1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright(c) 2007 Atheros Corporation. All rights reserved. 4 * 5 * Derived from Intel e1000 driver 6 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 7 */ 8 9 #include "atl1e.h" 10 11 char atl1e_driver_name[] = "ATL1E"; 12 #define PCI_DEVICE_ID_ATTANSIC_L1E 0x1026 13 /* 14 * atl1e_pci_tbl - PCI Device ID Table 15 * 16 * Wildcard entries (PCI_ANY_ID) should come last 17 * Last entry must be all 0s 18 * 19 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 20 * Class, Class Mask, private data (not used) } 21 */ 22 static const struct pci_device_id atl1e_pci_tbl[] = { 23 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1E)}, 24 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, 0x1066)}, 25 /* required last entry */ 26 { 0 } 27 }; 28 MODULE_DEVICE_TABLE(pci, atl1e_pci_tbl); 29 30 MODULE_AUTHOR("Atheros Corporation, <xiong.huang@atheros.com>, Jie Yang <jie.yang@atheros.com>"); 31 MODULE_DESCRIPTION("Atheros 1000M Ethernet Network Driver"); 32 MODULE_LICENSE("GPL"); 33 34 static void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter); 35 36 static const u16 37 atl1e_rx_page_vld_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] = 38 { 39 {REG_HOST_RXF0_PAGE0_VLD, REG_HOST_RXF0_PAGE1_VLD}, 40 {REG_HOST_RXF1_PAGE0_VLD, REG_HOST_RXF1_PAGE1_VLD}, 41 {REG_HOST_RXF2_PAGE0_VLD, REG_HOST_RXF2_PAGE1_VLD}, 42 {REG_HOST_RXF3_PAGE0_VLD, REG_HOST_RXF3_PAGE1_VLD} 43 }; 44 45 static const u16 atl1e_rx_page_hi_addr_regs[AT_MAX_RECEIVE_QUEUE] = 46 { 47 REG_RXF0_BASE_ADDR_HI, 48 REG_RXF1_BASE_ADDR_HI, 49 REG_RXF2_BASE_ADDR_HI, 50 REG_RXF3_BASE_ADDR_HI 51 }; 52 53 static const u16 54 atl1e_rx_page_lo_addr_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] = 55 { 56 {REG_HOST_RXF0_PAGE0_LO, REG_HOST_RXF0_PAGE1_LO}, 57 {REG_HOST_RXF1_PAGE0_LO, REG_HOST_RXF1_PAGE1_LO}, 58 {REG_HOST_RXF2_PAGE0_LO, REG_HOST_RXF2_PAGE1_LO}, 59 {REG_HOST_RXF3_PAGE0_LO, REG_HOST_RXF3_PAGE1_LO} 60 }; 61 62 static const u16 63 atl1e_rx_page_write_offset_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] = 64 { 65 {REG_HOST_RXF0_MB0_LO, REG_HOST_RXF0_MB1_LO}, 66 {REG_HOST_RXF1_MB0_LO, REG_HOST_RXF1_MB1_LO}, 67 {REG_HOST_RXF2_MB0_LO, REG_HOST_RXF2_MB1_LO}, 68 {REG_HOST_RXF3_MB0_LO, REG_HOST_RXF3_MB1_LO} 69 }; 70 71 static const u16 atl1e_pay_load_size[] = { 72 128, 256, 512, 1024, 2048, 4096, 73 }; 74 75 /** 76 * atl1e_irq_enable - Enable default interrupt generation settings 77 * @adapter: board private structure 78 */ 79 static inline void atl1e_irq_enable(struct atl1e_adapter *adapter) 80 { 81 if (likely(atomic_dec_and_test(&adapter->irq_sem))) { 82 AT_WRITE_REG(&adapter->hw, REG_ISR, 0); 83 AT_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK); 84 AT_WRITE_FLUSH(&adapter->hw); 85 } 86 } 87 88 /** 89 * atl1e_irq_disable - Mask off interrupt generation on the NIC 90 * @adapter: board private structure 91 */ 92 static inline void atl1e_irq_disable(struct atl1e_adapter *adapter) 93 { 94 atomic_inc(&adapter->irq_sem); 95 AT_WRITE_REG(&adapter->hw, REG_IMR, 0); 96 AT_WRITE_FLUSH(&adapter->hw); 97 synchronize_irq(adapter->pdev->irq); 98 } 99 100 /** 101 * atl1e_irq_reset - reset interrupt confiure on the NIC 102 * @adapter: board private structure 103 */ 104 static inline void atl1e_irq_reset(struct atl1e_adapter *adapter) 105 { 106 atomic_set(&adapter->irq_sem, 0); 107 AT_WRITE_REG(&adapter->hw, REG_ISR, 0); 108 AT_WRITE_REG(&adapter->hw, REG_IMR, 0); 109 AT_WRITE_FLUSH(&adapter->hw); 110 } 111 112 /** 113 * atl1e_phy_config - Timer Call-back 114 * @t: timer list containing pointer to netdev cast into an unsigned long 115 */ 116 static void atl1e_phy_config(struct timer_list *t) 117 { 118 struct atl1e_adapter *adapter = from_timer(adapter, t, 119 phy_config_timer); 120 struct atl1e_hw *hw = &adapter->hw; 121 unsigned long flags; 122 123 spin_lock_irqsave(&adapter->mdio_lock, flags); 124 atl1e_restart_autoneg(hw); 125 spin_unlock_irqrestore(&adapter->mdio_lock, flags); 126 } 127 128 void atl1e_reinit_locked(struct atl1e_adapter *adapter) 129 { 130 while (test_and_set_bit(__AT_RESETTING, &adapter->flags)) 131 msleep(1); 132 atl1e_down(adapter); 133 atl1e_up(adapter); 134 clear_bit(__AT_RESETTING, &adapter->flags); 135 } 136 137 static void atl1e_reset_task(struct work_struct *work) 138 { 139 struct atl1e_adapter *adapter; 140 adapter = container_of(work, struct atl1e_adapter, reset_task); 141 142 atl1e_reinit_locked(adapter); 143 } 144 145 static int atl1e_check_link(struct atl1e_adapter *adapter) 146 { 147 struct atl1e_hw *hw = &adapter->hw; 148 struct net_device *netdev = adapter->netdev; 149 int err = 0; 150 u16 speed, duplex, phy_data; 151 152 /* MII_BMSR must read twice */ 153 atl1e_read_phy_reg(hw, MII_BMSR, &phy_data); 154 atl1e_read_phy_reg(hw, MII_BMSR, &phy_data); 155 if ((phy_data & BMSR_LSTATUS) == 0) { 156 /* link down */ 157 if (netif_carrier_ok(netdev)) { /* old link state: Up */ 158 u32 value; 159 /* disable rx */ 160 value = AT_READ_REG(hw, REG_MAC_CTRL); 161 value &= ~MAC_CTRL_RX_EN; 162 AT_WRITE_REG(hw, REG_MAC_CTRL, value); 163 adapter->link_speed = SPEED_0; 164 netif_carrier_off(netdev); 165 netif_stop_queue(netdev); 166 } 167 } else { 168 /* Link Up */ 169 err = atl1e_get_speed_and_duplex(hw, &speed, &duplex); 170 if (unlikely(err)) 171 return err; 172 173 /* link result is our setting */ 174 if (adapter->link_speed != speed || 175 adapter->link_duplex != duplex) { 176 adapter->link_speed = speed; 177 adapter->link_duplex = duplex; 178 atl1e_setup_mac_ctrl(adapter); 179 netdev_info(netdev, 180 "NIC Link is Up <%d Mbps %s Duplex>\n", 181 adapter->link_speed, 182 adapter->link_duplex == FULL_DUPLEX ? 183 "Full" : "Half"); 184 } 185 186 if (!netif_carrier_ok(netdev)) { 187 /* Link down -> Up */ 188 netif_carrier_on(netdev); 189 netif_wake_queue(netdev); 190 } 191 } 192 return 0; 193 } 194 195 /** 196 * atl1e_link_chg_task - deal with link change event Out of interrupt context 197 * @work: work struct with driver info 198 */ 199 static void atl1e_link_chg_task(struct work_struct *work) 200 { 201 struct atl1e_adapter *adapter; 202 unsigned long flags; 203 204 adapter = container_of(work, struct atl1e_adapter, link_chg_task); 205 spin_lock_irqsave(&adapter->mdio_lock, flags); 206 atl1e_check_link(adapter); 207 spin_unlock_irqrestore(&adapter->mdio_lock, flags); 208 } 209 210 static void atl1e_link_chg_event(struct atl1e_adapter *adapter) 211 { 212 struct net_device *netdev = adapter->netdev; 213 u16 phy_data = 0; 214 u16 link_up = 0; 215 216 spin_lock(&adapter->mdio_lock); 217 atl1e_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); 218 atl1e_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); 219 spin_unlock(&adapter->mdio_lock); 220 link_up = phy_data & BMSR_LSTATUS; 221 /* notify upper layer link down ASAP */ 222 if (!link_up) { 223 if (netif_carrier_ok(netdev)) { 224 /* old link state: Up */ 225 netdev_info(netdev, "NIC Link is Down\n"); 226 adapter->link_speed = SPEED_0; 227 netif_stop_queue(netdev); 228 } 229 } 230 schedule_work(&adapter->link_chg_task); 231 } 232 233 static void atl1e_del_timer(struct atl1e_adapter *adapter) 234 { 235 del_timer_sync(&adapter->phy_config_timer); 236 } 237 238 static void atl1e_cancel_work(struct atl1e_adapter *adapter) 239 { 240 cancel_work_sync(&adapter->reset_task); 241 cancel_work_sync(&adapter->link_chg_task); 242 } 243 244 /** 245 * atl1e_tx_timeout - Respond to a Tx Hang 246 * @netdev: network interface device structure 247 * @txqueue: the index of the hanging queue 248 */ 249 static void atl1e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 250 { 251 struct atl1e_adapter *adapter = netdev_priv(netdev); 252 253 /* Do the reset outside of interrupt context */ 254 schedule_work(&adapter->reset_task); 255 } 256 257 /** 258 * atl1e_set_multi - Multicast and Promiscuous mode set 259 * @netdev: network interface device structure 260 * 261 * The set_multi entry point is called whenever the multicast address 262 * list or the network interface flags are updated. This routine is 263 * responsible for configuring the hardware for proper multicast, 264 * promiscuous mode, and all-multi behavior. 265 */ 266 static void atl1e_set_multi(struct net_device *netdev) 267 { 268 struct atl1e_adapter *adapter = netdev_priv(netdev); 269 struct atl1e_hw *hw = &adapter->hw; 270 struct netdev_hw_addr *ha; 271 u32 mac_ctrl_data = 0; 272 u32 hash_value; 273 274 /* Check for Promiscuous and All Multicast modes */ 275 mac_ctrl_data = AT_READ_REG(hw, REG_MAC_CTRL); 276 277 if (netdev->flags & IFF_PROMISC) { 278 mac_ctrl_data |= MAC_CTRL_PROMIS_EN; 279 } else if (netdev->flags & IFF_ALLMULTI) { 280 mac_ctrl_data |= MAC_CTRL_MC_ALL_EN; 281 mac_ctrl_data &= ~MAC_CTRL_PROMIS_EN; 282 } else { 283 mac_ctrl_data &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN); 284 } 285 286 AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data); 287 288 /* clear the old settings from the multicast hash table */ 289 AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); 290 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); 291 292 /* comoute mc addresses' hash value ,and put it into hash table */ 293 netdev_for_each_mc_addr(ha, netdev) { 294 hash_value = atl1e_hash_mc_addr(hw, ha->addr); 295 atl1e_hash_set(hw, hash_value); 296 } 297 } 298 299 static void __atl1e_rx_mode(netdev_features_t features, u32 *mac_ctrl_data) 300 { 301 302 if (features & NETIF_F_RXALL) { 303 /* enable RX of ALL frames */ 304 *mac_ctrl_data |= MAC_CTRL_DBG; 305 } else { 306 /* disable RX of ALL frames */ 307 *mac_ctrl_data &= ~MAC_CTRL_DBG; 308 } 309 } 310 311 static void atl1e_rx_mode(struct net_device *netdev, 312 netdev_features_t features) 313 { 314 struct atl1e_adapter *adapter = netdev_priv(netdev); 315 u32 mac_ctrl_data = 0; 316 