1 /*
2  * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3  * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4  * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5  *
6  * Derived from Intel e1000 driver
7  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called COPYING.
25  *
26  * Contact Information:
27  * Xiong Huang <xiong.huang@atheros.com>
28  * Jie Yang <jie.yang@atheros.com>
29  * Chris Snook <csnook@redhat.com>
30  * Jay Cliburn <jcliburn@gmail.com>
31  *
32  * This version is adapted from the Attansic reference driver.
33  *
34  * TODO:
35  * Add more ethtool functions.
36  * Fix abstruse irq enable/disable condition described here:
37  *	http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38  *
39  * NEEDS TESTING:
40  * VLAN
41  * multicast
42  * promiscuous mode
43  * interrupt coalescing
44  * SMP torture testing
45  */
46 
47 #include <linux/atomic.h>
48 #include <asm/byteorder.h>
49 
50 #include <linux/compiler.h>
51 #include <linux/crc32.h>
52 #include <linux/delay.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/etherdevice.h>
55 #include <linux/hardirq.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_vlan.h>
58 #include <linux/in.h>
59 #include <linux/interrupt.h>
60 #include <linux/ip.h>
61 #include <linux/irqflags.h>
62 #include <linux/irqreturn.h>
63 #include <linux/jiffies.h>
64 #include <linux/mii.h>
65 #include <linux/module.h>
66 #include <linux/moduleparam.h>
67 #include <linux/net.h>
68 #include <linux/netdevice.h>
69 #include <linux/pci.h>
70 #include <linux/pci_ids.h>
71 #include <linux/pm.h>
72 #include <linux/skbuff.h>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/string.h>
76 #include <linux/tcp.h>
77 #include <linux/timer.h>
78 #include <linux/types.h>
79 #include <linux/workqueue.h>
80 
81 #include <net/checksum.h>
82 
83 #include "atl1.h"
84 
85 #define ATLX_DRIVER_VERSION "2.1.3"
86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
87 	      "Chris Snook <csnook@redhat.com>, "
88 	      "Jay Cliburn <jcliburn@gmail.com>");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(ATLX_DRIVER_VERSION);
91 
92 /* Temporary hack for merging atl1 and atl2 */
93 #include "atlx.c"
94 
95 static const struct ethtool_ops atl1_ethtool_ops;
96 
97 /*
98  * This is the only thing that needs to be changed to adjust the
99  * maximum number of ports that the driver can manage.
100  */
101 #define ATL1_MAX_NIC 4
102 
103 #define OPTION_UNSET    -1
104 #define OPTION_DISABLED 0
105 #define OPTION_ENABLED  1
106 
107 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
108 
109 /*
110  * Interrupt Moderate Timer in units of 2 us
111  *
112  * Valid Range: 10-65535
113  *
114  * Default Value: 100 (200us)
115  */
116 static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
117 static unsigned int num_int_mod_timer;
118 module_param_array_named(int_mod_timer, int_mod_timer, int,
119 	&num_int_mod_timer, 0);
120 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
121 
122 #define DEFAULT_INT_MOD_CNT	100	/* 200us */
123 #define MAX_INT_MOD_CNT		65000
124 #define MIN_INT_MOD_CNT		50
125 
126 struct atl1_option {
127 	enum { enable_option, range_option, list_option } type;
128 	char *name;
129 	char *err;
130 	int def;
131 	union {
132 		struct {	/* range_option info */
133 			int min;
134 			int max;
135 		} r;
136 		struct {	/* list_option info */
137 			int nr;
138 			struct atl1_opt_list {
139 				int i;
140 				char *str;
141 			} *p;
142 		} l;
143 	} arg;
144 };
145 
146 static int atl1_validate_option(int *value, struct atl1_option *opt,
147 				struct pci_dev *pdev)
148 {
149 	if (*value == OPTION_UNSET) {
150 		*value = opt->def;
151 		return 0;
152 	}
153 
154 	switch (opt->type) {
155 	case enable_option:
156 		switch (*value) {
157 		case OPTION_ENABLED:
158 			dev_info(&pdev->dev, "%s enabled\n", opt->name);
159 			return 0;
160 		case OPTION_DISABLED:
161 			dev_info(&pdev->dev, "%s disabled\n", opt->name);
162 			return 0;
163 		}
164 		break;
165 	case range_option:
166 		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
167 			dev_info(&pdev->dev, "%s set to %i\n", opt->name,
168 				*value);
169 			return 0;
170 		}
171 		break;
172 	case list_option:{
173 			int i;
174 			struct atl1_opt_list *ent;
175 
176 			for (i = 0; i < opt->arg.l.nr; i++) {
177 				ent = &opt->arg.l.p[i];
178 				if (*value == ent->i) {
179 					if (ent->str[0] != '\0')
180 						dev_info(&pdev->dev, "%s\n",
181 							ent->str);
182 					return 0;
183 				}
184 			}
185 		}
186 		break;
187 
188 	default:
189 		break;
190 	}
191 
192 	dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
193 		opt->name, *value, opt->err);
194 	*value = opt->def;
195 	return -1;
196 }
197 
198 /**
199  * atl1_check_options - Range Checking for Command Line Parameters
200  * @adapter: board private structure
201  *
202  * This routine checks all command line parameters for valid user
203  * input.  If an invalid value is given, or if no user specified
204  * value exists, a default value is used.  The final value is stored
205  * in a variable in the adapter structure.
206  */
207 static void atl1_check_options(struct atl1_adapter *adapter)
208 {
209 	struct pci_dev *pdev = adapter->pdev;
210 	int bd = adapter->bd_number;
211 	if (bd >= ATL1_MAX_NIC) {
212 		dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
213 		dev_notice(&pdev->dev, "using defaults for all values\n");
214 	}
215 	{			/* Interrupt Moderate Timer */
216 		struct atl1_option opt = {
217 			.type = range_option,
218 			.name = "Interrupt Moderator Timer",
219 			.err = "using default of "
220 				__MODULE_STRING(DEFAULT_INT_MOD_CNT),
221 			.def = DEFAULT_INT_MOD_CNT,
222 			.arg = {.r = {.min = MIN_INT_MOD_CNT,
223 					.max = MAX_INT_MOD_CNT} }
224 		};
225 		int val;
226 		if (num_int_mod_timer > bd) {
227 			val = int_mod_timer[bd];
228 			atl1_validate_option(&val, &opt, pdev);
229 			adapter->imt = (u16) val;
230 		} else
231 			adapter->imt = (u16) (opt.def);
232 	}
233 }
234 
235 /*
236  * atl1_pci_tbl - PCI Device ID Table
237  */
238 static const struct pci_device_id atl1_pci_tbl[] = {
239 	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
240 	/* required last entry */
241 	{0,}
242 };
243 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
244 
245 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
246 	NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
247 
248 static int debug = -1;
249 module_param(debug, int, 0);
250 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
251 
252 /*
253  * Reset the transmit and receive units; mask and clear all interrupts.
254  * hw - Struct containing variables accessed by shared code
255  * return : 0  or  idle status (if error)
256  */
257 static s32 atl1_reset_hw(struct atl1_hw *hw)
258 {
259 	struct pci_dev *pdev = hw->back->pdev;
260 	struct atl1_adapter *adapter = hw->back;
261 	u32 icr;
262 	int i;
263 
264 	/*
265 	 * Clear Interrupt mask to stop board from generating
266 	 * interrupts & Clear any pending interrupt events
267 	 */
268 	/*
269 	 * atlx_irq_disable(adapter);
270 	 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
271 	 */
272 
273 	/*
274 	 * Issue Soft Reset to the MAC.  This will reset the chip's
275 	 * transmit, receive, DMA.  It will not effect
276 	 * the current PCI configuration.  The global reset bit is self-
277 	 * clearing, and should clear within a microsecond.
278 	 */
279 	iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
280 	ioread32(hw->hw_addr + REG_MASTER_CTRL);
281 
282 	iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
283 	ioread16(hw->hw_addr + REG_PHY_ENABLE);
284 
285 	/* delay about 1ms */
286 	msleep(1);
287 
288 	/* Wait at least 10ms for All module to be Idle */
289 	for (i = 0; i < 10; i++) {
290 		icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
291 		if (!icr)
292 			break;
293 		/* delay 1 ms */
294 		msleep(1);
295 		/* FIXME: still the right way to do this? */
296 		cpu_relax();
297 	}
298 
299 	if (icr) {
300 		if (netif_msg_hw(adapter))
301 			dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
302 		return icr;
303 	}
304 
305 	return 0;
306 }
307 
308 /* function about EEPROM
309  *
310  * check_eeprom_exist
311  * return 0 if eeprom exist
312  */
313 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
314 {
315 	u32 value;
316 	value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
317 	if (value & SPI_FLASH_CTRL_EN_VPD) {
318 		value &= ~SPI_FLASH_CTRL_EN_VPD;
319 		iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
320 	}
321 
322 	value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
323 	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
324 }
325 
326 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
327 {
328 	int i;
329 	u32 control;
330 
331 	if (offset & 3)
332 		/* address do not align */
333 		return false;
334 
335 	iowrite32(0, hw->hw_addr + REG_VPD_DATA);
336 	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
337 	iowrite32(control, hw->hw_addr + REG_VPD_CAP);
338 	ioread32(hw->hw_addr + REG_VPD_CAP);
339 
340 	for (i = 0; i < 10; i++) {
341 		msleep(2);
342 		control = ioread32(hw->hw_addr + REG_VPD_CAP);
343 		if (control & VPD_CAP_VPD_FLAG)
344 			break;
345 	}
346 	if (control & VPD_CAP_VPD_FLAG) {
347 		*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
348 		return true;
349 	}
350 	/* timeout */
351 	return false;
352 }
353 
354 /*
355  * Reads the value from a PHY register
356  * hw - Struct containing variables accessed by shared code
357  * reg_addr - address of the PHY register to read
358  */
359 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
360 {
361 	u32 val;
362 	int i;
363 
364 	val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
365 		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
366 		MDIO_CLK_SEL_SHIFT;
367 	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
368 	ioread32(hw->hw_addr + REG_MDIO_CTRL);
369 
370 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
371 		udelay(2);
372 		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
373 		if (!(val & (MDIO_START | MDIO_BUSY)))
374 			break;
375 	}
376 	if (!(val & (MDIO_START | MDIO_BUSY))) {
377 		*phy_data = (u16) val;
378 		return 0;
379 	}
380 	return ATLX_ERR_PHY;
381 }
382 
383 #define CUSTOM_SPI_CS_SETUP	2
384 #define CUSTOM_SPI_CLK_HI	2
385 #define CUSTOM_SPI_CLK_LO	2
386 #define CUSTOM_SPI_CS_HOLD	2
387 #define CUSTOM_SPI_CS_HI	3
388 
389 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
390 {
391 	int i;
392 	u32 value;
393 
394 	iowrite32(0, hw->hw_addr + REG_SPI_DATA);
395 	iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
396 
397 	value = SPI_FLASH_CTRL_WAIT_READY |
398 	    (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
399 	    SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
400 					     SPI_FLASH_CTRL_CLK_HI_MASK) <<
401 	    SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
402 					   SPI_FLASH_CTRL_CLK_LO_MASK) <<
403 	    SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
404 					   SPI_FLASH_CTRL_CS_HOLD_MASK) <<
405 	    SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
406 					    SPI_FLASH_CTRL_CS_HI_MASK) <<
407 	    SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
408 	    SPI_FLASH_CTRL_INS_SHIFT;
409 
410 	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
411 
412 	value |= SPI_FLASH_CTRL_START;
413 	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
414 	ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
415 
416 	for (i = 0; i < 10; i++) {
417 		msleep(1);
418 		value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
419 		if (!(value & SPI_FLASH_CTRL_START))
420 			break;
421 	}
422 
423 	if (value & SPI_FLASH_CTRL_START)
424 		return false;
425 
426 	*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
427 
428 	return true;
429 }
430 
431 /*
432  * get_permanent_address
433  * return 0 if get valid mac address,
434  */
435 static int atl1_get_permanent_address(struct atl1_hw *hw)
436 {
437 	u32 addr[2];
438 	u32 i, control;
439 	u16 reg;
440 	u8 eth_addr[ETH_ALEN];
441 	bool key_valid;
442 
443 	if (is_valid_ether_addr(hw->perm_mac_addr))
444 		return 0;
445 
446 	/* init */
447 	addr[0] = addr[1] = 0;
448 
449 	if (!atl1_check_eeprom_exist(hw)) {
450 		reg = 0;
451 		key_valid = false;
452 		/* Read out all EEPROM content */
453 		i = 0;
454 		while (1) {
455 			if (atl1_read_eeprom(hw, i + 0x100, &control)) {
456 				if (key_valid) {
457 					if (reg == REG_MAC_STA_ADDR)
458 						addr[0] = control;
459 					else if (reg == (REG_MAC_STA_ADDR + 4))
460 						addr[1] = control;
461 					key_valid = false;
462 				} else if ((control & 0xff) == 0x5A) {
463 					key_valid = true;
464 					reg = (u16) (control >> 16);
465 				} else
466 					break;
467 			} else
468 				/* read error */
469 				break;
470 			i += 4;
471 		}
472 
473 		*(u32 *) &eth_addr[2] = swab32(addr[0]);
474 		*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
475 		if (is_valid_ether_addr(eth_addr)) {
476 			memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
477 			return 0;
478 		}
479 	}
480 
481 	/* see if SPI FLAGS exist ? */
482 	addr[0] = addr[1] = 0;
483 	reg = 0;
484 	key_valid = false;
485 	i = 0;
486 	while (1) {
487 		if (atl1_spi_read(hw, i + 0x1f000, &control)) {
488 			if (key_valid) {
489 				if (reg == REG_MAC_STA_ADDR)
490 					addr[0] = control;
491 				else if (reg == (REG_MAC_STA_ADDR + 4))
492 					addr[1] = control;
493 				key_valid = false;
494 			} else if ((control & 0xff) == 0x5A) {
495 				key_valid = true;
496 				reg = (u16) (control >> 16);
497 			} else
498 				/* data end */
499 				break;
500 		} else
501 			/* read error */
502 			break;
503 		i += 4;
504 	}
505 
506 	*(u32 *) &eth_addr[2] = swab32(addr[0]);
507 	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
508 	if (is_valid_ether_addr(eth_addr)) {
509 		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
510 		return 0;
511 	}
512 
513 	/*
514 	 * On some motherboards, the MAC address is written by the
515 	 * BIOS directly to the MAC register during POST, and is
516 	 * not stored in eeprom.  If all else thus far has failed
517 	 * to fetch the permanent MAC address, try reading it directly.
