_eeprom(hw, i + 0x100, &control)) { 456 if (key_valid) { 457 if (reg == REG_MAC_STA_ADDR) 458 addr[0] = control; 459 else if (reg == (REG_MAC_STA_ADDR + 4)) 460 addr[1] = control; 461 key_valid = false; 462 } else if ((control & 0xff) == 0x5A) { 463 key_valid = true; 464 reg = (u16) (control >> 16); 465 } else 466 break; 467 } else 468 /* read error */ 469 break; 470 i += 4; 471 } 472 473 *(u32 *) ð_addr[2] = swab32(addr[0]); 474 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]); 475 if (is_valid_ether_addr(eth_addr)) { 476 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); 477 return 0; 478 } 479 } 480 481 /* see if SPI FLAGS exist ? */ 482 addr[0] = addr[1] = 0; 483 reg = 0; 484 key_valid = false; 485 i = 0; 486 while (1) { 487 if (atl1_spi_read(hw, i + 0x1f000, &control)) { 488 if (key_valid) { 489 if (reg == REG_MAC_STA_ADDR) 490 addr[0] = control; 491 else if (reg == (REG_MAC_STA_ADDR + 4)) 492 addr[1] = control; 493 key_valid = false; 494 } else if ((control & 0xff) == 0x5A) { 495 key_valid = true; 496 reg = (u16) (control >> 16); 497 } else 498 /* data end */ 499 break; 500 } else 501 /* read error */ 502 break; 503 i += 4; 504 } 505 506 *(u32 *) ð_addr[2] = swab32(addr[0]); 507 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]); 508 if (is_valid_ether_addr(eth_addr)) { 509 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); 510 return 0; 511 } 512 513 /* 514 * On some motherboards, the MAC address is written by the 515 * BIOS directly to the MAC register during POST, and is 516 * not stored in eeprom. If all else thus far has failed 517 * to fetch the permanent MAC address, try reading it directly. 518 */ 519 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR); 520 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4)); 521 *(u32 *) ð_addr[2] = swab32(addr[0]); 522 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]); 523 if (is_valid_ether_addr(eth_addr)) { 524 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); 525 return 0; 526 } 527 528 return 1; 529 } 530 531 /* 532 * Reads the adapter's MAC address from the EEPROM 533 * hw - Struct containing variables accessed by shared code 534 */ 535 static s32 atl1_read_mac_addr(struct atl1_hw *hw) 536 { 537 s32 ret = 0; 538 u16 i; 539 540 if (atl1_get_permanent_address(hw)) { 541 random_ether_addr(hw->perm_mac_addr); 542 ret = 1; 543 } 544 545 for (i = 0; i < ETH_ALEN; i++) 546 hw->mac_addr[i] = hw->perm_mac_addr[i]; 547 return ret; 548 } 549 550 /* 551 * Hashes an address to determine its location in the multicast table 552 * hw - Struct containing variables accessed by shared code 553 * mc_addr - the multicast address to hash 554 * 555 * atl1_hash_mc_addr 556 * purpose 557 * set hash value for a multicast address 558 * hash calcu processing : 559 * 1. calcu 32bit CRC for multicast address 560 * 2. reverse crc with MSB to LSB 561 */ 562 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr) 563 { 564 u32 crc32, value = 0; 565 int i; 566 567 crc32 = ether_crc_le(6, mc_addr); 568 for (i = 0; i < 32; i++) 569 value |= (((crc32 >> i) & 1) << (31 - i)); 570 571 return value; 572 } 573 574 /* 575 * Sets the bit in the multicast table corresponding to the hash value. 576 * hw - Struct containing variables accessed by shared code 577 * hash_value - Multicast address hash value 578 */ 579 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value) 580 { 581 u32 hash_bit, hash_reg; 582 u32 mta; 583 584 /* 585 * The HASH Table is a register array of 2 32-bit registers. 586 * It is treated like an array of 64 bits. We want to set 587 * bit BitArray[hash_value]. So we figure out what register 588 * the bit is in, read it, OR in the new bit, then write 589 * back the new value. The register is determined by the 590 * upper 7 bits of the hash value and the bit within that 591 * register are determined by the lower 5 bits of the value. 592 */ 593 hash_reg = (hash_value >> 31) & 0x1; 594 hash_bit = (hash_value >> 26) & 0x1F; 595 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2)); 596 mta |= (1 << hash_bit); 597 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2)); 598 } 599 600 /* 601 * Writes a value to a PHY register 602 * hw - Struct containing variables accessed by shared code 603 * reg_addr - address of the PHY register to write 604 * data - data to write to the PHY 605 */ 606 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data) 607 { 608 int i; 609 u32 val; 610 611 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | 612 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | 613 MDIO_SUP_PREAMBLE | 614 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; 615 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL); 616 ioread32(hw->hw_addr + REG_MDIO_CTRL); 617 618 for (i = 0; i < MDIO_WAIT_TIMES; i++) { 619 udelay(2); 620 val = ioread32(hw->hw_addr + REG_MDIO_CTRL); 621 if (!(val & (MDIO_START | MDIO_BUSY))) 622 break; 623 } 624 625 if (!(val & (MDIO_START | MDIO_BUSY))) 626 return 0; 627 628 return ATLX_ERR_PHY; 629 } 630 631 /* 632 * Make L001's PHY out of Power Saving State (bug) 633 * hw - Struct containing variables accessed by shared code 634 * when power on, L001's PHY always on Power saving State 635 * (Gigabit Link forbidden) 636 */ 637 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw) 638 { 639 s32 ret; 640 ret = atl1_write_phy_reg(hw, 29, 0x0029); 641 if (ret) 642 return ret; 643 return atl1_write_phy_reg(hw, 30, 0); 644 } 645 646 /* 647 * Resets the PHY and make all config validate 648 * hw - Struct containing variables accessed by shared code 649 * 650 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug) 651 */ 652 static s32 atl1_phy_reset(struct atl1_hw *hw) 653 { 654 struct pci_dev *pdev = hw->back->pdev; 655 struct atl1_adapter *adapter = hw->back; 656 s32 ret_val; 657 u16 phy_data; 658 659 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 660 hw->media_type == MEDIA_TYPE_1000M_FULL) 661 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN; 662 else { 663 switch (hw->media_type) { 664 case MEDIA_TYPE_100M_FULL: 665 phy_data = 666 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | 667 MII_CR_RESET; 668 break; 669 case MEDIA_TYPE_100M_HALF: 670 phy_data = MII_CR_SPEED_100 | MII_CR_RESET; 671 break; 672 case MEDIA_TYPE_10M_FULL: 673 phy_data = 674 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; 675 break; 676 default: 677 /* MEDIA_TYPE_10M_HALF: */ 678 phy_data = MII_CR_SPEED_10 | MII_CR_RESET; 679 break; 680 } 681 } 682 683 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data); 684 if (ret_val) { 685 u32 val; 686 int i; 687 /* pcie serdes link may be down! */ 688 if (netif_msg_hw(adapter)) 689 dev_dbg(&pdev->dev, "pcie phy link down\n"); 690 691 for (i = 0; i < 25; i++) { 692 msleep(1); 693 val = ioread32(hw->hw_addr + REG_MDIO_CTRL); 694 if (!(val & (MDIO_START | MDIO_BUSY))) 695 break; 696 } 697 698 if ((val & (MDIO_START | MDIO_BUSY)) != 0) { 699 if (netif_msg_hw(adapter)) 700 dev_warn(&pdev->dev, 701 "pcie link down at least 25ms\n"); 702 return ret_val; 703 } 704 } 705 return 0; 706 } 707 708 /* 709 * Configures PHY autoneg and flow control advertisement settings 710 * hw - Struct containing variables accessed by shared code 711 */ 712 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw) 713 { 714 s32 ret_val; 715 s16 mii_autoneg_adv_reg; 716 s16 mii_1000t_ctrl_reg; 717 718 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 719 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK; 720 721 /* Read the MII 1000Base-T Control Register (Address 9). */ 722 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK; 723 724 /* 725 * First we clear all the 10/100 mb speed bits in the Auto-Neg 726 * Advertisement Register (Address 4) and the 1000 mb speed bits in 727 * the 1000Base-T Control Register (Address 9). 728 */ 729 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK; 730 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK; 731 732 /* 733 * Need to parse media_type and set up 734 * the appropriate PHY registers. 735 */ 736 switch (hw->media_type) { 737 case MEDIA_TYPE_AUTO_SENSOR: 738 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS | 739 MII_AR_10T_FD_CAPS | 740 MII_AR_100TX_HD_CAPS | 741 MII_AR_100TX_FD_CAPS); 742 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS; 743 break; 744 745 case MEDIA_TYPE_1000M_FULL: 746 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS; 747 break; 748 749 case MEDIA_TYPE_100M_FULL: 750 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS; 751 break; 752 753 case MEDIA_TYPE_100M_HALF: 754 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS; 755 break; 756 757 case MEDIA_TYPE_10M_FULL: 758 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS; 759 break; 760 761 default: 762 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS; 763 break; 764 } 765 766 /* flow control fixed to enable all */ 767 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE); 768 769 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg; 770 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg; 771 772 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg); 773 if (ret_val) 774 return ret_val; 775 776 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg); 777 if (ret_val) 778 return ret_val; 779 780 return 0; 781 } 782 783 /* 784 * Configures link settings. 785 * hw - Struct containing variables accessed by shared code 786 * Assumes the hardware has previously been reset and the 787 * transmitter and receiver are not enabled. 788 */ 789 static s32 atl1_setup_link(struct atl1_hw *hw) 790 { 791 struct pci_dev *pdev = hw->back->pdev; 792 struct atl1_adapter *adapter = hw->back; 793 s32 ret_val; 794 795 /* 796 * Options: 797 * PHY will advertise value(s) parsed from 798 * autoneg_advertised and fc 799 * no matter what autoneg is , We will not wait link result. 800 */ 801 ret_val = atl1_phy_setup_autoneg_adv(hw); 802 if (ret_val) { 803 if (netif_msg_link(adapter)) 804 dev_dbg(&pdev->dev, 805 "error setting up autonegotiation\n"); 806 return ret_val; 807 } 808 /* SW.Reset , En-Auto-Neg if needed */ 809 ret_val = atl1_phy_reset(hw); 810 if (ret_val) { 811 if (netif_msg_link(adapter)) 812 dev_dbg(&pdev->dev, "error resetting phy\n"); 813 return ret_val; 814 } 815 hw->phy_configured = true; 816 return ret_val; 817 } 818 819 static void atl1_init_flash_opcode(struct atl1_hw *hw) 820 { 821 if (hw->flash_vendor >= ARRAY_SIZE(flash_table)) 822 /* Atmel */ 823 hw->flash_vendor = 0; 824 825 /* Init OP table */ 826 iowrite8(flash_table[hw->flash_vendor].cmd_program, 827 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM); 828 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase, 829 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE); 830 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase, 831 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE); 832 iowrite8(flash_table[hw->flash_vendor].cmd_rdid, 833 hw->hw_addr + REG_SPI_FLASH_OP_RDID); 834 iowrite8(flash_table[hw->flash_vendor].cmd_wren, 835 hw->hw_addr + REG_SPI_FLASH_OP_WREN); 836 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr, 837 hw->hw_addr + REG_SPI_FLASH_OP_RDSR); 838 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr, 839 hw->hw_addr + REG_SPI_FLASH_OP_WRSR); 840 iowrite8(flash_table[hw->flash_vendor].cmd_read, 841 hw->hw_addr + REG_SPI_FLASH_OP_READ); 842 } 843 844 /* 845 * Performs basic configuration of the adapter. 846 * hw - Struct containing variables accessed by shared code 847 * Assumes that the controller has previously been reset and is in a 848 * post-reset uninitialized state. Initializes multicast table, 849 * and Calls routines to setup link 850 * Leaves the transmit and receive units disabled and uninitialized. 851 */ 852 static s32 atl1_init_hw(struct atl1_hw *hw) 853 { 854 u32 ret_val = 0; 855 856 /* Zero out the Multicast HASH table */ 857 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE); 858 /* clear the old settings from the multicast hash table */ 859 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2)); 860 861 atl1_init_flash_opcode(hw); 862 863 if (!hw->phy_configured) { 864 /* enable GPHY LinkChange Interrupt */ 865 ret_val = atl1_write_phy_reg(hw, 18, 0xC00); 866 if (ret_val) 867 return ret_val; 868 /* make PHY out of power-saving state */ 869 ret_val = atl1_phy_leave_power_saving(hw); 870 if (ret_val) 871 return ret_val; 872 /* Call a subroutine to configure the link */ 873 ret_val = atl1_setup_link(hw); 874 } 875 return ret_val; 876 } 877 878 /* 879 * Detects the current speed and duplex settings of the hardware. 