317 netdev_dbg(adapter->netdev, "%s\n", __func__); 318 319 atl1e_irq_disable(adapter); 320 mac_ctrl_data = AT_READ_REG(&adapter->hw, REG_MAC_CTRL); 321 __atl1e_rx_mode(features, &mac_ctrl_data); 322 AT_WRITE_REG(&adapter->hw, REG_MAC_CTRL, mac_ctrl_data); 323 atl1e_irq_enable(adapter); 324 } 325 326 327 static void __atl1e_vlan_mode(netdev_features_t features, u32 *mac_ctrl_data) 328 { 329 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 330 /* enable VLAN tag insert/strip */ 331 *mac_ctrl_data |= MAC_CTRL_RMV_VLAN; 332 } else { 333 /* disable VLAN tag insert/strip */ 334 *mac_ctrl_data &= ~MAC_CTRL_RMV_VLAN; 335 } 336 } 337 338 static void atl1e_vlan_mode(struct net_device *netdev, 339 netdev_features_t features) 340 { 341 struct atl1e_adapter *adapter = netdev_priv(netdev); 342 u32 mac_ctrl_data = 0; 343 344 netdev_dbg(adapter->netdev, "%s\n", __func__); 345 346 atl1e_irq_disable(adapter); 347 mac_ctrl_data = AT_READ_REG(&adapter->hw, REG_MAC_CTRL); 348 __atl1e_vlan_mode(features, &mac_ctrl_data); 349 AT_WRITE_REG(&adapter->hw, REG_MAC_CTRL, mac_ctrl_data); 350 atl1e_irq_enable(adapter); 351 } 352 353 static void atl1e_restore_vlan(struct atl1e_adapter *adapter) 354 { 355 netdev_dbg(adapter->netdev, "%s\n", __func__); 356 atl1e_vlan_mode(adapter->netdev, adapter->netdev->features); 357 } 358 359 /** 360 * atl1e_set_mac_addr - Change the Ethernet Address of the NIC 361 * @netdev: network interface device structure 362 * @p: pointer to an address structure 363 * 364 * Returns 0 on success, negative on failure 365 */ 366 static int atl1e_set_mac_addr(struct net_device *netdev, void *p) 367 { 368 struct atl1e_adapter *adapter = netdev_priv(netdev); 369 struct sockaddr *addr = p; 370 371 if (!is_valid_ether_addr(addr->sa_data)) 372 return -EADDRNOTAVAIL; 373 374 if (netif_running(netdev)) 375 return -EBUSY; 376 377 eth_hw_addr_set(netdev, addr->sa_data); 378 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); 379 380 atl1e_hw_set_mac_addr(&adapter->hw); 381 382 return 0; 383 } 384 385 static netdev_features_t atl1e_fix_features(struct net_device *netdev, 386 netdev_features_t features) 387 { 388 /* 389 * Since there is no support for separate rx/tx vlan accel 390 * enable/disable make sure tx flag is always in same state as rx. 391 */ 392 if (features & NETIF_F_HW_VLAN_CTAG_RX) 393 features |= NETIF_F_HW_VLAN_CTAG_TX; 394 else 395 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 396 397 return features; 398 } 399 400 static int atl1e_set_features(struct net_device *netdev, 401 netdev_features_t features) 402 { 403 netdev_features_t changed = netdev->features ^ features; 404 405 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 406 atl1e_vlan_mode(netdev, features); 407 408 if (changed & NETIF_F_RXALL) 409 atl1e_rx_mode(netdev, features); 410 411 412 return 0; 413 } 414 415 /** 416 * atl1e_change_mtu - Change the Maximum Transfer Unit 417 * @netdev: network interface device structure 418 * @new_mtu: new value for maximum frame size 419 * 420 * Returns 0 on success, negative on failure 421 */ 422 static int atl1e_change_mtu(struct net_device *netdev, int new_mtu) 423 { 424 struct atl1e_adapter *adapter = netdev_priv(netdev); 425 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 426 427 /* set MTU */ 428 if (netif_running(netdev)) { 429 while (test_and_set_bit(__AT_RESETTING, &adapter->flags)) 430 msleep(1); 431 netdev->mtu = new_mtu; 432 adapter->hw.max_frame_size = new_mtu; 433 adapter->hw.rx_jumbo_th = (max_frame + 7) >> 3; 434 atl1e_down(adapter); 435 atl1e_up(adapter); 436 clear_bit(__AT_RESETTING, &adapter->flags); 437 } 438 return 0; 439 } 440 441 /* 442 * caller should hold mdio_lock 443 */ 444 static int atl1e_mdio_read(struct net_device *netdev, int phy_id, int reg_num) 445 { 446 struct atl1e_adapter *adapter = netdev_priv(netdev); 447 u16 result; 448 449 atl1e_read_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, &result); 450 return result; 451 } 452 453 static void atl1e_mdio_write(struct net_device *netdev, int phy_id, 454 int reg_num, int val) 455 { 456 struct atl1e_adapter *adapter = netdev_priv(netdev); 457 458 if (atl1e_write_phy_reg(&adapter->hw, 459 reg_num & MDIO_REG_ADDR_MASK, val)) 460 netdev_err(netdev, "write phy register failed\n"); 461 } 462 463 static int atl1e_mii_ioctl(struct net_device *netdev, 464 struct ifreq *ifr, int cmd) 465 { 466 struct atl1e_adapter *adapter = netdev_priv(netdev); 467 struct mii_ioctl_data *data = if_mii(ifr); 468 unsigned long flags; 469 int retval = 0; 470 471 if (!netif_running(netdev)) 472 return -EINVAL; 473 474 spin_lock_irqsave(&adapter->mdio_lock, flags); 475 switch (cmd) { 476 case SIOCGMIIPHY: 477 data->phy_id = 0; 478 break; 479 480 case SIOCGMIIREG: 481 if (atl1e_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 482 &data->val_out)) { 483 retval = -EIO; 484 goto out; 485 } 486 break; 487 488 case SIOCSMIIREG: 489 if (data->reg_num & ~(0x1F)) { 490 retval = -EFAULT; 491 goto out; 492 } 493 494 netdev_dbg(adapter->netdev, "<atl1e_mii_ioctl> write %x %x\n", 495 data->reg_num, data->val_in); 496 if (atl1e_write_phy_reg(&adapter->hw, 497 data->reg_num, data->val_in)) { 498 retval = -EIO; 499 goto out; 500 } 501 break; 502 503 default: 504 retval = -EOPNOTSUPP; 505 break; 506 } 507 out: 508 spin_unlock_irqrestore(&adapter->mdio_lock, flags); 509 return retval; 510 511 } 512 513 static int atl1e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 514 { 515 switch (cmd) { 516 case SIOCGMIIPHY: 517 case SIOCGMIIREG: 518 case SIOCSMIIREG: 519 return atl1e_mii_ioctl(netdev, ifr, cmd); 520 default: 521 return -EOPNOTSUPP; 522 } 523 } 524 525 static void atl1e_setup_pcicmd(struct pci_dev *pdev) 526 { 527 u16 cmd; 528 529 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 530 cmd &= ~(PCI_COMMAND_INTX_DISABLE | PCI_COMMAND_IO); 531 cmd |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); 532 pci_write_config_word(pdev, PCI_COMMAND, cmd); 533 534 /* 535 * some motherboards BIOS(PXE/EFI) driver may set PME 536 * while they transfer control to OS (Windows/Linux) 537 * so we should clear this bit before NIC work normally 538 */ 539 pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0); 540 msleep(1); 541 } 542 543 /** 544 * atl1e_alloc_queues - Allocate memory for all rings 545 * @adapter: board private structure to initialize 546 * 547 */ 548 static int atl1e_alloc_queues(struct atl1e_adapter *adapter) 549 { 550 return 0; 551 } 552 553 /** 554 * atl1e_sw_init - Initialize general software structures (struct atl1e_adapter) 555 * @adapter: board private structure to initialize 556 * 557 * atl1e_sw_init initializes the Adapter private data structure. 558 * Fields are initialized based on PCI device information and 559 * OS network device settings (MTU size). 560 */ 561 static int atl1e_sw_init(struct atl1e_adapter *adapter) 562 { 563 struct atl1e_hw *hw = &adapter->hw; 564 struct pci_dev *pdev = adapter->pdev; 565 u32 phy_status_data = 0; 566 567 adapter->wol = 0; 568 adapter->link_speed = SPEED_0; /* hardware init */ 569 adapter->link_duplex = FULL_DUPLEX; 570 adapter->num_rx_queues = 1; 571 572 /* PCI config space info */ 573 hw->vendor_id = pdev->vendor; 574 hw->device_id = pdev->device; 575 hw->subsystem_vendor_id = pdev->subsystem_vendor; 576 hw->subsystem_id = pdev->subsystem_device; 577 hw->revision_id = pdev->revision; 578 579 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 580 581 phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS); 582 /* nic type */ 583 if (hw->revision_id >= 0xF0) { 584 hw->nic_type = athr_l2e_revB; 585 } else { 586 if (phy_status_data & PHY_STATUS_100M) 587 hw->nic_type = athr_l1e; 588 else 589 hw->nic_type = athr_l2e_revA; 590 } 591 592 phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS); 593 594 if (phy_status_data & PHY_STATUS_EMI_CA) 595 hw->emi_ca = true; 596 else 597 hw->emi_ca = false; 598 599 hw->phy_configured = false; 600 hw->preamble_len = 7; 601 hw->max_frame_size = adapter->netdev->mtu; 602 hw->rx_jumbo_th = (hw->max_frame_size + ETH_HLEN + 603 VLAN_HLEN + ETH_FCS_LEN + 7) >> 3; 604 605 hw->rrs_type = atl1e_rrs_disable; 606 hw->indirect_tab = 0; 607 hw->base_cpu = 0; 608 609 /* need confirm */ 610 611 hw->ict = 50000; /* 100ms */ 612 hw->smb_timer = 200000; /* 200ms */ 613 hw->tpd_burst = 5; 614 hw->rrd_thresh = 1; 615 hw->tpd_thresh = adapter->tx_ring.count / 2; 616 hw->rx_count_down = 4; /* 2us resolution */ 617 hw->tx_count_down = hw->imt * 4 / 3; 618 hw->dmar_block = atl1e_dma_req_1024; 619 hw->dmaw_block = atl1e_dma_req_1024; 620 hw->dmar_dly_cnt = 15; 621 hw->dmaw_dly_cnt = 4; 622 623 if (atl1e_alloc_queues(adapter)) { 624 netdev_err(adapter->netdev, "Unable to allocate memory for queues\n"); 625 return -ENOMEM; 626 } 627 628 atomic_set(&adapter->irq_sem, 1); 629 spin_lock_init(&adapter->mdio_lock); 630 631 set_bit(__AT_DOWN, &adapter->flags); 632 633 return 0; 634 } 635 636 /** 637 * atl1e_clean_tx_ring - Free Tx-skb 638 * @adapter: board private structure 639 */ 640 static void atl1e_clean_tx_ring(struct atl1e_adapter *adapter) 641 { 642 struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; 643 struct atl1e_tx_buffer *tx_buffer = NULL; 644 struct pci_dev *pdev = adapter->pdev; 645 u16 index, ring_count; 646 647 if (tx_ring->desc == NULL || tx_ring->tx_buffer == NULL) 648 return; 649 650 ring_count = tx_ring->count; 651 /* first unmmap dma */ 652 for (index = 0; index < ring_count; index++) { 653 tx_buffer = &tx_ring->tx_buffer[index]; 654 if (tx_buffer->dma) { 655 if (tx_buffer->flags & ATL1E_TX_PCIMAP_SINGLE) 656 dma_unmap_single(&pdev->dev, tx_buffer->dma, 657 tx_buffer->length, 658 DMA_TO_DEVICE); 659 else if (tx_buffer->flags & ATL1E_TX_PCIMAP_PAGE) 660 dma_unmap_page(&pdev->dev, tx_buffer->dma, 661 tx_buffer->length, 662 