518 	 */
519 	addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
520 	addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
521 	*(u32 *) &eth_addr[2] = swab32(addr[0]);
522 	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
523 	if (is_valid_ether_addr(eth_addr)) {
524 		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
525 		return 0;
526 	}
527 
528 	return 1;
529 }
530 
531 /*
532  * Reads the adapter's MAC address from the EEPROM
533  * hw - Struct containing variables accessed by shared code
534  */
535 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
536 {
537 	s32 ret = 0;
538 	u16 i;
539 
540 	if (atl1_get_permanent_address(hw)) {
541 		eth_random_addr(hw->perm_mac_addr);
542 		ret = 1;
543 	}
544 
545 	for (i = 0; i < ETH_ALEN; i++)
546 		hw->mac_addr[i] = hw->perm_mac_addr[i];
547 	return ret;
548 }
549 
550 /*
551  * Hashes an address to determine its location in the multicast table
552  * hw - Struct containing variables accessed by shared code
553  * mc_addr - the multicast address to hash
554  *
555  * atl1_hash_mc_addr
556  *  purpose
557  *      set hash value for a multicast address
558  *      hash calcu processing :
559  *          1. calcu 32bit CRC for multicast address
560  *          2. reverse crc with MSB to LSB
561  */
562 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
563 {
564 	u32 crc32, value = 0;
565 	int i;
566 
567 	crc32 = ether_crc_le(6, mc_addr);
568 	for (i = 0; i < 32; i++)
569 		value |= (((crc32 >> i) & 1) << (31 - i));
570 
571 	return value;
572 }
573 
574 /*
575  * Sets the bit in the multicast table corresponding to the hash value.
576  * hw - Struct containing variables accessed by shared code
577  * hash_value - Multicast address hash value
578  */
579 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
580 {
581 	u32 hash_bit, hash_reg;
582 	u32 mta;
583 
584 	/*
585 	 * The HASH Table  is a register array of 2 32-bit registers.
586 	 * It is treated like an array of 64 bits.  We want to set
587 	 * bit BitArray[hash_value]. So we figure out what register
588 	 * the bit is in, read it, OR in the new bit, then write
589 	 * back the new value.  The register is determined by the
590 	 * upper 7 bits of the hash value and the bit within that
591 	 * register are determined by the lower 5 bits of the value.
592 	 */
593 	hash_reg = (hash_value >> 31) & 0x1;
594 	hash_bit = (hash_value >> 26) & 0x1F;
595 	mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
596 	mta |= (1 << hash_bit);
597 	iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
598 }
599 
600 /*
601  * Writes a value to a PHY register
602  * hw - Struct containing variables accessed by shared code
603  * reg_addr - address of the PHY register to write
604  * data - data to write to the PHY
605  */
606 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
607 {
608 	int i;
609 	u32 val;
610 
611 	val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
612 	    (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
613 	    MDIO_SUP_PREAMBLE |
614 	    MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
615 	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
616 	ioread32(hw->hw_addr + REG_MDIO_CTRL);
617 
618 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
619 		udelay(2);
620 		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
621 		if (!(val & (MDIO_START | MDIO_BUSY)))
622 			break;
623 	}
624 
625 	if (!(val & (MDIO_START | MDIO_BUSY)))
626 		return 0;
627 
628 	return ATLX_ERR_PHY;
629 }
630 
631 /*
632  * Make L001's PHY out of Power Saving State (bug)
633  * hw - Struct containing variables accessed by shared code
634  * when power on, L001's PHY always on Power saving State
635  * (Gigabit Link forbidden)
636  */
637 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
638 {
639 	s32 ret;
640 	ret = atl1_write_phy_reg(hw, 29, 0x0029);
641 	if (ret)
642 		return ret;
643 	return atl1_write_phy_reg(hw, 30, 0);
644 }
645 
646 /*
647  * Resets the PHY and make all config validate
648  * hw - Struct containing variables accessed by shared code
649  *
650  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
651  */
652 static s32 atl1_phy_reset(struct atl1_hw *hw)
653 {
654 	struct pci_dev *pdev = hw->back->pdev;
655 	struct atl1_adapter *adapter = hw->back;
656 	s32 ret_val;
657 	u16 phy_data;
658 
659 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
660 	    hw->media_type == MEDIA_TYPE_1000M_FULL)
661 		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
662 	else {
663 		switch (hw->media_type) {
664 		case MEDIA_TYPE_100M_FULL:
665 			phy_data =
666 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
667 			    MII_CR_RESET;
668 			break;
669 		case MEDIA_TYPE_100M_HALF:
670 			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
671 			break;
672 		case MEDIA_TYPE_10M_FULL:
673 			phy_data =
674 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
675 			break;
676 		default:
677 			/* MEDIA_TYPE_10M_HALF: */
678 			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
679 			break;
680 		}
681 	}
682 
683 	ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
684 	if (ret_val) {
685 		u32 val;
686 		int i;
687 		/* pcie serdes link may be down! */
688 		if (netif_msg_hw(adapter))
689 			dev_dbg(&pdev->dev, "pcie phy link down\n");
690 
691 		for (i = 0; i < 25; i++) {
692 			msleep(1);
693 			val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
694 			if (!(val & (MDIO_START | MDIO_BUSY)))
695 				break;
696 		}
697 
698 		if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
699 			if (netif_msg_hw(adapter))
700 				dev_warn(&pdev->dev,
701 					"pcie link down at least 25ms\n");
702 			return ret_val;
703 		}
704 	}
705 	return 0;
706 }
707 
708 /*
709  * Configures PHY autoneg and flow control advertisement settings
710  * hw - Struct containing variables accessed by shared code
711  */
712 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
713 {
714 	s32 ret_val;
715 	s16 mii_autoneg_adv_reg;
716 	s16 mii_1000t_ctrl_reg;
717 
718 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
719 	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
720 
721 	/* Read the MII 1000Base-T Control Register (Address 9). */
722 	mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
723 
724 	/*
725 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
726 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
727 	 * the  1000Base-T Control Register (Address 9).
728 	 */
729 	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
730 	mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
731 
732 	/*
733 	 * Need to parse media_type  and set up
734 	 * the appropriate PHY registers.
735 	 */
736 	switch (hw->media_type) {
737 	case MEDIA_TYPE_AUTO_SENSOR:
738 		mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
739 					MII_AR_10T_FD_CAPS |
740 					MII_AR_100TX_HD_CAPS |
741 					MII_AR_100TX_FD_CAPS);
742 		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
743 		break;
744 
745 	case MEDIA_TYPE_1000M_FULL:
746 		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
747 		break;
748 
749 	case MEDIA_TYPE_100M_FULL:
750 		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
751 		break;
752 
753 	case MEDIA_TYPE_100M_HALF:
754 		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
755 		break;
756 
757 	case MEDIA_TYPE_10M_FULL:
758 		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
759 		break;
760 
761 	default:
762 		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
763 		break;
764 	}
765 
766 	/* flow control fixed to enable all */
767 	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
768 
769 	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
770 	hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
771 
772 	ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
773 	if (ret_val)
774 		return ret_val;
775 
776 	ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
777 	if (ret_val)
778 		return ret_val;
779 
780 	return 0;
781 }
782 
783 /*
784  * Configures link settings.
785  * hw - Struct containing variables accessed by shared code
786  * Assumes the hardware has previously been reset and the
787  * transmitter and receiver are not enabled.
788  */
789 static s32 atl1_setup_link(struct atl1_hw *hw)
790 {
791 	struct pci_dev *pdev = hw->back->pdev;
792 	struct atl1_adapter *adapter = hw->back;
793 	s32 ret_val;
794 
795 	/*
796 	 * Options:
797 	 *  PHY will advertise value(s) parsed from
798 	 *  autoneg_advertised and fc
799 	 *  no matter what autoneg is , We will not wait link result.
800 	 */
801 	ret_val = atl1_phy_setup_autoneg_adv(hw);
802 	if (ret_val) {
803 		if (netif_msg_link(adapter))
804 			dev_dbg(&pdev->dev,
805 				"error setting up autonegotiation\n");
806 		return ret_val;
807 	}
808 	/* SW.Reset , En-Auto-Neg if needed */
809 	ret_val = atl1_phy_reset(hw);
810 	if (ret_val) {
811 		if (netif_msg_link(adapter))
812 			dev_dbg(&pdev->dev, "error resetting phy\n");
813 		return ret_val;
814 	}
815 	hw->phy_configured = true;
816 	return ret_val;
817 }
818 
819 static void atl1_init_flash_opcode(struct atl1_hw *hw)
820 {
821 	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
822 		/* Atmel */
823 		hw->flash_vendor = 0;
824 
825 	/* Init OP table */
826 	iowrite8(flash_table[hw->flash_vendor].cmd_program,
827 		hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
828 	iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
829 		hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
830 	iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
831 		hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
832 	iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
833 		hw->hw_addr + REG_SPI_FLASH_OP_RDID);
834 	iowrite8(flash_table[hw->flash_vendor].cmd_wren,
835 		hw->hw_addr + REG_SPI_FLASH_OP_WREN);
836 	iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
837 		hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
838 	iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
839 		hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
840 	iowrite8(flash_table[hw->flash_vendor].cmd_read,
841 		hw->hw_addr + REG_SPI_FLASH_OP_READ);
842 }
843 
844 /*
845  * Performs basic configuration of the adapter.
846  * hw - Struct containing variables accessed by shared code
847  * Assumes that the controller has previously been reset and is in a
848  * post-reset uninitialized state. Initializes multicast table,
849  * and  Calls routines to setup link
850  * Leaves the transmit and receive units disabled and uninitialized.
851  */
852 static s32 atl1_init_hw(struct atl1_hw *hw)
853 {
854 	u32 ret_val = 0;
855 
856 	/* Zero out the Multicast HASH table */
857 	iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
858 	/* clear the old settings from the multicast hash table */
859 	iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
860 
861 	atl1_init_flash_opcode(hw);
862 
863 	if (!hw->phy_configured) {
864 		/* enable GPHY LinkChange Interrupt */
865 		ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
866 		if (ret_val)
867 			return ret_val;
868 		/* make PHY out of power-saving state */
869 		ret_val = atl1_phy_leave_power_saving(hw);
870 		if (ret_val)
871 			return ret_val;
872 		/* Call a subroutine to configure the link */
873 		ret_val = atl1_setup_link(hw);
874 	}
875 	return ret_val;
876 }
877 
878 /*
879  * Detects the current speed and duplex settings of the hardware.
880  * hw - Struct containing variables accessed by shared code
881  * speed - Speed of the connection
882  * duplex - Duplex setting of the connection
883  */
884 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
885 {
886 	struct pci_dev *pdev = hw->back->pdev;
887 	struct atl1_adapter *adapter = hw->back;
888 	s32 ret_val;
889 	u16 phy_data;
890 
891 	/* ; --- Read   PHY Specific Status Register (17) */
892 	ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
893 	if (ret_val)
894 		return ret_val;
895 
896 	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
897 		return ATLX_ERR_PHY_RES;
898 
899 	switch (phy_data & MII_ATLX_PSSR_SPEED) {
900 	case MII_ATLX_PSSR_1000MBS:
901 		*speed = SPEED_1000;
902 		break;
903 	case MII_ATLX_PSSR_100MBS:
904 		*speed = SPEED_100;
905 		break;
906 	case MII_ATLX_PSSR_10MBS:
907 		*speed = SPEED_10;
908 		break;
909 	default:
910 		if (netif_msg_hw(adapter))
911 			dev_dbg(&pdev->dev, "error getting speed\n");
912 		return ATLX_ERR_PHY_SPEED;
913 	}
914 	if (phy_data & MII_ATLX_PSSR_DPLX)
915 		*duplex = FULL_DUPLEX;
916 	else
917 		*duplex = HALF_DUPLEX;
918 
919 	return 0;
920 }
921 
922 static void atl1_set_mac_addr(struct atl1_hw *hw)
923 {
924 	u32 value;
925 	/*
926 	 * 00-0B-6A-F6-00-DC
927 	 * 0:  6AF600DC   1: 000B
928 	 * low dword
929 	 */
930 	value = (((u32) hw->mac_addr[2]) << 24) |
931 	    (((u32) hw->mac_addr[3]) << 16) |
932 	    (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
933 	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
934 	/* high dword */
935 	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
936 	iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
937 }
938 
939 /**
940  * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
941  * @adapter: board private structure to initialize
942  *
943  * atl1_sw_init initializes the Adapter private data structure.
944  * Fields are initialized based on PCI device information and
945  * OS network device settings (MTU size).
946  */
947 static int atl1_sw_init(struct atl1_adapter *adapter)
948 {
949 	struct atl1_hw *hw = &adapter->hw;
950 	struct net_device *netdev = adapter->netdev;
951 
952 	hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
953 	hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
954 
955 	adapter->wol = 0;
956 	device_set_wakeup_enable(&adapter->pdev->dev, false);
957 	adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
958 	adapter->ict = 50000;		/* 100ms */
959 	adapter->link_speed = SPEED_0;	/* hardware init */
960 	adapter->link_duplex = FULL_DUPLEX;
961 
962 	hw->phy_configured = false;
963 	hw->preamble_len = 7;
964 	hw->ipgt = 0x60;
965 	hw->min_ifg = 0x50;
966 	hw->ipgr1 = 0x40;
967 	hw->ipgr2 = 0x60;
968 	hw->max_retry = 0xf;
969 	hw->lcol = 0x37;
970 	hw->jam_ipg = 7;
971 	hw->rfd_burst = 8;
972 	hw->rrd_burst = 8;
973 	hw->rfd_fetch_gap = 1;
974 	hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
975 	hw->rx_jumbo_lkah = 1;
976 	hw->rrd_ret_timer = 16;
977 	hw->tpd_burst = 4;
978 	hw->tpd_fetch_th = 16;
979 	hw->txf_burst = 0x100;
980 	hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
981 	hw->tpd_fetch_gap = 1;
982 	hw->rcb_value = atl1_rcb_64;
983 	hw->dma_ord = atl1_dma_ord_enh;
984 	hw->dmar_block = atl1_dma_req_256;
985 	hw->dmaw_block = atl1_dma_req_256;
986 	hw->cmb_rrd = 4;
987 	hw->cmb_tpd = 4;
988 	hw->cmb_rx_timer = 1;	/* about 2us */
989 	hw->cmb_tx_timer = 1;	/* about 2us */
990 	hw->smb_timer = 100000;	/* about 200ms */
991 
992 	spin_lock_init(&adapter->lock);
993 	spin_lock_init(&adapter->mb_lock);
994 
995 	return 0;
996 }
997 
998 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
999 {
1000 	struct atl1_adapter *adapter = netdev_priv(netdev);
1001 	u16 result;
1002 
1003 	atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1004 
1005 	return result;
1006 }
1007 
1008 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1009 	int val)
1010 {
1011 	struct atl1_adapter *adapter = netdev_priv(netdev);
1012 
1013 	atl1_write_phy_reg(&adapter->hw, reg_num, val);
1014 }
1015 
1016 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1017 {
1018 	struct atl1_adapter *adapter = netdev_priv(netdev);
1019 	unsigned long flags;
1020 	int retval;
1021 
1022 	if (!netif_running(netdev))
1023 		return -EINVAL;
1024 
1025 	spin_lock_irqsave(&adapter->lock, flags);
1026 	retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1027 	spin_unlock_irqrestore(&adapter->lock, flags);
1028 
1029 	return retval;
1030 }
1031 
1032 /**
1033  * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1034  * @adapter: board private structure
1035  *
1036  * Return 0 on success, negative on failure
1037  */
1038 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1039 {
1040 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1041 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1042 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1043 	struct atl1_ring_header *ring_header = &adapter->ring_header;
1044 	struct pci_dev *pdev = adapter->pdev;
1045 	int size;
1046 	u8 offset = 0;
1047 
1048 	size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1049 	tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1050 	if (unlikely(!tpd_ring->buffer_info)) {
1051 		if (netif_msg_drv(adapter))
1052 			dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1053 				size);
1054 		goto err_nomem;
1055 	}
1056 	rfd_ring->buffer_info =
1057 		(tpd_ring->buffer_info + tpd_ring->count);
1058 
1059 	/*
1060 	 * real ring DMA buffer
1061 	 * each ring/block may need up to 8 bytes for alignment, hence the
1062 	 * additional 40 bytes tacked onto the end.