880 * hw - Struct containing variables accessed by shared code 881 * speed - Speed of the connection 882 * duplex - Duplex setting of the connection 883 */ 884 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex) 885 { 886 struct pci_dev *pdev = hw->back->pdev; 887 struct atl1_adapter *adapter = hw->back; 888 s32 ret_val; 889 u16 phy_data; 890 891 /* ; --- Read PHY Specific Status Register (17) */ 892 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data); 893 if (ret_val) 894 return ret_val; 895 896 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED)) 897 return ATLX_ERR_PHY_RES; 898 899 switch (phy_data & MII_ATLX_PSSR_SPEED) { 900 case MII_ATLX_PSSR_1000MBS: 901 *speed = SPEED_1000; 902 break; 903 case MII_ATLX_PSSR_100MBS: 904 *speed = SPEED_100; 905 break; 906 case MII_ATLX_PSSR_10MBS: 907 *speed = SPEED_10; 908 break; 909 default: 910 if (netif_msg_hw(adapter)) 911 dev_dbg(&pdev->dev, "error getting speed\n"); 912 return ATLX_ERR_PHY_SPEED; 913 break; 914 } 915 if (phy_data & MII_ATLX_PSSR_DPLX) 916 *duplex = FULL_DUPLEX; 917 else 918 *duplex = HALF_DUPLEX; 919 920 return 0; 921 } 922 923 static void atl1_set_mac_addr(struct atl1_hw *hw) 924 { 925 u32 value; 926 /* 927 * 00-0B-6A-F6-00-DC 928 * 0: 6AF600DC 1: 000B 929 * low dword 930 */ 931 value = (((u32) hw->mac_addr[2]) << 24) | 932 (((u32) hw->mac_addr[3]) << 16) | 933 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5])); 934 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR); 935 /* high dword */ 936 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1])); 937 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2)); 938 } 939 940 /* 941 * atl1_sw_init - Initialize general software structures (struct atl1_adapter) 942 * @adapter: board private structure to initialize 943 * 944 * atl1_sw_init initializes the Adapter private data structure. 945 * Fields are initialized based on PCI device information and 946 * OS network device settings (MTU size). 947 */ 948 static int __devinit atl1_sw_init(struct atl1_adapter *adapter) 949 { 950 struct atl1_hw *hw = &adapter->hw; 951 struct net_device *netdev = adapter->netdev; 952 953 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 954 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 955 956 adapter->wol = 0; 957 device_set_wakeup_enable(&adapter->pdev->dev, false); 958 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7; 959 adapter->ict = 50000; /* 100ms */ 960 adapter->link_speed = SPEED_0; /* hardware init */ 961 adapter->link_duplex = FULL_DUPLEX; 962 963 hw->phy_configured = false; 964 hw->preamble_len = 7; 965 hw->ipgt = 0x60; 966 hw->min_ifg = 0x50; 967 hw->ipgr1 = 0x40; 968 hw->ipgr2 = 0x60; 969 hw->max_retry = 0xf; 970 hw->lcol = 0x37; 971 hw->jam_ipg = 7; 972 hw->rfd_burst = 8; 973 hw->rrd_burst = 8; 974 hw->rfd_fetch_gap = 1; 975 hw->rx_jumbo_th = adapter->rx_buffer_len / 8; 976 hw->rx_jumbo_lkah = 1; 977 hw->rrd_ret_timer = 16; 978 hw->tpd_burst = 4; 979 hw->tpd_fetch_th = 16; 980 hw->txf_burst = 0x100; 981 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3; 982 hw->tpd_fetch_gap = 1; 983 hw->rcb_value = atl1_rcb_64; 984 hw->dma_ord = atl1_dma_ord_enh; 985 hw->dmar_block = atl1_dma_req_256; 986 hw->dmaw_block = atl1_dma_req_256; 987 hw->cmb_rrd = 4; 988 hw->cmb_tpd = 4; 989 hw->cmb_rx_timer = 1; /* about 2us */ 990 hw->cmb_tx_timer = 1; /* about 2us */ 991 hw->smb_timer = 100000; /* about 200ms */ 992 993 spin_lock_init(&adapter->lock); 994 spin_lock_init(&adapter->mb_lock); 995 996 return 0; 997 } 998 999 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num) 1000 { 1001 struct atl1_adapter *adapter = netdev_priv(netdev); 1002 u16 result; 1003 1004 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result); 1005 1006 return result; 1007 } 1008 1009 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num, 1010 int val) 1011 { 1012 struct atl1_adapter *adapter = netdev_priv(netdev); 1013 1014 atl1_write_phy_reg(&adapter->hw, reg_num, val); 1015 } 1016 1017 /* 1018 * atl1_mii_ioctl - 1019 * @netdev: 1020 * @ifreq: 1021 * @cmd: 1022 */ 1023 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1024 { 1025 struct atl1_adapter *adapter = netdev_priv(netdev); 1026 unsigned long flags; 1027 int retval; 1028 1029 if (!netif_running(netdev)) 1030 return -EINVAL; 1031 1032 spin_lock_irqsave(&adapter->lock, flags); 1033 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL); 1034 spin_unlock_irqrestore(&adapter->lock, flags); 1035 1036 return retval; 1037 } 1038 1039 /* 1040 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources 1041 * @adapter: board private structure 1042 * 1043 * Return 0 on success, negative on failure 1044 */ 1045 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter) 1046 { 1047 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 1048 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1049 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1050 struct atl1_ring_header *ring_header = &adapter->ring_header; 1051 struct pci_dev *pdev = adapter->pdev; 1052 int size; 1053 u8 offset = 0; 1054 1055 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count); 1056 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL); 1057 if (unlikely(!tpd_ring->buffer_info)) { 1058 if (netif_msg_drv(adapter)) 1059 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n", 1060 size); 1061 goto err_nomem; 1062 } 1063 rfd_ring->buffer_info = 1064 (struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count); 1065 1066 /* 1067 * real ring DMA buffer 1068 * each ring/block may need up to 8 bytes for alignment, hence the 1069 * additional 40 bytes tacked onto the end. 1070 */ 1071 ring_header->size = size = 1072 sizeof(struct tx_packet_desc) * tpd_ring->count 1073 + sizeof(struct rx_free_desc) * rfd_ring->count 1074 + sizeof(struct rx_return_desc) * rrd_ring->count 1075 + sizeof(struct coals_msg_block) 1076 + sizeof(struct stats_msg_block) 1077 + 40; 1078 1079 ring_header->desc = pci_alloc_consistent(pdev, ring_header->size, 1080 &ring_header->dma); 1081 if (unlikely(!ring_header->desc)) { 1082 if (netif_msg_drv(adapter)) 1083 dev_err(&pdev->dev, "pci_alloc_consistent failed\n"); 1084 goto err_nomem; 1085 } 1086 1087 memset(ring_header->desc, 0, ring_header->size); 1088 1089 /* init TPD ring */ 1090 tpd_ring->dma = ring_header->dma; 1091 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0; 1092 tpd_ring->dma += offset; 1093 tpd_ring->desc = (u8 *) ring_header->desc + offset; 1094 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count; 1095 1096 /* init RFD ring */ 1097 rfd_ring->dma = tpd_ring->dma + tpd_ring->size; 1098 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0; 1099 rfd_ring->dma += offset; 1100 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset); 1101 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count; 1102 1103 1104 /* init RRD ring */ 1105 rrd_ring->dma = rfd_ring->dma + rfd_ring->size; 1106 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0; 1107 rrd_ring->dma += offset; 1108 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset); 1109 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count; 1110 1111 1112 /* init CMB */ 1113 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size; 1114 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0; 1115 adapter->cmb.dma += offset; 1116 adapter->cmb.cmb = (struct coals_msg_block *) 1117 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset)); 1118 1119 /* init SMB */ 1120 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block); 1121 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0; 1122 adapter->smb.dma += offset; 1123 adapter->smb.smb = (struct stats_msg_block *) 1124 ((u8 *) adapter->cmb.cmb + 1125 (sizeof(struct coals_msg_block) + offset)); 1126 1127 return 0; 1128 1129 err_nomem: 1130 kfree(tpd_ring->buffer_info); 1131 return -ENOMEM; 1132 } 1133 1134 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter) 1135 { 1136 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 1137 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1138 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1139 1140 atomic_set(&tpd_ring->next_to_use, 0); 1141 atomic_set(&tpd_ring->next_to_clean, 0); 1142 1143 rfd_ring->next_to_clean = 0; 1144 atomic_set(&rfd_ring->next_to_use, 0); 1145 1146 rrd_ring->next_to_use = 0; 1147 atomic_set(&rrd_ring->next_to_clean, 0); 1148 } 1149 1150 /* 1151 * atl1_clean_rx_ring - Free RFD Buffers 1152 * @adapter: board private structure 1153 */ 1154 static void atl1_clean_rx_ring(struct atl1_adapter *adapter) 1155 { 1156 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1157 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1158 struct atl1_buffer *buffer_info; 1159 struct pci_dev *pdev = adapter->pdev; 1160 unsigned long size; 1161 unsigned int i; 1162 1163 /* Free all the Rx ring sk_buffs */ 1164 for (i = 0; i < rfd_ring->count; i++) { 1165 buffer_info = &rfd_ring->buffer_info[i]; 1166 if (buffer_info->dma) { 1167 pci_unmap_page(pdev, buffer_info->dma, 1168 buffer_info->length, PCI_DMA_FROMDEVICE); 1169 buffer_info->dma = 0; 1170 } 1171 if (buffer_info->skb) { 1172 dev_kfree_skb(buffer_info->skb); 1173 buffer_info->skb = NULL; 1174 } 1175 } 1176 1177 size = sizeof(struct atl1_buffer) * rfd_ring->count; 1178 memset(rfd_ring->buffer_info, 0, size); 1179 1180 /* Zero out the descriptor ring */ 1181 memset(rfd_ring->desc, 0, rfd_ring->size); 1182 1183 rfd_ring->next_to_clean = 0; 1184 atomic_set(&rfd_ring->next_to_use, 0); 1185 1186 rrd_ring->next_to_use = 0; 1187 atomic_set(&rrd_ring->next_to_clean, 0); 1188 } 1189 1190 /* 1191 * atl1_clean_tx_ring - Free Tx Buffers 1192 * @adapter: board private structure 1193 */ 1194 static void atl1_clean_tx_ring(struct atl1_adapter *adapter) 1195 { 1196 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 1197 struct atl1_buffer *buffer_info; 1198 struct pci_dev *pdev = adapter->pdev; 1199 unsigned long size; 1200 unsigned int i; 1201 1202 /* Free all the Tx ring sk_buffs */ 1203 for (i = 0; i < tpd_ring->count; i++) { 1204 buffer_info = &tpd_ring->buffer_info[i]; 1205 if (buffer_info->dma) { 1206 pci_unmap_page(pdev, buffer_info->dma, 1207 buffer_info->length, PCI_DMA_TODEVICE); 1208 buffer_info->dma = 0; 1209 } 1210 } 1211 1212 for (i = 0; i < tpd_ring->count; i++) { 1213 buffer_info = &tpd_ring->buffer_info[i]; 1214 if (buffer_info->skb) { 1215 dev_kfree_skb_any(buffer_info->skb); 1216 buffer_info->skb = NULL; 1217 } 1218 } 1219 1220 size = sizeof(struct atl1_buffer) * tpd_ring->count; 1221 memset(tpd_ring->buffer_info, 0, size); 1222 1223 /* Zero out the descriptor ring */ 1224 memset(tpd_ring->desc, 0, tpd_ring->size); 1225 1226 atomic_set(&tpd_ring->next_to_use, 0); 1227 atomic_set(&tpd_ring->next_to_clean, 0); 1228 } 1229 1230 /* 1231 * atl1_free_ring_resources - Free Tx / RX descriptor Resources 1232 * @adapter: board private structure 1233 * 1234 * Free all transmit software resources 1235 */ 1236 static void atl1_free_ring_resources(struct atl1_adapter *adapter) 1237 { 1238 struct pci_dev *pdev = adapter->pdev; 1239 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 1240 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1241 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1242 struct atl1_ring_header *ring_header = &adapter->ring_header; 1243 1244 atl1_clean_tx_ring(adapter); 1245 atl1_clean_rx_ring(adapter); 1246 1247 kfree(tpd_ring->buffer_info); 1248 pci_free_consistent(pdev, ring_header->size, ring_header->desc, 1249 ring_header->dma); 1250 1251 tpd_ring->buffer_info = NULL; 1252 tpd_ring->desc = NULL; 1253 tpd_ring->dma = 0; 1254 1255 rfd_ring->buffer_info = NULL; 1256 rfd_ring->desc = NULL; 1257 rfd_ring->dma = 0; 1258 1259 rrd_ring->desc = NULL; 1260 rrd_ring->dma = 0; 1261 1262 adapter->cmb.dma = 0; 1263 adapter->cmb.cmb = NULL; 1264 1265 adapter->smb.dma = 0; 1266 adapter->smb.smb = NULL; 1267 } 1268 1269 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter) 1270 { 1271 u32 value; 1272 struct atl1_hw *hw = &adapter->hw; 1273 struct net_device *netdev = adapter->netdev; 1274 /* Config MAC CTRL Register */ 1275 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN; 1276 /* duplex */ 1277 if (FULL_DUPLEX == adapter->link_duplex) 1278 value |= MAC_CTRL_DUPLX; 1279 /* speed */ 1280 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ? 