DMA_TO_DEVICE); 663 tx_buffer->dma = 0; 664 } 665 } 666 /* second free skb */ 667 for (index = 0; index < ring_count; index++) { 668 tx_buffer = &tx_ring->tx_buffer[index]; 669 if (tx_buffer->skb) { 670 dev_kfree_skb_any(tx_buffer->skb); 671 tx_buffer->skb = NULL; 672 } 673 } 674 /* Zero out Tx-buffers */ 675 memset(tx_ring->desc, 0, sizeof(struct atl1e_tpd_desc) * 676 ring_count); 677 memset(tx_ring->tx_buffer, 0, sizeof(struct atl1e_tx_buffer) * 678 ring_count); 679 } 680 681 /** 682 * atl1e_clean_rx_ring - Free rx-reservation skbs 683 * @adapter: board private structure 684 */ 685 static void atl1e_clean_rx_ring(struct atl1e_adapter *adapter) 686 { 687 struct atl1e_rx_ring *rx_ring = 688 &adapter->rx_ring; 689 struct atl1e_rx_page_desc *rx_page_desc = rx_ring->rx_page_desc; 690 u16 i, j; 691 692 693 if (adapter->ring_vir_addr == NULL) 694 return; 695 /* Zero out the descriptor ring */ 696 for (i = 0; i < adapter->num_rx_queues; i++) { 697 for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { 698 if (rx_page_desc[i].rx_page[j].addr != NULL) { 699 memset(rx_page_desc[i].rx_page[j].addr, 0, 700 rx_ring->real_page_size); 701 } 702 } 703 } 704 } 705 706 static void atl1e_cal_ring_size(struct atl1e_adapter *adapter, u32 *ring_size) 707 { 708 *ring_size = ((u32)(adapter->tx_ring.count * 709 sizeof(struct atl1e_tpd_desc) + 7 710 /* tx ring, qword align */ 711 + adapter->rx_ring.real_page_size * AT_PAGE_NUM_PER_QUEUE * 712 adapter->num_rx_queues + 31 713 /* rx ring, 32 bytes align */ 714 + (1 + AT_PAGE_NUM_PER_QUEUE * adapter->num_rx_queues) * 715 sizeof(u32) + 3)); 716 /* tx, rx cmd, dword align */ 717 } 718 719 static void atl1e_init_ring_resources(struct atl1e_adapter *adapter) 720 { 721 struct atl1e_rx_ring *rx_ring = NULL; 722 723 rx_ring = &adapter->rx_ring; 724 725 rx_ring->real_page_size = adapter->rx_ring.page_size 726 + adapter->hw.max_frame_size 727 + ETH_HLEN + VLAN_HLEN 728 + ETH_FCS_LEN; 729 rx_ring->real_page_size = roundup(rx_ring->real_page_size, 32); 730 atl1e_cal_ring_size(adapter, &adapter->ring_size); 731 732 adapter->ring_vir_addr = NULL; 733 adapter->rx_ring.desc = NULL; 734 rwlock_init(&adapter->tx_ring.tx_lock); 735 } 736 737 /* 738 * Read / Write Ptr Initialize: 739 */ 740 static void atl1e_init_ring_ptrs(struct atl1e_adapter *adapter) 741 { 742 struct atl1e_tx_ring *tx_ring = NULL; 743 struct atl1e_rx_ring *rx_ring = NULL; 744 struct atl1e_rx_page_desc *rx_page_desc = NULL; 745 int i, j; 746 747 tx_ring = &adapter->tx_ring; 748 rx_ring = &adapter->rx_ring; 749 rx_page_desc = rx_ring->rx_page_desc; 750 751 tx_ring->next_to_use = 0; 752 atomic_set(&tx_ring->next_to_clean, 0); 753 754 for (i = 0; i < adapter->num_rx_queues; i++) { 755 rx_page_desc[i].rx_using = 0; 756 rx_page_desc[i].rx_nxseq = 0; 757 for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { 758 *rx_page_desc[i].rx_page[j].write_offset_addr = 0; 759 rx_page_desc[i].rx_page[j].read_offset = 0; 760 } 761 } 762 } 763 764 /** 765 * atl1e_free_ring_resources - Free Tx / RX descriptor Resources 766 * @adapter: board private structure 767 * 768 * Free all transmit software resources 769 */ 770 static void atl1e_free_ring_resources(struct atl1e_adapter *adapter) 771 { 772 struct pci_dev *pdev = adapter->pdev; 773 774 atl1e_clean_tx_ring(adapter); 775 atl1e_clean_rx_ring(adapter); 776 777 if (adapter->ring_vir_addr) { 778 dma_free_coherent(&pdev->dev, adapter->ring_size, 779 adapter->ring_vir_addr, adapter->ring_dma); 780 adapter->ring_vir_addr = NULL; 781 } 782 783 if (adapter->tx_ring.tx_buffer) { 784 kfree(adapter->tx_ring.tx_buffer); 785 adapter->tx_ring.tx_buffer = NULL; 786 } 787 } 788 789 /** 790 * atl1e_setup_ring_resources - allocate Tx / RX descriptor resources 791 * @adapter: board private structure 792 * 793 * Return 0 on success, negative on failure 794 */ 795 static int atl1e_setup_ring_resources(struct atl1e_adapter *adapter) 796 { 797 struct pci_dev *pdev = adapter->pdev; 798 struct atl1e_tx_ring *tx_ring; 799 struct atl1e_rx_ring *rx_ring; 800 struct atl1e_rx_page_desc *rx_page_desc; 801 int size, i, j; 802 u32 offset = 0; 803 int err = 0; 804 805 if (adapter->ring_vir_addr != NULL) 806 return 0; /* alloced already */ 807 808 tx_ring = &adapter->tx_ring; 809 rx_ring = &adapter->rx_ring; 810 811 /* real ring DMA buffer */ 812 813 size = adapter->ring_size; 814 adapter->ring_vir_addr = dma_alloc_coherent(&pdev->dev, 815 adapter->ring_size, 816 &adapter->ring_dma, GFP_KERNEL); 817 if (adapter->ring_vir_addr == NULL) { 818 netdev_err(adapter->netdev, 819 "dma_alloc_coherent failed, size = D%d\n", size); 820 return -ENOMEM; 821 } 822 823 rx_page_desc = rx_ring->rx_page_desc; 824 825 /* Init TPD Ring */ 826 tx_ring->dma = roundup(adapter->ring_dma, 8); 827 offset = tx_ring->dma - adapter->ring_dma; 828 tx_ring->desc = adapter->ring_vir_addr + offset; 829 size = sizeof(struct atl1e_tx_buffer) * (tx_ring->count); 830 tx_ring->tx_buffer = kzalloc(size, GFP_KERNEL); 831 if (tx_ring->tx_buffer == NULL) { 832 err = -ENOMEM; 833 goto failed; 834 } 835 836 /* Init RXF-Pages */ 837 offset += (sizeof(struct atl1e_tpd_desc) * tx_ring->count); 838 offset = roundup(offset, 32); 839 840 for (i = 0; i < adapter->num_rx_queues; i++) { 841 for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { 842 rx_page_desc[i].rx_page[j].dma = 843 adapter->ring_dma + offset; 844 rx_page_desc[i].rx_page[j].addr = 845 adapter->ring_vir_addr + offset; 846 offset += rx_ring->real_page_size; 847 } 848 } 849 850 /* Init CMB dma address */ 851 tx_ring->cmb_dma = adapter->ring_dma + offset; 852 tx_ring->cmb = adapter->ring_vir_addr + offset; 853 offset += sizeof(u32); 854 855 for (i = 0; i < adapter->num_rx_queues; i++) { 856 for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { 857 rx_page_desc[i].rx_page[j].write_offset_dma = 858 adapter->ring_dma + offset; 859 rx_page_desc[i].rx_page[j].write_offset_addr = 860 adapter->ring_vir_addr + offset; 861 offset += sizeof(u32); 862 } 863 } 864 865 if (unlikely(offset > adapter->ring_size)) { 866 netdev_err(adapter->netdev, "offset(%d) > ring size(%d) !!\n", 867 offset, adapter->ring_size); 868 err = -1; 869 goto failed; 870 } 871 872 return 0; 873 failed: 874 if (adapter->ring_vir_addr != NULL) { 875 dma_free_coherent(&pdev->dev, adapter->ring_size, 876 adapter->ring_vir_addr, adapter->ring_dma); 877 adapter->ring_vir_addr = NULL; 878 } 879 return err; 880 } 881 882 static inline void atl1e_configure_des_ring(struct atl1e_adapter *adapter) 883 { 884 885 struct atl1e_hw *hw = &adapter->hw; 886 struct atl1e_rx_ring *rx_ring = &adapter->rx_ring; 887 struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; 888 struct atl1e_rx_page_desc *rx_page_desc = NULL; 889 int i, j; 890 891 AT_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI, 892 (u32)((adapter->ring_dma & AT_DMA_HI_ADDR_MASK) >> 32)); 893 AT_WRITE_REG(hw, REG_TPD_BASE_ADDR_LO, 894 (u32)((tx_ring->dma) & AT_DMA_LO_ADDR_MASK)); 895 AT_WRITE_REG(hw, REG_TPD_RING_SIZE, (u16)(tx_ring->count)); 896 AT_WRITE_REG(hw, REG_HOST_TX_CMB_LO, 897 (u32)((tx_ring->cmb_dma) & AT_DMA_LO_ADDR_MASK)); 898 899 rx_page_desc = rx_ring->rx_page_desc; 900 /* RXF Page Physical address / Page Length */ 901 for (i = 0; i < AT_MAX_RECEIVE_QUEUE; i++) { 902 AT_WRITE_REG(hw, atl1e_rx_page_hi_addr_regs[i], 903 (u32)((adapter->ring_dma & 904 AT_DMA_HI_ADDR_MASK) >> 32)); 905 for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { 906 u32 page_phy_addr; 907 u32 offset_phy_addr; 908 909 page_phy_addr = rx_page_desc[i].rx_page[j].dma; 910 offset_phy_addr = 911 rx_page_desc[i].rx_page[j].write_offset_dma; 912 913 AT_WRITE_REG(hw, atl1e_rx_page_lo_addr_regs[i][j], 914 page_phy_addr & AT_DMA_LO_ADDR_MASK); 915 AT_WRITE_REG(hw, atl1e_rx_page_write_offset_regs[i][j], 916 offset_phy_addr & AT_DMA_LO_ADDR_MASK); 917 AT_WRITE_REGB(hw, atl1e_rx_page_vld_regs[i][j], 1); 918 } 919 } 920 /* Page Length */ 921 AT_WRITE_REG(hw, REG_HOST_RXFPAGE_SIZE, rx_ring->page_size); 922 /* Load all of base address above */ 923 AT_WRITE_REG(hw, REG_LOAD_PTR, 1); 924 } 925 926 static inline void atl1e_configure_tx(struct atl1e_adapter *adapter) 927 { 928 struct atl1e_hw *hw = &adapter->hw; 929 u32 dev_ctrl_data = 0; 930 u32 max_pay_load = 0; 931 u32 jumbo_thresh = 0; 932 u32 extra_size = 0; /* Jumbo frame threshold in QWORD unit */ 933 934 /* configure TXQ param */ 935 if (hw->nic_type != athr_l2e_revB) { 936 extra_size = ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN; 937 if (hw->max_frame_size <= 1500) { 938 jumbo_thresh = hw->max_frame_size + extra_size; 939 } else if (hw->max_frame_size < 6*1024) { 940 jumbo_thresh = 941 (hw->max_frame_size + extra_size) * 2 / 3; 942 } else { 943 jumbo_thresh = (hw->max_frame_size + extra_size) / 2; 944 } 945 AT_WRITE_REG(hw, REG_TX_EARLY_TH, (jumbo_thresh + 7) >> 3); 946 } 947 948 dev_ctrl_data = AT_READ_REG(hw, REG_DEVICE_CTRL); 949 950 max_pay_load = ((dev_ctrl_data >> DEVICE_CTRL_MAX_PAYLOAD_SHIFT)) & 951 DEVICE_CTRL_MAX_PAYLOAD_MASK; 952 953 hw->dmaw_block = min_t(u32, max_pay_load, hw->dmaw_block); 954 955 max_pay_load = ((dev_ctrl_data >> DEVICE_CTRL_MAX_RREQ_SZ_SHIFT)) & 956 DEVICE_CTRL_MAX_RREQ_SZ_MASK; 957 hw->dmar_block = min_t(u32, max_pay_load, hw->dmar_block); 958 959 if (hw->nic_type != athr_l2e_revB) 960 AT_WRITE_REGW(hw, REG_TXQ_CTRL + 2, 961 atl1e_pay_load_size[hw->dmar_block]); 962 /* enable TXQ */ 963 AT_WRITE_REGW(hw, REG_TXQ_CTRL, 964 (((u16)hw->tpd_burst & TXQ_CTRL_NUM_TPD_BURST_MASK) 965 << TXQ_CTRL_NUM_TPD_BURST_SHIFT) 966 | TXQ_CTRL_ENH_MODE | TXQ_CTRL_EN); 967 } 968 969 static inline void atl1e_configure_rx(struct atl1e_adapter *adapter) 970 { 971 struct atl1e_hw *hw = &adapter->hw; 972 u32 rxf_len = 0; 973 u32 rxf_low = 0; 974 u32 rxf_high = 0; 975 u32 rxf_thresh_data = 0; 976 u32 rxq_ctrl_data = 0; 977 978 if (hw->nic_type != athr_l2e_revB) { 979 AT_WRITE_REGW(hw, REG_RXQ_JMBOSZ_RRDTIM, 980 (u16)((hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK) << 981 RXQ_JMBOSZ_TH_SHIFT | 982 (1 & RXQ_JMBO_LKAH_MASK) << 983 RXQ_JMBO_LKAH_SHIFT)); 984 985 rxf_len = AT_READ_REG(hw, REG_SRAM_RXF_LEN); 986 rxf_high = rxf_len * 4 / 5; 987 rxf_low = rxf_len / 5; 988 rxf_thresh_data = ((rxf_high & RXQ_RXF_PAUSE_TH_HI_MASK) 989 << RXQ_RXF_PAUSE_TH_HI_SHIFT) | 990 ((rxf_low & RXQ_RXF_PAUSE_TH_LO_MASK) 991 << RXQ_RXF_PAUSE_TH_LO_SHIFT); 992 993 AT_WRITE_REG(hw, REG_RXQ_RXF_PAUSE_THRESH, rxf_thresh_data); 994 } 995 996 /* RRS */ 997 AT_WRITE_REG(hw, REG_IDT_TABLE, hw->indirect_tab); 998 AT_WRITE_REG(hw, REG_BASE_CPU_NUMBER, hw->base_cpu); 999 1000 if (hw->rrs_type & atl1e_rrs_ipv4) 1001 rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV4; 1002 1003 if (hw->rrs_type & atl1e_rrs_ipv4_tcp) 1004 rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV4_TCP; 1005 1006 if (hw->rrs_type & atl1e_rrs_ipv6) 1007 rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV6; 1008 1009 if (hw->rrs_type & atl1e_rrs_ipv6_tcp) 1010 rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV6_TCP; 1011 1012 if (hw->rrs_type != atl1e_rrs_disable) 1013 rxq_ctrl_data |= 1014 (RXQ_CTRL_HASH_ENABLE | RXQ_CTRL_RSS_MODE_MQUESINT); 1015 1016 rxq_ctrl_data |= RXQ_CTRL_IPV6_XSUM_VERIFY_EN | RXQ_CTRL_PBA_ALIGN_32 | 1017 RXQ_CTRL_CUT_THRU_EN | RXQ_CTRL_EN; 1018 1019 AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq_ctrl_data); 1020 } 1021 1022 static inline void atl1e_configure_dma(struct atl1e_adapter *adapter) 1023 { 1024 struct atl1e_hw *hw = &adapter->hw; 1025 u32 dma_ctrl_data = 0; 1026 1027 dma_ctrl_data = DMA_CTRL_RXCMB_EN; 1028 dma_ctrl_data |= (((u32)hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK) 1029 << DMA_CTRL_DMAR_BURST_LEN_SHIFT; 1030 dma_ctrl_data |= (((u32)hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK) 1031 << DMA_CTRL_DMAW_BURST_LEN_SHIFT; 1032 dma_ctrl_data |= DMA_CTRL_DMAR_REQ_PRI | DMA_CTRL_DMAR_OUT_ORDER; 1033 dma_ctrl_data |= (((u32)hw->dmar_dly_cnt) & DMA_CTRL_DMAR_DLY_CNT_MASK) 1034 << DMA_CTRL_DMAR_DLY_CNT_SHIFT; 1035 dma_ctrl_data |= (((u32)hw->dmaw_dly_cnt) & DMA_CTRL_DMAW_DLY_CNT_MASK) 1036 << DMA_CTRL_DMAW_DLY_CNT_SHIFT; 1037 1038 AT_WRITE_REG(hw, REG_DMA_CTRL, dma_ctrl_data); 1039 } 1040 1041 static void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter) 1042 { 1043 u32 value; 1044 struct atl1e_hw *hw = &adapter->hw; 1045 struct net_device *netdev = adapter->netdev; 1046 1047 /* Config MAC CTRL Register */ 1048 value = MAC_CTRL_TX_EN | 1049 MAC_CTRL_RX_EN ; 1050 1051 if (FULL_DUPLEX == adapter->link_duplex) 1052 value |= MAC_CTRL_DUPLX; 1053 1054 value |= ((u32)((SPEED_1000 == adapter->link_speed) ? 1055 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) << 1056 MAC_CTRL_SPEED_SHIFT); 1057 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW); 1058 1059 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); 1060 value |= (((u32)adapter->hw.preamble_len & 1061 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); 1062 1063 __atl1e_vlan_mode(netdev->features, &value); 1064 1065 value |= MAC_CTRL_BC_EN; 1066 if (netdev->flags & IFF_PROMISC) 1067 value |= MAC_CTRL_PROMIS_EN; 1068 if (netdev->flags & IFF_ALLMULTI) 1069 value |= MAC_CTRL_MC_ALL_EN; 1070 if (netdev->features & NETIF_F_RXALL) 1071 value |= MAC_CTRL_DBG; 1072 AT_WRITE_REG(hw, REG_MAC_CTRL, value); 1073 } 1074 1075 /** 1076 * atl1e_configure - Configure Transmit&Receive Unit after Reset 1077 * @adapter: board private structure 1078 * 1079 * Configure the Tx /Rx unit of the MAC after a reset. 1080 */ 1081 static int atl1e_configure(struct atl1e_adapter *adapter) 1082 { 1083 struct atl1e_hw *hw = &adapter->hw; 1084 1085 u32 intr_status_data = 0; 1086 1087 /* clear interrupt status */ 1088 AT_WRITE_REG(hw, REG_ISR, ~0); 1089 1090 /* 1. set MAC Address */ 1091 atl1e_hw_set_mac_addr(hw); 1092 1093 /* 2. Init the Multicast HASH table done by set_muti */ 1094 1095 /* 3. Clear any WOL status */ 1096 AT_WRITE_REG(hw, REG_WOL_CTRL, 0); 1097 1098 /* 4. Descripter Ring BaseMem/Length/Read ptr/Write ptr 1099 * TPD Ring/SMB/RXF0 Page CMBs, they use the same 1100 * High 32bits memory */ 1101 atl1e_configure_des_ring(adapter); 1102 1103 /* 5. set Interrupt Moderator Timer */ 1104 AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, hw->imt); 1105 AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER2_INIT, hw->imt); 1106 AT_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_LED_MODE | 1107 MASTER_CTRL_ITIMER_EN | MASTER_CTRL_ITIMER2_EN); 1108 1109 /* 6. rx/tx threshold to trig interrupt */ 1110 AT_WRITE_REGW(hw, REG_TRIG_RRD_THRESH, hw->rrd_thresh); 1111 AT_WRITE_REGW(hw, REG_TRIG_TPD_THRESH, hw->tpd_thresh); 1112 AT_WRITE_REGW(hw, REG_TRIG_RXTIMER, hw->rx_count_down); 1113 AT_WRITE_REGW(hw, REG_TRIG_TXTIMER, hw->tx_count_down); 1114 1115 /* 7. set Interrupt Clear Timer */ 1116 AT_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, hw->ict); 1117 1118 /* 8. set MTU */ 1119 AT_WRITE_REG(hw, REG_MTU, hw->max_frame_size + ETH_HLEN + 1120 VLAN_HLEN + ETH_FCS_LEN); 1121 1122 /* 9. config TXQ early tx threshold */ 1123 atl1e_configure_tx(adapter); 1124 1125 /* 10. config RXQ */ 1126 atl1e_configure_rx(adapter); 1127 1128 /* 11. config DMA Engine */ 1129 atl1e_configure_dma(adapter); 1130 1131 /* 12. smb timer to trig interrupt */ 1132 AT_WRITE_REG(hw, REG_SMB_STAT_TIMER, hw->smb_timer); 1133 1134 intr_status_data = AT_READ_REG(hw, REG_ISR); 1135 if (unlikely((intr_status_data & ISR_PHY_LINKDOWN) != 0)) { 1136 netdev_err(adapter->netdev, 1137 "atl1e_configure failed, PCIE phy link down\n"); 1138 return -1; 1139 } 1140 1141 AT_WRITE_REG(hw, REG_ISR, 0x7fffffff); 1142 return 0; 1143 } 1144 1145 /** 1146 * atl1e_get_stats - Get System Network Statistics 1147 * @netdev: network interface device structure 1148 * 1149 * Returns the address of the device statistics structure. 1150 * The statistics are actually updated from the timer callback. 1151 */ 1152 static struct net_device_stats *atl1e_get_stats(struct net_device *netdev) 1153 { 1154 struct atl1e_adapter *adapter = netdev_priv(netdev); 1155 struct atl1e_hw_stats *hw_stats = &adapter->hw_stats; 1156 struct net_device_stats *net_stats = &netdev->stats; 1157 1158 net_stats->rx_bytes = hw_stats->rx_byte_cnt; 1159 net_stats->tx_bytes = hw_stats->tx_byte_cnt; 1160 net_stats->multicast = hw_stats->rx_mcast; 1161 net_stats->collisions = hw_stats->tx_1_col + 1162 hw_stats->tx_2_col + 1163 hw_stats->tx_late_col + 1164 hw_stats->tx_abort_col; 1165 1166 net_stats->rx_errors = hw_stats->rx_frag + 1167 hw_stats->rx_fcs_err + 1168 hw_stats->rx_len_err + 1169 hw_stats->rx_sz_ov + 1170 hw_stats->rx_rrd_ov + 1171 hw_stats->rx_align_err + 1172 hw_stats->rx_rxf_ov; 1173 1174 net_stats->rx_fifo_errors = hw_stats->rx_rxf_ov; 1175 net_stats->rx_length_errors = hw_stats->rx_len_err; 1176 net_stats->rx_crc_errors = hw_stats->rx_fcs_err; 1177 net_stats->rx_frame_errors = hw_stats->rx_align_err; 1178 net_stats->rx_dropped = hw_stats->rx_rrd_ov; 1179 1180 net_stats->tx_errors = hw_stats->tx_late_col + 1181 hw_stats->tx_abort_col + 1182 hw_stats->tx_underrun + 1183 hw_stats->tx_trunc; 1184 1185 net_stats->tx_fifo_errors = hw_stats->tx_underrun; 1186 net_stats->tx_aborted_errors = hw_stats->tx_abort_col; 1187 net_stats->tx_window_errors = hw_stats->tx_late_col; 1188 1189 net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors; 1190 net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors; 1191 1192 return net_stats; 1193 } 1194 1195 static void atl1e_update_hw_stats(struct atl1e_adapter *adapter) 1196 { 1197 u16 hw_reg_addr = 0; 1198 unsigned long *stats_item = NULL; 1199 1200 /* update rx status */ 1201 hw_reg_addr = REG_MAC_RX_STATUS_BIN; 1202 stats_item = &adapter->hw_stats.rx_ok; 1203 while (hw_reg_addr <= REG_MAC_RX_STATUS_END) { 1204 *stats_item += AT_READ_REG(&adapter->hw, hw_reg_addr); 1205 stats_item++; 1206 hw_reg_addr += 4; 1207 } 1208 /* update tx status */ 1209 hw_reg_addr = REG_MAC_TX_STATUS_BIN; 1210 stats_item = &adapter->hw_stats.tx_ok; 1211 while (hw_reg_addr <= REG_MAC_TX_STATUS_END) { 1212 *stats_item += AT_READ_REG(&adapter->hw, hw_reg_addr); 1213 stats_item++; 1214 hw_reg_addr += 4; 1215 } 1216 } 1217 1218 static inline void atl1e_clear_phy_int(struct atl1e_adapter *adapter) 1219 { 1220 u16 phy_data; 1221 1222 spin_lock(&adapter->mdio_lock); 1223 atl1e_read_phy_reg(&adapter->hw, MII_INT_STATUS, &phy_data); 1224 spin_unlock(&adapter->mdio_lock); 1225 } 1226 1227 static bool atl1e_clean_tx_irq(struct atl1e_adapter *adapter) 1228 { 1229 struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; 1230 struct atl1e_tx_buffer *tx_buffer = NULL; 1231 u16 hw_next_to_clean = AT_READ_REGW(&adapter->hw, REG_TPD_CONS_IDX); 1232 u16 next_to_clean = atomic_read(&tx_ring->next_to_clean); 1233 1234 while (next_to_clean != hw_next_to_clean) { 1235 tx_buffer = &tx_ring->tx_buffer[next_to_clean]; 1236 if (tx_buffer->dma) { 1237 if (tx_buffer->flags & ATL1E_TX_PCIMAP_SINGLE) 1238 dma_unmap_single(&adapter->pdev->dev, 1239 tx_buffer->dma, 1240 tx_buffer->length, 1241 DMA_TO_DEVICE); 1242 else if (tx_buffer->flags & ATL1E_TX_PCIMAP_PAGE) 1243 dma_unmap_page(&adapter->pdev->dev, 1244 tx_buffer->dma, 1245 tx_buffer->length, 1246 DMA_TO_DEVICE); 1247 tx_buffer->dma = 0; 1248 } 1249 1250 if (tx_buffer->skb) { 1251 dev_consume_skb_irq(tx_buffer->skb); 1252 tx_buffer->skb = NULL; 1253 } 1254 1255 if (++next_to_clean == tx_ring->count) 1256 next_to_clean = 0; 1257 } 1258 1259 atomic_set(&tx_ring->next_to_clean, next_to_clean); 1260 1261 if (netif_queue_stopped(adapter->netdev) && 1262 netif_carrier_ok(adapter->netdev)) { 1263 netif_wake_queue(adapter->netdev); 1264 } 1265 1266 return true; 1267 } 1268 1269 /** 