1063 	 */
1064 	ring_header->size = size =
1065 		sizeof(struct tx_packet_desc) * tpd_ring->count
1066 		+ sizeof(struct rx_free_desc) * rfd_ring->count
1067 		+ sizeof(struct rx_return_desc) * rrd_ring->count
1068 		+ sizeof(struct coals_msg_block)
1069 		+ sizeof(struct stats_msg_block)
1070 		+ 40;
1071 
1072 	ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1073 		&ring_header->dma);
1074 	if (unlikely(!ring_header->desc)) {
1075 		if (netif_msg_drv(adapter))
1076 			dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1077 		goto err_nomem;
1078 	}
1079 
1080 	memset(ring_header->desc, 0, ring_header->size);
1081 
1082 	/* init TPD ring */
1083 	tpd_ring->dma = ring_header->dma;
1084 	offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1085 	tpd_ring->dma += offset;
1086 	tpd_ring->desc = (u8 *) ring_header->desc + offset;
1087 	tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1088 
1089 	/* init RFD ring */
1090 	rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1091 	offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1092 	rfd_ring->dma += offset;
1093 	rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1094 	rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1095 
1096 
1097 	/* init RRD ring */
1098 	rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1099 	offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1100 	rrd_ring->dma += offset;
1101 	rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1102 	rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1103 
1104 
1105 	/* init CMB */
1106 	adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1107 	offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1108 	adapter->cmb.dma += offset;
1109 	adapter->cmb.cmb = (struct coals_msg_block *)
1110 		((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1111 
1112 	/* init SMB */
1113 	adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1114 	offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1115 	adapter->smb.dma += offset;
1116 	adapter->smb.smb = (struct stats_msg_block *)
1117 		((u8 *) adapter->cmb.cmb +
1118 		(sizeof(struct coals_msg_block) + offset));
1119 
1120 	return 0;
1121 
1122 err_nomem:
1123 	kfree(tpd_ring->buffer_info);
1124 	return -ENOMEM;
1125 }
1126 
1127 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1128 {
1129 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1130 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1131 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1132 
1133 	atomic_set(&tpd_ring->next_to_use, 0);
1134 	atomic_set(&tpd_ring->next_to_clean, 0);
1135 
1136 	rfd_ring->next_to_clean = 0;
1137 	atomic_set(&rfd_ring->next_to_use, 0);
1138 
1139 	rrd_ring->next_to_use = 0;
1140 	atomic_set(&rrd_ring->next_to_clean, 0);
1141 }
1142 
1143 /**
1144  * atl1_clean_rx_ring - Free RFD Buffers
1145  * @adapter: board private structure
1146  */
1147 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1148 {
1149 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1150 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1151 	struct atl1_buffer *buffer_info;
1152 	struct pci_dev *pdev = adapter->pdev;
1153 	unsigned long size;
1154 	unsigned int i;
1155 
1156 	/* Free all the Rx ring sk_buffs */
1157 	for (i = 0; i < rfd_ring->count; i++) {
1158 		buffer_info = &rfd_ring->buffer_info[i];
1159 		if (buffer_info->dma) {
1160 			pci_unmap_page(pdev, buffer_info->dma,
1161 				buffer_info->length, PCI_DMA_FROMDEVICE);
1162 			buffer_info->dma = 0;
1163 		}
1164 		if (buffer_info->skb) {
1165 			dev_kfree_skb(buffer_info->skb);
1166 			buffer_info->skb = NULL;
1167 		}
1168 	}
1169 
1170 	size = sizeof(struct atl1_buffer) * rfd_ring->count;
1171 	memset(rfd_ring->buffer_info, 0, size);
1172 
1173 	/* Zero out the descriptor ring */
1174 	memset(rfd_ring->desc, 0, rfd_ring->size);
1175 
1176 	rfd_ring->next_to_clean = 0;
1177 	atomic_set(&rfd_ring->next_to_use, 0);
1178 
1179 	rrd_ring->next_to_use = 0;
1180 	atomic_set(&rrd_ring->next_to_clean, 0);
1181 }
1182 
1183 /**
1184  * atl1_clean_tx_ring - Free Tx Buffers
1185  * @adapter: board private structure
1186  */
1187 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1188 {
1189 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1190 	struct atl1_buffer *buffer_info;
1191 	struct pci_dev *pdev = adapter->pdev;
1192 	unsigned long size;
1193 	unsigned int i;
1194 
1195 	/* Free all the Tx ring sk_buffs */
1196 	for (i = 0; i < tpd_ring->count; i++) {
1197 		buffer_info = &tpd_ring->buffer_info[i];
1198 		if (buffer_info->dma) {
1199 			pci_unmap_page(pdev, buffer_info->dma,
1200 				buffer_info->length, PCI_DMA_TODEVICE);
1201 			buffer_info->dma = 0;
1202 		}
1203 	}
1204 
1205 	for (i = 0; i < tpd_ring->count; i++) {
1206 		buffer_info = &tpd_ring->buffer_info[i];
1207 		if (buffer_info->skb) {
1208 			dev_kfree_skb_any(buffer_info->skb);
1209 			buffer_info->skb = NULL;
1210 		}
1211 	}
1212 
1213 	size = sizeof(struct atl1_buffer) * tpd_ring->count;
1214 	memset(tpd_ring->buffer_info, 0, size);
1215 
1216 	/* Zero out the descriptor ring */
1217 	memset(tpd_ring->desc, 0, tpd_ring->size);
1218 
1219 	atomic_set(&tpd_ring->next_to_use, 0);
1220 	atomic_set(&tpd_ring->next_to_clean, 0);
1221 }
1222 
1223 /**
1224  * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1225  * @adapter: board private structure
1226  *
1227  * Free all transmit software resources
1228  */
1229 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1230 {
1231 	struct pci_dev *pdev = adapter->pdev;
1232 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1233 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1234 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1235 	struct atl1_ring_header *ring_header = &adapter->ring_header;
1236 
1237 	atl1_clean_tx_ring(adapter);
1238 	atl1_clean_rx_ring(adapter);
1239 
1240 	kfree(tpd_ring->buffer_info);
1241 	pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1242 		ring_header->dma);
1243 
1244 	tpd_ring->buffer_info = NULL;
1245 	tpd_ring->desc = NULL;
1246 	tpd_ring->dma = 0;
1247 
1248 	rfd_ring->buffer_info = NULL;
1249 	rfd_ring->desc = NULL;
1250 	rfd_ring->dma = 0;
1251 
1252 	rrd_ring->desc = NULL;
1253 	rrd_ring->dma = 0;
1254 
1255 	adapter->cmb.dma = 0;
1256 	adapter->cmb.cmb = NULL;
1257 
1258 	adapter->smb.dma = 0;
1259 	adapter->smb.smb = NULL;
1260 }
1261 
1262 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1263 {
1264 	u32 value;
1265 	struct atl1_hw *hw = &adapter->hw;
1266 	struct net_device *netdev = adapter->netdev;
1267 	/* Config MAC CTRL Register */
1268 	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1269 	/* duplex */
1270 	if (FULL_DUPLEX == adapter->link_duplex)
1271 		value |= MAC_CTRL_DUPLX;
1272 	/* speed */
1273 	value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1274 			 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1275 		  MAC_CTRL_SPEED_SHIFT);
1276 	/* flow control */
1277 	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1278 	/* PAD & CRC */
1279 	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1280 	/* preamble length */
1281 	value |= (((u32) adapter->hw.preamble_len
1282 		   & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1283 	/* vlan */
1284 	__atlx_vlan_mode(netdev->features, &value);
1285 	/* rx checksum
1286 	   if (adapter->rx_csum)
1287 	   value |= MAC_CTRL_RX_CHKSUM_EN;
1288 	 */
1289 	/* filter mode */
1290 	value |= MAC_CTRL_BC_EN;
1291 	if (netdev->flags & IFF_PROMISC)
1292 		value |= MAC_CTRL_PROMIS_EN;
1293 	else if (netdev->flags & IFF_ALLMULTI)
1294 		value |= MAC_CTRL_MC_ALL_EN;
1295 	/* value |= MAC_CTRL_LOOPBACK; */
1296 	iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1297 }
1298 
1299 static u32 atl1_check_link(struct atl1_adapter *adapter)
1300 {
1301 	struct atl1_hw *hw = &adapter->hw;
1302 	struct net_device *netdev = adapter->netdev;
1303 	u32 ret_val;
1304 	u16 speed, duplex, phy_data;
1305 	int reconfig = 0;
1306 
1307 	/* MII_BMSR must read twice */
1308 	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1309 	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1310 	if (!(phy_data & BMSR_LSTATUS)) {
1311 		/* link down */
1312 		if (netif_carrier_ok(netdev)) {
1313 			/* old link state: Up */
1314 			if (netif_msg_link(adapter))
1315 				dev_info(&adapter->pdev->dev, "link is down\n");
1316 			adapter->link_speed = SPEED_0;
1317 			netif_carrier_off(netdev);
1318 		}
1319 		return 0;
1320 	}
1321 
1322 	/* Link Up */
1323 	ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1324 	if (ret_val)
1325 		return ret_val;
1326 
1327 	switch (hw->media_type) {
1328 	case MEDIA_TYPE_1000M_FULL:
1329 		if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1330 			reconfig = 1;
1331 		break;
1332 	case MEDIA_TYPE_100M_FULL:
1333 		if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1334 			reconfig = 1;
1335 		break;
1336 	case MEDIA_TYPE_100M_HALF:
1337 		if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1338 			reconfig = 1;
1339 		break;
1340 	case MEDIA_TYPE_10M_FULL:
1341 		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1342 			reconfig = 1;
1343 		break;
1344 	case MEDIA_TYPE_10M_HALF:
1345 		if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1346 			reconfig = 1;
1347 		break;
1348 	}
1349 
1350 	/* link result is our setting */
1351 	if (!reconfig) {
1352 		if (adapter->link_speed != speed ||
1353 		    adapter->link_duplex != duplex) {
1354 			adapter->link_speed = speed;
1355 			adapter->link_duplex = duplex;
1356 			atl1_setup_mac_ctrl(adapter);
1357 			if (netif_msg_link(adapter))
1358 				dev_info(&adapter->pdev->dev,
1359 					"%s link is up %d Mbps %s\n",
1360 					netdev->name, adapter->link_speed,
1361 					adapter->link_duplex == FULL_DUPLEX ?
1362 					"full duplex" : "half duplex");
1363 		}
1364 		if (!netif_carrier_ok(netdev)) {
1365 			/* Link down -> Up */
1366 			netif_carrier_on(netdev);
1367 		}
1368 		return 0;
1369 	}
1370 
1371 	/* change original link status */
1372 	if (netif_carrier_ok(netdev)) {
1373 		adapter->link_speed = SPEED_0;
1374 		netif_carrier_off(netdev);
1375 		netif_stop_queue(netdev);
1376 	}
1377 
1378 	if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1379 	    hw->media_type != MEDIA_TYPE_1000M_FULL) {
1380 		switch (hw->media_type) {
1381 		case MEDIA_TYPE_100M_FULL:
1382 			phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1383 			           MII_CR_RESET;
1384 			break;
1385 		case MEDIA_TYPE_100M_HALF:
1386 			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1387 			break;
1388 		case MEDIA_TYPE_10M_FULL:
1389 			phy_data =
1390 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1391 			break;
1392 		default:
1393 			/* MEDIA_TYPE_10M_HALF: */
1394 			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1395 			break;
1396 		}
1397 		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1398 		return 0;
1399 	}
1400 
1401 	/* auto-neg, insert timer to re-config phy */
1402 	if (!adapter->phy_timer_pending) {
1403 		adapter->phy_timer_pending = true;
1404 		mod_timer(&adapter->phy_config_timer,
1405 			  round_jiffies(jiffies + 3 * HZ));
1406 	}
1407 
1408 	return 0;
1409 }
1410 
1411 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1412 {
1413 	u32 hi, lo, value;
1414 
1415 	/* RFD Flow Control */
1416 	value = adapter->rfd_ring.count;
1417 	hi = value / 16;
1418 	if (hi < 2)
1419 		hi = 2;
1420 	lo = value * 7 / 8;
1421 
1422 	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1423 		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1424 	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1425 
1426 	/* RRD Flow Control */
1427 	value = adapter->rrd_ring.count;
1428 	lo = value / 16;
1429 	hi = value * 7 / 8;
1430 	if (lo < 2)
1431 		lo = 2;
1432 	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1433 		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1434 	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1435 }
1436 
1437 static void set_flow_ctrl_new(struct atl1_hw *hw)
1438 {
1439 	u32 hi, lo, value;
1440 
1441 	/* RXF Flow Control */
1442 	value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1443 	lo = value / 16;
1444 	if (lo < 192)
1445 		lo = 192;
1446 	hi = value * 7 / 8;
1447 	if (hi < lo)
1448 		hi = lo + 16;
1449 	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1450 		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1451 	iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1452 
1453 	/* RRD Flow Control */
1454 	value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1455 	lo = value / 8;
1456 	hi = value * 7 / 8;
1457 	if (lo < 2)
1458 		lo = 2;
1459 	if (hi < lo)
1460 		hi = lo + 3;
1461 	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1462 		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1463 	iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1464 }
1465 
1466 /**
1467  * atl1_configure - Configure Transmit&Receive Unit after Reset
1468  * @adapter: board private structure
1469  *
1470  * Configure the Tx /Rx unit of the MAC after a reset.