1281 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) << 1282 MAC_CTRL_SPEED_SHIFT); 1283 /* flow control */ 1284 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW); 1285 /* PAD & CRC */ 1286 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); 1287 /* preamble length */ 1288 value |= (((u32) adapter->hw.preamble_len 1289 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); 1290 /* vlan */ 1291 __atlx_vlan_mode(netdev->features, &value); 1292 /* rx checksum 1293 if (adapter->rx_csum) 1294 value |= MAC_CTRL_RX_CHKSUM_EN; 1295 */ 1296 /* filter mode */ 1297 value |= MAC_CTRL_BC_EN; 1298 if (netdev->flags & IFF_PROMISC) 1299 value |= MAC_CTRL_PROMIS_EN; 1300 else if (netdev->flags & IFF_ALLMULTI) 1301 value |= MAC_CTRL_MC_ALL_EN; 1302 /* value |= MAC_CTRL_LOOPBACK; */ 1303 iowrite32(value, hw->hw_addr + REG_MAC_CTRL); 1304 } 1305 1306 static u32 atl1_check_link(struct atl1_adapter *adapter) 1307 { 1308 struct atl1_hw *hw = &adapter->hw; 1309 struct net_device *netdev = adapter->netdev; 1310 u32 ret_val; 1311 u16 speed, duplex, phy_data; 1312 int reconfig = 0; 1313 1314 /* MII_BMSR must read twice */ 1315 atl1_read_phy_reg(hw, MII_BMSR, &phy_data); 1316 atl1_read_phy_reg(hw, MII_BMSR, &phy_data); 1317 if (!(phy_data & BMSR_LSTATUS)) { 1318 /* link down */ 1319 if (netif_carrier_ok(netdev)) { 1320 /* old link state: Up */ 1321 if (netif_msg_link(adapter)) 1322 dev_info(&adapter->pdev->dev, "link is down\n"); 1323 adapter->link_speed = SPEED_0; 1324 netif_carrier_off(netdev); 1325 } 1326 return 0; 1327 } 1328 1329 /* Link Up */ 1330 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex); 1331 if (ret_val) 1332 return ret_val; 1333 1334 switch (hw->media_type) { 1335 case MEDIA_TYPE_1000M_FULL: 1336 if (speed != SPEED_1000 || duplex != FULL_DUPLEX) 1337 reconfig = 1; 1338 break; 1339 case MEDIA_TYPE_100M_FULL: 1340 if (speed != SPEED_100 || duplex != FULL_DUPLEX) 1341 reconfig = 1; 1342 break; 1343 case MEDIA_TYPE_100M_HALF: 1344 if (speed != SPEED_100 || duplex != HALF_DUPLEX) 1345 reconfig = 1; 1346 break; 1347 case MEDIA_TYPE_10M_FULL: 1348 if (speed != SPEED_10 || duplex != FULL_DUPLEX) 1349 reconfig = 1; 1350 break; 1351 case MEDIA_TYPE_10M_HALF: 1352 if (speed != SPEED_10 || duplex != HALF_DUPLEX) 1353 reconfig = 1; 1354 break; 1355 } 1356 1357 /* link result is our setting */ 1358 if (!reconfig) { 1359 if (adapter->link_speed != speed || 1360 adapter->link_duplex != duplex) { 1361 adapter->link_speed = speed; 1362 adapter->link_duplex = duplex; 1363 atl1_setup_mac_ctrl(adapter); 1364 if (netif_msg_link(adapter)) 1365 dev_info(&adapter->pdev->dev, 1366 "%s link is up %d Mbps %s\n", 1367 netdev->name, adapter->link_speed, 1368 adapter->link_duplex == FULL_DUPLEX ? 1369 "full duplex" : "half duplex"); 1370 } 1371 if (!netif_carrier_ok(netdev)) { 1372 /* Link down -> Up */ 1373 netif_carrier_on(netdev); 1374 } 1375 return 0; 1376 } 1377 1378 /* change original link status */ 1379 if (netif_carrier_ok(netdev)) { 1380 adapter->link_speed = SPEED_0; 1381 netif_carrier_off(netdev); 1382 netif_stop_queue(netdev); 1383 } 1384 1385 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR && 1386 hw->media_type != MEDIA_TYPE_1000M_FULL) { 1387 switch (hw->media_type) { 1388 case MEDIA_TYPE_100M_FULL: 1389 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | 1390 MII_CR_RESET; 1391 break; 1392 case MEDIA_TYPE_100M_HALF: 1393 phy_data = MII_CR_SPEED_100 | MII_CR_RESET; 1394 break; 1395 case MEDIA_TYPE_10M_FULL: 1396 phy_data = 1397 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; 1398 break; 1399 default: 1400 /* MEDIA_TYPE_10M_HALF: */ 1401 phy_data = MII_CR_SPEED_10 | MII_CR_RESET; 1402 break; 1403 } 1404 atl1_write_phy_reg(hw, MII_BMCR, phy_data); 1405 return 0; 1406 } 1407 1408 /* auto-neg, insert timer to re-config phy */ 1409 if (!adapter->phy_timer_pending) { 1410 adapter->phy_timer_pending = true; 1411 mod_timer(&adapter->phy_config_timer, 1412 round_jiffies(jiffies + 3 * HZ)); 1413 } 1414 1415 return 0; 1416 } 1417 1418 static void set_flow_ctrl_old(struct atl1_adapter *adapter) 1419 { 1420 u32 hi, lo, value; 1421 1422 /* RFD Flow Control */ 1423 value = adapter->rfd_ring.count; 1424 hi = value / 16; 1425 if (hi < 2) 1426 hi = 2; 1427 lo = value * 7 / 8; 1428 1429 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) | 1430 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT); 1431 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH); 1432 1433 /* RRD Flow Control */ 1434 value = adapter->rrd_ring.count; 1435 lo = value / 16; 1436 hi = value * 7 / 8; 1437 if (lo < 2) 1438 lo = 2; 1439 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) | 1440 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT); 1441 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH); 1442 } 1443 1444 static void set_flow_ctrl_new(struct atl1_hw *hw) 1445 { 1446 u32 hi, lo, value; 1447 1448 /* RXF Flow Control */ 1449 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN); 1450 lo = value / 16; 1451 if (lo < 192) 1452 lo = 192; 1453 hi = value * 7 / 8; 1454 if (hi < lo) 1455 hi = lo + 16; 1456 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) | 1457 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT); 1458 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH); 1459 1460 /* RRD Flow Control */ 1461 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN); 1462 lo = value / 8; 1463 hi = value * 7 / 8; 1464 if (lo < 2) 1465 lo = 2; 1466 if (hi < lo) 1467 hi = lo + 3; 1468 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) | 1469 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT); 1470 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH); 1471 } 1472 1473 /* 1474 * atl1_configure - Configure Transmit&Receive Unit after Reset 1475 * @adapter: board private structure 1476 * 1477 * Configure the Tx /Rx unit of the MAC after a reset. 1478 */ 1479 static u32 atl1_configure(struct atl1_adapter *adapter) 1480 { 1481 struct atl1_hw *hw = &adapter->hw; 1482 u32 value; 1483 1484 /* clear interrupt status */ 1485 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR); 1486 1487 /* set MAC Address */ 1488 value = (((u32) hw->mac_addr[2]) << 24) | 1489 (((u32) hw->mac_addr[3]) << 16) | 1490 (((u32) hw->mac_addr[4]) << 8) | 1491 (((u32) hw->mac_addr[5])); 1492 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR); 1493 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1])); 1494 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4)); 1495 1496 /* tx / rx ring */ 1497 1498 /* HI base address */ 1499 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32), 1500 hw->hw_addr + REG_DESC_BASE_ADDR_HI); 1501 /* LO base address */ 1502 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL), 1503 hw->hw_addr + REG_DESC_RFD_ADDR_LO); 1504 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL), 1505 hw->hw_addr + REG_DESC_RRD_ADDR_LO); 1506 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL), 1507 hw->hw_addr + REG_DESC_TPD_ADDR_LO); 1508 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL), 1509 hw->hw_addr + REG_DESC_CMB_ADDR_LO); 1510 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL), 1511 hw->hw_addr + REG_DESC_SMB_ADDR_LO); 1512 1513 /* element count */ 1514 value = adapter->rrd_ring.count; 1515 value <<= 16; 1516 value += adapter->rfd_ring.count; 1517 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE); 1518 iowrite32(adapter->tpd_ring.count, hw->hw_addr + 1519 REG_DESC_TPD_RING_SIZE); 1520 1521 /* Load Ptr */ 1522 iowrite32(1, hw->hw_addr + REG_LOAD_PTR); 1523 1524 /* config Mailbox */ 1525 value = ((atomic_read(&adapter->tpd_ring.next_to_use) 1526 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) | 1527 ((atomic_read(&adapter->rrd_ring.next_to_clean) 1528 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) | 1529 ((atomic_read(&adapter->rfd_ring.next_to_use) 1530 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT); 1531 iowrite32(value, hw->hw_addr + REG_MAILBOX); 1532 1533 /* config IPG/IFG */ 1534 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK) 1535 << MAC_IPG_IFG_IPGT_SHIFT) | 1536 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) 1537 << MAC_IPG_IFG_MIFG_SHIFT) | 1538 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) 1539 << MAC_IPG_IFG_IPGR1_SHIFT) | 1540 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) 1541 << MAC_IPG_IFG_IPGR2_SHIFT); 1542 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG); 1543 1544 /* config Half-Duplex Control */ 1545 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) | 1546 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) 1547 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) | 1548 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN | 1549 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) | 1550 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) 1551 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT); 1552 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL); 1553 1554 /* set Interrupt Moderator Timer */ 1555 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT); 1556 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL); 1557 1558 /* set Interrupt Clear Timer */ 1559 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER); 1560 1561 /* set max frame size hw will accept */ 1562 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU); 1563 1564 /* jumbo size & rrd retirement timer */ 1565 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK) 1566 << RXQ_JMBOSZ_TH_SHIFT) | 1567 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK) 1568 << RXQ_JMBO_LKAH_SHIFT) | 1569 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK) 1570 << RXQ_RRD_TIMER_SHIFT); 1571 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM); 1572 1573 /* Flow Control */ 1574 switch (hw->dev_rev) { 1575 case 0x8001: 1576 case 0x9001: 1577 case 0x9002: 1578 case 0x9003: 1579 set_flow_ctrl_old(adapter); 1580 break; 1581 default: 1582 set_flow_ctrl_new(hw); 1583 break; 1584 } 1585 1586 /* config TXQ */ 1587 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK) 1588 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) | 1589 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK) 1590 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) | 1591 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK) 1592 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE | 1593 TXQ_CTRL_EN; 1594 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL); 1595 1596 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */ 1597 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK) 1598 << TX_JUMBO_TASK_TH_SHIFT) | 1599 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK) 1600 << TX_TPD_MIN_IPG_SHIFT); 1601 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG); 1602 1603 /* config RXQ */ 1604 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK) 1605 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) | 1606 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK) 1607 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) | 1608 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK) 1609 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN | 1610 RXQ_CTRL_EN; 1611 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL); 1612 1613 /* config DMA Engine */ 1614 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK) 1615 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) | 1616 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK) 1617 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN | 1618 DMA_CTRL_DMAW_EN; 1619 value |= (u32) hw->dma_ord; 1620 if (atl1_rcb_128 == hw->rcb_value) 1621 value |= DMA_CTRL_RCB_VALUE; 1622 iowrite32(value, hw->hw_addr + REG_DMA_CTRL); 1623 1624 /* config CMB / SMB */ 1625 value = (hw->cmb_tpd > adapter->tpd_ring.count) ? 1626 hw->cmb_tpd : adapter->tpd_ring.count; 1627 value <<= 16; 1628 value |= hw->cmb_rrd; 1629 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH); 1630 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16); 1631 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER); 1632 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER); 1633 1634 /* --- enable CMB / SMB */ 1635 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN; 1636 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL); 1637 1638 value = ioread32(adapter->hw.hw_addr + REG_ISR); 1639 if (unlikely((value & ISR_PHY_LINKDOWN) != 0)) 1640 value = 1; /* config failed */ 1641 else 1642 value = 0; 1643 1644 /* clear all interrupt status */ 1645 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR); 1646 iowrite32(0, adapter->hw.hw_addr + REG_ISR); 1647 return value; 1648 } 1649 1650 /* 1651 * atl1_pcie_patch - Patch for PCIE module 1652 */ 1653 static void atl1_pcie_patch(struct atl1_adapter *adapter) 1654 { 1655 u32 value; 1656 1657 /* much vendor magic here */ 1658 value = 0x6500; 1659 iowrite32(value, adapter->hw.hw_addr + 0x12FC); 1660 /* pcie flow control mode change */ 1661 value = ioread32(adapter->hw.hw_addr + 0x1008); 1662 value |= 0x8000; 1663 iowrite32(value, adapter->hw.hw_addr + 0x1008); 1664 } 1665 1666 /* 1667 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400 1668 * on PCI Command register is disable. 