1270 * atl1e_intr - Interrupt Handler 1271 * @irq: interrupt number 1272 * @data: pointer to a network interface device structure 1273 */ 1274 static irqreturn_t atl1e_intr(int irq, void *data) 1275 { 1276 struct net_device *netdev = data; 1277 struct atl1e_adapter *adapter = netdev_priv(netdev); 1278 struct atl1e_hw *hw = &adapter->hw; 1279 int max_ints = AT_MAX_INT_WORK; 1280 int handled = IRQ_NONE; 1281 u32 status; 1282 1283 do { 1284 status = AT_READ_REG(hw, REG_ISR); 1285 if ((status & IMR_NORMAL_MASK) == 0 || 1286 (status & ISR_DIS_INT) != 0) { 1287 if (max_ints != AT_MAX_INT_WORK) 1288 handled = IRQ_HANDLED; 1289 break; 1290 } 1291 /* link event */ 1292 if (status & ISR_GPHY) 1293 atl1e_clear_phy_int(adapter); 1294 /* Ack ISR */ 1295 AT_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT); 1296 1297 handled = IRQ_HANDLED; 1298 /* check if PCIE PHY Link down */ 1299 if (status & ISR_PHY_LINKDOWN) { 1300 netdev_err(adapter->netdev, 1301 "pcie phy linkdown %x\n", status); 1302 if (netif_running(adapter->netdev)) { 1303 /* reset MAC */ 1304 atl1e_irq_reset(adapter); 1305 schedule_work(&adapter->reset_task); 1306 break; 1307 } 1308 } 1309 1310 /* check if DMA read/write error */ 1311 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) { 1312 netdev_err(adapter->netdev, 1313 "PCIE DMA RW error (status = 0x%x)\n", 1314 status); 1315 atl1e_irq_reset(adapter); 1316 schedule_work(&adapter->reset_task); 1317 break; 1318 } 1319 1320 if (status & ISR_SMB) 1321 atl1e_update_hw_stats(adapter); 1322 1323 /* link event */ 1324 if (status & (ISR_GPHY | ISR_MANUAL)) { 1325 netdev->stats.tx_carrier_errors++; 1326 atl1e_link_chg_event(adapter); 1327 break; 1328 } 1329 1330 /* transmit event */ 1331 if (status & ISR_TX_EVENT) 1332 atl1e_clean_tx_irq(adapter); 1333 1334 if (status & ISR_RX_EVENT) { 1335 /* 1336 * disable rx interrupts, without 1337 * the synchronize_irq bit 1338 */ 1339 AT_WRITE_REG(hw, REG_IMR, 1340 IMR_NORMAL_MASK & ~ISR_RX_EVENT); 1341 AT_WRITE_FLUSH(hw); 1342 if (likely(napi_schedule_prep( 1343 &adapter->napi))) 1344 __napi_schedule(&adapter->napi); 1345 } 1346 } while (--max_ints > 0); 1347 /* re-enable Interrupt*/ 1348 AT_WRITE_REG(&adapter->hw, REG_ISR, 0); 1349 1350 return handled; 1351 } 1352 1353 static inline void atl1e_rx_checksum(struct atl1e_adapter *adapter, 1354 struct sk_buff *skb, struct atl1e_recv_ret_status *prrs) 1355 { 1356 u8 *packet = (u8 *)(prrs + 1); 1357 struct iphdr *iph; 1358 u16 head_len = ETH_HLEN; 1359 u16 pkt_flags; 1360 u16 err_flags; 1361 1362 skb_checksum_none_assert(skb); 1363 pkt_flags = prrs->pkt_flag; 1364 err_flags = prrs->err_flag; 1365 if (((pkt_flags & RRS_IS_IPV4) || (pkt_flags & RRS_IS_IPV6)) && 1366 ((pkt_flags & RRS_IS_TCP) || (pkt_flags & RRS_IS_UDP))) { 1367 if (pkt_flags & RRS_IS_IPV4) { 1368 if (pkt_flags & RRS_IS_802_3) 1369 head_len += 8; 1370 iph = (struct iphdr *) (packet + head_len); 1371 if (iph->frag_off != 0 && !(pkt_flags & RRS_IS_IP_DF)) 1372 goto hw_xsum; 1373 } 1374 if (!(err_flags & (RRS_ERR_IP_CSUM | RRS_ERR_L4_CSUM))) { 1375 skb->ip_summed = CHECKSUM_UNNECESSARY; 1376 return; 1377 } 1378 } 1379 1380 hw_xsum : 1381 return; 1382 } 1383 1384 static struct atl1e_rx_page *atl1e_get_rx_page(struct atl1e_adapter *adapter, 1385 u8 que) 1386 { 1387 struct atl1e_rx_page_desc *rx_page_desc = 1388 (struct atl1e_rx_page_desc *) adapter->rx_ring.rx_page_desc; 1389 u8 rx_using = rx_page_desc[que].rx_using; 1390 1391 return &(rx_page_desc[que].rx_page[rx_using]); 1392 } 1393 1394 static void atl1e_clean_rx_irq(struct atl1e_adapter *adapter, u8 que, 1395 int *work_done, int work_to_do) 1396 { 1397 struct net_device *netdev = adapter->netdev; 1398 struct atl1e_rx_ring *rx_ring = &adapter->rx_ring; 1399 struct atl1e_rx_page_desc *rx_page_desc = 1400 (struct atl1e_rx_page_desc *) rx_ring->rx_page_desc; 1401 struct sk_buff *skb = NULL; 1402 struct atl1e_rx_page *rx_page = atl1e_get_rx_page(adapter, que); 1403 u32 packet_size, write_offset; 1404 struct atl1e_recv_ret_status *prrs; 1405 1406 write_offset = *(rx_page->write_offset_addr); 1407 if (likely(rx_page->read_offset < write_offset)) { 1408 do { 1409 if (*work_done >= work_to_do) 1410 break; 1411 (*work_done)++; 1412 /* get new packet's rrs */ 1413 prrs = (struct atl1e_recv_ret_status *) (rx_page->addr + 1414 rx_page->read_offset); 1415 /* check sequence number */ 1416 if (prrs->seq_num != rx_page_desc[que].rx_nxseq) { 1417 netdev_err(netdev, 1418 "rx sequence number error (rx=%d) (expect=%d)\n", 1419 prrs->seq_num, 1420 rx_page_desc[que].rx_nxseq); 1421 rx_page_desc[que].rx_nxseq++; 1422 /* just for debug use */ 1423 AT_WRITE_REG(&adapter->hw, REG_DEBUG_DATA0, 1424 (((u32)prrs->seq_num) << 16) | 1425 rx_page_desc[que].rx_nxseq); 1426 goto fatal_err; 1427 } 1428 rx_page_desc[que].rx_nxseq++; 1429 1430 /* error packet */ 1431 if ((prrs->pkt_flag & RRS_IS_ERR_FRAME) && 1432 !(netdev->features & NETIF_F_RXALL)) { 1433 if (prrs->err_flag & (RRS_ERR_BAD_CRC | 1434 RRS_ERR_DRIBBLE | RRS_ERR_CODE | 1435 RRS_ERR_TRUNC)) { 1436 /* hardware error, discard this packet*/ 1437 netdev_err(netdev, 1438 "rx packet desc error %x\n", 1439 *((u32 *)prrs + 1)); 1440 goto skip_pkt; 1441 } 1442 } 1443 1444 packet_size = ((prrs->word1 >> RRS_PKT_SIZE_SHIFT) & 1445 RRS_PKT_SIZE_MASK); 1446 if (likely(!(netdev->features & NETIF_F_RXFCS))) 1447 packet_size -= 4; /* CRC */ 1448 1449 skb = netdev_alloc_skb_ip_align(netdev, packet_size); 1450 if (skb == NULL) 1451 goto skip_pkt; 1452 1453 memcpy(skb->data, (u8 *)(prrs + 1), packet_size); 1454 skb_put(skb, packet_size); 1455 skb->protocol = eth_type_trans(skb, netdev); 1456 atl1e_rx_checksum(adapter, skb, prrs); 1457 1458 if (prrs->pkt_flag & RRS_IS_VLAN_TAG) { 1459 u16 vlan_tag = (prrs->vtag >> 4) | 1460 ((prrs->vtag & 7) << 13) | 1461 ((prrs->vtag & 8) << 9); 1462 netdev_dbg(netdev, 1463 "RXD VLAN TAG<RRD>=0x%04x\n", 1464 prrs->vtag); 1465 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 1466 } 1467 napi_gro_receive(&adapter->napi, skb); 1468 1469 skip_pkt: 1470 /* skip current packet whether it's ok or not. */ 1471 rx_page->read_offset += 1472 (((u32)((prrs->word1 >> RRS_PKT_SIZE_SHIFT) & 1473 RRS_PKT_SIZE_MASK) + 1474 sizeof(struct atl1e_recv_ret_status) + 31) & 1475 0xFFFFFFE0); 1476 1477 if (rx_page->read_offset >= rx_ring->page_size) { 1478 /* mark this page clean */ 1479 u16 reg_addr; 1480 u8 rx_using; 1481 1482 rx_page->read_offset = 1483 *(rx_page->write_offset_addr) = 0; 1484 rx_using = rx_page_desc[que].rx_using; 1485 reg_addr = 1486 atl1e_rx_page_vld_regs[que][rx_using]; 1487 AT_WRITE_REGB(&adapter->hw, reg_addr, 1); 1488 rx_page_desc[que].rx_using ^= 1; 1489 rx_page = atl1e_get_rx_page(adapter, que); 1490 } 1491 write_offset = *(rx_page->write_offset_addr); 1492 } while (rx_page->read_offset < write_offset); 1493 } 1494 1495 return; 1496 1497 fatal_err: 1498 if (!test_bit(__AT_DOWN, &adapter->flags)) 1499 schedule_work(&adapter->reset_task); 1500 } 1501 1502 /** 1503 * atl1e_clean - NAPI Rx polling callback 1504 * @napi: napi info 1505 * @budget: number of packets to clean 1506 */ 1507 static int atl1e_clean(struct napi_struct *napi, int budget) 1508 { 1509 struct atl1e_adapter *adapter = 1510 container_of(napi, struct atl1e_adapter, napi); 1511 u32 imr_data; 1512 int work_done = 0; 1513 1514 /* Keep link state information with original netdev */ 1515 if (!netif_carrier_ok(adapter->netdev)) 1516 goto quit_polling; 1517 1518 atl1e_clean_rx_irq(adapter, 0, &work_done, budget); 1519 1520 /* If no Tx and not enough Rx work done, exit the polling mode */ 1521 if (work_done < budget) { 1522 quit_polling: 1523 napi_complete_done(napi, work_done); 1524 imr_data = AT_READ_REG(&adapter->hw, REG_IMR); 1525 AT_WRITE_REG(&adapter->hw, REG_IMR, imr_data | ISR_RX_EVENT); 1526 /* test debug */ 1527 if (test_bit(__AT_DOWN, &adapter->flags)) { 1528 atomic_dec(&adapter->irq_sem); 1529 netdev_err(adapter->netdev, 1530 "atl1e_clean is called when AT_DOWN\n"); 1531 } 1532 /* reenable RX intr */ 1533 /*atl1e_irq_enable(adapter); */ 1534 1535 } 1536 return work_done; 1537 } 1538 1539 #ifdef CONFIG_NET_POLL_CONTROLLER 1540 1541 /* 1542 * Polling 'interrupt' - used by things like netconsole to send skbs 1543 * without having to re-enable interrupts. It's not called while 1544 * the interrupt routine is executing. 1545 */ 1546 static void atl1e_netpoll(struct net_device *netdev) 1547 { 1548 struct atl1e_adapter *adapter = netdev_priv(netdev); 1549 1550 disable_irq(adapter->pdev->irq); 1551 atl1e_intr(adapter->pdev->irq, netdev); 1552 enable_irq(adapter->pdev->irq); 1553 } 1554 #endif 1555 1556 static inline u16 atl1e_tpd_avail(struct atl1e_adapter *adapter) 1557 { 1558 struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; 1559 u16 next_to_use = 0; 1560 u16 next_to_clean = 0; 1561 1562 next_to_clean = atomic_read(&tx_ring->next_to_clean); 1563 next_to_use = tx_ring->next_to_use; 1564 1565 return (u16)(next_to_clean > next_to_use) ? 