1471  */
1472 static u32 atl1_configure(struct atl1_adapter *adapter)
1473 {
1474 	struct atl1_hw *hw = &adapter->hw;
1475 	u32 value;
1476 
1477 	/* clear interrupt status */
1478 	iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1479 
1480 	/* set MAC Address */
1481 	value = (((u32) hw->mac_addr[2]) << 24) |
1482 		(((u32) hw->mac_addr[3]) << 16) |
1483 		(((u32) hw->mac_addr[4]) << 8) |
1484 		(((u32) hw->mac_addr[5]));
1485 	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1486 	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1487 	iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1488 
1489 	/* tx / rx ring */
1490 
1491 	/* HI base address */
1492 	iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1493 		hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1494 	/* LO base address */
1495 	iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1496 		hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1497 	iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1498 		hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1499 	iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1500 		hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1501 	iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1502 		hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1503 	iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1504 		hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1505 
1506 	/* element count */
1507 	value = adapter->rrd_ring.count;
1508 	value <<= 16;
1509 	value += adapter->rfd_ring.count;
1510 	iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1511 	iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1512 		REG_DESC_TPD_RING_SIZE);
1513 
1514 	/* Load Ptr */
1515 	iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1516 
1517 	/* config Mailbox */
1518 	value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1519 		  & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1520 		((atomic_read(&adapter->rrd_ring.next_to_clean)
1521 		& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1522 		((atomic_read(&adapter->rfd_ring.next_to_use)
1523 		& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1524 	iowrite32(value, hw->hw_addr + REG_MAILBOX);
1525 
1526 	/* config IPG/IFG */
1527 	value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1528 		 << MAC_IPG_IFG_IPGT_SHIFT) |
1529 		(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1530 		<< MAC_IPG_IFG_MIFG_SHIFT) |
1531 		(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1532 		<< MAC_IPG_IFG_IPGR1_SHIFT) |
1533 		(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1534 		<< MAC_IPG_IFG_IPGR2_SHIFT);
1535 	iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1536 
1537 	/* config  Half-Duplex Control */
1538 	value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1539 		(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1540 		<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1541 		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1542 		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1543 		(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1544 		<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1545 	iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1546 
1547 	/* set Interrupt Moderator Timer */
1548 	iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1549 	iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1550 
1551 	/* set Interrupt Clear Timer */
1552 	iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1553 
1554 	/* set max frame size hw will accept */
1555 	iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1556 
1557 	/* jumbo size & rrd retirement timer */
1558 	value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1559 		 << RXQ_JMBOSZ_TH_SHIFT) |
1560 		(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1561 		<< RXQ_JMBO_LKAH_SHIFT) |
1562 		(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1563 		<< RXQ_RRD_TIMER_SHIFT);
1564 	iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1565 
1566 	/* Flow Control */
1567 	switch (hw->dev_rev) {
1568 	case 0x8001:
1569 	case 0x9001:
1570 	case 0x9002:
1571 	case 0x9003:
1572 		set_flow_ctrl_old(adapter);
1573 		break;
1574 	default:
1575 		set_flow_ctrl_new(hw);
1576 		break;
1577 	}
1578 
1579 	/* config TXQ */
1580 	value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1581 		 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1582 		(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1583 		<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1584 		(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1585 		<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1586 		TXQ_CTRL_EN;
1587 	iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1588 
1589 	/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1590 	value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1591 		<< TX_JUMBO_TASK_TH_SHIFT) |
1592 		(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1593 		<< TX_TPD_MIN_IPG_SHIFT);
1594 	iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1595 
1596 	/* config RXQ */
1597 	value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1598 		<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1599 		(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1600 		<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1601 		(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1602 		<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1603 		RXQ_CTRL_EN;
1604 	iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1605 
1606 	/* config DMA Engine */
1607 	value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1608 		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1609 		((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1610 		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1611 		DMA_CTRL_DMAW_EN;
1612 	value |= (u32) hw->dma_ord;
1613 	if (atl1_rcb_128 == hw->rcb_value)
1614 		value |= DMA_CTRL_RCB_VALUE;
1615 	iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1616 
1617 	/* config CMB / SMB */
1618 	value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1619 		hw->cmb_tpd : adapter->tpd_ring.count;
1620 	value <<= 16;
1621 	value |= hw->cmb_rrd;
1622 	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1623 	value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1624 	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1625 	iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1626 
1627 	/* --- enable CMB / SMB */
1628 	value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1629 	iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1630 
1631 	value = ioread32(adapter->hw.hw_addr + REG_ISR);
1632 	if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1633 		value = 1;	/* config failed */
1634 	else
1635 		value = 0;
1636 
1637 	/* clear all interrupt status */
1638 	iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1639 	iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1640 	return value;
1641 }
1642 
1643 /*
1644  * atl1_pcie_patch - Patch for PCIE module
1645  */
1646 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1647 {
1648 	u32 value;
1649 
1650 	/* much vendor magic here */
1651 	value = 0x6500;
1652 	iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1653 	/* pcie flow control mode change */
1654 	value = ioread32(adapter->hw.hw_addr + 0x1008);
1655 	value |= 0x8000;
1656 	iowrite32(value, adapter->hw.hw_addr + 0x1008);
1657 }
1658 
1659 /*
1660  * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1661  * on PCI Command register is disable.
1662  * The function enable this bit.
1663  * Brackett, 2006/03/15
1664  */
1665 static void atl1_via_workaround(struct atl1_adapter *adapter)
1666 {
1667 	unsigned long value;
1668 
1669 	value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1670 	if (value & PCI_COMMAND_INTX_DISABLE)
1671 		value &= ~PCI_COMMAND_INTX_DISABLE;
1672 	iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1673 }
1674 
1675 static void atl1_inc_smb(struct atl1_adapter *adapter)
1676 {
1677 	struct net_device *netdev = adapter->netdev;
1678 	struct stats_msg_block *smb = adapter->smb.smb;
1679 
1680 	u64 new_rx_errors = smb->rx_frag +
1681 			    smb->rx_fcs_err +
1682 			    smb->rx_len_err +
1683 			    smb->rx_sz_ov +
1684 			    smb->rx_rxf_ov +
1685 			    smb->rx_rrd_ov +
1686 			    smb->rx_align_err;
1687 	u64 new_tx_errors = smb->tx_late_col +
1688 			    smb->tx_abort_col +
1689 			    smb->tx_underrun +
1690 			    smb->tx_trunc;
1691 
1692 	/* Fill out the OS statistics structure */
1693 	adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1694 	adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1695 	adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1696 	adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1697 	adapter->soft_stats.multicast += smb->rx_mcast;
1698 	adapter->soft_stats.collisions += smb->tx_1_col +
1699 					  smb->tx_2_col +
1700 					  smb->tx_late_col +
1701 					  smb->tx_abort_col;
1702 
1703 	/* Rx Errors */
1704 	adapter->soft_stats.rx_errors += new_rx_errors;
1705 	adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1706 	adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1707 	adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1708 	adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1709 
1710 	adapter->soft_stats.rx_pause += smb->rx_pause;
1711 	adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1712 	adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1713 
1714 	/* Tx Errors */
1715 	adapter->soft_stats.tx_errors += new_tx_errors;
1716 	adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1717 	adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1718 	adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1719 
1720 	adapter->soft_stats.excecol += smb->tx_abort_col;
1721 	adapter->soft_stats.deffer += smb->tx_defer;
1722 	adapter->soft_stats.scc += smb->tx_1_col;
1723 	adapter->soft_stats.mcc += smb->tx_2_col;
1724 	adapter->soft_stats.latecol += smb->tx_late_col;
1725 	adapter->soft_stats.tx_underun += smb->tx_underrun;
1726 	adapter->soft_stats.tx_trunc += smb->tx_trunc;
1727 	adapter->soft_stats.tx_pause += smb->tx_pause;
1728 
1729 	netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1730 	netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1731 	netdev->stats.multicast = adapter->soft_stats.multicast;
1732 	netdev->stats.collisions = adapter->soft_stats.collisions;
1733 	netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1734 	netdev->stats.rx_length_errors =
1735 		adapter->soft_stats.rx_length_errors;
1736 	netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1737 	netdev->stats.rx_frame_errors =
1738 		adapter->soft_stats.rx_frame_errors;
1739 	netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1740 	netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1741 	netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1742 	netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1743 	netdev->stats.tx_aborted_errors =
1744 		adapter->soft_stats.tx_aborted_errors;
1745 	netdev->stats.tx_window_errors =
1746 		adapter->soft_stats.tx_window_errors;
1747 	netdev->stats.tx_carrier_errors =
1748 		adapter->soft_stats.tx_carrier_errors;
1749 
1750 	netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1751 	netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1752 }
1753 
1754 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1755 {
1756 	unsigned long flags;
1757 	u32 tpd_next_to_use;
1758 	u32 rfd_next_to_use;
1759 	u32 rrd_next_to_clean;
1760 	u32 value;
1761 
1762 	spin_lock_irqsave(&adapter->mb_lock, flags);
1763 
1764 	tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1765 	rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1766 	rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1767 
1768 	value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1769 		MB_RFD_PROD_INDX_SHIFT) |
1770 		((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1771 		MB_RRD_CONS_INDX_SHIFT) |
1772 		((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1773 		MB_TPD_PROD_INDX_SHIFT);
1774 	iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1775 
1776 	spin_unlock_irqrestore(&adapter->mb_lock, flags);
1777 }
1778 
1779 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1780 	struct rx_return_desc *rrd, u16 offset)
1781 {
1782 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1783 
1784 	while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1785 		rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1786 		if (++rfd_ring->next_to_clean == rfd_ring->count) {
1787 			rfd_ring->next_to_clean = 0;
1788 		}
1789 	}
1790 }
1791 
1792 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1793 	struct rx_return_desc *rrd)
1794 {
1795 	u16 num_buf;
1796 
1797 	num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1798 		adapter->rx_buffer_len;
1799 	if (rrd->num_buf == num_buf)
1800 		/* clean alloc flag for bad rrd */
1801 		atl1_clean_alloc_flag(adapter, rrd, num_buf);
1802 }
1803 
1804 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1805 	struct rx_return_desc *rrd, struct sk_buff *skb)
1806 {
1807 	struct pci_dev *pdev = adapter->pdev;
1808 
1809 	/*
1810 	 * The L1 hardware contains a bug that erroneously sets the
1811 	 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1812 	 * fragmented IP packet is received, even though the packet
1813 	 * is perfectly valid and its checksum is correct. There's
1814 	 * no way to distinguish between one of these good packets
1815 	 * and a packet that actually contains a TCP/UDP checksum
1816 	 * error, so all we can do is allow it to be handed up to
1817 	 * the higher layers and let it be sorted out there.
1818 	 */
1819 
1820 	skb_checksum_none_assert(skb);
1821 
1822 	if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1823 		if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1824 					ERR_FLAG_CODE | ERR_FLAG_OV)) {
1825 			adapter->hw_csum_err++;
1826 			if (netif_msg_rx_err(adapter))
1827 				dev_printk(KERN_DEBUG, &pdev->dev,
1828 					"rx checksum error\n");
1829 			return;
1830 		}
1831 	}
1832 
1833 	/* not IPv4 */
1834 	if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1835 		/* checksum is invalid, but it's not an IPv4 pkt, so ok */
1836 		return;
1837 
1838 	/* IPv4 packet */
1839 	if (likely(!(rrd->err_flg &
1840 		(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1841 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1842 		adapter->hw_csum_good++;
1843 		return;
1844 	}
1845 }
1846 
1847 /**
1848  * atl1_alloc_rx_buffers - Replace used receive buffers
1849  * @adapter: address of board private structure
1850  */
1851 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1852 {
1853 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1854 	struct pci_dev *pdev = adapter->pdev;
1855 	struct page *page;
1856 	unsigned long offset;
1857 	struct atl1_buffer *buffer_info, *next_info;
1858 	struct sk_buff *skb;
1859 	u16 num_alloc = 0;
1860 	u16 rfd_next_to_use, next_next;
1861 	struct rx_free_desc *rfd_desc;
1862 
1863 	next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1864 	if (++next_next == rfd_ring->count)
1865 		next_next = 0;
1866 	buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1867 	next_info = &rfd_ring->buffer_info[next_next];
1868 
1869 	while (!buffer_info->alloced && !next_info->alloced) {
1870 		if (buffer_info->skb) {
1871 			buffer_info->alloced = 1;
1872 			goto next;
1873 		}
1874 
1875 		rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1876 
1877 		skb = netdev_alloc_skb_ip_align(adapter->netdev,
1878 						adapter->rx_buffer_len);
1879 		if (unlikely(!skb)) {
1880 			/* Better luck next round */
1881 			adapter->soft_stats.rx_dropped++;
1882 			break;
1883 		}
1884 
1885 		buffer_info->alloced = 1;
1886 		buffer_info->skb = skb;
1887 		buffer_info->length = (u16) adapter->rx_buffer_len;
1888 		page = virt_to_page(skb->data);
1889 		offset = (unsigned long)skb->data & ~PAGE_MASK;
1890 		buffer_info->dma = pci_map_page(pdev, page, offset,
1891 						adapter->rx_buffer_len,
1892 						PCI_DMA_FROMDEVICE);
1893 		rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1894 		rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1895 		rfd_desc->coalese = 0;
1896 
1897 next:
1898 		rfd_next_to_use = next_next;
1899 		if (unlikely(++next_next == rfd_ring->count))
1900 			next_next = 0;
1901 
1902 		buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1903 		next_info = &rfd_ring->buffer_info[next_next];
1904 		num_alloc++;
1905 	}
1906 
1907 	if (num_alloc) {
1908 		/*
1909 		 * Force memory writes to complete before letting h/w
1910 		 * know there are new descriptors to fetch.  (Only
1911 		 * applicable for weak-ordered memory model archs,
1912 		 * such as IA-64).