1669 * The function enable this bit. 1670 * Brackett, 2006/03/15 1671 */ 1672 static void atl1_via_workaround(struct atl1_adapter *adapter) 1673 { 1674 unsigned long value; 1675 1676 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND); 1677 if (value & PCI_COMMAND_INTX_DISABLE) 1678 value &= ~PCI_COMMAND_INTX_DISABLE; 1679 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND); 1680 } 1681 1682 static void atl1_inc_smb(struct atl1_adapter *adapter) 1683 { 1684 struct net_device *netdev = adapter->netdev; 1685 struct stats_msg_block *smb = adapter->smb.smb; 1686 1687 /* Fill out the OS statistics structure */ 1688 adapter->soft_stats.rx_packets += smb->rx_ok; 1689 adapter->soft_stats.tx_packets += smb->tx_ok; 1690 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt; 1691 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt; 1692 adapter->soft_stats.multicast += smb->rx_mcast; 1693 adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 + 1694 smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry); 1695 1696 /* Rx Errors */ 1697 adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err + 1698 smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov + 1699 smb->rx_rrd_ov + smb->rx_align_err); 1700 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov; 1701 adapter->soft_stats.rx_length_errors += smb->rx_len_err; 1702 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err; 1703 adapter->soft_stats.rx_frame_errors += smb->rx_align_err; 1704 adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov + 1705 smb->rx_rxf_ov); 1706 1707 adapter->soft_stats.rx_pause += smb->rx_pause; 1708 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov; 1709 adapter->soft_stats.rx_trunc += smb->rx_sz_ov; 1710 1711 /* Tx Errors */ 1712 adapter->soft_stats.tx_errors += (smb->tx_late_col + 1713 smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc); 1714 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun; 1715 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col; 1716 adapter->soft_stats.tx_window_errors += smb->tx_late_col; 1717 1718 adapter->soft_stats.excecol += smb->tx_abort_col; 1719 adapter->soft_stats.deffer += smb->tx_defer; 1720 adapter->soft_stats.scc += smb->tx_1_col; 1721 adapter->soft_stats.mcc += smb->tx_2_col; 1722 adapter->soft_stats.latecol += smb->tx_late_col; 1723 adapter->soft_stats.tx_underun += smb->tx_underrun; 1724 adapter->soft_stats.tx_trunc += smb->tx_trunc; 1725 adapter->soft_stats.tx_pause += smb->tx_pause; 1726 1727 netdev->stats.rx_packets = adapter->soft_stats.rx_packets; 1728 netdev->stats.tx_packets = adapter->soft_stats.tx_packets; 1729 netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes; 1730 netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes; 1731 netdev->stats.multicast = adapter->soft_stats.multicast; 1732 netdev->stats.collisions = adapter->soft_stats.collisions; 1733 netdev->stats.rx_errors = adapter->soft_stats.rx_errors; 1734 netdev->stats.rx_over_errors = 1735 adapter->soft_stats.rx_missed_errors; 1736 netdev->stats.rx_length_errors = 1737 adapter->soft_stats.rx_length_errors; 1738 netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors; 1739 netdev->stats.rx_frame_errors = 1740 adapter->soft_stats.rx_frame_errors; 1741 netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors; 1742 netdev->stats.rx_missed_errors = 1743 adapter->soft_stats.rx_missed_errors; 1744 netdev->stats.tx_errors = adapter->soft_stats.tx_errors; 1745 netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors; 1746 netdev->stats.tx_aborted_errors = 1747 adapter->soft_stats.tx_aborted_errors; 1748 netdev->stats.tx_window_errors = 1749 adapter->soft_stats.tx_window_errors; 1750 netdev->stats.tx_carrier_errors = 1751 adapter->soft_stats.tx_carrier_errors; 1752 } 1753 1754 static void atl1_update_mailbox(struct atl1_adapter *adapter) 1755 { 1756 unsigned long flags; 1757 u32 tpd_next_to_use; 1758 u32 rfd_next_to_use; 1759 u32 rrd_next_to_clean; 1760 u32 value; 1761 1762 spin_lock_irqsave(&adapter->mb_lock, flags); 1763 1764 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use); 1765 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use); 1766 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean); 1767 1768 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) << 1769 MB_RFD_PROD_INDX_SHIFT) | 1770 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) << 1771 MB_RRD_CONS_INDX_SHIFT) | 1772 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) << 1773 MB_TPD_PROD_INDX_SHIFT); 1774 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX); 1775 1776 spin_unlock_irqrestore(&adapter->mb_lock, flags); 1777 } 1778 1779 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter, 1780 struct rx_return_desc *rrd, u16 offset) 1781 { 1782 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1783 1784 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) { 1785 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0; 1786 if (++rfd_ring->next_to_clean == rfd_ring->count) { 1787 rfd_ring->next_to_clean = 0; 1788 } 1789 } 1790 } 1791 1792 static void atl1_update_rfd_index(struct atl1_adapter *adapter, 1793 struct rx_return_desc *rrd) 1794 { 1795 u16 num_buf; 1796 1797 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) / 1798 adapter->rx_buffer_len; 1799 if (rrd->num_buf == num_buf) 1800 /* clean alloc flag for bad rrd */ 1801 atl1_clean_alloc_flag(adapter, rrd, num_buf); 1802 } 1803 1804 static void atl1_rx_checksum(struct atl1_adapter *adapter, 1805 struct rx_return_desc *rrd, struct sk_buff *skb) 1806 { 1807 struct pci_dev *pdev = adapter->pdev; 1808 1809 /* 1810 * The L1 hardware contains a bug that erroneously sets the 1811 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a 1812 * fragmented IP packet is received, even though the packet 1813 * is perfectly valid and its checksum is correct. There's 1814 * no way to distinguish between one of these good packets 1815 * and a packet that actually contains a TCP/UDP checksum 1816 * error, so all we can do is allow it to be handed up to 1817 * the higher layers and let it be sorted out there. 1818 */ 1819 1820 skb_checksum_none_assert(skb); 1821 1822 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) { 1823 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC | 1824 ERR_FLAG_CODE | ERR_FLAG_OV)) { 1825 adapter->hw_csum_err++; 1826 if (netif_msg_rx_err(adapter)) 1827 dev_printk(KERN_DEBUG, &pdev->dev, 1828 "rx checksum error\n"); 1829 return; 1830 } 1831 } 1832 1833 /* not IPv4 */ 1834 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4)) 1835 /* checksum is invalid, but it's not an IPv4 pkt, so ok */ 1836 return; 1837 1838 /* IPv4 packet */ 1839 if (likely(!(rrd->err_flg & 1840 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) { 1841 skb->ip_summed = CHECKSUM_UNNECESSARY; 1842 adapter->hw_csum_good++; 1843 return; 1844 } 1845 } 1846 1847 /* 1848 * atl1_alloc_rx_buffers - Replace used receive buffers 1849 * @adapter: address of board private structure 1850 */ 1851 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter) 1852 { 1853 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1854 struct pci_dev *pdev = adapter->pdev; 1855 struct page *page; 1856 unsigned long offset; 1857 struct atl1_buffer *buffer_info, *next_info; 1858 struct sk_buff *skb; 1859 u16 num_alloc = 0; 1860 u16 rfd_next_to_use, next_next; 1861 struct rx_free_desc *rfd_desc; 1862 1863 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use); 1864 if (++next_next == rfd_ring->count) 1865 next_next = 0; 1866 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; 1867 next_info = &rfd_ring->buffer_info[next_next]; 1868 1869 while (!buffer_info->alloced && !next_info->alloced) { 1870 if (buffer_info->skb) { 1871 buffer_info->alloced = 1; 1872 goto next; 1873 } 1874 1875 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use); 1876 1877 skb = netdev_alloc_skb_ip_align(adapter->netdev, 1878 adapter->rx_buffer_len); 1879 if (unlikely(!skb)) { 1880 /* Better luck next round */ 1881 adapter->netdev->stats.rx_dropped++; 1882 break; 1883 } 1884 1885 buffer_info->alloced = 1; 1886 buffer_info->skb = skb; 1887 buffer_info->length = (u16) adapter->rx_buffer_len; 1888 page = virt_to_page(skb->data); 1889 offset = (unsigned long)skb->data & ~PAGE_MASK; 1890 buffer_info->dma = pci_map_page(pdev, page, offset, 1891 adapter->rx_buffer_len, 1892 PCI_DMA_FROMDEVICE); 1893 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 1894 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len); 1895 rfd_desc->coalese = 0; 1896 1897 next: 1898 rfd_next_to_use = next_next; 1899 if (unlikely(++next_next == rfd_ring->count)) 1900 next_next = 0; 1901 1902 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; 1903 next_info = &rfd_ring->buffer_info[next_next]; 1904 num_alloc++; 1905 } 1906 1907 if (num_alloc) { 1908 /* 1909 * Force memory writes to complete before letting h/w 1910 * know there are new descriptors to fetch. (Only 1911 * applicable for weak-ordered memory model archs, 1912 * such as IA-64). 1913 */ 1914 wmb(); 1915 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use); 1916 } 1917 return num_alloc; 1918 } 1919 1920 static void atl1_intr_rx(struct atl1_adapter *adapter) 1921 { 1922 int i, count; 1923 u16 length; 1924 u16 rrd_next_to_clean; 1925 u32 value; 1926 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1927 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1928 struct atl1_buffer *buffer_info; 1929 struct rx_return_desc *rrd; 1930 struct sk_buff *skb; 1931 1932 count = 0; 1933 1934 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean); 1935 1936 while (1) { 1937 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean); 1938 i = 1; 1939 if (likely(rrd->xsz.valid)) { /* packet valid */ 1940 chk_rrd: 1941 /* check rrd status */ 1942 if (likely(rrd->num_buf == 1)) 1943 goto rrd_ok; 1944 else if (netif_msg_rx_err(adapter)) { 1945 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1946 "unexpected RRD buffer count\n"); 1947 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1948 "rx_buf_len = %d\n", 1949 adapter->rx_buffer_len); 1950 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1951 "RRD num_buf = %d\n", 1952 rrd->num_buf); 1953 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1954 "RRD pkt_len = %d\n", 1955 rrd->xsz.xsum_sz.pkt_size); 1956 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1957 "RRD pkt_flg = 0x%08X\n", 1958 rrd->pkt_flg); 1959 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1960 "RRD err_flg = 0x%08X\n", 1961 rrd->err_flg); 1962 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1963 "RRD vlan_tag = 0x%08X\n", 1964 rrd->vlan_tag); 1965 } 1966 1967 /* rrd seems to be bad */ 1968 if (unlikely(i-- > 0)) { 1969 /* rrd may not be DMAed completely */ 1970 udelay(1); 1971 goto chk_rrd; 1972 } 1973 /* bad rrd */ 1974 if (netif_msg_rx_err(adapter)) 1975 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1976 "bad RRD\n"); 1977 /* see if update RFD index */ 1978 if (rrd->num_buf > 1) 1979 atl1_update_rfd_index(adapter, rrd); 1980 1981 /* update rrd */ 1982 rrd->xsz.valid = 0; 1983 if (++rrd_next_to_clean == rrd_ring->count) 1984 rrd_next_to_clean = 0; 1985 count++; 1986 continue; 1987 } else { /* current rrd still not be updated */ 1988 1989 break; 1990 } 1991 rrd_ok: 1992 /* clean alloc flag for bad rrd */ 1993 atl1_clean_alloc_flag(adapter, rrd, 0); 1994 1995 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx]; 1996 if (++rfd_ring->next_to_clean == rfd_ring->count) 1997 rfd_ring->next_to_clean = 0; 1998 1999 /* update rrd next to clean */ 2000 if (++rrd_next_to_clean == rrd_ring->count) 2001 rrd_next_to_clean = 0; 2002 count++; 2003 2004 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) { 2005 if (!