1566 (next_to_clean - next_to_use - 1) : 1567 (tx_ring->count + next_to_clean - next_to_use - 1); 1568 } 1569 1570 /* 1571 * get next usable tpd 1572 * Note: should call atl1e_tdp_avail to make sure 1573 * there is enough tpd to use 1574 */ 1575 static struct atl1e_tpd_desc *atl1e_get_tpd(struct atl1e_adapter *adapter) 1576 { 1577 struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; 1578 u16 next_to_use = 0; 1579 1580 next_to_use = tx_ring->next_to_use; 1581 if (++tx_ring->next_to_use == tx_ring->count) 1582 tx_ring->next_to_use = 0; 1583 1584 memset(&tx_ring->desc[next_to_use], 0, sizeof(struct atl1e_tpd_desc)); 1585 return &tx_ring->desc[next_to_use]; 1586 } 1587 1588 static struct atl1e_tx_buffer * 1589 atl1e_get_tx_buffer(struct atl1e_adapter *adapter, struct atl1e_tpd_desc *tpd) 1590 { 1591 struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; 1592 1593 return &tx_ring->tx_buffer[tpd - tx_ring->desc]; 1594 } 1595 1596 /* Calculate the transmit packet descript needed*/ 1597 static u16 atl1e_cal_tdp_req(const struct sk_buff *skb) 1598 { 1599 int i = 0; 1600 u16 tpd_req = 1; 1601 u16 fg_size = 0; 1602 u16 proto_hdr_len = 0; 1603 1604 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1605 fg_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1606 tpd_req += ((fg_size + MAX_TX_BUF_LEN - 1) >> MAX_TX_BUF_SHIFT); 1607 } 1608 1609 if (skb_is_gso(skb)) { 1610 if (skb->protocol == htons(ETH_P_IP) || 1611 (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6)) { 1612 proto_hdr_len = skb_tcp_all_headers(skb); 1613 if (proto_hdr_len < skb_headlen(skb)) { 1614 tpd_req += ((skb_headlen(skb) - proto_hdr_len + 1615 MAX_TX_BUF_LEN - 1) >> 1616 MAX_TX_BUF_SHIFT); 1617 } 1618 } 1619 1620 } 1621 return tpd_req; 1622 } 1623 1624 static int atl1e_tso_csum(struct atl1e_adapter *adapter, 1625 struct sk_buff *skb, struct atl1e_tpd_desc *tpd) 1626 { 1627 unsigned short offload_type; 1628 u8 hdr_len; 1629 u32 real_len; 1630 1631 if (skb_is_gso(skb)) { 1632 int err; 1633 1634 err = skb_cow_head(skb, 0); 1635 if (err < 0) 1636 return err; 1637 1638 offload_type = skb_shinfo(skb)->gso_type; 1639 1640 if (offload_type & SKB_GSO_TCPV4) { 1641 real_len = (((unsigned char *)ip_hdr(skb) - skb->data) 1642 + ntohs(ip_hdr(skb)->tot_len)); 1643 1644 if (real_len < skb->len) { 1645 err = pskb_trim(skb, real_len); 1646 if (err) 1647 return err; 1648 } 1649 1650 hdr_len = skb_tcp_all_headers(skb); 1651 if (unlikely(skb->len == hdr_len)) { 1652 /* only xsum need */ 1653 netdev_warn(adapter->netdev, 1654 "IPV4 tso with zero data??\n"); 1655 goto check_sum; 1656 } else { 1657 ip_hdr(skb)->check = 0; 1658 ip_hdr(skb)->tot_len = 0; 1659 tcp_hdr(skb)->check = ~csum_tcpudp_magic( 1660 ip_hdr(skb)->saddr, 1661 ip_hdr(skb)->daddr, 1662 0, IPPROTO_TCP, 0); 1663 tpd->word3 |= (ip_hdr(skb)->ihl & 1664 TDP_V4_IPHL_MASK) << 1665 TPD_V4_IPHL_SHIFT; 1666 tpd->word3 |= ((tcp_hdrlen(skb) >> 2) & 1667 TPD_TCPHDRLEN_MASK) << 1668 TPD_TCPHDRLEN_SHIFT; 1669 tpd->word3 |= ((skb_shinfo(skb)->gso_size) & 1670 TPD_MSS_MASK) << TPD_MSS_SHIFT; 1671 tpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT; 1672 } 1673 return 0; 1674 } 1675 } 1676 1677 check_sum: 1678 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { 1679 u8 css, cso; 1680 1681 cso = skb_checksum_start_offset(skb); 1682 if (unlikely(cso & 0x1)) { 1683 netdev_err(adapter->netdev, 1684 "payload offset should not ant event number\n"); 1685 return -1; 1686 } else { 1687 css = cso + skb->csum_offset; 1688 tpd->word3 |= (cso & TPD_PLOADOFFSET_MASK) << 1689 TPD_PLOADOFFSET_SHIFT; 1690 tpd->word3 |= (css & TPD_CCSUMOFFSET_MASK) << 1691 TPD_CCSUMOFFSET_SHIFT; 1692 tpd->word3 |= 1 << TPD_CC_SEGMENT_EN_SHIFT; 1693 } 1694 } 1695 1696 return 0; 1697 } 1698 1699 static int atl1e_tx_map(struct atl1e_adapter *adapter, 1700 struct sk_buff *skb, struct atl1e_tpd_desc *tpd) 1701 { 1702 struct atl1e_tpd_desc *use_tpd = NULL; 1703 struct atl1e_tx_buffer *tx_buffer = NULL; 1704 u16 buf_len = skb_headlen(skb); 1705 u16 map_len = 0; 1706 u16 mapped_len = 0; 1707 u16 hdr_len = 0; 1708 u16 nr_frags; 1709 u16 f; 1710 int segment; 1711 int ring_start = adapter->tx_ring.next_to_use; 1712 int ring_end; 1713 1714 nr_frags = skb_shinfo(skb)->nr_frags; 1715 segment = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK; 1716 if (segment) { 1717 /* TSO */ 1718 hdr_len = skb_tcp_all_headers(skb); 1719 map_len = hdr_len; 1720 use_tpd = tpd; 1721 1722 tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd); 1723 tx_buffer->length = map_len; 1724 tx_buffer->dma = dma_map_single(&adapter->pdev->dev, 1725 skb->data, hdr_len, 1726 DMA_TO_DEVICE); 1727 if (dma_mapping_error(&adapter->pdev->dev, tx_buffer->dma)) 1728 return -ENOSPC; 1729 1730 ATL1E_SET_PCIMAP_TYPE(tx_buffer, ATL1E_TX_PCIMAP_SINGLE); 1731 mapped_len += map_len; 1732 use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma); 1733 use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) | 1734 ((cpu_to_le32(tx_buffer->length) & 1735 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT); 1736 } 1737 1738 while (mapped_len < buf_len) { 1739 /* mapped_len == 0, means we should use the first tpd, 1740 which is given by caller */ 1741 if (mapped_len == 0) { 1742 use_tpd = tpd; 1743 } else { 1744 use_tpd = atl1e_get_tpd(adapter); 1745 memcpy(use_tpd, tpd, sizeof(struct atl1e_tpd_desc)); 1746 } 1747 tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd); 1748 tx_buffer->skb = NULL; 1749 1750 tx_buffer->length = map_len = 1751 ((buf_len - mapped_len) >= MAX_TX_BUF_LEN) ? 1752 MAX_TX_BUF_LEN : (buf_len - mapped_len); 1753 tx_buffer->dma = 1754 dma_map_single(&adapter->pdev->dev, 1755 skb->data + mapped_len, map_len, 1756 DMA_TO_DEVICE); 1757 1758 if (dma_mapping_error(&adapter->pdev->dev, tx_buffer->dma)) { 1759 /* We need to unwind the mappings we've done */ 1760 ring_end = adapter->tx_ring.next_to_use; 1761 adapter->tx_ring.next_to_use = ring_start; 1762 while (adapter->tx_ring.next_to_use != ring_end) { 1763 tpd = atl1e_get_tpd(adapter); 1764 tx_buffer = atl1e_get_tx_buffer(adapter, tpd); 1765 dma_unmap_single(&adapter->pdev->dev, 1766 tx_buffer->dma, 1767 tx_buffer->length, 1768 DMA_TO_DEVICE); 1769 } 1770 /* Reset the tx rings next pointer */ 1771 adapter->tx_ring.next_to_use = ring_start; 1772 return -ENOSPC; 1773 } 1774 1775 ATL1E_SET_PCIMAP_TYPE(tx_buffer, ATL1E_TX_PCIMAP_SINGLE); 1776 mapped_len += map_len; 1777 use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma); 1778 use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) | 1779 ((cpu_to_le32(tx_buffer->length) & 1780 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT); 1781 } 1782 1783 for (f = 0; f < nr_frags; f++) { 1784 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 1785 u16 i; 1786 u16 seg_num; 1787 1788 buf_len = skb_frag_size(frag); 1789 1790 seg_num = (buf_len + MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN; 1791 for (i = 0; i < seg_num; i++) { 1792 use_tpd = atl1e_get_tpd(adapter); 1793 memcpy(use_tpd, tpd, sizeof(struct atl1e_tpd_desc)); 1794 1795 tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd); 1796 BUG_ON(tx_buffer->skb); 1797 1798 tx_buffer->skb = NULL; 1799 tx_buffer->length = 1800 (buf_len > MAX_TX_BUF_LEN) ? 1801 MAX_TX_BUF_LEN : buf_len; 1802 buf_len -= tx_buffer->length; 1803 1804 tx_buffer->dma = skb_frag_dma_map(&adapter->pdev->dev, 1805 frag, 1806 (i * MAX_TX_BUF_LEN), 1807 tx_buffer->length, 1808 DMA_TO_DEVICE); 1809 1810 if (dma_mapping_error(&adapter->pdev->dev, tx_buffer->dma)) { 1811 /* We need to unwind the mappings we've done */ 1812 ring_end = adapter->tx_ring.next_to_use; 1813 adapter->tx_ring.next_to_use = ring_start; 1814 while (adapter->tx_ring.next_to_use != ring_end) { 1815 tpd = atl1e_get_tpd(adapter); 1816 tx_buffer = atl1e_get_tx_buffer(adapter, tpd); 1817 dma_unmap_page(&adapter->pdev->dev, tx_buffer->dma, 1818 tx_buffer->length, DMA_TO_DEVICE); 1819 } 1820 1821 /* Reset the ring next to use pointer */ 1822 adapter->tx_ring.next_to_use = ring_start; 1823 return -ENOSPC; 1824 } 1825 1826 ATL1E_SET_PCIMAP_TYPE(tx_buffer, ATL1E_TX_PCIMAP_PAGE); 1827 use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma); 1828 use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) | 1829 ((cpu_to_le32(tx_buffer->length) & 1830 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT); 1831 } 1832 } 1833 1834 if ((tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK) 1835 /* note this one is a tcp header */ 1836 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT; 1837 /* The last tpd */ 1838 1839 use_tpd->word3 |= 1 << TPD_EOP_SHIFT; 1840 /* The last buffer info contain the skb address, 1841 so it will be free after unmap */ 1842 tx_buffer->skb = skb; 1843 return 0; 1844 } 1845 1846 static void atl1e_tx_queue(struct atl1e_adapter *adapter, u16 count, 1847 struct atl1e_tpd_desc *tpd) 1848 { 1849 struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; 1850 /* Force memory writes to complete before letting h/w 1851 * know there are new descriptors to fetch. (Only 1852 * applicable for weak-ordered memory model archs, 1853 * such as IA-64). */ 1854 wmb(); 1855 AT_WRITE_REG(&adapter->hw, REG_MB_TPD_PROD_IDX, tx_ring->next_to_use); 1856 } 1857 1858 static netdev_tx_t atl1e_xmit_frame(struct sk_buff *skb, 1859 struct net_device *netdev) 1860 { 1861 struct atl1e_adapter *adapter = netdev_priv(netdev); 1862 u16 tpd_req = 1; 1863 struct atl1e_tpd_desc *tpd; 1864 1865 if (test_bit(__AT_DOWN, &adapter->flags)) { 1866 dev_kfree_skb_any(skb); 1867 return NETDEV_TX_OK; 1868 } 1869 1870 if (unlikely(skb->len <= 0)) { 1871 dev_kfree_skb_any(skb); 1872 return NETDEV_TX_OK; 1873 } 1874 tpd_req = atl1e_cal_tdp_req(skb); 1875 1876 if (atl1e_tpd_avail(adapter) < tpd_req) { 1877 /* no enough descriptor, just stop queue */ 1878 netif_stop_queue(netdev); 1879 return NETDEV_TX_BUSY; 1880 } 1881 1882 tpd = atl1e_get_tpd(adapter); 1883 1884 if (skb_vlan_tag_present(skb)) { 1885 u16 vlan_tag = skb_vlan_tag_get(skb); 1886 u16 atl1e_vlan_tag; 1887 1888 tpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT; 1889 AT_VLAN_TAG_TO_TPD_TAG(vlan_tag, atl1e_vlan_tag); 1890 tpd->word2 |= (atl1e_vlan_tag & TPD_VLANTAG_MASK) << 1891 TPD_VLAN_SHIFT; 1892 } 1893 1894 if (skb->protocol == htons(ETH_P_8021Q)) 1895 tpd->word3 |= 1 << TPD_VL_TAGGED_SHIFT; 1896 1897 if (skb_network_offset(skb) != ETH_HLEN) 1898 tpd->word3 |= 1 << TPD_ETHTYPE_SHIFT; /* 802.3 frame */ 1899 1900 /* do TSO and check sum */ 1901 if (atl1e_tso_csum(adapter, skb, tpd) != 0) { 1902 dev_kfree_skb_any(skb); 1903 return NETDEV_TX_OK; 1904 } 1905 1906 if (atl1e_tx_map(adapter, skb, tpd)) { 1907 dev_kfree_skb_any(skb); 