1913 		 */
1914 		wmb();
1915 		atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1916 	}
1917 	return num_alloc;
1918 }
1919 
1920 static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1921 {
1922 	int i, count;
1923 	u16 length;
1924 	u16 rrd_next_to_clean;
1925 	u32 value;
1926 	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1927 	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1928 	struct atl1_buffer *buffer_info;
1929 	struct rx_return_desc *rrd;
1930 	struct sk_buff *skb;
1931 
1932 	count = 0;
1933 
1934 	rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1935 
1936 	while (count < budget) {
1937 		rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1938 		i = 1;
1939 		if (likely(rrd->xsz.valid)) {	/* packet valid */
1940 chk_rrd:
1941 			/* check rrd status */
1942 			if (likely(rrd->num_buf == 1))
1943 				goto rrd_ok;
1944 			else if (netif_msg_rx_err(adapter)) {
1945 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1946 					"unexpected RRD buffer count\n");
1947 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948 					"rx_buf_len = %d\n",
1949 					adapter->rx_buffer_len);
1950 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951 					"RRD num_buf = %d\n",
1952 					rrd->num_buf);
1953 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1954 					"RRD pkt_len = %d\n",
1955 					rrd->xsz.xsum_sz.pkt_size);
1956 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957 					"RRD pkt_flg = 0x%08X\n",
1958 					rrd->pkt_flg);
1959 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960 					"RRD err_flg = 0x%08X\n",
1961 					rrd->err_flg);
1962 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1963 					"RRD vlan_tag = 0x%08X\n",
1964 					rrd->vlan_tag);
1965 			}
1966 
1967 			/* rrd seems to be bad */
1968 			if (unlikely(i-- > 0)) {
1969 				/* rrd may not be DMAed completely */
1970 				udelay(1);
1971 				goto chk_rrd;
1972 			}
1973 			/* bad rrd */
1974 			if (netif_msg_rx_err(adapter))
1975 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1976 					"bad RRD\n");
1977 			/* see if update RFD index */
1978 			if (rrd->num_buf > 1)
1979 				atl1_update_rfd_index(adapter, rrd);
1980 
1981 			/* update rrd */
1982 			rrd->xsz.valid = 0;
1983 			if (++rrd_next_to_clean == rrd_ring->count)
1984 				rrd_next_to_clean = 0;
1985 			count++;
1986 			continue;
1987 		} else {	/* current rrd still not be updated */
1988 
1989 			break;
1990 		}
1991 rrd_ok:
1992 		/* clean alloc flag for bad rrd */
1993 		atl1_clean_alloc_flag(adapter, rrd, 0);
1994 
1995 		buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1996 		if (++rfd_ring->next_to_clean == rfd_ring->count)
1997 			rfd_ring->next_to_clean = 0;
1998 
1999 		/* update rrd next to clean */
2000 		if (++rrd_next_to_clean == rrd_ring->count)
2001 			rrd_next_to_clean = 0;
2002 		count++;
2003 
2004 		if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2005 			if (!(rrd->err_flg &
2006 				(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2007 				| ERR_FLAG_LEN))) {
2008 				/* packet error, don't need upstream */
2009 				buffer_info->alloced = 0;
2010 				rrd->xsz.valid = 0;
2011 				continue;
2012 			}
2013 		}
2014 
2015 		/* Good Receive */
2016 		pci_unmap_page(adapter->pdev, buffer_info->dma,
2017 			       buffer_info->length, PCI_DMA_FROMDEVICE);
2018 		buffer_info->dma = 0;
2019 		skb = buffer_info->skb;
2020 		length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2021 
2022 		skb_put(skb, length - ETH_FCS_LEN);
2023 
2024 		/* Receive Checksum Offload */
2025 		atl1_rx_checksum(adapter, rrd, skb);
2026 		skb->protocol = eth_type_trans(skb, adapter->netdev);
2027 
2028 		if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2029 			u16 vlan_tag = (rrd->vlan_tag >> 4) |
2030 					((rrd->vlan_tag & 7) << 13) |
2031 					((rrd->vlan_tag & 8) << 9);
2032 
2033 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2034 		}
2035 		netif_receive_skb(skb);
2036 
2037 		/* let protocol layer free skb */
2038 		buffer_info->skb = NULL;
2039 		buffer_info->alloced = 0;
2040 		rrd->xsz.valid = 0;
2041 	}
2042 
2043 	atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2044 
2045 	atl1_alloc_rx_buffers(adapter);
2046 
2047 	/* update mailbox ? */
2048 	if (count) {
2049 		u32 tpd_next_to_use;
2050 		u32 rfd_next_to_use;
2051 
2052 		spin_lock(&adapter->mb_lock);
2053 
2054 		tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2055 		rfd_next_to_use =
2056 		    atomic_read(&adapter->rfd_ring.next_to_use);
2057 		rrd_next_to_clean =
2058 		    atomic_read(&adapter->rrd_ring.next_to_clean);
2059 		value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2060 			MB_RFD_PROD_INDX_SHIFT) |
2061                         ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2062 			MB_RRD_CONS_INDX_SHIFT) |
2063                         ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2064 			MB_TPD_PROD_INDX_SHIFT);
2065 		iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2066 		spin_unlock(&adapter->mb_lock);
2067 	}
2068 
2069 	return count;
2070 }
2071 
2072 static int atl1_intr_tx(struct atl1_adapter *adapter)
2073 {
2074 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2075 	struct atl1_buffer *buffer_info;
2076 	u16 sw_tpd_next_to_clean;
2077 	u16 cmb_tpd_next_to_clean;
2078 	int count = 0;
2079 
2080 	sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2081 	cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2082 
2083 	while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2084 		buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2085 		if (buffer_info->dma) {
2086 			pci_unmap_page(adapter->pdev, buffer_info->dma,
2087 				       buffer_info->length, PCI_DMA_TODEVICE);
2088 			buffer_info->dma = 0;
2089 		}
2090 
2091 		if (buffer_info->skb) {
2092 			dev_kfree_skb_irq(buffer_info->skb);
2093 			buffer_info->skb = NULL;
2094 		}
2095 
2096 		if (++sw_tpd_next_to_clean == tpd_ring->count)
2097 			sw_tpd_next_to_clean = 0;
2098 
2099 		count++;
2100 	}
2101 	atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2102 
2103 	if (netif_queue_stopped(adapter->netdev) &&
2104 	    netif_carrier_ok(adapter->netdev))
2105 		netif_wake_queue(adapter->netdev);
2106 
2107 	return count;
2108 }
2109 
2110 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2111 {
2112 	u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2113 	u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2114 	return (next_to_clean > next_to_use) ?
2115 		next_to_clean - next_to_use - 1 :
2116 		tpd_ring->count + next_to_clean - next_to_use - 1;
2117 }
2118 
2119 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2120 		    struct tx_packet_desc *ptpd)
2121 {
2122 	u8 hdr_len, ip_off;
2123 	u32 real_len;
2124 
2125 	if (skb_shinfo(skb)->gso_size) {
2126 		int err;
2127 
2128 		err = skb_cow_head(skb, 0);
2129 		if (err < 0)
2130 			return err;
2131 
2132 		if (skb->protocol == htons(ETH_P_IP)) {
2133 			struct iphdr *iph = ip_hdr(skb);
2134 
2135 			real_len = (((unsigned char *)iph - skb->data) +
2136 				ntohs(iph->tot_len));
2137 			if (real_len < skb->len)
2138 				pskb_trim(skb, real_len);
2139 			hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2140 			if (skb->len == hdr_len) {
2141 				iph->check = 0;
2142 				tcp_hdr(skb)->check =
2143 					~csum_tcpudp_magic(iph->saddr,
2144 					iph->daddr, tcp_hdrlen(skb),
2145 					IPPROTO_TCP, 0);
2146 				ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2147 					TPD_IPHL_SHIFT;
2148 				ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2149 					TPD_TCPHDRLEN_MASK) <<
2150 					TPD_TCPHDRLEN_SHIFT;
2151 				ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2152 				ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2153 				return 1;
2154 			}
2155 
2156 			iph->check = 0;
2157 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2158 					iph->daddr, 0, IPPROTO_TCP, 0);
2159 			ip_off = (unsigned char *)iph -
2160 				(unsigned char *) skb_network_header(skb);
2161 			if (ip_off == 8) /* 802.3-SNAP frame */
2162 				ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2163 			else if (ip_off != 0)
2164 				return -2;
2165 
2166 			ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2167 				TPD_IPHL_SHIFT;
2168 			ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2169 				TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2170 			ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2171 				TPD_MSS_MASK) << TPD_MSS_SHIFT;
2172 			ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2173 			return 3;
2174 		}
2175 	}
2176 	return 0;
2177 }
2178 
2179 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2180 	struct tx_packet_desc *ptpd)
2181 {
2182 	u8 css, cso;
2183 
2184 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2185 		css = skb_checksum_start_offset(skb);
2186 		cso = css + (u8) skb->csum_offset;
2187 		if (unlikely(css & 0x1)) {
2188 			/* L1 hardware requires an even number here */
2189 			if (netif_msg_tx_err(adapter))
2190 				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2191 					"payload offset not an even number\n");
2192 			return -1;
2193 		}
2194 		ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2195 			TPD_PLOADOFFSET_SHIFT;
2196 		ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2197 			TPD_CCSUMOFFSET_SHIFT;
2198 		ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2199 		return true;
2200 	}
2201 	return 0;
2202 }
2203 
2204 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2205 	struct tx_packet_desc *ptpd)
2206 {
2207 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2208 	struct atl1_buffer *buffer_info;
2209 	u16 buf_len = skb->len;
2210 	struct page *page;
2211 	unsigned long offset;
2212 	unsigned int nr_frags;
2213 	unsigned int f;
2214 	int retval;
2215 	u16 next_to_use;
2216 	u16 data_len;
2217 	u8 hdr_len;
2218 
2219 	buf_len -= skb->data_len;
2220 	nr_frags = skb_shinfo(skb)->nr_frags;
2221 	next_to_use = atomic_read(&tpd_ring->next_to_use);
2222 	buffer_info = &tpd_ring->buffer_info[next_to_use];
2223 	BUG_ON(buffer_info->skb);
2224 	/* put skb in last TPD */
2225 	buffer_info->skb = NULL;
2226 
2227 	retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2228 	if (retval) {
2229 		/* TSO */
2230 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2231 		buffer_info->length = hdr_len;
2232 		page = virt_to_page(skb->data);
2233 		offset = (unsigned long)skb->data & ~PAGE_MASK;
2234 		buffer_info->dma = pci_map_page(adapter->pdev, page,
2235 						offset, hdr_len,
2236 						PCI_DMA_TODEVICE);
2237 
2238 		if (++next_to_use == tpd_ring->count)
2239 			next_to_use = 0;
2240 
2241 		if (buf_len > hdr_len) {
2242 			int i, nseg;
2243 
2244 			data_len = buf_len - hdr_len;
2245 			nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2246 				ATL1_MAX_TX_BUF_LEN;
2247 			for (i = 0; i < nseg; i++) {
2248 				buffer_info =
2249 				    &tpd_ring->buffer_info[next_to_use];
2250 				buffer_info->skb = NULL;
2251 				buffer_info->length =
2252 				    (ATL1_MAX_TX_BUF_LEN >=
2253 				     data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2254 				data_len -= buffer_info->length;
2255 				page = virt_to_page(skb->data +
2256 					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2257 				offset = (unsigned long)(skb->data +
2258 					(hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2259 					~PAGE_MASK;
2260 				buffer_info->dma = pci_map_page(adapter->pdev,
2261 					page, offset, buffer_info->length,
2262 					PCI_DMA_TODEVICE);
2263 				if (++next_to_use == tpd_ring->count)
2264 					next_to_use = 0;
2265 			}
2266 		}
2267 	} else {
2268 		/* not TSO */
2269 		buffer_info->length = buf_len;
2270 		page = virt_to_page(skb->data);
2271 		offset = (unsigned long)skb->data & ~PAGE_MASK;
2272 		buffer_info->dma = pci_map_page(adapter->pdev, page,
2273 			offset, buf_len, PCI_DMA_TODEVICE);
2274 		if (++next_to_use == tpd_ring->count)
2275 			next_to_use = 0;
2276 	}
2277 
2278 	for (f = 0; f < nr_frags; f++) {
2279 		const struct skb_frag_struct *frag;
2280 		u16 i, nseg;
2281 
2282 		frag = &skb_shinfo(skb)->frags[f];
2283 		buf_len = skb_frag_size(frag);
2284 
2285 		nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2286 			ATL1_MAX_TX_BUF_LEN;
2287 		for (i = 0; i < nseg; i++) {
2288 			buffer_info = &tpd_ring->buffer_info[next_to_use];
2289 			BUG_ON(buffer_info->skb);
2290 
2291 			buffer_info->skb = NULL;
2292 			buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2293 				ATL1_MAX_TX_BUF_LEN : buf_len;
2294 			buf_len -= buffer_info->length;
2295 			buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2296 				frag, i * ATL1_MAX_TX_BUF_LEN,
2297 				buffer_info->length, DMA_TO_DEVICE);
2298 
2299 			if (++next_to_use == tpd_ring->count)
2300 				next_to_use = 0;
2301 		}
2302 	}
2303 
2304 	/* last tpd's buffer-info */
2305 	buffer_info->skb = skb;
2306 }
2307 
2308 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2309        struct tx_packet_desc *ptpd)
2310 {
2311 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2312 	struct atl1_buffer *buffer_info;
2313 	struct tx_packet_desc *tpd;
2314 	u16 j;
2315 	u32 val;
2316 	u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2317 
2318 	for (j = 0; j < count; j++) {
2319 		buffer_info = &tpd_ring->buffer_info[next_to_use];
2320 		tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2321 		if (tpd != ptpd)
2322 			memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2323 		tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2324 		tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2325 		tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2326 			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2327 
2328 		/*
2329 		 * if this is the first packet in a TSO chain, set
2330 		 * TPD_HDRFLAG, otherwise, clear it.
2331 		 */
2332 		val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2333 			TPD_SEGMENT_EN_MASK;
2334 		if (val) {
2335 			if (!j)
2336 				tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2337 			else
2338 				tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2339 		}
2340 
2341 		if (j == (count - 1))
2342 			tpd->word3 |= 1 << TPD_EOP_SHIFT;
2343 
2344 		if (++next_to_use == tpd_ring->count)
2345 			next_to_use = 0;
2346 	}
2347 	/*
2348 	 * Force memory writes to complete before letting h/w
2349 	 * know there are new descriptors to fetch.  (Only
2350 	 * applicable for weak-ordered memory model archs,
2351 	 * such as IA-64).