(rrd->err_flg & 2006 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM 2007 | ERR_FLAG_LEN))) { 2008 /* packet error, don't need upstream */ 2009 buffer_info->alloced = 0; 2010 rrd->xsz.valid = 0; 2011 continue; 2012 } 2013 } 2014 2015 /* Good Receive */ 2016 pci_unmap_page(adapter->pdev, buffer_info->dma, 2017 buffer_info->length, PCI_DMA_FROMDEVICE); 2018 buffer_info->dma = 0; 2019 skb = buffer_info->skb; 2020 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size); 2021 2022 skb_put(skb, length - ETH_FCS_LEN); 2023 2024 /* Receive Checksum Offload */ 2025 atl1_rx_checksum(adapter, rrd, skb); 2026 skb->protocol = eth_type_trans(skb, adapter->netdev); 2027 2028 if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) { 2029 u16 vlan_tag = (rrd->vlan_tag >> 4) | 2030 ((rrd->vlan_tag & 7) << 13) | 2031 ((rrd->vlan_tag & 8) << 9); 2032 2033 __vlan_hwaccel_put_tag(skb, vlan_tag); 2034 } 2035 netif_rx(skb); 2036 2037 /* let protocol layer free skb */ 2038 buffer_info->skb = NULL; 2039 buffer_info->alloced = 0; 2040 rrd->xsz.valid = 0; 2041 } 2042 2043 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean); 2044 2045 atl1_alloc_rx_buffers(adapter); 2046 2047 /* update mailbox ? */ 2048 if (count) { 2049 u32 tpd_next_to_use; 2050 u32 rfd_next_to_use; 2051 2052 spin_lock(&adapter->mb_lock); 2053 2054 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use); 2055 rfd_next_to_use = 2056 atomic_read(&adapter->rfd_ring.next_to_use); 2057 rrd_next_to_clean = 2058 atomic_read(&adapter->rrd_ring.next_to_clean); 2059 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) << 2060 MB_RFD_PROD_INDX_SHIFT) | 2061 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) << 2062 MB_RRD_CONS_INDX_SHIFT) | 2063 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) << 2064 MB_TPD_PROD_INDX_SHIFT); 2065 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX); 2066 spin_unlock(&adapter->mb_lock); 2067 } 2068 } 2069 2070 static void atl1_intr_tx(struct atl1_adapter *adapter) 2071 { 2072 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 2073 struct atl1_buffer *buffer_info; 2074 u16 sw_tpd_next_to_clean; 2075 u16 cmb_tpd_next_to_clean; 2076 2077 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean); 2078 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx); 2079 2080 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) { 2081 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean]; 2082 if (buffer_info->dma) { 2083 pci_unmap_page(adapter->pdev, buffer_info->dma, 2084 buffer_info->length, PCI_DMA_TODEVICE); 2085 buffer_info->dma = 0; 2086 } 2087 2088 if (buffer_info->skb) { 2089 dev_kfree_skb_irq(buffer_info->skb); 2090 buffer_info->skb = NULL; 2091 } 2092 2093 if (++sw_tpd_next_to_clean == tpd_ring->count) 2094 sw_tpd_next_to_clean = 0; 2095 } 2096 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean); 2097 2098 if (netif_queue_stopped(adapter->netdev) && 2099 netif_carrier_ok(adapter->netdev)) 2100 netif_wake_queue(adapter->netdev); 2101 } 2102 2103 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring) 2104 { 2105 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean); 2106 u16 next_to_use = atomic_read(&tpd_ring->next_to_use); 2107 return (next_to_clean > next_to_use) ? 2108 next_to_clean - next_to_use - 1 : 2109 tpd_ring->count + next_to_clean - next_to_use - 1; 2110 } 2111 2112 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb, 2113 struct tx_packet_desc *ptpd) 2114 { 2115 u8 hdr_len, ip_off; 2116 u32 real_len; 2117 int err; 2118 2119 if (skb_shinfo(skb)->gso_size) { 2120 if (skb_header_cloned(skb)) { 2121 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2122 if (unlikely(err)) 2123 return -1; 2124 } 2125 2126 if (skb->protocol == htons(ETH_P_IP)) { 2127 struct iphdr *iph = ip_hdr(skb); 2128 2129 real_len = (((unsigned char *)iph - skb->data) + 2130 ntohs(iph->tot_len)); 2131 if (real_len < skb->len) 2132 pskb_trim(skb, real_len); 2133 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb)); 2134 if (skb->len == hdr_len) { 2135 iph->check = 0; 2136 tcp_hdr(skb)->check = 2137 ~csum_tcpudp_magic(iph->saddr, 2138 iph->daddr, tcp_hdrlen(skb), 2139 IPPROTO_TCP, 0); 2140 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) << 2141 TPD_IPHL_SHIFT; 2142 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) & 2143 TPD_TCPHDRLEN_MASK) << 2144 TPD_TCPHDRLEN_SHIFT; 2145 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT; 2146 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT; 2147 return 1; 2148 } 2149 2150 iph->check = 0; 2151 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2152 iph->daddr, 0, IPPROTO_TCP, 0); 2153 ip_off = (unsigned char *)iph - 2154 (unsigned char *) skb_network_header(skb); 2155 if (ip_off == 8) /* 802.3-SNAP frame */ 2156 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT; 2157 else if (ip_off != 0) 2158 return -2; 2159 2160 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) << 2161 TPD_IPHL_SHIFT; 2162 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) & 2163 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT; 2164 ptpd->word3 |= (skb_shinfo(skb)->gso_size & 2165 TPD_MSS_MASK) << TPD_MSS_SHIFT; 2166 ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT; 2167 return 3; 2168 } 2169 } 2170 return false; 2171 } 2172 2173 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb, 2174 struct tx_packet_desc *ptpd) 2175 { 2176 u8 css, cso; 2177 2178 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { 2179 css = skb_checksum_start_offset(skb); 2180 cso = css + (u8) skb->csum_offset; 2181 if (unlikely(css & 0x1)) { 2182 /* L1 hardware requires an even number here */ 2183 if (netif_msg_tx_err(adapter)) 2184 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 2185 "payload offset not an even number\n"); 2186 return -1; 2187 } 2188 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) << 2189 TPD_PLOADOFFSET_SHIFT; 2190 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) << 2191 TPD_CCSUMOFFSET_SHIFT; 2192 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT; 2193 return true; 2194 } 2195 return 0; 2196 } 2197 2198 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb, 2199 struct tx_packet_desc *ptpd) 2200 { 2201 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 2202 struct atl1_buffer *buffer_info; 2203 u16 buf_len = skb->len; 2204 struct page *page; 2205 unsigned long offset; 2206 unsigned int nr_frags; 2207 unsigned int f; 2208 int retval; 2209 u16 next_to_use; 2210 u16 data_len; 2211 u8 hdr_len; 2212 2213 buf_len -= skb->data_len; 2214 nr_frags = skb_shinfo(skb)->nr_frags; 2215 next_to_use = atomic_read(&tpd_ring->next_to_use); 2216 buffer_info = &tpd_ring->buffer_info[next_to_use]; 2217 BUG_ON(buffer_info->skb); 2218 /* put skb in last TPD */ 2219 buffer_info->skb = NULL; 2220 2221 retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK; 2222 if (retval) { 2223 /* TSO */ 2224 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2225 buffer_info->length = hdr_len; 2226 page = virt_to_page(skb->data); 2227 offset = (unsigned long)skb->data & ~PAGE_MASK; 2228 buffer_info->dma = pci_map_page(adapter->pdev, page, 2229 offset, hdr_len, 2230 PCI_DMA_TODEVICE); 2231 2232 if (++next_to_use == tpd_ring->count) 2233 next_to_use = 0; 2234 2235 if (buf_len > hdr_len) { 2236 int i, nseg; 2237 2238 data_len = buf_len - hdr_len; 2239 nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) / 2240 ATL1_MAX_TX_BUF_LEN; 2241 for (i = 0; i < nseg; i++) { 2242 buffer_info = 2243 &tpd_ring->buffer_info[next_to_use]; 2244 buffer_info->skb = NULL; 2245 buffer_info->length = 2246 (ATL1_MAX_TX_BUF_LEN >= 2247 data_len) ? ATL1_MAX_TX_BUF_LEN : data_len; 2248 data_len -= buffer_info->length; 2249 page = virt_to_page(skb->data + 2250 (hdr_len + i * ATL1_MAX_TX_BUF_LEN)); 2251 offset = (unsigned long)(skb->data + 2252 (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) & 2253 ~PAGE_MASK; 2254 buffer_info->dma = pci_map_page(adapter->pdev, 2255 page, offset, buffer_info->length, 2256 PCI_DMA_TODEVICE); 2257 if (++next_to_use == tpd_ring->count) 2258 next_to_use = 0; 2259 } 2260 } 2261 } else { 2262 /* not TSO */ 2263 buffer_info->length = buf_len; 2264 page = virt_to_page(skb->data); 2265 offset = (unsigned long)skb->data & ~PAGE_MASK; 2266 buffer_info->dma = pci_map_page(adapter->pdev, page, 2267 offset, buf_len, PCI_DMA_TODEVICE); 2268 if (++next_to_use == tpd_ring->count) 2269 next_to_use = 0; 2270 } 2271 2272 for (f = 0; f < nr_frags; f++) { 2273 const struct skb_frag_struct *frag; 2274 u16 i, nseg; 2275 2276 frag = &skb_shinfo(skb)->frags[f]; 2277 buf_len = skb_frag_size(frag); 2278 2279 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) / 2280 ATL1_MAX_TX_BUF_LEN; 2281 for (i = 0; i < nseg; i++) { 2282 buffer_info = &tpd_ring->buffer_info[next_to_use]; 2283 BUG_ON(buffer_info->skb); 2284 2285 buffer_info->skb = NULL; 2286 buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ? 2287 ATL1_MAX_TX_BUF_LEN : buf_len; 2288 buf_len -= buffer_info->length; 2289 buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev, 2290 frag, i * ATL1_MAX_TX_BUF_LEN, 2291 buffer_info->length, DMA_TO_DEVICE); 2292 2293 if (++next_to_use == tpd_ring->count) 2294 next_to_use = 0; 2295 } 2296 } 2297 2298 /* last tpd's buffer-info */ 2299 buffer_info->skb = skb; 2300 } 2301 2302 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count, 2303 struct tx_packet_desc *ptpd) 2304 { 2305 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 2306 struct atl1_buffer *buffer_info; 2307 struct tx_packet_desc *tpd; 2308 u16 j; 2309 u32 val; 2310 u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use); 2311 2312 for (j = 0; j < count; j++) { 2313 buffer_info = &tpd_ring->buffer_info[next_to_use]; 2314 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use); 2315 if (tpd != ptpd) 2316 memcpy(tpd, ptpd, sizeof(struct tx_packet_desc)); 2317 tpd->buffer_addr = cpu_to_le64(buffer_info->dma); 2318 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT); 2319 tpd->word2 |= (cpu_to_le16(buffer_info->length) & 2320 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT; 2321 2322 /* 2323 * if this is the first packet in a TSO chain, set 2324 * TPD_HDRFLAG, otherwise, clear it. 2325 */ 2326 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & 2327 TPD_SEGMENT_EN_MASK; 2328 if (val) { 2329 if (!j) 2330 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT; 2331 else 2332 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT); 2333 } 2334 2335 if (j == (count - 1)) 2336 tpd->word3 |= 1 << TPD_EOP_SHIFT; 2337 2338 if (++next_to_use == tpd_ring->count) 2339 next_to_use = 0; 2340 } 2341 /* 2342 * Force memory writes to complete before letting h/w 2343 * know there are new descriptors to fetch. (Only 2344 * applicable for weak-ordered memory model archs, 2345 * such as IA-64). 2346 */ 2347 wmb(); 2348 2349 atomic_set(&tpd_ring->next_to_use, next_to_use); 2350 } 2351 2352 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb, 2353 struct net_device *netdev) 2354 { 2355 struct atl1_adapter *adapter = netdev_priv(netdev); 2356 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 2357 int len; 2358 int tso; 2359 int count = 1; 2360 int ret_val; 2361 struct tx_packet_desc *ptpd; 2362 u16 vlan_tag; 2363 unsigned int nr_frags = 0; 2364 unsigned int mss = 0; 2365 unsigned int f; 2366 unsigned int proto_hdr_len; 2367 2368 len = skb_headlen(skb); 2369 2370 if (unlikely(skb->len <= 0)) { 2371 dev_kfree_skb_any(skb); 2372 return NETDEV_TX_OK; 2373 } 2374 2375 nr_frags = skb_shinfo(skb)->nr_frags; 2376 for (f = 0; f < nr_frags; f++) { 2377 unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]); 2378 count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) / 2379 ATL1_MAX_TX_BUF_LEN; 2380 } 2381 2382 mss = skb_shinfo(skb)->gso_size; 2383 if (mss) { 2384 if (skb->protocol == htons(ETH_P_IP)) { 2385 proto_hdr_len = (skb_transport_offset(skb) + 2386 tcp_hdrlen(skb)); 2387 if (unlikely(proto_hdr_len > len)) { 2388 dev_kfree_skb_any(skb); 2389 return NETDEV_TX_OK; 2390 } 2391 /* need additional TPD ? */ 2392 if (proto_hdr_len != len) 2393 count += (len - proto_hdr_len + 2394 ATL1_MAX_TX_BUF_LEN - 1) / 2395 ATL1_MAX_TX_BUF_LEN; 2396 } 2397 } 2398 2399 if (atl1_tpd_avail(&adapter->tpd_ring) < count) { 2400 /* not enough descriptors */ 2401 netif_stop_queue(netdev); 2402 if (netif_msg_tx_queued(adapter)) 2403 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 2404 "tx busy\n"); 2405 return NETDEV_TX_BUSY; 2406 } 2407 2408 ptpd = ATL1_TPD_DESC(tpd_ring, 2409 (u16) atomic_read(&tpd_ring->next_to_use)); 2410 memset(ptpd, 0, sizeof(struct tx_packet_desc)); 2411 2412 if (vlan_tx_tag_present(skb)) { 2413 vlan_tag = vlan_tx_tag_get(skb); 2414 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) | 2415 ((vlan_tag >> 9) & 0x8); 2416 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT; 2417 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) << 2418 TPD_VLANTAG_SHIFT; 2419 } 2420 2421 tso = atl1_tso(adapter, skb, ptpd); 2422 if (tso < 0) { 2423 