1908 goto out; 1909 } 1910 1911 atl1e_tx_queue(adapter, tpd_req, tpd); 1912 out: 1913 return NETDEV_TX_OK; 1914 } 1915 1916 static void atl1e_free_irq(struct atl1e_adapter *adapter) 1917 { 1918 struct net_device *netdev = adapter->netdev; 1919 1920 free_irq(adapter->pdev->irq, netdev); 1921 } 1922 1923 static int atl1e_request_irq(struct atl1e_adapter *adapter) 1924 { 1925 struct pci_dev *pdev = adapter->pdev; 1926 struct net_device *netdev = adapter->netdev; 1927 int err = 0; 1928 1929 err = request_irq(pdev->irq, atl1e_intr, IRQF_SHARED, netdev->name, 1930 netdev); 1931 if (err) { 1932 netdev_dbg(adapter->netdev, 1933 "Unable to allocate interrupt Error: %d\n", err); 1934 return err; 1935 } 1936 netdev_dbg(netdev, "atl1e_request_irq OK\n"); 1937 return err; 1938 } 1939 1940 int atl1e_up(struct atl1e_adapter *adapter) 1941 { 1942 struct net_device *netdev = adapter->netdev; 1943 int err = 0; 1944 u32 val; 1945 1946 /* hardware has been reset, we need to reload some things */ 1947 err = atl1e_init_hw(&adapter->hw); 1948 if (err) { 1949 err = -EIO; 1950 return err; 1951 } 1952 atl1e_init_ring_ptrs(adapter); 1953 atl1e_set_multi(netdev); 1954 atl1e_restore_vlan(adapter); 1955 1956 if (atl1e_configure(adapter)) { 1957 err = -EIO; 1958 goto err_up; 1959 } 1960 1961 clear_bit(__AT_DOWN, &adapter->flags); 1962 napi_enable(&adapter->napi); 1963 atl1e_irq_enable(adapter); 1964 val = AT_READ_REG(&adapter->hw, REG_MASTER_CTRL); 1965 AT_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, 1966 val | MASTER_CTRL_MANUAL_INT); 1967 1968 err_up: 1969 return err; 1970 } 1971 1972 void atl1e_down(struct atl1e_adapter *adapter) 1973 { 1974 struct net_device *netdev = adapter->netdev; 1975 1976 /* signal that we're down so the interrupt handler does not 1977 * reschedule our watchdog timer */ 1978 set_bit(__AT_DOWN, &adapter->flags); 1979 1980 netif_stop_queue(netdev); 1981 1982 /* reset MAC to disable all RX/TX */ 1983 atl1e_reset_hw(&adapter->hw); 1984 msleep(1); 1985 1986 napi_disable(&adapter->napi); 1987 atl1e_del_timer(adapter); 1988 atl1e_irq_disable(adapter); 1989 1990 netif_carrier_off(netdev); 1991 adapter->link_speed = SPEED_0; 1992 adapter->link_duplex = -1; 1993 atl1e_clean_tx_ring(adapter); 1994 atl1e_clean_rx_ring(adapter); 1995 } 1996 1997 /** 1998 * atl1e_open - Called when a network interface is made active 1999 * @netdev: network interface device structure 2000 * 2001 * Returns 0 on success, negative value on failure 2002 * 2003 * The open entry point is called when a network interface is made 2004 * active by the system (IFF_UP). At this point all resources needed 2005 * for transmit and receive operations are allocated, the interrupt 2006 * handler is registered with the OS, the watchdog timer is started, 2007 * and the stack is notified that the interface is ready. 2008 */ 2009 static int atl1e_open(struct net_device *netdev) 2010 { 2011 struct atl1e_adapter *adapter = netdev_priv(netdev); 2012 int err; 2013 2014 /* disallow open during test */ 2015 if (test_bit(__AT_TESTING, &adapter->flags)) 2016 return -EBUSY; 2017 2018 /* allocate rx/tx dma buffer & descriptors */ 2019 atl1e_init_ring_resources(adapter); 2020 err = atl1e_setup_ring_resources(adapter); 2021 if (unlikely(err)) 2022 return err; 2023 2024 err = atl1e_request_irq(adapter); 2025 if (unlikely(err)) 2026 goto err_req_irq; 2027 2028 err = atl1e_up(adapter); 2029 if (unlikely(err)) 2030 goto err_up; 2031 2032 return 0; 2033 2034 err_up: 2035 atl1e_free_irq(adapter); 2036 err_req_irq: 2037 atl1e_free_ring_resources(adapter); 2038 atl1e_reset_hw(&adapter->hw); 2039 2040 return err; 2041 } 2042 2043 /** 2044 * atl1e_close - Disables a network interface 2045 * @netdev: network interface device structure 2046 * 2047 * Returns 0, this is not allowed to fail 2048 * 2049 * The close entry point is called when an interface is de-activated 2050 * by the OS. The hardware is still under the drivers control, but 2051 * needs to be disabled. A global MAC reset is issued to stop the 2052 * hardware, and all transmit and receive resources are freed. 2053 */ 2054 static int atl1e_close(struct net_device *netdev) 2055 { 2056 struct atl1e_adapter *adapter = netdev_priv(netdev); 2057 2058 WARN_ON(test_bit(__AT_RESETTING, &adapter->flags)); 2059 atl1e_down(adapter); 2060 atl1e_free_irq(adapter); 2061 atl1e_free_ring_resources(adapter); 2062 2063 return 0; 2064 } 2065 2066 static int atl1e_suspend(struct pci_dev *pdev, pm_message_t state) 2067 { 2068 struct net_device *netdev = pci_get_drvdata(pdev); 2069 struct atl1e_adapter *adapter = netdev_priv(netdev); 2070 struct atl1e_hw *hw = &adapter->hw; 2071 u32 ctrl = 0; 2072 u32 mac_ctrl_data = 0; 2073 u32 wol_ctrl_data = 0; 2074 u16 mii_advertise_data = 0; 2075 u16 mii_bmsr_data = 0; 2076 u16 mii_intr_status_data = 0; 2077 u32 wufc = adapter->wol; 2078 u32 i; 2079 #ifdef CONFIG_PM 2080 int retval = 0; 2081 #endif 2082 2083 if (netif_running(netdev)) { 2084 WARN_ON(test_bit(__AT_RESETTING, &adapter->flags)); 2085 atl1e_down(adapter); 2086 } 2087 netif_device_detach(netdev); 2088 2089 #ifdef CONFIG_PM 2090 retval = pci_save_state(pdev); 2091 if (retval) 2092 return retval; 2093 #endif 2094 2095 if (wufc) { 2096 /* get link status */ 2097 atl1e_read_phy_reg(hw, MII_BMSR, &mii_bmsr_data); 2098 atl1e_read_phy_reg(hw, MII_BMSR, &mii_bmsr_data); 2099 2100 mii_advertise_data = ADVERTISE_10HALF; 2101 2102 if ((atl1e_write_phy_reg(hw, MII_CTRL1000, 0) != 0) || 2103 (atl1e_write_phy_reg(hw, 2104 MII_ADVERTISE, mii_advertise_data) != 0) || 2105 (atl1e_phy_commit(hw)) != 0) { 2106 netdev_dbg(adapter->netdev, "set phy register failed\n"); 2107 goto wol_dis; 2108 } 2109 2110 hw->phy_configured = false; /* re-init PHY when resume */ 2111 2112 /* turn on magic packet wol */ 2113 if (wufc & AT_WUFC_MAG) 2114 wol_ctrl_data |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN; 2115 2116 if (wufc & AT_WUFC_LNKC) { 2117 /* if orignal link status is link, just wait for retrive link */ 2118 if (mii_bmsr_data & BMSR_LSTATUS) { 2119 for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) { 2120 msleep(100); 2121 atl1e_read_phy_reg(hw, MII_BMSR, 2122 &mii_bmsr_data); 2123 if (mii_bmsr_data & BMSR_LSTATUS) 2124 break; 2125 } 2126 2127 if ((mii_bmsr_data & BMSR_LSTATUS) == 0) 2128 netdev_dbg(adapter->netdev, 2129 "Link may change when suspend\n"); 2130 } 2131 wol_ctrl_data |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN; 2132 /* only link up can wake up */ 2133 if (atl1e_write_phy_reg(hw, MII_INT_CTRL, 0x400) != 0) { 2134 netdev_dbg(adapter->netdev, 2135 "read write phy register failed\n"); 2136 goto wol_dis; 2137 } 2138 } 2139 /* clear phy interrupt */ 2140 atl1e_read_phy_reg(hw, MII_INT_STATUS, &mii_intr_status_data); 2141 /* Config MAC Ctrl register */ 2142 mac_ctrl_data = MAC_CTRL_RX_EN; 2143 /* set to 10/100M halt duplex */ 2144 mac_ctrl_data |= MAC_CTRL_SPEED_10_100 << MAC_CTRL_SPEED_SHIFT; 2145 mac_ctrl_data |= (((u32)adapter->hw.preamble_len & 2146 MAC_CTRL_PRMLEN_MASK) << 2147 MAC_CTRL_PRMLEN_SHIFT); 2148 2149 __atl1e_vlan_mode(netdev->features, &mac_ctrl_data); 2150 2151 /* magic packet maybe Broadcast&multicast&Unicast frame */ 2152 if (wufc & AT_WUFC_MAG) 2153 mac_ctrl_data |= MAC_CTRL_BC_EN; 2154 2155 netdev_dbg(adapter->netdev, "suspend MAC=0x%x\n", 2156 mac_ctrl_data); 2157 2158 AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl_data); 2159 AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data); 2160 /* pcie patch */ 2161 ctrl = AT_READ_REG(hw, REG_PCIE_PHYMISC); 2162 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 2163 AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); 2164 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1); 2165 goto suspend_exit; 2166 } 2167 wol_dis: 2168 2169 /* WOL disabled */ 2170 AT_WRITE_REG(hw, REG_WOL_CTRL, 0); 2171 2172 /* pcie patch */ 2173 ctrl = AT_READ_REG(hw, REG_PCIE_PHYMISC); 2174 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 2175 AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); 2176 2177 atl1e_force_ps(hw); 2178 hw->phy_configured = false; /* re-init PHY when resume */ 2179 2180 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0); 2181 2182 suspend_exit: 2183 2184 if (netif_running(netdev)) 2185 atl1e_free_irq(adapter); 2186 2187 pci_disable_device(pdev); 2188 2189 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 2190 2191 return 0; 2192 } 2193 2194 #ifdef CONFIG_PM 2195 static int atl1e_resume(struct pci_dev *pdev) 2196 { 2197 struct net_device *netdev = pci_get_drvdata(pdev); 2198 struct atl1e_adapter *adapter = netdev_priv(netdev); 2199 u32 err; 2200 2201 pci_set_power_state(pdev, PCI_D0); 2202 pci_restore_state(pdev); 2203 2204 err = pci_enable_device(pdev); 2205 if (err) { 2206 netdev_err(adapter->netdev, 2207 "Cannot enable PCI device from suspend\n"); 2208 return err; 2209 } 2210 2211 pci_set_master(pdev); 2212 2213 AT_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */ 2214 2215 pci_enable_wake(pdev, PCI_D3hot, 0); 2216 pci_enable_wake(pdev, PCI_D3cold, 0); 2217 2218 AT_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0); 2219 2220 if (netif_running(netdev)) { 2221 err = atl1e_request_irq(adapter); 2222 if (err) 2223 return err; 2224 } 2225 2226 atl1e_reset_hw(&adapter->hw); 2227 2228 if (netif_running(netdev)) 2229 atl1e_up(adapter); 2230 2231 netif_device_attach(netdev); 2232 2233 return 0; 2234 } 2235 #endif 2236 2237 static void atl1e_shutdown(struct pci_dev *pdev) 2238 { 2239 atl1e_suspend(pdev, PMSG_SUSPEND); 2240 } 2241 2242 static const struct net_device_ops atl1e_netdev_ops = { 2243 .ndo_open = atl1e_open, 2244 .ndo_stop = atl1e_close, 2245 .ndo_start_xmit = atl1e_xmit_frame, 2246 .ndo_get_stats = atl1e_get_stats, 2247 .ndo_set_rx_mode = atl1e_set_multi, 2248 .ndo_validate_addr = eth_validate_addr, 2249 .ndo_set_mac_address = atl1e_set_mac_addr, 2250 .ndo_fix_features = atl1e_fix_features, 2251 .ndo_set_features = atl1e_set_features, 2252 .ndo_change_mtu = atl1e_change_mtu, 2253 .ndo_eth_ioctl = atl1e_ioctl, 2254 .ndo_tx_timeout = atl1e_tx_timeout, 2255 #ifdef CONFIG_NET_POLL_CONTROLLER 2256 .ndo_poll_controller = atl1e_netpoll, 2257 #endif 2258 2259 }; 2260 2261 static int atl1e_init_netdev(struct net_device *netdev, struct pci_dev *pdev) 2262 { 2263 SET_NETDEV_DEV(netdev, &pdev->dev); 2264 pci_set_drvdata(pdev, netdev); 2265 2266 netdev->netdev_ops = &atl1e_netdev_ops; 2267 2268 netdev->watchdog_timeo = AT_TX_WATCHDOG; 2269 /* MTU range: 42 - 8170 */ 2270 netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN); 2271 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - 2272 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2273 atl1e_set_ethtool_ops(netdev); 2274 2275 netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_TSO | 2276 NETIF_F_HW_VLAN_CTAG_RX; 2277 netdev->features = netdev->hw_features | NETIF_F_HW_VLAN_CTAG_TX; 2278 /* not enabled by default */ 2279 netdev->hw_features |= NETIF_F_RXALL | NETIF_F_RXFCS; 2280 return 0; 2281 } 2282 2283 /** 2284 * atl1e_probe - Device Initialization Routine 2285 * @pdev: PCI device information struct 2286 * @ent: entry in atl1e_pci_tbl 2287 * 2288 * Returns 0 on success, negative on failure 2289 * 2290 * atl1e_probe initializes an adapter identified by a pci_dev structure. 2291 * The OS initialization, configuring of the adapter private structure, 2292 * and a hardware reset occur. 2293 */ 2294 static int atl1e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2295 { 2296 struct net_device *netdev; 2297 struct atl1e_adapter *adapter = NULL; 2298 static int cards_found; 2299 2300 int err = 0; 2301 2302 err = pci_enable_device(pdev); 2303 if (err) 2304 return dev_err_probe(&pdev->dev, err, "cannot enable PCI device\n"); 2305 2306 /* 2307 * The atl1e chip can DMA to 64-bit addresses, but it uses a single 2308 * shared register for the high 32 bits, so only a single, aligned, 2309 * 4 GB physical address range can be used at a time. 2310 * 2311 * Supporting 64-bit DMA on this hardware is more trouble than it's 2312 * worth. It is far easier to limit to 32-bit DMA than update 2313 * various kernel subsystems to support the mechanics required by a 2314 * fixed-high-32-bit system. 2315 */ 2316 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2317 if (err) { 2318 dev_err(&pdev->dev, "No usable DMA configuration,aborting\n"); 2319 goto err_dma; 2320 } 2321 2322 err = pci_request_regions(pdev, atl1e_driver_name); 2323 if (err) { 2324 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2325 goto err_pci_reg; 2326 } 2327 2328 pci_set_master(pdev); 2329 2330 netdev = alloc_etherdev(sizeof(struct atl1e_adapter)); 2331 if (netdev == NULL) { 2332 err = -ENOMEM; 2333 goto err_alloc_etherdev; 2334 } 2335 2336 err = atl1e_init_netdev(netdev, pdev); 2337 if (err) { 2338 netdev_err(netdev, "init netdevice failed\n"); 2339 goto err_init_netdev; 2340 } 2341 adapter = netdev_priv(netdev); 2342 adapter->bd_number = cards_found; 2343 adapter->netdev = netdev; 2344 adapter->pdev = pdev; 2345 adapter->hw.adapter = adapter; 2346 adapter->hw.hw_addr = pci_iomap(pdev, BAR_0, 0); 2347 if (!adapter->hw.hw_addr) { 2348 err = -EIO; 2349 netdev_err(netdev, "cannot map device registers\n"); 2350 goto err_ioremap; 2351 } 2352 2353 /* init mii data */ 2354 adapter->mii.dev = netdev; 2355 adapter->mii.mdio_read = atl1e_mdio_read; 2356 adapter->mii.mdio_write = atl1e_mdio_write; 2357 adapter->mii.phy_id_mask = 0x1f; 2358 adapter->mii.reg_num_mask = MDIO_REG_ADDR_MASK; 2359 2360 netif_napi_add(netdev, &adapter->napi, atl1e_clean); 2361 2362 timer_setup(&adapter->phy_config_timer, atl1e_phy_config, 0); 2363 2364 /* get user settings */ 2365 atl1e_check_options(adapter); 2366 /* 2367 * Mark all PCI regions associated with PCI device 2368 * pdev as being reserved by owner atl1e_driver_name 2369 * Enables bus-mastering on the device and calls 2370 * pcibios_set_master to do the needed arch specific settings 2371 */ 2372 atl1e_setup_pcicmd(pdev); 2373 /* setup the private structure */ 2374 err = atl1e_sw_init(adapter); 2375 if (err) { 2376 netdev_err(netdev, "net device private data init failed\n"); 2377 goto err_sw_init; 2378 } 2379 2380 /* Init GPHY as early as possible due to power saving issue */ 2381 atl1e_phy_init(&adapter->hw); 2382 /* reset the controller to 2383 * put the device in a known good starting state */ 2384 err = atl1e_reset_hw(&adapter->hw); 2385 if (err) { 2386 err = -EIO; 2387 goto err_reset; 2388 } 2389 2390 if (atl1e_read_mac_addr(&adapter->hw) != 0) { 2391 err = -EIO; 2392 netdev_err(netdev, "get mac address failed\n"); 2393 goto err_eeprom; 2394 } 2395 2396 eth_hw_addr_set(netdev, adapter->hw.mac_addr); 2397 netdev_dbg(netdev, "mac address : %pM\n", adapter->hw.mac_addr); 2398 2399 INIT_WORK(&adapter->reset_task, atl1e_reset_task); 2400 INIT_WORK(&adapter->link_chg_task, atl1e_link_chg_task); 2401 netif_set_tso_max_size(netdev, MAX_TSO_SEG_SIZE); 2402 err = register_netdev(netdev); 2403 if (err) { 2404 netdev_err(netdev, "register netdevice failed\n"); 2405 goto err_register; 2406 } 2407 2408 /* assume we have no link for now */ 2409 netif_stop_queue(netdev); 2410 netif_carrier_off(netdev); 2411 2412 cards_found++; 2413 2414 return 0; 2415 2416 err_reset: 2417 err_register: 2418 err_sw_init: 2419 err_eeprom: 2420 pci_iounmap(pdev, adapter->hw.hw_addr); 2421 err_init_netdev: 2422 err_ioremap: 2423 free_netdev(netdev); 2424 err_alloc_etherdev: 2425 pci_release_regions(pdev); 2426 err_pci_reg: 2427 err_dma: 2428 pci_disable_device(pdev); 2429 return err; 2430 } 2431 2432 /** 2433 * atl1e_remove - Device Removal Routine 2434 * @pdev: PCI device information struct 2435 * 2436 * atl1e_remove is called by the PCI subsystem to alert the driver 2437 * that it should release a PCI device. The could be caused by a 2438 * Hot-Plug event, or because the driver is going to be removed from 2439 * memory. 2440 */ 2441 static void atl1e_remove(struct pci_dev *pdev) 2442 { 2443 struct net_device *netdev = pci_get_drvdata(pdev); 2444 struct atl1e_adapter *adapter = netdev_priv(netdev); 2445 2446 /* 2447 * flush_scheduled work may reschedule our watchdog task, so 2448 * explicitly disable watchdog tasks from being rescheduled 2449 */ 2450 set_bit(__AT_DOWN, &adapter->flags); 2451 2452 atl1e_del_timer(adapter); 2453 atl1e_cancel_work(adapter); 2454 2455 unregister_netdev(netdev); 2456 atl1e_free_ring_resources(adapter); 2457 atl1e_force_ps(&adapter->hw); 2458 pci_iounmap(pdev, adapter->hw.hw_addr); 2459 pci_release_regions(pdev); 2460 free_netdev(netdev); 2461 pci_disable_device(pdev); 2462 } 2463 2464 /** 2465 * atl1e_io_error_detected - called when PCI error is detected 2466 * @pdev: Pointer to PCI device 2467 * @state: The current pci connection state 2468 * 2469 * This function is called after a PCI bus error affecting 2470 * this device has been detected. 2471 */ 2472 static pci_ers_result_t 2473 atl1e_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2474 { 2475 struct net_device *netdev = pci_get_drvdata(pdev); 2476 struct atl1e_adapter *adapter = netdev_priv(netdev); 2477 2478 netif_device_detach(netdev); 2479 2480 if (state == pci_channel_io_perm_failure) 2481 return PCI_ERS_RESULT_DISCONNECT; 2482 2483 if (netif_running(netdev)) 2484 atl1e_down(adapter); 2485 2486 pci_disable_device(pdev); 2487 2488 /* Request a slot reset. */ 2489 return PCI_ERS_RESULT_NEED_RESET; 2490 } 2491 2492 /** 2493 * atl1e_io_slot_reset - called after the pci bus has been reset. 2494 * @pdev: Pointer to PCI device 2495 * 2496 * Restart the card from scratch, as if from a cold-boot. Implementation 2497 * resembles the first-half of the e1000_resume routine. 2498 */ 2499 static pci_ers_result_t atl1e_io_slot_reset(struct pci_dev *pdev) 2500 { 2501 struct net_device *netdev = pci_get_drvdata(pdev); 2502 struct atl1e_adapter *adapter = netdev_priv(netdev); 2503 2504 if (pci_enable_device(pdev)) { 2505 netdev_err(adapter->netdev, 2506 "Cannot re-enable PCI device after reset\n"); 2507 return PCI_ERS_RESULT_DISCONNECT; 2508 } 2509 pci_set_master(pdev); 2510 2511 pci_enable_wake(pdev, PCI_D3hot, 0); 2512 pci_enable_wake(pdev, PCI_D3cold, 0); 2513 2514 atl1e_reset_hw(&adapter->hw); 2515 2516 return PCI_ERS_RESULT_RECOVERED; 2517 } 2518 2519 /** 2520 * atl1e_io_resume - called when traffic can start flowing again. 2521 * @pdev: Pointer to PCI device 2522 * 2523 * This callback is called when the error recovery driver tells us that 2524 * its OK to resume normal operation. Implementation resembles the 2525 * second-half of the atl1e_resume routine. 2526 */ 2527 static void atl1e_io_resume(struct pci_dev *pdev) 2528 { 2529 struct net_device *netdev = pci_get_drvdata(pdev); 2530 struct atl1e_adapter *adapter = netdev_priv(netdev); 2531 2532 if (netif_running(netdev)) { 2533 if (atl1e_up(adapter)) { 2534 netdev_err(adapter->netdev, 2535 "can't bring device back up after reset\n"); 2536 return; 2537 } 2538 } 2539 2540 netif_device_attach(netdev); 2541 } 2542 2543 static const struct pci_error_handlers atl1e_err_handler = { 2544 .error_detected = atl1e_io_error_detected, 2545 .slot_reset = atl1e_io_slot_reset, 2546 .resume = atl1e_io_resume, 2547 }; 2548 2549 static struct pci_driver atl1e_driver = { 2550 .name = atl1e_driver_name, 2551 .id_table = atl1e_pci_tbl, 2552 .probe = atl1e_probe, 2553 .remove = atl1e_remove, 2554 /* Power Management Hooks */ 2555 #ifdef CONFIG_PM 2556 .suspend = atl1e_suspend, 2557 .resume = atl1e_resume, 2558 #endif 2559 .shutdown = atl1e_shutdown, 2560 .err_handler = &atl1e_err_handler 2561 }; 2562 2563 module_pci_driver(atl1e_driver); 2564