2352 	 */
2353 	wmb();
2354 
2355 	atomic_set(&tpd_ring->next_to_use, next_to_use);
2356 }
2357 
2358 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2359 					 struct net_device *netdev)
2360 {
2361 	struct atl1_adapter *adapter = netdev_priv(netdev);
2362 	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2363 	int len;
2364 	int tso;
2365 	int count = 1;
2366 	int ret_val;
2367 	struct tx_packet_desc *ptpd;
2368 	u16 vlan_tag;
2369 	unsigned int nr_frags = 0;
2370 	unsigned int mss = 0;
2371 	unsigned int f;
2372 	unsigned int proto_hdr_len;
2373 
2374 	len = skb_headlen(skb);
2375 
2376 	if (unlikely(skb->len <= 0)) {
2377 		dev_kfree_skb_any(skb);
2378 		return NETDEV_TX_OK;
2379 	}
2380 
2381 	nr_frags = skb_shinfo(skb)->nr_frags;
2382 	for (f = 0; f < nr_frags; f++) {
2383 		unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2384 		count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2385 			 ATL1_MAX_TX_BUF_LEN;
2386 	}
2387 
2388 	mss = skb_shinfo(skb)->gso_size;
2389 	if (mss) {
2390 		if (skb->protocol == htons(ETH_P_IP)) {
2391 			proto_hdr_len = (skb_transport_offset(skb) +
2392 					 tcp_hdrlen(skb));
2393 			if (unlikely(proto_hdr_len > len)) {
2394 				dev_kfree_skb_any(skb);
2395 				return NETDEV_TX_OK;
2396 			}
2397 			/* need additional TPD ? */
2398 			if (proto_hdr_len != len)
2399 				count += (len - proto_hdr_len +
2400 					ATL1_MAX_TX_BUF_LEN - 1) /
2401 					ATL1_MAX_TX_BUF_LEN;
2402 		}
2403 	}
2404 
2405 	if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2406 		/* not enough descriptors */
2407 		netif_stop_queue(netdev);
2408 		if (netif_msg_tx_queued(adapter))
2409 			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2410 				"tx busy\n");
2411 		return NETDEV_TX_BUSY;
2412 	}
2413 
2414 	ptpd = ATL1_TPD_DESC(tpd_ring,
2415 		(u16) atomic_read(&tpd_ring->next_to_use));
2416 	memset(ptpd, 0, sizeof(struct tx_packet_desc));
2417 
2418 	if (vlan_tx_tag_present(skb)) {
2419 		vlan_tag = vlan_tx_tag_get(skb);
2420 		vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2421 			((vlan_tag >> 9) & 0x8);
2422 		ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2423 		ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2424 			TPD_VLANTAG_SHIFT;
2425 	}
2426 
2427 	tso = atl1_tso(adapter, skb, ptpd);
2428 	if (tso < 0) {
2429 		dev_kfree_skb_any(skb);
2430 		return NETDEV_TX_OK;
2431 	}
2432 
2433 	if (!tso) {
2434 		ret_val = atl1_tx_csum(adapter, skb, ptpd);
2435 		if (ret_val < 0) {
2436 			dev_kfree_skb_any(skb);
2437 			return NETDEV_TX_OK;
2438 		}
2439 	}
2440 
2441 	atl1_tx_map(adapter, skb, ptpd);
2442 	atl1_tx_queue(adapter, count, ptpd);
2443 	atl1_update_mailbox(adapter);
2444 	mmiowb();
2445 	return NETDEV_TX_OK;
2446 }
2447 
2448 static int atl1_rings_clean(struct napi_struct *napi, int budget)
2449 {
2450 	struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2451 	int work_done = atl1_intr_rx(adapter, budget);
2452 
2453 	if (atl1_intr_tx(adapter))
2454 		work_done = budget;
2455 
2456 	/* Let's come again to process some more packets */
2457 	if (work_done >= budget)
2458 		return work_done;
2459 
2460 	napi_complete(napi);
2461 	/* re-enable Interrupt */
2462 	if (likely(adapter->int_enabled))
2463 		atlx_imr_set(adapter, IMR_NORMAL_MASK);
2464 	return work_done;
2465 }
2466 
2467 static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2468 {
2469 	if (!napi_schedule_prep(&adapter->napi))
2470 		/* It is possible in case even the RX/TX ints are disabled via IMR
2471 		 * register the ISR bits are set anyway (but do not produce IRQ).
2472 		 * To handle such situation the napi functions used to check is
2473 		 * something scheduled or not.
2474 		 */
2475 		return 0;
2476 
2477 	__napi_schedule(&adapter->napi);
2478 
2479 	/*
2480 	 * Disable RX/TX ints via IMR register if it is
2481 	 * allowed. NAPI handler must reenable them in same
2482 	 * way.
2483 	 */
2484 	if (!adapter->int_enabled)
2485 		return 1;
2486 
2487 	atlx_imr_set(adapter, IMR_NORXTX_MASK);
2488 	return 1;
2489 }
2490 
2491 /**
2492  * atl1_intr - Interrupt Handler
2493  * @irq: interrupt number
2494  * @data: pointer to a network interface device structure
2495  */
2496 static irqreturn_t atl1_intr(int irq, void *data)
2497 {
2498 	struct atl1_adapter *adapter = netdev_priv(data);
2499 	u32 status;
2500 
2501 	status = adapter->cmb.cmb->int_stats;
2502 	if (!status)
2503 		return IRQ_NONE;
2504 
2505 	/* clear CMB interrupt status at once,
2506 	 * but leave rx/tx interrupt status in case it should be dropped
2507 	 * only if rx/tx processing queued. In other case interrupt
2508 	 * can be lost.
2509 	 */
2510 	adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2511 
2512 	if (status & ISR_GPHY)	/* clear phy status */
2513 		atlx_clear_phy_int(adapter);
2514 
2515 	/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2516 	iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2517 
2518 	/* check if SMB intr */
2519 	if (status & ISR_SMB)
2520 		atl1_inc_smb(adapter);
2521 
2522 	/* check if PCIE PHY Link down */
2523 	if (status & ISR_PHY_LINKDOWN) {
2524 		if (netif_msg_intr(adapter))
2525 			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2526 				"pcie phy link down %x\n", status);
2527 		if (netif_running(adapter->netdev)) {	/* reset MAC */
2528 			atlx_irq_disable(adapter);
2529 			schedule_work(&adapter->reset_dev_task);
2530 			return IRQ_HANDLED;
2531 		}
2532 	}
2533 
2534 	/* check if DMA read/write error ? */
2535 	if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2536 		if (netif_msg_intr(adapter))
2537 			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2538 				"pcie DMA r/w error (status = 0x%x)\n",
2539 				status);
2540 		atlx_irq_disable(adapter);
2541 		schedule_work(&adapter->reset_dev_task);
2542 		return IRQ_HANDLED;
2543 	}
2544 
2545 	/* link event */
2546 	if (status & ISR_GPHY) {
2547 		adapter->soft_stats.tx_carrier_errors++;
2548 		atl1_check_for_link(adapter);
2549 	}
2550 
2551 	/* transmit or receive event */
2552 	if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2553 	    atl1_sched_rings_clean(adapter))
2554 		adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2555 					      ~(ISR_CMB_TX | ISR_CMB_RX);
2556 
2557 	/* rx exception */
2558 	if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2559 		ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2560 		ISR_HOST_RRD_OV))) {
2561 		if (netif_msg_intr(adapter))
2562 			dev_printk(KERN_DEBUG,
2563 				&adapter->pdev->dev,
2564 				"rx exception, ISR = 0x%x\n",
2565 				status);
2566 		atl1_sched_rings_clean(adapter);
2567 	}
2568 
2569 	/* re-enable Interrupt */
2570 	iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2571 	return IRQ_HANDLED;
2572 }
2573 
2574 
2575 /**
2576  * atl1_phy_config - Timer Call-back
2577  * @data: pointer to netdev cast into an unsigned long
2578  */
2579 static void atl1_phy_config(unsigned long data)
2580 {
2581 	struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2582 	struct atl1_hw *hw = &adapter->hw;
2583 	unsigned long flags;
2584 
2585 	spin_lock_irqsave(&adapter->lock, flags);
2586 	adapter->phy_timer_pending = false;
2587 	atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2588 	atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2589 	atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2590 	spin_unlock_irqrestore(&adapter->lock, flags);
2591 }
2592 
2593 /*
2594  * Orphaned vendor comment left intact here:
2595  * <vendor comment>
2596  * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2597  * will assert. We do soft reset <0x1400=1> according
2598  * with the SPEC. BUT, it seemes that PCIE or DMA
2599  * state-machine will not be reset. DMAR_TO_INT will
2600  * assert again and again.
2601  * </vendor comment>
2602  */
2603 
2604 static int atl1_reset(struct atl1_adapter *adapter)
2605 {
2606 	int ret;
2607 	ret = atl1_reset_hw(&adapter->hw);
2608 	if (ret)
2609 		return ret;
2610 	return atl1_init_hw(&adapter->hw);
2611 }
2612 
2613 static s32 atl1_up(struct atl1_adapter *adapter)
2614 {
2615 	struct net_device *netdev = adapter->netdev;
2616 	int err;
2617 	int irq_flags = 0;
2618 
2619 	/* hardware has been reset, we need to reload some things */
2620 	atlx_set_multi(netdev);
2621 	atl1_init_ring_ptrs(adapter);
2622 	atlx_restore_vlan(adapter);
2623 	err = atl1_alloc_rx_buffers(adapter);
2624 	if (unlikely(!err))
2625 		/* no RX BUFFER allocated */
2626 		return -ENOMEM;
2627 
2628 	if (unlikely(atl1_configure(adapter))) {
2629 		err = -EIO;
2630 		goto err_up;
2631 	}
2632 
2633 	err = pci_enable_msi(adapter->pdev);
2634 	if (err) {
2635 		if (netif_msg_ifup(adapter))
2636 			dev_info(&adapter->pdev->dev,
2637 				"Unable to enable MSI: %d\n", err);
2638 		irq_flags |= IRQF_SHARED;
2639 	}
2640 
2641 	err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2642 			netdev->name, netdev);
2643 	if (unlikely(err))
2644 		goto err_up;
2645 
2646 	napi_enable(&adapter->napi);
2647 	atlx_irq_enable(adapter);
2648 	atl1_check_link(adapter);
2649 	netif_start_queue(netdev);
2650 	return 0;
2651 
2652 err_up:
2653 	pci_disable_msi(adapter->pdev);
2654 	/* free rx_buffers */
2655 	atl1_clean_rx_ring(adapter);
2656 	return err;
2657 }
2658 
2659 static void atl1_down(struct atl1_adapter *adapter)
2660 {
2661 	struct net_device *netdev = adapter->netdev;
2662 
2663 	napi_disable(&adapter->napi);
2664 	netif_stop_queue(netdev);
2665 	del_timer_sync(&adapter->phy_config_timer);
2666 	adapter->phy_timer_pending = false;
2667 
2668 	atlx_irq_disable(adapter);
2669 	free_irq(adapter->pdev->irq, netdev);
2670 	pci_disable_msi(adapter->pdev);
2671 	atl1_reset_hw(&adapter->hw);
2672 	adapter->cmb.cmb->int_stats = 0;
2673 
2674 	adapter->link_speed = SPEED_0;
2675 	adapter->link_duplex = -1;
2676 	netif_carrier_off(netdev);
2677 
2678 	atl1_clean_tx_ring(adapter);
2679 	atl1_clean_rx_ring(adapter);
2680 }
2681 
2682 static void atl1_reset_dev_task(struct work_struct *work)
2683 {
2684 	struct atl1_adapter *adapter =
2685 		container_of(work, struct atl1_adapter, reset_dev_task);
2686 	struct net_device *netdev = adapter->netdev;
2687 
2688 	netif_device_detach(netdev);
2689 	atl1_down(adapter);
2690 	atl1_up(adapter);
2691 	netif_device_attach(netdev);
2692 }
2693 
2694 /**
2695  * atl1_change_mtu - Change the Maximum Transfer Unit
2696  * @netdev: network interface device structure
2697  * @new_mtu: new value for maximum frame size
2698  *
2699  * Returns 0 on success, negative on failure
2700  */
2701 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2702 {
2703 	struct atl1_adapter *adapter = netdev_priv(netdev);
2704 	int old_mtu = netdev->mtu;
2705 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2706 
2707 	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2708 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2709 		if (netif_msg_link(adapter))
2710 			dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2711 		return -EINVAL;
2712 	}
2713 
2714 	adapter->hw.max_frame_size = max_frame;
2715 	adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2716 	adapter->rx_buffer_len = (max_frame + 7) & ~7;
2717 	adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2718 
2719 	netdev->mtu = new_mtu;
2720 	if ((old_mtu != new_mtu) && netif_running(netdev)) {
2721 		atl1_down(adapter);
2722 		atl1_up(adapter);
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 /**
2729  * atl1_open - Called when a network interface is made active
2730  * @netdev: network interface device structure
2731  *
2732  * Returns 0 on success, negative value on failure
2733  *
2734  * The open entry point is called when a network interface is made
2735  * active by the system (IFF_UP).  At this point all resources needed
2736  * for transmit and receive operations are allocated, the interrupt
2737  * handler is registered with the OS, the watchdog timer is started,
2738  * and the stack is notified that the interface is ready.
2739  */
2740 static int atl1_open(struct net_device *netdev)
2741 {
2742 	struct atl1_adapter *adapter = netdev_priv(netdev);
2743 	int err;
2744 
2745 	netif_carrier_off(netdev);
2746 
2747 	/* allocate transmit descriptors */
2748 	err = atl1_setup_ring_resources(adapter);
2749 	if (err)
2750 		return err;
2751 
2752 	err = atl1_up(adapter);
2753 	if (err)
2754 		goto err_up;
2755 
2756 	return 0;
2757 
2758 err_up:
2759 	atl1_reset(adapter);
2760 	return err;
2761 }
2762 
2763 /**
2764  * atl1_close - Disables a network interface
2765  * @netdev: network interface device structure
2766  *
2767  * Returns 0, this is not allowed to fail
2768  *
2769  * The close entry point is called when an interface is de-activated
2770  * by the OS.  The hardware is still under the drivers control, but
2771  * needs to be disabled.  A global MAC reset is issued to stop the
2772  * hardware, and all transmit and receive resources are freed.