dev_kfree_skb_any(skb); 2424 return NETDEV_TX_OK; 2425 } 2426 2427 if (!tso) { 2428 ret_val = atl1_tx_csum(adapter, skb, ptpd); 2429 if (ret_val < 0) { 2430 dev_kfree_skb_any(skb); 2431 return NETDEV_TX_OK; 2432 } 2433 } 2434 2435 atl1_tx_map(adapter, skb, ptpd); 2436 atl1_tx_queue(adapter, count, ptpd); 2437 atl1_update_mailbox(adapter); 2438 mmiowb(); 2439 return NETDEV_TX_OK; 2440 } 2441 2442 /* 2443 * atl1_intr - Interrupt Handler 2444 * @irq: interrupt number 2445 * @data: pointer to a network interface device structure 2446 * @pt_regs: CPU registers structure 2447 */ 2448 static irqreturn_t atl1_intr(int irq, void *data) 2449 { 2450 struct atl1_adapter *adapter = netdev_priv(data); 2451 u32 status; 2452 int max_ints = 10; 2453 2454 status = adapter->cmb.cmb->int_stats; 2455 if (!status) 2456 return IRQ_NONE; 2457 2458 do { 2459 /* clear CMB interrupt status at once */ 2460 adapter->cmb.cmb->int_stats = 0; 2461 2462 if (status & ISR_GPHY) /* clear phy status */ 2463 atlx_clear_phy_int(adapter); 2464 2465 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */ 2466 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR); 2467 2468 /* check if SMB intr */ 2469 if (status & ISR_SMB) 2470 atl1_inc_smb(adapter); 2471 2472 /* check if PCIE PHY Link down */ 2473 if (status & ISR_PHY_LINKDOWN) { 2474 if (netif_msg_intr(adapter)) 2475 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 2476 "pcie phy link down %x\n", status); 2477 if (netif_running(adapter->netdev)) { /* reset MAC */ 2478 iowrite32(0, adapter->hw.hw_addr + REG_IMR); 2479 schedule_work(&adapter->reset_dev_task); 2480 return IRQ_HANDLED; 2481 } 2482 } 2483 2484 /* check if DMA read/write error ? */ 2485 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) { 2486 if (netif_msg_intr(adapter)) 2487 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 2488 "pcie DMA r/w error (status = 0x%x)\n", 2489 status); 2490 iowrite32(0, adapter->hw.hw_addr + REG_IMR); 2491 schedule_work(&adapter->reset_dev_task); 2492 return IRQ_HANDLED; 2493 } 2494 2495 /* link event */ 2496 if (status & ISR_GPHY) { 2497 adapter->soft_stats.tx_carrier_errors++; 2498 atl1_check_for_link(adapter); 2499 } 2500 2501 /* transmit event */ 2502 if (status & ISR_CMB_TX) 2503 atl1_intr_tx(adapter); 2504 2505 /* rx exception */ 2506 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN | 2507 ISR_RRD_OV | ISR_HOST_RFD_UNRUN | 2508 ISR_HOST_RRD_OV | ISR_CMB_RX))) { 2509 if (status & (ISR_RXF_OV | ISR_RFD_UNRUN | 2510 ISR_RRD_OV | ISR_HOST_RFD_UNRUN | 2511 ISR_HOST_RRD_OV)) 2512 if (netif_msg_intr(adapter)) 2513 dev_printk(KERN_DEBUG, 2514 &adapter->pdev->dev, 2515 "rx exception, ISR = 0x%x\n", 2516 status); 2517 atl1_intr_rx(adapter); 2518 } 2519 2520 if (--max_ints < 0) 2521 break; 2522 2523 } while ((status = adapter->cmb.cmb->int_stats)); 2524 2525 /* re-enable Interrupt */ 2526 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR); 2527 return IRQ_HANDLED; 2528 } 2529 2530 2531 /* 2532 * atl1_phy_config - Timer Call-back 2533 * @data: pointer to netdev cast into an unsigned long 2534 */ 2535 static void atl1_phy_config(unsigned long data) 2536 { 2537 struct atl1_adapter *adapter = (struct atl1_adapter *)data; 2538 struct atl1_hw *hw = &adapter->hw; 2539 unsigned long flags; 2540 2541 spin_lock_irqsave(&adapter->lock, flags); 2542 adapter->phy_timer_pending = false; 2543 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); 2544 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg); 2545 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN); 2546 spin_unlock_irqrestore(&adapter->lock, flags); 2547 } 2548 2549 /* 2550 * Orphaned vendor comment left intact here: 2551 * <vendor comment> 2552 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT 2553 * will assert. We do soft reset <0x1400=1> according 2554 * with the SPEC. BUT, it seemes that PCIE or DMA 2555 * state-machine will not be reset. DMAR_TO_INT will 2556 * assert again and again. 2557 * </vendor comment> 2558 */ 2559 2560 static int atl1_reset(struct atl1_adapter *adapter) 2561 { 2562 int ret; 2563 ret = atl1_reset_hw(&adapter->hw); 2564 if (ret) 2565 return ret; 2566 return atl1_init_hw(&adapter->hw); 2567 } 2568 2569 static s32 atl1_up(struct atl1_adapter *adapter) 2570 { 2571 struct net_device *netdev = adapter->netdev; 2572 int err; 2573 int irq_flags = 0; 2574 2575 /* hardware has been reset, we need to reload some things */ 2576 atlx_set_multi(netdev); 2577 atl1_init_ring_ptrs(adapter); 2578 atlx_restore_vlan(adapter); 2579 err = atl1_alloc_rx_buffers(adapter); 2580 if (unlikely(!err)) 2581 /* no RX BUFFER allocated */ 2582 return -ENOMEM; 2583 2584 if (unlikely(atl1_configure(adapter))) { 2585 err = -EIO; 2586 goto err_up; 2587 } 2588 2589 err = pci_enable_msi(adapter->pdev); 2590 if (err) { 2591 if (netif_msg_ifup(adapter)) 2592 dev_info(&adapter->pdev->dev, 2593 "Unable to enable MSI: %d\n", err); 2594 irq_flags |= IRQF_SHARED; 2595 } 2596 2597 err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags, 2598 netdev->name, netdev); 2599 if (unlikely(err)) 2600 goto err_up; 2601 2602 atlx_irq_enable(adapter); 2603 atl1_check_link(adapter); 2604 netif_start_queue(netdev); 2605 return 0; 2606 2607 err_up: 2608 pci_disable_msi(adapter->pdev); 2609 /* free rx_buffers */ 2610 atl1_clean_rx_ring(adapter); 2611 return err; 2612 } 2613 2614 static void atl1_down(struct atl1_adapter *adapter) 2615 { 2616 struct net_device *netdev = adapter->netdev; 2617 2618 netif_stop_queue(netdev); 2619 del_timer_sync(&adapter->phy_config_timer); 2620 adapter->phy_timer_pending = false; 2621 2622 atlx_irq_disable(adapter); 2623 free_irq(adapter->pdev->irq, netdev); 2624 pci_disable_msi(adapter->pdev); 2625 atl1_reset_hw(&adapter->hw); 2626 adapter->cmb.cmb->int_stats = 0; 2627 2628 adapter->link_speed = SPEED_0; 2629 adapter->link_duplex = -1; 2630 netif_carrier_off(netdev); 2631 2632 atl1_clean_tx_ring(adapter); 2633 atl1_clean_rx_ring(adapter); 2634 } 2635 2636 static void atl1_reset_dev_task(struct work_struct *work) 2637 { 2638 struct atl1_adapter *adapter = 2639 container_of(work, struct atl1_adapter, reset_dev_task); 2640 struct net_device *netdev = adapter->netdev; 2641 2642 netif_device_detach(netdev); 2643 atl1_down(adapter); 2644 atl1_up(adapter); 2645 netif_device_attach(netdev); 2646 } 2647 2648 /* 2649 * atl1_change_mtu - Change the Maximum Transfer Unit 2650 * @netdev: network interface device structure 2651 * @new_mtu: new value for maximum frame size 2652 * 2653 * Returns 0 on success, negative on failure 2654 */ 2655 static int atl1_change_mtu(struct net_device *netdev, int new_mtu) 2656 { 2657 struct atl1_adapter *adapter = netdev_priv(netdev); 2658 int old_mtu = netdev->mtu; 2659 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2660 2661 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || 2662 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 2663 if (netif_msg_link(adapter)) 2664 dev_warn(&adapter->pdev->dev, "invalid MTU setting\n"); 2665 return -EINVAL; 2666 } 2667 2668 adapter->hw.max_frame_size = max_frame; 2669 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3; 2670 adapter->rx_buffer_len = (max_frame + 7) & ~7; 2671 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8; 2672 2673 netdev->mtu = new_mtu; 2674 if ((old_mtu != new_mtu) && netif_running(netdev)) { 2675 atl1_down(adapter); 2676 atl1_up(adapter); 2677 } 2678 2679 return 0; 2680 } 2681 2682 /* 2683 * atl1_open - Called when a network interface is made active 2684 * @netdev: network interface device structure 2685 * 2686 * Returns 0 on success, negative value on failure 2687 * 2688 * The open entry point is called when a network interface is made 2689 * active by the system (IFF_UP). At this point all resources needed 2690 * for transmit and receive operations are allocated, the interrupt 2691 * handler is registered with the OS, the watchdog timer is started, 2692 * and the stack is notified that the interface is ready. 2693 */ 2694 static int atl1_open(struct net_device *netdev) 2695 { 2696 struct atl1_adapter *adapter = netdev_priv(netdev); 2697 int err; 2698 2699 netif_carrier_off(netdev); 2700 2701 /* allocate transmit descriptors */ 2702 err = atl1_setup_ring_resources(adapter); 2703 if (err) 2704 return err; 2705 2706 err = atl1_up(adapter); 2707 if (err) 2708 goto err_up; 2709 2710 return 0; 2711 2712 err_up: 2713 atl1_reset(adapter); 2714 return err; 2715 } 2716 2717 /* 2718 * atl1_close - Disables a network interface 2719 * @netdev: network interface device structure 2720 * 2721 * Returns 0, this is not allowed to fail 2722 * 2723 * The close entry point is called when an interface is de-activated 2724 * by the OS. The hardware is still under the drivers control, but 2725 * needs to be disabled. A global MAC reset is issued to stop the 2726 * hardware, and all transmit and receive resources are freed. 2727 */ 2728 static int atl1_close(struct net_device *netdev) 2729 { 2730 struct atl1_adapter *adapter = netdev_priv(netdev); 2731 atl1_down(adapter); 2732 atl1_free_ring_resources(adapter); 2733 return 0; 2734 } 2735 2736 #ifdef CONFIG_PM 2737 static int atl1_suspend(struct device *dev) 2738 { 2739 struct pci_dev *pdev = to_pci_dev(dev); 2740 struct net_device *netdev = pci_get_drvdata(pdev); 2741 struct atl1_adapter *adapter = netdev_priv(netdev); 2742 struct atl1_hw *hw = &adapter->hw; 2743 u32 ctrl = 0; 2744 u32 wufc = adapter->wol; 2745 u32 val; 2746 u16 speed; 2747 u16 duplex; 2748 2749 netif_device_detach(netdev); 2750 if (netif_running(netdev)) 2751 atl1_down(adapter); 2752 2753 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl); 2754 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl); 2755 val = ctrl & BMSR_LSTATUS; 2756 if (val) 2757 wufc &= ~ATLX_WUFC_LNKC; 2758 if (!wufc) 2759 goto disable_wol; 2760 2761 if (val) { 2762 val = atl1_get_speed_and_duplex(hw, &speed, &duplex); 2763 if (val) { 2764 if (netif_msg_ifdown(adapter)) 2765 dev_printk(KERN_DEBUG, &pdev->dev, 2766 "error getting speed/duplex\n"); 2767 goto disable_wol; 2768 } 2769 2770 ctrl = 0; 2771 2772 /* enable magic packet WOL */ 2773 if (wufc & ATLX_WUFC_MAG) 2774 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN); 2775 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL); 2776 ioread32(hw->hw_addr + REG_WOL_CTRL); 2777 2778 /* configure the mac */ 2779 ctrl = MAC_CTRL_RX_EN; 2780 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 : 2781 MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT); 2782 if (duplex == FULL_DUPLEX) 2783 ctrl |= MAC_CTRL_DUPLX; 2784 ctrl |= (((u32)adapter->hw.preamble_len & 2785 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); 2786 __atlx_vlan_mode(netdev->features, &ctrl); 2787 if (wufc & ATLX_WUFC_MAG) 2788 ctrl |= MAC_CTRL_BC_EN; 2789 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL); 2790 ioread32(hw->hw_addr + REG_MAC_CTRL); 2791 2792 /* poke the PHY */ 2793 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC); 2794 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 2795 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC); 2796 ioread32(hw->hw_addr + REG_PCIE_PHYMISC); 2797 } else { 2798 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN); 2799 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL); 2800 ioread32(hw->hw_addr + REG_WOL_CTRL); 2801 iowrite32(0, hw->hw_addr + REG_MAC_CTRL); 2802 ioread32(hw->hw_addr + REG_MAC_CTRL); 2803 hw->phy_configured = false; 2804 } 2805 2806 return 0; 2807 2808 disable_wol: 2809 iowrite32(0, hw->hw_addr + REG_WOL_CTRL); 2810 ioread32(hw->hw_addr + REG_WOL_CTRL); 2811 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC); 2812 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 2813 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC); 2814 ioread32(hw->hw_addr + REG_PCIE_PHYMISC); 2815 hw->phy_configured = false; 2816 2817 return 0; 2818 } 2819 2820 static int atl1_resume(struct device *dev) 2821 { 2822 struct pci_dev *pdev = to_pci_dev(dev); 2823 struct net_device *netdev = pci_get_drvdata(pdev); 2824 struct atl1_adapter *adapter = netdev_priv(netdev); 2825 2826 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL); 2827 2828 atl1_reset_hw(&adapter->hw); 2829 2830 if (netif_running(netdev)) { 2831 adapter->cmb.cmb->int_stats = 0; 2832 atl1_up(adapter); 2833 } 2834 netif_device_attach(netdev); 2835 2836 return 0; 2837 } 2838 2839 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume); 2840 #define ATL1_PM_OPS (&atl1_pm_ops) 2841 2842 #else 2843 2844 static int atl1_suspend(struct device *dev) { return 0; } 2845 2846 #define ATL1_PM_OPS NULL 2847 #endif 2848 2849 static void atl1_shutdown(struct pci_dev *pdev) 2850 { 2851 struct net_device *netdev = pci_get_drvdata(pdev); 2852 struct atl1_adapter *adapter = netdev_priv(netdev); 2853 2854 atl1_suspend(&pdev->dev); 2855 pci_wake_from_d3(pdev, adapter->wol); 2856 pci_set_power_state(pdev, PCI_D3hot); 2857 } 2858 2859 #ifdef CONFIG_NET_POLL_CONTROLLER 2860 static void atl1_poll_controller(struct net_device *netdev) 2861 { 2862 disable_irq(netdev->irq); 2863 atl1_intr(netdev->irq, netdev); 2864 enable_irq(netdev->irq); 2865 } 2866 #endif 2867 2868 static const struct net_device_ops atl1_netdev_ops = { 2869 .ndo_open = atl1_open, 2870 .ndo_stop = atl1_close, 2871 .ndo_start_xmit = atl1_xmit_frame, 2872 .ndo_set_rx_mode = atlx_set_multi, 2873 .ndo_validate_addr = eth_validate_addr, 2874 .ndo_set_mac_address = atl1_set_mac, 2875 .ndo_change_mtu = atl1_change_mtu, 2876 .ndo_fix_features = atlx_fix_features, 2877 .ndo_set_features = atlx_set_features, 2878 .ndo_do_ioctl = atlx_ioctl, 2879 .ndo_tx_timeout = atlx_tx_timeout, 2880 #ifdef CONFIG_NET_POLL_CONTROLLER 2881 .ndo_poll_controller = atl1_poll_controller, 2882 #endif 2883 }; 2884 2885 /* 2886 * atl1_probe - Device Initialization Routine 2887 * @pdev: PCI device information struct 2888 * @ent: entry in atl1_pci_tbl 2889 * 2890 * Returns 0 on success, negative on failure 2891 * 2892 * atl1_probe initializes an adapter identified by a pci_dev structure. 2893 * The OS initialization, configuring of the adapter private structure, 2894 * and a hardware reset occur. 2895 */ 2896 static int __devinit atl1_probe(struct pci_dev *pdev, 2897 const struct pci_device_id *ent) 2898 { 2899 struct net_device *netdev; 2900 struct atl1_adapter *adapter; 2901 static int cards_found = 0; 2902 int err; 2903 2904 err = pci_enable_device(pdev); 2905 if (err) 2906 return err; 2907 2908 /* 2909 * The atl1 chip can DMA to 64-bit addresses, but it uses a single 2910 * shared register for the high 32 bits, so only a single, aligned, 2911 * 4 GB physical address range can be used at a time. 2912 * 2913 * Supporting 64-bit DMA on this hardware is more trouble than it's 2914 * worth. It is far easier to limit to 32-bit DMA than update 2915 * various kernel subsystems to support the mechanics required by a 2916 * fixed-high-32-bit system. 2917 */ 2918 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2919 if (err) { 2920 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2921 goto err_dma; 2922 } 2923 /* 2924 * Mark all PCI regions associated with PCI device 2925 * pdev as being reserved by owner atl1_driver_name 2926 */ 2927 err = pci_request_regions(pdev, ATLX_DRIVER_NAME); 2928 if (err) 2929 goto err_request_regions; 2930 2931 /* 2932 * Enables bus-mastering on the device and calls 2933 * pcibios_set_master to do the needed arch specific settings 2934 */ 2935 pci_set_master(pdev); 2936 2937 netdev = alloc_etherdev(sizeof(struct atl1_adapter)); 2938 if (!netdev) { 2939 err = -ENOMEM; 2940 goto err_alloc_etherdev; 2941 } 2942 SET_NETDEV_DEV(netdev, &pdev->dev); 2943 2944 pci_set_drvdata(pdev, netdev); 2945 adapter = netdev_priv(netdev); 2946 adapter->netdev = netdev; 2947 adapter->pdev = pdev; 2948 adapter->hw.back = adapter; 2949 adapter->msg_enable = netif_msg_init(debug, atl1_default_msg); 2950 2951 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0); 2952 if (!adapter->hw.hw_addr) { 2953 err = -EIO; 2954 goto err_pci_iomap; 2955 } 2956 /* get device revision number */ 2957 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr + 2958 (REG_MASTER_CTRL + 2)); 2959 if (netif_msg_probe(adapter)) 2960 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION); 2961 2962 /* set default ring resource counts */ 2963 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD; 2964 adapter->tpd_ring.count = ATL1_DEFAULT_TPD; 2965 2966 adapter->mii.dev = netdev; 2967 adapter->mii.mdio_read = mdio_read; 2968 adapter->mii.mdio_write = mdio_write; 2969 adapter->mii.phy_id_mask = 0x1f; 2970 adapter->mii.reg_num_mask = 0x1f; 2971 2972 netdev->netdev_ops = &atl1_netdev_ops; 2973 netdev->watchdog_timeo = 5 * HZ; 2974 2975 netdev->ethtool_ops = &atl1_ethtool_ops; 2976 adapter->bd_number = cards_found; 2977 2978 /* setup the private structure */ 2979 err = atl1_sw_init(adapter); 2980 if (err) 2981 goto err_common; 2982 2983 netdev->features = NETIF_F_HW_CSUM; 2984 netdev->features |= NETIF_F_SG; 2985 netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX); 2986 2987 netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO | 2988 NETIF_F_HW_VLAN_RX; 2989 2990 /* is this valid? see atl1_setup_mac_ctrl() */ 2991 netdev->features |= NETIF_F_RXCSUM; 2992 2993 /* 2994 * patch for some L1 of old version, 2995 * the final version of L1 may not need these 2996 * patches 2997 */ 2998 /* atl1_pcie_patch(adapter); */ 2999 3000 /* really reset GPHY core */ 3001 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE); 3002 3003 /* 3004 * reset the controller to 3005 * put the device in a known good starting state 3006 */ 3007 if (atl1_reset_hw(&adapter->hw)) { 3008 err = -EIO; 3009 goto err_common; 3010 } 3011 3012 /* copy the MAC address out of the EEPROM */ 3013 if (atl1_read_mac_addr(&adapter->hw)) { 3014 /* mark random mac */ 3015 netdev->addr_assign_type |= NET_ADDR_RANDOM; 3016 } 3017 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); 3018 3019 if (!is_valid_ether_addr(netdev->dev_addr)) { 3020 err = -EIO; 3021 goto err_common; 3022 } 3023 3024 atl1_check_options(adapter); 3025 3026 /* pre-init the MAC, and setup link */ 3027 err = atl1_init_hw(&adapter->hw); 3028 if (err) { 3029 err = -EIO; 3030 goto err_common; 3031 } 3032 3033 atl1_pcie_patch(adapter); 3034 /* assume we have no link for now */ 3035 netif_carrier_off(netdev); 3036 3037 setup_timer(&adapter->phy_config_timer, atl1_phy_config, 3038 (unsigned long)adapter); 3039 adapter->phy_timer_pending = false; 3040 3041 INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task); 3042 3043 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task); 3044 3045 err = register_netdev(netdev); 3046 if (err) 3047 goto err_common; 3048 3049 cards_found++; 3050 atl1_via_workaround(adapter); 3051 return 0; 3052 3053 err_common: 3054 pci_iounmap(pdev, adapter->hw.hw_addr); 3055 err_pci_iomap: 3056 free_netdev(netdev); 3057 err_alloc_etherdev: 3058 pci_release_regions(pdev); 3059 err_dma: 3060 err_request_regions: 3061 pci_disable_device(pdev); 3062 return err; 3063 } 3064 3065 /* 3066 * atl1_remove - Device Removal Routine 3067 * @pdev: PCI device information struct 3068 * 3069 * atl1_remove is called by the PCI subsystem to alert the driver 3070 * that it should release a PCI device. The could be caused by a 3071 * Hot-Plug event, or because the driver is going to be removed from 3072 * memory. 3073 */ 3074 static void __devexit atl1_remove(struct pci_dev *pdev) 3075 { 3076 struct net_device *netdev = pci_get_drvdata(pdev); 3077 struct atl1_adapter *adapter; 3078 /* Device not available. Return. */ 3079 if (!netdev) 3080 return; 3081 3082 adapter = netdev_priv(netdev); 3083 3084 /* 3085 * Some atl1 boards lack persistent storage for their MAC, and get it 3086 * from the BIOS during POST. If we've been messing with the MAC 3087 * address, we need to save the permanent one. 3088 */ 3089 if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) { 3090 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, 3091 ETH_ALEN); 3092 atl1_set_mac_addr(&adapter->hw); 3093 } 3094 3095 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE); 3096 unregister_netdev(netdev); 3097 pci_iounmap(pdev, adapter->hw.hw_addr); 3098 pci_release_regions(pdev); 3099 free_netdev(netdev); 3100 pci_disable_device(pdev); 3101 } 3102 3103 static struct pci_driver atl1_driver = { 3104 .name = ATLX_DRIVER_NAME, 3105 .id_table = atl1_pci_tbl, 3106 .probe = atl1_probe, 3107 .remove = __devexit_p(atl1_remove), 3108 .shutdown = atl1_shutdown, 3109 .driver.pm = ATL1_PM_OPS, 3110 }; 3111 3112 /* 3113 * atl1_exit_module - Driver Exit Cleanup Routine 3114 * 3115 * atl1_exit_module is called just before the driver is removed 3116 * from memory. 3117 */ 3118 static void __exit atl1_exit_module(void) 3119 { 3120 pci_unregister_driver(&atl1_driver); 3121 } 3122 3123 /* 3124 * atl1_init_module - Driver Registration Routine 3125 * 3126 * atl1_init_module is the first routine called when the driver is 3127 * loaded. All it does is register with the PCI subsystem. 3128 */ 3129 static int __init atl1_init_module(void) 3130 { 3131 return pci_register_driver(&atl1_driver); 3132 } 3133 3134 module_init(atl1_init_module); 3135 module_exit(atl1_exit_module); 3136 3137 struct atl1_stats { 3138 char stat_string[ETH_GSTRING_LEN]; 3139 int sizeof_stat; 3140 int stat_offset; 3141 }; 3142 3143 #define ATL1_STAT(m) \ 3144 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m) 3145 3146 static struct atl1_stats atl1_gstrings_stats[] = { 3147 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)}, 3148 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)}, 3149 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)}, 3150 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)}, 3151 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)}, 3152 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)}, 3153 {"multicast", ATL1_STAT(soft_stats.multicast)}, 3154 {"collisions", ATL1_STAT(soft_stats.collisions)}, 3155 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)}, 3156 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)}, 3157 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)}, 3158 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)}, 3159 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)}, 3160 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)}, 3161 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)}, 3162 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)}, 3163 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)}, 3164 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)}, 3165 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)}, 3166 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)}, 3167 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)}, 3168 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)}, 3169 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)}, 3170 {"tx_underun", ATL1_STAT(soft_stats.tx_underun)}, 3171 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)}, 3172 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)}, 3173 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)}, 3174 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)}, 3175 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)} 3176 }; 3177 3178 static void atl1_get_ethtool_stats(struct net_device *netdev, 3179 struct ethtool_stats *stats, u64 *data) 3180 { 3181 struct atl1_adapter *adapter = netdev_priv(netdev); 3182 int i; 3183 char *p; 3184 3185 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) { 3186 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset; 3187 data[i] = (atl1_gstrings_stats[i].sizeof_stat == 3188 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 3189 } 3190 3191 } 3192 3193 static int atl1_get_sset_count(struct net_device *netdev, int sset) 3194 { 3195 switch (sset) { 3196 case ETH_SS_STATS: 3197 return ARRAY_SIZE(atl1_gstrings_stats); 3198 default: 3199 return -EOPNOTSUPP; 3200 } 3201 } 3202 3203 static int atl1_get_settings(struct net_device *netdev, 3204 struct ethtool_cmd *ecmd) 3205 { 3206 struct atl1_adapter *adapter = netdev_priv(netdev); 3207 struct atl1_hw *hw = &adapter->hw; 3208 3209 ecmd->supported = (SUPPORTED_10baseT_Half | 3210 SUPPORTED_10baseT_Full | 3211 SUPPORTED_100baseT_Half | 3212 SUPPORTED_100baseT_Full | 3213 SUPPORTED_1000baseT_Full | 3214 SUPPORTED_Autoneg | SUPPORTED_TP); 3215 ecmd->advertising = ADVERTISED_TP; 3216 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3217 hw->media_type == MEDIA_TYPE_1000M_FULL) { 3218 ecmd->advertising |= ADVERTISED_Autoneg; 3219 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) { 3220 ecmd->advertising |= ADVERTISED_Autoneg; 3221 ecmd->advertising |= 3222 (ADVERTISED_10baseT_Half | 3223 ADVERTISED_10baseT_Full | 3224 ADVERTISED_100baseT_Half | 3225 ADVERTISED_100baseT_Full | 3226 ADVERTISED_1000baseT_Full); 3227 } else 3228 ecmd->advertising |= (ADVERTISED_1000baseT_Full); 3229 } 3230 ecmd->port = PORT_TP; 3231 ecmd->phy_address = 0; 3232 ecmd->transceiver = XCVR_INTERNAL; 3233 3234 if (netif_carrier_ok(adapter->netdev)) { 3235 u16 link_speed, link_duplex; 3236 