2773  */
2774 static int atl1_close(struct net_device *netdev)
2775 {
2776 	struct atl1_adapter *adapter = netdev_priv(netdev);
2777 	atl1_down(adapter);
2778 	atl1_free_ring_resources(adapter);
2779 	return 0;
2780 }
2781 
2782 #ifdef CONFIG_PM_SLEEP
2783 static int atl1_suspend(struct device *dev)
2784 {
2785 	struct pci_dev *pdev = to_pci_dev(dev);
2786 	struct net_device *netdev = pci_get_drvdata(pdev);
2787 	struct atl1_adapter *adapter = netdev_priv(netdev);
2788 	struct atl1_hw *hw = &adapter->hw;
2789 	u32 ctrl = 0;
2790 	u32 wufc = adapter->wol;
2791 	u32 val;
2792 	u16 speed;
2793 	u16 duplex;
2794 
2795 	netif_device_detach(netdev);
2796 	if (netif_running(netdev))
2797 		atl1_down(adapter);
2798 
2799 	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2800 	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2801 	val = ctrl & BMSR_LSTATUS;
2802 	if (val)
2803 		wufc &= ~ATLX_WUFC_LNKC;
2804 	if (!wufc)
2805 		goto disable_wol;
2806 
2807 	if (val) {
2808 		val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2809 		if (val) {
2810 			if (netif_msg_ifdown(adapter))
2811 				dev_printk(KERN_DEBUG, &pdev->dev,
2812 					"error getting speed/duplex\n");
2813 			goto disable_wol;
2814 		}
2815 
2816 		ctrl = 0;
2817 
2818 		/* enable magic packet WOL */
2819 		if (wufc & ATLX_WUFC_MAG)
2820 			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2821 		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2822 		ioread32(hw->hw_addr + REG_WOL_CTRL);
2823 
2824 		/* configure the mac */
2825 		ctrl = MAC_CTRL_RX_EN;
2826 		ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2827 			MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2828 		if (duplex == FULL_DUPLEX)
2829 			ctrl |= MAC_CTRL_DUPLX;
2830 		ctrl |= (((u32)adapter->hw.preamble_len &
2831 			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2832 		__atlx_vlan_mode(netdev->features, &ctrl);
2833 		if (wufc & ATLX_WUFC_MAG)
2834 			ctrl |= MAC_CTRL_BC_EN;
2835 		iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2836 		ioread32(hw->hw_addr + REG_MAC_CTRL);
2837 
2838 		/* poke the PHY */
2839 		ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2840 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2841 		iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2842 		ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2843 	} else {
2844 		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2845 		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2846 		ioread32(hw->hw_addr + REG_WOL_CTRL);
2847 		iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2848 		ioread32(hw->hw_addr + REG_MAC_CTRL);
2849 		hw->phy_configured = false;
2850 	}
2851 
2852 	return 0;
2853 
2854  disable_wol:
2855 	iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2856 	ioread32(hw->hw_addr + REG_WOL_CTRL);
2857 	ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2858 	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2859 	iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2860 	ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2861 	hw->phy_configured = false;
2862 
2863 	return 0;
2864 }
2865 
2866 static int atl1_resume(struct device *dev)
2867 {
2868 	struct pci_dev *pdev = to_pci_dev(dev);
2869 	struct net_device *netdev = pci_get_drvdata(pdev);
2870 	struct atl1_adapter *adapter = netdev_priv(netdev);
2871 
2872 	iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2873 
2874 	atl1_reset_hw(&adapter->hw);
2875 
2876 	if (netif_running(netdev)) {
2877 		adapter->cmb.cmb->int_stats = 0;
2878 		atl1_up(adapter);
2879 	}
2880 	netif_device_attach(netdev);
2881 
2882 	return 0;
2883 }
2884 #endif
2885 
2886 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2887 
2888 static void atl1_shutdown(struct pci_dev *pdev)
2889 {
2890 	struct net_device *netdev = pci_get_drvdata(pdev);
2891 	struct atl1_adapter *adapter = netdev_priv(netdev);
2892 
2893 #ifdef CONFIG_PM_SLEEP
2894 	atl1_suspend(&pdev->dev);
2895 #endif
2896 	pci_wake_from_d3(pdev, adapter->wol);
2897 	pci_set_power_state(pdev, PCI_D3hot);
2898 }
2899 
2900 #ifdef CONFIG_NET_POLL_CONTROLLER
2901 static void atl1_poll_controller(struct net_device *netdev)
2902 {
2903 	disable_irq(netdev->irq);
2904 	atl1_intr(netdev->irq, netdev);
2905 	enable_irq(netdev->irq);
2906 }
2907 #endif
2908 
2909 static const struct net_device_ops atl1_netdev_ops = {
2910 	.ndo_open		= atl1_open,
2911 	.ndo_stop		= atl1_close,
2912 	.ndo_start_xmit		= atl1_xmit_frame,
2913 	.ndo_set_rx_mode	= atlx_set_multi,
2914 	.ndo_validate_addr	= eth_validate_addr,
2915 	.ndo_set_mac_address	= atl1_set_mac,
2916 	.ndo_change_mtu		= atl1_change_mtu,
2917 	.ndo_fix_features	= atlx_fix_features,
2918 	.ndo_set_features	= atlx_set_features,
2919 	.ndo_do_ioctl		= atlx_ioctl,
2920 	.ndo_tx_timeout		= atlx_tx_timeout,
2921 #ifdef CONFIG_NET_POLL_CONTROLLER
2922 	.ndo_poll_controller	= atl1_poll_controller,
2923 #endif
2924 };
2925 
2926 /**
2927  * atl1_probe - Device Initialization Routine
2928  * @pdev: PCI device information struct
2929  * @ent: entry in atl1_pci_tbl
2930  *
2931  * Returns 0 on success, negative on failure
2932  *
2933  * atl1_probe initializes an adapter identified by a pci_dev structure.
2934  * The OS initialization, configuring of the adapter private structure,
2935  * and a hardware reset occur.
2936  */
2937 static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2938 {
2939 	struct net_device *netdev;
2940 	struct atl1_adapter *adapter;
2941 	static int cards_found = 0;
2942 	int err;
2943 
2944 	err = pci_enable_device(pdev);
2945 	if (err)
2946 		return err;
2947 
2948 	/*
2949 	 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2950 	 * shared register for the high 32 bits, so only a single, aligned,
2951 	 * 4 GB physical address range can be used at a time.
2952 	 *
2953 	 * Supporting 64-bit DMA on this hardware is more trouble than it's
2954 	 * worth.  It is far easier to limit to 32-bit DMA than update
2955 	 * various kernel subsystems to support the mechanics required by a
2956 	 * fixed-high-32-bit system.
2957 	 */
2958 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2959 	if (err) {
2960 		dev_err(&pdev->dev, "no usable DMA configuration\n");
2961 		goto err_dma;
2962 	}
2963 	/*
2964 	 * Mark all PCI regions associated with PCI device
2965 	 * pdev as being reserved by owner atl1_driver_name
2966 	 */
2967 	err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2968 	if (err)
2969 		goto err_request_regions;
2970 
2971 	/*
2972 	 * Enables bus-mastering on the device and calls
2973 	 * pcibios_set_master to do the needed arch specific settings
2974 	 */
2975 	pci_set_master(pdev);
2976 
2977 	netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2978 	if (!netdev) {
2979 		err = -ENOMEM;
2980 		goto err_alloc_etherdev;
2981 	}
2982 	SET_NETDEV_DEV(netdev, &pdev->dev);
2983 
2984 	pci_set_drvdata(pdev, netdev);
2985 	adapter = netdev_priv(netdev);
2986 	adapter->netdev = netdev;
2987 	adapter->pdev = pdev;
2988 	adapter->hw.back = adapter;
2989 	adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2990 
2991 	adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2992 	if (!adapter->hw.hw_addr) {
2993 		err = -EIO;
2994 		goto err_pci_iomap;
2995 	}
2996 	/* get device revision number */
2997 	adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2998 		(REG_MASTER_CTRL + 2));
2999 	if (netif_msg_probe(adapter))
3000 		dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
3001 
3002 	/* set default ring resource counts */
3003 	adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
3004 	adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
3005 
3006 	adapter->mii.dev = netdev;
3007 	adapter->mii.mdio_read = mdio_read;
3008 	adapter->mii.mdio_write = mdio_write;
3009 	adapter->mii.phy_id_mask = 0x1f;
3010 	adapter->mii.reg_num_mask = 0x1f;
3011 
3012 	netdev->netdev_ops = &atl1_netdev_ops;
3013 	netdev->watchdog_timeo = 5 * HZ;
3014 	netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
3015 
3016 	netdev->ethtool_ops = &atl1_ethtool_ops;
3017 	adapter->bd_number = cards_found;
3018 
3019 	/* setup the private structure */
3020 	err = atl1_sw_init(adapter);
3021 	if (err)
3022 		goto err_common;
3023 
3024 	netdev->features = NETIF_F_HW_CSUM;
3025 	netdev->features |= NETIF_F_SG;
3026 	netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
3027 
3028 	netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
3029 			      NETIF_F_HW_VLAN_CTAG_RX;
3030 
3031 	/* is this valid? see atl1_setup_mac_ctrl() */
3032 	netdev->features |= NETIF_F_RXCSUM;
3033 
3034 	/*
3035 	 * patch for some L1 of old version,
3036 	 * the final version of L1 may not need these
3037 	 * patches
3038 	 */
3039 	/* atl1_pcie_patch(adapter); */
3040 
3041 	/* really reset GPHY core */
3042 	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3043 
3044 	/*
3045 	 * reset the controller to
3046 	 * put the device in a known good starting state
3047 	 */
3048 	if (atl1_reset_hw(&adapter->hw)) {
3049 		err = -EIO;
3050 		goto err_common;
3051 	}
3052 
3053 	/* copy the MAC address out of the EEPROM */
3054 	if (atl1_read_mac_addr(&adapter->hw)) {
3055 		/* mark random mac */
3056 		netdev->addr_assign_type = NET_ADDR_RANDOM;
3057 	}
3058 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3059 
3060 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3061 		err = -EIO;
3062 		goto err_common;
3063 	}
3064 
3065 	atl1_check_options(adapter);
3066 
3067 	/* pre-init the MAC, and setup link */
3068 	err = atl1_init_hw(&adapter->hw);
3069 	if (err) {
3070 		err = -EIO;
3071 		goto err_common;
3072 	}
3073 
3074 	atl1_pcie_patch(adapter);
3075 	/* assume we have no link for now */
3076 	netif_carrier_off(netdev);
3077 
3078 	setup_timer(&adapter->phy_config_timer, atl1_phy_config,
3079 		    (unsigned long)adapter);
3080 	adapter->phy_timer_pending = false;
3081 
3082 	INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3083 
3084 	INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3085 
3086 	err = register_netdev(netdev);
3087 	if (err)
3088 		goto err_common;
3089 
3090 	cards_found++;
3091 	atl1_via_workaround(adapter);
3092 	return 0;
3093 
3094 err_common:
3095 	pci_iounmap(pdev, adapter->hw.hw_addr);
3096 err_pci_iomap:
3097 	free_netdev(netdev);
3098 err_alloc_etherdev:
3099 	pci_release_regions(pdev);
3100 err_dma:
3101 err_request_regions:
3102 	pci_disable_device(pdev);
3103 	return err;
3104 }
3105 
3106 /**
3107  * atl1_remove - Device Removal Routine
3108  * @pdev: PCI device information struct
3109  *
3110  * atl1_remove is called by the PCI subsystem to alert the driver
3111  * that it should release a PCI device.  The could be caused by a
3112  * Hot-Plug event, or because the driver is going to be removed from
3113  * memory.
3114  */
3115 static void atl1_remove(struct pci_dev *pdev)
3116 {
3117 	struct net_device *netdev = pci_get_drvdata(pdev);
3118 	struct atl1_adapter *adapter;
3119 	/* Device not available. Return. */
3120 	if (!netdev)
3121 		return;
3122 
3123 	adapter = netdev_priv(netdev);
3124 
3125 	/*
3126 	 * Some atl1 boards lack persistent storage for their MAC, and get it
3127 	 * from the BIOS during POST.  If we've been messing with the MAC
3128 	 * address, we need to save the permanent one.
3129 	 */
3130 	if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3131 					adapter->hw.perm_mac_addr)) {
3132 		memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3133 			ETH_ALEN);
3134 		atl1_set_mac_addr(&adapter->hw);
3135 	}
3136 
3137 	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3138 	unregister_netdev(netdev);
3139 	pci_iounmap(pdev, adapter->hw.hw_addr);
3140 	pci_release_regions(pdev);
3141 	free_netdev(netdev);
3142 	pci_disable_device(pdev);
3143 }
3144 
3145 static struct pci_driver atl1_driver = {
3146 	.name = ATLX_DRIVER_NAME,
3147 	.id_table = atl1_pci_tbl,
3148 	.probe = atl1_probe,
3149 	.remove = atl1_remove,
3150 	.shutdown = atl1_shutdown,
3151 	.driver.pm = &atl1_pm_ops,
3152 };
3153 
3154 struct atl1_stats {
3155 	char stat_string[ETH_GSTRING_LEN];
3156 	int sizeof_stat;
3157 	int stat_offset;
3158 };
3159 
3160 #define ATL1_STAT(m) \
3161 	sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3162 
3163 static struct atl1_stats atl1_gstrings_stats[] = {
3164 	{"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3165 	{"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3166 	{"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3167 	{"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3168 	{"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3169 	{"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3170 	{"multicast", ATL1_STAT(soft_stats.multicast)},
3171 	{"collisions", ATL1_STAT(soft_stats.collisions)},
3172 	{"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3173 	{"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3174 	{"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3175 	{"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3176 	{"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3177 	{"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3178 	{"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3179 	{"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3180 	{"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3181 	{"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3182 	{"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3183 	{"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3184 	{"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3185 	{"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3186 	{"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3187 	{"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3188 	{"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3189 	{"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3190 	{"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3191 	{"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3192 	{"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3193 };
3194 
3195 static void atl1_get_ethtool_stats(struct net_device *netdev,
3196 	struct ethtool_stats *stats, u64 *data)
3197 {
3198 	struct atl1_adapter *adapter = netdev_priv(netdev);
3199 	int i;
3200 	char *p;
3201 
3202 	for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3203 		p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3204 		data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3205 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3206 	}
3207 
3208 }
3209 
3210 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3211 {
3212 	switch (sset) {
3213 	case ETH_SS_STATS:
3214 		return ARRAY_SIZE(atl1_gstrings_stats);
3215 	default:
3216 		return -EOPNOTSUPP;
3217 	}
3218 }
3219 
3220 static int atl1_get_settings(struct net_device *netdev,
3221 	struct ethtool_cmd *ecmd)
3222 {
3223 	struct atl1_adapter *adapter = netdev_priv(netdev);
3224 	struct atl1_hw *hw = &adapter->hw;
3225 
3226 	ecmd->supported = (SUPPORTED_10baseT_Half |
3227 			   SUPPORTED_10baseT_Full |
3228 			   SUPPORTED_100baseT_Half |
3229 			   SUPPORTED_100baseT_Full |
3230 			   SUPPORTED_1000baseT_Full |
3231 			   SUPPORTED_Autoneg | SUPPORTED_TP);
3232 	ecmd->advertising = ADVERTISED_TP;
3233 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3234 	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3235 		ecmd->advertising |= ADVERTISED_Autoneg;
3236 		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3237 			ecmd->advertising |= ADVERTISED_Autoneg;
3238 			ecmd->advertising |=
3239 			    (ADVERTISED_10baseT_Half |
3240 			     ADVERTISED_10baseT_Full |
3241 			     ADVERTISED_100baseT_Half |
3242 			     ADVERTISED_100baseT_Full |
3243 			     ADVERTISED_1000baseT_Full);
3244 		} else
3245 			ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3246 	}
3247 	ecmd->port = PORT_TP;
3248 	ecmd->phy_address = 0;
3249 	ecmd->transceiver = XCVR_INTERNAL;
3250 
3251 	if (netif_carrier_ok(adapter->netdev)) {
3252 		u16 link_speed, link_duplex;
3253 		atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3254 		ethtool_cmd_speed_set(ecmd, link_speed);
3255 		if (link_duplex == FULL_DUPLEX)
3256 			ecmd->duplex = DUPLEX_FULL;
3257 		else
3258 			ecmd->duplex = DUPLEX_HALF;
3259 	} else {
3260 		ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
3261 		ecmd->duplex = DUPLEX_UNKNOWN;
3262 	}
3263 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3264 	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3265 		ecmd->autoneg = AUTONEG_ENABLE;
3266 	else
3267 		ecmd->autoneg = AUTONEG_DISABLE;
3268 
3269 	return 0;
3270 }
3271 
3272 static int atl1_set_settings(struct net_device *netdev,
3273 	struct ethtool_cmd *ecmd)
3274 {
3275 	struct atl1_adapter *adapter = netdev_priv(netdev);
3276 	struct atl1_hw *hw = &adapter->hw;
3277 	u16 phy_data;
3278 	int ret_val = 0;
3279 	u16 old_media_type = hw->media_type;
3280 
3281 	if (netif_running(adapter->netdev)) {
3282 		if (netif_msg_link(adapter))
3283 			dev_dbg(&adapter->pdev->dev,
3284 				"ethtool shutting down adapter\n");
3285 		atl1_down(adapter);
3286 	}
3287 
3288 	if (ecmd->autoneg == AUTONEG_ENABLE)
3289 		hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3290 	else {
3291 		u32 speed = ethtool_cmd_speed(ecmd);
3292 		if (speed == SPEED_1000) {
3293 			if (ecmd->duplex != DUPLEX_FULL) {
3294 				if (netif_msg_link(adapter))
3295 					dev_warn(&adapter->pdev->dev,
3296 						"1000M half is invalid\n");
3297 				ret_val = -EINVAL;
3298 				goto exit_sset;
3299 			}
3300 			hw->media_type = MEDIA_TYPE_1000M_FULL;
3301 		} else if (speed == SPEED_100) {
3302 			if (ecmd->duplex == DUPLEX_FULL)
3303 				hw->media_type = MEDIA_TYPE_100M_FULL;
3304 			else
3305 				hw->media_type = MEDIA_TYPE_100M_HALF;
3306 		} else {
3307 			if (ecmd->duplex == DUPLEX_FULL)
3308 				hw->media_type = MEDIA_TYPE_10M_FULL;
3309 			else
3310 				hw->media_type = MEDIA_TYPE_10M_HALF;
3311 		}
3312 	}
3313 	switch (hw->media_type) {
3314 	case MEDIA_TYPE_AUTO_SENSOR:
3315 		ecmd->advertising =
3316 		    ADVERTISED_10baseT_Half |
3317 		    ADVERTISED_10baseT_Full |
3318 		    ADVERTISED_100baseT_Half |
3319 		    ADVERTISED_100baseT_Full |
3320 		    ADVERTISED_1000baseT_Full |
3321 		    ADVERTISED_Autoneg | ADVERTISED_TP;
3322 		break;
3323 	case MEDIA_TYPE_1000M_FULL:
3324 		ecmd->advertising =
3325 		    ADVERTISED_1000baseT_Full |
3326 		    ADVERTISED_Autoneg | ADVERTISED_TP;
3327 		break;
3328 	default:
3329 		ecmd->advertising = 0;
3330 		break;
3331 	}
3332 	if (atl1_phy_setup_autoneg_adv(hw)) {
3333 		ret_val = -EINVAL;
3334 		if (netif_msg_link(adapter))
3335 			dev_warn(&adapter->pdev->dev,
3336 				"invalid ethtool speed/duplex setting\n");
3337 		goto exit_sset;
3338 	}
3339 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3340 	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3341 		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3342 	else {
3343 		switch (hw->media_type) {
3344 		case MEDIA_TYPE_100M_FULL:
3345 			phy_data =
3346 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3347 			    MII_CR_RESET;
3348 			break;
3349 		case MEDIA_TYPE_100M_HALF:
3350 			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3351 			break;
3352 		case MEDIA_TYPE_10M_FULL:
3353 			phy_data =
3354 			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3355 			break;
3356 		default:
3357 			/* MEDIA_TYPE_10M_HALF: */
3358 			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3359 			break;
3360 		}
3361 	}
3362 	atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3363 exit_sset:
3364 	if (ret_val)
3365 		hw->media_type = old_media_type;
3366 
3367 	if (netif_running(adapter->netdev)) {
3368 		if (netif_msg_link(adapter))
3369 			dev_dbg(&adapter->pdev->dev,
3370 				"ethtool starting adapter\n");
3371 		atl1_up(adapter);
3372 	} else if (!ret_val) {
3373 		if (netif_msg_link(adapter))
3374 			dev_dbg(&adapter->pdev->dev,
3375 				"ethtool resetting adapter\n");
3376 		atl1_reset(adapter);
3377 	}
3378 	return ret_val;
3379 }
3380 
3381 static void atl1_get_drvinfo(struct net_device *netdev,
3382 	struct ethtool_drvinfo *drvinfo)
3383 {
3384 	struct atl1_adapter *adapter = netdev_priv(netdev);
3385 
3386 	strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3387 	strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3388 		sizeof(drvinfo->version));
3389 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3390 		sizeof(drvinfo->bus_info));
3391 	drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3392 }
3393 
3394 static void atl1_get_wol(struct net_device *netdev,
3395 	struct ethtool_wolinfo *wol)
3396 {
3397 	struct atl1_adapter *adapter = netdev_priv(netdev);
3398 
3399 	wol->supported = WAKE_MAGIC;
3400 	wol->wolopts = 0;
3401 	if (adapter->wol & ATLX_WUFC_MAG)
3402 		wol->wolopts |= WAKE_MAGIC;
3403 }
3404 
3405 static int atl1_set_wol(struct net_device *netdev,
3406 	struct ethtool_wolinfo *wol)
3407 {
3408 	struct atl1_adapter *adapter = netdev_priv(netdev);
3409 
3410 	if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3411 		WAKE_ARP | WAKE_MAGICSECURE))
3412 		return -EOPNOTSUPP;
3413 	adapter->wol = 0;
3414 	if (wol->wolopts & WAKE_MAGIC)
3415 		adapter->wol |= ATLX_WUFC_MAG;
3416 
3417 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3418 
3419 	return 0;
3420 }
3421 
3422 static u32 atl1_get_msglevel(struct net_device *netdev)
3423 {
3424 	struct atl1_adapter *adapter = netdev_priv(netdev);
3425 	return adapter->msg_enable;
3426 }
3427 
3428 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3429 {
3430 	struct atl1_adapter *adapter = netdev_priv(netdev);
3431 	adapter->msg_enable = value;
3432 }
3433 
3434 static int atl1_get_regs_len(struct net_device *netdev)
3435 {
3436 	return ATL1_REG_COUNT * sizeof(u32);
3437 }
3438 
3439 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3440 	void *p)
3441 {
3442 	struct atl1_adapter *adapter = netdev_priv(netdev);
3443 	struct atl1_hw *hw = &adapter->hw;
3444 	unsigned int i;
3445 	u32 *regbuf = p;
3446 
3447 	for (i = 0; i < ATL1_REG_COUNT; i++) {
3448 		/*
3449 		 * This switch statement avoids reserved regions
3450 		 * of register space.
3451 		 */
3452 		switch (i) {
3453 		case 6 ... 9:
3454 		case 14:
3455 		case 29 ... 31:
3456 		case 34 ... 63:
3457 		case 75 ... 127:
3458 		case 136 ... 1023:
3459 		case 1027 ... 1087:
3460 		case 1091 ... 1151:
3461 		case 1194 ... 1195:
3462 		case 1200 ... 1201:
3463 		case 1206 ... 1213:
3464 		case 1216 ... 1279:
3465 		case 1290 ... 1311:
3466 		case 1323 ... 1343:
3467 		case 1358 ... 1359:
3468 		case 1368 ... 1375:
3469 		case 1378 ... 1383:
3470 		case 1388 ... 1391:
3471 		case 1393 ... 1395:
3472 		case 1402 ... 1403:
3473 		case 1410 ... 1471:
3474 		case 1522 ... 1535:
3475 			/* reserved region; don't read it */
3476 			regbuf[i] = 0;
3477 			break;
3478 		default:
3479 			/* unreserved region */
3480 			regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3481 		}
3482 	}
3483 }
3484 
3485 static void atl1_get_ringparam(struct net_device *netdev,
3486 	struct ethtool_ringparam *ring)
3487 {
3488 	struct atl1_adapter *adapter = netdev_priv(netdev);
3489 	struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3490 	struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3491 
3492 	ring->rx_max_pending = ATL1_MAX_RFD;
3493 	ring->tx_max_pending = ATL1_MAX_TPD;
3494 	ring->rx_pending = rxdr->count;
3495 	ring->tx_pending = txdr->count;
3496 }
3497 
3498 static int atl1_set_ringparam(struct net_device *netdev,
3499 	struct ethtool_ringparam *ring)
3500 {
3501 	struct atl1_adapter *adapter = netdev_priv(netdev);
3502 	struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3503 	struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3504 	struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3505 
3506 	struct atl1_tpd_ring tpd_old, tpd_new;
3507 	struct atl1_rfd_ring rfd_old, rfd_new;
3508 	struct atl1_rrd_ring rrd_old, rrd_new;
3509 	struct atl1_ring_header rhdr_old, rhdr_new;
3510 	struct atl1_smb smb;
3511 	struct atl1_cmb cmb;
3512 	int err;
3513 
3514 	tpd_old = adapter->tpd_ring;
3515 	rfd_old = adapter->rfd_ring;
3516 	rrd_old = adapter->rrd_ring;
3517 	rhdr_old = adapter->ring_header;
3518 
3519 	if (netif_running(adapter->netdev))
3520 		atl1_down(adapter);
3521 
3522 	rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3523 	rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3524 			rfdr->count;
3525 	rfdr->count = (rfdr->count + 3) & ~3;
3526 	rrdr->count = rfdr->count;
3527 
3528 	tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3529 	tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3530 			tpdr->count;
3531 	tpdr->count = (tpdr->count + 3) & ~3;
3532 
3533 	if (netif_running(adapter->netdev)) {
3534 		/* try to get new resources before deleting old */
3535 		err = atl1_setup_ring_resources(adapter);
3536 		if (err)
3537 			goto err_setup_ring;
3538 
3539 		/*
3540 		 * save the new, restore the old in order to free it,
3541 		 * then restore the new back again
3542 		 */
3543 
3544 		rfd_new = adapter->rfd_ring;
3545 		rrd_new = adapter->rrd_ring;
3546 		tpd_new = adapter->tpd_ring;
3547 		rhdr_new = adapter->ring_header;
3548 		adapter->rfd_ring = rfd_old;
3549 		adapter->rrd_ring = rrd_old;
3550 		adapter->tpd_ring = tpd_old;
3551 		adapter->ring_header = rhdr_old;
3552 		/*
3553 		 * Save SMB and CMB, since atl1_free_ring_resources
3554 		 * will clear them.
3555 		 */
3556 		smb = adapter->smb;
3557 		cmb = adapter->cmb;
3558 		atl1_free_ring_resources(adapter);
3559 		adapter->rfd_ring = rfd_new;
3560 		adapter->rrd_ring = rrd_new;
3561 		adapter->tpd_ring = tpd_new;
3562 		adapter->ring_header = rhdr_new;
3563 		adapter->smb = smb;
3564 		adapter->cmb = cmb;
3565 
3566 		err = atl1_up(adapter);
3567 		if (err)
3568 			return err;
3569 	}
3570 	return 0;
3571 
3572 err_setup_ring:
3573 	adapter->rfd_ring = rfd_old;
3574 	adapter->rrd_ring = rrd_old;
3575 	adapter->tpd_ring = tpd_old;
3576 	adapter->ring_header = rhdr_old;
3577 	atl1_up(adapter);
3578 	return err;
3579 }
3580 
3581 static void atl1_get_pauseparam(struct net_device *netdev,
3582 	struct ethtool_pauseparam *epause)
3583 {
3584 	struct atl1_adapter *adapter = netdev_priv(netdev);
3585 	struct atl1_hw *hw = &adapter->hw;
3586 
3587 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3588 	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3589 		epause->autoneg = AUTONEG_ENABLE;
3590 	} else {
3591 		epause->autoneg = AUTONEG_DISABLE;
3592 	}
3593 	epause->rx_pause = 1;
3594 	epause->tx_pause = 1;
3595 }
3596 
3597 static int atl1_set_pauseparam(struct net_device *netdev,
3598 	struct ethtool_pauseparam *epause)
3599 {
3600 	struct atl1_adapter *adapter = netdev_priv(netdev);
3601 	struct atl1_hw *hw = &adapter->hw;
3602 
3603 	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3604 	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3605 		epause->autoneg = AUTONEG_ENABLE;
3606 	} else {
3607 		epause->autoneg = AUTONEG_DISABLE;
3608 	}
3609 
3610 	epause->rx_pause = 1;
3611 	epause->tx_pause = 1;
3612 
3613 	return 0;
3614 }
3615 
3616 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3617 	u8 *data)
3618 {
3619 	u8 *p = data;
3620 	int i;
3621 
3622 	switch (stringset) {
3623 	case ETH_SS_STATS:
3624 		for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3625 			memcpy(p, atl1_gstrings_stats[i].stat_string,
3626 				ETH_GSTRING_LEN);
3627 			p += ETH_GSTRING_LEN;
3628 		}
3629 		break;
3630 	}
3631 }
3632 
3633 static int atl1_nway_reset(struct net_device *netdev)
3634 {
3635 	struct atl1_adapter *adapter = netdev_priv(netdev);
3636 	struct atl1_hw *hw = &adapter->hw;
3637 
3638 	if (netif_running(netdev)) {
3639 		u16 phy_data;
3640 		atl1_down(adapter);
3641 
3642 		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3643 			hw->media_type == MEDIA_TYPE_1000M_FULL) {
3644 			phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3645 		} else {
3646 			switch (hw->media_type) {
3647 			case MEDIA_TYPE_100M_FULL:
3648 				phy_data = MII_CR_FULL_DUPLEX |
3649 					MII_CR_SPEED_100 | MII_CR_RESET;
3650 				break;
3651 			case MEDIA_TYPE_100M_HALF:
3652 				phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3653 				break;
3654 			case MEDIA_TYPE_10M_FULL:
3655 				phy_data = MII_CR_FULL_DUPLEX |
3656 					MII_CR_SPEED_10 | MII_CR_RESET;
3657 				break;
3658 			default:
3659 				/* MEDIA_TYPE_10M_HALF */
3660 				phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3661 			}
3662 		}
3663 		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3664 		atl1_up(adapter);
3665 	}
3666 	return 0;
3667 }
3668 
3669 static const struct ethtool_ops atl1_ethtool_ops = {
3670 	.get_settings		= atl1_get_settings,
3671 	.set_settings		= atl1_set_settings,
3672 	.get_drvinfo		= atl1_get_drvinfo,
3673 	.get_wol		= atl1_get_wol,
3674 	.set_wol		= atl1_set_wol,
3675 	.get_msglevel		= atl1_get_msglevel,
3676 	.set_msglevel		= atl1_set_msglevel,
3677 	.get_regs_len		= atl1_get_regs_len,
3678 	.get_regs		= atl1_get_regs,
3679 	.get_ringparam		= atl1_get_ringparam,
3680 	.set_ringparam		= atl1_set_ringparam,
3681 	.get_pauseparam		= atl1_get_pauseparam,
3682 	.set_pauseparam		= atl1_set_pauseparam,
3683 	.get_link		= ethtool_op_get_link,
3684 	.get_strings		= atl1_get_strings,
3685 	.nway_reset		= atl1_nway_reset,
3686 	.get_ethtool_stats	= atl1_get_ethtool_stats,
3687 	.get_sset_count		= atl1_get_sset_count,
3688 };
3689 
3690 module_pci_driver(atl1_driver);
3691