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex); 3237 ethtool_cmd_speed_set(ecmd, link_speed); 3238 if (link_duplex == FULL_DUPLEX) 3239 ecmd->duplex = DUPLEX_FULL; 3240 else 3241 ecmd->duplex = DUPLEX_HALF; 3242 } else { 3243 ethtool_cmd_speed_set(ecmd, -1); 3244 ecmd->duplex = -1; 3245 } 3246 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3247 hw->media_type == MEDIA_TYPE_1000M_FULL) 3248 ecmd->autoneg = AUTONEG_ENABLE; 3249 else 3250 ecmd->autoneg = AUTONEG_DISABLE; 3251 3252 return 0; 3253 } 3254 3255 static int atl1_set_settings(struct net_device *netdev, 3256 struct ethtool_cmd *ecmd) 3257 { 3258 struct atl1_adapter *adapter = netdev_priv(netdev); 3259 struct atl1_hw *hw = &adapter->hw; 3260 u16 phy_data; 3261 int ret_val = 0; 3262 u16 old_media_type = hw->media_type; 3263 3264 if (netif_running(adapter->netdev)) { 3265 if (netif_msg_link(adapter)) 3266 dev_dbg(&adapter->pdev->dev, 3267 "ethtool shutting down adapter\n"); 3268 atl1_down(adapter); 3269 } 3270 3271 if (ecmd->autoneg == AUTONEG_ENABLE) 3272 hw->media_type = MEDIA_TYPE_AUTO_SENSOR; 3273 else { 3274 u32 speed = ethtool_cmd_speed(ecmd); 3275 if (speed == SPEED_1000) { 3276 if (ecmd->duplex != DUPLEX_FULL) { 3277 if (netif_msg_link(adapter)) 3278 dev_warn(&adapter->pdev->dev, 3279 "1000M half is invalid\n"); 3280 ret_val = -EINVAL; 3281 goto exit_sset; 3282 } 3283 hw->media_type = MEDIA_TYPE_1000M_FULL; 3284 } else if (speed == SPEED_100) { 3285 if (ecmd->duplex == DUPLEX_FULL) 3286 hw->media_type = MEDIA_TYPE_100M_FULL; 3287 else 3288 hw->media_type = MEDIA_TYPE_100M_HALF; 3289 } else { 3290 if (ecmd->duplex == DUPLEX_FULL) 3291 hw->media_type = MEDIA_TYPE_10M_FULL; 3292 else 3293 hw->media_type = MEDIA_TYPE_10M_HALF; 3294 } 3295 } 3296 switch (hw->media_type) { 3297 case MEDIA_TYPE_AUTO_SENSOR: 3298 ecmd->advertising = 3299 ADVERTISED_10baseT_Half | 3300 ADVERTISED_10baseT_Full | 3301 ADVERTISED_100baseT_Half | 3302 ADVERTISED_100baseT_Full | 3303 ADVERTISED_1000baseT_Full | 3304 ADVERTISED_Autoneg | ADVERTISED_TP; 3305 break; 3306 case MEDIA_TYPE_1000M_FULL: 3307 ecmd->advertising = 3308 ADVERTISED_1000baseT_Full | 3309 ADVERTISED_Autoneg | ADVERTISED_TP; 3310 break; 3311 default: 3312 ecmd->advertising = 0; 3313 break; 3314 } 3315 if (atl1_phy_setup_autoneg_adv(hw)) { 3316 ret_val = -EINVAL; 3317 if (netif_msg_link(adapter)) 3318 dev_warn(&adapter->pdev->dev, 3319 "invalid ethtool speed/duplex setting\n"); 3320 goto exit_sset; 3321 } 3322 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3323 hw->media_type == MEDIA_TYPE_1000M_FULL) 3324 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN; 3325 else { 3326 switch (hw->media_type) { 3327 case MEDIA_TYPE_100M_FULL: 3328 phy_data = 3329 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | 3330 MII_CR_RESET; 3331 break; 3332 case MEDIA_TYPE_100M_HALF: 3333 phy_data = MII_CR_SPEED_100 | MII_CR_RESET; 3334 break; 3335 case MEDIA_TYPE_10M_FULL: 3336 phy_data = 3337 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; 3338 break; 3339 default: 3340 /* MEDIA_TYPE_10M_HALF: */ 3341 phy_data = MII_CR_SPEED_10 | MII_CR_RESET; 3342 break; 3343 } 3344 } 3345 atl1_write_phy_reg(hw, MII_BMCR, phy_data); 3346 exit_sset: 3347 if (ret_val) 3348 hw->media_type = old_media_type; 3349 3350 if (netif_running(adapter->netdev)) { 3351 if (netif_msg_link(adapter)) 3352 dev_dbg(&adapter->pdev->dev, 3353 "ethtool starting adapter\n"); 3354 atl1_up(adapter); 3355 } else if (!ret_val) { 3356 if (netif_msg_link(adapter)) 3357 dev_dbg(&adapter->pdev->dev, 3358 "ethtool resetting adapter\n"); 3359 atl1_reset(adapter); 3360 } 3361 return ret_val; 3362 } 3363 3364 static void atl1_get_drvinfo(struct net_device *netdev, 3365 struct ethtool_drvinfo *drvinfo) 3366 { 3367 struct atl1_adapter *adapter = netdev_priv(netdev); 3368 3369 strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver)); 3370 strlcpy(drvinfo->version, ATLX_DRIVER_VERSION, 3371 sizeof(drvinfo->version)); 3372 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 3373 sizeof(drvinfo->bus_info)); 3374 drvinfo->eedump_len = ATL1_EEDUMP_LEN; 3375 } 3376 3377 static void atl1_get_wol(struct net_device *netdev, 3378 struct ethtool_wolinfo *wol) 3379 { 3380 struct atl1_adapter *adapter = netdev_priv(netdev); 3381 3382 wol->supported = WAKE_MAGIC; 3383 wol->wolopts = 0; 3384 if (adapter->wol & ATLX_WUFC_MAG) 3385 wol->wolopts |= WAKE_MAGIC; 3386 } 3387 3388 static int atl1_set_wol(struct net_device *netdev, 3389 struct ethtool_wolinfo *wol) 3390 { 3391 struct atl1_adapter *adapter = netdev_priv(netdev); 3392 3393 if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 3394 WAKE_ARP | WAKE_MAGICSECURE)) 3395 return -EOPNOTSUPP; 3396 adapter->wol = 0; 3397 if (wol->wolopts & WAKE_MAGIC) 3398 adapter->wol |= ATLX_WUFC_MAG; 3399 3400 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 3401 3402 return 0; 3403 } 3404 3405 static u32 atl1_get_msglevel(struct net_device *netdev) 3406 { 3407 struct atl1_adapter *adapter = netdev_priv(netdev); 3408 return adapter->msg_enable; 3409 } 3410 3411 static void atl1_set_msglevel(struct net_device *netdev, u32 value) 3412 { 3413 struct atl1_adapter *adapter = netdev_priv(netdev); 3414 adapter->msg_enable = value; 3415 } 3416 3417 static int atl1_get_regs_len(struct net_device *netdev) 3418 { 3419 return ATL1_REG_COUNT * sizeof(u32); 3420 } 3421 3422 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs, 3423 void *p) 3424 { 3425 struct atl1_adapter *adapter = netdev_priv(netdev); 3426 struct atl1_hw *hw = &adapter->hw; 3427 unsigned int i; 3428 u32 *regbuf = p; 3429 3430 for (i = 0; i < ATL1_REG_COUNT; i++) { 3431 /* 3432 * This switch statement avoids reserved regions 3433 * of register space. 3434 */ 3435 switch (i) { 3436 case 6 ... 9: 3437 case 14: 3438 case 29 ... 31: 3439 case 34 ... 63: 3440 case 75 ... 127: 3441 case 136 ... 1023: 3442 case 1027 ... 1087: 3443 case 1091 ... 1151: 3444 case 1194 ... 1195: 3445 case 1200 ... 1201: 3446 case 1206 ... 1213: 3447 case 1216 ... 1279: 3448 case 1290 ... 1311: 3449 case 1323 ... 1343: 3450 case 1358 ... 1359: 3451 case 1368 ... 1375: 3452 case 1378 ... 1383: 3453 case 1388 ... 1391: 3454 case 1393 ... 1395: 3455 case 1402 ... 1403: 3456 case 1410 ... 1471: 3457 case 1522 ... 1535: 3458 /* reserved region; don't read it */ 3459 regbuf[i] = 0; 3460 break; 3461 default: 3462 /* unreserved region */ 3463 regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32))); 3464 } 3465 } 3466 } 3467 3468 static void atl1_get_ringparam(struct net_device *netdev, 3469 struct ethtool_ringparam *ring) 3470 { 3471 struct atl1_adapter *adapter = netdev_priv(netdev); 3472 struct atl1_tpd_ring *txdr = &adapter->tpd_ring; 3473 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring; 3474 3475 ring->rx_max_pending = ATL1_MAX_RFD; 3476 ring->tx_max_pending = ATL1_MAX_TPD; 3477 ring->rx_pending = rxdr->count; 3478 ring->tx_pending = txdr->count; 3479 } 3480 3481 static int atl1_set_ringparam(struct net_device *netdev, 3482 struct ethtool_ringparam *ring) 3483 { 3484 struct atl1_adapter *adapter = netdev_priv(netdev); 3485 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring; 3486 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring; 3487 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring; 3488 3489 struct atl1_tpd_ring tpd_old, tpd_new; 3490 struct atl1_rfd_ring rfd_old, rfd_new; 3491 struct atl1_rrd_ring rrd_old, rrd_new; 3492 struct atl1_ring_header rhdr_old, rhdr_new; 3493 struct atl1_smb smb; 3494 struct atl1_cmb cmb; 3495 int err; 3496 3497 tpd_old = adapter->tpd_ring; 3498 rfd_old = adapter->rfd_ring; 3499 rrd_old = adapter->rrd_ring; 3500 rhdr_old = adapter->ring_header; 3501 3502 if (netif_running(adapter->netdev)) 3503 atl1_down(adapter); 3504 3505 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD); 3506 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD : 3507 rfdr->count; 3508 rfdr->count = (rfdr->count + 3) & ~3; 3509 rrdr->count = rfdr->count; 3510 3511 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD); 3512 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD : 3513 tpdr->count; 3514 tpdr->count = (tpdr->count + 3) & ~3; 3515 3516 if (netif_running(adapter->netdev)) { 3517 /* try to get new resources before deleting old */ 3518 err = atl1_setup_ring_resources(adapter); 3519 if (err) 3520 goto err_setup_ring; 3521 3522 /* 3523 * save the new, restore the old in order to free it, 3524 * then restore the new back again 3525 */ 3526 3527 rfd_new = adapter->rfd_ring; 3528 rrd_new = adapter->rrd_ring; 3529 tpd_new = adapter->tpd_ring; 3530 rhdr_new = adapter->ring_header; 3531 adapter->rfd_ring = rfd_old; 3532 adapter->rrd_ring = rrd_old; 3533 adapter->tpd_ring = tpd_old; 3534 adapter->ring_header = rhdr_old; 3535 /* 3536 * Save SMB and CMB, since atl1_free_ring_resources 3537 * will clear them. 3538 */ 3539 smb = adapter->smb; 3540 cmb = adapter->cmb; 3541 atl1_free_ring_resources(adapter); 3542 adapter->rfd_ring = rfd_new; 3543 adapter->rrd_ring = rrd_new; 3544 adapter->tpd_ring = tpd_new; 3545 adapter->ring_header = rhdr_new; 3546 adapter->smb = smb; 3547 adapter->cmb = cmb; 3548 3549 err = atl1_up(adapter); 3550 if (err) 3551 return err; 3552 } 3553 return 0; 3554 3555 err_setup_ring: 3556 adapter->rfd_ring = rfd_old; 3557 adapter->rrd_ring = rrd_old; 3558 adapter->tpd_ring = tpd_old; 3559 adapter->ring_header = rhdr_old; 3560 atl1_up(adapter); 3561 return err; 3562 } 3563 3564 static void atl1_get_pauseparam(struct net_device *netdev, 3565 struct ethtool_pauseparam *epause) 3566 { 3567 struct atl1_adapter *adapter = netdev_priv(netdev); 3568 struct atl1_hw *hw = &adapter->hw; 3569 3570 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3571 hw->media_type == MEDIA_TYPE_1000M_FULL) { 3572 epause->autoneg = AUTONEG_ENABLE; 3573 } else { 3574 epause->autoneg = AUTONEG_DISABLE; 3575 } 3576 epause->rx_pause = 1; 3577 epause->tx_pause = 1; 3578 } 3579 3580 static int atl1_set_pauseparam(struct net_device *netdev, 3581 struct ethtool_pauseparam *epause) 3582 { 3583 struct atl1_adapter *adapter = netdev_priv(netdev); 3584 struct atl1_hw *hw = &adapter->hw; 3585 3586 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3587 hw->media_type == MEDIA_TYPE_1000M_FULL) { 3588 epause->autoneg = AUTONEG_ENABLE; 3589 } else { 3590 epause->autoneg = AUTONEG_DISABLE; 3591 } 3592 3593 epause->rx_pause = 1; 3594 epause->tx_pause = 1; 3595 3596 return 0; 3597 } 3598 3599 static void atl1_get_strings(struct net_device *netdev, u32 stringset, 3600 u8 *data) 3601 { 3602 u8 *p = data; 3603 int i; 3604 3605 switch (stringset) { 3606 case ETH_SS_STATS: 3607 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) { 3608 memcpy(p, atl1_gstrings_stats[i].stat_string, 3609 ETH_GSTRING_LEN); 3610 p += ETH_GSTRING_LEN; 3611 } 3612 break; 3613 } 3614 } 3615 3616 static int atl1_nway_reset(struct net_device *netdev) 3617 { 3618 struct atl1_adapter *adapter = netdev_priv(netdev); 3619 struct atl1_hw *hw = &adapter->hw; 3620 3621 if (netif_running(netdev)) { 3622 u16 phy_data; 3623 atl1_down(adapter); 3624 3625 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3626 hw->media_type == MEDIA_TYPE_1000M_FULL) { 3627 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN; 3628 } else { 3629 switch (hw->media_type) { 3630 case MEDIA_TYPE_100M_FULL: 3631 phy_data = MII_CR_FULL_DUPLEX | 3632 MII_CR_SPEED_100 | MII_CR_RESET; 3633 break; 3634 case MEDIA_TYPE_100M_HALF: 3635 phy_data = MII_CR_SPEED_100 | MII_CR_RESET; 3636 break; 3637 case MEDIA_TYPE_10M_FULL: 3638 phy_data = MII_CR_FULL_DUPLEX | 3639 MII_CR_SPEED_10 | MII_CR_RESET; 3640 break; 3641 default: 3642 /* MEDIA_TYPE_10M_HALF */ 3643 phy_data = MII_CR_SPEED_10 | MII_CR_RESET; 3644 } 3645 } 3646 atl1_write_phy_reg(hw, MII_BMCR, phy_data); 3647 atl1_up(adapter); 3648 } 3649 return 0; 3650 } 3651 3652 static const struct ethtool_ops atl1_ethtool_ops = { 3653 .get_settings = atl1_get_settings, 3654 .set_settings = atl1_set_settings, 3655 .get_drvinfo = atl1_get_drvinfo, 3656 .get_wol = atl1_get_wol, 3657 .set_wol = atl1_set_wol, 3658 .get_msglevel = atl1_get_msglevel, 3659 .set_msglevel = atl1_set_msglevel, 3660 .get_regs_len = atl1_get_regs_len, 3661 .get_regs = atl1_get_regs, 3662 .get_ringparam = atl1_get_ringparam, 3663 .set_ringparam = atl1_set_ringparam, 3664 .get_pauseparam = atl1_get_pauseparam, 3665 .set_pauseparam = atl1_set_pauseparam, 3666 .get_link = ethtool_op_get_link, 3667 .get_strings = atl1_get_strings, 3668 .nway_reset = atl1_nway_reset, 3669 .get_ethtool_stats = atl1_get_ethtool_stats, 3670 .get_sset_count = atl1_get_sset_count, 3671 }; 3672